KR20200021546A - 복합 산화물 제작 방법 및 축전 장치 제작 방법 - Google Patents

복합 산화물 제작 방법 및 축전 장치 제작 방법 Download PDF

Info

Publication number
KR20200021546A
KR20200021546A KR1020207004295A KR20207004295A KR20200021546A KR 20200021546 A KR20200021546 A KR 20200021546A KR 1020207004295 A KR1020207004295 A KR 1020207004295A KR 20207004295 A KR20207004295 A KR 20207004295A KR 20200021546 A KR20200021546 A KR 20200021546A
Authority
KR
South Korea
Prior art keywords
atmosphere
oxygen concentration
solution containing
composite oxide
storage device
Prior art date
Application number
KR1020207004295A
Other languages
English (en)
Other versions
KR102229007B1 (ko
Inventor
타쿠야 미와
쿠니하루 노모토
준페이 모모
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority to KR1020217007137A priority Critical patent/KR102354358B1/ko
Publication of KR20200021546A publication Critical patent/KR20200021546A/ko
Application granted granted Critical
Publication of KR102229007B1 publication Critical patent/KR102229007B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Abstract

본 발명의 목적은, 제작되는 결정 형상의 편차를 작게 하는 것이다. 각 원료를 칭량하여 대기보다 산소 농도가 낮은 환경 하에서 각 원료를 포함하는 용액을 생성하고, 혼합 용액을 형성하기 위해 대기보다 산소 농도가 낮은 환경 하에서 각 원료를 포함하는 용액을 혼합하고, 이 혼합 용액을 이용하여 수열법에 의해 복합 산화물이 생성된다.

Description

복합 산화물 제작 방법 및 축전 장치 제작 방법{MANUFACTURING METHOD OF COMPOSITE OXIDE AND MANUFACTURING METHOD OF POWER STORAGE DEVICE}
본 발명은 복합 산화물에 관한 것이고, 또한 본 발명은 축전 장치에 관한 것이다.
최근, 리튬 이온 이차 전지 등 축전 장치의 개발이 진행되고 있다.
상기 축전 장치의 예로서는, 복합 산화물인 LiFePO4(인산철리튬)을 활물질로서 이용하여 형성된 전극을 가지는 축전 장치를 들 수 있다. LiFePO4를 이용하여 형성된 전극을 가진 축전 장치는 높은 열 안정성과 양호한 사이클 특성을 가진다.
LiFePO4 등의 복합 산화물의 생성 방법으로는, 예를 들어 수열법(A hydrothermal method)을 들 수 있다(예를 들어, 특허문헌 1). 수열법이란, 뜨거운 물의 존재 하에 행해지는 화합물의 합성법 또는 결정 성장법을 말한다.
수열법을 이용함으로써, 상온 상압에서는 물에 잘 녹지 않는 재료라도 용해시킬 수 있기 때문에 상온 상압에 의한 생산 방법으로는 얻을 수 없는 물질의 합성 및 결정 성장을 행할 수 있다. 또한, 수열법을 이용함으로써, 목적 물질에 있어서의 단결정 미립자를 용이하게 합성할 수 있다.
수열법에서는, 예를 들어 원료를 포함하는 용액을 내압 용기에 넣어 가압 및 가열에 의한 처리를 행하고, 그 후 가압 및 가열에 의한 처리를 행한 용액을 여과함으로써, 원하는 화합물을 생성할 수 있다.
일본국 특개2004-95385호 공보
그러나, 종래의 수열법에 의해 LiFePO4를 생성하면 LiFePO4의 결정 형상의 편차가 크다는 문제가 있었다.
결정 형상의 편차가 크면, 전극의 활물질에서의 결정 충진율이 낮아져 축전 장치의 충방전 특성이 저하하게 된다. 때문에, 축전 장치의 충방전 특성 저하를 억제하기 위해서는, 결정 형상을 제어하고 전극의 활물질에서의 결정 형상을 균일하게 하는 것이 바람직하다.
본 발명의 일형태의 목적은, 수열법에 의해 생성된 결정 형상의 편차를 작게 만드는 것이다.
본 발명의 일형태에서는, 대기보다 산소 농도가 낮은 환경 하에서 만들어진 원료를 포함하는 혼합 용액을 생성하고, 이 혼합 용액을 이용하여 수열법에 의해 복합 산화물을 생성함으로써, 생성된 복합 산화물에 있어서의 결정 형상의 편차가 억제된다.
본 발명의 일형태는, 대기보다 산소 농도가 낮은 분위기 하에서 Li(리튬) 및 P(인)을 포함하는 화합물을 이용하여 Li 및 P를 포함하는 용액을 생성하는 것과, 대기보다 산소 농도가 낮은 분위기 하에서 Fe(철), Co(코발트), Ni(니켈), 및 Mn(망간) 중 어느 하나의 천이 금속을 포함하는 화합물을 하나 또는 복수 이용하여 Fe, Co, Ni, 및 Mn 중 어느 하나 또는 복수의 천이 금속을 포함하는 용액을 생성하는 것을 포함하고, Li 및 P를 포함하는 용액과 상기 천이 금속을 포함하는 용액을 대기보다 산소 농도가 낮은 분위기 하에서 혼합하여 혼합 용액을 형성하고, 대기보다 산소 농도가 낮은 분위기 하에서의 수열법에 의해 혼합 용액을 이용하여 복합 산화물을 생성한다. 이렇게 얻어진 복합 산화물은 일반식 LiMPO4(M은 Fe, Co, Ni, 및 Mn 중 하나 또는 복수)로 나타내어진다.
본 발명의 일형태에 의해, 생성되는 결정 형상을 제어할 수 있게 된다. 따라서, 결정 형상의 편차가 작아질 수 있다.
도 1(A)과 도 1(B)은 복합 산화물의 생산 방법예를 설명하기 위한 순서도(플로 차트)이다.
도 2는 복합 산화물의 결정 형상예를 나타내는 모식도이다.
도 3은 축전 장치의 예를 설명하기 위한 도면이다.
도 4(A) 및 도 4(B)는 축전 장치에서 전극의 구조예를 설명하기 위한 도면이다.
도 5는 축전 장치의 예를 설명하기 위한 도면이다.
도 6은 전기 기기의 예를 설명하기 위한 도면이다.
도 7(A)은 전기 기기의 예를 설명하기 위한 도면이고, 도 7(B)는 그 블록도이다.
도 8은 주사형 전자 현미경에 의해 얻어진 LiFePO4의 관찰 결과를 나타내는 도면이다.
본 발명을 설명하기 위한 실시형태의 예에 대하여, 도면을 이용하여 아래에 설명한다. 또한, 본 발명의 취지 및 본 발명의 범위로부터 벗어나는 일 없이 실시형태의 내용을 다양한 방식으로 변경하는 것은 당업자라면 용이한 것이다. 따라서, 본 발명은 아래에 나타내는 실시형태의 기재 내용에 한정되지 않는다.
또한, 각 실시형태의 내용을 서로 적절히 조합할 수 있다. 또한, 각 실시형태의 내용을 서로 적절히 치환할 수 있다.
또한, 제 1, 제 2 등의 서수는 구성요소의 혼동을 피하기 위해 사용되고, 각 구성 요소의 수를 한정하는 것은 아니다.
(실시형태 1)
본 실시형태에서는, 결정을 가지는 복합 산화물의 예에 대하여 설명한다.
도 1(A) 및 도 1(B)의 순서도를 참조하여, 본 실시형태에서의 복합 산화물의 생산 방법의 일례를 설명한다.
본 실시형태의 복합 산화물의 생산 방법예에서, 도 1(A)에 나타낸 바와 같이, 단계 S11로서, 복합 산화물을 합성할 때에 이용되는 혼합 용액은 대기보다 산소 농도가 낮은 분위기(저산소 분위기라고도 함) 하에서 생성된다. 또한, 단계 S12로서, 생성된 혼합 용액을 사용하여 수열법에 의해 복합 산화물이 생성된다.
또한, 복합 산화물의 생산 방법의 상세한 사항에 대하여, 도 1(B)의 순서도를 이용하여 설명한다.
본 실시형태에서의 복합 산화물 생산 방법의 일례에서는, 도 1(B)에 나타낸 바와 같이, 단계 S111_1로서 Li(리튬) 및 P(인)을 포함하는 화합물(리튬-인 화합물이라고도 함)을 칭량한다. 또한, 단계 S111_2로서, 천이 금속을 포함하는 화합물(천이 금속 화합물이라고도 함)을 칭량한다.
리튬-인 화합물로서, 예를 들면 인산리튬(Li3PO4)을 이용할 수 있다.
천이 금속 화합물로서, 예를 들면, Fe(철), Co(코발트), Ni(니켈), Mn(망간) 중 어느 하나를 포함하는 화합물을 하나 또는 복수 이용할 수 있다. 예를 들어, 염화철 사수화물(FeCl2·4H2O), 황산철 칠수화물(FeSO4·7H2O), 아세트산철(Fe(CH3COO)2), 염화망간 사수화물(MnCl2·4H2O), 황산망간 일수화물(MnSO4·H2O), 아세트산망간 사수화물(Mn(CH3COO)2·4H2O), 염화코발트 육수화물(CoCl2·6H2O), 황산코발트(CoSO4), 아세트산코발트 사수화물(Co(CH3COO)2·4H2O), 염화니켈 육수화물(NiCl2·6H2O), 황산니켈 육수화물(NiSO4·6H2O), 또는 아세트산니켈 사수화물(Ni(CH3COO)2·4H2O) 등을 이용할 수 있다.
다음에, 단계 S112_1로서, 대기보다 산소 농도가 낮은 분위기 하에서 리튬-인 화합물을 용매에 용해하여, Li 및 P를 포함하는 용액(리튬-인 함유용액이라고도 함)을 생성한다. 또한, 단계 S112_2로서 대기보다 산소 농도가 낮은 분위기 하의 용매에 천이 금속 화합물이 용해되어, 천이 금속 화합물을 포함하는 용액(천이 금속 함유용액이라고도 함)이 생성된다.
리튬-인 화합물 또는 천이 금속 화합물을 용해하는 용매로서는, 예를 들어 물 등을 이용할 수 있다. 또한, 용매 내의 산소 농도는 4.5ppm 이하인 것이 바람직하다. 예를 들어, 용매에 질소 버블링을 수행함으로써, 용매 내의 산소 농도를 저감할 수 있다. 용매 내의 산소 농도를 저감함으로써, 생성될 물질의 산화를 억제할 수 있다.
또한, 대기보다 산소 농도가 낮은 분위기로서는, 예를 들어 질소 분위기, 또는 질소와 수소의 혼합 분위기 등을 이용할 수 있다.
다음에, 단계 S113으로서, Li 및 P를 포함하는 용액과, 천이 금속을 포함하는 용액을 대기보다 산소 농도가 낮은 분위기 하에서 혼합하여 혼합 용액을 생성한다.
이 단계에서, 예를 들어 천이 금속을 포함한 용액을 교반하면서 Li 및 P를 포함하는 용액을 소량씩 적하하는 것이 바람직하다. 이로 인해, 천이 금속 이온과 수산화물 이온과의 반응보다, 천이 금속을 포함하는 용액에 포함되는 수소 이온과 Li 및 P를 포함하는 용액에 포함되는 수산화물 이온과의 중화 반응이 우선적으로 행해진다. 결과적으로, 불필요한 천이 금속 수산화물의 생성을 억제할 수 있다.
다음에, 단계 S114로서, 혼합 용액을 이용하여 수열법에 의해 복합 산화물을 생성한다.
예를 들어, 혼합 용액을 내압 용기에 넣고 가압 및 가열에 의한 처리를 행하고, 냉각시킨다. 그 후 냉각된 용액이 여과된다. 이러한 식으로 복합 산화물을 생성할 수 있다.
내압 용기로서는, 예를 들어 오토클레이브(autoclave) 등을 이용할 수 있다.
또한, 가압 및 가열에 의한 처리를 행할 때의 온도는, 예를 들어 100℃ 이상 물의 임계 온도 이하인 것이 바람직하다. 또한, 가압 및 가열에 의한 처리를 행할 때의 압력은, 예를 들어 0.1MPa 이상 물의 임계 압력 이하인 것이 바람직하다. 또한, 가압 및 가열에 의한 처리를 행하는 시간은, 예를 들어 0.5시간 이상인 것이 바람직하다. 또한, 내압 용기 내를 대기보다 산소 농도가 낮은 분위기로 설정함으로써, 대기보다 산소 농도가 낮은 분위기 하에서 수열법에 의한 처리를 행할 수 있게 된다. 예를 들어, 내압 용기 내를 질소 분위기 또는 질소와 수소의 혼합 분위기로 만드는 것이 바람직하다. 이로 인해, 내압 용기 내의 불필요한 산소를 제거할 수 있다. 또한, 공정 중에 용액이 산화해도 해당 용액이 환원될 수 있다. 따라서, 산화에 의한 영향을 억제할 수 있다.
또한, 환원제를 더하여 가압 및 가열에 의한 처리를 수행해도 좋다. 예를 들어, 혼합 용액에 환원제를 더하고 나서 가압 및 가열에 의한 처리를 행할 수도 있다. 또한, 이에 한정되지 않고, 예를 들어 천이 금속을 포함하는 용액에 환원제를 더하고, 그 후 혼합 용액을 생성해도 좋다.
예를 들어 환원제는 아스코르브산, 이산화유황, 아황산, 아황산나트륨, 아황산수소나트륨, 아황산암모늄, 또는 아인산 등을 포함한다. 환원제를 이용함으로써, 공정 중에 용액이 산화해도 환원할 수 있게 되기 때문에, 산화에 의한 영향을 저감할 수 있다.
수열법에 의해 얻어진 복합 산화물은 복수의 결정을 갖는다. 또한, 상기 복합 산화물의 결정 형상은 예를 들어 도 2에서 설명한 바와 같이 입방체(151), 또는 입방체에 가까운 형상이다. 또한, 상기 복수 결정은 결정 형상의 편차가 작다. 이는 산화를 억제함으로써 생성된 복합 산화물에 있어서 불순물이 저감되기 때문이다. 또한, 혼합 용액에 존재하는 이온종 등에 따라, 혼합 용액으로부터 생성되는 결정의 이방성이 낮아지고, 입방체 결정이 생성되기 쉬운 조건이 되었기 때문이다. 또한, 복합 산화물의 결정 구조는 올리빈형이 바람직하다.
이상이 본 실시형태에서의 복합 산화물 생성 방법예의 설명이다.
도 1 및 도 2를 이용하여 설명한 바와 같이, 본 실시형태에 따른 복합 산화물 생성 방법 일례에서는, 대기보다 산소 농도가 낮은 분위기 하에서 Li(리튬) 및 P(인)을 포함하는 용액과, 천이 금속을 포함하는 용액을 혼합하여 혼합 용액을 생성함으로써, 산화에 의한 부산물의 생성을 억제할 수 있다. 따라서, 수열법을 이용하여 생성된 복합 산화물의 결정 형상의 편차를 작게 만들 수 있다. 또한, 수열법을 이용하여 생성된 복합 산화물의 결정 형상이 입방체로 될 수도 있다.
(실시형태 2)
본 실시형태에서는, 상기 실시형태 1에 나타낸 복합 산화물을 활물질로 이용하는 전극을 포함하는 축전 장치의 예에 대하여 설명한다.
본 실시형태에 따른 축전 장치의 구조예에 대하여 도 3을 이용하여 설명한다.
도 3에 나타낸 축전 장치는 정극(201), 부극(202), 전해질(203), 세퍼레이터(204)를 포함한다.
정극(201)은 정극 집전체(211)와 정극 활물질층(212)을 포함한다.
정극 집전체(211)로서는, 알루미늄,구리, 니켈, 또는 티탄 등을 이용할 수 있다. 또한, 정극 집전체(211)에 적용 가능한 복수의 재료를 이용한 합금을 정극 집전체(211)로서 이용해도 좋다.
정극 활물질층(212)으로는, 예를 들어 실시형태 1에서의 복합 산화물을 이용할 수 있다. 이때, 예를 들어 실시형태 1에 나타낸 생성 방식을 이용하여 복합 산화물을 생산할 수 있다. 또한 이때 복합 산화물은 활물질로서 기능한다.
예를 들어, 상기 실시형태 1에서의 복합 산화물에 도전 조제, 바인더 및 용매를 더함으로써, 페이스트를 생성한다. 또한, 상기 페이스트를 정극 집전체(211)에 도포하고 소성함으로써, 정극 활물질층(212)을 제작할 수 있다.
부극(202)은 부극 집전체(221)와 부극 활물질층(222)을 갖는다.
부극 집전체(221)로서는, 예를 들어 철,구리, 또는 니켈 등을 이용할 수 있다. 또한, 부극 집전체(221)용으로 사용될 수 있는 복수의 재료의 합금을 부극 집전체(221)에 이용해도 좋다.
부극 활물질층(222)으로는 실리콘 또는 흑연 등을 이용할 수 있다. 이때, 실리콘 또는 흑연은 활물질로서 기능한다.
또한, 부극 활물질층(222)은 예를 들어 복수의 위스커를 포함하는 구조를 가질 수 있다.
또한, 부극 활물질층(222)으로는 예를 들어 그래핀을 이용할 수도 있다.
그래핀이란, 이온을 통과시키는 공극을 가지고 있으며, sp²결합을 가지는 1원자층의 탄소 분자로 구성된 1매의 시트, 또는 이 1매의 시트가 2매 내지 100매 적층된 적층체(다층 그래핀이라고도 함)를 말한다. 또한, 그물 형상의 그래핀을 그래핀 네트라고도 한다. 또한, 그래핀에는 30 원자% 이하의 탄소 이외의 원소 또는 15 원자% 이하의 탄소와 수소 이외의 원소가 포함되어도 좋다. 따라서, 그래핀 유사체도 그래핀으로 간주된다.
그래핀은 도전율이 높고, 유연성이 높고, 기계적 강도가 높고, 또한 내열성이 높다는 특징을 가진다. 또한, 그래핀은 이온을 저장할 수 있는 용량을 가진다.
예를 들어, 활물질로서 실리콘 또는 흑연 등을 이용하는 경우, 실리콘 또는 흑연을 그래핀으로 피복해도 좋다. 또한, 예를 들어 다층 그래핀의 경우, 복수의 그래핀 층의 사이에 실리콘 또는 흑연 등의 미립자를 포함해도 좋다.
그래핀을 이용함으로써 전극의 도전성을 높일 수 있다. 따라서, 그래핀이 바인더로서의 기능을 가질 수도 있다. 또한, 그래핀을 이용함으로써, 기존의 도전 조제 또는 바인더를 이용하지 않고 전극이 형성될 수 있다.
또한, 그래핀을 이용함으로써, 전극의 변형 및 파괴를 억제할 수 있다.
또한, 부극 활물질층(222)에 한정되지 않고, 정극 활물질층(212)으로 그래핀이 이용될 수 있다. 예를 들어, 상기 실시형태 1의 복합 산화물에서 복수의 결정을 그래핀으로 피복해도 좋다. 또한, 예를 들어 다층 그래핀의 경우, 복수의 그래핀층 사이에 복합 산화물의 미립자가 제공될 수 있다.
도 4(A)는 부극 활물질층(222)을 포함하는 부극(202)의 구조예를 예시한다. 이 예에서, 부극 활물질층(222)은 복수의 위스커를 가진다.
도 4(A)에 예시된 전극은 부극 집전체(221)와 부극 활물질층(222)을 가진다. 부극 활물질층(222)은 위스커를 가지는 층(251)을 포함한다.
위스커를 가지는 층(251)으로서는, 예를 들어 실리콘이 이용될 수 있다.
또한, 위스커를 가지는 층(251)에서 각 위스커의 심부(core portion)가 결정성을 가지고(심부는 결정부라고도 함), 심부의 주연부가 비정질인 것이 바람직하다. 예를 들어, 비정질인 부분에서는 이온의 저장 및 방출에 따른 체적 변화가 적다. 또한, 결정성을 가지는 부분은 도전성 및 이온 도전성이 높기 때문에, 결정성 부분에서는 이온을 저장하는 속도 및 이온을 방출하는 속도가 증가될 수 있다.
위스커를 가지는 층(251)은 예를 들어, LPCVD(Low Pressure CVD)법에 의해 형성될 수 있다.
예를 들어, 위스커를 가지는 층(251)이 실리콘을 이용하여 형성되는 경우, LPCVD법을 이용하여 위스커를 가지는 층(251)을 형성하기 위한 원료 가스로서는 실리콘을 포함하는 퇴적성 가스가 이용될 수 있다. 실리콘을 포함하는 퇴적성 가스로서는 예를 들어 수소화 실리콘, 불화 실리콘, 또는 염화 실리콘이 이용될 수 있다.
또한, 압력을 10Pa 이상 1000Pa 이하, 바람직하게는 20Pa 이상 200Pa 이하로 하는 것이 바람직하다. 또한, 압력을 조정함으로써 결정성을 가지는 부분 및 비정질 부분이 각각 형성될 수 있다.
또한, 위스커를 가지는 층(251)을 피복하도록 그래핀을 가지는 층을 제공하여 부극 활물질층(222)을 구성할 수도 있다. 도 4(B)는 위스커를 가지는 층을 피복하도록 그래핀을 가진 층이 제공되는 부극 활물질층(222)을 포함하는 부극(202)의 구조예를 예시한다.
도 4(B)에 예시된 전극은 도 4(A)에 예시된 구조에 더하여, 그래핀을 가지는 층(252)을 포함한다.
그래핀을 가지는 층(252)은 위스커를 가지는 층(251)에 접하여 제공된다.
예를 들어, 위스커를 가지는 층(251) 위에 산화 그래핀 층을 형성하고, 가열 처리를 행하고, 산화 그래핀층을 환원함으로써 그래핀을 가지는 층(252)이 형성될 수 있다.
도 4(B)에 일례로서 나타낸 바와 같이, 위스커를 가지는 층에 접하도록 그래핀을 가지는 층을 제공하여 부극 활물질층을 구성함으로써, 예를 들어 이온의 저장 및 방출에 따라 위스커를 가지는 층의 체적이 변화하더라도, 그래핀을 가지는 층이 이 체적의 변화에 기인한 응력을 감소시키는데 기여한다. 그 결과, 위스커를 가지는 층에서의 위스커 구조의 파괴를 방지할 수 있다. 따라서, 축전 장치의 사이클 특성을 향상시킬 수 있다.
또한, 도 3에 나타낸 세퍼레이터(204)로서는, 예를 들어, 종이, 부직포, 유리 섬유, 또는 합성 섬유가 이용될 수가 있다. 합성 섬유로는 예를 들어 나일론(폴리아미드), 비닐론(비날론이라고도 함)(폴리비닐 알코올계 섬유), 폴리에스테르, 아크릴, 폴리올레핀, 및 폴리우레탄과 같은 재료가 이용될 수 있다. 또한, 세퍼레이터(204) 재료들의 더 많은 예로서는, 불소계 폴리머, 폴리에테르(예를 들어, 폴리에틸렌옥사이드 또는 폴리프로필렌옥사이드 등), 폴리올레핀(예를 들어, 폴리에틸렌 또는 폴리프로필렌 등), 폴리아크릴로나이트릴, 폴리염화 비닐리덴, 폴리메틸 메타크릴레이트, 폴리메틸아크릴레이트, 폴리비닐 알코올, 폴리메타크릴로나이트릴, 폴리비닐 아세테이트, 폴리비닐피롤리돈, 폴리에틸레이민, 폴리부타디엔, 폴리스티렌, 폴리이소프렌, 및 폴리우레탄 등의 고분자 재료, 이 고분자 재료의 유도체, 종이와 막 등의 셀룰로오스계 재료, 또한 부직포가 있다. 이들 재료는 단독으로, 또는 두 종류 이상을 조합하여 이용될 수 있다. 그러나, 세퍼레이터(204)로서는, 전해질(203)에 용해되지 않는 재료를 선택하는 것이 필수적이다.
전해질(203)로서는, 예를 들어 캐리어가 되는 이온을 포함하는 재료 또는 캐리어가 되는 이온이 이동 가능한 재료를 이용할 수 있다. 그러한 재료의 예로서는, 염화 리튬(LiCl), 불화 리튬(LiF), 과염소산리튬(LiClO4), 및 붕불화 리튬(LiBF4)이 포함된다. 이들 재료는 전해질(203)에서 단독으로, 또는 두 종유 이상을 조합하여 이용될 수 있다. 또한, 육불화 인산리튬(LiPF6), 육불화 비산염리튬(LiAsF6), 트리플루오로메탄술폰산리튬(LiCF3SO3), 리튬 비스(트리플루오로메탄술포닐)이미드(LiN(SO2CF3)2), 리튬 비스(펜타플루오로에탄술포닐)이미드(LiN(SO2C2F5)2) 등의 불소를 포함하는 리튬염 재료를 전해질(203)로서 이용할 수도 있다.
또한, 상기 재료를 용매에 혼합하여 전해질(203)이 형성될 수 있다. 용매로서는, 예를 들어 환상 카보네이트류(예를 들어 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 또는 비닐렌카보네이트(VC) 등), 비환상 카보네이트류(예를 들어, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(이하, EMC로 약기), 메틸프로필카보네이트(MPC), 이소부틸메틸카보네이트, 및 디프로필카보네이트(DPC) 등), 지방족 카복실산에스테르류(예를 들어, 포름산메틸, 아세트산메틸, 프로피온산메틸, 또는 프로피온산에틸 등), γ-락톤류(예를 들어, γ-부티로락톤 등), 비환상 에테르류(예를 들어 1,2-디메톡시에탄(DME), 1,2-디에톡시에탄(DEE), 및 에톡시메톡시 에탄(EME) 등), 환상 에테르류(예를 들어, 테트라하이드로퓨란 및 2-메틸테트라하이드로퓨란 등), 또는 알킬인산에스테르(예를 들어, 디메틸설폭시드, 1,3-디옥솔란, 인산 트리메틸, 인산 트리에틸, 및 인산 트리옥틸 등) 또는 그 불화물을 들 수 있다. 이들 중 일종 또는 이종 이상을 혼합하여 전해질(203)의 용매로서 이용한다.
또한, 본 실시형태에 따른 축전 장치의 일례로서, 코인형 이차 전지의 구조예에 대하여 도 5를 이용하여 설명한다.
도 5에 나타낸 축전 장치는 정극(301), 부극(302), 세퍼레이터(304), 하우징(305), 하우징(306), 링 형상의 절연체(307), 스페이서(308), 및 워셔(309)를 가진다.
정극(301)은 예를 들어 도 3에서의 정극(201)에 상당한다. 이때, 정극 집전체(311)는 정극 집전체(211)에 상당하며, 정극 활물질층(312)은 정극 활물질층(212)에 상당한다.
부극(302)은 예를 들어 도 3에서의 부극(202)에 상당한다. 이때, 부극 집전체(321)는 부극 집전체(221)에 상당하며, 부극 활물질층(322)은 부극 활물질층(222)에 상당한다.
세퍼레이터(304)는 예를 들어 도 3에서의 세퍼레이터(204)에 상당한다.
하우징(305), 하우징(306), 스페이서(308), 및 워셔(309) 각각은, 금속(예를 들어, 스테인레스강)제인 것이 바람직하다. 하우징(305) 및 하우징(306)은 정극(301) 및 부극(302)을 외부와 전기적으로 접속하는 기능을 가진다.
도 5에 나타낸 축전 장치의 경우에서처럼, 정극(301), 부극(302), 및 세퍼레이터(304)가 전해액에 함침된다. 하우징(306)의 바닥부를 아래로 하여 부극(302), 세퍼레이터(304), 링 형상의 절연체(307), 정극(301), 스페이서(308), 워셔(309), 하우징(305)을 순서대로 적층하고, 하우징(305)과 하우징(306)이 압착이 이루어진다. 이런 식으로, 코인형 이차 전지를 제작한다.
이상이 본 실시형태에 따른 축전 장치의 예에 대한 설명이다.
또한, 상기 코인형 이차 전지에 한정되지 않고, 예를 들어 각형 또는 원통형의 이차 전지에도 상기 실시형태 1에 따른 복합 산화물이 이용될 수 있다.
도 3, 도 4(A), 도 4(B), 및 도 5를 이용하여 설명한 바와 같이, 본 실시형태에 따른 축전 장치의 일례에서는, 상기 실시형태에 따른 복합 산화물을 이용하여 축전 장치의 정극이 형성되어, 활물질의 충진 밀도가 증가될 수 있다. 그 결과, 축전 장치의 에너지 밀도가 증가될 수 있다.
(실시형태 3)
본 실시형태에서는, 축전 장치를 이용한 전기 기기의 예에 대하여 설명한다.
축전 장치를 이용한 전기 기기의 예로서는, 예를 들어 표시 장치, 조명 장치, 데스크탑형 또는 노트형 퍼스널 컴퓨터, 화상 재생 장치(예를 들어 DVD(Digital Versatile Dise) 등의 기록 매체에 기억된 정지 화면 또는 동영상을 재생하는 장치 등), 휴대전화, 휴대형 게임기, 휴대형 정보 단말, 전자서적, 비디오 카메라, 디지털 스틸 카메라, 전자레인지 등의 고주파 가열 장치, 전기 밥솥, 전기 세탁기,에어컨디셔너 등의 공기 조절 설비, 전기냉장고, 전기 냉동고, 전기 냉동 냉장고, DNA 보존용 냉장고, 투석 장치 등을 들 수 있다. 또한, 축전 장치로부터 공급되는 전력을 이용하여 전동기로부터 추진하는 이동체 등도, 전기 기기의 범주에 포함된다. 상기 이동체로서는, 예를 들어 전기 자동차, 내연 기관과 전동기를 함께 가지는 하이브리드 자동차, 전동 어시스트 자전거를 포함하는 모터 자전거 등을 들 수 있다.
본 실시형태에 따른 전기 기기의 예에 대하여, 도 6과, 도 7(A) 및 도 7(B)를 이용하여 설명한다.
도 6에 나타낸 표시 장치(5000)는, 하우징(5001), 표시부(5002), 스피커부(5003), 축전 장치(5004) 등을 가진다. 표시 장치(5000)는 TV 방송 수신용 표시 장치에 상당한다.
또한, 예를 들어 TV 방송 수신용 표시 장치, 퍼스널 컴퓨터용 표시 장치, 광고 표시용 표시 장치 등, 모든 정보 표시용 표시 장치가 본 명세서에서의 표시 장치에 포함된다.
표시부(5002)로서는, 예를 들어 액정 표시 장치, 발광장치(예를 들어 유기 EL 소자 등의 발광 소자를 각 화소에 구비한 발광장치), 전기 영동 표시 장치, DMD(Digital Micromirror Device), PDP(Plasma Display Panel), 또는 FED(Field Emission Display) 등의 표시 장치를 이용할 수 있다.
축전 장치(5004)는 하우징(5001)의 내부에 제공된다. 축전 장치(5004)로서는, 예를 들어 상기 실시형태 2에 설명한 축전 장치를 이용할 수 있다.
또한, 표시 장치(5000)는 상용 전원으로부터 전력의 공급을 받을 수 있다. 또한 표시 장치(5000)는 축전 장치(5004)에 축적된 전력을 이용할 수 있다. 따라서, 예를 들어 정전 등에 의해 상용 전원으로부터 전력의 공급을 받을 수 없는 경우라도, 축전 장치(5004)를 전원으로서 이용함으로써 표시장치(5000)가 구동될 수 있다.
도 6에 나타낸 조명 장치(5100)는 거치형 조명 장치이다. 조명 장치(5100)는, 하우징(5101), 광원(5102), 및 축전 장치(5103)를 구비한다.
광원(5102)으로서는 전력을 이용하여 인공적으로 빛을 얻는 인공 광원을 이용할 수 있다. 상기 인공 광원으로서는, 예를 들어 백열 전구 또는 형광등과 같은 방전 램프 또는 발광 다이오드 또는 유기 EL 소자와 같은 발광 소자 등을 들 수 있다.
축전 장치(5103)는 하우징(5101) 및 광원(5102)이 설치되는 천장(5104)의 내부에 제공된다. 축전 장치(5103)는 이에 한정되지 않고, 하우징(5101) 내부에 제공될 수 있다.
또한, 조명 장치(5100)는 상용 전원으로부터 전력의 공급을 받을 수 있다. 또한 조명 장치(5100)는 축전 장치(5103)에 축적된 전력을 이용할 수도 있다. 따라서, 예를 들어 정전 등에 의해 상용 전원으로부터 전력의 공급을 받을 수 없는 경우라도, 축전 장치(5103)를 전원으로서 이용함으로써 조명 장치(5100)가 구동될 수 있다.
또한, 도 6에서는 천장(5104)에 제공된 설치형 조명 장치(5100)를 나타내고 있지만, 이에 한정되는 것은 아니다. 천장(5104) 이외에, 측벽(5105), 마루(5106), 창(5107) 등에 제공된 설치형 조명 장치에 축전 장치를 이용할 수 있다. 또한, 탁상형 조명 장치 등에 축전 장치를 이용할 수도 있다.
도 6에 나타낸 에어컨디셔너는 실내기(5200) 및 실외기(5204)를 포함한다.
실내기(5200)는 하우징(5201), 송풍구(5202), 및 축전 장치(5203)를 포함한다. 도 6에서는 실내기(5200)에 축전 장치(5203)가 제공되어 있는 경우를 나타내지만, 이에 한정되는 것은 아니다. 예를 들어 실외기(5204)에 축전 장치(5203)를 제공해도 좋다. 또한, 실내기(5200)와 실외기(5204) 양쪽 모두에 축전 장치(5203)가 제공될 수 있다.
에어컨디셔너는 상용 전원으로부터 전력의 공급을 받을 수 있다. 또한, 에어컨디셔너는 축전 장치(5203)에 축적된 전력을 이용할 수 있다. 특히, 실내기(5200)와 실외기(5204)의 양쪽 모두에 축전 장치(5203)가 제공되는 경우, 정전 등에 의해 상용 전원으로부터 전력의 공급을 받을 수 없는 경우라도, 축전 장치(5203)를 전원으로 이용함으로써, 에어컨디셔너를 구동할 수 있다.
또한, 도 6에서는, 실내기와 실외기로 구성된 세퍼레이트형 에어컨디셔너를 예시하고 있지만, 실내기의 기능과 실외기의 기능을 하나의 하우징에 가지는 에어컨디셔너에 축전 장치가 이용될 수 있다.
도 6에 도시된 전기 냉동 냉장고(5300)는 하우징(5301), 냉장실용 문(5302), 냉동실용 문(5303), 및 축전 장치(5304)를 포함한다.
축전 장치(5304)는, 하우징(5301)의 내부에 제공된다.
또한, 전기 냉동 냉장고(5300)는, 상용 전원으로부터 전력의 공급을 받을 수 있다. 또한 전기 냉동 냉장고(5300)는 축전 장치(5304)에 축적된 전력을 이용할 수도 있다. 따라서, 예를 들어 정전 등에 의해 상용 전원으로부터 전력의 공급을 받을 수 없는 경우라도, 축전 장치(5304)를 전원으로 이용함으로써, 전기 냉동 냉장고(5300)가 구동될 수 있다.
또한, 기타 전기 기기로서, 전자레인지 등의 고주파 가열 장치, 또는 전기밥솥 등의 전기 기기는, 단시간에 높은 전력을 필요로 한다. 상용 전원으로는 조달하기 힘든 전력을 공급하기 위한 보조 전원으로서 축전 장치를 이용함으로써 전기 기기의 이용 시에 상용 전원의 공급이 정지하는 것이 방지될 수 있다.
또한, 전기 기기가 이용되지 않는 시간대, 특히, 상용 전원의 공급원이 공급할 수 있는 총 전력량 중, 실제로 이용되는 전력량의 비율(전력 사용률이라고도 함)이 낮은 시간대에 축전 장치에 전력을 비축해둠으로써, 상기 시간대 이외의 전력 사용률 증가를 억제할 수 있다. 예를 들어, 전기 냉동 냉장고(5300)의 경우, 기온이 낮고, 냉장실용 문(5302)과 냉동실용 문(5303)의 개폐가 행해지지 않는 야간에 축전 장치(5304)에 전력이 비축될 수 있다. 기온이 높아지며, 냉장실용 문(5302)과 냉동실용 문(5303)의 개폐가 행해지는 주간에 축전 장치(5304)를 보조 전원으로서 이용함으로써, 주간의 전력 사용률이 감소될 수 있다.
또한, 도 7(A)과 도 7(B)에 나타낸 전기 기기는 폴더형 휴대형 정보 단말의 예이다. 도 7(A)은 외관 모식도이며, 도 7(B)는 블록도이다.
도 7(A)과 도 7(B)에 나타낸 전기 기기는 도 7(A)에 나타낸 바와 같이, 하우징(6000a), 하우징(6000b), 패널(6001a), 패널(6001b), 힌지(6002), 버튼(6003), 접속 단자(6004), 및 기록 매체 삽입부(6005)를 포함한다. 또한, 도 7(A)과 도 7(B)에 나타낸 전기 기기는 도 7(B)에 나타낸 바와 같이, 전원부(6101), 무선 통신부(6102), 연산부(6103), 음성부(6104), 및 패널부(6105)를 가진다.
패널(6001a)은 하우징(6000a)에 제공된다.
패널(6001b)은 하우징(6000b)에 제공된다. 하우징(6000b)은 힌지(6002)에 의해 하우징(6000a)에 접속된다.
패널(6001a) 및 패널(6001b)은 표시 패널로서 기능한다. 예를 들어, 패널(6001a) 및 패널(6001b)은 서로 다른 화상 또는 하나의 화상을 표시할 수 있다.
또한, 패널(6001a) 및 패널(6001b)의 한쪽 또는 양쪽 모두가 터치 패널로서 기능할 수 있다. 이때, 예를 들어 패널(6001a) 및 패널(6001b)의 한쪽 또는 양쪽 모두에 키보드 화상을 표시하고, 키보드 화상에 손가락(6010) 등을 터치함으로써 데이터의 입력 동작이 행해질 수 있다. 또한, 표시 패널 및 터치 패널을 적층하여, 패널(6001a) 또는 패널(6001b)의 한쪽 또는 양쪽 모두가 형성될 수 있다. 또한, 표시회로 및 광검출 회로가 제공된 입출력 패널을 이용하여 패널(6001a) 및 패널(6001b)의 한쪽 또는 양쪽 모두가 형성될 수 있다.
도 7(A)과 도 7(B)에 나타낸 전기 기기에서, 힌지(6002)를 이용하여, 하우징(6000a) 또는 하우징(6000b)을 움직여 하우징(6000a)을 하우징(6000b)에 중첩시켜, 전기 기기를 접을 수 있다.
하우징(6000b)에는 버튼(6003)이 제공된다. 또는, 하우징(6000a)에 버튼(6003)이 제공될 수 있다. 또는, 복수의 버튼(6003)을 하우징(6000a) 및 하우징(6000b)의 한쪽 또는 양쪽 모두에 제공해도 좋다. 예를 들어, 전원 버튼인 버튼(6003)이 제공되어 눌러질 때, 전기 기기의 상태가 제어될 수 있는데, 즉 버튼(6003)을 누름으로써, 전기 기기가 ON 상태 또는 OFF 상태로 설정될 수 있다.
접속 단자(6004)는 하우징(6000a)에 제공된다. 또는, 하우징(6000b)에 접속 단자(6004)를 제공해도 좋다. 또는, 복수의 접속 단자(6004)를 하우징(6000a) 및 하우징(6000b)의 한쪽 또는 양쪽 모두에 제공해도 좋다. 예를 들어, 접속 단자(6004)를 통하여 퍼스널 컴퓨터와 전기 기기를 접속함으로써, 퍼스널 컴퓨터로 인해 전기 기기에 기억된 데이터의 내용을 재기록해도 좋다.
기록 매체 삽입부(6005)는 하우징(6000a)에 제공된다. 또한, 하우징(6000b)에 기록 매체 삽입부(60005)를 제공해도 좋다. 또한, 복수의 기록 매체 삽입부(6005)를 하우징(6000a) 및 하우징(6000b)의 한쪽 또는 양쪽 모두에 제공해도 좋다. 예를 들어 기록 매체 삽입부에 카드형 기록 매체를 삽입함으로써, 카드형 기록 매체로부터 전기 기기에 데이터를 판독하거나, 또는, 전기 기기에서 카드형 기록 매체로 데이터를 기록할 수 있다.
또한, 전원부(6101)는 전기 기기를 동작시키기 위한 전력 공급의 기능을 가진다. 예를 들어, 전원부(6101)로부터 무선 통신부(6102), 연산부(6103), 음성부(6104), 및 패널부(6105)에 전력이 공급된다. 전원부(6101)는 축전 장치(6111)를 구비한다. 축전 장치(6111)는 하우징(6000a) 및 하우징(6000b)의 한쪽 또는 양쪽 모두의 내부에 제공된다. 축전 장치(6111)로서는 상기 실시형태 2에 나타낸 축전 장치를 적용할 수 있다. 또한, 전기 기기를 동작시키기 위한 전원 전압을 생성하는 전원 회로가 전원부(6101)에 제공될 수 있다. 이 경우, 축전 장치(6111)로부터 공급되는 전력을 이용하여 전원 회로에 전원 전압이 생성된다. 또한, 전원부(6101)가 상용 전원에 접속될 수 있다.
무선 통신부(6102)는 전파의 송수신을 행하는 기능을 가진다. 예를 들어, 무선 통신부(6102)에는 안테나, 복조 회로, 변조 회로 등이 제공된다. 이 경우, 예를 들어 안테나에 의한 전파의 송수신을 이용하여 외부와의 데이터 교환을 행한다. 또한, 무선 통신부(6102)에 복수의 안테나가 제공될 수 있다.
연산부(6103)는 예를 들어 무선 통신부(6102), 음성부(6104), 및 패널부(6105)로부터 입력된 명령 신호들에 따라 연산 처리를 행하는 기능을 가진다. 예를 들어, 연산부(6103)에는 CPU, 논리 회로 및 기억 회로 등이 제공된다.
음성부(6104)는 음성 데이터인 소리의 입출력을 제어하는 기능을 가진다. 예를 들어, 음성부(6104)에는 스피커 및 마이크가 제공된다.
전원부(6101), 무선 통신부(6102), 연산부(6103), 및 음성부(6104)는, 예를 들어 하우징(6000a) 및 하우징(6000b)의 한쪽 또는 양쪽 모두의 내부에 제공된다.
패널부(6105)는 패널(6001a)(패널 A라고도 함) 및 패널(6001b)(패널 B라고도 함)의 동작을 제어하는 기능을 가진다. 또한, 패널부(6105)에 패널(6001a) 및 패널(6001b)의 동작을 구동을 제어하는 구동 회로를 제공하여, 패널(6001a) 및 패널(6001b)의 동작이 제어될 수 있다.
전원부(6101), 무선 통신부(6102), 연산부(6103), 음성부(6104) 및 패널부(6105)의 하나 또는 복수에 제어 회로를 제공하여, 제어 회로를 통해 동작을 제어한다. 또한, 연산부(6103)에 제어 회로를 제공하여, 연산부(6103)의 제어 회로에 의해 전원부(6101), 무선 통신부(6102), 음성부(6104) 및 패널부(6105)의 하나 또는 복수의 동작을 제어해도 좋다.
또한, 전원부(6101), 무선 통신부(6102), 음성부(6104) 및 패널부(6105)의 하나 또는 복수에 기억 회로를 제공하여, 기억 회로에 동작시킬 때에 필요한 데이터를 기억시켜도 좋다. 이로 인해 동작 속도를 향상시킬 수 있다.
또한, 도 7(A)과 도 7(B)에 도시한 전기 기기는 상용 전원으로부터 전력의 공급을 받을 수 있으며, 축전 장치(6111)에 축적된 전력을 이용할 수도 있다. 따라서, 정전 등에 의해 상용 전원으로부터 전력의 공급을 받을 수 없는 경우에도, 축전 장치(6111)를 전원으로 이용함으로써 전기 기기를 작동할 수 있다.
도 7(A)과 도 7(B)에 나타낸 구성을 채용함으로써, 전기 기기는 예를 들어, 전화기, 전자서적, 퍼스널 컴퓨터 및 유기기 중 하나 또는 복수로서의 기능을 가질 수 있다.
이상이 본 실시형태에 따른 전기 기기의 예에 대한 설명이다.
도 6과, 도 7(A) 및 도 7(B)를 이용하여 설명한 바와 같이, 본 실시형태에 따른 전기 기기의 일례에서는 축전 장치를 제공함으로써 축전 장치로부터 공급되는 전력에 의해 전기 기기를 구동할 수 있다. 따라서, 외부로부터 전력이 공급되지 않을 때에도, 전기 기기를 구동할 수 있다.
본 실시예에서는, 실시형태 1에 설명한 생산 방법에 의해 형성된 LiFePO4(인산철리튬)에 대하여 설명한다.
먼저, LiFePO4의 생산 방법에 대하여 설명한다.
본 실시예에 따른 Li3PO4의 생산 방법에서, 원료는 Li3PO4:FeCl2ㆍ4H2O = 1:1의 몰비가 되도록 칭량했다. 이때, Fe는 100ml의 물에 대하여 0.2M의 농도를 가지도록 칭량했다.
다음에, 칭량한 Li3PO4 및 FeCl2·4H2O 각각을 질소 분위기 하에서 질소 버블링을 행한 50ml의 물에 용해하여, Li 및 P를 포함하는 용액 및 Fe를 포함하는 용액을 생성했다.
다음에, 질소 분위기 하에서 Li 및 P를 포함하는 용액을 Fe를 포함하는 용액에 적하하여 Li, P 및 Fe를 포함하는 혼합 용액을 생성했다. 이때, 혼합 용액에는 LiFePO4 전구체가 침전되어 있었다. 이때, 혼합 용액 내의 산소 농도는 4.5ppm이었다.
다음에, 혼합 용액을 오토클레이브로 이동하여, 질소 분위기 하에서 교반하면서 150℃의 온도에서 15시간 반응시켰다. 이때의 압력은 0.4MPa였다.
다음에, 오토클레이브에서 반응시킨 용액을 대기 분위기 하에서 여과하여, 남은 화합물을 순수(pure water)로 10회 세정했다. 세정 후, 화합물을 진공 중에서 50℃의 온도로 건조시켰다.
이상의 공정으로 LiFePO4를 생성했다.
또한, 생성된 LiFePO4를 주사형 전자 현미경(SEM)에 의해 관찰했다. 관찰 결과를 도 8에 나타낸다.
도 8에 나타낸 바와 같이, 생성된 LiFePO4는 입방체인 복수의 결정을 가진다. 또한, 복수의 결정은 형상이 입방체이고, 이는 결정 형상의 편차가 작다는 것을 가리킨다.
151 : 입방체
201 : 정극
202 : 부극
203 : 전해질
204 : 세퍼레이터
211 : 정극 집전체
212 : 정극 활물질층
221 : 부극 집전체
222 : 부극 활물질층
301 : 정극
302 : 부극
304 : 세퍼레이터
305 : 하우징
306 : 하우징
307 : 링 형상의 절연체
308 : 스페이서
309 : 워셔
311 : 정극 집전체
312 : 정극 활물질층
321 : 부극 집전체
322 : 부극 활물질층
5000 : 표시 장치
5001 ; 하우징
5002 : 표시부
5003 : 스피커부
5004 : 축전 장치
5100 : 조명 장치
5101 : 하우징
5102 : 광원
5103 : 축전 장치
5104 : 천장
5105 : 측벽
5106 : 마루
5107 : 창
5200 : 실내기
5201 : 하우징
5202 : 송풍구
5203 : 축전 장치
5204 : 실외기
5300 : 전기 냉동 냉장고
5301 : 하우징
5302 : 냉장실용 문
5303 : 냉동실용 문
5304 : 축전 장치
6000a : 하우징
6000b : 하우징
6001a : 패널
6002a : 패널
6002 : 힌지
6003 : 버튼
6004 : 접속 단자
6005 : 기록 매체 삽입부
6010 : 손가락
6101 : 전원부
6102 : 무선 통신부
6103 : 연산부
6104 : 음성부
6105 : 패널부
6111 : 축전 장치
본 출원은 2011년 8월 31일에 일본 특허청에 출원된 일련 번호가 2011-188980인 일본 특허 출원에 기초하고, 여기에 그 전체 내용이 참조로 통합된다.

Claims (4)

  1. 복합 산화물의 제작 방법으로서,
    대기보다 산소 농도가 낮은 분위기 하에서, Li(리튬) 및 P(인)를 포함하는 화합물을, 산소 농도를 4.5ppm 이하로 한 물에 용해하여 Li 및 P를 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, Fe(철)를 포함하는 화합물을, 산소 농도를 4.5ppm 이하로 한 물에 용해하여 Fe를 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, 상기 Li 및 P를 포함하는 용액과, 상기 Fe를 포함하는 용액을 혼합하여 혼합 용액을 생성하는 공정; 및
    대기보다 산소 농도가 낮은 분위기 하에서, 수열법에 의해, 상기 혼합 용액을 이용하여 일반식 LiFePO4로 나타내어지는 복합 산화물을 제작하는 공정을 가지고,
    상기 Fe를 포함하는 용액을 교반하면서 상기 Li 및 P를 포함하는 용액을 적하함으로써, 상기 혼합 용액을 생성하는, 복합 산화물의 제작 방법.
  2. 복합 산화물의 제작 방법으로서,
    대기보다 산소 농도가 낮은 분위기 하에서, Li(리튬) 및 P(인)를 포함하는 화합물을, 질소 버블링을 실시한 물에 용해하여 Li 및 P를 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, Fe(철)를 포함하는 화합물을, 질소 버블링을 실시한 물에 용해하여 Fe를 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, 상기 Li 및 P를 포함하는 용액과, 상기 Fe를 포함하는 용액을 혼합하여 혼합 용액을 생성하는 공정; 및
    대기보다 산소 농도가 낮은 분위기 하에서, 수열법에 의해, 상기 혼합 용액을 이용하여 일반식 LiFePO4로 나타내어지는 복합 산화물을 제작하는 공정을 가지고,
    상기 Fe를 포함하는 용액을 교반하면서 상기 Li 및 P를 포함하는 용액을 적하함으로써, 상기 혼합 용액을 생성하는, 복합 산화물의 제작 방법.
  3. 복합 산화물의 제작 방법으로서,
    대기보다 산소 농도가 낮은 분위기 하에서, Li(리튬) 및 P(인)를 포함하는 화합물을, 산소 농도를 4.5ppm 이하로 한 물에 용해하여 Li 및 P를 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, Fe(철)를 포함하는 화합물 및 Mn(망간)을 포함하는 화합물을, 산소 농도를 4.5ppm 이하로 한 물에 용해하여 Fe 및 Mn을 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, 상기 Li 및 P를 포함하는 용액과, 상기 Fe 및 Mn을 포함하는 용액을 혼합하여 혼합 용액을 생성하는 공정; 및
    대기보다 산소 농도가 낮은 분위기 하에서, 수열법에 의해, 상기 혼합 용액을 이용하여 일반식 LiMPO4(M은, Fe 및 Mn)로 나타내어지는 복합 산화물을 제작하는 공정을 가지고,
    상기 Fe 및 Mn을 포함하는 용액을 교반하면서 상기 Li 및 P를 포함하는 용액을 적하함으로써, 상기 혼합 용액을 생성하는, 복합 산화물의 제작 방법.
  4. 복합 산화물의 제작 방법으로서,
    대기보다 산소 농도가 낮은 분위기 하에서, Li(리튬) 및 P(인)를 포함하는 화합물을, 질소 버블링을 실시한 물에 용해하여 Li 및 P를 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, Fe(철)를 포함하는 화합물 및 Mn(망간)을 포함하는 화합물을, 질소 버블링을 실시한 물에 용해하여 Fe 및 Mn을 포함하는 용액을 생성하는 공정;
    대기보다 산소 농도가 낮은 분위기 하에서, 상기 Li 및 P를 포함하는 용액과, 상기 Fe 및 Mn을 포함하는 용액을 혼합하여 혼합 용액을 생성하는 공정; 및
    대기보다 산소 농도가 낮은 분위기 하에서, 수열법에 의해, 상기 혼합 용액을 이용하여 일반식 LiMPO4(M은, Fe 및 Mn)로 나타내어지는 복합 산화물을 제작하는 공정을 가지고,
    상기 Fe 및 Mn을 포함하는 용액을 교반하면서 상기 Li 및 P를 포함하는 용액을 적하함으로써, 상기 혼합 용액을 생성하는, 복합 산화물의 제작 방법.
KR1020207004295A 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법 KR102229007B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217007137A KR102354358B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011188980 2011-08-31
JPJP-P-2011-188980 2011-08-31
PCT/JP2012/071753 WO2013031792A1 (en) 2011-08-31 2012-08-22 Manufacturing method of composite oxide and manufacturing method of power storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020147003717A Division KR102079685B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217007137A Division KR102354358B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법

Publications (2)

Publication Number Publication Date
KR20200021546A true KR20200021546A (ko) 2020-02-28
KR102229007B1 KR102229007B1 (ko) 2021-03-16

Family

ID=47741560

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020217007137A KR102354358B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법
KR1020227000792A KR102504617B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법
KR1020147003717A KR102079685B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법
KR1020207004295A KR102229007B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020217007137A KR102354358B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법
KR1020227000792A KR102504617B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법
KR1020147003717A KR102079685B1 (ko) 2011-08-31 2012-08-22 복합 산화물 제작 방법 및 축전 장치 제작 방법

Country Status (5)

Country Link
US (1) US9118077B2 (ko)
JP (4) JP6284700B2 (ko)
KR (4) KR102354358B1 (ko)
TW (2) TWI626780B (ko)
WO (1) WO2013031792A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP2015526859A (ja) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) リチウム電池用の持続可能な集電体
US10680242B2 (en) 2016-05-18 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
US20180013151A1 (en) 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
CN107337190B (zh) * 2017-07-10 2020-02-07 佛山市利元合创科技有限公司 一种纳米花状的长在泡沫镍上的磷酸钴镍的制备方法
CN109360745B (zh) * 2018-11-26 2020-07-17 阜阳师范学院 一种石墨烯复合电极的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095385A (ja) 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極材料の製造方法およびリチウムイオン電池
JP2007511458A (ja) * 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用
JP2009266813A (ja) * 2008-03-31 2009-11-12 Toda Kogyo Corp 非水電解質二次電池用オリビン型複合酸化物粒子粉末及びその製造方法、並びに二次電池
WO2010150686A1 (ja) * 2009-06-24 2010-12-29 株式会社Gsユアサ リチウム二次電池用正極活物質及びリチウム二次電池
JP2011121802A (ja) * 2009-12-09 2011-06-23 Tdk Corp LiFePO4の製造方法及びリチウムイオン二次電池
JP2011146284A (ja) * 2010-01-15 2011-07-28 Toyota Motor Corp 複合正極活物質の製造方法

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125983A (ja) 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd リチウム電池用活物質
JP3456181B2 (ja) 1999-11-30 2003-10-14 日本電気株式会社 リチウムマンガン複合酸化物およびそれを用いた非水電解液二次電池
JP4461566B2 (ja) 2000-04-25 2010-05-12 ソニー株式会社 正極活物質及び非水電解質電池
KR100437340B1 (ko) 2002-05-13 2004-06-25 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법
US6913855B2 (en) 2002-07-22 2005-07-05 Valence Technology, Inc. Method of synthesizing electrochemically active materials from a slurry of precursors
JP4058680B2 (ja) 2002-08-13 2008-03-12 ソニー株式会社 正極活物質の製造方法及び非水電解質二次電池の製造方法
JP3632686B2 (ja) 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
JP3748865B2 (ja) 2003-06-19 2006-02-22 東西化学産業株式会社 脱酸素方法
KR100537745B1 (ko) 2004-06-21 2005-12-19 한국전기연구원 리튬이차전지용 음극 활물질 및 그 제조방법
JP4923397B2 (ja) 2004-09-06 2012-04-25 日産自動車株式会社 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
US7179561B2 (en) 2004-12-09 2007-02-20 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
JP4273422B2 (ja) 2005-03-09 2009-06-03 ソニー株式会社 正極材料および電池
JP2006252945A (ja) 2005-03-10 2006-09-21 Sony Corp 非水電解質二次電池用の電極及びその製造方法、並びに非水電解質二次電池
DE102005012640B4 (de) * 2005-03-18 2015-02-05 Süd-Chemie Ip Gmbh & Co. Kg Kreisprozess zur nasschemischen Herstellung von Lithiummetallphosphaten
JP3850427B2 (ja) 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 炭素繊維結合体およびこれを用いた複合材料
DE102005015613A1 (de) 2005-04-05 2006-10-12 Süd-Chemie AG Kristallines Ionenleitendes Nanomaterial und Verfahren zu seiner Herstellung
JP4737607B2 (ja) * 2005-07-22 2011-08-03 テイカ株式会社 炭素−オリビン型リン酸鉄リチウム複合粒子の製造方法、およびリチウムイオン電池用正極材料
JP5159048B2 (ja) 2005-09-08 2013-03-06 三洋電機株式会社 非水電解質二次電池
JP2007103298A (ja) 2005-10-07 2007-04-19 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びに水系リチウム二次電池
CA2624776C (en) 2005-11-21 2015-05-12 Nanosys, Inc. Nanowire structures comprising carbon
EP1989747B1 (en) 2006-02-14 2017-04-12 Dow Global Technologies LLC Lithium manganese phosphate positive material for lithium secondary battery
JP5405126B2 (ja) 2006-02-17 2014-02-05 エルジー・ケム・リミテッド リチウム−金属複合酸化物の製造方法
JP4767798B2 (ja) 2006-09-05 2011-09-07 住友大阪セメント株式会社 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
CA2672952C (en) 2006-12-22 2014-08-05 Umicore Synthesis of electroactive crystalline nanometric limnpo4 powder
US20090197174A1 (en) 2006-12-22 2009-08-06 Umicore Synthesis of Electroactive Crystalline Nanometric LiMnPO4 Powder
BRPI0808002A2 (pt) 2007-01-25 2014-06-17 Massachusetts Inst Of Technolgy Revestimento de óxido em partículas de óxido de lítio.
JP4289406B2 (ja) 2007-02-19 2009-07-01 トヨタ自動車株式会社 電極活物質およびその製造方法
CA2622675A1 (en) 2007-02-28 2008-08-28 Sanyo Electric Co., Ltd. Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
CN101669235B (zh) 2007-03-30 2013-12-11 密执安州立大学董事会 沉积的微体系结构电池和制造方法
JP4317571B2 (ja) 2007-04-27 2009-08-19 Tdk株式会社 活物質、電極、電池、及び活物質の製造方法
CN100540465C (zh) 2007-07-23 2009-09-16 河北工业大学 锂离子电池正极材料磷酸铁锂的水热合成制备方法
US7745047B2 (en) 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
JP5470700B2 (ja) 2007-12-10 2014-04-16 住友大阪セメント株式会社 電極材料およびその製造方法、並びに、電極および電池
JP5377946B2 (ja) 2007-12-25 2013-12-25 花王株式会社 リチウム電池正極用複合材料
WO2009081704A1 (ja) 2007-12-25 2009-07-02 Kao Corporation リチウム電池正極用複合材料
EP2276698A1 (en) 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
TW200951066A (en) 2008-04-17 2009-12-16 Basf Se Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
WO2009131095A1 (ja) * 2008-04-25 2009-10-29 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池
JP4959648B2 (ja) * 2008-08-04 2012-06-27 株式会社日立製作所 非水電解質二次電池
JP5716269B2 (ja) * 2008-11-04 2015-05-13 株式会社Gsユアサ 非水電解質二次電池用正極材料
JP5381024B2 (ja) 2008-11-06 2014-01-08 株式会社Gsユアサ リチウム二次電池用正極及びリチウム二次電池
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US9093693B2 (en) 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
EP2383820B1 (en) 2009-01-15 2014-03-26 GS Yuasa International Ltd. Positive electrode active material for lithium secondary battery, and lithium secondary battery
TW201029918A (en) 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
JP2010232030A (ja) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
US9682861B2 (en) 2009-05-04 2017-06-20 Meecotech, Inc. Electrode active composite materials and methods of making thereof
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US9281539B2 (en) * 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
WO2011013652A1 (ja) * 2009-07-31 2011-02-03 戸田工業株式会社 非水電解質二次電池用正極活物質並びに非水電解質二次電池
KR101748406B1 (ko) 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법
JP2011040272A (ja) 2009-08-11 2011-02-24 Shimadzu Corp 平板フィラメントおよびそれを用いたx線管装置
WO2011030697A1 (en) 2009-09-11 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
CA2678540A1 (fr) * 2009-09-15 2011-03-15 Hydro-Quebec Materiau constitue de particules composites d'oxyde, procede pour sa preparation, et son utilisation comme matiere active d'electrode
JP5531532B2 (ja) * 2009-09-28 2014-06-25 住友大阪セメント株式会社 リチウムイオン電池正極活物質の製造方法
JP5359752B2 (ja) 2009-09-30 2013-12-04 日本ゼオン株式会社 重合トナーの製造方法
DE102009049693A1 (de) * 2009-10-16 2011-04-21 Süd-Chemie AG Phasenreines Lithiumaluminiumtitanphosphat und Verfahren zur Herstellung und dessen Verwendung
WO2011052533A1 (ja) * 2009-10-30 2011-05-05 第一工業製薬株式会社 リチウム二次電池
US8778538B2 (en) 2009-11-06 2014-07-15 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
US9431649B2 (en) 2009-11-23 2016-08-30 Uchicago Argonne, Llc Coated electroactive materials
JP5277465B2 (ja) * 2009-12-09 2013-08-28 Tdk株式会社 LiFePO4の製造方法及びリチウムイオン二次電池
US8652687B2 (en) 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
JP2011157638A (ja) 2010-01-29 2011-08-18 Toray Ind Inc 抄紙基材および繊維強化成形基材の製造方法
JP5149920B2 (ja) 2010-02-05 2013-02-20 トヨタ自動車株式会社 リチウム二次電池用電極の製造方法
JP5526973B2 (ja) 2010-04-23 2014-06-18 国立大学法人名古屋大学 フィルタの評価方法及び評価装置
US8734987B2 (en) 2010-06-18 2014-05-27 Tdk Corporation Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
US20120088157A1 (en) 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Electrode material, power storage device, and electronic device
EP2698854B1 (en) 2010-10-22 2017-02-22 Belenos Clean Power Holding AG Method of an electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
JP2012188164A (ja) * 2011-03-10 2012-10-04 Mizuho Mukaiyoshi 料理袋
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP6057893B2 (ja) 2011-04-28 2017-01-11 昭和電工株式会社 リチウム二次電池用正極材料及びその製造方法
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
CN102315450A (zh) 2011-08-31 2012-01-11 合肥国轩高科动力能源有限公司 一种离子掺杂高性能磷酸铁锂的水热合成制备法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095385A (ja) 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極材料の製造方法およびリチウムイオン電池
JP2007511458A (ja) * 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用
JP2009266813A (ja) * 2008-03-31 2009-11-12 Toda Kogyo Corp 非水電解質二次電池用オリビン型複合酸化物粒子粉末及びその製造方法、並びに二次電池
WO2010150686A1 (ja) * 2009-06-24 2010-12-29 株式会社Gsユアサ リチウム二次電池用正極活物質及びリチウム二次電池
JP2011121802A (ja) * 2009-12-09 2011-06-23 Tdk Corp LiFePO4の製造方法及びリチウムイオン二次電池
JP2011146284A (ja) * 2010-01-15 2011-07-28 Toyota Motor Corp 複合正極活物質の製造方法

Also Published As

Publication number Publication date
KR20210029853A (ko) 2021-03-16
TWI562442B (en) 2016-12-11
TW201315005A (zh) 2013-04-01
KR20220010063A (ko) 2022-01-25
KR102504617B1 (ko) 2023-02-27
KR102229007B1 (ko) 2021-03-16
JP6385483B2 (ja) 2018-09-05
JP2020029398A (ja) 2020-02-27
JP7080870B2 (ja) 2022-06-06
TW201707262A (zh) 2017-02-16
US20130047422A1 (en) 2013-02-28
TWI626780B (zh) 2018-06-11
JP2017088494A (ja) 2017-05-25
JP6284700B2 (ja) 2018-02-28
KR102079685B1 (ko) 2020-02-20
US9118077B2 (en) 2015-08-25
JP2013063899A (ja) 2013-04-11
JP6619065B2 (ja) 2019-12-11
KR102354358B1 (ko) 2022-01-20
WO2013031792A1 (en) 2013-03-07
JP2018172283A (ja) 2018-11-08
KR20140062466A (ko) 2014-05-23

Similar Documents

Publication Publication Date Title
JP6823742B2 (ja) 複合酸化物の作製方法
JP6619065B2 (ja) 複合酸化物の作製方法
JP6313621B2 (ja) 蓄電池用電極の製造方法
TW201607119A (zh) 鋰離子二次電池及電子裝置
Miwa et al. Method for making LiFePO 4 by hydrothermal method

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant