RU2118330C1 - Сферические компоненты катализатора полимеризации олефинов, катализаторы полимеризации, способ полимеризации, сополимеры этилена - Google Patents

Сферические компоненты катализатора полимеризации олефинов, катализаторы полимеризации, способ полимеризации, сополимеры этилена Download PDF

Info

Publication number
RU2118330C1
RU2118330C1 RU93004501A RU93004501A RU2118330C1 RU 2118330 C1 RU2118330 C1 RU 2118330C1 RU 93004501 A RU93004501 A RU 93004501A RU 93004501 A RU93004501 A RU 93004501A RU 2118330 C1 RU2118330 C1 RU 2118330C1
Authority
RU
Russia
Prior art keywords
compound
titanium
components according
adduct
carbon atoms
Prior art date
Application number
RU93004501A
Other languages
English (en)
Other versions
RU93004501A (ru
Inventor
Саккетти Марио
Пеннини Джанни
Куффиани Илларо
Original Assignee
Монтелл Текнолоджи Компани Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Монтелл Текнолоджи Компани Б.В. filed Critical Монтелл Текнолоджи Компани Б.В.
Publication of RU93004501A publication Critical patent/RU93004501A/ru
Application granted granted Critical
Publication of RU2118330C1 publication Critical patent/RU2118330C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Abstract

Изобретение относится к сферическим твердым компонентам катализаторов полимеризации олефинов, включающим нанесенное на дигалогенид магния в активированной форме соединение титана, содержащее по меньшей мере одну связь титан - галогенид и одну OR-группу, причем указанная группа OR связана с атомом титана в таком количестве, что мольное отношение OR/Ti больше или равно 0,5. Возможно также, что компонент включает электронодонорное соединение. Сферические твердые компоненты катализатора отличаются тем, что их пористость лежит в интервале между 0,35 и 0,7 см3/г и таким распределением пор, что по меньшей мере 50% пористости обусловлено порами, имеющими средний радиус более 800

Description

Изобретение относится к компонентам катализаторов полимеризации олефинов, катализаторам, получаемым на их основе, и использованию катализаторов при полимеризации этилена и его смесей с d-олефинами формулы CH2=CHR, где R представляет собой углеводородный остаток, содержащий от 1 до 12 атомов углерода.
Необходимость получения полезных в промышленной практике катализаторов, нанесенных на дигалогениды магния в активированной форме, которые высокоактивны и обеспечивают получение полимеров с контролируемой морфологией, все более становится ощутимой.
Примеры катализаторов, имеющих контролируемую морфологию, описаны в Пат. США 3953414 и 4399054. В последнем патенте компоненты катализатора приготовлены из имеющих сферическую форму аддуктов MgCl2 с приблизительно 3 молями спирта. До взаимодействия с TiCl4 содержание спирта уменьшают до величины 2,5-2 молей: в этом случае получают компоненты, которые обладают пористостью, измеренной с помощью азота, от 0,3 до 0,4 г/см3, и средний радиус пор между 15 и 20
Figure 00000003
.
Катализаторы, приготовленные из TiCl4 или MgCl2 в гранулированной форме путем распылительной сушки спиртового раствора хлорида магния с последующим нанесением соединения титана, описаны в Евр. пат. EP-B-65700 и EP-B-243327. Однако полимер, получаемый с использованием этих катализаторов, не обладает необходимыми морфологическими характеристиками. В частности, недостаточно высока их объемная плотность. Кроме того, активность катализатора слишком мала.
Метод повышения активности этих катализаторов описан в Пат. EP-A-281524. Эти катализаторы готовят путем нанесения алкоголятов титана на аддукт MgCl2-этанол, содержащий от 18 до 20% (мас.) этанола, которому придана сферическая форма при распылительной сушке его этанольного раствора, с последующей химической обработкой Et2AlCl или Et3Al2Cl3. Условия приготовления носителя являются критическими и оказывают влияние на морфологическую стабильность получаемого полимера. Например, полимеры в форме гетерогенного порошка получают тогда, когда в используемом носителе содержание спирта лежит вне интервала 18-20%, или используются соединения, отличные от Et2AlCl или Et3Al2Cl3. Кроме того, для достижения высоких выходов содержание Ti в твердом компоненте должно быть выше 8% (мас.).
Из Пат. заявки EP-A-395083 известны катализаторы, пригодные для получения полимеров в сферической форме, имеющих удовлетворительные морфологические свойства. Эти катализаторы получают из аддуктов MgCl2-спирт. Аддукт, обычно содержащий 3 моля спирта на 1 моль MgCl2, подвергается термической обработке для снижения содержания спирта обычно до уровня 0,2-2 моля, после чего он реагирует с избытком тетрахлорида титана, возможно содержащего растворенное в нем электронодонорное соединение.
Твердые компоненты этих катализаторов характеризуются высокой площадью удельной поверхности и микропористостью (более 50% пор имеют средний радиус менее 800
Figure 00000004

Использование этих катализаторов при полимеризации этилена с целью получения линейного полиэтилена низкой плотности приводит к недостаточно однородному распределению сомономера.
В настоящее время неожиданно было установлено, что могут быть получены катализаторы, имеющие сферическую форму, которые способны приводить к однородному распределению сомономера при получении линейного полиэтилена низкой плотности и, в общем случае, при получении сомономеров, обладающих необходимыми морфологическими свойствами, в частности, полимеров, имеющих высокую объемную плотность, при проведении полимеризации в газовой фазе, несмотря на значительную макропористость твердых компонентов, образующих катализатор.
Сферические компоненты изобретения включают нанесенное на дигалогенид магния в активированной форме титановое соединение, содержащее по меньшей мере одну химическую связь Ti - галоген и одну OR-группу, где R представляет собой алкильную, циклоалкильную или арильную группу, содержащую 1-18 атомов углерода, или COR-группу, причем вышеуказанная OR-группа связана с атомом титана в таком количестве, чтобы получаемое мольное соотношение OR/Ti было больше или равно 0,5; также, возможно, может присутствовать электронодонорное соединение.
Вышеуказанные компоненты характеризуются величиной пористости от 0,35 до 0,7 см3/г и таким распределением пор по размерам, что по меньшей мере 50% пористости обусловлено порами, имеющими средний радиус более 800
Figure 00000005
Удельная площадь их поверхности обычно лежит в интервале от 5 до 30 м2/г.
Значения пористости, указанные выше, относятся к измерениям, выполненным на порах, имеющих радиус до 10000
Figure 00000006

Сферические компоненты изобретения дополнительно отличаются тем, что по меньшей мере 30% от общей пористости обусловлено порами, имеющими радиус больше 10000
Figure 00000007
Определяемая здесь общая пористость относится к измерениям, проведенным на порах, имеющих радиус в интервале от 0 до 300000
Figure 00000008

Пористость и удельная площадь поверхности определялись с помощью ртутного порозиметра по методике, описанной ниже.
Дигалогениды магния в активированной форме, входящие в сферический компонент изобретения, отличаются рентгеновским спектром, в котором наиболее интенсивная дифракционная линия, проявляющаяся в спектре неактивного галогенида, имеет уменьшенную интенсивность и в вышеуказанном спектре появляется линия, относящаяся к галогену, максимум интенсивности которой сдвигается в направлении меньших углов по сравнению с углами наиболее интенсивной линии.
Частицы имеют сферическую или сфероидальную форму со средним диаметром 10-150 мкм. Под частицами, имеющими сфероидальную форму, подразумеваются частицы, у которых отношение главной оси к второстепенной или меньше, или равно 1,5 и предпочтительно меньше, чем 1,3.
Предпочтительные соединения титана имеют формулу Ti(OR')nXy-n, где n принимает значения больше или равно 0,5 и на одну единицу меньше, чем валентность титана y, и предпочтительно лежит между 1 и 2, если y = 4; X представляет собой атом галогена и R' представляет собой алкильную группу, содержащую 2-8 атомов углерода, в частности, н.-бутил, изобутил, 2-этилгексил, н. -октил и фенил.
Соединение титана, которое должно быть нанесено на дигалогенид магния, может быть получено предварительно или его получают in situ реакцией тетрагалогенида титана, в частности, TiCl4, с OH-группами остаточного спирта, присутствующего в связанной форме в вышеуказанном дигалогениде магния, или реакцией вышеуказанного тетрагалогенида со спиртами ROH или с алкоголятами титана, имеющими формулу Ti(OR)4.
Тетраалкоголяты титана могут, кроме того, взаимодействовать с галогенированными соединениями, такими как, например, SiCl4, AlCl3, хлорсиланы, Al-алкилгалогениды. В последнем случае валентность титана уменьшается и образуются галогеналкоголяты титана, в которых валентность титана меньше четырех.
Галогеналкоголяты титана, имеющие валентность атома титана меньше четырех, могут быть также получены реакцией тетраалкоголятов титана со смесями галогенирующих и восстанавливающих соединений.
Алкоголяты титана, которые используются при приготовлении компонента катализатора, могут находиться в форме комплексов с галогенидами магния. Примеры получения вышеуказанных комплексов даны в Пат. США 4218339, причем их описание представлено здесь.
Дигалогениды магния в активированной форме, предпочтительно дихлорид магния, получают в виде аддуктов MgX2•nROH, где R представляет собой алкил, циклоалкил или арил, содержащие 1-12 атомов углерода, а n в общем случае больше двух и, в частности, лежит в интервале от 2,5 до 3,5.
Такие аддукты в сферической форме готовят из расплавленного аддукта путем его эмульгирования в жидком углеводороде с последующим отверждением при быстром охлаждении. Типичный метод для приготовления таких аддуктов в сферической форме описан в Пат. США N 4469648. Полученные таким образом сферические аддукты подвергаются термическому удалению спирта при температуре спирта 50-150oC, до тех пор, пока содержание спирта не уменьшится до величины меньше 2 и, предпочтительно, до 1,5 - 0,3 молей на 1 моль дигалогенида магния. Затем аддукты подвергаются обработке химическими реагентами, которые могут взаимодействовать с OH-группами спирта и дополнительно удалять спирт из аддукта, уменьшая его содержание до величины, которая, в основном, меньше 0,5 молей.
Если аддукт, подвергшийся термическому удалению спирта, содержит около 8 молей спирта, то содержание остаточного спирта может составлять до 0,5 молей; предпочтительно оно должно составлять около 0,2 - 0,3 молей. Более низкое содержание спирта достигается тогда, когда исходный аддукт содержит меньшее количество спирта.
Удаление спирта из аддуктов может быть осуществлено и в большей степени до величин, меньших, чем 0,05 моля.
Обработка спиртоотнимающими химическими реагентами проводится с использованием такого количества этого реагента, которое больше достаточного для взаимодействия с OH-группами, присутствующими в спирте, содержащемся в аддукте. Предпочтительно эту обработку проводят с использованием небольшого избытка вышеуказанного реагента, который затем, до взаимодействия полученного таким образом носителя с соединением титана, удаляют.
В том случае, когда химическое удаление спирта из аддукта MgCl2•pROH проводится с использованием реагента, обладающего восстанавливающим действием, например, с использованием таких алкилалюминиевых соединений, как триэтилалюминий, полученное при этом соединение, до взаимодействия с соединением титана, может быть обработано деактивирующим реагентом, например, O2 или спиртом, для того, чтобы деактивировать возможно присутствующий триэтилалюминий и, тем самым, исключить восстановление соединения титана.
Обработка спиртоотнимающими реагентами не проводится, если желают по меньшей мере частично восстановить соединение титана. Если, с другой стороны, необходимо восстановить соединение титана в значительно большей степени, то процесс приготовления компоненты катализатора может включать успешное использование восстанавливающих реагентов.
Реакцию с соединением титана проводят с использованием, как указывалось выше, предварительно получаемых галогеналкоголята или галогенкарбоксилата, или путем генерирования вышеуказанных соединений in situ при взаимодействии тетрагалогенида титана, в частности TiCl4, с OH-группами, присутствующими в аддукте или со спиртом ROH, или, заставляя тетралкоголят титана реагировать с галогенирующим агентом, таким, как, например, SiCl4, галогенсиланы, сам TiCl4, AlCl3, алкилгалогениды алюминия.
В некоторых случаях необходимо, чтобы соединение титана было восстановлено до валентности меньше 4. Это достигается, например, при использовании галогенирующего агента, который одновременно действует как восстановитель, такого, как, например, алкилгалогенид алюминия, или при использовании таких восстановителей, как соединения кремния, например, полигидросилоксанов.
Количество используемого в реакции соединения титана соответствует количеству, которое остается связанным на носителе, или используется небольшой избыток; этот избыток затем удаляется.
В общем случае, титан используется в таком количестве, чтобы малое соотношение Ti/Mg изменялось в пределах 0,05 - 3, и, предпочтительно, в пределах 0,1-2.
Количество титана, которое остается связанным на носителе, может достигать, например, до 15% (мас.) из расчета на элементарный Ti, и предпочтительно составляет 1-12%.
Соединение титана, нанесенное на дигалогенид магния, фиксируется в форме, которая не может быть экстрагирована растворителем; кроме того, частично оно может находиться в экстрагируемой форме.
Если необходимо получить линейный полиэтилен низкой плотности (ЛПЭНП), имеющий особенно узкое распределение молекулярных весов, то компонент катализатора в соответствии с настоящим изобретением может необязательно содержать электронодонорное соединение (внешний донор), например, соединение из числа простых и сложных эфиров, аминов и кетонов.
В частности, электронодонорное соединение может выбираться из числа алкиловых, циклоалкиловых и ариловых эфиров поликарбоновых кислот, таких, например, как эфиры фталевой или малеиновой кислот, в особенности, из числа н. -бутилфталата, диизобутилфталата, ди-н.-октилфталата; другие соединения, которые могут быть использованы для этих целей, раскрыты в заявке EP-A-422755, например, 2-метил-2-изопропил-1,3-диметоксипропан, 2-метил-2-изобутил-1,3-диметоксипропан, 2-изопропил-2-изопентил-1,3-диметоксипропан, 2,2-диизобутил-1,3-диметоксипропан.
Мольное отношение присутствующего электронодонорного соединения к магнию составляет до 1:2.
Реагируя с алкилалюминиевыми соединениями, в частности, с триалкилалюминиевыми соединениями, заявляемые соединения образуют каталитическую систему, использование которой, как уже указывалось, приводит к очень узкому распределению сомономера по полимерной цепочке и, кроме того, позволяет получать при полимеризации в газовой фазе полимеры, которые обладают необходимыми морфологическими характеристиками, в частности, объемной плотностью, величина которой может быть очень высока.
Оценка распределения сомономера осуществлялась путем измерения полимерной фракции, растворимой в ксилоле при 25oC, содержания связанного сомономера и истинной плотности полимера.
Все результаты, полученные при полимеризации в газовой фазе, представляют собой неожиданные результаты с точки зрения объемной плотности полимера, значения которой сдвигаются в область более высоких значений, в сравнении с объемной плотностью, которая может быть получена в присутствии растворителя.
Примерами алкилалюминиевых соединений, которые могут быть использованы при получении катализатора, являются триалкилалюминиевые соединения, в частности, триэтилалюминий, три-н.-бутилалюминий, триизобутилалюминий. Соотношение Al/Ti принимает значение больше 1 и, в общем случае, лежит в интервале от 20 до 800.
Катализаторы с успехом используются при полимеризации этилана и его смесей с d-олефинами формулы CH2=CHR, где R представляет собой алкил, циклоалкил или арил, содержащие 1 - 12 атомов углерода. В частности, эти катализаторы используются при получении:
- полиэтиленов высокой плотности (ПЭ-ВП, НДРЕ, имеющих плотность больше 0,940 г/см3), включая гомополимеры этилена и сополимеры этилена с d-олефинами, содержащими от 3 до 14 атомов углерода;
- линейных полиэтиленов низкой плотности (ЛПЭНП, ZZДРЕ, имеющих плотность меньше 0,940 г/см3) и линейных полиэтиленов очень низкой и сверхнизкой плотности (ЛПЭОНП, VZДРЕ и ЛПСНП, UZДРЕ, имеющих плотность ниже 0,920 г/см3 и до 800 г/см3), состоящих из сополимеров этилена с одним или более d-олефинами, содержащими от 3 до 12 атомов углерода, имеющих содержание этиленовых фрагментов более приблизительно 80% (мас.);
- эластомерных сополимеров этилена и пропилена и эластомерных трехзвенных полимеров этилена и пропилена с минимальными количествами диена, в которых содержание фрагментов этилена составляет 30 - 70% (мас.).
Полимеризация олефинов в присутствии катализаторов, приготовленных на основе каталитических компонентов настоящего изобретения, может быть проведена в соответствии с известными методиками как в жидкой, так и в газовой фазах, например, по методике кипящего слоя или в условиях механического перемешивания.
Примером процесса, в котором могут использоваться сферические компоненты настоящего изобретения, является процесс, описанный в Ит. заявке N M1-91-A-002142. Вышеуказанный процесс включает стадию предварительного контактирования каталитических компонентов, стадию предполимеризации и стадию газофазной полимеризации в двух или более аппаратах кипящего слоя или в каскаде реакторов с механически перемешиваемым слоем.
Следующие примеры служат только для иллюстрации изобретения и не должны рассматриваться как ограничивающие.
Рассматриваемые свойства определяли с помощью следующих методик.
Пористость и удельная площадь поверхности с азотом.
Определяли в соответствии с В.Е.Т. методологией (используемый прибор - SORPTOMATIC 1800 фирмы Карло Эрба).
Пористость и удельная площадь поверхности с ртутью.
Определяли путем погружения известного количества образца в известное количество ртути в дилатометре с последующим постепенным увеличением давления ртути гидравлическим путем. Давление ртути, проникающей в поры, является функцией диаметра пор. Измерения проводили с использованием порозиметра фирмы Карло Эрба "Porosimeter 200 Series". Из данных по уменьшению объема ртути и величины приложенного давления рассчитывали величину пористости, распределение пор и удельную площадь поверхности.
Размер частиц катализатора.
Определяли в соответствии с методикой, основанной на принципе оптической дифракции монохроматического лазерного луча с использованием приборов "Malvern Unstr, 2600".
MIE индекс текучести - ASTM-D 1238.
MIF индекс текучести - ASTM-D 1238.
Текучесть - время, необходимое для того, чтобы 100 г полимера протекли через воронку, диаметр выходного отверстия которой составляет 1,25 см, а боковые стенки расположены под углом 20o от вертикали.
Объемная плотность: DIN-53194.
Морфология и гранулометрическое распределение частиц: ASTM-D 1921-63.
Фракция, растворимая в ксилоле: определяли при 25oC.
Содержание сомономера: в мас.% определяли по данным ИК-спектра.
Истинная плотность: ASTM-D 792.
Примеры.
Приготовление сферического носителя (аддукта MgCl2/EtOH).
Аддукт дихлорида магния и спирта получали в соответствии с методикой, описанной в примере 2 Пат США N 4399054, но при скорости перемешивания 2000 об/мин, а не 1000 об/мин.
Аддукт, содержащий приблизительно 3 моля спирта, имел средний размер частиц приблизительно 60 мкм с распределением частиц по размерам в интервале приблизительно 30 - 90 мкм.
Пример 1. Получение твердого компонента.
Сферический носитель, полученный в соответствии с общей методикой, подвергали термической обработке в токе азота при температуре 50 - 150oC, до тех пор, пока остаточное содержание спирта в сферических частицах не достигало приблизительно 35% (1,1 моля спирта из расчета на 1 моль MgCl2).
В реактор на 5000 см3 загружали 300 г носителя, суспендированного в 3000 см3 безводного гексана. При перемешивании, при комнатной температуре и атмосферном давлении медленно добавляли раствор 130 г AlEt3 в гексане (107 г/л). Температуру повышали до 60o и поддерживали на этом уровне в течение 60 мин. Прекращали перемешивание, давали сформироваться осадку и отделяли осветленную фазу. Обработку AlEt3 повторяли в тех же условиях два или более раз. Затем трижды промывали безводным гексаном и сушили при 50oC.
Полученный таким образом носитель имел следующие характеристики:
пористость (Hg) - 1,144 см3
площадь поверхности (Hg) - 15,2 м2
Остаточное содержание OEt - 5,5% (мас.)
Остаточное содержание Al - 3,6% (мас.)
Mg - 20,4% (мас.)
В реактор на 1000 см3 загружали 260 г носителя и 3000 см3 безводного гексана. В течение 30 мин при перемешивании и при комнатной температуре добавляли 242 г Ti (OBu)4, перемешивание продолжали еще в течение 30 мин и затем при этой же температуре в течение 30 мин добавляли 350 г SiCl4, разбавленных 250 см3 гексана. В течение 40 мин температуру повышали до 65oC и поддерживали на этом уровне еще 3 ч. Затем после отстаивания реакционной массы с помощью сифона отбирали жидкую фазу. Промывали гексаном (7•3000 см3), причем трижды гексаном, имеющим температуру 60oC, и четыре раза гексаном комнатной температуры. Получаемый компонент сферической формы сушили в вакууме при 50oC.
Характеристики полученного компонента:
общее содержание титана - 3,4% (мас.)
Mg - 17,1% (мас.)
Si - 0,9% (мас.)
Cl - 57,4% (мас.)
Остаточное количество Al - 1,3% (мас.)
OEt - 2,9% (мас.)
OBu - 13,2% (мас.)
пористость (В. Е.Т.) - 0,108 см3/г, причем 50% обусловлено порами с радиусом > 350
Figure 00000009

удельная поверхность (В.Е.Т.) - 28,6 м2
пористость (ртуть) - 0,536 см3/г обусловлено порами с радиусом от 0 до 10000
Figure 00000010
, причем 50% их имеют радиус > 1250
Figure 00000011
.
Для пор с радиусом 0 - 300000
Figure 00000012
48% пор имеют радиус > 10000
Figure 00000013
.
удельная поверхность (ртуть) - 12,8 м2/г.
Сополимеризация этилена с бутеном-1 (ЛПЭНД).
В реактор на 4 л из нержавеющей стали, продутый азотом в течение 2 ч при 70oC, а затем промытый безводным пропаном, загружали 0,01 г твердого компонента и 0,96 г триэтилалюминия, смешанного с 25 см3 гексана и 800 г безводного пропана. Температуру повышали до 70oC, а затем одновременно подавали H2 (2 бара) и этилен (7 бар) и 200 г бутена-1.
В течение всего процесса полимеризации парциальное давление этилена поддерживали постоянным и на каждые 30 г этилена добавляли 3 г бутена-1. Через 3 ч реакцию останавливали путем быстрого отдувания реагентов и пропана. Получали 280 г полимера.
Характеристики полученного полимера:
MIE - 0,99 г/10 мин
MIF/MIE - 25,8
истинная плотность - 0,922 г/см3
Фракция, растворимая в ксилоле - 7,5%
связанный бутен - 5,4%
объемная плотность, насыпная - 0,35 г/см3
текучесть - 18 с
морфология - сферическая
распределение частиц по размеру (РЧР)> 4000 мкм - <0,5% (мас.)
2000 - 4000 мкм - 20 - 30% (мас.)
1000 - 2000 мкм - 40 - 70% (мас.)
500 - 1000 мкм - 1 - 3% (мас.)
< 500 мкм - < 1% (мас.)
Полимеризация этилена (ПЭВП).
В автоклав на 2,5 л, продутый аналогично предыдущему опыту, загружали 900 см3 гексана, содержащего 0,45 г AlEt3 и 0,01 г сферического компонента, суспендированного в 100 см3 той же смеси AlEt3/гексан. Смесь перемешивали, поднимали температуру до 75oC и затем подавали H2 (3 бара) и этилен (7 бар). Время реакции полимеризации составляло 3 ч, причем давление этилена поддерживалось постоянным. Через 3 ч реакцию останавливали путем быстрого отдувания этилена и водорода.
Получали 270 г полимера со следующими характеристиками:
MIE - 0,44 г/10 мин
MIF/MIE - 28,8
истинная плотность - 0,961 г/см3
объемная плотность - 0,32 г/см3
текучесть - 18 с
морфология - сферическая
РЧР > 4000 мкм - < 0,5% (мас.)
2000 - 4000 мкм - 20 - 30% (мас.)
1000 - 2000 мкм - 40 - 70% (мас.)
500 - 1000 мкм - 2 - 4% (мас.)
< 500 мкм - < 2% (мас.)
Пример 2. Сферический носитель готовили в соответствии с общей методикой и подвергали термической обработке, с последующей обработкой AlEt3 по методике, описанной в примере 1. В реактор на 5 л загружали 260 г полученного описанным способом носителя, суспензированного в 2,5 л безводного гексана. При перемешивании и при комнатной температуре постепенно добавляли 568 г Ti (OBu)4 и в этих условиях перемешивали в течение 60 мин, а затем при комнатной температуре в течение приблизительно 30 мин добавляли 437 г SiCl4, разбавленного 300 см3 гексана. Повышали температуру до 65oC и через 60 мин снижали до 400oC и добавляли 320 г РМГС (полиметилгидросилана). Температуру снова поднимали до 60oC и реакционную смесь перемешивали при этой температуре 2 ч. Твердый каталитический компонент затем промывали гексаном для удаления свободного SiCl4 и небольшого количества очень тонкого порошка (1 - 2%) размерами менее 5 мкм, которые легко удаляются вместе с промывными жидкостями. Компонент сушили под вакуумом при 50oC.
Характеристики полученного продукта:
общее содержание титана - 4,5% (мас.)
Tiш - 2,2% (мас.)
Mg - 15% (мас.)
Cl - 51% (мас.)
OEt - 1,2% (мас.)
OBu - 10,8% (мас.)
пористость (В.Е.Т.) - 0,114 см3/г, причем 50% обусловлено порами радиусом > 260
Figure 00000014

удельная поверхность (В.Н.Т) - 33 м2
пористость (ртуть) - 0,48 см3/г благодаря порам радиуса 0 - 10000
Figure 00000015
, причем 50% обусловлено порами с радиусом > 1200
Figure 00000016
. Среди пор с радиусом 0 - 300000
Figure 00000017
55% имело радиус > 10000
Figure 00000018
.
Сополимеризация этилена с бутеном-1 (ЛПЭНП).
Сополимеризацию этилена с бутеном-1 проводили в условиях, аналогичных условиям примера 1. При использовании 0,092 г твердого компонента получено 280 г полимера.
Характеристика полимера:
MIE - 0,6 г/10 мин
MIF/MIE - 28
истинная плотность - 0,921 г/см3
фракция, растворимая в ксилоле - 7,3%
связанный бутен - 5,8%
объемная плотность, насыпная - 0,32 г/см3
текучесть - 18 с
морфология - сферическая
РЧР: > 4000 мкм - < 1% (мас.)
2000 - 4000 мкм - 20 - 30% (мас.)
1000 - 2000 мкм - 30 - 70% (мас.)
500 - 1000 мкм - 1 - 3% (мас.)
< 500 мкм - < 1% (мас.)
Полимеризация этилена (ПЭВП).
Сополимеризацию этилена проводили в тех же условиях, что и в примере 1. Получали 300 г полимера, имеющего следующие характеристики:
MIE - 0,084 г/10 мин
MIF/MIE - 27,9
объемная плотность, насыпная - 0,33 г/см3
текучесть - 15 с
морфология - сферическая
РЧР: > 4000 мкм - < 1% (мас.)
2000 - 4000 мкм - 20 - 30% (мас.)
1000 - 2000 мкм - 30 - 70% (мас.)
500 - 1000 мкм - 1 - 3% (мас.)
< 500 мкм - < 2% (мас.)
Пример 3. Сферический носитель готовили в соответствии с общей методикой и подвергали термической обработке до получения остаточного содержания спирта 45% (мольное отношение спирт/этанол = 1,7).
В реактор на 30 л загружали 2360 г носителя, суспендированного в 18 л безводного гексана. В течение 60 мин при перемешивании и при комнатной температуре добавляли раствор 1315 г AlEt3 в гексане (концентрация 100 г/л). В течение 60 мин поднимали температуру до 60oC и реакционную массу выдерживали при этой температуре еще 60 мин. После отстаивания и фильтрации отделяли жидкую фазу и добавляли 15 л безводного гексанола. В таких условиях обработку повторяли два или более раз. Сферический порошок промывали безводным гексаном (5 x 10 л) и сушили в вакууме.
Характеристика продукта:
остаточное содержание OEt - 8,4% (мас.)
Cl - 60,5% (мас.)
Mg - 13,8% (мас.)
морфология - сферическая
В реактор на 25 л загружали 150 г полученного носителя, суспендированного в 17 л безводного гексана. При перемешивании и при комнатной температуре добавляли 2750 г Ti (OBu)4. Перемешивание продолжали при комнатной температуре в течение 60 мин, а затем медленно добавляли 2100 г SiCl4. Температуру поднимали до 60oC и поддерживали в течение 2 ч. Затем проводили ряд промывок безводным гексаном для удаления любых количеств свободного SiCl4, причем одновременно из осевшего твердого компонента удаляли очень тонкий порошок, остающийся в суспензии (приблизительно 1% мас. с размерами < 5 мкм). Полученный твердый компонент сушили в вакууме при 50oC.
Характеристики продукта:
общее содержание титана - 6,7% (мас.)
TiIII - 4,3% (мас.)
Mg - 11,5% (мас.)
Cl - 52,3% (мас.)
OEt - 1,0% (мас.)
OBu - 13,4% (мас.)
пористость (B. E.T.) - 0,083 см3/г, причем 50% обусловлено порами с радиусом > 220
Figure 00000019

удельная поверхность (B.E.T.) - 24,3 м2
пористость (ртуть) - 0,457 см3/г благодаря порам с радиусом 0 - 10000
Figure 00000020
, причем 50% обусловлено порами с радиусом > 1200
Figure 00000021
. Среди пор радиусом 0 - 3000000
Figure 00000022
60% пор имело радиус > 10000
Figure 00000023

Сополимеризация этилена с бутеном-1 (ЛПЭНП)
При сополимеризации этилена с бутеном-1 по методике, описанной в примере 1, использовали 0,0114 г приготовленного сферического компонента.
Получали 320 г полимера со следующими характеристиками:
MIE - 1,5 г/10 мин
MIF/MIE - 30
истинная плотность - 0,916 г/см3
фракция, растворимая в ксилоле - 14%
связанный бутен - 7,4%
объемная плотность, насыпная - 0,33 г/см3
текучесть - 20 с
морфология - сферическая
РЧР: > 4000 мкм - < 0,5% (мас.)
2000 - 4000 мкм - 20 - 30% (мас.)
1000 - 2000 мкм - 40 - 60% (мас.)
500 - 1000 мкм - 2 - 4% (мас.)
< 500 мкм - < 1% (мас.)
Пример 4. В реактор на 1000 см3 загружали 40 г носителя из примера 1, после обработки AlEt3, суспендированный в 500 см3 безводного гексана. При перемешивании и при комнатной температуре добавляли 40 г Ti (OC4H9)Cl3, разбавленного 100 см3 гексана. Поднимали температуру до 55oC и выдерживали реакционную смесь при этой температуре в течение 1 ч. Жидкую фазу отделяли, затем повторяли обработку с дополнительными 40 г Ti (OC4H9)Cl3, разбавленными 300 см3 гексана при температуре 60oC в течение 2 ч. Далее промывали гексаном при 60oC (3 • 300 см3) и комнатной температуре (4 • 300 см3).
После вакуумной сушки при 40oC твердый порошок сферической формы имел следующие характеристики:
общее содержание титана - 5,4% (мас.)
пористость (B.E.T.) - 0,116 см3/г, причем 50% обусловлено порами с радиусом > 300
Figure 00000024

удельная поверхность (B.E.T.) - 2,75 м2
пористость (ртуть) - 0,520 см3/г благодаря порам с радиусом 0 - 10000
Figure 00000025
, причем 50% обусловлено порами с радиусом > 1320
Figure 00000026
. Среди пор радиусом 0 - 300000
Figure 00000027
, 52% пор имели радиус > 10000
Figure 00000028

Полимеризация этилена (ПЭВП)
Полимеризацию этилена проводили в тех же условиях, что и в примере 1, используя 0,0093 г твердого каталитического компонента. Время полимеризации - 3 ч. Получали 320 г полимера со следующими характеристиками:
MIE - 0,413 г/10 мин
MIF/MIE - 30,2
объемная плотность, насыпная - 0,33 г/см3
текучесть - 17 с
морфология - сферическая
РЧР: > 4000 мкм - < 1% (мас.)
2000 - 4000 мкм - 30 - 50% (мас.)
1000 - 2000 мкм - 20 - 40% (мас.)
500 - 1000 мкм - 3 - 5% (мас.)
< 500 мкм - < 2% (мас.)
Пример 5. В реактор на 1 л загружали 50 г носителя из примера 1, после обработки AlEt3 в виде суспензии в 500 см3 гексана. При перемешивании и при комнатной температуре в течение 15 мин добавляли 13 г Ti (OBu)4, разбавленного 50 см3 гексана. Перемешивали в течение 1 ч и затем за 15 мин добавляли 20 г SiCl4. Температуру поднимали до 50oC и поддерживали постоянной в течение 2 ч. Промывали гексаном для удаления свободного SiCl4, после чего сушили в вакууме при 50oC.
Полученный катализатор сферической формы имел следующие характеристики:
общее содержание титана - 2,7% (мас.)
Cl - 57,4% (мас.)
OEt - 5,6% (мас.)
OBu - 10,5% (мас.)
пористость (B.E.T.) - 0,22 см3/г, причем 50% обусловлено порами с радиусом > 300
Figure 00000029

пористость (ртуть) - 0,58 см3/г благодаря порам с радиусом 0 - 10000
Figure 00000030
причем 50% обусловлено порами с радиусом > 1250
Figure 00000031
. Среди пор с радиусом 0 - 300000
Figure 00000032
51,6% пор имело радиус > 10000
Figure 00000033

Полимеризация этилена (ПЭВП)
Полимеризацию проводили в тех же условиях, что и в примере 1, используя 0,013 г твердого катализатора. Получали 215 г полимера со следующими характеристиками:
MIE - 0,153 г/10 мин
MIF/MIE - 30
объемная плотность, насыпная - 0,33 г/см3
текучесть - 18 с
морфология - сферическая
РЧР: > 4000 мкм - < 1% (мас.)
2000 - 4000 мкм - 20-30% (мас.)
1000 - 2000 мкм - 50-60% (мас.)
500 - 1000 мкм - 2-4% (мас.)
< 500 мкм - < 2% (мас.)
Пример 6. Непрерывная полимеризация этилена в газовой фазе с получением полиэтилена высокой плотности
1,14 г/ч катализатора, полученного по методике примера 2, предполимеризовали этиленом непрерывно в реакторе при 30oC, причем подавали 10,0 г/ч ТЭ Al.
Полученный предполимер непрерывно подавали в газофазный реактор с "кипящим слоем" при 80oC и давлении 20 бар, при этом молярный состав газовой фазы был следующим:
Пропан - 77,2%
Этилен - 12,3%
Водород - 7,7%
Инертный газ - до 100%
Средний выход составлял 6,23 кг/г катализатора, а получаемый полимер обладал следующими характеристиками:
MIE - 1,75 г/10 мин
MIF/MIE - 28
истинная плотность - 0,960 г/см3
объемная плотность, насыпная - 0,400 г/см3
объемная плотность, с уплотнением - 0,438 г/см3
текучесть - 9 с
морфология - сферическая
РЧР > 4000 мкм - < 0,0% (мас.)
2000 - 40000 мкм - 51,8% (мас.)
1000 - 2000 мкм - 43,9% (мас.)
500 - 1000 мкм - 3,7% (мас.)
< 500 мкм - < 0,6% (мас.)
Пример 7. Непрерывная полимеризация этилена и бутена-1 с получением линейного полиэтилена низкой плотности
1,25 г/ч катализатора, полученного в примере 2, предполимеризовали этиленом непрерывно в реакторе при 30oC, причем подавали 10 • 4 г/ч ТЭ Al.
Получаемый предполимер непрерывно подавали в газофазный реактор с кипящим слоем при температуре 80oC и давлении 20 бар, при этом газовая фаза имела следующий состав:
Пропан - 78,9%
Этилен - 13,2%
Бутен-1 - 4,6%
Водород - 2,1%
Инертный газ - до 100%
Средний выход составлял 10,4 кг/г катализатора, а получаемый продукт имел следующие характеристики:
MIE - 1,01 г/10 мин
MIF/MIE - 28,0
содержание бутена-1 - 7,0%
фракция, растворимая в ксилоле - 12,5%
истинная плотность - 0,919 г/см3
объемная плотность, насыпная - 0,40 г/см3
объемная плотность, с уплотнением 0,423 г/см3
температура плавления - 123,9oC
текучесть 12 с
РЧР: > 4000 мкм - 0,0% (мас.)
2000 - 4000 мкм - 55% (мас.)
1000 - 2000 мкм - 41,5% (мас.)
500 - 1000 мкм - 2,8% (мас.)
< 500 мкм - 0,5% (мас.)
Пример 8. Стадия (а). В реакторе на 10 л, снабженном мешалкой, проводили реакцию 3662 г тетрабутоксититана с 2840 г тетрахлорида кремния. К тетрабутоксититану добавляли тетрахлорид кремния в течение 60 мин при комнатной температуре. Затем температуру поднимали до 30oC и поддерживали постоянной в течение еще 60 мин.
Стадия (б). Во второй реактор на 25 л, снабженный мешалкой, загружали 2000 г носителя из примера 1 после обработки AlEt3 и 10 л безводного гексана. При комнатной температуре в течение 60 мин продукт со стадии а) вводили в реактор стадии б), содержащий перемешиваемую суспензию носителя в гексане. Затем температуру поднимали до 60oC за 60 мин и поддерживали постоянной еще 120 мин.
Реакционной массе давали отстояться, жидкую фазу отделяли с помощью сифона вместе с небольшим количеством очень мелкого порошка TiCl3.
Затем твердый продукт промывали безводным гексаном (7 • 10 л) при комнатной температуре и сушили в вакууме при приблизительно 40oC.
Полученный сухой порошок сферической формы с хорошей текучестью имел следующие характеристики:
общее содержание титана - 5,3% (мас.)
TiIII - 3,2% (мас.)
Mg - 15,9% (мас.)
Cl - 53,5% (мас.)
OEt - 2,6% (мас.)
OBu - 13% (мас.)
пористость (B. E.T.) - 0,122 см3/г, причем 50% обусловлено порами с радиусом > 100
Figure 00000034

пористость (ртуть) - общая пористость = 0,79 см3/г - пористость, обусловленная порами с радиусом 0-10000
Figure 00000035
0,453 см3/г, причем 50% - за счет пор с радиусом > 1000
Figure 00000036

Полимеризация этилена (ПЭВП)
Полимеризацию проводили в соответствии с методикой примера 1, с тем только отличием, что этилен и водород подавали при 40oC до тех пор, пока не достигался выход реакции полимеризации приблизительно 50-100 г полимера на 1 г катализатора (стадия предполимеризации), а затем температуру реакции поднимали до 75oC и поддерживали постоянной в течение 3 ч.
Используя 0,0101 г твердого катализатора, получали 230 г полимера со следующими характеристиками:
MIE - 4,38 г/10 мин
MIF/MIE - 34,93
истинная плотность - 0,961 г/см3
объемная плотность, насыпная - 0,355 г/см3
текучесть - 18 с
морфология - сферическая
Сополимеризация этилена с бутеном-1 (ЛПЭНП)
Сополимеризацию проводили по методике, описанной в примере 1, используя 0,118 г сферического катализатора, получение которого описано выше, с тем только отличием, что проводилась короткая стадия предполимеризации при 40oC до достижения выхода около 50-100 г полимера на 1 г катализатора с последующим повышением температуры до 75oC.
Получено 385 г полимера со следующими характеристиками:
MIE - 0,8 г/10 мин
MIF/MIE - 29
фракция, растворимая в ксилоле - 12%
истинная плотность - 0,9212 г/см3
объемная плотность, насыпная - 0,330 г/см3
текучесть - 18 с
РЧР: > 4000 мкм - < 2% (мас.)
2000 - 4000 мкм - 49% (мас.)
1000 - 2000 мкм - 45,5 (мас.)
500 - 1000 мкм - 2,8% (мас.)
< 500 мкм - 0,7% (мас.)
Пример 9. Стадия а). В реакторе на 50 см3 в условиях примера 8, стадия а) готовили 12,5 г продукта Ti (OBu)4 + SiCl4.
Стадия б). 50 г носителя примера 1 после обработки AlEt3 обрабатывали сухим воздухом до полного удаления остаточных C2H5-групп.
В реактор на 500 см3 загружали 150 см3 безводного гексана и 50 г носителя, приготовленного по методике стадии б), описанной выше. При перемешивании и комнатной температуре в реактор подавали 12,5 г продукта со стадии а) за 30 мин. Температуру поднимали до 60oC, поддерживали на этом уровне 2 ч. Давали реакционной массе отстояться, жидкую фазу удаляли с помощью сифона. Остаток промывали безводным гексаном (7 х 200 см3), последовательно отстаивая смесь и удаляя жидкую фазу с помощью сифона, а затем сушили в вакууме при 40oC.
Получали 60 г сухого порошка с частицами сферической формы, с хорошей текучестью, имеющего следующие характеристики:
общее содержание титана - 1,25% (мас.)
TiIII - 0,15% (мас.)
Mg - 15,95% (мас.)
Cl - 51,75% (мас.)
OEt - 9,8% (мас.)
OBu - 6,7% (мас.)
Полимеризация этилена (ПЭВП).
Полимеризацию проводили в тех же условиях, что и в примере 8, с использованием 0,098 г твердого компонента катализатора. Получали 215 г полимера, имеющего следующие характеристики:
MIE - 2,88 г/10 мин
MIF/MIE - 32,29
истинная плотность - 0,961 г/см3
объемная плотность, насыпная - 0,34 г/см3
текучесть - 18 с
морфология - сферическая
РЧР: > 4000 мкм - < 0,2% (мас.)
2000 - 4000 мкм - 38,8% (мас.)
1000 - 2000 мкм - 57,5% (мас.)
500 - 1000 мкм - 2,9% (мас.)
< 500 мкм - < 0,6% (мас.)

Claims (1)

  1. \ \ \ 1 1. Сферические компоненты катализатора полимеризации олефинов, CH<Mv>2<D> = CHR, где R - водород или алкил с 1 - 8 атомами углерода, состоящие из нанесенного на дигалогенид магния в активированной форме соединения титана, содержащего, по меньшей мере, одну связь Ti-галоген и одну OR-группу, где R представляет собой алкильную группу, содержащую 1 - 8 атомов углерода, или COR-группу, причем указанная OR-группа связана с атомом титана в таком количестве, что мольное соотношение OR/Ti составляет более 0,5, причем указанные компоненты характеризуются: пористость от 0,35 до 0,7 см<M^ >3<D>/г и, по меньшей мере, 50% его пористости обусловлено порами, имеющими радиус более 800$$$ \\\2 2. Компоненты по п.1, отличающиеся тем, что по меньшей мере 30% от общей пористости обусловлено порами, имеющими радиус более 10000$$$ \\\2 3. Компоненты по п.1, отличающиеся тем, что их удельная поверхность лежит в интервале от 5 до 30 м<M^>2<D>/г. \\\2 4. Компоненты по п.1, отличающиеся тем, что дигалогенид магния в активированной форме представляет собой MgCl<Mv>2<D>. \\\2 5. Компоненты по п.1, отличающиеся тем, что они содержат электронодонорное соединение. \\\2 6. Компоненты по п.1, отличающиеся тем, что соединение титана имеет формулу \\\6 Ti(OR')<Mv>n<D>X<Mv>y - n<D>, \\\1 где 0,5 <$E<<=> n <$E<<=> (y - 1); \\\4 y - валентность атома титана; \ \\4 X - атом галогена, R' - алкильная группа, содержащая 2 - 8 атомов углерода. \ \ \2 7. Компоненты по п.6, отличающиеся тем, что y = 4, а значение n изменяется в пределах от 1 до 2. \\\2 8. Компоненты по п.6, отличающиеся тем, что X представляет собой атом хлора. \\\2 9. Компоненты по п.6, отличающиеся тем, что R' выбирается из группы, включающей н-бутил, изобутил, 2-этилгексил, н-октил. \\\2 10. Компоненты по п.1, отличающиеся тем, что их получают реакцией: (а) аддукта MgCl<Mv>2<D> <195> pROH, где p <$E<<=> 0,5 и R представляет собой алкил, содержащий 1 - 8 атомов углерода, с (б) соединением титана формулы \\\6 Ti(OR)<Mv>n<D>X<Mv>y - n<D>, \\\1 где 0,5 <$E<<=> n <$E<<= > (y - 1); \\\4 y - валентность атома титана; \\\4 X - атом галогена; \ \ \ 4 R - алкил, содержащий 1 - 8 атомов углерода, или COR - группа, \\\1 причем указанный аддукт (а) получают химическим удалением спирта из аддукта MgCl<Mv>2<D> <195> mROH при m <$E<<=> 2, который, в свою очередь, получают путем термического удаления спирта из MgCl<Mv>2<D> <195> qROH, где 2,5 <$E<<= > q <$E<<=> 3,5. \\\2 11. Компоненты по п.10, отличающиеся тем, что при взаимодействии соединения (б) с аддуктом (а) мольное отношение Ti/Mg лежит в интервале от 0,05 до 3. \\\2 12. Компоненты по п.10, отличающиеся тем, что соединение (б) представляет собой трихлоралкоголят четырехвалентного титана. \\\2 13. Компоненты по п.1, отличающиеся тем, что их получают реакцией (а) аддукта MgCl<Mv>2<D> <195> pROH, где p <$E<<=> 0,5 и R представляет собой алкил, содержащий 1 - 8 атомов углерода, с (б) соединением титана формулы \\\6 Ti(OR)<Mv>n<D>X<Mv>y - n<D>, \\\1 где 0 <$E<<=> n <$E<<=> 2; \\\4 X - атом галогена; \\\4 R - алкил, содержащий 1 - 8 атомов углерода, или COR-группа, причем указанный аддукт (а) получают химическим удалением спирта из аддукта MgCl<Mv>2<D> <195> mROH при m <$E<<=> 2, который, в свою очередь, получают путем термического удаления спирта из MgCl<Mv>2<D> <195> qROH, где 2,5 <$E<<=> q <$E<<=> 3,5. \\\2 14. Компоненты по п.13, отличающиеся тем, что реакцию проводят в присутствии соединения ROH, где R - алкил, содержащий 1 - 8 атомов углерода. \\\2 15. Компоненты по п.13, отличающиеся тем, что реакцию проводят в присутствии восстановителя. \\\2 16. Компоненты по п. 13, отличающиеся тем, что при проведении реакции мольное соотношение титана, находящегося в соединении (б), к магнию, входящему в состав аддукта (а), изменяется в интервале от 0,05 до 3. \\\2 17. Компоненты по п.13, отличающиеся тем, что соединение (б) представляет собой TiCl<Mv>4<D> или Ti(OR)Cl<Mv>3<D>. \ \\2 18. Компоненты по п.1, отличающиеся тем, что их получают реакцией (а) аддукта MgCl<Mv>2<D> <195> pROH, где p <$E<<=> 0,5 и R - алкил, содержащий 1 - 8 атомов углерода, с (б) соединением титана формулы \\ \ 6 Ti(OR)<Mv>n<D>X<Mv>y - n<D>, \\\1 где 2 <$E<<=> n <$E<<=> 4; \\\4 X - атом галогена; \\\4 R - алкил, содержащий 1 - 8 атомов углерода, или COR-группа, и (б) галогенирующим соединением, возможно в сочетании с восстановителем, или соединением, обладающим как галогенирующим, так и восстанавливающим действием, причем вышеуказанный аддукт (а) получают химическим удалением спирта из аддукта MgCl<Mv>2<D> <195> mROH при m <$E<<=> 2, который, в свою очередь, получают путем термического удаления спирта из аддукта MgCl<Mv>2<D> <195> qROH, где 2,5 <$E<<=> q <$E<<=> 3,5. \\\2 19. Компоненты по п.16, отличающиеся тем, что при проведении реакции мольное отношение титана, находящегося в соединении (б), к магнию, входящему в состав аддукта (а), изменяется в интервале от 0,05 до 3. \\\2 20. Компоненты по п.16, отличающиеся тем, что соединение (б) представляет собой Ti(OR)<Mv>4<D>. \\\2 21. Катализаторы полимеризации олефинов CH<Mv>2<D> = CHR, где R - водород или алкил, содержащие от 1 до 8 атомов углерода, отличающиеся тем, что они включают продукт реакции сферических компонентов по п.1 и алкилалюминиевого соединения. \\\2 22. Катализаторы по п.21, отличающиеся тем, что алкилалюминиевое соединение представляет собой триалкилалюминиевое соединение. \\\2 23. Способ полимеризации этилена и его смесей с олефинами формулы CH<Mv>2<D> = CHR, где R - алкил, содержащий 1 - 8 атомов углерода, отличающийся тем, что он включает использование катализаторов по п.21. \\\2 24. Способ по п. 23, отличающийся тем, что олефин CH<Mv>2<D> = CHR выбирается из числа бутена-1, пентена-1, гексена-1, 4-метил-пентена-1 и октена-1. \\\2 25. Сополимеры этилена, полученные по способу п.23, отличающиеся тем, что массовое содержание звеньев этилена составляет более 80%. \\\2 26. Эластомерные сополимеры этилена и пропилена, отличающиеся тем, что их получают по способу п.23, а массовое содержание звеньев этилена в указанных сополимерах изменяется в интервале от 30 до 70%.
RU93004501A 1992-01-31 1993-01-29 Сферические компоненты катализатора полимеризации олефинов, катализаторы полимеризации, способ полимеризации, сополимеры этилена RU2118330C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI920194A IT1262934B (it) 1992-01-31 1992-01-31 Componenti e catalizzatori per la polimerizzazione di olefine
ITM192A000194 1992-01-31
ITMI92A000194 1992-01-31

Publications (2)

Publication Number Publication Date
RU93004501A RU93004501A (ru) 1996-06-20
RU2118330C1 true RU2118330C1 (ru) 1998-08-27

Family

ID=11361767

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93004501A RU2118330C1 (ru) 1992-01-31 1993-01-29 Сферические компоненты катализатора полимеризации олефинов, катализаторы полимеризации, способ полимеризации, сополимеры этилена

Country Status (21)

Country Link
US (2) US5585317A (ru)
EP (1) EP0553806B1 (ru)
JP (1) JP3285637B2 (ru)
KR (1) KR100250336B1 (ru)
CN (2) CN1032063C (ru)
AT (1) ATE165843T1 (ru)
AU (1) AU655526B2 (ru)
BR (1) BR9300391A (ru)
CA (1) CA2088525A1 (ru)
DE (1) DE69318318T2 (ru)
DK (1) DK0553806T3 (ru)
ES (1) ES2117061T3 (ru)
FI (1) FI106310B (ru)
IL (1) IL104562A (ru)
IT (1) IT1262934B (ru)
MX (1) MX9300533A (ru)
MY (1) MY109025A (ru)
NO (1) NO300274B1 (ru)
RU (1) RU2118330C1 (ru)
TW (1) TW222652B (ru)
ZA (1) ZA93664B (ru)

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1262935B (it) * 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1254279B (it) * 1992-03-13 1995-09-14 Montecatini Tecnologie Srl Procedimento per la polimerizzazione in fase gas delle olefine
IT1256648B (it) * 1992-12-11 1995-12-12 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione delle olefine
ITMI922919A1 (it) * 1992-12-21 1994-06-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1269194B (it) * 1994-01-21 1997-03-21 Spherilene Srl Composizioni polimeriche ad elevata processabilita' basate su lldpe
IT1269931B (it) * 1994-03-29 1997-04-16 Spherilene Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1269837B (it) * 1994-05-26 1997-04-15 Spherilene Srl Componenti e catalizzatori per la polimerizzazione delle olefine
US5455303A (en) 1994-06-20 1995-10-03 Montell North America Inc. Linear low density polyethylene based compositions with improved optics
IT1270070B (it) * 1994-07-08 1997-04-28 Spherilene Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1273660B (it) * 1994-07-20 1997-07-09 Spherilene Srl Procedimento per la preparazione di polimeri amorfi del propilene
IT1270125B (it) * 1994-10-05 1997-04-28 Spherilene Srl Processo per la ( co) polimerizzazione di olefine
IT1274469B (it) 1995-05-11 1997-07-17 Spherilene Spa Composizioni poliolefiniche vulcanizzabili dinamicamente
IT1275573B (it) * 1995-07-20 1997-08-07 Spherilene Spa Processo ed apparecchiatura per la pomimerizzazione in fase gas delle alfa-olefine
IT1276121B1 (it) * 1995-11-14 1997-10-24 Montell Technology Company Bv Film multistrato estensibili
IT1276120B1 (it) * 1995-11-14 1997-10-24 Montell Technology Company Bv Film multistrato estensibili basati su lldpe
IT1281198B1 (it) 1995-12-18 1998-02-17 Montell Technology Company Bv Film termoretraibili basati su composizioni poliolefiniche comprendenti un copolimero lineare dell'etilene con alfa-olefine
DE69702434T2 (de) 1996-12-06 2001-04-26 Asahi Chemical Ind Olefinpolymerisationskatalysator und Verfahren zur Herstellung von Polyolefinen unter Verwendung desselben
IT1292109B1 (it) 1997-06-09 1999-01-25 Montell North America Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1292108B1 (it) 1997-06-09 1999-01-25 Montell North America Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1292107B1 (it) * 1997-06-09 1999-01-25 Montell North America Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1292138B1 (it) * 1997-06-12 1999-01-25 Montell Technology Company Bv Film multistrato estensibili
US5952423A (en) * 1997-07-18 1999-09-14 Baxter International Inc. Plastic compositions for medical containers and methods for providing such containers and for storing red blood cells
US6468258B1 (en) 1997-07-18 2002-10-22 Baxter International Inc. Plastic compositions including vitamin E for medical containers and methods for providing such compositions and containers
JP2001505249A (ja) * 1997-09-03 2001-04-17 モンテル テクノロジー カンパニー ビーブイ オレフィンの重合用成分および触媒
JP3406488B2 (ja) * 1997-09-05 2003-05-12 東京エレクトロン株式会社 真空処理装置
ID23020A (id) 1998-03-05 1999-12-30 Montell Technology Company Bv (ko) polimer polibutena-1 dan proses pembuatannya
DE69907785T2 (de) 1998-03-09 2004-02-12 Basell Poliolefine Italia S.P.A. Mehrstufiges Verfahren zur Olefinpolymerisation
SG73622A1 (en) * 1998-03-11 2000-06-20 Sumitomo Chemical Co Solid catalyst component and catalyst for olefin polymerization and process for producing olefin polymer
ES2364330T3 (es) * 1998-03-23 2011-08-31 Basell Poliolefine Italia S.R.L. Componentes catalíticos prepolimerizados para la polimerización de olefinas.
KR100334165B1 (ko) 1998-04-17 2002-11-27 삼성종합화학주식회사 에틸렌 중합 및 에틸렌/α-올레핀 공중합용 담지촉매의 제조방법
DE69908730T2 (de) 1998-05-06 2004-05-13 Basell Polyolefine Gmbh Polyolefin-zusammensetzungen und daraus hergestellte folien
KR100530978B1 (ko) 1998-05-06 2005-11-24 바셀 테크놀로지 캄파니 비이브이 올레핀 중합용 촉매 성분
IT1301990B1 (it) 1998-08-03 2000-07-20 Licio Zambon Catalizzatori per la polimerizzazione delle olefine.
HUP0104266A2 (hu) 1998-11-04 2002-03-28 Montell Technology Company Bv. Komponensek és katalizátorok olefinek polimerizálására
US6992153B1 (en) 1999-03-09 2006-01-31 Basell Polyolefine Gmbh Multi-stage process for the (CO) polymerization of olefins
CN1306544A (zh) 1999-03-15 2001-08-01 巴塞尔技术有限公司 用于烯烃聚合的催化剂和组分
IL140154A (en) 1999-04-15 2006-07-05 Basell Technology Co Bv Ingredients and catalysts for the polymerization of olefins
US6265037B1 (en) 1999-04-16 2001-07-24 Andersen Corporation Polyolefin wood fiber composite
KR100524293B1 (ko) 1999-05-27 2005-10-26 삼성토탈 주식회사 에틸렌 중합 및 공중합용 촉매
KR100546499B1 (ko) 1999-05-27 2006-01-26 삼성토탈 주식회사 에틸렌 중합 및 공중합용 촉매
ATE376560T1 (de) * 1999-06-18 2007-11-15 Basell Poliolefine Srl Katalysatorkomponenten für die polymerisation von olefinen und daraus erhaltene katalysatoren
WO2001019879A1 (en) 1999-09-10 2001-03-22 Basell Technology Company B.V. Catalyst for the polymerization of olefins
CN1167715C (zh) 1999-10-23 2004-09-22 三星阿托菲纳株式会社 用于烯烃均聚和共聚反应的改进的催化剂
KR100361224B1 (ko) 1999-12-01 2002-11-29 삼성종합화학주식회사 에틸렌 중합 및 공중합용 촉매의 제조방법
WO2001057099A1 (en) 2000-02-02 2001-08-09 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
PL353055A1 (en) 2000-03-22 2003-10-06 Basell Technology Company B.V. Thermoplastic compositions of isotactic propylene polymers and flexible propylene polymers having reduced isotacticity and a process for the preparation thereof
KR100351386B1 (ko) 2000-04-24 2002-09-05 삼성종합화학주식회사 초고분자량 폴리에틸렌 제조용 촉매 및 이를 이용한초고분자량 폴리에틸렌 제조방법
KR100353960B1 (ko) 2000-05-31 2002-09-27 삼성종합화학주식회사 에틸렌 중합체 및 공중합체의 제조방법
KR100359932B1 (ko) 2000-06-15 2002-11-07 삼성종합화학주식회사 에틸렌 중합 및 공중합용 촉매
KR100387734B1 (ko) * 2000-06-17 2003-06-18 삼성종합화학주식회사 올레핀 중합용 촉매 및 중합방법
CA2396232C (en) 2000-10-13 2011-09-20 Basell Poliolefine Italia S.P.A. Catalyst components for the polymerization of olefins
KR100389476B1 (ko) * 2000-11-09 2003-06-27 삼성종합화학주식회사 에틸렌 중합체 및 공중합체 제조방법
KR100389477B1 (ko) 2000-11-09 2003-06-27 삼성종합화학주식회사 에틸렌 중합체 및 공중합체 제조방법
KR100389475B1 (ko) * 2000-11-09 2003-06-27 삼성종합화학주식회사 에틸렌 중합 또는 공중합용 촉매의 제조 방법
KR100389962B1 (ko) * 2000-11-10 2003-07-02 삼성종합화학주식회사 에틸렌 중합 또는 공중합용 촉매의 제조 방법
KR100421551B1 (ko) * 2000-12-16 2004-03-09 삼성아토피나주식회사 올레핀 전중합 촉매 및 이를 이용한 올레핀 중합방법
US6872683B2 (en) * 2000-12-22 2005-03-29 Samsung Atofina Co., Ltd. Method for preparing chelated catalyst for olefin polymerization
CN1220789C (zh) * 2000-12-22 2005-09-28 三星综合化学株式会社 阻燃聚丙烯树脂组合物
ATE305490T1 (de) * 2000-12-22 2005-10-15 Samsung General Chemicals Co Polyolefinharzzusammensetzung
EP1362079B1 (en) * 2000-12-22 2005-06-08 Samsung General Chemicals Co., Ltd. Polypropylene resin composition with improved surface hardness and scratch resistance properties
KR100421553B1 (ko) 2000-12-27 2004-03-09 삼성아토피나주식회사 알파 올레핀 중합 방법
JP2004522849A (ja) 2001-03-15 2004-07-29 バセル ポリオレフィン イタリア エス.ピー.エー. エチレンの(共)重合方法
ES2266053T3 (es) 2001-06-20 2007-03-01 Borealis Technology Oy Preparacion de un componente de catalizador para la polimerizacion de olefina.
KR100530794B1 (ko) * 2001-06-21 2005-11-23 삼성토탈 주식회사 에틸렌 중합 및 공중합용 촉매
KR100496776B1 (ko) 2001-06-21 2005-06-22 삼성토탈 주식회사 에틸렌 중합 및 공중합용 촉매
WO2003008496A1 (en) 2001-07-17 2003-01-30 Basell Polyolefine Gmbh Multistep process for the (co)polymerization of olefins
ES2297014T3 (es) 2001-09-13 2008-05-01 Basell Poliolefine Italia S.R.L. Componentes y catalizadores para la polimerizacion de olefinas.
TWI268939B (en) 2001-12-12 2006-12-21 Basell Poliolefine Spa Process for the polymerization of olefins
EP1323747A1 (en) * 2001-12-19 2003-07-02 Borealis Technology Oy Production of olefin polymerisation catalysts
KR100530795B1 (ko) * 2001-12-26 2005-11-23 삼성토탈 주식회사 에틸렌 중합 및 공중합 방법
EP1483302B1 (en) 2002-03-08 2008-01-02 Basell Poliolefine Italia S.r.l. Process for the polymerization of olefins
KR100892901B1 (ko) 2002-05-29 2009-04-15 바셀 폴리올레핀 이탈리아 에스.알.엘 부텐-1 (공)중합체 및 이의 제조방법
DE60236326D1 (de) * 2002-06-19 2010-06-17 Braskem Sa Fester katalysatorbestandteil zur polymerisation und copolymerisation von ethylen, verfahren zu dessen herstellung
US9352308B2 (en) 2002-06-19 2016-05-31 Braskem S.A. Solid catalyst component for polymerization and copolymerization of ethylene and process for obtaining the same
US7700690B2 (en) 2002-06-26 2010-04-20 Basell Poliolefine Italia S.R.L. Impact-resistant polyolefin compositions
US7572859B2 (en) 2002-06-26 2009-08-11 Basell Polyolefine Italia S.R.L. Impact-resistant polyolefin compositions
AU2003238067A1 (en) * 2002-07-23 2004-02-09 Basell Poliolefine Italia S.P.A. Magnesium dichloride-alcohol adducts and catalyst components obtained therefrom
WO2004033505A1 (en) 2002-10-09 2004-04-22 Basell Poliolefine Italia S.P.A. Polymerization process
BRPI0315946B8 (pt) 2002-11-28 2016-05-17 Basell Poliolefine Spa copolímero de buteno-1, suas composições poliméricas, seu processo de preparação, e artigo manufaturado
EP1629038A2 (en) * 2003-05-21 2006-03-01 Basell Poliolefine Italia S.r.l. Polyethylene films for packaging
KR20060012017A (ko) * 2003-05-21 2006-02-06 바셀 폴리올레핀 이탈리아 에스.알.엘 신장성 랩 필름
JP4653755B2 (ja) 2003-10-28 2011-03-16 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ オレフィンの重合用成分および触媒
JP2007510771A (ja) 2003-11-06 2007-04-26 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ ポリプロピレン組成物
EP1564226A1 (en) 2004-02-16 2005-08-17 Stichting Dutch Polymer Institute Titanocene-based catalyst system
BRPI0508752B1 (pt) 2004-04-02 2016-09-13 Basell Poliolefine Srl “componente catalítico sólido para a polimerização de olefinas, catalisador, e processo para a (co)polimerização de olefinas”
DE102004020524A1 (de) 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Polyethylen und Katalysatorzusammensetzung zu dessen Herstellung
ATE377045T1 (de) 2004-06-08 2007-11-15 Basell Poliolefine Srl Polyolefinzusammensetzung mit hoher balance von steifigkeit, schlagzähigkeit und reissdehnung und geringem wärmeschrumpf
US7674741B2 (en) 2004-06-16 2010-03-09 Basell Poliolefine Italia S.R.L. Components and catalysts for the polymerization of olefins
WO2005123783A1 (en) 2004-06-18 2005-12-29 Basell Poliolefine Italia S.R.L. Process for preparing catalyst components for the olefin polymerization
CN101039967B (zh) 2004-10-18 2010-06-09 巴塞尔聚烯烃意大利有限责任公司 低全同立构规整度丁烯-1均聚物或共聚物
WO2006045687A1 (en) 2004-10-21 2006-05-04 Basell Polyolefine Gmbh 1-butene polymer and process for the preparation thereof
ATE446987T1 (de) 2005-02-03 2009-11-15 Basell Poliolefine Srl Propylen-polymer-zusammensetzung zum spritzgiessen
KR20070118143A (ko) * 2005-03-30 2007-12-13 바셀 폴리올레핀 이탈리아 에스.알.엘 올레핀 중합용 촉매 성분
KR20070118144A (ko) * 2005-03-30 2007-12-13 바셀 폴리올레핀 이탈리아 에스.알.엘 올레핀 중합용 촉매 성분
ES2435101T3 (es) * 2005-03-30 2013-12-18 Basell Poliolefine Italia S.R.L. Procedimiento de obtención de (co)polímeros cristalinos de etileno
CA2608321A1 (en) 2005-05-12 2006-11-16 Basell Poliolefine Italia S.R.L. Propylene-ethylene copolymers and process for their preparation
CA2613188A1 (en) 2005-07-01 2007-01-11 Basell Poliolefine Italia S.R.L. Propylene polymers having broad molecular weight distribution
BRPI0617253A2 (pt) * 2005-10-14 2016-04-19 Basell Polyolefine Gmbh sistemas catalisadores híbridos suportados sobre halogeneto de magnésio
JP2009516044A (ja) * 2005-11-15 2009-04-16 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ プロピレン−エチレンコポリマー及びその製造法
ATE556096T1 (de) * 2006-08-08 2012-05-15 Basell Poliolefine Srl Buten-1-copolymere
JP2010017082A (ja) 2006-10-10 2010-01-28 Ajinomoto Co Inc L−アミノ酸の製造法
JP2010513625A (ja) * 2006-12-20 2010-04-30 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ オレフィン重合用の触媒成分及びそれから得られる触媒
BRPI0721273A2 (pt) * 2006-12-20 2014-04-01 Basell Poliolefine Srl Componentes catalisadores para a polimerização de olefinas e catalisadores obtidos das mesmas.
WO2008077770A1 (en) * 2006-12-22 2008-07-03 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins and catalysts therefrom obtained
BRPI0720694B1 (pt) * 2006-12-22 2018-07-03 Basell Poliolefine Italia S.R.L. Componentes catalisadores para a polimerização de olefinas e catalisadores obtidos a partir dos mesmos
JP2010110216A (ja) 2007-02-20 2010-05-20 Ajinomoto Co Inc L−アミノ酸または核酸の製造方法
DE102007017903A1 (de) 2007-04-13 2008-10-16 Basell Polyolefine Gmbh Polyethylen und Katalysatorzusammensetzung und Verfahren zu dessen Herstellung
US10174137B2 (en) 2007-04-27 2019-01-08 Basell Poliolefine Italia S.R.I. Butene-1 terpolymers and process for their preparation
WO2009003930A1 (en) 2007-06-29 2009-01-08 Basell Poliolefine Italia S.R.L. An irradiated polyolefin composition comprising a non - phenolic stabilizer
EP2225324B1 (en) * 2007-12-24 2016-12-14 Basell Poliolefine Italia S.r.l. Polyolefin fibres
JP2011067095A (ja) 2008-01-10 2011-04-07 Ajinomoto Co Inc 発酵法による目的物質の製造法
EP2248906A4 (en) 2008-01-23 2012-07-11 Ajinomoto Kk PROCESS FOR THE PREPARATION OF L-AMINO ACID
EP2247424B1 (en) 2008-02-29 2012-07-04 Basell Poliolefine Italia S.r.l. Polyolefin compositions
US20110282015A1 (en) * 2008-12-29 2011-11-17 Basell Poliolefine Italia S.R.L. Catalyst Components for the Polymerization of Olefins and Catalysts Therefrom Obtained
US7935740B2 (en) 2008-12-30 2011-05-03 Basell Poliolefine Italia S.R.L. Process for producing high melt strength polypropylene
JP5627670B2 (ja) 2009-04-16 2014-11-19 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 1−ブテンから成るポリマーの製造方法
KR101740750B1 (ko) 2009-07-14 2017-05-26 바셀 폴리올레핀 이탈리아 에스.알.엘 1-부텐의 중합체의 제조 방법
WO2011013707A1 (ja) 2009-07-29 2011-02-03 味の素株式会社 L-アミノ酸の製造法
JP2012223091A (ja) 2009-08-25 2012-11-15 Ajinomoto Co Inc L−アミノ酸の製造法
BR112012017139A2 (pt) 2009-12-22 2017-09-19 Basell Polyolefine Gmbh componentes catalisadores para a polimerização das olefinas e catalisadores a partir destes obtidos
BR112012021964A2 (pt) 2010-03-04 2019-09-24 Basell Poliolefine Italia Srl componentes dos catalisadores para a polimerização das olefinas
CN102781970B (zh) 2010-03-04 2015-08-12 巴塞尔聚烯烃意大利有限责任公司 用于烯烃聚合的催化剂组分
US20130102744A1 (en) 2010-06-24 2013-04-25 Basell Poliolefine Italia, s.r.l. Catalyst Systems for the Polymerization of Olefins
GB201012273D0 (en) 2010-07-22 2010-09-08 Ineos Mfg Belguim Nv Polymer compositon
US20130131290A1 (en) 2010-08-05 2013-05-23 Basell Poliolefine Italia, s.r.l. Catalyst components for the polymerization of olefins
BR112013002868A2 (pt) 2010-08-05 2016-06-14 Basell Poliolefine Srl componentes de catalisador para polimerização de olefinas
EP2630169A1 (en) 2010-10-19 2013-08-28 Basell Poliolefine Italia S.r.l. Process for the polymerization of olefins
WO2012052389A1 (en) 2010-10-19 2012-04-26 Basell Poliolefine Italia S.R.L. Process for the preparation of high purity propylene polymers
US20130197173A1 (en) 2010-10-19 2013-08-01 Basell Poliolefine Italia S.R.L. Catalyst system for the polymerization of olefins
EP2630211B1 (en) 2010-10-21 2016-05-18 Basell Poliolefine Italia S.r.l. Pressure sensitive adhesive with butene-1 copolymers
CN102558398B (zh) * 2010-12-30 2013-11-06 中国石油化工股份有限公司 一种氯化镁球形载体的制备方法
WO2012175425A1 (en) 2011-06-24 2012-12-27 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
EP2583985A1 (en) 2011-10-19 2013-04-24 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2583983A1 (en) 2011-10-19 2013-04-24 Basell Poliolefine Italia S.r.l. Catalyst component for the polymerization of olefins
EP2607384A1 (en) 2011-12-21 2013-06-26 Basell Poliolefine Italia S.r.l. Catalyst system for the polymerization of olefins
EP2636687A1 (en) 2012-03-07 2013-09-11 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2666792A1 (en) 2012-05-23 2013-11-27 Basell Poliolefine Italia S.r.l. Catalyst component for the polymerization of olefins
EP2671894A1 (en) 2012-06-08 2013-12-11 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of butene-1
EP2712874A1 (en) 2012-09-26 2014-04-02 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2712875A1 (en) 2012-09-28 2014-04-02 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2757114A1 (en) 2013-01-18 2014-07-23 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2787014A1 (en) 2013-04-05 2014-10-08 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2803678A1 (en) 2013-05-14 2014-11-19 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
EP2803679A1 (en) 2013-05-17 2014-11-19 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
JP2016165225A (ja) 2013-07-09 2016-09-15 味の素株式会社 有用物質の製造方法
CN106459857B (zh) 2013-10-02 2019-04-19 味之素株式会社 氨控制装置及氨控制方法
BR112016008830B1 (pt) 2013-10-23 2023-02-23 Ajinomoto Co., Inc Método para produzir uma substância alvo
ES2730110T3 (es) 2015-03-10 2019-11-08 Basell Poliolefine Italia Srl Componentes catalizadores para la polimerización de olefinas
EP3268398B1 (en) 2015-03-12 2019-05-15 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
WO2016156473A1 (en) 2015-04-01 2016-10-06 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
BR112017023776B1 (pt) 2015-05-19 2021-11-16 Basell Poliolefine Italia S.R.L. Componentes de catalisador para a polimerizaqao de olefinas
EP3448897B1 (en) * 2016-04-29 2020-09-09 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins
BR112019005837B1 (pt) 2016-10-03 2023-01-17 Toho Titanium Co., Ltd Componente catalisador sólido para polimerização de olefinas, métodos para produção de um componente catalisador sólido para polimerização de olefinas, para produção de um polímero de uma olefina e para produção de um copolímero de propileno, e, catalisador para polimerização de olefinas
US10654946B2 (en) 2016-11-18 2020-05-19 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
JP7066977B2 (ja) 2017-04-03 2022-05-16 味の素株式会社 L-アミノ酸の製造法
WO2018210665A1 (en) 2017-05-18 2018-11-22 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
CN112654645B (zh) 2018-10-01 2023-01-24 巴塞尔聚烯烃意大利有限公司 用于烯烃聚合的前体和催化剂组分
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
BR112021008495A2 (pt) 2018-12-04 2021-08-03 Basell Poliolefine Italia S.R.L. processo para a preparação de um polímero de polipropileno.
CN113056493A (zh) 2018-12-14 2021-06-29 巴塞尔聚烯烃意大利有限公司 用于烯烃聚合的催化剂组分
WO2020207880A1 (en) 2019-04-11 2020-10-15 Basell Poliolefine Italia S.R.L. Process for the preparation of polypropylene
US11873365B2 (en) 2019-07-03 2024-01-16 Basell Poliolefine Italia S.R.L. Catatlyst components for the polymerization of olefins
US20230002516A1 (en) 2019-12-04 2023-01-05 Basell Poliolefine Italia S.R.L. Catalyst for the polymerization of olefins

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953414A (en) * 1972-09-13 1976-04-27 Montecatini Edison S.P.A., Catalysts for the polymerization of olefins to spherically shaped polymers
IT1078995B (it) * 1977-05-24 1985-05-08 Montedison Spa Catalizzatori per la polimeriazzazione di olefine
IT1098272B (it) * 1978-08-22 1985-09-07 Montedison Spa Componenti,di catalizzatori e catalizzatori per la polimerizzazione delle alfa-olefine
IT1136627B (it) * 1981-05-21 1986-09-03 Euteco Impianti Spa Catalizzatore supportato per la polimerizzazione di etilene
IT1169291B (it) * 1981-12-24 1987-05-27 Montedison Spa Componenti di catalizzatori per la polimerizzazione dell'etilene e sue miscele con olefine ed i soui catalizzatori da essi ottenuti
IT1190683B (it) * 1982-02-12 1988-02-24 Montedison Spa Componenti e catalizzatori per la polimerizzazione di olefine
DE3366573D1 (en) * 1982-06-24 1986-11-06 Bp Chimie Sa Process for the polymerization and copolymerization of alpha-olefins in a fluidized bed
IT1212698B (it) * 1983-02-10 1989-11-30 Sir Soc Italiana Resine Spa In sospensione di etilene con procedimento di copolimerizzazione alfa-olefine lineari perl'ottenimento di copolimeri a bassa densita'.
IT1190319B (it) * 1986-04-17 1988-02-16 Enichem Polimeri Procedimento per la preparazione di polietilene a bassa o media densita' e catalizzatori adatti allo scopo
US4710482A (en) * 1986-06-18 1987-12-01 Shell Oil Company Olefin polymerization catalyst component
US4727051A (en) * 1986-12-15 1988-02-23 Stauffer Chemical Company Production of halide-and alkoxy-containing magnesium compositions
IT1203330B (it) * 1987-02-06 1989-02-15 Enichem Base Spa Componente di catalizzatore e catalizzatore per la polimerizzazione dell'etilene o la co-polimerizzazione dell-etilene con alfa-olefine
US5204303A (en) * 1988-12-30 1993-04-20 Neste Oy Preparation and use of a new ziegler-natta catayst component
US5221651A (en) * 1989-04-28 1993-06-22 Himont Incorporated Component and catalysts for the polymerization of olefins
IT1230134B (it) * 1989-04-28 1991-10-14 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine.
IT1231768B (it) * 1989-08-02 1991-12-21 Himont Inc Composizioni polipropileniche adatte alla modifica di bitumi.
FR2651234B1 (fr) * 1989-08-29 1993-03-12 Bp Chem Int Ltd Procede de fabrication en phase gazeuse de copolymeres du propylene a l'aide d'un systeme catalytique de haute activite.
IT1236509B (it) * 1989-10-06 1993-03-11 Francesco Masi Procedimento per la preparazione di copolimeri etilene-butene-1 con densita' ultra-bassa.
CN1022170C (zh) * 1990-06-08 1993-09-22 河北机电学院 滚挤异型钢管装置
US5141910A (en) * 1990-10-18 1992-08-25 Shell Oil Company Olefin polymerization catalyst
US5229342A (en) * 1990-10-18 1993-07-20 Shell Oil Company Olefin polymerization catalyst
IT1245250B (it) * 1991-03-27 1994-09-13 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1245249B (it) * 1991-03-27 1994-09-13 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1262935B (it) * 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine

Also Published As

Publication number Publication date
EP0553806A1 (en) 1993-08-04
CA2088525A1 (en) 1993-08-01
NO930348L (no) 1993-08-02
ZA93664B (en) 1993-09-02
EP0553806B1 (en) 1998-05-06
JPH0665314A (ja) 1994-03-08
CN1036461C (zh) 1997-11-19
FI106310B (fi) 2001-01-15
DE69318318D1 (de) 1998-06-10
DK0553806T3 (da) 1998-10-07
US5726261A (en) 1998-03-10
IL104562A (en) 1995-10-31
BR9300391A (pt) 1993-08-03
ATE165843T1 (de) 1998-05-15
NO300274B1 (no) 1997-05-05
KR100250336B1 (ko) 2000-04-01
JP3285637B2 (ja) 2002-05-27
ITMI920194A0 (it) 1992-01-31
ES2117061T3 (es) 1998-08-01
IT1262934B (it) 1996-07-22
CN1117499A (zh) 1996-02-28
CN1075485A (zh) 1993-08-25
DE69318318T2 (de) 1998-11-19
CN1032063C (zh) 1996-06-19
MY109025A (en) 1996-11-30
FI930403A (fi) 1993-08-01
TW222652B (ru) 1994-04-21
AU3215793A (en) 1993-08-05
ITMI920194A1 (it) 1993-07-31
AU655526B2 (en) 1994-12-22
NO930348D0 (no) 1993-02-01
MX9300533A (es) 1994-07-29
FI930403A0 (fi) 1993-01-29
KR930016443A (ko) 1993-08-26
US5585317A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
RU2118330C1 (ru) Сферические компоненты катализатора полимеризации олефинов, катализаторы полимеризации, способ полимеризации, сополимеры этилена
RU2126420C1 (ru) Шариковый компонент катализатора полимеризации олефинов, способ его получения, катализатор полимеризации олефинов, способ полимеризации олефинов
RU2116319C1 (ru) Сферический компонент катализатора полимеризации этилена, катализатор полимеризации этилена, способ полимеризации этилена, сополимеры этилена и пропилена
EP1124861B1 (en) Catalyst components for the polymerization of olefins and catalysts therefrom obtained
US7223711B2 (en) Pre-polymerized catalyst components for the polymerization of olefins
RU2126804C1 (ru) Способ получения гомополимеров и сополимеров этилена
RU2127148C1 (ru) Компонент катализатора, катализатор для полимеризации олефинов, способ получения каталитического компонента и способ полимеризации олефинов
EP2718335B1 (en) Pre-polymerized catalyst components for the polymerization of olefins

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040130