CN109360745B - 一种石墨烯复合电极的制备方法 - Google Patents

一种石墨烯复合电极的制备方法 Download PDF

Info

Publication number
CN109360745B
CN109360745B CN201811418358.0A CN201811418358A CN109360745B CN 109360745 B CN109360745 B CN 109360745B CN 201811418358 A CN201811418358 A CN 201811418358A CN 109360745 B CN109360745 B CN 109360745B
Authority
CN
China
Prior art keywords
graphene
dispersion liquid
composite electrode
flexible graphite
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811418358.0A
Other languages
English (en)
Other versions
CN109360745A (zh
Inventor
黄德乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuyang Normal University
Original Assignee
Fuyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuyang Normal University filed Critical Fuyang Normal University
Priority to CN201811418358.0A priority Critical patent/CN109360745B/zh
Publication of CN109360745A publication Critical patent/CN109360745A/zh
Application granted granted Critical
Publication of CN109360745B publication Critical patent/CN109360745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯复合电极的制备方法,涉及电极制备技术领域。本发明制备方法包括:柔性石墨的改性、负载、分散、石墨烯预处理、制备;本发明在制作电极片的过程中避免了石墨烯片层之间的团聚问题,提高材料的双电层容量,同时改性柔性石墨和石墨烯复合后的电极具备较强的耐腐蚀性,实用性较好,多次使用后其灵敏性依旧很高。

Description

一种石墨烯复合电极的制备方法
技术领域:
本发明涉及电极制备技术领域,具体涉及一种石墨烯复合电极的制备方法。
背景技术:
石墨烯材料,由于其独特的结构和光电性质受到了人们广泛的重视。单层石墨由于其大的比表面积,优良的导电、导热性能和低的热膨胀系数而被认为是理想的材料。如:1,高强度,杨氏摩尔量,(1,100GPa),断裂强度:(125GPa);2,高热导率,(5,000W/mK);3,高导电性、载流子传输率,(200,000cm2/V*s);4,高的比表面积,(理论计算值:2,630m2/g)。尤其是其高导电性质,大的比表面性质和其单分子层二维的纳米尺度的结构性质,可在超级电容器和锂离子电池中用作电极材料。到目前为止,所知道的制备石墨烯的方法有多种,如:(1)微机械剥离法。这种方法只能产生数量极为有限石墨烯片,可作为基础研究;(2)超高真空石墨烯外延生长法。这种方法的高成本以及小圆片的结构限制了其应用;(3)化学气相沉积法(CVD)。此方法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。(4)溶剂剥离法。此方法缺点是产率很低,限制它的商业应用;(5)氧化-还原法。
以上方法均是采用制备的石墨烯粉末经过混料、涂布、辊压、切片等工艺做成电极片,在石墨烯的制备和制成极片的过程中总是存在石墨烯材料的团聚的问题,进而做成电池后影响电池的能量密度,石墨烯材料的实际能量密度远远小于其理论值。
发明内容:
本发明所要解决的技术问题在于克服现有技术的不足,提供一种石墨烯复合电极的制备方法。
本发明所要解决的技术问题采用以下的技术方案来实现:
一种石墨烯复合电极的制备方法,包括以下步骤:
(1)柔性石墨的改性:将柔性石墨加入到去离子水中,回流搅拌10-30min,然后加入钛酸酯偶联剂和链增长剂,继续回流搅拌0.5-2h;
(2)负载:向步骤1中溶液加入硫酸镍,回流搅拌0.5-4h,降温至70-75℃加入蓖麻油和活性助剂,继续搅拌20-40min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散1-2h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将石墨烯分散于40-80℃的浓硝酸中,搅拌4-6h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将石墨烯加入到无水乙醇中,超声分散1-2h,得到石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡30-60min,然后再在所述氧化石墨烯分散液中浸泡1-5min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡30-500次,且在每种分散液中浸泡时间为1-5min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于500~1000℃高温反应1-5h,冷却后,得到石墨烯复合电极片。
所述柔性石墨、钛酸酯偶联剂、链增长剂、石墨烯的质量比为20-30:6-8:0.2-0.3:20-30。
所述硫酸镍、蓖麻油、活性助剂的质量比为6-8:1-2:1-3。
所述活性助剂的制备方法为:将肌氨酸加入到去离子水中,40℃搅拌10min,然后添加山梨糖醇和钛酸四乙酯,加热至回流状态保温搅拌0.5-4h,过滤,所得固体用去离子水洗去杂质,50℃真空干燥至恒重。
所述肌氨酸、山梨糖醇、钛酸四乙酯的质量比为10-15:15-20:0.1。
柔性石墨作为一种新型功能性碳素材料,是由天然石墨鳞片经插层、水洗、干燥、高温膨化得到的一种疏松多孔的蠕虫状物质。柔性石墨除了具备天然石墨本身的耐冷热、耐腐蚀、自润滑等优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、吸附性、生态环境协调性、生物相容性、耐辐射性等特性。
镍能在碱性条件下催化糖类、氨基酸、多肽、糖苷类和醇类等物质的电催化氧化,具备较高的电催化活性。将镍盐负载在柔性石墨上,可以提高柔性石墨的电化学活性,使其对电流有较强的反应信号;同时改性后的柔性石墨可以将石墨烯吸附在其表面和片层中,使得石墨烯自身难以团聚,减少了石墨烯因自身聚集而造成的能量损耗。
本发明的有益效果是:本发明在制作电极片的过程中避免了石墨烯片层之间的团聚问题,提高材料的双电层容量,同时改性柔性石墨和石墨烯复合后的电极具备较强的耐腐蚀性,实用性较好,多次使用后其灵敏性依旧很高。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1
复合电极的制备:
(1)柔性石墨的改性:将20g柔性石墨加入到去离子水中,回流搅拌30min,然后加入6g钛酸酯偶联剂和0.2g链增长剂,继续回流搅拌2h;
(2)负载:向步骤1中溶液加入6g硫酸镍,回流搅拌2h,降温至70℃加入1g蓖麻油和1.5g活性助剂,继续搅拌30min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散2h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将25g石墨烯分散于50℃的浓硝酸中,搅拌4h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将石墨烯加入到无水乙醇中,超声分散1h,得到石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡50min,然后再在所述氧化石墨烯分散液中浸泡3min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡200次,且在每种分散液中浸泡时间为4min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于700℃高温反应4h,冷却后,得到石墨烯复合电极片。
活性助剂的制备:将12g肌氨酸加入到去离子水中,40℃搅拌10min,然后添加16g山梨糖醇和0.1g钛酸四乙酯,加热至回流状态保温搅拌4h,过滤,所得固体用去离子水洗去杂质,50℃真空干燥至恒重。
实施例2
复合电极的制备:
(1)柔性石墨的改性:将24g柔性石墨加入到去离子水中,回流搅拌30min,然后加入7g钛酸酯偶联剂和0.2g链增长剂,继续回流搅拌2h;
(2)负载:向步骤1中溶液加入6g硫酸镍,回流搅拌2h,降温至70℃加入1g蓖麻油和1.8g活性助剂,继续搅拌30min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散2h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将26g石墨烯分散于50℃的浓硝酸中,搅拌4h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将石墨烯加入到无水乙醇中,超声分散1h,得到石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡50min,然后再在所述氧化石墨烯分散液中浸泡3min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡200次,且在每种分散液中浸泡时间为4min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于700℃高温反应4h,冷却后,得到石墨烯复合电极片
活性助剂的制备:将12g肌氨酸加入到去离子水中,40℃搅拌10min,然后添加16g山梨糖醇和0.1g钛酸四乙酯,加热至回流状态保温搅拌4h,过滤,所得固体用去离子水洗去杂质,50℃真空干燥至恒重。
对照例1
复合电极的制备:
(1)柔性石墨的改性:将20g柔性石墨加入到去离子水中,回流搅拌30min,继续回流搅拌2h;
(2)负载:向步骤1中溶液加入6g硫酸镍,回流搅拌2h,降温至70℃加入1g蓖麻油和1.5g活性助剂,继续搅拌30min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散2h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将25g石墨烯分散于50℃的浓硝酸中,搅拌4h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将石墨烯加入到无水乙醇中,超声分散1h,得到石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡50min,然后再在所述氧化石墨烯分散液中浸泡3min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡200次,且在每种分散液中浸泡时间为4min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于700℃高温反应4h,冷却后,得到石墨烯复合电极片。
活性助剂的制备:将12g肌氨酸加入到去离子水中,40℃搅拌10min,然后添加16g山梨糖醇和0.1g钛酸四乙酯,加热至回流状态保温搅拌4h,过滤,所得固体用去离子水洗去杂质,50℃真空干燥至恒重。
对照例2
复合电极的制备:
(1)柔性石墨的改性:将20g柔性石墨加入到去离子水中,回流搅拌30min,然后加入6g钛酸酯偶联剂和0.2g链增长剂,继续回流搅拌2h;
(2)负载:向步骤1中溶液加入6g硫酸镍,回流搅拌2h,降温至70℃加入1.5g活性助剂,继续搅拌30min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散2h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将25g石墨烯分散于50℃的浓硝酸中,搅拌4h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将石墨烯加入到无水乙醇中,超声分散1h,得到石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡50min,然后再在所述氧化石墨烯分散液中浸泡3min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡200次,且在每种分散液中浸泡时间为4min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于700℃高温反应4h,冷却后,得到石墨烯复合电极片。
活性助剂的制备:将12g肌氨酸加入到去离子水中,40℃搅拌10min,然后添加16g山梨糖醇和0.1g钛酸四乙酯,加热至回流状态保温搅拌4h,过滤,所得固体用去离子水洗去杂质,50℃真空干燥至恒重。
对照例3
复合电极的制备:
(1)柔性石墨的改性:将20g柔性石墨加入到去离子水中,回流搅拌30min,然后加入6g钛酸酯偶联剂和0.2g链增长剂,继续回流搅拌2h;
(2)负载:向步骤1中溶液加入6g硫酸镍,回流搅拌2h,降温至70℃加入1g蓖麻油,继续搅拌30min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散2h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将25g石墨烯分散于50℃的浓硝酸中,搅拌4h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将石墨烯加入到无水乙醇中,超声分散1h,得到石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡50min,然后再在所述氧化石墨烯分散液中浸泡3min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡200次,且在每种分散液中浸泡时间为4min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于700℃高温反应4h,冷却后,得到石墨烯复合电极片。
实施例1-2制备的电极检测准确性高,重复性好,多次使用后灵敏度依旧很高,对照例1-3制备的电极重复性较弱,多次使用后灵敏度有所下降。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种石墨烯复合电极的制备方法,其特征在于,包括以下步骤:
(1)柔性石墨的改性:将柔性石墨加入到去离子水中,回流搅拌10-30 min,然后加入钛酸酯偶联剂和链增长剂,继续回流搅拌0.5-2 h;
(2)负载:向步骤1中溶液加入硫酸镍,回流搅拌0.5-4 h,降温至70-75℃加入蓖麻油和活性助剂,继续搅拌20-40 min,趁热过滤,固体用去离子水洗去杂质,50℃真空干燥至恒重;
(3)分散:将步骤2中固体加入到无水乙醇中,超声分散1-2 h,得到改性柔性石墨分散液;
(4)石墨烯预处理:将石墨烯分散于40-80℃的浓硝酸中,搅拌4-6 h,过滤产物用去离子水洗涤,干燥,得氧化石墨烯;再将氧化石墨烯加入到无水乙醇中,超声分散1-2 h,得到氧化石墨烯分散液;
(5)制备:将集流体在改性柔性石墨分散液中浸泡30-60min,然后再在所述氧化石墨烯分散液中浸泡1-5min;接着再在改性柔性石墨分散液和氧化石墨烯分散液中交替浸泡 30-500次,且在每种分散液中浸泡时间为1-5min,干燥后即得到复合电极;将所述复合电极在惰性气体保护下,于500~1000℃高温反应1-5h,冷却后,得到石墨烯复合电极片。
2. 根据权利要求1所述的石墨烯复合电极的制备方法,其特征在于:所述柔性石墨、钛酸酯偶联剂、链增长剂、石墨烯的质量比为20-30 :6-8 :0.2-0.3 :20-30。
3. 根据权利要求1所述的石墨烯复合电极的制备方法,其特征在于:所述硫酸镍、蓖麻油、活性助剂的质量比为6-8 :1-2 :1-3。
4. 根据权利要求1所述的石墨烯复合电极的制备方法,其特征在于,所述活性助剂的制备方法为:将肌氨酸加入到去离子水中,40℃搅拌10 min,然后添加山梨糖醇和钛酸四乙酯,加热至回流状态保温搅拌0.5-4 h,过滤,所得固体用去离子水洗去杂质,50℃真空干燥至恒重。
5. 根据权利要求4所述的石墨烯复合电极的制备方法,其特征在于:所述肌氨酸、山梨糖醇、钛酸四乙酯的质量比为10-15 :15-20 :0.1。
CN201811418358.0A 2018-11-26 2018-11-26 一种石墨烯复合电极的制备方法 Active CN109360745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811418358.0A CN109360745B (zh) 2018-11-26 2018-11-26 一种石墨烯复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811418358.0A CN109360745B (zh) 2018-11-26 2018-11-26 一种石墨烯复合电极的制备方法

Publications (2)

Publication Number Publication Date
CN109360745A CN109360745A (zh) 2019-02-19
CN109360745B true CN109360745B (zh) 2020-07-17

Family

ID=65342976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811418358.0A Active CN109360745B (zh) 2018-11-26 2018-11-26 一种石墨烯复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN109360745B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332068A (zh) * 2019-06-20 2019-10-15 贝德科技有限公司 一种超级电容柴油机泵低温启动装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999274A (zh) * 2011-10-28 2014-08-20 路博润高级材料公司 基于聚氨酯的电极粘结剂组合物及其用于电化学电池的电极

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118077B2 (en) * 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
CN103854876B (zh) * 2013-12-23 2017-02-15 燕山大学 一种自支撑石墨烯‑氧化锰复合电极材料的制备方法
CN105885804B (zh) * 2016-05-26 2019-02-26 哈尔滨工程大学 一种石墨烯全碳复合热界面材料的制备方法
US10903020B2 (en) * 2017-05-10 2021-01-26 Nanotek Instruments Group, Llc Rolled supercapacitor and production process
CN107619618B (zh) * 2017-10-30 2018-11-06 河北晨阳工贸集团有限公司 一种改善石墨烯在涂料中分散性的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999274A (zh) * 2011-10-28 2014-08-20 路博润高级材料公司 基于聚氨酯的电极粘结剂组合物及其用于电化学电池的电极

Also Published As

Publication number Publication date
CN109360745A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
Liao et al. Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors
Yu et al. Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation
CN110492081B (zh) 一种硒化钴/硒化锌@氮掺杂多孔碳纳米管的制备方法及其应用
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN104973596B (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
WO2018001206A1 (zh) 一种石墨烯基多级孔电容炭及其制备方法、及电容器
CN109103028B (zh) 一种碳包覆氮化碳纳米管及其制备方法与应用
Shen et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors
CN113104828B (zh) 多孔碳改性的焦磷酸磷酸铁钠/碳钠离子电池正极材料的制备方法
CN104659371B (zh) 一种耐高温低电阻高有机相容性涂碳铝箔及其制备方法
CN106915735B (zh) 一种氮或金属掺杂碳材料的制备方法
CN109545576B (zh) 镍钴磷-碳-氢氧化镍三元复合电极材料的制备方法
WO2016061926A1 (zh) 一种抗压型石墨烯水凝胶及其制备方法
Zakaria et al. Recent progress in the three-dimensional structure of graphene-carbon nanotubes hybrid and their supercapacitor and high-performance battery applications
CN105712303B (zh) 一种硒化钼纳米片/纤维基碳气凝胶复合材料及其制备方法
CN109941997B (zh) 一种血红蛋白状Co3O4/Ti3C2纳米复合材料的制备方法及应用
CN107275114B (zh) 一种石墨烯复合薄膜的制备方法
CN109192533B (zh) 一种超级电容器电极材料及其制备方法
CN107697905A (zh) 一种三维氮掺杂石墨烯气凝胶的制备方法
CN113539699A (zh) 一种ACNFs@Ni-Mn-P纳米片阵列复合材料及其制备方法和应用
CN109360745B (zh) 一种石墨烯复合电极的制备方法
CN102086302B (zh) 一种制备钼氧化物-聚苯胺复合纳米线及纳米管的方法
Mudila et al. Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature
CN106356203B (zh) 一种钴酸镍纳米片/石墨毡复合材料及其制备和应用
CN102637920A (zh) 废触体作为锂离子电池负极材料的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant