RU2638139C2 - Ковка в открытом штампе с раздельными проходами трудных для ковки и чувствительных к траектории деформирования сплавов на основе титана и на основе никеля - Google Patents

Ковка в открытом штампе с раздельными проходами трудных для ковки и чувствительных к траектории деформирования сплавов на основе титана и на основе никеля Download PDF

Info

Publication number
RU2638139C2
RU2638139C2 RU2015120762A RU2015120762A RU2638139C2 RU 2638139 C2 RU2638139 C2 RU 2638139C2 RU 2015120762 A RU2015120762 A RU 2015120762A RU 2015120762 A RU2015120762 A RU 2015120762A RU 2638139 C2 RU2638139 C2 RU 2638139C2
Authority
RU
Russia
Prior art keywords
forging
workpiece
alloy
press
metal material
Prior art date
Application number
RU2015120762A
Other languages
English (en)
Other versions
RU2015120762A (ru
Inventor
Жан-Филипп А. ТОМА
Рамеш С. МИНИСАНДРАМ
Джейсон П. ФЛОУДЕР
МЛ. Джорж Дж. СМИТ
Original Assignee
ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи filed Critical ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи
Publication of RU2015120762A publication Critical patent/RU2015120762A/ru
Application granted granted Critical
Publication of RU2638139C2 publication Critical patent/RU2638139C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Forging (AREA)

Abstract

Изобретение относится к обработке заготовок для измельчения микроструктуры. Производят ковку нагретой заготовки на прессе в открытом штампе в первом направлении ковки до предела пластичности материала заготовки. Затем повторяют указанную ковку до получения общей степени, достаточной для инициирования измельчения микроструктуры. Далее заготовку поворачивают на угол и производят ковку во втором направлении ковки до тех пор, пока общая степень деформации во втором направлении ковки не будет достаточной для инициирования измельчения микроструктуры. Повторяют этап поворота и этап ковки в третьем и, необязательно, в одном или более дополнительных направлениях ковки. Повторение осуществляют до тех пор, пока во всем объеме заготовки не будет получена общая степень деформации, достаточная для инициирования измельчения микроструктуры. При этом заготовку не поворачивают, пока общая степень деформации, достаточная для инициирования измельчения микроструктуры, не будет получена в третьем направлении и любом одном или более дополнительных направлениях. В результате обеспечивается повышение эффективности инициирования механизма измельчения микроструктуры. 2 н. и 20 з.п. ф-лы, 3 ил.

Description

ЗАЯВЛЕНИЕ О СПОНСИРУЕМЫХ ПРАВИТЕЛЬСТВОМ ИССЛЕДОВАНИЯХ ИЛИ РАЗРАБОТКАХ
[0001] Настоящее изобретение было осуществлено при поддержке правительства Соединенных Штатов по контракту NIST №70NANB7H7038, заключенному с Национальным институтом стандартов и технологии (NIST) Министерства торговли США. Правительство США может иметь определенные права на настоящее изобретение.
ОБЛАСТЬ ТЕХНИКИ
[0002] Настоящее изобретение относится к способам ковки металлических сплавов, включая металлические сплавы, которые трудно куются по причине низкой пластичности. Некоторые способы согласно настоящему изобретению придают деформацию таким образом, который максимизирует накопление разориентации в кристаллической структуре зерен металла и/или частиц вторичной фазы, минимизируя риск зарождения и распространения трещин в подвергаемом ковке материале. Некоторые способы согласно настоящему изобретению, как ожидается, влияют на измельчение микроструктуры в металлических сплавах.
УРОВЕНЬ ТЕХНИКИ
[0003] Пластичность является природным свойством любого данного металлического материала (т.е. металлов и металлических сплавов). Во время процесса ковки пластичность металлического материала определяется температурой ковки и микроструктурой металлического материала. Если пластичность является низкой, например, по причине того, что металлический материал по своей природе имеет низкую пластичность, или должна использоваться низкая температура ковки, или в металлическом материале еще не образовалась упругая микроструктура, обычной практикой является уменьшение степени обжатия во время каждого ковочного цикла. Например, вместо ковки 22-дюймовой (558,8 мм) восьмигранной заготовки непосредственно в 20-дюймовый (508 мм) октагон, специалист может сначала выполнить ковку до 21-дюймового (533,4 мм) октагона с ковочными проходами на каждой грани октагона, затем подогреть заготовку и ковать до 20-дюймового октагона с ковочными проходами на каждой грани октагона. Однако такой способ может не оказаться подходящим, если металл проявляет чувствительность к траектории деформирования и в продукте должна быть получена конкретная конечная микроструктура. Чувствительность к траектории деформирования может наблюдаться, когда на данных этапах обработки материалу должна быть придана критическая степень деформации для задействования механизмов измельчения зерна. Измельчение микроструктуры не может быть реализовано способом ковки, при котором обжатия, достигаемые во время вытяжек, являются слишком незначительными.
[0004] В ситуации, в которой металлический материал отличается низкой термочувствительностью и проявляет склонность к растрескиванию при низких температурах, время ковки в штампе должно быть сокращено. Способ, позволяющий достичь этого, например, должен обеспечивать возможность ковки 22-дюймового восьмиугольного биллета до 20-дюймового квадратного биллета со скругленными углами (RCS) с использованием только половины проходов, которые необходимы для ковки 20-дюймового восьмиугольного биллета. Затем 20-дюймовый квадратный биллет с RCS можно подогреть и применить вторую половину проходов для формирования 20-дюймового восьмиугольного биллета. Другое решение для ковки металлических материалов с низкой термочувствительностью состоит в первоначальной ковке одного конца заготовки, подогреве заготовки и последующей ковке другого конца заготовки.
[0005] В двухфазных микроструктурах измельчение микроструктуры начинается с генерации субграниц и накопления разориентации в качестве предшественника таким процессам, как, например, зародышеобразование, рекристаллизация и/или глобуляризация вторичной фазы. Примером сплава, который требует накопления разориентации для измельчения микроструктуры, является сплав Ti-6Al-4V (UNS R56400), проковываемый в области альфа-бета фаз. В таких сплавах ковка более эффективна с точки зрения измельчения микроструктуры, если в данном направлении может быть придано значительное обжатие перед поворотом заготовки. Это может быть сделано в лабораторных масштабах путем всесторонней ковки (от англ. «multi-axis forging», MAF). Всесторонняя ковка, выполненная на небольших образцах (с размером стороны в несколько дюймов) в изотермических или почти изотермических условиях и с использованием очень низких скоростей деформации с надлежащей смазкой, может придавать деформацию достаточно равномерно, но отход от любого из указанных условий (небольшие размеры, почти изотермические условия и смазка) может привести к неоднородной деформации, приданной предпочтительно центральной области заготовки, а также к проблемам пластичности с последующим растрескиванием холодной поверхности. Способ всесторонней ковки титановых сплавов для использования при измельчении зерна в промышленных масштабах описан в публикации заявки на патент США №2012/0060981 А1, которая включена сюда посредством ссылки во всей своей полноте.
[0006] Таким образом, задачей настоящего изобретения является создание такого способа обработки давлением, который обеспечивает достаточную деформацию металлического материала для эффективного инициирования механизмов измельчения микроструктуры путем ковки с одновременным ограничением проблем, связанных с пластичностью.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
[0007] Согласно одному неограничивающему аспекту настоящего изобретения предложен способ ковки заготовки из металлического материала, включающий ковку заготовки на прессе в открытом штампе при температуре ковки в первом направлении ковки до предела пластичности при обжатии металлического материала. Повторяют ковку заготовки на прессе в открытом штампе в первом направлении ковки до предела пластичности при обжатии один или более раз при температуре ковки, пока общая степень деформации, приданная в первом направлении ковки, не будет достаточной для инициирования измельчения микроструктуры. Затем поворачивают заготовку на необходимый угол поворота.
[0008] После поворота выполняют ковку заготовки на прессе в открытом штампе при температуре ковки во втором направлении ковки до предела пластичности при обжатии металлического материала. Повторяют ковку заготовки на прессе в открытом штампе во втором направлении ковки до предела пластичности при обжатии один или более раз при температуре ковки, пока общая степень деформации, приданная во втором направлении ковки, не будет достаточной для инициирования измельчения микроструктуры.
[0009] Повторяют этапы поворота, ковки на прессе в открытом штампе и повторения ковки на прессе в открытом штампе в третьем и, необязательно, одном или более дополнительных направлениях ковки, пока всему объему заготовки не будет придана общая степень деформации, которая достаточна для инициирования измельчения микроструктуры. Заготовку не поворачивают, пока в каждом из третьего и любого одного или более из дополнительных направлений не будет придана общая степень деформации, которая достаточна для инициирования измельчения микроструктуры.
[0010] Согласно другому неограничивающему варианту реализации настоящего изобретения предложен способ ковки заготовки из металлического материала в открытом штампе с раздельными проходами для инициирования измельчения микроструктуры, включающий этап, на котором обеспечивают заготовку с поперечным сечением в форме гибрида квадрата и октагона со скругленными углами (далее для краткости иногда называемой гибридной квадратно-октагональной RCS-заготовкой), содержащую металлический материал. Выполняют ковку заготовки осадкой. Затем поворачивают заготовку для вытяжки в открытом штампе на первой диагональной грани в направлении X' гибридной квадратно-октагональной RCS-заготовки. Выполняют многопроходную ковку заготовки вытяжкой в направлении X' до порога деформации для инициирования измельчения микроструктуры. Каждый этап многопроходной ковки вытяжкой включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0011] Поворачивают заготовку для вытяжки в открытом штампе на второй диагональной грани в направлении Y' гибридной квадратно-октагональной RCS-заготовки. Выполняют многопроходную ковку вытяжкой заготовки в направлении Y' до порога деформации для инициирования измельчения микроструктуры. Каждый этап многопроходной ковки вытяжкой включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0012] Поворачивают заготовку для вытяжки в открытом штампе на первой грани квадрата со скругленными углами (RCS) в направлении Y гибридной квадратно-октагональной RCS-заготовки. Выполняют многопроходную ковку заготовки вытяжкой в направлении Y до порога деформации для инициирования измельчения микроструктуры. Каждый этап многопроходной ковки вытяжкой включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0013] Поворачивают заготовку для вытяжки в открытом штампе на второй грани квадрата со скругленными углами (RCS) в направлении X гибридной квадратно-октагональной RCS-заготовки. Выполняют многопроходную ковку заготовки вытяжкой в направлении X до порога деформации для инициирования измельчения зерна. Каждый этап многопроходной ковки вытяжкой включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала. Этапы осадки и множественных циклов ковки вытяжкой в случае необходимости могут быть повторены для дополнительного инициирования и/или улучшения измельчения микроструктуры в металлическом материале.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0014] Признаки и преимущества описанных здесь способов и изделий могут быть лучше поняты при обращении к сопроводительным чертежам, на которых:
[0015] На фиг. 1 показана блок-схема неограничивающего варианта реализации способа ковки в открытом штампе с раздельными проходами металлического материала согласно настоящему изобретению;
[0016] На фиг. 2 схематически показана гибридная квадратно-октагональная RCS-заготовка согласно неограничивающему варианту реализации настоящего изобретения; и
[0017] На фиг. 3А-3Е схематически показаны неограничивающие варианты реализации способа ковки в открытом штампе с раздельными проходами гибридной квадратно-октагональной RCS-заготовки из металлического материала согласно настоящему изобретению.
[0018] Читатель сможет оценить описанные выше и другие особенности настоящего изобретения после прочтения следующего подробного описания некоторых неограничивающих вариантов реализации настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ НЕКОТОРЫХ НЕОГРАНИЧИВАЮЩИХ ВАРИАНТОВ РЕАЛИЗАЦИИ
[0019] Следует понимать, что некоторые описания представленных здесь вариантов реализации упрощены для объяснения только тех элементов, признаков и аспектов, которые непосредственно относятся к ясному пониманию описанных вариантов реализации, в то время как в целях ясности описание других элементов, признаков и аспектов опущено. Специалисты после рассмотрения настоящего описания представленных вариантов реализации согласятся, что при конкретном осуществлении или применении описанных вариантов реализации могут оказаться предпочтительными другие элементы и/или признаки. Однако, поскольку такие другие элементы и/или признаки могут быть легко установлены и осуществлены специалистами после рассмотрения настоящего описания представленных вариантов реализации и, таким образом, не являются необходимыми для полного понимания описанных вариантов реализации, описание таких элементов и/или признаков здесь не представлено. Также следует понимать, что приведенное здесь описание является просто примером, иллюстрирует описанные варианты реализации и не предназначено для ограничения объема охраны изобретения, определяемого исключительно приложенной формулой изобретения.
[0020] Любой приведенный здесь числовой диапазон предназначен включать все относящиеся к нему поддиапазоны. Например, диапазон "1-10" предназначен включать все поддиапазоны между указанным минимальным значением 1 и указанным максимальным значением 10 (включительно), т.е. имеющие минимальное значение, которое равно или больше 1, и максимальное значение, которое равно или меньше 10. Любое максимальное числовое ограничение, указанное здесь, предназначено включать все более низкие числовые ограничения, относящиеся к нему как поддиапазон, и любое минимальное числовое ограничение, указанное здесь, предназначено включать все более высокие числовые ограничения, относящиеся к нему как поддиапазон. Соответственно, заявитель оставляет за собой право на уточнение раскрытия настоящего изобретения, включая приложенную формулу изобретения, для явного указания любого поддиапазона, входящего в явно указанные здесь диапазоны. Все такие диапазоны подразумеваются неявно раскрытыми здесь, так что уточнение с явным указанием любых таких поддиапазонов будет отвечать требованиям §112 раздела 35 Свода законов США, первый абзац, и §132(a) раздела 35 Свода законов США.
[0021] Термин "один" и грамматические формы единственного числа, которые используются здесь, подразумеваются включающими "по меньшей мере один" или "один или более", если не указано иное. Таким образом, данные термины использованы в настоящем описании для обозначения одного или более чем одного (т.е. "по меньшей мере одного") из грамматических объектов термина. Например, "компонент" обозначает один или более компонентов, а значит, возможно, предусмотрен более чем один компонент, который может быть использован или применен при осуществлении описанных вариантов реализации.
[0022] Все процентные содержания и соотношения вычислены на основании общей массы металлического материала конкретного состава, если не указано иное.
[0023] Любой патент, публикация или другой материал раскрытия, который указан включенным сюда полностью или частично по ссылке, включен сюда только до той степени, при которой указанный включенный материал не находится в противоречии с существующими определениями, утверждениями или другим раскрывающим изобретение материалом, сформулированным в настоящем описании. По сути и до необходимой степени представленное здесь описание заменяет любой противоречащий материал, включенный сюда по ссылке. Любой материал или его часть, который указан включенным сюда по ссылке, но который противоречит существующим определениям, утверждениям или другим раскрывающим изобретение материалам, сформулированным здесь, включен сюда только в той степени, при которой не возникает конфликт между включенным материалом и существующим материалом раскрытия изобретения.
[0024] Настоящее изобретение содержит описания различных вариантов реализации. Следует понимать, что все описанные здесь варианты реализации представляют собой примеры и являются иллюстративными и неограничивающими. Таким образом, изобретение не ограничено представленным описанием различных примеров, а также иллюстративных и неограничивающих вариантов реализации. Напротив, изобретение ограничено исключительно приложенной формулой изобретения, которая может быть уточнена с указанием любых признаков, явно или неявно описанных здесь или иначе явно или неявно поддержанных настоящим раскрытием изобретения.
[0025] Используемый здесь термин "металлический материал" относится к металлам, таким как технически чистые металлы и металлические сплавы.
[0026] Используемые здесь термины "обжимка", "ковка" и "ковка на прессе в открытом штампе" относятся к видам термомеханической обработки ("ТМО"), которая также может упоминаться здесь как "термомеханическая обработка давлением". Термин "термомеханическая обработка давлением" определен здесь как в целом охватывающий различные способы формования металлического материала, сочетающие управляемые термические и деформационные обработки для достижения синергетических эффектов, таких как, например и без ограничений, повышение прочности без потери вязкости разрушения. Такое определение термомеханической обработки давлением согласуется с его значением, представленным, например, в "Справочнике по металлам Американского общества металловедения (ASM)", J.R. Davis, изд-во "ASM International" (1992), стр. 480. Используемый здесь термин "ковка на прессе в открытом штампе" относится к ковке металлического материала между бойками, в которых течение материала совершенно не ограничено, механическим или гидравлическим давлением, сопровождаемым одиночным рабочим ходом пресса для каждого цикла работы штампа. Это определение ковки на прессе в открытом штампе согласуется с ее значением, указанным, например, в "Справочнике по металлам Американского общества металловедения (ASM)", J.R. Davis, изд-во "ASM International" (1992), стр. 298 и 343. Используемый здесь термин "обжимка" относится к способу термомеханического обжатия, используемому для улучшения или измельчения зерен металлического материала во время обработки слитка давлением в биллет. Это определение обжимки согласуется с ее значением, указанным, например, в "Справочнике по металлам Американского общества металловедения (ASM)", J.R. Davis, изд-во "ASM International" (1992), стр. 79.
[0027] Используемый здесь термин "биллет" относится к твердому полуфабрикату круглого или квадратного сечения, который подвергнут горячей обработке давлением ковкой, прокаткой или прессованием. Это определение биллета согласуется с его значением, указанным, например, в "Справочнике по металлам Американского общества металловедения (ASM)", J.R. Davis, изд-во "ASM International" (1992), стр. 40. Используемый здесь термин "пруток" относится к выкованному из биллета профилю со сплошным сечением такой формы, как круглая, шестиугольная, восьмиугольная, квадратная или прямоугольная, с острыми или скругленными краями, который является длинным по отношению к размерам его поперечного сечения и который имеет симметричное поперечное сечение. Это определение прутка совместимо со значением, указанным, например, в "Справочнике по металлам Американского общества металловедения (ASM)", J.R. Davis, изд-во "ASM International" (1992), стр. 32.
[0028] Используемый здесь термин "предел пластичности" относится к предельной или максимальной степени обжатия или пластической деформации, которую металлический материал может выдержать без разрушения или растрескивания. Это определение согласуется с его значением, указанным, например, в "Справочнике по металлам Американского общества металловедения (ASM)", J.R. Davis, изд-во "ASM International" (1992), стр. 131. Используемый здесь термин "предел пластичности при обжатии" относится к величине или степени обжатия, которую металлический материал может выдержать перед разрушением или растрескиванием.
[0029] Используемые здесь фразы "инициировать измельчение микроструктуры" и "порог деформации для инициирования измельчения микроструктуры" относятся к приданию деформации микроструктуре металлического материала для получения накопления разориентации (например, дислокаций и субграниц) в кристаллической структуре и/или частицах вторичной фазы, что приводит к уменьшению размера зерен материала. Деформацию придают металлическим материалам во время практического осуществления неограничивающих вариантов реализации способов по настоящему изобретению или во время последующих этапов термомеханической обработки. В по существу однофазных сплавах на основе никеля или на основе титана (по меньшей мере 90% γ-фазы в никелевых или β-фазы в титановых) порог деформации для инициирования измельчения микроструктуры относится к зародышеобразованию первых рекристаллизованных зерен. Он может быть оценен по диаграмме напряжений, измеренной при интересующих температуре и скоростях деформации путем одноосного сжатия или растяжения. Обычно он составляет порядка 0,1-0,3 деформации. Если ковке подвергают двухфазные сплавы на основе никеля и на основе титана, формирование микроструктуры происходит еще медленнее. Например, глобуляризация вторичной фазы не может быть достигнута или даже инициирована при одиночной вытяжке. Затем внимание следует уделить деформации, необходимой для накопления эффективной разориентации за счет аккумулирующего эффекта множества этапов ковки. В таком случае измельчение микроструктуры относится к формированию небольших субзерен, которые все больше и больше разориентируются относительно их материнского зерна или исходной ориентации. Это связано с динамическим возвратом (накоплением дислокаций на субграницах), эффект которого также может быть замечен на диаграммах напряжений в виде смягчения текучести. Обычно достигаются пороговые значения, например, от 0,1 до 0,3, которые могут быть использованы для качественной оценки порога деформации, который должен быть достигнут при каждой операции вытяжки или ковки. Степень разориентации, достигнутая во время вытяжки, увеличивает вероятность того, что субзерна будут разориентироваться еще больше после поворота заготовки перед следующей операцией вытяжки, вместо возвращения их ориентации к ориентации их материнского зерна.
[0030] Согласно одному аспекту способа ковки в открытом штампе с раздельными проходами согласно настоящему изобретению ковка в открытом штампе с раздельными проходами основана на точном управлении степенью деформации, придаваемой заготовке в каждом проходе, для ограничения растрескивания заготовки. Если в данном направлении ковки применено недостаточное обжатие для инициирования процесса измельчения микроструктуры в этом данном направлении, ковку на прессе в открытом штампе повторяют на той же самой грани, в том же самом направлении, вплоть до предела пластичности при обжатии подвергаемого ковке металлического материала, пока в данном направлении не будет придано достаточное обжатие для инициирования измельчения микроструктуры.
[0031] Если желательная степень деформации, которая должна быть придана заготовке в любом проходе для инициирования измельчения микроструктуры, превышает максимальную степень деформации, которая может быть достигнута в одном проходе ковки вытяжкой без слишком значительного растрескивания материала, т.е. степень деформации превышает предел пластичности материала при обжатии, то операция обжатия должна быть разделена на два или более проходов таким образом, что 1) приданная в любом проходе деформация меньше, чем предел пластичности при обжатии материала при температуре ковки, и 2) полная деформация, приданная в одном направлении ковки, достаточна для инициирования удовлетворительного измельчения микроструктуры. Только после придания достаточной деформации для приведения в действие механизма формирования микроструктуры и инициирования ее измельчения в одном направлении заготовку следует повернуть для ковки в следующем проходе обжатия во втором направлении.
[0032] Обращаясь к фиг. 1, согласно одному неограничивающему аспекту настоящего изобретения способ 100 ковки заготовки из металлического материала для инициирования измельчения микроструктуры включает ковку 102 заготовки из металлического материала на прессе в открытом штампе при температуре ковки в первом направлении ковки до предела пластичности при обжатии металлического материала. Предел пластичности при обжатии металлического материала в том смысле, в котором это понятие использовано здесь, может быть качественно оценен по деформации разрушения (εf), которая является технической деформацией, при которой испытываемый образец разрушается во время испытания на одноосное растяжение. Одно конкретное испытание на одноосное растяжение, которое может быть использовано, описано в ASTM Е8/Е8М-11, "Standard Test Methods for Tension Testing of Metallic Materials" (Стандартные способы испытания на растяжение металлических материалов), изд. ASTM International, г. Западный Коншохокен, штат Пенсильвания, США (2011). Истинная деформация εf разрушения является истинной деформацией, вычисленной на основании исходной площади А0 сечения и площади Af сечения после разрушения, и может быть выражена Уравнением (1). Специалист может легко оценить предел пластичности при обжатии для конкретного металлического материала из Уравнения (1), и, таким образом, пределы пластичности при обжатии для заданных металлических материалов должны быть включены в объем охраны настоящего изобретения.
Уравнение (1): εf=ln(A0/Af).
[0033] После ковки 102 на прессе в открытом штампе при температуре ковки в первом направлении ковки до предела пластичности при обжатии металлического материала заготовку из металлического материала подвергают ковке 104 на прессе в открытом штампе до предела пластичности при обжатии металлического материала один или более раз при температуре ковки в первом направлении ковки, пока общая степень деформации в первом направлении ковки не будет достаточной для инициирования измельчения микроструктуры. Затем заготовку поворачивают 106 на необходимый угол поворота для подготовки к следующему проходу ковки.
[0034] Следует понимать, что необходимый угол поворота зависит от геометрии заготовки. Например, заготовку в форме восьмигранного прутка можно ковать на любой грани, после чего ее поворачивают на 90° и куют, затем поворачивают на 45° и куют, а затем поворачивают на 90° и куют. Чтобы устранить вспучивание сторон восьмигранного прутка, восьмигранный пруток сглаживают, поворачивают на 45° и сглаживают, затем поворачивают на 90° и сглаживают, затем поворачивают на 45° и сглаживают, и затем поворачивают на 90° и сглаживают. Специалисту понятно, что термин "сглаживание" и его формы, используемые здесь, относятся к сглаживанию, дрессированию или финишированию поверхности заготовки из металлического материала с применением облегченных ковочных ударов на прессе в открытом штампе по поверхностям металлической заготовки для доведения заготовки (например, биллета или прутка) до необходимой формы и размеров. Обычный специалист может легко определить необходимые углы поворота для заготовок, имеющих любые конкретные формы поперечного сечения, такие как, например, круглая, квадратная или прямоугольная формы поперечного сечения.
[0035] После поворота 106 заготовки из металлического материала на необходимый угол поворота, заготовку подвергают ковке 108 на прессе в открытом штампе при температуре ковки во втором направлении ковки до предела пластичности при обжатии металлического материала. Ковку заготовки на прессе повторяют 110 до предела пластичности при обжатии один или более раз при температуре ковки во втором направлении ковки, пока общая степень деформации во втором направлении ковки не будет достаточной для инициирования измельчения микроструктуры в металлическом материале.
[0036] Этапы поворота, ковки в открытом штампе и повторения ковки в открытом штампе повторяют 112 в третьем и, необязательно, в одном или более дополнительных направлениях, пока все грани не будут прокованы до такого размера, что всему объему или по всей заготовке будет придана общая степень деформации, достаточная для инициирования измельчения микроструктуры. Для каждого из третьего и одного или более дополнительных направлений, в которых измельчение микроструктуры должно быть активировано в данной точке процесса, ковку на прессе в открытом штампе повторяют до предела пластичности при обжатии и не поворачивают заготовку до тех пор, пока материалу не будет придана достаточная степень деформации в этом заданном направлении. Причем для каждого из третьего и одного или более дополнительных направлений, в которых необходимо выполнить только регулирование профиля заготовки или сглаживание, ковку на прессе в открытом штампе выполняют только до предела пластичности при обжатии. Обычный специалист-практик после прочтения настоящего описания легко сможет определить необходимые углы поворота и число направлений ковки, требуемых для обработки давлением заготовки конкретной геометрии с использованием описанных здесь способов.
[0037] Варианты реализации способов согласно настоящему изобретению отличаются, например, от способов обработки давлением с применением деформации для формирования сляба из заготовки, имеющей круглое или восьмиугольное поперечное сечение. Например, вместо продолжения обработки давлением для получения плоского продукта путем обработки только краев для регулирования ширины, согласно неограничивающим вариантам реализации настоящего изобретения подобные повторные проходы выполняют на дополнительных сторонах заготовки для сохранения до некоторой степени изотропной формы, не отклоняющейся значительно от целевой окончательной формы заготовки, которая может быть, например, прямоугольным, квадратным, круглым или восьмиугольным биллетом или прутком.
[0038] В случаях, когда материалу должна быть придана большая избыточная деформация, способ вытяжки согласно настоящему изобретению может быть объединен с осадками. Множество осадок и вытяжек основаны на повторении шаблона циклических форм и размеров. Конкретный вариант реализации изобретения включает поперечное сечение в виде гибрида октагона и квадрата со скругленными углами (RCS), который способствует максимизации деформации, приданной по двум осям во время вытяжек с чередованием направлений граней и диагоналей в каждом цикле осадки и вытяжки. Этот неограничивающий вариант реализации аналогичен тому способу, которым деформацию придают имеющим кубическую форму образцам, полученным путем всесторонней ковки (MAF), но в то же время обеспечивает возможность массового изготовления в промышленных масштабах.
[0039] Соответственно, как показано на фиг. 2, в одном неограничивающем варианте реализации способа ковки осадкой и ковки вытяжкой согласно настоящему изобретению конкретная форма 200 поперечного сечения биллета представляет собой гибрид октагона и квадрата со скругленными углами (RCS), упоминаемая здесь как гибридная квадратно-октагональная форма. Согласно одному неограничивающему варианту реализации каждый этап ковки вытяжкой приводит к этой повторяющейся гибридной квадратно-октагональной форме RCS перед новой осадкой. Для облегчения осаживания длина заготовки может быть меньше, чем утроенный минимальный размер от грани до грани квадратно-октагонального гибрида с RCS. Основным параметром в такой гибридной форме является отношение размеров, с одной стороны, между гранями с ориентацией 0° и 90° RCS-заготовки (стрелка D на фиг. 2), и, с другой стороны, диагональными гранями с ориентацией 45° и 135° (стрелка Ddiag на фиг. 2), которые делают заготовку похожей на восьмиугольник (октагон). Согласно одному неограничивающему варианту реализации это отношение может быть задано относительно обжатия при осадке таким образом, что размер по диагоналям 45°/135° (Ddiag) перед осадкой является примерно тем же самым, что и размер по диагоналям 0°/90° (D) после осадки.
[0040] В одном неограничивающем примере вычисления гибридной квадратно-октагональной формы с RCS учитывается обжатие U при осадке (или в процентном выражении (100×U)). После обжатия U в результате ковки осадкой диагональный размер составляет:
Figure 00000001
Затем, обжатие от новой диагонали до грани обозначено как R, и:
Figure 00000002
В результате перегруппировки:
Figure 00000003
После осадки размер между главными гранями составляет:
Figure 00000004
Таким образом, обжатие на гранях, становящихся новой диагональю, составляет:
Figure 00000005
[0041] Это подразумевает, что для того чтобы обжатие r было определенным (положительным), обжатие U должно быть больше чем R, или равно R. В случае, если U=R, теоретически никакой обработки не потребуется для того, чтобы грани стали новыми диагоналями. На практике, однако, ковка приведет к некоторой выпуклости на гранях, и поэтому ковка будет необходима.
[0042] Используя эти уравнения, в одном неограничивающем варианте реализации согласно настоящему изобретению рассматривается ситуация, в которой D=24 дюйма (609,6 мм), U=26% и R=25%. В результате это дает:
Figure 00000006
Тогда размер по диагонали составляет:
Ddiag=βD~1.147×24~27.5, и:
Figure 00000007
Однако часть обработки с обжатием по диагоналям вызывает выпучивание на гранях, так что обжатие, применяемое для формирования и контроля размера новых диагоналей, фактически должно быть больше чем 1,3%. Очередность ковки, необходимая для контроля граней, просто задана как несколько проходов для ограничения вспучивания и контроля размера новых диагоналей.
[0043] Неограничивающий пример ковки 300 в открытом штампе с раздельными проходами схематично показан на фиг. 3А-3Е. Обращаясь к фиг. 3А, на этапе 302 обеспечивают (берут) гибридную квадратно-октагональную RCS-заготовку, содержащую труднокующийся металлический материал, и куют осадкой в открытом штампе. Размеры заготовки до ковки осадкой показаны штриховыми линиями 304, а размеры заготовки после ковки осадкой показаны сплошной линией 306. Грани, представляющие исходную RCS часть гибридной квадратно-октагональной RCS-заготовки, обозначены на фиг. 3А-3Е как 0, 90, 180 и 270 градусов. Направление Y заготовки совпадает с направлением, перпендикулярным граням 0 и 180 градусов. Направление X заготовки совпадает с направлением, перпендикулярным граням 90 и 270 градусов. Грани, представляющие исходные диагональные части октагона гибридной квадратно-октагональной RCS-заготовки, на фиг. 3А-3Е обозначены как 45, 135, 225 и 315 градусов. Диагональное направление X' заготовки совпадает с направлением, перпендикулярном граням 45 и 225 градусов. Диагональное направление Y' заготовки совпадает с направлением, перпендикулярным граням 135 и 315 градусов.
[0044] После ковки осадкой заготовку поворачивают (по стрелке 308) для вытяжки в открытом штампе на первой диагональной грани (в направлении X'), и, в частности, в настоящем варианте реализации поворачивают (по стрелке 308) на диагональную грань 45 градусов для ковки вытяжкой. Затем заготовку подвергают многопроходной ковке вытяжкой (по стрелке 310) на этой диагональной грани до порога деформации для инициирования измельчения микроструктуры, без превышения предела пластичности при обжатии. Каждый этап многопроходной ковки вытяжкой включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0045] Обращаясь к фиг. 3В, заготовка после многопроходной ковки вытяжкой на диагональной грани 45 градусов показана ссылочным номером 312 (не в масштабе). Заготовку поворачивают на 90 градусов (по стрелке 314), в данном конкретном варианте реализации - на вторую диагональную грань 135 (в направлении Y') для многопроходной ковки вытяжкой 316. Затем заготовку подвергают многопроходной ковке вытяжкой (по стрелке 316) на этой диагональной грани до порога деформации для инициирования измельчения микроструктуры. Каждый этап многопроходной ковки вытяжкой включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0046] Обращаясь к фиг. 3С, в одном неограничивающем варианте реализации на этапе 318 заготовку куют осадкой. Размеры заготовки до ковки осадкой показаны штриховыми линиями 320, а размеры заготовки после ковки осадкой показаны сплошными линиями 322.
[0047] После ковки осадкой заготовку поворачивают (по стрелке 324) для вытяжки в открытом штампе на первой RCS грани, и, в частности, в данном варианте реализации поворачивают (по стрелке 324) на диагональную грань 180 градусов (первую RCS грань; в направлении Y) для ковки вытяжкой. Затем заготовку подвергают многопроходной ковке вытяжкой (по стрелке 326) на этой первой RCS грани до порога деформации для инициирования измельчения микроструктуры. Каждый этап многопроходной ковки вытяжкой содержит по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0048] Обращаясь к фиг. 3D, заготовка после многопроходной ковки вытяжкой на грани 180 градусов показана ссылочным номером 328 (не в масштабе). Заготовку поворачивают на 90 градусов (по стрелке 330), в данном варианте реализации - на вторую RCS грань 270 градусов (в направлении X) для многопроходной ковки вытяжкой 332. Затем заготовку подвергают многопроходной ковке вытяжкой (по стрелкам 332) на второй RCS грани до порога деформации для инициирования измельчения микроструктуры. Каждый этап многопроходной ковки вытяжкой содержит по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала.
[0049] Обращаясь к фиг. 3Е, гибридная квадратно-октагональная RCS-заготовка 334, прокованная согласно описанному здесь выше неограничивающему варианту реализации, как можно заметить, имеет по существу те же самые размеры, что и исходная гибридная квадратно-октагональная RCS-заготовка. Конечная кованая заготовка имеет микроструктуру с измельченным зерном. Это является результатом: (1) осадок, которые обеспечили обжатия вдоль оси Z заготовки, сопровождаемых множеством вытяжек по осям X' (ссылочный номер 312), Y' (ссылочный номер 316), Y (ссылочный номер 326) и X (ссылочный номер 332); (2) того факта, что каждый проход множественных вытяжек был выполнен до предела пластичности при обжатии; и (3) того факта, что множественные вытяжки по каждой оси обеспечили полную деформацию вплоть до порога деформации, требуемой для измельчения микроструктуры. В одном неограничивающем варианте реализации настоящего изобретения ковка осадкой включает ковку на прессе в открытом штампе до уменьшения длины (укорачивания), которое меньше, чем предел пластичности металлического материала, и ковка придает достаточную деформацию для инициирования измельчения микроструктуры в направлении ковки осадкой. Обычно осадка будет придана лишь за одно укорачивание, поскольку осадки обычно выполняют с более низкими скоростями деформации, при которых сам предел пластичности склонен быть большим, чем при более высоких скоростях деформации, используемых во время вытяжек. Но она может быть разделена на два или более укорачивания с промежуточным подогревом, если укорачивание превышает предел пластичности.
[0050] Известно, что канавочные (V-образные) штампы обычно создают значительную боковую выпуклость при первом проходе обжатия. Один неограничивающий вариант реализации способа с раздельными проходами включает после поворота на 90° выполнение обжатия сначала до исходного размера, и только затем имеет место собственно обжатие. Например, при переходе от 20 дюймов (508 мм) до 16 дюймов (406,4 мм) с максимальным проходом в 2 дюйма (50,8 мм) может быть выполнено обжатие до 18 дюймов (457,2 мм) на первой стороне, затем поворот на 90° и происходит обжатие до 20 дюймов (508 мм) для контроля (устранения) выпуклости, затем выполняется другое обжатие на той же самой стороне до 18 дюймов (457,2 мм), а затем снова другое обжатие до 16 дюймов (406,4 мм). Заготовку поворачивают на 90° и выполняют обжатие до 18 дюймов (457,2 мм) для контроля (устранения) выпуклости, и затем выполняют новое обжатие до 16 дюймов (406,4 мм). Заготовку поворачивают на 90° и выполняют обжатие до 18 дюймов (457,2 мм) для контроля (устранения) выпуклости, и затем снова до 16 дюймов (406,4 мм) в качестве нового обжатия. В этой точке пара поворотов, связанных со сглаживанием, и проходов до 16 дюймов (406,4 мм) должны завершать процесс, что обеспечивает обжатие в любом проходе не более чем на 2 дюйма (50,8 мм).
[0051] Согласно одному аспекту настоящего изобретения металлический материал, обрабатываемый согласно описанным здесь неограничивающим вариантам реализации, содержит один из титанового сплава и никелевого сплава. В некоторых неограничивающих вариантах реализации металлический материал содержит суперсплав на основе никеля, такой как, например, один из сплавов: Waspaloy® (UNS N07001), ATI 718 Plus® (UNS N07818) и 720 (UNS N07720). В некоторых неограничивающих вариантах реализации металлический материал содержит титановый сплав или один из двухфазного титанового сплава с альфа-бета-структурой и титанового сплава с метастабильной бета-структурой. В неограничивающих вариантах реализации двухфазный титановый сплав с альфа-бета-структурой, обрабатываемый согласно вариантам реализации описанных здесь способов, содержит один из сплавов: Ti-6Al-4V (UNS R56400), ELI Ti-6Al-4V (UNS R56401), Ti-6Al-2Sn-4Zr-6Mo (UNS R56260), Ti-6Al-2Sn-4Zr-2Mo (UNS R54620), Ti-10V-2Fe-3Al (AMS 4986) и Ti-4Al-2,5V-1,5Fe (UNS 54250).
[0052] В одном неограничивающем варианте реализации способов ковки с раздельными проходами по настоящему изобретению ковка на прессе в открытом штампе включает ковку при температуре ковки, которая находится в диапазоне температур от 1100°F до температуры на 50°F ниже температуры бета-перехода двухфазного титанового сплава с альфа-бета-структурой. В другом неограничивающем варианте реализации способ согласно настоящему изобретению дополнительно включает один из подогрева или отжига заготовки между любыми этапами ковки на прессе в открытом штампе.
[0053] Следует понимать, что в объем способов по настоящему изобретению входит подогрев заготовки между любыми этапами многопроходной ковки на прессе в открытом штампе. Также следует понимать, что в объем способов по настоящему изобретению входит отжиг заготовки между любыми этапами многопроходной ковки на прессе в открытом штампе. Конкретные подробности подогрева и отжига металлического материала известны или могут быть легко установлены специалистами-практиками и поэтому не описаны здесь.
[0054] Примеры, которые приведены ниже, предназначены для дополнительного описания некоторых неограничивающих вариантов реализации без ограничения объема охраны настоящего изобретения. Специалистам в данной области техники будет понятно, что возможны изменения в приведенных ниже примерах в пределах объема охраны настоящего изобретения, который определяется исключительно приложенной формулой изобретения.
ПРИМЕР 1
[0055] Восьмиугольный биллет размером 24 дюйма (609,6 мм), содержащий сплав Ti-4Al-2,5V-1,5Fe, нагревают до температуры ковки 1600°F (871°С). Предел пластичности при обжатии этого сплава при температуре ковки по оценке составляет по меньшей мере 2 дюйма (50,8 мм) на одно обжатие и не допускает большего обжатия повторным образом без интенсивного растрескивания до 2 дюймов (50,8 мм) за одно обжатие. Биллет подвергают ковке на прессе в открытом штампе в первом направлении, на любой грани восьмиугольного биллета, до 22 дюймов (558,8 мм). Затем биллет подвергают ковке на прессе в открытом штампе в первом направлении до 20 дюймов (508 мм). Биллет поворачивают на 90° для ориентации во втором направлении для ковки на прессе в открытом штампе. Хотя исходный размер восьмиугольного биллета составлял 24 дюйма (609,6 мм), из-за вспучивания чередующихся граней во время ковки в первом направлении биллет подвергают ковке на прессе в открытом штампе во втором направлении до 24 дюймов (609,6 мм). Затем биллет подвергают ковке на прессе в открытом штампе во втором направлении еще два раза до 22 дюймов (558,8 мм) и затем до 20 дюймов (508 мм). Биллет подогревают до температуры ковки. Биллет поворачивают на 45° и затем выполняют ковку с раздельными проходами по 2 дюйма (50,8 мм) на одно обжатие в третьем направлении ковки до 24 дюймов (609,6 мм), затем до 22 дюймов (556,8 мм), а затем до 20 дюймов (508 мм). Биллет поворачивают на 90° и затем выполняют ковку с раздельными проходами по 2 дюйма (50,8 мм) на одно обжатие в другом направлении ковки согласно настоящему изобретению до 24 дюймов (609,6 мм), затем до 22 дюймов (558,8 мм), затем до 20 дюймов (508 мм).
[0056] Затем биллет сглаживают на следующих этапах: поворачивают биллет на 45° и выполняют оквадрачивание стороны до 20 дюймов (508 мм), используя ковку на прессе в открытом штампе, поворачивают биллет на 90° и выполняют оквадрачивание стороны до 20 дюймов (508 мм), используя ковку на прессе в открытом штампе, поворачивают биллет на 45° и выполняют оквадрачивание стороны до 20 дюймов (508 мм), используя ковку на прессе в открытом штампе, и поворачивают биллет на 90° и выполняют оквадрачивание стороны до 20 дюймов (508 мм), используя ковку на прессе в открытом штампе. Этот способ гарантирует, что ни один одиночный проход не внес изменение в размер более чем на 2 дюйма (50,8 мм), что является пределом пластичности при обжатии, несмотря на то, что любое общее обжатие в каждом необходимом направлении составляет по меньшей мере 4 дюйма (101,6 мм), что соответствует порогу деформации, требуемой для инициирования измельчения микроструктуры сплава.
[0057] В результате последовательности множества осадок и вытяжек согласно способу ковки в штампе с раздельными проходами, описанному в данном Примере, микроструктура сплава Ti-4Al-2,5V-1,5Fe состоит из глобуляризованных, или равноосных, частиц альфа-фазы, имеющих средний размер зерна в диапазоне от 1 мкм до 5 мкм.
ПРИМЕР 2
[0058] Взяли гибридный квадратно-октагональный RCS-биллет из металлического материала, содержащего сплав Ti-6Al-4V. Гибридная квадратно-октагональная форма RCS представляет собой квадрат со стороной 24 дюйма (609,6 мм) со скругленными углами (RCS) с диагоналями 27,5 дюйма (698,5 мм), образующими октагон. Длина выбрана таким образом, чтобы не превышать величину 3×24 дюйма или 72 дюйма (1828,8 мм); в данном примере длина биллета равна 70 дюймов (1778 мм). Для инициирования измельчения микроструктуры биллет подвергают ковке осадкой при 1600°F (871°С) до обжатия 26%. После обжатия при осадке длина биллета составляет примерно 51 дюйм (1295,4 мм), и его гибридное квадратно-октагональное поперечное сечение с RCS составляет примерно 27,9 дюйма (708,7 мм) × 32 дюйма (812,8 мм). Биллет должен быть подвергнут ковке вытяжкой с уменьшением 32-дюймовых диагоналей обратно до граней 24 дюйма (609,6 мм), что является обжатием на 8 дюймов (203,2 мм) или на 25% высоты диагонали. При этом ожидается, что другая диагональ вспучится до размера больше 32 дюймов (812,8 мм). В данном примере приемлемый прогноз по пределу пластичности при обжатии при температуре ковки в диапазоне 1600°F (871°С) состоит в том, что ни в одном проходе обжатие не должно превышать 2,5 дюйма (63,5 мм). Поскольку обжатия от 32 дюймов (812,8 мм) до 24 дюймов (609,6 мм) по диагоналям не могут быть приданы за раз при ковке на прессе в открытом штампе, учитывая, что такое обжатие превышает предел пластичности при обжатии материала, в данном конкретном неограничивающем варианте реализации использовался способ с раздельными проходами согласно настоящему изобретению.
[0059] Для уковки старых диагоналей до новых граней, грань высотой 32 дюйма (812,8 мм) подвергают ковке на прессе в открытом штампе до 29,5 дюйма (749,3 мм), а затем ковке на прессе в открытом штампе до 27,0 дюймов (685,8 мм). Гибридный квадратно-октагональный RCS-биллет поворачивают на 90°, куют на прессе в открытом штампе до 30,5 дюйма (774,7 мм), а затем куют на прессе в открытом штампе до 28 дюймов (711,2 мм). Затем гибридный квадратно-октагональный RCS-биллет куют по старым граням для контроля нового диагонального размера. Затем гибридный квадратно-октагональный RCS-биллет поворачивают на 45° и куют на прессе в открытом штампе до 27 дюймов (685,8 мм); затем поворачивают на 90° и куют на прессе в открытом штампе до 27,25 дюйма (692,15 мм). Затем гибридный квадратно-октагональный RCS-биллет куют на прессе в открытом штампе по старым диагоналям так, чтобы они стали новыми гранями, путем поворота гибридного квадратно-октагонального RCS-биллета на 45° и ковки на прессе в открытом штампе до 25,5 дюйма (647,7 мм), с последующей ковкой на прессе по той же самой поверхности до 23,25 дюйма (590,55 мм). Затем гибридный квадратно-октагональный RCS-биллет поворачивают на 90° и куют на прессе до 28 дюймов (711,2 мм), затем куют на прессе в открытом штампе до 25,5 дюйма (25,5 мм) в другом раздельном проходе, и затем куют на прессе в открытом штампе до 23,25 дюйма (590,55 мм) в дополнительном раздельном проходе по той же самой грани. Затем гибридный квадратно-октагональный RCS-биллет поворачивают на 90° и куют на прессе в открытом штампе до 24 дюймов (609,6 мм), а затем поворачивают на 90° и куют до 24 дюймов (609,6 мм). Наконец, новые диагонали гибридного квадратно-октагонального RCS-биллета сглаживают путем поворота гибридного квадратно-октагонального RCS-биллета на 45° и ковки на прессе в открытом штампе до 27,25 дюйма (692,15 мм), с последующими поворотом гибридного квадратно-октагонального RCS-биллета на 90° и ковкой на прессе в открытом штампе до 27,5 дюйма (698,5 мм).
[0060] В результате последовательности множества осадок и вытяжек согласно способу ковки в штампе с раздельными проходами, описанному в данном Примере, микроструктура сплава Ti-6Al-4V состоит из глобуляризованных, или равноосных, частиц альфа-фазы, имеющих средний размер зерна в диапазоне от 1 мкм до 5 мкм.
[0061] Следует понимать, что в настоящем описании показаны те аспекты изобретения, которые способствуют ясному пониманию изобретения. Некоторые аспекты, которые являются очевидными для специалистов и которые поэтому не способствуют улучшенному пониманию изобретения, не представлены для упрощения настоящего описания. Несмотря на то, что здесь подробно описано лишь ограниченное число вариантов реализации настоящего изобретения, специалист после рассмотрения предшествующего описания поймет, что в изобретение могут быть внесены различные модификации и изменения. Все такие изменения и модификации изобретения подразумеваются охваченными предшествующим описанием и последующей формулой изобретения.

Claims (41)

1. Способ ковки заготовки из металлического материала для инициирования измельчения микроструктуры, включающий
ковку заготовки на прессе в открытом штампе при температуре ковки в первом направлении ковки до предела пластичности при обжатии металлического материала,
повторение ковки заготовки на прессе в открытом штампе в первом направлении ковки до предела пластичности при обжатии один или более раз при температуре ковки, пока общая степень деформации, полученная в первом направлении ковки, не будет достаточной для инициирования измельчения микроструктуры,
поворот заготовки на необходимый угол поворота,
ковку заготовки на прессе в открытом штампе при температуре ковки во втором направлении ковки до предела пластичности при обжатии металлического материала,
повторение ковки заготовки на прессе в открытом штампе во втором направлении ковки до предела пластичности при обжатии один или более раз при температуре ковки, пока общая степень деформации, полученная во втором направлении ковки, не будет достаточной для инициирования измельчения микроструктуры, и
повторение этапа поворота, этапа ковки заготовки на прессе в открытом штампе и этапа повторения ковки заготовки на прессе в открытом штампе в третьем и, необязательно, одном или более дополнительных направлениях ковки, пока во всем объеме заготовки не будет получена общая степень деформации, достаточная для инициирования измельчения микроструктуры, причем заготовку не поворачивают, пока общая степень деформации, которая достаточна для инициирования измельчения микроструктуры, не будет получена в третьем направлении и любом одном или более дополнительных направлениях.
2. Способ по п. 1, в котором металлический материал содержит титановый сплав или никелевый сплав.
3. Способ по п. 1, в котором металлический материал содержит титановый сплав.
4. Способ по п. 3, в котором титановый сплав содержит один из сплава Ti-6Al-4V (UNS R56400), сплава ELI Ti-6Al-4V (UNS R56401), сплава Ti-6Al-2Sn-4Zr-6Mo (UNS R56260), сплава Ti-6Al-2Sn-4Zr-2Mo (UNS R54620), сплава Ti-10V-2Fe-3Al (AMS 4986) и сплава Ti-4Al-2,5V-l,5Fe (UNS 54250).
5. Способ по п. 3, в котором металлический материал содержит двухфазный титановый сплав с альфа-бета-структурой или титановый сплав с метастабильной бета-структурой.
6. Способ по п. 3, в котором металлический материал содержит двухфазный титановый сплав с альфа-бета-структурой.
7. Способ по п. 6, в котором двухфазный титановый сплава с альфа-бета-структурой содержит сплав Ti-4Al-2,5V-1,5Fe (UNS 54250).
8. Способ по п. 2, в котором металлический материал содержит один из сплава Waspaloy® (UNS N07001), сплава ATI 718Plus® (UNS N07818) и сплава 720 (UNS N07720).
9. Способ по п. 1, в котором температура ковки находится в диапазоне температур от 1100°F до температуры, на 50°F ниже температуры бета-перехода двухфазного титанового сплава с альфа-бета-структурой.
10. Способ по п. 1, дополнительно включающий подогрев заготовки между любыми этапами ковки на прессе в открытом штампе.
11. Способ по п. 1, дополнительно включающий отжиг заготовки между любыми этапами ковки на прессе в открытом штампе.
12. Способ ковки в открытом штампе с раздельными проходами заготовки из металлического материала для инициирования измельчения микроструктуры, включающий
обеспечение заготовки с поперечным сечением в форме гибрида октагона и квадрата со скругленными углами, содержащей металлический материал; ковку заготовки осадкой в открытом штампе,
поворот заготовки для вытяжки в открытом штампе на первой диагональной грани в направлении X' заготовки,
многопроходную ковку вытяжкой заготовки в направлении X' до порога деформации для инициирования измельчения микроструктуры,
причем каждый этап многопроходной ковки вытяжкой заготовки в направлении X' включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала,
поворот заготовки для вытяжки в открытом штампе на второй диагональной грани в направлении Y' заготовки,
многопроходную ковку вытяжкой заготовки в направлении Y' до порога деформации для инициирования измельчения микроструктуры,
причем каждый этап многопроходной ковки вытяжкой заготовки в направлении Y' включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала,
поворот заготовки для вытяжки в открытом штампе на первой грани квадрата со скругленными углами в направлении Y заготовки,
многопроходную ковку вытяжкой заготовки в направлении Y до порога деформации для инициирования измельчения микроструктуры,
причем каждый этап многопроходной ковки вытяжкой заготовки в направлении Y включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала,
поворот заготовки для вытяжки в открытом штампе на второй грани квадрата со скругленными углами в направлении X заготовки,
многопроходную ковку вытяжкой заготовки в направлении X до порога деформации для инициирования измельчения микроструктуры, причем каждый этап многопроходной ковки вытяжкой заготовки в направлении X включает по меньшей мере два прохода ковки вытяжкой на прессе в открытом штампе с обжатиями до предела пластичности при обжатии металлического материала,
повторение циклов осадки и множественных вытяжек по мере необходимости.
13. Способ по п. 12, в котором металлический материал содержит титановый сплав или никелевый сплав.
14. Способ по п. 12, в котором металлический материал содержит титановый сплав.
15. Способ по п. 14, в котором титановый сплав содержит один из сплава Ti-6Al-4V (UNS R56400), сплава ELI Ti-6Al-4V (UNS R56401), сплава Ti-6Al-2Sn-4Zr-6Mo (UNS R56260), сплава Ti-6Al-2Sn-4Zr-2Mo (UNS R54620), сплава Ti-10V-2Fe-3Al (AMS 4986) и сплава Ti-4Al-2,5V-1,5Fe (UNS 54250).
16. Способ по п. 14, в котором металлический материал содержит двухфазный титановый сплав с альфа-бета-структурой или титановый сплав с метастабильной бета-структурой.
17. Способ по п. 14, в котором металлический материал содержит двухфазный титановый сплав с альфа-бета-структурой.
18. Способ по п. 17, в котором двухфазный титановый сплав с альфа-бета-структурой содержит сплав Ti-4Al-2,5V-1,5Fe (UNS 54250).
19. Способ по п. 13, в котором металлический материал содержит один из сплава Waspaloy® (UNS N07001), сплава ATI 718Plus® (UNS N07818) и сплава 720 (UNS N07720).
20. Способ по п. 12, в котором температура ковки находится в диапазоне температур от 1100°F до температуры, на 50°F ниже температуры бета-перехода двухфазного титанового сплава с альфа-бета-структурой.
21. Способ по п. 12, дополнительно включающий подогрев заготовки между любыми этапами ковки на прессе в открытом штампе.
22. Способ по п. 12, дополнительно включающий отжиг заготовки между любыми этапами ковки на прессе в открытом штампе.
RU2015120762A 2013-03-15 2014-03-03 Ковка в открытом штампе с раздельными проходами трудных для ковки и чувствительных к траектории деформирования сплавов на основе титана и на основе никеля RU2638139C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/844,545 2013-03-15
US13/844,545 US9050647B2 (en) 2013-03-15 2013-03-15 Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
PCT/US2014/019788 WO2014149594A2 (en) 2013-03-15 2014-03-03 Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys

Publications (2)

Publication Number Publication Date
RU2015120762A RU2015120762A (ru) 2017-04-20
RU2638139C2 true RU2638139C2 (ru) 2017-12-11

Family

ID=50382595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120762A RU2638139C2 (ru) 2013-03-15 2014-03-03 Ковка в открытом штампе с раздельными проходами трудных для ковки и чувствительных к траектории деформирования сплавов на основе титана и на основе никеля

Country Status (19)

Country Link
US (1) US9050647B2 (ru)
EP (1) EP2969296B1 (ru)
JP (1) JP6342983B2 (ru)
KR (1) KR102039770B1 (ru)
CN (1) CN105026070B (ru)
AU (1) AU2014238036C1 (ru)
BR (1) BR112015015438A2 (ru)
CA (1) CA2892938C (ru)
ES (1) ES2731557T3 (ru)
IL (1) IL238922A (ru)
MX (1) MX361840B (ru)
NZ (1) NZ708495A (ru)
PL (1) PL2969296T3 (ru)
RU (1) RU2638139C2 (ru)
SG (1) SG11201506161QA (ru)
TR (1) TR201911147T4 (ru)
UA (1) UA115341C2 (ru)
WO (1) WO2014149594A2 (ru)
ZA (1) ZA201504106B (ru)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8783078B2 (en) 2010-07-27 2014-07-22 Ford Global Technologies, Llc Method to improve geometrical accuracy of an incrementally formed workpiece
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) * 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN105177478B (zh) * 2015-10-13 2017-05-31 北京科技大学 一种gh4738高温合金大型铸锭开坯方法
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure
RU2722847C1 (ru) * 2019-11-12 2020-06-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Способ производства фасонных профилей высокой точности
RU2726231C9 (ru) * 2019-12-11 2021-02-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВО "МГТУ им. Г.И. Носова") Способ получения калиброванных шестигранных профилей из нержавеющих сталей
RU2732331C9 (ru) * 2019-12-11 2021-04-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВО "МГТУ им. Г.И. Носова" Способ производства многогранной калиброванной стали
CN111889597A (zh) * 2020-08-07 2020-11-06 攀钢集团攀枝花钛材有限公司江油分公司 Tc4钛合金大规格棒材的锻造方法
KR102473120B1 (ko) * 2020-11-09 2022-12-02 주식회사 솔룸신소재 소재 가공 장치 및 방법
CN113145778B (zh) * 2021-04-27 2022-10-04 西北有色金属研究院 一种提高β钛合金组织均匀性的开坯锻造方法
CN114273575B (zh) * 2021-06-11 2023-04-18 宁夏中色金航钛业有限公司 一种大变形短流程锻造方法
CN113231589B (zh) * 2021-06-15 2023-02-28 西部超导材料科技股份有限公司 一种提高难变形镍基高温合金组织均匀性的锻造方法
CN114833284B (zh) * 2022-03-30 2023-10-13 江西宝顺昌特种合金制造有限公司 一种gh4145合金锻件及其制备方法
CN115156451A (zh) * 2022-06-17 2022-10-11 中国航发北京航空材料研究院 一种大规格钛合金棒材的组织均匀化变形方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003417C1 (ru) * 1990-12-14 1993-11-30 Всероссийский институт легких сплавов Способ получени кованых полуфабрикатов из литых сплавов системы TI - AL
RU2217260C1 (ru) * 2002-04-04 2003-11-27 ОАО Верхнесалдинское металлургическое производственное объединение СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- И (α+β)-ТИТАНОВЫХ СПЛАВОВ
WO2012063504A1 (ja) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 難加工性金属材料を多軸鍛造処理する方法、それを実施する装置、および金属材料

Family Cites Families (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB847103A (en) 1956-08-20 1960-09-07 Copperweld Steel Co A method of making a bimetallic billet
US3025905A (en) 1957-02-07 1962-03-20 North American Aviation Inc Method for precision forming
US3015292A (en) 1957-05-13 1962-01-02 Northrop Corp Heated draw die
US2932886A (en) 1957-05-28 1960-04-19 Lukens Steel Co Production of clad steel plates by the 2-ply method
US2857269A (en) 1957-07-11 1958-10-21 Crucible Steel Co America Titanium base alloy and method of processing same
US3060564A (en) 1958-07-14 1962-10-30 North American Aviation Inc Titanium forming method and means
US3313138A (en) 1964-03-24 1967-04-11 Crucible Steel Co America Method of forging titanium alloy billets
US3379522A (en) 1966-06-20 1968-04-23 Titanium Metals Corp Dispersoid titanium and titaniumbase alloys
DE1558632C3 (de) 1966-07-14 1980-08-07 Sps Technologies, Inc., Jenkintown, Pa. (V.St.A.) Anwendung der Verformungshärtung auf besonders nickelreiche Kobalt-Nickel-Chrom-Molybdän-Legierungen
US3489617A (en) 1967-04-11 1970-01-13 Titanium Metals Corp Method for refining the beta grain size of alpha and alpha-beta titanium base alloys
US3605477A (en) 1968-02-02 1971-09-20 Arne H Carlson Precision forming of titanium alloys and the like by use of induction heating
US4094708A (en) 1968-02-16 1978-06-13 Imperial Metal Industries (Kynoch) Limited Titanium-base alloys
US3615378A (en) 1968-10-02 1971-10-26 Reactive Metals Inc Metastable beta titanium-base alloy
US3584487A (en) 1969-01-16 1971-06-15 Arne H Carlson Precision forming of titanium alloys and the like by use of induction heating
US3635068A (en) 1969-05-07 1972-01-18 Iit Res Inst Hot forming of titanium and titanium alloys
GB1501622A (en) 1972-02-16 1978-02-22 Int Harvester Co Metal shaping processes
US3686041A (en) 1971-02-17 1972-08-22 Gen Electric Method of producing titanium alloys having an ultrafine grain size and product produced thereby
DE2148519A1 (de) 1971-09-29 1973-04-05 Ottensener Eisenwerk Gmbh Verfahren und vorrichtung zum erwaermen und boerdeln von ronden
JPS5025418A (ru) 1973-03-02 1975-03-18
FR2237435A5 (ru) 1973-07-10 1975-02-07 Aerospatiale
JPS5339183B2 (ru) 1974-07-22 1978-10-19
SU534518A1 (ru) 1974-10-03 1976-11-05 Предприятие П/Я В-2652 Способ термомеханической обработки сплавов на основе титана
US4098623A (en) 1975-08-01 1978-07-04 Hitachi, Ltd. Method for heat treatment of titanium alloy
FR2341384A1 (fr) 1976-02-23 1977-09-16 Little Inc A Lubrifiant et procede de formage a chaud des metaux
US4053330A (en) 1976-04-19 1977-10-11 United Technologies Corporation Method for improving fatigue properties of titanium alloy articles
US4120187A (en) 1977-05-24 1978-10-17 General Dynamics Corporation Forming curved segments from metal plates
SU631234A1 (ru) 1977-06-01 1978-11-05 Karpushin Viktor N Способ правки листов из высокопрочных сплавов
US4163380A (en) 1977-10-11 1979-08-07 Lockheed Corporation Forming of preconsolidated metal matrix composites
US4197643A (en) 1978-03-14 1980-04-15 University Of Connecticut Orthodontic appliance of titanium alloy
US4309226A (en) 1978-10-10 1982-01-05 Chen Charlie C Process for preparation of near-alpha titanium alloys
US4229216A (en) 1979-02-22 1980-10-21 Rockwell International Corporation Titanium base alloy
JPS6039744B2 (ja) 1979-02-23 1985-09-07 三菱マテリアル株式会社 時効硬化型チタン合金部材の矯正時効処理方法
JPS5762846A (en) 1980-09-29 1982-04-16 Akio Nakano Die casting and working method
JPS5762820A (en) 1980-09-29 1982-04-16 Akio Nakano Method of secondary operation for metallic product
CA1194346A (en) 1981-04-17 1985-10-01 Edward F. Clatworthy Corrosion resistant high strength nickel-base alloy
US4639281A (en) 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
JPS58167724A (ja) 1982-03-26 1983-10-04 Kobe Steel Ltd 石油掘削スタビライザ−用素材の製造方法
JPS6046358B2 (ja) 1982-03-29 1985-10-15 ミツドランド−ロス・コ−ポレ−シヨン スクラップ装荷バケットおよびそれを備えたスクラップ予熱装置
SU1088397A1 (ru) 1982-06-01 1991-02-15 Предприятие П/Я А-1186 Способ термоправки издели из титановых сплавов
EP0109350B1 (en) 1982-11-10 1991-10-16 Mitsubishi Jukogyo Kabushiki Kaisha Nickel-chromium alloy
US4543132A (en) 1983-10-31 1985-09-24 United Technologies Corporation Processing for titanium alloys
JPS60100655A (ja) 1983-11-04 1985-06-04 Mitsubishi Metal Corp 耐応力腐食割れ性のすぐれた高Cr含有Νi基合金部材の製造法
US4554028A (en) 1983-12-13 1985-11-19 Carpenter Technology Corporation Large warm worked, alloy article
US4482398A (en) 1984-01-27 1984-11-13 The United States Of America As Represented By The Secretary Of The Air Force Method for refining microstructures of cast titanium articles
DE3405805A1 (de) 1984-02-17 1985-08-22 Siemens AG, 1000 Berlin und 8000 München Schutzrohranordnung fuer glasfaser
US4631092A (en) 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
GB8429892D0 (en) 1984-11-27 1985-01-03 Sonat Subsea Services Uk Ltd Cleaning pipes
US4690716A (en) 1985-02-13 1987-09-01 Westinghouse Electric Corp. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors
AT381658B (de) 1985-06-25 1986-11-10 Ver Edelstahlwerke Ag Verfahren zur herstellung von amagnetischen bohrstrangteilen
JPH0686638B2 (ja) 1985-06-27 1994-11-02 三菱マテリアル株式会社 加工性の優れた高強度Ti合金材及びその製造方法
US4714468A (en) 1985-08-13 1987-12-22 Pfizer Hospital Products Group Inc. Prosthesis formed from dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization
US4668290A (en) 1985-08-13 1987-05-26 Pfizer Hospital Products Group Inc. Dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization
JPS62109956A (ja) 1985-11-08 1987-05-21 Sumitomo Metal Ind Ltd チタン合金の製造方法
DE3622433A1 (de) 1986-07-03 1988-01-21 Deutsche Forsch Luft Raumfahrt Verfahren zur verbesserung der statischen und dynamischen mechanischen eigenschaften von ((alpha)+ss)-titanlegierungen
US4799975A (en) 1986-10-07 1989-01-24 Nippon Kokan Kabushiki Kaisha Method for producing beta type titanium alloy materials having excellent strength and elongation
FR2614040B1 (fr) 1987-04-16 1989-06-30 Cezus Co Europ Zirconium Procede de fabrication d'une piece en alliage de titane et piece obtenue
JPH0694057B2 (ja) 1987-12-12 1994-11-24 新日本製鐵株式會社 耐海水性に優れたオーステナイト系ステンレス鋼の製造方法
JPH01279736A (ja) 1988-05-02 1989-11-10 Nippon Mining Co Ltd β型チタン合金材の熱処理方法
US4808249A (en) 1988-05-06 1989-02-28 The United States Of America As Represented By The Secretary Of The Air Force Method for making an integral titanium alloy article having at least two distinct microstructural regions
US4851055A (en) 1988-05-06 1989-07-25 The United States Of America As Represented By The Secretary Of The Air Force Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
US4888973A (en) 1988-09-06 1989-12-26 Murdock, Inc. Heater for superplastic forming of metals
US4857269A (en) 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
CA2004548C (en) 1988-12-05 1996-12-31 Kenji Aihara Metallic material having ultra-fine grain structure and method for its manufacture
US5173134A (en) 1988-12-14 1992-12-22 Aluminum Company Of America Processing alpha-beta titanium alloys by beta as well as alpha plus beta forging
US4975125A (en) 1988-12-14 1990-12-04 Aluminum Company Of America Titanium alpha-beta alloy fabricated material and process for preparation
JPH02205661A (ja) 1989-02-06 1990-08-15 Sumitomo Metal Ind Ltd β型チタン合金製スプリングの製造方法
US4980127A (en) 1989-05-01 1990-12-25 Titanium Metals Corporation Of America (Timet) Oxidation resistant titanium-base alloy
US4943412A (en) 1989-05-01 1990-07-24 Timet High strength alpha-beta titanium-base alloy
US5366598A (en) 1989-06-30 1994-11-22 Eltech Systems Corporation Method of using a metal substrate of improved surface morphology
US5074907A (en) 1989-08-16 1991-12-24 General Electric Company Method for developing enhanced texture in titanium alloys, and articles made thereby
US5041262A (en) 1989-10-06 1991-08-20 General Electric Company Method of modifying multicomponent titanium alloys and alloy produced
JPH03134124A (ja) 1989-10-19 1991-06-07 Agency Of Ind Science & Technol 耐エロージョン性に優れたチタン合金及びその製造方法
US5026520A (en) 1989-10-23 1991-06-25 Cooper Industries, Inc. Fine grain titanium forgings and a method for their production
US5169597A (en) 1989-12-21 1992-12-08 Davidson James A Biocompatible low modulus titanium alloy for medical implants
US5244517A (en) 1990-03-20 1993-09-14 Daido Tokushuko Kabushiki Kaisha Manufacturing titanium alloy component by beta forming
US5032189A (en) 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JPH0436445A (ja) 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd 耐食性チタン合金継目無管の製造方法
JP2841766B2 (ja) 1990-07-13 1998-12-24 住友金属工業株式会社 耐食性チタン合金溶接管の製造方法
JP2968822B2 (ja) 1990-07-17 1999-11-02 株式会社神戸製鋼所 高強度・高延性β型Ti合金材の製法
DE69107758T2 (de) 1990-10-01 1995-10-12 Sumitomo Metal Ind Verfahren zur Verbesserung der Zerspanbarkeit von Titan und Titanlegierungen, und Titanlegierungen mit guter Zerspanbarkeit.
EP0484931B1 (en) 1990-11-09 1998-01-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method for producing the same
FR2676460B1 (fr) 1991-05-14 1993-07-23 Cezus Co Europ Zirconium Procede de fabrication d'une piece en alliage de titane comprenant un corroyage a chaud modifie et piece obtenue.
US5219521A (en) 1991-07-29 1993-06-15 Titanium Metals Corporation Alpha-beta titanium-base alloy and method for processing thereof
US5360496A (en) 1991-08-26 1994-11-01 Aluminum Company Of America Nickel base alloy forged parts
DE4228528A1 (de) 1991-08-29 1993-03-04 Okuma Machinery Works Ltd Verfahren und vorrichtung zur metallblechverarbeitung
CN1028375C (zh) 1991-09-06 1995-05-10 中国科学院金属研究所 一种钛镍合金箔及板材的制取工艺
GB9121147D0 (en) 1991-10-04 1991-11-13 Ici Plc Method for producing clad metal plate
JPH05117791A (ja) 1991-10-28 1993-05-14 Sumitomo Metal Ind Ltd 高強度高靱性で冷間加工可能なチタン合金
US5162159A (en) 1991-11-14 1992-11-10 The Standard Oil Company Metal alloy coated reinforcements for use in metal matrix composites
US5201967A (en) 1991-12-11 1993-04-13 Rmi Titanium Company Method for improving aging response and uniformity in beta-titanium alloys
JP3532565B2 (ja) 1991-12-31 2004-05-31 ミネソタ マイニング アンド マニュファクチャリング カンパニー 再剥離型低溶融粘度アクリル系感圧接着剤
JPH05195175A (ja) 1992-01-16 1993-08-03 Sumitomo Electric Ind Ltd 高疲労強度βチタン合金ばねの製造方法
US5226981A (en) 1992-01-28 1993-07-13 Sandvik Special Metals, Corp. Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy
US5277718A (en) 1992-06-18 1994-01-11 General Electric Company Titanium article having improved response to ultrasonic inspection, and method therefor
CA2119022C (en) 1992-07-16 2000-04-11 Isamu Takayama Titanium alloy bar suited for the manufacture of engine valves
JP3839493B2 (ja) 1992-11-09 2006-11-01 日本発条株式会社 Ti−Al系金属間化合物からなる部材の製造方法
US5310522A (en) 1992-12-07 1994-05-10 Carondelet Foundry Company Heat and corrosion resistant iron-nickel-chromium alloy
FR2711674B1 (fr) 1993-10-21 1996-01-12 Creusot Loire Acier inoxydable austénitique à hautes caractéristiques ayant une grande stabilité structurale et utilisations.
US5358686A (en) 1993-02-17 1994-10-25 Parris Warren M Titanium alloy containing Al, V, Mo, Fe, and oxygen for plate applications
US5332545A (en) 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
JP3083225B2 (ja) 1993-12-01 2000-09-04 オリエント時計株式会社 チタン合金製装飾品の製造方法、および時計外装部品
JPH07179962A (ja) 1993-12-24 1995-07-18 Nkk Corp 連続繊維強化チタン基複合材料及びその製造方法
JP2988246B2 (ja) 1994-03-23 1999-12-13 日本鋼管株式会社 (α+β)型チタン合金超塑性成形部材の製造方法
JP2877013B2 (ja) 1994-05-25 1999-03-31 株式会社神戸製鋼所 耐摩耗性に優れた表面処理金属部材およびその製法
US5442847A (en) 1994-05-31 1995-08-22 Rockwell International Corporation Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties
JPH0859559A (ja) * 1994-08-23 1996-03-05 Mitsubishi Chem Corp ジアルキルカーボネートの製造方法
JPH0890074A (ja) 1994-09-20 1996-04-09 Nippon Steel Corp チタンおよびチタン合金線材の矯直方法
US5472526A (en) 1994-09-30 1995-12-05 General Electric Company Method for heat treating Ti/Al-base alloys
AU705336B2 (en) 1994-10-14 1999-05-20 Osteonics Corp. Low modulus, biocompatible titanium base alloys for medical devices
US5698050A (en) 1994-11-15 1997-12-16 Rockwell International Corporation Method for processing-microstructure-property optimization of α-β beta titanium alloys to obtain simultaneous improvements in mechanical properties and fracture resistance
US5759484A (en) 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
JP3319195B2 (ja) 1994-12-05 2002-08-26 日本鋼管株式会社 α+β型チタン合金の高靱化方法
JPH08300044A (ja) 1995-04-27 1996-11-19 Nippon Steel Corp 棒線材連続矯正装置
US5600989A (en) 1995-06-14 1997-02-11 Segal; Vladimir Method of and apparatus for processing tungsten heavy alloys for kinetic energy penetrators
EP0852164B1 (en) 1995-09-13 2002-12-11 Kabushiki Kaisha Toshiba Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades
US5649280A (en) 1996-01-02 1997-07-15 General Electric Company Method for controlling grain size in Ni-base superalloys
JP3873313B2 (ja) 1996-01-09 2007-01-24 住友金属工業株式会社 高強度チタン合金の製造方法
JPH09215786A (ja) 1996-02-15 1997-08-19 Mitsubishi Materials Corp ゴルフクラブヘッドおよびその製造方法
US5861070A (en) 1996-02-27 1999-01-19 Oregon Metallurgical Corporation Titanium-aluminum-vanadium alloys and products made using such alloys
JP3838445B2 (ja) 1996-03-15 2006-10-25 本田技研工業株式会社 チタン合金製ブレーキローター及びその製造方法
DE69715120T2 (de) 1996-03-29 2003-06-05 Kobe Steel Ltd Hochfeste titanlegierung, verfahren zur herstellung eines produktes daraus und produkt
JPH1088293A (ja) 1996-04-16 1998-04-07 Nippon Steel Corp 粗悪燃料および廃棄物を燃焼する環境において耐食性を有する合金、該合金を用いた鋼管およびその製造方法
RU2134308C1 (ru) 1996-10-18 1999-08-10 Институт проблем сверхпластичности металлов РАН Способ обработки титановых сплавов
IT1286276B1 (it) 1996-10-24 1998-07-08 Univ Bologna Metodo per la rimozione totale o parziale di pesticidi e/o fitofarmaci da liquidi alimentari e non mediante l'uso di derivati della
US5897830A (en) 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US5795413A (en) 1996-12-24 1998-08-18 General Electric Company Dual-property alpha-beta titanium alloy forgings
JP3959766B2 (ja) 1996-12-27 2007-08-15 大同特殊鋼株式会社 耐熱性にすぐれたTi合金の処理方法
US5954724A (en) 1997-03-27 1999-09-21 Davidson; James A. Titanium molybdenum hafnium alloys for medical implants and devices
US5980655A (en) 1997-04-10 1999-11-09 Oremet-Wah Chang Titanium-aluminum-vanadium alloys and products made therefrom
JPH10306335A (ja) 1997-04-30 1998-11-17 Nkk Corp (α+β)型チタン合金棒線材およびその製造方法
US6071360A (en) 1997-06-09 2000-06-06 The Boeing Company Controlled strain rate forming of thick titanium plate
JPH11223221A (ja) 1997-07-01 1999-08-17 Nippon Seiko Kk 転がり軸受
US6569270B2 (en) 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
KR100319651B1 (ko) 1997-09-24 2002-03-08 마스다 노부유키 고주파유도가열을이용하는자동판굽힘가공장치
FR2772790B1 (fr) 1997-12-18 2000-02-04 Snecma ALLIAGES INTERMETALLIQUES A BASE DE TITANE DU TYPE Ti2AlNb A HAUTE LIMITE D'ELASTICITE ET FORTE RESISTANCE AU FLUAGE
ES2324063T3 (es) * 1998-01-29 2009-07-29 Amino Corporation Aparato para conformado de materiales de lamina sin matriz.
US6258182B1 (en) 1998-03-05 2001-07-10 Memry Corporation Pseudoelastic β titanium alloy and uses therefor
KR19990074014A (ko) 1998-03-05 1999-10-05 신종계 선체 외판의 곡면가공 자동화 장치
US20010041148A1 (en) 1998-05-26 2001-11-15 Kabushiki Kaisha Kobe Seiko Sho Alpha + beta type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
CA2272730C (en) 1998-05-26 2004-07-27 Kabushiki Kaisha Kobe Seiko Sho .alpha. + .beta. type titanium alloy, a titanium alloy strip, coil-rolling process of titanium alloy, and process for producing a cold-rolled titanium alloy strip
FR2779155B1 (fr) 1998-05-28 2004-10-29 Kobe Steel Ltd Alliage de titane et sa preparation
US6632304B2 (en) 1998-05-28 2003-10-14 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy and production thereof
JP3417844B2 (ja) 1998-05-28 2003-06-16 株式会社神戸製鋼所 加工性に優れた高強度Ti合金の製法
JP3452798B2 (ja) 1998-05-28 2003-09-29 株式会社神戸製鋼所 高強度β型Ti合金
JP2000153372A (ja) 1998-11-19 2000-06-06 Nkk Corp 施工性に優れた銅または銅合金クラッド鋼板の製造方法
US6409852B1 (en) 1999-01-07 2002-06-25 Jiin-Huey Chern Biocompatible low modulus titanium alloy for medical implant
US6143241A (en) 1999-02-09 2000-11-07 Chrysalis Technologies, Incorporated Method of manufacturing metallic products such as sheet by cold working and flash annealing
US6187045B1 (en) 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys
JP3268639B2 (ja) 1999-04-09 2002-03-25 独立行政法人産業技術総合研究所 強加工装置、強加工法並びに被強加工金属系材料
US6558273B2 (en) 1999-06-08 2003-05-06 K. K. Endo Seisakusho Method for manufacturing a golf club
US6402859B1 (en) 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
US7024897B2 (en) 1999-09-24 2006-04-11 Hot Metal Gas Forming Intellectual Property, Inc. Method of forming a tubular blank into a structural component and die therefor
RU2172359C1 (ru) 1999-11-25 2001-08-20 Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов Сплав на основе титана и изделие, выполненное из него
US6387197B1 (en) 2000-01-11 2002-05-14 General Electric Company Titanium processing methods for ultrasonic noise reduction
US6332935B1 (en) 2000-03-24 2001-12-25 General Electric Company Processing of titanium-alloy billet for improved ultrasonic inspectability
US6399215B1 (en) 2000-03-28 2002-06-04 The Regents Of The University Of California Ultrafine-grained titanium for medical implants
JP3753608B2 (ja) * 2000-04-17 2006-03-08 株式会社日立製作所 逐次成形方法とその装置
US6532786B1 (en) * 2000-04-19 2003-03-18 D-J Engineering, Inc. Numerically controlled forming method
US6197129B1 (en) 2000-05-04 2001-03-06 The United States Of America As Represented By The United States Department Of Energy Method for producing ultrafine-grained materials using repetitive corrugation and straightening
US6484387B1 (en) 2000-06-07 2002-11-26 L. H. Carbide Corporation Progressive stamping die assembly having transversely movable die station and method of manufacturing a stack of laminae therewith
AT408889B (de) 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T Korrosionsbeständiger werkstoff
RU2169782C1 (ru) 2000-07-19 2001-06-27 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава
RU2169204C1 (ru) 2000-07-19 2001-06-20 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана и способ термической обработки крупногабаритных полуфабрикатов из этого сплава
US6877349B2 (en) 2000-08-17 2005-04-12 Industrial Origami, Llc Method for precision bending of sheet of materials, slit sheets fabrication process
US6946039B1 (en) 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
US6384388B1 (en) 2000-11-17 2002-05-07 Meritor Suspension Systems Company Method of enhancing the bending process of a stabilizer bar
JP3742558B2 (ja) 2000-12-19 2006-02-08 新日本製鐵株式会社 高延性で板面内材質異方性の小さい一方向圧延チタン板およびその製造方法
US6539765B2 (en) 2001-03-28 2003-04-01 Gary Gates Rotary forging and quenching apparatus and method
US6536110B2 (en) 2001-04-17 2003-03-25 United Technologies Corporation Integrally bladed rotor airfoil fabrication and repair techniques
RU2203974C2 (ru) 2001-05-07 2003-05-10 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана
DE10128199B4 (de) 2001-06-11 2007-07-12 Benteler Automobiltechnik Gmbh Vorrichtung zur Umformung von Metallblechen
RU2197555C1 (ru) 2001-07-11 2003-01-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Велес" СПОСОБ ИЗГОТОВЛЕНИЯ СТЕРЖНЕВЫХ ДЕТАЛЕЙ С ГОЛОВКАМИ ИЗ (α+β) ТИТАНОВЫХ СПЛАВОВ
JP3934372B2 (ja) 2001-08-15 2007-06-20 株式会社神戸製鋼所 高強度および低ヤング率のβ型Ti合金並びにその製造方法
JP2003074566A (ja) 2001-08-31 2003-03-12 Nsk Ltd 転動装置
CN1159472C (zh) 2001-09-04 2004-07-28 北京航空材料研究院 钛合金准β锻造工艺
US6663501B2 (en) 2001-12-07 2003-12-16 Charlie C. Chen Macro-fiber process for manufacturing a face for a metal wood golf club
JP2005527699A (ja) 2001-12-14 2005-09-15 エイティーアイ・プロパティーズ・インコーポレーテッド ベータ型チタン合金を処理する方法
JP3777130B2 (ja) * 2002-02-19 2006-05-24 本田技研工業株式会社 逐次成形装置
FR2836640B1 (fr) 2002-03-01 2004-09-10 Snecma Moteurs Produits minces en alliages de titane beta ou quasi beta fabrication par forgeage
US6786985B2 (en) 2002-05-09 2004-09-07 Titanium Metals Corp. Alpha-beta Ti-Ai-V-Mo-Fe alloy
JP2003334633A (ja) 2002-05-16 2003-11-25 Daido Steel Co Ltd 段付き軸形状品の製造方法
US7410610B2 (en) 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US6918974B2 (en) 2002-08-26 2005-07-19 General Electric Company Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
JP4257581B2 (ja) 2002-09-20 2009-04-22 株式会社豊田中央研究所 チタン合金およびその製造方法
KR101014639B1 (ko) * 2002-09-30 2011-02-16 유겐가이샤 리나시메타리 금속 가공 방법 및 그 금속 가공 방법을 이용한 금속체와그 금속 가공 방법을 이용한 금속 함유 세라믹체
US6932877B2 (en) 2002-10-31 2005-08-23 General Electric Company Quasi-isothermal forging of a nickel-base superalloy
AU2003295609A1 (en) 2002-11-15 2004-06-15 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
US20040099350A1 (en) 2002-11-21 2004-05-27 Mantione John V. Titanium alloys, methods of forming the same, and articles formed therefrom
US20050145310A1 (en) 2003-12-24 2005-07-07 General Electric Company Method for producing homogeneous fine grain titanium materials suitable for ultrasonic inspection
DE10303458A1 (de) * 2003-01-29 2004-08-19 Amino Corp., Fujinomiya Verfahren und Vorrichtung zum Formen dünner Metallbleche
CA2502207C (en) 2003-03-20 2010-12-07 Sumitomo Metal Industries, Ltd. High-strength stainless steel, container and hardware made of such steel
JP4209233B2 (ja) * 2003-03-28 2009-01-14 株式会社日立製作所 逐次成形加工装置
JP3838216B2 (ja) 2003-04-25 2006-10-25 住友金属工業株式会社 オーステナイト系ステンレス鋼
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7073559B2 (en) 2003-07-02 2006-07-11 Ati Properties, Inc. Method for producing metal fibers
JP4041774B2 (ja) 2003-06-05 2008-01-30 住友金属工業株式会社 β型チタン合金材の製造方法
US7785429B2 (en) 2003-06-10 2010-08-31 The Boeing Company Tough, high-strength titanium alloys; methods of heat treating titanium alloys
US7038426B2 (en) 2003-12-16 2006-05-02 The Boeing Company Method for prolonging the life of lithium ion batteries
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US7449075B2 (en) 2004-06-28 2008-11-11 General Electric Company Method for producing a beta-processed alpha-beta titanium-alloy article
US7096596B2 (en) 2004-09-21 2006-08-29 Alltrade Tools Llc Tape measure device
US7360387B2 (en) 2005-01-31 2008-04-22 Showa Denko K.K. Upsetting method and upsetting apparatus
US20060243356A1 (en) 2005-02-02 2006-11-02 Yuusuke Oikawa Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
TWI276689B (en) 2005-02-18 2007-03-21 Nippon Steel Corp Induction heating device for a metal plate
JP5208354B2 (ja) 2005-04-11 2013-06-12 新日鐵住金株式会社 オーステナイト系ステンレス鋼
US7984635B2 (en) 2005-04-22 2011-07-26 K.U. Leuven Research & Development Asymmetric incremental sheet forming system
RU2283889C1 (ru) 2005-05-16 2006-09-20 ОАО "Корпорация ВСМПО-АВИСМА" Сплав на основе титана
JP4787548B2 (ja) * 2005-06-07 2011-10-05 株式会社アミノ 薄板の成形方法および装置
DE102005027259B4 (de) 2005-06-13 2012-09-27 Daimler Ag Verfahren zur Herstellung von metallischen Bauteilen durch Halbwarm-Umformung
KR100677465B1 (ko) 2005-08-10 2007-02-07 이영화 판 굽힘용 장형 유도 가열기
US8337750B2 (en) 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US7669452B2 (en) 2005-11-04 2010-03-02 Cyril Bath Company Titanium stretch forming apparatus and method
US7611592B2 (en) 2006-02-23 2009-11-03 Ati Properties, Inc. Methods of beta processing titanium alloys
JP5050199B2 (ja) * 2006-03-30 2012-10-17 国立大学法人電気通信大学 マグネシウム合金材料製造方法及び装置並びにマグネシウム合金材料
US7879286B2 (en) 2006-06-07 2011-02-01 Miracle Daniel B Method of producing high strength, high stiffness and high ductility titanium alloys
JP5187713B2 (ja) * 2006-06-09 2013-04-24 国立大学法人電気通信大学 金属材料の微細化加工方法
WO2008017257A1 (en) 2006-08-02 2008-02-14 Hangzhou Huitong Driving Chain Co., Ltd. A bended link plate and the method to making thereof
JP2008200730A (ja) * 2007-02-21 2008-09-04 Daido Steel Co Ltd Ni基耐熱合金の製造方法
US20080300552A1 (en) 2007-06-01 2008-12-04 Cichocki Frank R Thermal forming of refractory alloy surgical needles
CN100567534C (zh) 2007-06-19 2009-12-09 中国科学院金属研究所 一种高热强性、高热稳定性的高温钛合金的热加工和热处理方法
DE102007039998B4 (de) 2007-08-23 2014-05-22 Benteler Defense Gmbh & Co. Kg Panzerung für ein Fahrzeug
JP2009138218A (ja) * 2007-12-05 2009-06-25 Nissan Motor Co Ltd チタン合金部材及びチタン合金部材の製造方法
US8075714B2 (en) 2008-01-22 2011-12-13 Caterpillar Inc. Localized induction heating for residual stress optimization
DE102008014559A1 (de) 2008-03-15 2009-09-17 Elringklinger Ag Verfahren zum bereichsweisen Umformen einer aus einem Federstahlblech hergestellten Blechlage einer Flachdichtung sowie Einrichtung zur Durchführung dieses Verfahrens
EP2281908B1 (en) 2008-05-22 2019-10-23 Nippon Steel Corporation High-strength ni-base alloy pipe for use in nuclear power plants and process for production thereof
JP2009299110A (ja) 2008-06-11 2009-12-24 Kobe Steel Ltd 断続切削性に優れた高強度α−β型チタン合金
JP5299610B2 (ja) 2008-06-12 2013-09-25 大同特殊鋼株式会社 Ni−Cr−Fe三元系合金材の製造方法
US8408039B2 (en) * 2008-10-07 2013-04-02 Northwestern University Microforming method and apparatus
US8578748B2 (en) * 2009-04-08 2013-11-12 The Boeing Company Reducing force needed to form a shape from a sheet metal
US8316687B2 (en) * 2009-08-12 2012-11-27 The Boeing Company Method for making a tool used to manufacture composite parts
CN101637789B (zh) 2009-08-18 2011-06-08 西安航天博诚新材料有限公司 一种电阻热张力矫直装置及矫直方法
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
DE102010009185A1 (de) 2010-02-24 2011-11-17 Benteler Automobiltechnik Gmbh Profilbauteil
US20130062003A1 (en) 2010-05-17 2013-03-14 Magna International Inc. Method and apparatus for forming materials with low ductility
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US20120067100A1 (en) 2010-09-20 2012-03-22 Ati Properties, Inc. Elevated Temperature Forming Methods for Metallic Materials
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US20120076611A1 (en) 2010-09-23 2012-03-29 Ati Properties, Inc. High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock
US20120076686A1 (en) 2010-09-23 2012-03-29 Ati Properties, Inc. High strength alpha/beta titanium alloy
JP5861699B2 (ja) 2011-04-25 2016-02-16 日立金属株式会社 段付鍛造材の製造方法
CN102212716B (zh) 2011-05-06 2013-03-27 中国航空工业集团公司北京航空材料研究院 一种低成本的α+β型钛合金
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003417C1 (ru) * 1990-12-14 1993-11-30 Всероссийский институт легких сплавов Способ получени кованых полуфабрикатов из литых сплавов системы TI - AL
RU2217260C1 (ru) * 2002-04-04 2003-11-27 ОАО Верхнесалдинское металлургическое производственное объединение СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- И (α+β)-ТИТАНОВЫХ СПЛАВОВ
WO2012063504A1 (ja) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 難加工性金属材料を多軸鍛造処理する方法、それを実施する装置、および金属材料

Also Published As

Publication number Publication date
UA115341C2 (uk) 2017-10-25
RU2015120762A (ru) 2017-04-20
JP6342983B2 (ja) 2018-06-13
US20140260492A1 (en) 2014-09-18
IL238922A (en) 2017-10-31
CN105026070B (zh) 2017-08-08
CA2892938A1 (en) 2014-09-25
JP2016512173A (ja) 2016-04-25
AU2014238036A1 (en) 2015-06-11
CN105026070A (zh) 2015-11-04
SG11201506161QA (en) 2015-10-29
US9050647B2 (en) 2015-06-09
TR201911147T4 (tr) 2019-08-21
MX2015006417A (es) 2015-08-14
AU2014238036C1 (en) 2018-06-28
NZ708495A (en) 2019-07-26
EP2969296A2 (en) 2016-01-20
ZA201504106B (en) 2016-04-28
WO2014149594A2 (en) 2014-09-25
CA2892938C (en) 2020-03-24
EP2969296B1 (en) 2019-05-08
KR102039770B1 (ko) 2019-11-01
AU2014238036B2 (en) 2017-11-30
MX361840B (es) 2018-12-18
ES2731557T3 (es) 2019-11-15
WO2014149594A3 (en) 2014-11-13
PL2969296T3 (pl) 2019-11-29
BR112015015438A2 (pt) 2017-07-11
KR20150130961A (ko) 2015-11-24
IL238922A0 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
RU2638139C2 (ru) Ковка в открытом штампе с раздельными проходами трудных для ковки и чувствительных к траектории деформирования сплавов на основе титана и на основе никеля
JP6734890B2 (ja) チタン合金を処理するための方法
RU2581331C2 (ru) Способ термомеханической обработки заготовки, выполненной из титана или сплава титана
JP2016512173A5 (ru)
JP6077000B2 (ja) 円錐状金属部材のねじり強ひずみ加工法
JP2016503126A5 (ru)
CN112948986A (zh) 结合有限元数值模拟程序的钛合金锻造工艺参数优化方法
CN107282687B (zh) 一种Ti6Al4V钛合金细晶棒材的制备方法
An et al. Deformation mechanism diagram of a Ti–2.5 Zr–2Al titanium alloy forged in the α+ β region and grain refinement
Gaspar Microstructural characterization of Ti-6Al-4V and its relationship to sample geometry
RU2761398C1 (ru) Способ обработки прутков из орто-сплавов титана для получения лопаток компрессора газотурбинного двигателя
Park et al. An effective approach to produce a nanocrystalline Ni–Ti shape memory alloy without severe plastic deformation
Karon et al. Microstructure and mechanical properties of the annealed 6060 aluminium alloy processed by ECAP method
RU2569605C1 (ru) Способ получения тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si
CN107717354A (zh) 一种人体植入物钛合金棒材的制备方法
Pachla et al. High-pressure equipment for cold severe plastic deformation working of materials.
Aghababaei et al. Investigation of Microstructure and Mechanical Properties of Al-6061 Tubes Processed by Tubular Channel Angular Pressing Process Having Trapezoidal Channel Geometry
RU2439195C1 (ru) Способ обработки крупногабаритных заготовок из титановых сплавов
Dimitrov Nominal and effective strains in severe plastic deformation processes
Świątoniowski et al. Analysis of forging process of the NiCrN superalloy for motor boat driving shaft
Greger et al. Grain refining of Cu and Ni-Ti shape memory alloys by ECAP process
Lisiecki et al. Predicting Fracture in Closed-Die Forgings Aug. 12, 2017 Laboratory tests and finite element simulation are used to estimate the potential form, the location, and the conditions in which defects may form.
RU2583551C2 (ru) Способ получения ультрамелкозернистых титановых заготовок
Pachla et al. Aparatura wysokociśnieniowa do przeróbki plastycznej materiałów z dużymi odkształceniami na zimno
Langdon The Properties of Bulk Ultrafine-Grained Metals Processed Through the Application of Severe Plastic Deformation