KR20190032683A - 반도체 메모리 소자 및 그 제조 방법 - Google Patents

반도체 메모리 소자 및 그 제조 방법 Download PDF

Info

Publication number
KR20190032683A
KR20190032683A KR1020170119715A KR20170119715A KR20190032683A KR 20190032683 A KR20190032683 A KR 20190032683A KR 1020170119715 A KR1020170119715 A KR 1020170119715A KR 20170119715 A KR20170119715 A KR 20170119715A KR 20190032683 A KR20190032683 A KR 20190032683A
Authority
KR
South Korea
Prior art keywords
gate electrode
film
trench
barrier film
gate
Prior art date
Application number
KR1020170119715A
Other languages
English (en)
Other versions
KR102378471B1 (ko
Inventor
임동현
김대현
박훈
서재홍
정천형
최재중
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020170119715A priority Critical patent/KR102378471B1/ko
Priority to SG10201805781QA priority patent/SG10201805781QA/en
Priority to US16/050,848 priority patent/US10373959B2/en
Priority to CN201811082775.2A priority patent/CN109524399B/zh
Publication of KR20190032683A publication Critical patent/KR20190032683A/ko
Priority to US16/458,292 priority patent/US10868016B2/en
Priority to US16/805,585 priority patent/US10833088B2/en
Application granted granted Critical
Publication of KR102378471B1 publication Critical patent/KR102378471B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82345MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Non-Volatile Memory (AREA)

Abstract

기판을 식각하여 상기 기판의 활성 영역들을 가로지르는 트렌치를 형성하는 것, 상기 트렌치의 바닥면 및 측면 상에 게이트 절연막을 형성하는 것, 상기 게이트 절연막 상에 상기 트렌치의 하부를 채우는 제 1 게이트 전극을 형성하는 것, 상기 제 1 게이트 전극의 상부 표면을 산화시켜 예비 베리어막을 형성하는 것, 상기 예비 베리어막을 질화시켜 베리어막을 형성하는 것, 및 상기 베리어막 상에 상기 트렌치의 일부를 채우는 제 2 게이트 전극을 형성하는 것을 포함하는 반도체 메모리 소자의 제조 방법을 제공할 수 있다.

Description

반도체 메모리 소자 및 그 제조 방법{A SEMICONDUCTOR MEMORY DEVICE AND A METHOD FOR MANUFACTURING THE SAME}
본 발명은 반도체 메모리 소자 및 그 제조 방법에 관한 것으로, 보다 상세하게는 매립 게이트 라인들을 포함하는 반도체 메모리 소자 및 그 제조방법에 관한 것이다.
소형화, 다기능화 및/또는 낮은 제조 단가 등의 특성들로 인하여 반도체 장치는 전자 산업에서 중요한 요소로 각광 받고 있다. 반도체 장치들은 논리 데이터를 저장하는 반도체 기억 장치, 논리 데이터를 연산 처리하는 반도체 논리 장치, 및 기억 요소와 논리 요소를 포함하는 하이브리드(hybrid) 반도체 장치 등으로 구분될 수 있다.
최근에 전자 기기의 고속화, 저 소비전력화에 따라 이에 내장되는 반도체 장치 역시 빠른 동작 속도 및/또는 낮은 동작 전압 등이 요구되고 있다. 이러한 요구 특성들을 충족시키기 위하여 반도체 장치는 보다 고집적화 되고 있다. 반도체 장치의 고집적화가 심화될수록, 반도체 장치의 신뢰성이 저하될 수 있다. 하지만, 전자 산업이 고도로 발전함에 따라, 반도체 장치의 높은 신뢰성에 대한 요구가 증가되고 있다. 따라서, 반도체 장치의 신뢰성을 향상시키기 위한 많은 연구가 진행되고 있다.
본 발명이 해결하고자 하는 과제는 GIDL(Gate induced Drain Leakage) 전류가 감소된 반도체 메모리 소자 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 우수한 신뢰성을 갖는 반도체 메모리 소자 및 그 제조 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법은 기판을 식각하여 상기 기판의 활성 영역들을 가로지르는 트렌치를 형성하는 것, 상기 트렌치의 바닥면 및 측면 상에 게이트 절연막을 형성하는 것, 상기 게이트 절연막 상에 상기 트렌치의 하부를 채우는 제 1 게이트 전극을 형성하는 것, 상기 제 1 게이트 전극의 상부 표면을 산화시켜 예비 베리어막을 형성하는 것, 상기 예비 베리어막을 질화시켜 베리어막을 형성하는 것, 및 상기 베리어막 상에 상기 트렌치의 일부를 채우는 제 2 게이트 전극을 형성하는 것을 포함할 수 있다.
본 발명의 실시예들에 따른 반도체 메모리 소자는 트렌치를 갖는 반도체 기판, 상기 트렌치의 바닥면 및 내측면을 덮는 게이트 절연막, 상기 트렌치의 하부에 배치되고, 제 1 금속을 포함하는 제 1 게이트 전극, 상기 트렌치 내에서 상기 제 1 게이트 전극 상에 배치되는 제 2 게이트 전극, 및 상기 제 1 게이트 전극 및 상기 제 2 게이트 전극의 사이에 배치되고, 상기 제 1 금속의 산질화물(oxynitride)을 포함하는 베리어막을 포함할 수 있다. 상기 제 2 게이트 전극의 일함수(work function)는 상기 제 1 게이트 전극의 일함수 보다 낮을 수 있다.
본 발명의 실시예들에 따른 반도체 메모리 소자는 제 1 방향을 따라 배열된 활성 영역들을 정의하는 소자 분리막을 포함하는 기판, 상기 기판 상부의 트렌치 내에 매립되고, 상기 제 1 방향에 교차하는 제 2 방향으로 상기 활성 영역들을 가로질러 제 1 도핑 영역들과 제 2 도핑 영역들로 분리하는 게이트 라인들, 및 상기 게이트 라인들 상에 배치되고, 상기 제 1 방향 및 상기 제 2 방향에 모두 교차하는 제 3 방향을 따라 연장되는 비트 라인을 포함할 수 있다. 상기 게이트 라인들 각각은 상기 트렌치 하부에 배치되는 제 1 게이트 전극, 및 상기 제 1 게이트 전극 상의 제 2 게이트 전극을 포함될 수 있다. 상기 제 1 게이트 전극의 상부 표면은 산소 입자 및 질소 입자를 더 포함할 수 있다.
본 발명의 실시예들에 따른 반도체 메모리 소자는 게이트 라인들로부터 도핑 영역들로의 누설 전류(Gate Induced Drain Leakage current; GIDL 전류)가 감소할 수 있다.
더하여, 베리어막은 제 2 게이트 전극으로부터 실리콘 또는 N형 불순물이 제 1 게이트 전극으로 확산되어 금속 실리사이드 또는 금속 질화물이 형성되는 것을 방지할 수 있다. 이에 따라, 게이트 라인들의 전기적 특성이 향상될 수 있다.
또한, 게이트 절연막(210)을 통과하는 누설전류가 감소될 수 있으며, 반도체 메모리 소자의 신뢰성이 향상될 수 있다.
본 발명의 실시예들의 반도체 메모리 소자의 제조 방법에 따르면, 균일한 두께의 베리어막을 형성할 수 있다. 따라서, 본 발명에 따르면 베리어막 형성 공정의 산포가 개선될 수 있으며, 베리어막의 베리어 특성 및 제 1 게이트 전극과 제 2 게이트 전극 사이의 전기적 특성이 동시에 향상될 수 있다.
도 1은 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 평면도이다.
도 2a 및 도 2b는 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 단면도들이다.
도 3은 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 단면도이다.
도 4는 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 단면도이다.
도 5a 내지 도 11a는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들이다.
도 5b 내지 도 11b는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들이다.
도 7c 내지 도 9c는 도 7a 내지 도 9a의 A영역들을 확대한 도면이다.
도 12a 내지 도 13a는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들이다.
도 12b 내지 도 13b는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들이다.
도면들 참조하여 본 발명의 개념에 따른 반도체 메모리 소자를 설명한다.
도 1은 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 평면도이다. 도 2a 및 도 2b는 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 단면도들로, 각각 도 1의 Ⅰ-Ⅰ'선과 Ⅱ-Ⅱ'선에 따른 단면들에 해당한다.
이하, 동일한 평면상에 제공되는 제 1 방향(D1), 제 2 방향(D2) 및 제 3 방향(D3)을 기준으로 설명한다. 제 1 방향(D1)과 제 2 방향(D2)은 서로 수직이며, 제 3 방향(D3)은 제 1 및 제 2 방향(D1, D2) 모두와 교차할 수 있다. 도 2a는 제 3 방향(D3)의 단면을 나타내고, 도 2b는 제 2 방향(D2)의 단면을 나타낸다.
도 1, 도 2a, 및 도 2b를 참조하여, 기판(100)에 소자 분리막(110)이 배치되어 활성 영역들(ACT)이 정의될 수 있다. 기판(100)은 반도체 기판을 포함할 수 있다. 예를 들어, 반도체 기판은 실리콘 기판, 게르마늄 기판, 또는 실리콘 게르마늄 기판일 수 있다. 평면적 관점에서, 활성 영역들(ACT)은 제 3 방향(D3)으로 연장된 바(bar) 형상을 가질 수 있다.
기판(100) 내에는 평면적으로 활성 영역들(ACT)과 교차하는 게이트 라인들(GL)이 배치될 수 있다. 게이트 라인들(GL)은 워드 라인들(word line)일 수 있다. 게이트 라인들(GL)은 제 2 방향(D2)으로 연장되고, 제 1 방향(D1)을 따라 배치될 수 있다. 게이트 라인들(GL)은 기판(100) 내에 매립(buried)될 수 있다. 예를 들어, 게이트 라인들(GL)은 기판(100)의 트렌치들(120) 내에 배치될 수 있다. 트렌치들(120)은 활성 영역들(ACT)과 교차하도록 연장될 수 있다.
게이트 라인들(GL) 각각은 제 1 게이트 전극(220), 베리어막(230), 및 제 2 게이트 전극(240)을 포함할 수 있다. 제 1 게이트 전극(220)은 트렌치(120) 내에 배치될 수 있다. 제 1 게이트 전극(220)은 트렌치(120)를 부분적으로 갭필(gap fill)할 수 있다. 제 1 게이트 전극(220)은 트렌치(120)의 하부를 채울 수 있다. 제 1 게이트 전극(220)은 텅스텐(W), 티타늄(Ti), 또는 탄탈륨(Ta)과 같은 금속을 포함할 수 있다.
제 2 게이트 전극(240)은 제 1 게이트 전극(220) 상에 배치되어, 트렌치(120)의 일부를 채울 수 있다. 제 2 게이트 전극(240)은 평면적으로 제 1 게이트 전극(220)과 오버랩될 수 있다. 일 예로, 제 1 게이트 전극(220) 및 제 2 게이트 전극(240)은 각각 제 2 방향(D2)으로 연장될 수 있다. 제 2 게이트 전극(240)은 제 1 게이트 전극(220)의 상면을 덮을 수 있다. 제 2 게이트 전극(240)의 상면은 기판(100)의 상면보다 낮은 레벨에 위치할 수 있다. 제 2 게이트 전극(240)의 일함수(work function)는 제 1 게이트 전극(220)의 일함수보다 낮을 수 있다. 제 2 게이트 전극(240)은 N형 불순물이 도핑된 폴리 실리콘을 포함할 수 있다.
베리어막(230)은 제 1 게이트 전극(220)과 제 2 게이트 전극(240) 사이에 배치될 수 있다. 베리어막(230)은 제 1 게이트 전극(220)과 제 2 게이트 전극(240)이 상호 접하지 않도록, 제 1 게이트 전극(220)과 제 2 게이트 전극(240)을 이격시킬 수 있다. 베리어막(230)은 제 2 게이트 전극(240) 내의 실리콘 원소가 제 1 게이트 전극(220)으로 확산되어, 제 1 게이트 전극(220) 내에 금속 실리사이드(metal silicide)가 형성되는 것을 방지할 수 있다. 또한, 베리어막(230)은 제 2 게이트 전극(240) 내의 N형 불순물(일 예로, 인(P))이 제 1 게이트 전극(220)으로 확산되어, 제 1 게이트 전극(220) 내에 불순물(일 예로, 인화 텅스텐(WP2))이 형성되는 것을 방지할 수 있다. 베리어막(230)은 박막(thin film)일 수 있다. 예를 들어, 베리어막(230)은 약 1 옹스트롬(Å) 내지 50 옹스트롬의 두께를 가질 수 있다. 베리어막(230)의 두께가 1 옹스트롬 미만일 경우, 제 2 게이트 전극(240) 내의 실리콘이 베리어막(230)을 통과하여 제 1 게이트 전극(220)으로 확산될 수 있다. 베리어막(230)의 두께가 50 옹스트롬을 초과할 경우, 제 1 게이트 전극(220)과 제 2 게이트 전극(240) 사이의 저항이 크게 증가하여, 게이트 라인들(GL)의 전기적 특성이 저하될 수 있다. 베리어막(230)은 텅스텐(W), 티타늄(Ti), 또는 탄탈륨(Ta)과 같은 금속의 산질화물(oxynitride)을 포함할 수 있다. 이때, 제 1 게이트 전극(220)을 이루는 금속 원소와 베리어막(230)을 이루는 금속 산질화물의 금속 원소는 동일할 수 있다. 예를 들어, 제 1 게이트 전극(220)은 텅스텐(W)으로 이루어지고, 베리어막(230)은 텅스텐 산질화물로 이루어질 수 있다.
이와는 다르게, 베리어막(230)은 텅스텐(W), 티타늄(Ti), 또는 탄탈륨(Ta)과 같은 금속의 질화물(nitride)을 포함할 수 있다. 이때, 제 1 게이트 전극(220)을 이루는 금속 원소와 베리어막(230)을 이루는 금속 질화물의 금속 원소는 동일할 수 있다. 예를 들어, 제 1 게이트 전극(220)은 텅스텐(W)으로 이루어지고, 베리어막(230)은 텅스텐 질화물로 이루어질 수 있다.
게이트 라인들(GL)과 활성 영역들(ACT) 사이, 및 게이트 라인들(GL)과 소자 분리막(110) 사이에 게이트 절연막(210)이 개재될 수 있다. 게이트 절연막(210)은 산화물, 질화물, 또는 산질화물을 포함할 수 있다. 이때, 제 2 게이트 전극(240)과 인접한 게이트 절연막(210)의 제 2 부분(214)의 질소 농도는 제 1 게이트 전극(220)과 인접한 게이트 절연막(210)의 제 1 부분(212)의 질소 농도보다 높을 수 있다. 예를 들어, 제 2 부분(214)의 N+ 이온의 농도는 제 1 부분(212)의 N+ 이온의 농도보다 높을 수 있다. 제 2 부분(214) 내의 상기 N+ 이온들은 게이트 절연막(210)을 통과하는 누설전류를 감소시킴으로써, 반도체 메모리 소자의 신뢰성이 향상될 수 있다.
실시예들에 따르면, 제 2 게이트 전극(240)과 게이트 절연막(210) 사이에 라이너막(260)이 개재될 수 있다. 도 3은 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 단면도로, 도 1의 Ⅰ-Ⅰ'선에 따른 단면에 해당한다. 도 3에 도시된 바와 같이, 라이너막(260)은 게이트 절연막(210)의 내측면 및 제 2 게이트 전극(220)의 상면을 덮을 수 있다. 라이너막(260)은 게이트 절연막(210)과 제 2 게이트 전극(240) 사이로 연장될 수 있다. 라이너막(260)은 금속 질화물을 포함할 수 있다. 예를 들어, 라이너막(260)은 티타늄 질화물을 포함할 수 있다. 이하, 라이너막(260)을 갖지 않는 반도체 메모리 소자를 기준으로 설명한다.
도 1, 도 2a, 및 도 2b를 다시 참조하여, 게이트 라인들(GL) 상에 제 1 캡핑막들(250)이 배치될 수 있다. 제 1 캡핑막들(250)은 트렌치(120)의 나머지를 채울 수 있다. 제 1 캡핑막들(250)의 상면은 기판(100)의 상면과 동일한 레벨에 배치될 수 있다. 제 1 캡핑막들(250)은 실리콘 산화막, 실리콘 질화막, 또는 실리콘 산질화막을 포함할 수 있다. 제 1 캡핑막들(250)의 양 측면들은 활성 영역들(ACT) 및 소자 분리막(110)과 접할 수 있다. 여기서, 제 1 캡핑막들(250)과 활성 영역들(ACT) 사이에 개재된 게이트 절연막들(210)은 활성 영역들(ACT)과 제 1 캡핑막들(250) 사이의 스트레스를 완화하는 버퍼 역할을 할 수 있다. 이와는 다르게, 게이트 절연막들(210)은 활성 영역들(ACT)과 제 1 캡핑막들(250)의 사이 또는 소자 분리막(110)과 제 1 캡핑막들(250)의 사이로 연장되지 않을 수 있다. 예를 들어, 게이트 절연막들(210)의 최상단은 제 1 캡핑막들(250)의 하면과 접할 수 있다.
게이트 라인들(GL)의 양 측면들에 인접한 활성 영역들(ACT) 내에 각각 제 1 도핑 영역(SD1)과 제 2 도핑 영역(SD2)이 배치될 수 있다. 제 1 및 제 2 도핑 영역들(SD1, SD2)은 기판(100)의 상면으로부터 내부로 연장될 수 있다. 제 1 및 제 2 도핑 영역들(SD1, SD2)의 도전형은 기판(100)의 도전형과 다를 수 있다. 일 예로, 기판(100)이 P형인 경우, 제 1 및 제 2 도핑 영역들(SD1, SD2)은 N형일 수 있다. 제 1 및 제 2 도핑 영역들(SD1, SD2)은 소스 영역 또는 드레인 영역에 대응될 수 있다.
기판(100) 상에 제 1 도핑 영역(SD1)과 연결되는 제 1 패드(310)가 배치되고, 제 2 도핑 영역(SD2)과 연결되는 제 2 패드(320)가 배치될 수 있다. 제 1 패드(310)와 제 2 패드(320)는 도핑된 폴리 실리콘 또는 금속 등의 도전 물질을 포함할 수 있다.
제 1 및 제 2 패드들(310, 320) 상에 제 1 층간 절연막(400)이 배치될 수 있다. 제 1 층간 절연막(400)은 실리콘 산화막, 실리콘 질화막, 또는 실리콘 산질화막을 포함할 수 있다.
제 1 층간 절연막(400) 상에 비트 라인들(BL)이 배치될 수 있다. 비트 라인들(BL)은 제 1 층간 절연막(400) 상의 제 2 층간 절연막(540) 내에 제공될 수 있다. 제 2 층간 절연막(540)은 실리콘 산화막, 실리콘 질화막, 또는 실리콘 산질화막을 포함할 수 있다. 비트 라인들(BL)은 제 1 층간 절연막(400)을 관통하는 제 1 콘택(510)를 통해 제 1 패드(310)와 연결될 수 있다. 비트 라인들(BL)과 제 1 콘택(510)은 도핑된 실리콘, 금속 등과 같은 도전 물질을 포함할 수 있다.
비트 라인들(BL) 상에 제 2 캡핑막들(520)이 배치될 수 있고, 비트 라인들(BL)의 측벽은 절연 스페이서(530)로 덮일 수 있다. 제 2 캡핑막들(520) 및 절연 스페이서(530)는 실리콘 질화막, 실리콘 산화막, 및 실리콘 산질화막 중 어느 하나를 포함할 수 있다.
기판(100) 상에 제 1 및 제 2 층간 절연막들(400, 540)을 관통하고, 제 2 패드(320)와 연결되는 제 2 콘택(610)이 배치될 수 있다. 제 2 콘택(610)은 도핑된 실리콘 또는 금속 등과 같은 도전 물질을 포함할 수 있다.
제 2 층간 절연막(540) 상에 제 2 콘택(610)과 연결되는 데이터 저장 요소가 배치될 수 있다. 예를 들어, 데이터 저장 요소는 제 1 전극(620), 제 2 전극(640), 및 제 1 전극(620)과 제 2 전극(640) 사이에 개재되는 유전막(630)을 포함하는 캐패시터(CA)일 수 있다. 제 1 전극(620)은 하부가 막힌 실린더 형상일 수 있다. 제 2 전극(640)은 제 1 전극(620)을 덮을 수 있다. 제 1 전극(620)과 제 2 전극(640)은 도핑된 실리콘, 금속 또는 금속 화합물을 포함할 수 있다.
제 2 전극(640)과 제 2 층간 절연막(540) 사이에 지지막(700)이 배치될 수 있다. 지지막(700)은 제 1 전극(620)의 외측벽 상에 배치되어, 제 1 전극(620)의 쓰러짐을 방지할 수 있다. 지지막(700)은 절연 물질을 포함할 수 있다.
본 발명의 실시예들에 따른 반도체 메모리 소자의 게이트 라인들(GL)은 하부에 높은 일함수를 갖는 제 1 게이트 전극(220)을 갖고, 상부에 낮은 일함수를 갖는 제 2 게이트 전극(240)을 가질 수 있다. 제 2 게이트 전극(240)은 게이트 라인들(GL)로부터 도핑 영역들(SD1, SD2)로 발생하는 누설 전류(Gate induced Drain Leakage Current; GIDL 전류)를 감소시킬 수 있다.
더하여, 베리어막(230)은 제 2 게이트 전극(240) 내의 실리콘 원소 또는 N형 불순물이 제 1 게이트 전극(220)으로 확산되는 것을 막을 수 있으며, 제 1 게이트 전극(220) 내에 금속 실리사이드 또는 금속 질화물이 형성되는 것을 방지할 수 있다. 이에 따라, 게이트 라인들(GL)의 전기적 특성이 향상될 수 있다.
또한, 게이트 절연막(210)의 제 2 부분(214) 내의 상기 N+ 이온들은 게이트 절연막(210)을 통과하는 누설전류를 감소시킴으로써, 반도체 메모리 소자의 신뢰성이 향상될 수 있다
도 4는 본 발명의 실시예들에 따른 반도체 메모리 소자를 설명하기 위한 단면도로, 도 1의 Ⅰ-Ⅰ'선에 따른 단면에 해당한다.
도 1, 도 2b, 및 도 4를 참조하여, 제 2 게이트 전극의 폭은 제 1 게이트 전극의 폭보다 클 수 있다. 트렌치(120)의 측벽에 수직한 방향으로, 게이트 절연막(210)의 제 1 부분(212)의 두께(T2)는 게이트 절연막(210)의 제 2 부분(214)의 두께(T1)보다 두꺼울 수 있다. 상세하게는, 제 2 부분(214)의 내측벽은 제 1 부분(212)의 내측벽으로부터 트렌치(120)의 외측을 향하여 함몰된 형상을 가질 수 있다. 제 2 게이트 전극(240)에 인접한 제 2 부분(214)이 게이트 절연막(210)의 제 1 부분(212)에 비해 얇은 두께를 가짐에 따라, 제 2 게이트 전극과 도핑 영역들(SD1, SD2) 사이에 전계가 강하게 형성될 수 있다. 이에 따라, 제 2 게이트 전극(240)과 도핑 영역들(SD1, SD2) 사이의 전기적 특성이 향상될 수 있다. 제 1 부분(212)의 두께(T1)는 제 2 부분(214)의 두께(T2)의 40% 내지 70%일 수 있다. 제 1 부분(212)의 두께(T1)가 제 2 부분(214)의 두께(T2)의 40% 미만일 경우, 제 2 게이트 전극(240)으로부터 게이트 절연막(210)을 통해 도핑 영역들(SD1, SD2)로 발생하는 누설 전류(GIDL 전류)가 증가할 수 있다. 제 1 부분(212)의 두께(T1)가 제 2 부분(214)의 두께(T2)의 70% 초과일 경우, 제 2 게이트 전극(240)과 도핑 영역들(SD1, SD2) 사이에 전계가 강하게 형성되지 않을 수 있다.
더하여, 제 2 게이트 전극(240)과 인접한 게이트 절연막(210)의 제 2 부분(214)의 질소 농도는 제 1 게이트 전극(220)과 인접한 게이트 절연막(210)의 제 1 부분(212)의 질소 농도보다 높을 수 있다. 예를 들어, 제 2 부분(214)은 높은 농도의 N+ 이온을 가질 수 있다. 제 2 부분(214) 내의 상기 N+ 이온들은 게이트 절연막(210)을 통과하는 누설전류를 감소시킴으로써, 반도체 메모리 소자의 신뢰성이 향상될 수 있다
제 1 게이트 전극(220)이 배치되는 트렌치(120)의 하부의 폭은 제 2 게이트 전극(240)이 배치되는 트렌치(120)의 상부의 폭보다 좁을 수 있다. 제 2 게이트 전극(240)의 폭(W2)은 제 1 게이트 전극(220)의 폭(W1)보다 클 수 있다.
본 발명의 실시예들에 따르면, 게이트 절연막(210)은 제 2 부분(214)이 제 1 부분(212)에 비해 얇은 두께를 갖고, 제 2 부분(214) 내에 상기 N+ 이온들을 가질 수 있다. 따라서, 제 2 게이트 전극(240)과 도핑 영역들(SD1, SD2) 사이에 강한 전계를 형성할 수 있으며, 제 2 부분(214) 내의 상기 N+ 이온들은 게이트 절연막(210)을 통과하는 누설전류를 감소시킬 수 있다. 즉, 본 발명에 따르면, 반도체 메모리 소자의 전기적 특성이 향상됨과 동시에, 반도체 메모리 소자의 신뢰성이 향상될 수 있다.
도 5a 내지 도 11a는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들로, 도 1의 Ⅰ-Ⅰ'선에 따른 단면들에 해당한다. 도 5b 내지 도 11b는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들로, 도 1의 Ⅱ-Ⅱ'선에 따른 단면들에 해당한다. 도 7c 내지 도 9c는 도 7a 내지 도 9a의 A영역을 확대한 도면들로, 제 1 게이트 전극의 표면을 확대한 도면들이다.
도 1, 도 5a 및 도 5b를 참조하여, 기판(100)에 활성 영역들(ACT)을 정의하는 소자 분리막(110)이 형성될 수 있다. 소자 분리막(110)은 실리콘 질화막, 실리콘 산화막, 또는 실리콘 산질화막을 포함할 수 있다. 소자 분리막(110)은 기판(100) 내부로 연장되도록 형성될 수 있다.
기판(100)의 활성 영역들(ACT)에 제 2 도핑 영역(SD2)이 형성될 수 있다. 제 2 도핑 영역(SD2)은 이온 주입(ion implantation) 공정에 의해 형성될 수 있다. 제 2 도핑 영역(SD2)은 N형 불순물로 도핑된 영역일 수 있다.
도 1, 도 6a 및 도 6b를 참조하여, 기판(100) 상에 트렌치(120)가 형성될 수 있다. 예를 들어, 기판(100) 상에 마스크 패턴들(M)을 형성한 후, 마스크 패턴들(M)을 식각 마스크로 기판(100)과 소자 분리막(110)을 식각하여 제 2 방향(D2)으로 연장되는 라인 형태의 트렌치(120)가 형성될 수 있다. 트렌치(120)의 바닥면들은 소자 분리막(110) 및 활성 영역들(ACT)을 노출시킬 수 있다. 마스크 패턴들(M)은 상기 식각 공정이 수행된 후 제거될 수 있다.
도 1, 도 7a 및 도 7b를 참조하여, 트렌치(120)가 형성된 기판(100) 상에 절연막(215)이 형성될 수 있다. 절연막(215)은 열산화 공정, 원자층 증착(Atomic Layer Deposition; ALD) 또는 화학 기상 증착(Chemical Vapor Deposition; CVD) 공정 등을 이용하여 형성될 수 있다. 절연막(215)은 기판(100)의 상면, 트렌치(120)의 내측면 및 바닥면을 덮을 수 있다. 절연막(215)은 실리콘 산화막을 포함할 수 있다.
이에 따라, 트렌치(120) 내에 게이트 라인들(GL)이 형성될 수 있다. 게이트 라인들(GL) 각각은 제 1 게이트 전극(220), 베리어막(230), 및 제 2 게이트 전극(240)을 포함할 수 있다.
절연막(215)이 도포된 트렌치(120)의 하부에 제 1 게이트 전극(220)이 형성될 수 있다. 예를 들어, 절연막(215)이 형성된 기판(100)의 전면 상에 도전 물질이 증착될 수 있다. 이때, 상기 도전 물질은 트렌치(120)를 채울 수 있다. 상기 도전 물질의 증착은 화학 기상 증착(CVD) 공정 등을 이용하여 수행될 수 있다. 상기 도전 물질은 텅스텐(W), 티타늄(Ti), 탄탈륨(Ta) 등과 같은 금속을 포함할 수 있다. 이후, 증착된 상기 도전 물질을 식각하여 제 1 게이트 전극(220)이 형성될 수 있다. 상기 식각 공정은 원하는 두께의 제 1 게이트 전극(220)이 형성될 때까지 계속 수행될 수 있다.
도 7c를 참조하면, 제 1 게이트 전극(220)은 다결정(polycrystal) 구조를 가질 수 있다. 제 1 게이트 전극(220)은 결정립들(grains)을 가질 수 있으며, 제 1 게이트 전극(220)의 상면은 결정립들의 형상에 따라 불규칙적일 수 있다. 예를 들어, 제 1 게이트 전극(220)의 상면은 제 1 게이트 전극(220)의 상면 상으로 돌출되는 돌출부(P1), 및 제 1 게이트 전극(220)의 내측으로 함몰되는 함몰부(P2) 포함할 수 있다. 함몰부(P2)는 제 1 게이트 전극(220)의 결정 결함(예를 들어, 결정립들 간의 결정립계(grain boundary))와 연결될 수 있다.
도 1, 도 8a 및 도 8b를 참조하여, 제 1 게이트 전극(220) 상에 예비 베리어막(235)이 형성될 수 있다. 상세하게는, 제 1 게이트 전극(220)의 상부 표면 상에 표면 처리 공정이 수행될 수 있다. 상기 표면 처리 공정은 산화(oxidation) 공정일 수 있다. 상기 표면 처리 공정을 통해, 제 1 게이트 전극(220)의 상부 일부가 산화되어 예비 베리어막(235)이 형성될 수 있다.
도 8c를 참조하면, 제 1 게이트 전극(220)의 표면 형상에 따라, 제 1 게이트 전극(220)의 상부가 산화되는 두께는 균일하지 않을 수 있다. 예를 들어, 제 1 게이트 전극(220)의 상면 상으로 돌출되는 돌출부(P1)는 산화가 용이할 수 있다. 예를 들어, 제 1 게이트 전극(220)의 내측으로 함몰되는 함몰부(P2)의 표면은 산소와 접하기 어려울 수 있으며, 함몰부(P2)는 산화가 용이하지 않을 수 있다. 이에 따라, 함몰부(P2) 상의 예비 베리어막(235)은 돌출부(P1) 상의 예비 베리어막(235)보다 얇은 두께로 형성될 수 있다.
도 1, 도 9a 및 도 9b를 참조하여, 제 1 게이트 전극(220) 상에 베리어막(230)이 형성될 수 있다. 상세하게는, 예비 베리어막(235)에 표면 처리 공정이 수행될 수 있다. 상기 표면 처리 공정은 질화(nitridation) 공정일 수 있다. 상기 표면 처리 공정을 통해, 예비 베리어막(235)이 질화되어 베리어막(230)이 형성될 수 있다. 상기 표면 처리 공정 중, 제 1 게이트 전극(220)의 상부 일부가 함께 질화될 수 있다. 이때, 질화된 제 1 게이트 전극(220)의 상부 일부는 베리어막(230)의 일부를 구성할 수 있다.
도 9c를 참조하면, 균일한 두께의 베리어막(230)이 형성될 수 있다. 예를 들어, 돌출부(P1) 상의 예비 베리어막(235) 및 함몰부(P2) 상의 예비 베리어막(235) 모두 질화가 용이할 수 있다. 일 예로, 질소 입자는 제 1 게이트 전극(220)의 결정립계(grain boundary)로 용이하게 침투할 수 있다. 이때, 돌출부(P1) 상의 예비 베리어막(235)보다 얇은 두께를 갖는 함몰부(P2) 상의 예비 베리어막(235)이 상대적으로 먼저 질화될 수 있다. 이에 따라, 돌출부(P1) 상의 예비 베리어막(235)이 질화되는 동안, 제 1 게이트 전극(220)의 상부 일부가 함께 질화되어 베리어막(230)을 함께 구성할 수 있다. 즉, 함몰부(P2) 상에서 베리어막(230)의 두께가 두꺼워질 수 있으며, 베리어막(230)은 돌출부(P1) 및 함몰부(P2) 상에서 균일한 두께로 형성될 수 있다.
실시예들에 따르면, 절연막(215)의 일부에 상기 표면 처리 공정이 함께 수행될 수 있다. 예를 들어, 상기 표면 처리 공정 중, 제 1 게이트 전극(220) 및 베리어막(230) 상으로 노출된 절연막(215)의 제 4 부분(219)이 함께 질화될 수 있다. 이에 따라, 절연막(215)의 제 4 부분(219)은 제 1 게이트 전극(220)과 인접한 절연막(215)의 제 3 부분(217)보다 높은 농도의 N+ 이온을 가질 수 있다.
도 1, 도 10a 및 도 10b를 참조하여, 베리어막(230) 상에 제 2 게이트 전극(240)이 형성될 수 있다. 예를 들어, 절연막(215)이 형성된 기판(100)의 전면 상에 폴리 실리콘이 증착될 수 있다. 이때, 상기 폴리 실리콘은 트렌치(120)를 채울 수 있다. 상기 폴리 실리콘은 화학 기상 증착(CVD) 공정 등을 이용하여 형성될 수 있다. 이후, 증착된 상기 폴리 실리콘이 식각한 후, 상기 폴리 실리콘에 N형 불순물을 도핑하여 제 2 게이트 전극(240)이 형성될 수 있다. 상기 식각 공정은 원하는 두께의 제 2 게이트 전극(240)이 형성될 때까지 계속 수행될 수 있다.
이에 따라, 트렌치(120) 내에 게이트 라인들(GL)이 형성될 수 있다. 게이트 라인들(GL) 각각은 제 1 게이트 전극(220), 베리어막(230), 및 제 2 게이트 전극(240)을 포함할 수 있다.
도 1, 도 11a 및 도 11b를 참조하여, 트렌치(120) 내에 제 1 캡핑막들(250)이 형성될 수 있다. 예를 들어, 제 1 캡핑막들(250)은 기판(100)의 전면 상에 캡핑막을 형성한 후, 평탄화 공정 등을 수행하여 형성될 수 있다. 이때, 기판(100)의 상면을 덮는 절연막(215)의 일부가 함께 제거될 수 있다. 이로 인해, 게이트 라인들(GL)과 활성 영역들(ACT) 사이 및/또는 게이트 라인들(GL)과 소자 분리막(110) 사이에 개재되는 게이트 절연막(210)이 형성될 수 있다. 제 1 캡핑막들(250)은 실리콘 질화막, 실리콘 산화막 및 실리콘 산질화막 중 어느 하나를 포함할 수 있다. 상기 식각 공정에 의해 소자 분리막(110) 및 활성 영역들(ACT)의 상면들이 노출될 수 있다.
기판(100) 상에 이온 주입 공정을 수행하여, 서로 이웃하는 두 개의 게이트 라인들(GL) 사이의 영역들 내에 제 1 도핑 영역(SD1)이 형성될 수 있다. 제 1 도핑 영역(SD1)은 제 2 도핑 영역(SD2)과 동일한 N형으로 도핑될 수 있다. 제 1 도핑 영역(SD1)은 제 2 도핑 영역(SD2)보다 기판(100) 내부로 깊이 연장될 수 있다.
다른 실시예들에 따르면, 제 1 캡핑막들(250)이 형성되기 전에, 라이너막(260)이 형성될 수 있다. 라이너막(260)은 화학 기상 증착(CVD) 공정 등을 이용하여 형성될 수 있다. 라이너막(260)은 절연막(215)을 컨포멀(conformal)하게 덮도록 형성될 수 있다. 라이너막(260)은 화학 기상 증착(CVD) 공정 등을 이용하여 형성될 수 있다. 라이너막(260)은 금속 물질, 또는 금속 질화물로 이루어질 수 있다. 일 예로, 라이너막(260)은 티타늄(Ti), 텅스텐(W) 또는 이들의 질화물을 포함할 수 있다. 라이너막(260)을 형성하는 경우, 후술되는 공정을 통해 도 3의 반도체 메모리 소자가 형성될 수 있다. 이하, 라이너막(260)이 형성되지 않는 것을 기준으로 설명한다.
도 1, 도 2a 및 도 2b를 다시 참조하여, 기판(100) 상에 도전막을 형성하고 패터닝하여 제 1 패드(310)와 제 2 패드(320)가 형성될 수 있다. 제 1 패드(310)는 제 1 도핑 영역(SD1)과 연결될 수 있고, 제 2 패드(320)는 제 2 도핑 영역(SD2)과 연결될 수 있다. 제 1 패드(310)와 제 2 패드(320)가 도핑된 폴리 실리콘막, 도핑된 실리콘 단결정막 또는 금속막을 포함할 수 있다.
제 1 및 제 2 패드들(310, 320) 상에 제 1 층간 절연막(400)이 형성될 수 있다. 제 1 층간 절연막(400)은 화학 기상 증착(CVD) 공정 등을 이용하여 형성될 수 있다. 제 1 층간 절연막(400)의 일부를 패터닝하여 제 1 콘택(510)이 형성될 영역을 정의하는 콘택 홀들이 형성될 수 있다. 제 1 층간 절연막(400) 상에 상기 콘택 홀들을 채우는 도전 물질이 도포되고, 그의 위에 캡핑막이 형성될 수 있다. 상기 캡핑막 및 상기 도전 물질을 패터닝하여 비트 라인들(BL)과 그 위에 배치되는 제 2 캡핑막들(520)이 형성될 수 있다. 상기 콘택 홀들 안에는 제 1 콘택(510)이 형성될 수 있다. 제 1 층간 절연막(400) 상에 절연 스페이서막을 콘포말하게 증착하고, 상기 절연 스페이서막을 이방성 식각하여 비트 라인들(BL)의 측벽을 덮는 절연 스페이서들(530)이 형성될 수 있다.
제 1 층간 절연막(400) 상에 제 2 층간 절연막(540)을 형성하고 평탄화 공정을 수행하여, 제 2 캡핑막들(520)의 상면이 노출될 수 있다. 이 후, 제 2 층간 절연막(540) 및 제 1 층간 절연막(400)을 관통하여 제 2 패드(320)와 연결되는 제 2 콘택(610)이 형성될 수 있다. 제 2 층간 절연막(540) 상에 지지막(700)이 형성될 수 있다. 지지막(700)은 화학 기상 증착(CVD) 공정 등을 이용하여 형성될 수 있다. 지지막(700)을 관통하여 제 2 콘택(610)과 연결되는 제 1 전극들(620)이 형성될 수 있다. 제 1 전극들(620)을 콘포말하게 덮는 유전막(630)과 제 1 전극들(620)을 덮는 제 2 전극(640)을 형성하여 캐패시터(CA)가 완성될 수 있다. 이렇게 하여, 본 발명의 실시예들에 따른 반도체 메모리 소자가 완성될 수 있다.
본 발명의 실시예들의 반도체 메모리 소자의 제조 방법에 따르면, 균일한 두께의 베리어막(230)을 형성할 수 있다. 베리어막(230)의 두께가 균일하지 않을 경우, 베리어막(230)의 두께가 얇은 곳을 통해 실리콘 또는 N형 불순물이 제 1 게이트 전극(220)으로 확산될 수 있으며, 베리어막(230)의 두께가 두꺼운 곳은 제 1 게이트 전극(220)과 제 2 게이트 전극(240) 사이의 저항이 커질 수 있다. 따라서, 본 발명에 따르면 베리어막(230) 형성 공정의 산포가 향상될 수 있으며, 베리어막(230)의 베리어 특성 및 제 1 게이트 전극(220)과 제 2 게이트 전극(240) 사이의 전기적 특성이 동시에 향상될 수 있다.
도 12a 내지 도 13a는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들로, 도 1의 Ⅰ-Ⅰ'선에 따른 단면들에 해당한다. 도 12b 내지 도 13b는 본 발명의 실시예들에 따른 반도체 메모리 소자의 제조 방법을 설명하기 위한 단면도들로, 도 1의 Ⅱ-Ⅱ'선에 따른 단면들에 해당한다.
도 1, 도 12a 및 도 12b를 참조하여, 제 2 게이트 전극(240)은 그의 폭이 제 1 게이트 전극(220)의 폭보다 넓도록 형성될 수 있다. 도 9a 및 도 9b의 결과물 상에 식각 공정이 수행될 수 있다. 상기 식각 공정을 통해 절연막(215)의 일부가 제거될 수 있다. 예를 들어, 절연막(215)은 제 1 게이트 전극(220) 및 베리어막(230) 상으로 노출된 절연막(215)의 제 4 부분(219)에 식각 공정이 수행될 수 있다. 이에 따라, 트렌치(120)의 측벽에 수직한 방향으로, 절연막(215)의 제 3 부분(217)의 두께는 절연막(215)의 제 4 부분(219)의 두께보다 두꺼울 수 있다. 제 1 게이트 전극(220) 상방의 트렌치(120)의 상부의 폭은 제 1 게이트 전극(220)이 배치되는 트렌치(120)의 하부의 폭은 보다 넓을 수 있다
도 1, 도 13a 및 도 13b를 참조하여, 베리어막(230) 상에 제 2 게이트 전극(240)이 형성될 수 있다. 예를 들어, 베리어막(230) 상에 폴리 실리콘을 증착한 후, 상기 폴리 실리콘에 N형 불순물을 도핑하여 제 2 게이트 전극(240)이 형성될 수 있다. 트렌치(120)의 상부에 형성되는 제 2 게이트 전극(240)의 폭은 트렌치(120)의 하부에 형성되는 제 1 게이트 전극(220)의 폭보다 넓을 수 있다.
이후, 도 13a 및 도 13b의 결과물 상에 도 11a, 도 11b, 도 2a 및 도 2b를 참조하여 설명한 공정이 수행되어, 도 4의 반도체 메모리 소자가 형성될 수 있다.
이상, 첨부된 도면들을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
100: 기판 110: 소자 분리막
120: 트렌치 210: 게이트 절연막
220: 제 1 게이트 전극 230: 베리어막
240: 제 2 게이트 전극 250: 제 1 캡핑막
270: 소스 물질막 310, 320: 패드
400, 540: 층간 절연막 510: 제 1 콘택
520: 제 2 캡핑막 530: 절연 스페이서
540: 제 2 층간 절연막 610: 제 2 콘택
620: 제 1 전극 630: 유전막
620: 제 2 전극 700: 지지막
ACT: 활성 영역 BL: 비트 라인
CA: 캐패시터 GL: 게이트 라인
SD: 도핑 영역

Claims (10)

  1. 기판을 식각하여 상기 기판의 활성 영역들을 가로지르는 트렌치를 형성하는 것;
    상기 트렌치의 바닥면 및 측면 상에 게이트 절연막을 형성하는 것;
    상기 게이트 절연막 상에 상기 트렌치의 하부를 채우는 제 1 게이트 전극을 형성하는 것;
    상기 제 1 게이트 전극의 상부 표면을 산화시켜 예비 베리어막을 형성하는 것;
    상기 예비 베리어막을 질화시켜 베리어막을 형성하는 것; 및
    상기 베리어막 상에 상기 트렌치의 일부를 채우는 제 2 게이트 전극을 형성하는 것을 포함하는 반도체 메모리 소자의 제조 방법.
  2. 제 1 항에 있어서,
    상기 예비 베리어막의 질화 공정 시,
    상기 제 1 게이트 전극 상으로 노출된 상기 게이트 절연막의 일부가 함께 질화되는 반도체 메모리 소자의 제조 방법.
  3. 제 1 항에 있어서,
    상기 예비 베리어막의 질화 공정 시, 상기 제 1 게이트 전극의 상부가 함께 질화되는 반도체 메모리 소자의 제조 방법.
  4. 제 1 항에 있어서,
    상기 제 1 게이트 전극의 상부의 산화 공정 시, 상기 제 1 게이트 전극의 표면 상으로 산소가 주입되고,
    상기 예비 베리어막의 질화 공정 시, 상기 예비 베리어막의 결정 결함 내로 질소가 주입되는 반도체 메모리 소자의 제조 방법.
  5. 제 1 항에 있어서,
    상기 제 2 게이트 전극을 형성하기 전에,
    상기 게이트 절연막을 식각하여, 상기 베리어막 상으로 노출된 상기 게이트 절연막의 일부의 두께를 감소시키는 것을 포함하는 반도체 메모리 소자의 제조 방법.
  6. 제 1 항에 있어서,
    상기 제 1 게이트 전극은 제 1 금속을 포함하고,
    상기 베리어막은 상기 제 1 금속의 산질화물(oxynitride)을 포함하는 반도체 메모리 소자의 제조 방법.
  7. 트렌치를 갖는 반도체 기판;
    상기 트렌치의 바닥면 및 내측면을 덮는 게이트 절연막;
    상기 트렌치의 하부에 배치되고, 제 1 금속을 포함하는 제 1 게이트 전극;
    상기 트렌치 내에서 상기 제 1 게이트 전극 상에 배치되는 제 2 게이트 전극; 및
    상기 제 1 게이트 전극 및 상기 제 2 게이트 전극의 사이에 배치되고, 상기 제 1 금속의 산질화물(oxynitride)을 포함하는 베리어막을 포함하되,
    상기 제 2 게이트 전극의 일함수(work function)는 상기 제 1 게이트 전극의 일함수 보다 낮은 반도체 메모리 소자.
  8. 제 7 항에 있어서,
    상기 게이트 절연막은 상기 제 1 게이트 전극과 인접한 제 1 부분, 및 상기 제 2 게이트 전극과 인접한 제 2 부분을 갖되,
    상기 트렌치의 측벽에 수직한 방향으로, 상기 제 1 부분의 두께는 상기 제 2 부분의 두께보다 두꺼운 반도체 메모리 소자.
  9. 제 7 항에 있어서,
    상기 제 2 게이트 전극과 인접한 상기 게이트 절연막의 일부는 상기 제 1 게이트 전극과 인접한 게이트 절연막의 다른 일부보다 높은 질소 농도를 갖는 반도체 메모리 소자.
  10. 제 7 항에 있어서,
    상기 제 2 게이트 전극은 N형 불순물이 도핑된 폴리 실리콘을 포함하는 반도체 메모리 소자.
KR1020170119715A 2017-09-18 2017-09-18 반도체 메모리 소자 및 그 제조 방법 KR102378471B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020170119715A KR102378471B1 (ko) 2017-09-18 2017-09-18 반도체 메모리 소자 및 그 제조 방법
SG10201805781QA SG10201805781QA (en) 2017-09-18 2018-07-04 Semiconductor memory device and method of fabricating the same
US16/050,848 US10373959B2 (en) 2017-09-18 2018-07-31 Semiconductor memory device and method of fabricating the same
CN201811082775.2A CN109524399B (zh) 2017-09-18 2018-09-17 半导体存储器件及其制造方法
US16/458,292 US10868016B2 (en) 2017-09-18 2019-07-01 Semiconductor memory device and method of fabricating the same
US16/805,585 US10833088B2 (en) 2017-09-18 2020-02-28 Semiconductor memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170119715A KR102378471B1 (ko) 2017-09-18 2017-09-18 반도체 메모리 소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20190032683A true KR20190032683A (ko) 2019-03-28
KR102378471B1 KR102378471B1 (ko) 2022-03-25

Family

ID=65720676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170119715A KR102378471B1 (ko) 2017-09-18 2017-09-18 반도체 메모리 소자 및 그 제조 방법

Country Status (4)

Country Link
US (3) US10373959B2 (ko)
KR (1) KR102378471B1 (ko)
CN (1) CN109524399B (ko)
SG (1) SG10201805781QA (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378471B1 (ko) * 2017-09-18 2022-03-25 삼성전자주식회사 반도체 메모리 소자 및 그 제조 방법
KR102505229B1 (ko) * 2018-10-02 2023-03-06 삼성전자주식회사 반도체 소자 및 반도체 소자 제조 방법
US20210013214A1 (en) * 2019-07-09 2021-01-14 Micron Technology, Inc. Apparatus including access line structures and related methods and electronic systems
US11211491B2 (en) * 2019-07-24 2021-12-28 Nanya Technology Corporation Semiconductor memory structure having drain stressor, source stressor and buried gate and method of manufacturing the same
US10886406B1 (en) * 2019-07-31 2021-01-05 Nanya Technology Corporation Semiconductor structure and method of manufacturing the same
KR20210104260A (ko) * 2020-02-17 2021-08-25 삼성전자주식회사 반도체 장치 및 이의 제조 방법
CN111564441B (zh) * 2020-04-10 2023-04-18 中国科学院微电子研究所 半导体结构及制备方法
CN113707610B (zh) * 2020-05-21 2023-04-18 长鑫存储技术有限公司 半导体器件及其形成方法
KR20220014588A (ko) * 2020-07-29 2022-02-07 삼성전자주식회사 반도체 소자
EP4184580A4 (en) * 2020-08-11 2024-01-17 Changxin Memory Technologies, Inc. MEMORY AND PRODUCTION PROCESS THEREOF
CN114078853B (zh) * 2020-08-18 2023-02-24 长鑫存储技术有限公司 存储器及其制作方法
KR20220080511A (ko) 2020-12-07 2022-06-14 삼성전자주식회사 반도체 소자
CN114695355A (zh) 2020-12-29 2022-07-01 长鑫存储技术有限公司 半导体结构以及半导体结构的形成方法
US11967531B2 (en) 2020-12-29 2024-04-23 Changxin Memory Technologies, Inc. Semiconductor structure and forming method thereof
CN114695353B (zh) 2020-12-29 2023-10-13 长鑫存储技术有限公司 半导体结构及其形成方法
CN114695354A (zh) * 2020-12-29 2022-07-01 长鑫存储技术有限公司 半导体结构及其形成方法
US11744062B2 (en) 2021-05-08 2023-08-29 Fujian Jinhua Integrated Circuit Co., Ltd. Semiconductor device having bit line comprising a plurality of pins extending toward the substrate
KR20230021400A (ko) * 2021-08-05 2023-02-14 에스케이하이닉스 주식회사 매립 게이트 구조를 구비한 반도체 장치
KR20230029190A (ko) * 2021-08-24 2023-03-03 삼성전자주식회사 게이트 구조물 및 이를 포함하는 반도체 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036605A (ko) * 2012-09-17 2014-03-26 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR20150107180A (ko) * 2014-03-13 2015-09-23 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
KR20150137428A (ko) * 2014-05-29 2015-12-09 에스케이하이닉스 주식회사 듀얼일함수 매립게이트형 트랜지스터 및 그 제조 방법, 그를 구비한 전자장치
KR20160073143A (ko) * 2014-12-16 2016-06-24 에스케이하이닉스 주식회사 듀얼일함수 게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153804A (ja) 1994-09-28 1996-06-11 Sony Corp ゲート電極の形成方法
JP2002009169A (ja) * 2000-06-20 2002-01-11 Nec Corp 半導体装置とその製造方法
US6773999B2 (en) * 2001-07-18 2004-08-10 Matsushita Electric Industrial Co., Ltd. Method for treating thick and thin gate insulating film with nitrogen plasma
JP4917246B2 (ja) * 2003-11-17 2012-04-18 ローム株式会社 半導体装置およびその製造方法
US7135361B2 (en) * 2003-12-11 2006-11-14 Texas Instruments Incorporated Method for fabricating transistor gate structures and gate dielectrics thereof
US7179759B2 (en) * 2004-09-30 2007-02-20 Taiwan Semiconductor Manufacturing Company Barrier layer and fabrication method thereof
KR20060078400A (ko) * 2004-12-31 2006-07-05 매그나칩 반도체 유한회사 반도체 소자의 형성 방법
US7807536B2 (en) * 2006-02-10 2010-10-05 Fairchild Semiconductor Corporation Low resistance gate for power MOSFET applications and method of manufacture
US7633119B2 (en) 2006-02-17 2009-12-15 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET devices and manufacturing processes
US7919862B2 (en) * 2006-05-08 2011-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing resistivity in interconnect structures of integrated circuits
US8035159B2 (en) 2007-04-30 2011-10-11 Alpha & Omega Semiconductor, Ltd. Device structure and manufacturing method using HDP deposited source-body implant block
US8129779B2 (en) * 2007-09-03 2012-03-06 Rohm Co., Ltd. Trench gate type VDMOSFET device with thicker gate insulation layer portion for reducing gate to source capacitance
US7618893B2 (en) * 2008-03-04 2009-11-17 Applied Materials, Inc. Methods of forming a layer for barrier applications in an interconnect structure
EP2112686B1 (en) * 2008-04-22 2011-10-12 Imec Method for fabricating a dual workfunction semiconductor device made thereof
US9129945B2 (en) 2010-03-24 2015-09-08 Applied Materials, Inc. Formation of liner and barrier for tungsten as gate electrode and as contact plug to reduce resistance and enhance device performance
CN101834629B (zh) 2010-04-06 2014-10-22 中兴通讯股份有限公司 一种指示传输参数的方法及系统
JP5466577B2 (ja) * 2010-05-24 2014-04-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US8921899B2 (en) * 2010-11-19 2014-12-30 Micron Technology, Inc. Double gated 4F2 dram CHC cell and methods of fabricating the same
US8865594B2 (en) 2011-03-10 2014-10-21 Applied Materials, Inc. Formation of liner and barrier for tungsten as gate electrode and as contact plug to reduce resistance and enhance device performance
US8884340B2 (en) * 2011-05-25 2014-11-11 Samsung Electronics Co., Ltd. Semiconductor devices including dual gate electrode structures and related methods
US8765588B2 (en) * 2011-09-28 2014-07-01 United Microelectronics Corp. Semiconductor process
KR20130116099A (ko) 2012-04-13 2013-10-23 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR101903479B1 (ko) * 2012-08-24 2018-10-02 에스케이하이닉스 주식회사 반도체 소자 및 그 형성 방법
US8778758B2 (en) 2012-08-30 2014-07-15 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device and semiconductor device
KR101987995B1 (ko) * 2012-08-31 2019-06-11 에스케이하이닉스 주식회사 매립 게이트형 반도체 소자, 그 반도체 소자를 갖는 모듈 및 시스템 그리고 그 반도체 소자 제조 방법
KR101927992B1 (ko) * 2012-08-31 2018-12-12 에스케이하이닉스 주식회사 반도체 소자 및 그 제조 방법
KR102008318B1 (ko) * 2012-12-06 2019-08-08 삼성전자주식회사 반도체 소자
US9130059B2 (en) * 2013-01-18 2015-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a semiconductor device having a capping layer
JP6170812B2 (ja) * 2013-03-19 2017-07-26 株式会社東芝 半導体装置の製造方法
KR20140145434A (ko) 2013-06-13 2014-12-23 삼성전자주식회사 반도체 소자 및 이의 제조 방법
KR20150035198A (ko) * 2013-09-27 2015-04-06 삼성전자주식회사 반도체 소자 및 그 제조방법
KR20150090669A (ko) * 2014-01-29 2015-08-06 에스케이하이닉스 주식회사 듀얼일함수 매립게이트형 트랜지스터 및 그 제조 방법, 그를 구비한 전자장치
KR102164542B1 (ko) * 2014-05-21 2020-10-12 삼성전자 주식회사 매립형 게이트 구조체를 갖는 반도체 소자 및 그 제조 방법
KR102180049B1 (ko) * 2014-08-21 2020-11-18 에스케이하이닉스 주식회사 패싱 게이트를 갖는 반도체 장치 및 그 제조 방법
JP2016181617A (ja) * 2015-03-24 2016-10-13 株式会社デンソー 半導体装置
KR102336033B1 (ko) 2015-04-22 2021-12-08 에스케이하이닉스 주식회사 매립금속게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
KR20170043683A (ko) * 2015-10-13 2017-04-24 에스케이하이닉스 주식회사 반도체장치 제조 방법
KR102396085B1 (ko) 2015-10-28 2022-05-12 에스케이하이닉스 주식회사 매립금속게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
KR102410919B1 (ko) 2015-10-29 2022-06-21 에스케이하이닉스 주식회사 매립게이트구조를 구비한 반도체구조물 및 그 제조 방법, 그를 구비한 메모리셀
KR102402761B1 (ko) 2015-10-30 2022-05-26 삼성전자주식회사 반도체 장치 및 이의 제조 방법
KR102455869B1 (ko) * 2015-12-23 2022-10-20 에스케이하이닉스 주식회사 매립게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀
KR102432719B1 (ko) * 2015-12-23 2022-08-17 에스케이하이닉스 주식회사 매립금속게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치
KR102481478B1 (ko) * 2016-06-16 2022-12-26 삼성전자 주식회사 반도체 장치들 및 그 형성 방법
KR102429608B1 (ko) * 2016-08-17 2022-08-04 삼성전자주식회사 반도체 장치 및 그 제조 방법
TWI730119B (zh) * 2017-06-09 2021-06-11 聯華電子股份有限公司 具有金屬閘極之半導體元件之製作方法
US10431664B2 (en) * 2017-06-30 2019-10-01 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure and methods thereof
KR102378471B1 (ko) 2017-09-18 2022-03-25 삼성전자주식회사 반도체 메모리 소자 및 그 제조 방법
US10468527B2 (en) * 2017-11-15 2019-11-05 Taiwan Semiconductor Manufacturing Co., Ltd. Metal gate structure and methods of fabricating thereof
US10665685B2 (en) * 2017-11-30 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
US11373866B2 (en) * 2018-06-29 2022-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Dielectric material and methods of forming same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036605A (ko) * 2012-09-17 2014-03-26 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR20150107180A (ko) * 2014-03-13 2015-09-23 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
KR20150137428A (ko) * 2014-05-29 2015-12-09 에스케이하이닉스 주식회사 듀얼일함수 매립게이트형 트랜지스터 및 그 제조 방법, 그를 구비한 전자장치
KR20160073143A (ko) * 2014-12-16 2016-06-24 에스케이하이닉스 주식회사 듀얼일함수 게이트구조를 구비한 반도체장치 및 그 제조 방법, 그를 구비한 메모리셀, 그를 구비한 전자장치

Also Published As

Publication number Publication date
US20190088657A1 (en) 2019-03-21
CN109524399B (zh) 2024-03-05
US10868016B2 (en) 2020-12-15
US10373959B2 (en) 2019-08-06
CN109524399A (zh) 2019-03-26
SG10201805781QA (en) 2019-04-29
US20200203352A1 (en) 2020-06-25
KR102378471B1 (ko) 2022-03-25
US10833088B2 (en) 2020-11-10
US20190393225A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
KR102378471B1 (ko) 반도체 메모리 소자 및 그 제조 방법
KR102279732B1 (ko) 반도체 메모리 소자 및 그 제조 방법
US8865545B2 (en) Semiconductor device and method for fabricating the same
KR101662282B1 (ko) 고유전율의 보호막 패턴을 포함하는 매립 게이트 패턴을 갖는 반도체 장치 및 이의 제조 방법
JP5729806B2 (ja) 半導体装置および半導体装置の製造方法
KR20210026808A (ko) 매립 게이트 구조를 구비한 반도체 장치 및 그 제조 방법
KR102657070B1 (ko) 반도체 소자 및 그의 제조 방법
KR20210032679A (ko) 매립 게이트 구조를 구비한 반도체 장치 및 그 제조 방법
US8395197B2 (en) Semiconductor device and method of forming the same
KR20190042383A (ko) 반도체 메모리 소자 및 그 제조 방법
JP2011129771A (ja) 半導体装置及びその製造方法
JP6006921B2 (ja) 半導体装置およびその製造方法
KR20170034160A (ko) 게이트를 갖는 반도체 소자 및 그 형성 방법
KR20200038386A (ko) 반도체 소자 및 반도체 소자 제조 방법
CN110021551B (zh) 半导体器件及其制造方法
KR20090110170A (ko) 반도체 소자 및 그의 제조 방법
JP2011243948A (ja) 半導体装置及びその製造方法
TWI668806B (zh) 半導體記憶體結構及其製備方法
JP2011129762A (ja) 半導体装置及び半導体装置の製造方法
US10811505B2 (en) Gate electrode having upper and lower capping patterns
US20220278209A1 (en) High voltage field effect transistors with metal-insulator-semiconductor contacts and method of making the same
US6559489B2 (en) Semiconductor device and method of manufacturing the same
WO2014050590A1 (ja) 半導体装置及びその製造方法
US20230290681A1 (en) Semiconductor device and method of fabricating the same
JP4984697B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant