KR20170096120A - 노 - Google Patents

Download PDF

Info

Publication number
KR20170096120A
KR20170096120A KR1020177016654A KR20177016654A KR20170096120A KR 20170096120 A KR20170096120 A KR 20170096120A KR 1020177016654 A KR1020177016654 A KR 1020177016654A KR 20177016654 A KR20177016654 A KR 20177016654A KR 20170096120 A KR20170096120 A KR 20170096120A
Authority
KR
South Korea
Prior art keywords
fuel
furnace
waste
reactor
heat
Prior art date
Application number
KR1020177016654A
Other languages
English (en)
Other versions
KR102502323B1 (ko
Inventor
줄리안 인스킵
Original Assignee
필킹톤 그룹 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 필킹톤 그룹 리미티드 filed Critical 필킹톤 그룹 리미티드
Publication of KR20170096120A publication Critical patent/KR20170096120A/ko
Application granted granted Critical
Publication of KR102502323B1 publication Critical patent/KR102502323B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D91/00Burners specially adapted for specific applications, not otherwise provided for
    • F23D91/02Burners specially adapted for specific applications, not otherwise provided for for use in particular heating operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/201Waste heat recuperation using the heat in association with another installation with an industrial furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/535
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

노(70), 및 그것을 점화하는 방법이 개시되고, 노에 공급된 연료의 일부는 해중합화 공정에 의해 폐 플라스틱들로부터 생산되고, 노로부터의 폐열은 해중합화 공정을 촉진시키기 위해 이용된다. 노(70)는 폐열 복구를 위해 축열기들(80, 82)을 구비하고 제 1 및 제 2 대향된 방향들로 교대로 점화되고, 점화 방향은 제 1 방향과 제 2 방향 사이에서 주기적으로 전환한다. 노(70)에 대한 연료의 공급은 점화 방향이 전환하고 있는 동안 일시적으로 중단되고, 일시적 중단 동안 생산된 연료를 담기 위한 수단이 제공된다. 노는 유리를 생산하기 위해 이용될 수 있다.

Description

노{FURNACE}
본 발명은 노(furnace)에서 실행된 산업 공정, 연료 생산 특히, 연료를 생산하는 방법에 관한 것이다. 본 발명은 또한, 해중합화(depolymerisation) 공정에 의해 폐 플라스틱(waste plastic)들로부터 연료를 생산하는 방법 및 그를 위한 장치에 관한 것이다. 노를 위한 연료의 일부는 이 방식으로 생산될 수 있고, 노로부터의 폐열은 해중합화 공정을 촉진시키기 위해 이용될 수 있다. 노는 축열식 노일 수 있고, 본 발명의 일 특정한 실시예에서, 노는 유리 노일 수 있다.
연료는 물론 비싸고 가치 있는 상품이며, 화석 연료들은 또한 유한 자원이다. 결과적으로, 더 많은 노력이 산업 공정들 및 노들의 연료 소비를 감소시키기 위해 그들을 더 효율적으로 만드는데 지향된다. 하나의 대안적인 전략은 화석 연료들과 같은 전통적인 소스들보다 싼 연료의 대안적인 소스들을 찾는 것이다.
최근 몇 해에, 관심을 받아온 옵션들 중 하나는 폐 플라스틱들로부터의 연료의 생산이다. 폐 플라스틱의 많은 양들이 매년 생산되고, 일부가 재활용될지라도, 많은 양이 여전히 매립지들에서 처분된다. 단지 플라스틱의 특정 유형들만이 널리 재활용되고, 일부 재활용 공정들은 플라스틱의 형상에, 또는 허용될 수 있는 플라스틱들의 오염의 정도에 제한을 가한다. 이것은 폐 플라스틱들의 많은 양들이 매립지들로 처분됨을 의미하고; 현재 재활용되지 않을 수 있는 상기 폐 플라스틱들을 더 양호하게 활용한다면 예로서, 연료의 생산을 위해 이용될 수 있다면 이로울 것이다.
폐 플라스틱들로부터 연료를 생산하는 기존의 방법들에서, 생산된 연료의 일부는 해중합화 공정을 촉진시키기 위해 즉, 해중합화 공정의 에너지 요구조건들을 공급하기 위해 이용된다. 연료가 가치 있기 때문에, 그것은 상기 방법들 그 자신이 그들의 산출량의 일부를 소비하여, 다른 용도들을 위해 이용가능한 양을 감소시키는 것이 그들의 단점이다. 따라서, 또 다른 공정으로부터의 폐열을 이용하여 폐 플라스틱들을 열분해하는 것이 제안되었다.
예를 들면, US 6,807,916은 시멘트 가마로부터의 폐열을 활용하여 폐기물들을 열분해하는 방법을 개시하고, 이것을 실행하기 위한 시스템을 설명한다. 그러나, 열분해 시스템은 드럼통들로 시스템에 공급되는 폐기물들로 제한된다.
가스화에 의해 폐기물들로부터 연료를 생산하는 것이 또한 공지된다. 가스화는 유기 또는 화석 연료 기반 탄소성 물질들을 가연성 가스로 변환하는 공정이다. 이것은 제어된 산소양으로, 그러나 연소 없이 고온 또는 매우 고온에서 탄소성 물질을 반응시킴으로써 성취된다. 산소는 공기 또는 스팀의 형태일 수 있다. 결과로 발생하는 가연성 가스는 일산화탄소, 수소 및 이산화탄소를 포함하고 "합성 가스(syngas)"("합성 가스(synthetic gas)"의 단축형)로서 언급될 수 있다. 발생로 가스가 합성 가스의 일 형태이다.
US 2011/0107670은 바이오매스(biomass) 및/또는 폐기물들과 같은 가연성 고체 또는 액체 물질들의 가스화에 의해 가연성 가스를 제조하기 위한 공정이 개시된다. 후자는 이용된 타이어들, 플라스틱들, 자동차 폐차 잔재들, 슬러지들, 대체 가연성 물질들 또는 생활 폐기물을 포함할 수 있다. 상기 물질들은 먼저, 제 1 열분해 동작에 의해 기름으로 변환될 수 있다. 폐기물들은 용융 실리케이트 배스(molten silicate bath)에서 가스화된다.
그러나, 가스화는 몇몇 단점들을 갖는다. 예를 들면, 생산된 가스는 저 칼로리 값을 갖고, 가스화 공정이 이러한 고온들(예로서, 1000℃ 이상)을 요구하기 때문에, 배기 가스들에 존재하는 폐열은 가스화를 촉진시키기 위해 이용될 수 없다.
따라서, 가스화보다 해중합화에 의해 폐 플라스틱들로부터 연료를 생산하는 것이 바람직하고, 따라서 배기 가스들에 존재하는 폐열은 열원으로서 활용될 수 있다. 그러나, 산업 공정들이 실행되는 많은 노들은 축열식 노들이고 즉, 노들은 폐열 복구의 수단으로서 축열기들을 구비한다. 이것은 해중합화에서 폐열의 이용에 대해 특정한 문제들을 제기하고, 이들 문제들을 해결하는 것이 물론 바람직할 것이다.
축열식 노의 동작을 통한 폐 플라스틱들의 해중합화에 의해 연료 생산을 통합하는 방식이 이제 발견되었고, 따라서 노 배기 가스들로부터의 폐열은 해중합화를 촉진시키기 위해 활용될 수 있다.
본 발명은 연료를 연소시킴으로써 노를 점화하는 방법을 제공하고, 상기 방법은 연료의 공급을 노에 제공하는 단계로서, 노에 공급되고 노에서 연소된 연료의 일부는 해중합화 공정에 의해 폐 플라스틱들로부터 생산되고, 노로부터의 폐열은 해중합화 공정을 촉진시키기 위해 이용되고, 노는 폐열 복구를 위해 축열기들을 구비하는, 상기 제공 단계, 제 1 및 제 2 대향된 방향들로 교대로 노를 점화하는 단계로서, 점화 방향은 제 1 방향과 제 2 방향 사이에서 주기적으로 전환하는, 상기 점화 단계, 점화 방향이 전환하고 있는 동안 노에 대한 연료의 공급을 일시적으로 중단시키는 단계로서, 일시적 중단 동안 생산된 연료를 담기 위한 수단이 제공되는, 상기 중단 단계를 포함한다.
바람직하게, 실질적으로 해중합화 공정을 촉진시키기 위해 필요한 모든 열은 노로부터 공급된다.
해중합화 공정의 에너지 요구조건들을 제공하기 위해 노로부터 폐열을 이용함으로써, 그 공정을 구동하기 위해 연료 생산 공정의 산출량 중 일부를 더 이상 이용할 필요가 없다. 결과적으로, 이 연료는 노를 점화하는 것과 같은, 다른 목적들을 위해 이용가능해진다. 이 연료가 일반적으로 고등급이기 때문에, 해중합화 공정에서 연료 대신에 폐열을 이용하는 것이 분명하게 이롭고, 그에 의해 다른 목적들을 위해 고등급 연료를 절약한다. 이 공정에 의해, 가치 있는 연료가 그렇지 않으면, 매립지들에서 처분될 수 있는 폐 플라스틱들로부터 복원될 수 있다. 그에 의해 루프가 생성되고, 상기 루프에서 노로부터의 폐열이 해중합화 공정을 구동시키고, 해중합화에 의해 생산된 연료가 노에서 소비된다. 이 루프는 고 효율성 및 운용의 상당히 감소한 비용을 야기할 수 있다.
상대적으로 적은 다른 용도들이 존재하는 경우에 대해, 해중합화 공정을 촉진시키기 위해 노로부터 폐열을 이용하는 것은 특히 이로운데, 이는 그것이 가상적으로 해중합화 공정에 의해 생산된 모든 연료가 노에서 태우기 위해 이용가능함을 의미하기 때문이다. 또한, 해중합화에 의해 폐 플라스틱들로부터 연료를 생산하기 위한 공정에 의해 전형적으로 생산된 상대적으로 고등급 연료는 특히, 그것의 순도 및 그것의 상대적으로 높은 탄소 함유량으로 인해 노에서 태우기 위해 적합하고, 이는 매우 밝은 불꽃이 필요하다면 생성될 수 있음을 의미한다.
"저등급" 또는 "고등급" 연료에 대한 참조들은 그것의 칼로리 값을 언급하고, 이는 연료의 품질의 널리 수용된 측정치이다.
해중합화 공정은 열분해 또는 건류(destructive distillation)의 공정일 수 있고, 이는 또한 탄화수소들, 플라스틱들 및 석유 지질학의 맥락에서 "분해(cracking)"로서 언급될 수 있다. 모든 탄화수소들 및 다른 휘발성 물질들이 떠난(driven off) 후에 남아 있는 고체 물질은 차(char)로서 공지된다. 차의 생산 및 처분은 실제로, 공급 원료로서 폐 플라스틱들을 이용하는 불가피한 결과이다; 이것은 하기에 더 상세하게 논의될 것이다.
공정을 위한 공급 원료로서 이용된 폐 플라스틱들은 전형적으로, 국내 및 상업 소스들 둘 모두, 그리고 또한 산업용 폐 플라스틱들로부터의 지방 또는 지방 자치단체 수집 서비스들에 의해 수집된 폐 플라스틱들이다. 폐 플라스틱들은 다른 것들 중에서 폴리에틸렌(고 및 저 밀도 둘 모두의), 폴리프로필렌, 폴리스틸렌, 나일론, 폴리염화비닐(PVC), 폴리에틸렌 테레프타레이트(PET), 아크릴로니트릴 부타디엔 스티렌(ABS), 및 또한 다양한 상이한 유형들의 고무를 포함할 수 있다. 그러나, PET는 과도한 차 형성을 야기하고, 바람직하게 공급 연료의 중량으로 단지 5%로 제한된다. 또한, PVC는 분해 시에 염화 수소를 생성하고, 이는 플랜트의 부식을 증가시키며 환경 오염을 야기할 수 있다. 바람직하게, 공급 연료에서의 PVC의 비율은 단지 5%, 더 바람직하게 1% 미만으로 제한된다.
고무가 수용가능한 공급 연료 물질일지라도, 이용된 타이어들이 공통적으로 존재하는 철근 와이어들로 인해 포함되지 않는 것이 바람직하다. 이러한 타이어들은 그들이 공정에 공급될 수 있기 전에 파쇄될 필요가 있고, 이것은 에너지 집약적 동작이다. 또한, 와이어들은 파쇄기를 손상시킬 수 있고 교반기들 주위를 둘러쌀 수 있다.
폐 플라스틱들은 필연적으로 먼지, 습기 및 불활성 물질들을 포함한다. 먼지 및 불활성 물질들은 공정의 산출량을 감소시키고 차의 생산을 증가시킨다. 돌, 벽돌 및 콘크리트와 같은 물품들은 장비를 차단하거나 손상시킬 수 있다. 유사하게, 습기는 해중합화 공정의 열 효율성을 감소시킬 뿐만 아니라, 생산된 연료의 가스 부분의 칼로리 값을 감소시킨다. 물의 존재는 모든 물이 증발했을 때까지의 가열 동안에 100℃에서 공급 연료를 유지하고, 따라서 열분해가 시작할 수 있기 전에 여분의 에너지가 소비된다.
따라서, 공급 연료에서 먼지 및 불활성 물질들의 비율이 중량으로 10% 미만, 더 바람직하게 5% 미만인 것이 바람직하다. 유사하게, 공급 연료에서 습기의 비율이 중량으로 10% 미만, 더 바람직하게 5% 미만인 것이 바람직하다. 그러나, 과도한 폐열이 자주 노로부터 이용가능하기 때문에, 더럽거나 젖은 폐 플라스틱들을 해중합화 공정에 공급하기 전에 그것을 깨끗하게 하기 위한 세척 및 건조 단계를 포함하는 것이 실현가능하다. 노로부터의 폐열은 플라스틱들을 건조하기 위해 이용될 수 있다.
공급 연료는 그것이 바람직하게 소수 구성요소로서 존재할지라도, 바이오매스를 포함할 수 있다.
축열식 노 즉, 폐열 복구를 위한 축열기들을 구비한 축열식 노는 회복 노(recuperative furnace)와 같은, 폐열 복구의 다른 수단을 구비한 노보다 높은 레벨의 열 복구를 성취한다. 축열식 노는 2개 이상의 축열기들을 구비할 수 있고, 각각의 축열기는 내화 벽돌들과 같은 고 열식 질량의 열 저장 매체를 포함한다. 언제나, 배가 가스들은 하나의 축열기를 통해 이동하여, 열 저장 매체에 열을 넘겨주고 그에 의해, 후자가 따뜻해지며, 연소 가스는 다른 축열기를 통해 이동하여, 열 저장 매체로부터 열을 흡수한다. 적절한 길이의 시간 후에, 가스 흐름의 방향이 전환되고, 따라서 축열식 노는 2개의 상이한 방향들, 즉 제 1 및 제 2 대향된 방향들로 교대로 점화된다. 심지어 축열기를 통해 이동한 후에, 배기 가스들은 여전히 상당한 양의 폐열을 포함한다.
축열식 노의 상이한 레이아웃(layout)들이 가능하고 예를 들면, 노는 측면 포트 노 또는 단부 포트 노일 수 있다. 포트들은 축열기들에 이르는 노 벽에서의 개구부들이다. 측면 포트 노는 노의 측벽들에 배치된 포트들을 갖고, 노가 제공하는 생산 라인에 평행한 세로 축을 갖는 일반적으로 가늘고 긴, 직렬 구성을 갖는다. 또한, 측면 포트 노는 노의 각각의 측면 상에 배치된 축열기로, 교차 점화된다.
단부 포트 노는 최종 점화되고, 전형적으로 노의 단부 벽에 서로 바로 옆에 배치되는 2개의 포트들을 갖는다. 이것은 "편자(horse shoe)" 구성에서 다른 부분을 향해 둥글게 굽어지는 불꽃들을 야기하고, 축열기들은 또한, 노의 단부에서 포트들 뒤에 서로 바로 옆에 배치된다. 각각의 경우에서, 노는 포트들에 배치된 연소기들을 구비하여, 연료가 원하는 유형의 불꽃들을 산출하기 위해 미리 가열된 연소 가스와 적절하게 혼합할 수 있게 한다.
축열식 노의 상기 유형들 중 임의의 유형은 본 발명으로부터 이익을 얻는다.
2개의 유형들의 축열식 노에서, 점화의 방향은 열 복구를 최대화하기 위해 정기적으로 전환된다. 전환 동안, 연소기들이 멈추고, 따라서 연료의 공급은 일시적으로 중단된다. 따라서, 전환 동안 발생하는 일시적 중단 동안 해중합화 공정에 의해 생산된 연료를 담기 위해 탱크, 챔버 또는 수용기와 같은 수단을 제공하는 것이 바람직하다.
폐 플라스틱들을 해중합화함으로써 생산된 연료는 적어도 70%의 탄화수소들, 바람직하게 적어도 80%, 더 바람직하게 적어도 90%의 탄화수소들을 포함할 수 있다. 저 밀도 폴리에틸렌의 분해는 프로판, 프로펜, 부탄, 및 1-부텐의 상당한 부분들을 산출하는 반면에, 폴리프로필렌의 분해는 다른 것들 중에서 프로펜, 메틸프로펜 및 펜탄을 산출한다. 생산된 다른 탄화수소들은 전형적으로, 메탄, 에탄, 에탄 및 1-펜텐을 포함할 수 있다. 폐 플라스틱들의 해중합화에 의해 생산된 연료의 조성은 따라서, 이러한 플라스틱들의 가스화에 의해 생산된 가스의 조성과 매우 상이하다.
또한, 폐 플라스틱들을 해중합화함으로써 생산된 연료는 10 내지 100 MJ/Nm3의 범위, 바람직하게 20 내지 80 MJ/Nm3, 더 바람직하게 25 내지 70 MJ/Nm3, 가장 바람직하게 30 내지 50 MJ/Nm3의 더 낮은 가열 값(LHV)을 가질 수 있다. 이들 값들은 폐 플라스틱들의 가스화에 의해 생산된 가스에 대한 것보다 크다.
기름에 응축될 때, 연료는 20 내지 70 MJ/kg, 바람직하게 30 내지 60 MJ/kg, 더 바람직하게 40 내지 50 MJ/kg의 칼로리 값을 가질 수 있다.
폐 플라스틱들의 해중합화는 또한, 가스화보다 상당히 더 낮은 온도에서 실행될 수 있다. 전형적으로, 해중합화는 350℃ 내지 650℃, 바람직하게 400℃ 내지 450℃에서 실행된다.
연료는 노에 공급되기 전에 저장될 수 있거나, 그것은 노에 직접적으로 즉, 연료를 저장하지 않고 공급될 수 있다. 연료를 저장하는 것은 그것의 일부 또는 전부가 가스 상태에 있는 경우에 그것을 응축하는 것을 수반할 수 있다.
노에 대한 연료의 직접 공급이 이로운데, 이는 많은 노들에서, 연소가 발생할 수 있기 전에 점화 온도로 연료를 가열할 필요가 있기 때문이다. 그러나, 해중합화 공정으로부터의 연료는 이미 노에서 이용하기 위해 충분한 온도에 있을 수 있고, 연료를 노에 직접적으로 공급함으로써, 공정이 단순화되고 더 큰 효율성이 성취되는데, 이는 연료의 응축 및 재가열이 회피되기 때문이다.
선택적으로, 연료는 그것을 노를 위해 더 적합하게 만들기 위해 분별(fractionation) 또는 촉매 작용에 의해 변경될 수 있다. 예를 들면, 특정한 분자량을 갖는 부분이 선택될 수 있다. 또한, 탄소 대 수소 비의 제어가 바람직하고, 일반적으로 더 높은 비들이 선호된다. 연료의 탄소 대 수소 비는 그 범위가 중량으로 65%로부터 중량으로 95%까지일 수 있다. 지방족 탄화수소들에 대해, 약 85%의 탄소 대 수소 비를 갖는 연료의 연소는 고 광도의 불꽃들을 산출하고, 이는 양호한 열 전달 특성들을 갖는다. 또한, 불꽃들에 의해 생성된 배기 가스들은 더 적은 물을 포함하고, 따라서 더 적은 열이 배기 가스들에서 물의 잠열(latent heat)의 형태로 손실된다.
해중합화 공정은 노 배기 가스들과 폐 플라스틱들 사이에 열을 교환하기 위한 수단을 포함하는 반응기와 같은 장치에서 일어날 수 있다.
노로부터의 폐열을 포함하는 배기 가스들은 반응기에 직접적으로 또는 간접적으로 공급될 수 있다. 허용되는 경우에, 그리고 배기 가스들이 반응기에 악영향을 미치지 않도록 충분하게 깨끗할 때 예로서, 그들이 오염 방지 플랜트를 통해 이동한 경우, 배기 가스들은 반응기에서의 열 교환기에 직접적으로 공급될 수 있다. 그러나, 배기 가스들이 이것을 행하기 위해 충분하게 깨끗하지 않을 때, 또는 지방 법률이 예로서, 안전상의 이유들로 이것을 금지하는 경우, 또는 안전 또는 실용적인 고려들이 배기 가스들을 반응기에 직접적으로 공급하지 않도록 권고되게 하는 임의의 경우에서, 부(간접) 열 교환 회로가 포함될 수 있다. 이 경우에, 배기 가스들은 또 다른 열 교환기에 공급되고, 상기 또 다른 열 교환기는 배기 가스들로부터 열을 추출하고 그 열을 부 회로를 통해 반응기에 공급한다. 예를 들면, 이차 유체는 배기 가스 열 교환기와 반응기 열 교환기 사이를 순환할 수 있다. 다양한 유체들이 이 목적을 위해 이용될 수 있다. 바람직하게, 유체는 자유 산소(free oxygen)을 포함하지 않는다. 질소와 같은 불활성 가스들이 특히 적합하다.
해중합화 공정 이전에 폐 플라스틱을 압축하는 것이 바람직하다. 다양한 상이한 형상들 및 크기들의 플라스틱 물품을 초기에 포함하는 폐 플라스틱은 자연적으로 헐겁게(loosely) 패킹되고 많은 양의 공기를 포함할 것이다. 따라서, 폐 플라스틱을 일정한 크기로 파쇄하는 것이 바람직하다. 플라스틱으로부터 생산된 연료가 상당한 양들의 공기를 포함하면, 그것의 칼로리 값이 감소된다. 트램프 가스(tramp gas)들을 통한 연료의 희석은 또한, 연료가 소비될 때, 공기 오염을 증가시킬 수 있다.
따라서, 폐 플라스틱으로부터 가능한 한 많은 양의 공기를 배출하는 것이 바람직하다. 이것은 부분적으로, 폐 플라스틱을 압축함으로써, 그리고 부분적으로 폐 플라스틱을 녹이는 초기 단계들에서 성취될 수 있다. 압축 수단은 나사 공급기(screw feeder) 또는 수격 펌프(hydraulic ram)와 같은, 진공 또는 기계 수단의 이용을 포함한다.
바람직하게, 해중합화 공정은 불활성 공기 하에서 실행된다. 예를 들면, 질소 제거 시스템이 제공될 수 있다. 해중합화 동안의 산소의 존재는 바람직하지 않은데, 이는 그것이 해중합화 동안 생산된 탄화수소들의 산화를 야기하여, 일산화탄소 또는 이산화물 및 스팀을 산출하고, 그에 의해 생산된 연료의 칼로리 값을 감소시키기 때문이다. 물론, 고 레벨의 산소가 존재했으면 폭발의 위험도 존재할 것이다.
노는 유리 산업에 의해 이용된 바와 같은, 유리 즉, 유리 노를 생산하기 위한 노일 수 있다. 유리 산업은 용기 상품 예로서, 유리병들 및 병들, 테이블 상품, 섬유 유리(절연 및 강화 둘 모두를 포함하는), 조명(튜빙을 포함하는), 압착 유리 및 판유리와 같은 분야들로 분할될 수 있다. 상기 산업 공정들 중 임의의 공정은 본 발명으로부터 이익을 얻는다.
축열식 노는 1250℃ 또는 그 이상의 연소 가스 사전 열 온도를 성취할 수 있다. 이것은 약 1600℃, 또는 그 이상의 최대 노 온도에 기여한다. 고온에서 적어도 1초의 연소 생성물들의 체류 시간과 함께, 상기 고온들은 연료의 연소의 매우 높은 정도의 완전성(completeness)이 성취됨을 의미한다. 이것은 결과적으로, 배기 가스들에서 불완전 연소로부터의 오염물질들의 위험을 감소시키고, 따라서 폐 플라스틱들의 해중합화를 위한 공정을 축열식 노와 통합시키는 것이 이롭다. 연소 생성물들의 체류 시간은 연료 및 공기가 먼저 혼합하여, 불꽃의 근원(root)을 형성하는 때로부터 연소 생성물들의 온도가 1000℃ 미만으로 강하할 때까지의 시간인 것으로 고려된다.
대부분의 에너지 집약적 산업 공정들에서, 불꽃들로부터 가열될 물질까지의 효과적인 열 전달이 중요하다. 복사에 의한 열 전달은 가장 효율적인 메커니즘이고, 매우 밝은 불꽃들은 복사의 열 전달을 증진시키기 위해 바람직하다. 개선된 불꽃 광도는 연료의 프로세싱 또는 반응기에 공급된 폐 플라스틱들의 혼합을 변경함으로써 성취될 수 있다. 예를 들면, 폐 플라스틱은 반응기에서 더 길게 가열되거나, 촉매제가 이용될 수 있거나, 폐 플라스틱은 반응기를 통해 다수의 패스(pass)들을 형성할 수 있거나, 진화한(evolved) 연료는 분별 또는 증류에 영향을 받을 수 있다. 상기 접근법들의 조합이 또한 이용될 수 있다.
지방족 탄화수소들은 방향족 화합물들보다 밝은 불꽃들을 산출하고, 더 이전에 언급된 바와 같이, 중량으로 약 85%의 지방족 소부분의 탄소 대 수소 비는 특히, 매우 밝은 불꽃들을 생성하기 위해 적합하다.
또 다른 양태에 따라, 본 발명은 또한, 연료를 연소시킴으로써 그리고 해중합화 공정에 의해 폐 플라스틱들로부터 연료를 생산하기 위한 플랜트에 의해 점화되는 노를 제공하고, 플랜트는 연료를 노에 공급하고, 노로부터의 폐열은 해중합화 공정을 촉진시키기 위해 이용되고, 노는 폐열 복구를 위해 축열기들을 구비하고, 노는 제 1 및 제 2 대향된 방향들로 교대로 노를 점화되고, 점화 방향은 제 1 방향과 제 2 방향들 사이에서 주기적으로 전환하고, 점화 방향의 전환 동안 생산된 연료를 담기 위한 수단이 제공된다.
바람직하게, 연료 생산 플랜트는 분해 반응기 및 노로부터 분해 반응기로 폐열을 공급하는 수단을 포함한다.
더 바람직하게, 플랜트는 분해 반응기로부터 노로 분해 반응기에서 생산된 연료를 공급하는 수단을 포함한다.
축열식 노로부터 배기 가스들(플루 가스(flue gas)들로서 또한 공지된)에서 전형적으로 이용가능한 많은 양의 폐열로 인해, 폐열을 최상으로 유리하게 활용하기 위해 멀티 단계 동작을 동작시키는 것이 가능하다. 한창 뜨거울 때, 배기 가스들은 폐 플라스틱들의 해중합화를 촉진시키기 위해 이용될 수 있다. 그러나, 이 공정을 마친 후에, 배기 가스들은 여전히 상당한 양들의 폐열을 포함하고, 이는 다른 목적들을 위해, 예로서 스팀을 발생시키기 위해, 공정에 공급하기 이전에 또는 그 동안에 폐 플라스틱들을 부드럽게 하고 단단하게 하기 위해, 또는 젖거나 세척된 폐 플라스틱들을 건조시키기 위해 이용될 수 있다.
차는 바람직하게, 용선로(cupola furnace)에서 하위 화학량론적 조건들 하에서 가열함으로써 처분된다. 생성된 연기는 축열식 노의 연소 가스 측을 향해 지향되고, 여기서 그것은 산화되고 결국 노 오염 제어 플랜트를 통해 이동한다. 차로부터의 용융 금속은 용선로의 탭구멍(tapping hole)에서 유리(liberate)되고, 골재를 위해 예로서, 도로 건설을 위해 이용될 수 있는 불활성 광물 슬래그(inert mineral slag)가 남는다.
본 발명은 이제, 첨부된 도면들을 참조하여 다음의 비 제한적인 특정 실시예들에 의해 또한 설명될 것이다.
도 1은 해중합화 공정에 의해 폐 플라스틱들로부터 연료를 생산하기 위한 플랜트에 연결된 노를 포함하는 장치를 보여주는 개략도.
도 2는 해중합화 공정에 의해 폐 플라스틱들로부터 연료를 생산하기 위한 플랜트의 일 대안적인 실시예를 보여주는 개략도.
도 1을 참조하면, 도면은 노 및 노로부터 폐열을 이용하는 해중합화 공정에 의해 폐 플라스틱들로부터 연료를 생산하기 위한 플랜트를 포함하는 장치를 보여준다. 노는 축열식 노이고, 유리 노, 더 구체적으로 플로트(float) 유리 노일 수 있다.
폐 플라스틱으로부터 연료를 생산하기 위한 플랜트(11)가 먼저 설명될 것이다. 그것은 더 간략하게 열분해 플랜트로서 언급될 수 있다. 열분해될 폐 플라스틱은 그것을 일정한 크기로 파쇄하는 것과 같은, 초기 공정에 영향을 받을 수 있다. 폐 플라스틱의 소스, 및 연료가 생산되는 열분해 반응기의 오염 물질들에 대한 감도에 의존하여, 폐 플라스틱이 또한 세척되고, 건조되며 분류될 수 있다. 그러나, 이것은 자연적으로 비용들을 증가시키고, 따라서 필요하거나 이로울 경우에 단지 실행된다.
열분해에 의한 해중합화는 진화한 연료를 희석하기 위해 공기와 같은, 제로 트램프 가스들로 최상으로 실행된다. 트램프 가스들을 통한 연료의 희석은 연료의 칼로리 값을 감소시키고 또한, 연료가 노에서 연소될 때 생성된 공기 오염을 증가시킨다. 산소의 경우에, 충분한 산소가 반응기에 존재하면, 혼합물은 화재 위험 또는 폭발의 위험을 야기할 수 있다. 열분해 플랜트(11)에는 따라서, 또한 화재 진압 시스템으로서 동작하는 불활성 가스 제거 시스템(13)이 제공된다.
장치(10)는 해중합화 공정을 위한 원료(raw material) 또는 공급 원료의 역할을 하는 폐 플라스틱을 수용하는 락 호퍼(lock hopper)(12)를 포함한다. 락 호퍼는 공기 진입을 방지하기 위해 봉인될 수 있고, 불활성 가스(예로서, 질소) 제거 시스템(13)의 유출구는 호퍼로부터 예로서, 폐 플라스틱 내에 가두어진 공기로부터 공기를 제거하기 위해 제공된다. 폐 플라스틱은 락 호퍼(12)로부터, 이 실시예에서 전기 모터(16)에 의해 구동된 나사 공급기(14)의 형태를 취하는 가열된 압축 디바이스와 같은 공급 디바이스의 유입구로 공급된다. 나사 공급기에 대한 가능한 대안들은 압출 공급기 또는 수격 펌프를 포함한다.
US 6,807,916의 개시와 다르게, 폐 플라스틱은 드럼통들, 또는 임의의 다른 유형의 용기일 필요가 없다. 오히려, 폐 플라스틱은 지속적 또는 간헐적 스트림으로 예로서, 컨베이어(도시되지 않음)를 통해 루즈 물질(loose material)로서 공급될 수 있다. 공급 레이트는 락 호퍼(12)에서 폐 플라스틱의 적절한 레벨을 유지하도록 조정된다.
폐 플라스틱에서의 폴리머(polymer)들은 조성에 의존하여 대략 65℃ 이상에서 부드러워지기 시작한다. 이것은 칩입형 공기(interstitial air)의 탈기(degassing)를 통해 발생하는 자연적 압축을 야기하고, 이 공기는 생산된 연료의 칼로리 값을 개선하기 위해 플라스틱으로부터 멀리 이동된다. 나사 공급기(14)는 폐 플라스틱의 조각들 가운데 부가적인 침입형 공기를 배출함으로써 이 공정에 도움을 준다.
압축은 또한, 롤러, 압력판, 압출기, 진공 컨베이어, 진동 컨베이어, 수격 펌프, 또는 단순하게 중력을 통해 성취될 수 있다. 어떤 장치 또는 방법이 이용되든지 간에, 압축력이 파쇄된 플라스틱의 입자들 사이의 침입형 공기를 감소시키기 위해 적용된다. 폴리머가 약 65℃에 도달할 때, 크기 감소가 중력 하에서 발생하고, 따라서 복수의 단계들 이상적으로 경제적 효율성을 위해 2가지 단계들로 열분해 공정을 배열하는 것이 가능하지만 연속적인 배열이 채택될 수 있다.
나사 공급기의 유출구는 가열된 건조 및 탈염소 용기(18)에 연결되어, 압축된 폐 플라스틱의 전하가 나사 공급기에 의해 용기로 공급되는 것을 허용한다. 용기(18)에서, 폐 플라스틱은 약 180℃ 내지 280℃의 온도로 가열되어, 그것으로 하여금 녹게 한다. 용기는 따라서, 녹은 플라스틱을 포함하고, 개념적 액체 표면이 도면에 보여진다.
폐 플라스틱의 유형 및 오염의 정도에 의존한 다양한 휘발성분들과 같이 다른 가두어진 공기 및 습기는 녹은 플라스틱으로부터 떠난다. 부가적으로, 임의의 PVC 또는 다른 염소 또는 브로민 함유 플라스틱들은 릴리싱 염소 또는 브로민 함유 가스들을 분해하기 시작한다. 예를 들면, 염산은 용기(18)의 수증기 공간에서 형성할 수 있고, 상기 용기는 따라서 가능하게 부식 방지 물질들로 코팅된 부식 방지 고온 스틸들로 구성되어야 한다. 모든 진화한 가스들은 유통관(20)과 열 산화기(25)를 통해 하기에 설명된, 오염 제어 플랜드에 이르는 배기 연도로 빠진다.
녹은 그리고 아직 녹지 않은 폐 플라스틱의 혼합물은 플라스틱 혼합물로의 열 전달의 레이트를 증가시키기 위해 저어진다. 또한, 폐 플라스틱의 극도로 가변적이고 다양한 품질을 고려할 때, 젓는 것은 혼합물의 균질성(homogeneity)를 개선하는 것을 돕는다. 녹은 플라스틱으로 연장하는 교반기(22)는 따라서, 젓는 것을 실행하기 위해 제공되고; 그것은 난류를 성취하기 위해 충분한 혼합물을 교반하는 것이 바람직하다.
용기(18)의 안전한 동작에 대하여, 안전 릴리프 밸브(safety relief valve)(24)가 제공되고, 이는 용기에서 압력의 구축의 경우에 동작한다. 화재를 억제하는 수단(26)이 또한 제공되고, 이는 질소 제거 시스템의 일부일 수 있고, 데미스터(demister)(27)는 가스들을 위해 의도된 유출구들로의 액체 과다 현상을 방지한다. 폐 플라스틱 중에서 금속, 흙, 돌들, 등과 같은 고체 오염 물질들, 및 용기에서 우세한 온도들에서 녹지 않는 다른 물질들이 존재할 수 있다. 고체 잔여물을 위한 트랩 및 유출구(28)가 용기(18)의 밑면에서 제공된다.
녹은 플라스틱은 도관(30)을 통해 용기(18)를 떠나고, 가열될 분해 반응기(32)에 진입하고, 그것은 따라서 용기(18)와 같이 녹은 플라스틱으로 부분적으로 채워진다. 압력 표시자(34)는 가열된 도관(30)에 설치될 수 있다. 분해 반응기(32)에서, 녹은 플라스틱은 그 범위가 300℃ 내지 650℃, 바람직하게 400℃ 내지 450℃의 온도로 가열되고, 그에 의해 플라스틱으로 하여금 해중합화되어 탄화수소들로 나누어지게 하여, 폐 플라스틱으로부터 연료를 생산한다. 얻어진 실제 온도는 연도 가스 온도 및 폐 플라스틱의 처리량에 의존한다.
분해 반응기에서 진화한 연료는 비응축 기상(gaseous phase) 및 응축 기상으로 구성된다. 비응축 기상은 탄화수소들 및 질소 또는 다른 오염 물질들과 같은, 실온에서 기상인 다른 종을 포함한다. 이론에서, 가스들의 끓는점들 미만으로 그들의 온도를 감소시키기 위해 충분하게 냉각되는 경우에 상기 가스들이 응축될 수 있을지라도, 많은 탄화수소들 및 다른 종에 대해, 끓는점은 0℃ 훨씬 아래에 있다. 따라서, 이들 가스들을 응축하지 않는 것이 실현가능하지 않는 것으로 고려된다. 열분해되는 폐 플라스틱의 속성에 의존하여, 분해 반응기의 산출량의 5%와 40% 사이가 비응축 기상에 있을 수 있다. 이 비율은 원한다면 분해 촉매의 이용에 의해 변경될 수 있다. 예를 들면, 아크롬산구리(copper chromite)는 에틸렌 가스의 형성을 촉진하기 위해 이용될 수 있다.
분해 반응기(32)에는 또한, 열 전달의 레이트를 증가시키고, 전하를 통해 열을 분산하며 녹은 플라스틱을 혼합하기 위해 교반기(22)가 제공된다. 교반은 열분해가 가능한 한 완전한 것임을 보장하고, 또한 열분해의 증가된 레이트를 보장하기 위해 바람직하다. 실제로, 열분해 레이트는 폐 플라스틱의 온도 및 조성, 폐 플라스틱에 대한 열 전달의 레이트, 및 (이용되면) 촉매에 의존한다. 분해 반응기에서의 폐 플라스틱의 체류 시간은 반응기의 크기 및 충진 레벨에 의존하여, 대략 5분으로부터 1.5시간까지일 수 있다. 자연적으로, 체류 시간이 길어질수록 또는 원하는 연료 생산의 레이트가 커질수록, 더 큰 분해 반응기가 요구된다.
분해 반응기에는 또한, 안전 릴리프 밸브(24), 화재 억제제(26), 데미스터(27) 및 차 그리고 오염 물질들과 같은 고체 잔여물을 위한 트랩 및 유출구(28)가 제공된다. 안전 릴리프 밸브들(24)은 어떤 가스가 필요에 따라 산화되고 처분되는지에 의해 열 산화기(25)로 이어진다.
해중합화 공정을 통해 물질을 이동시키기 위한 일반적인 추진력은 중력이고, 초기의 전동 나사 공급기 외에; 그러나, 펌프들 또는 나사들이 물질을 이동시키는 대안적인 수단이다.
주 굴뚝(36)은 배기 가스들을 노로부터 침니(chimney)(38)까지 운반하고, 이는 침니 통풍을 생성하며, 배기 가스들이 높이에서 확산하는 것을 가능하게 한다. 주 굴뚝(36)에는 또한, 침니 통풍이 단독으로 오염 제어 플랜트(하기에 설명됨)를 통해 배기 가스들을 끌어올리는데 충분하지 않은 경우에 이용하기 위해 유도된 통풍 팬(39)이 제공될 수 있다. 유도된 통풍 팬(39)은 따라서, 오염 제어 플랜트로부터 발생하는 압력 강하들을 보상한다.
나사 공급기(14), 건조 및 탈염소 용기(18), 및 분해 반응기(32)는 노로부터의 배기 가스들에 포함된 폐열에 의해 전부 가열된다. 나사 공급기(14), 건조 및 탈염소 용기(18), 및 분해 반응기(32)의 각각에는 배기 가스들로부터 열을 추출하기 위한 열 교환기가 제공된다.
도면에 개략적으로 도시된 열 교환기들은 재킷들(40, 42, 44)을 가열하고 있고, 배기 가스들은 밸브 파이프들(46)에 의해 자켓들(40, 42, 44) 주위로 순환된다. 나사 공급기(14), 건조 및 탈염소 용기(18), 및 분해 반응기(32)를 위한 파이프들(46)은 역순으로 주 굴뚝(36)에 연결되어, 배기 가스가 먼저 분해 반응기(32), 다음에 건조 및 탈염소 용기(18), 그리고 마지막으로 나사 공급기(14)의 자켓의 주위를 순환하게 한다. 이 방식으로, 배기 가스들은 더 뜨거워지고, 따라서 그들이 건조 및 탈염소 용기(18)의 자켓 주위를 순환할 때보다, 후자의 자켓 주위를 순환할 때, 더 많은 열을 분해 반응기(32)에 전달한다. 유사하게, 배기 가스들이 나사 공급기(14)의 자켓 주위를 순환할 때 그들은 상대적으로 더 차가워진다.
더 복잡한 열 교환기들 예로서, 열이 교환될 수 있는 표면 영역을 증가시키기 위해 판들 또는 튜브들을 이용하는 열 교환기들이 이용될 수 있다. 주 굴뚝(36) 및 파이프들(46) 상에 도시된 화살표들은 가스들의 흐름의 방향을 나타낸다.
분해 반응기(32)에는 분해 반응기(32)에서 생성된, 열분해의 휘발성 제품들 즉, 연료가 가스의 형태로 반응기를 떠나는 유출구 파이프(48)가 제공된다. 유출구 파이프(48)는 또 다른 흐름 미터(50)를 구비하고, 뜨거운 연료가 핫 연료 공급 파이프(54)를 따라 노에 공급되거나, 연료를 액체로 응축하기 위해 응축기 파이프(58)를 통하여 응축기(56)를 통해 이동될 수 있는 핫 연료 정션(hot fuel junction)(52)으로 이어진다. 응축기 파이프(58)는 그 다음, 보조 탱크(59)를 통해, 콜드 연료 저장 탱크(60)로 계속되고, 제어 밸브(62)를 통해 액체 연료를 탱크(60)로 운반한다. 핫 연료 공급 파이프(54)는 제어 및 분리 밸브(64)를 구비한다.
분해 반응기에 의해 생산된 뜨거운 가스 연료는 응축 및 비응축 부분들을 포함한다. 비응축 부분은 탄화수소들 및 실온에서 기상인 다른 종을 포함한다. 상기 종이 물론, 충분하게 냉각된 경우에 응축될 수 있을지라도, 그들 중 많은 것에 대해, 끓는점이 0℃ 미만이고, 따라서 응축은 실현가능하지 않다. 결과적으로, 비응축 부분은 액체로 응축될 수 없고 콜드 연료 저장 탱크(60)에 저장될 수 없다. 가스 저장 수용기(도시되지 않음)는 요구되면 비응축 부분의 저장을 위해 제공될 수 있다. 대안적으로, 뜨거운 연료의 흐름에 대한 일시적 중단 동안(예를 들면, 축열식 노의 전환 동안), 뜨거운 연료는 단순하게, 반응기에서의 압력이 일시적으로 증가하는 것을 허용함으로써 분해 반응기에 저장될 수 있다. 마지막 수단으로서, 연료는 열 산화기(25)를 통해 태워질 수 있다.
안전 및 오염 회피의 이유들 때문에, 열분해 플랜트는 냄새 제어를 위한 그리고 누출의 경우에 가스들을 가두기 위해 배기통(66)으로 덮이고, 덮개에는 비상 밸브(67) 및 화재 억제 시스템(68)이 제공된다.
노(70)로 되돌아오면, 이것은 내화물로 구축되고, 더 이전에 언급된 바와 같이, 유리 노 특히, 플로트 유리 노일 수 있다. 이 경우에, 노는 용해 장치(72) 및 웨이스트(76)에 의해 용해 장치에 연결된 작동 단부(working end)(74)를 포함한다. 원료들은 용해 장치(72)에서 녹아서 화살표(A)의 방향으로 웨이스트(76)를 통해 작동 단부(74)로 흐르는 녹은 유리를 생산한다. 녹은 유리는 작동 단부(74)에서 컨디셔닝(conditioning)되고, 그 다음 플로트 배스(float bath) 또는 전조기와 같은 유리 형성 수단(도시되지 않음)으로 이어지는 관(canal)(78)에 의해 작동 단부(74)를 떠난다.
노(70)는 축열식 노이고 2개의 축열기들, 좌측 축열기(80), 및 우측 축열기(82)를 포함하며, 좌측 및 우측은 화살표(A)에 의해 표시된 바와 같이 유리 흐름의 방향에 대해 언급된다. 좌측 축열기(80)는 노의 좌측 상에 배치되고, 우측 축열기는 노의 우측에 대응하며, 노는 화살표(A)에 평행한 중심 라인에 관해 대칭적이다.
다수의 축열기들이 존재할 수 있고/있거나, 축열기들은 내부적으로 나누어지거나 분할될 수 있다. 포맷이 무엇이든지 간에, 축열기들은 포트 넥(port neck)들(84)을 통해 용해 장치(72)에 연결된다. 포트 넥들은 용해 장치의 상부구조의 포트들로 이어지고, 용어 "상부구조"는 녹은 유리 레벨 위에 있는 내화 구조체의 일부를 언급한다. 각각이 포트에는 연소될 연료, 예로서 천연 가스, 중유 또는 폐 플라스틱으로부터의 연료를 위해 적합한 연소기(도시되지 않음)가 제공된다. 연료가 미리 가열된 연소 가스와 만나는 결과로서, 연소기들은 대향 측 즉, 배기 측을 향해 점화하고 있는 노의 측 상의 연소기들로부터 연장하는 불꽃들(86)을 생성한다.
축열기들은 배기 가스들이 축열기들을 떠나고 연소 가스가 그들에 진입하는 좌측 및 우측 연관(furnace flue)들(88, 89)에 연결된다. 더 구체적으로, 임의의 주어진 시간에서, 점화의 방향에 따라, 하나의 축열기는 연소 가스를 사전 가열하고 다른 축열기는 배기 가스들로부터 열을 흡수하며, 전환 밸브(90)는 연소 가스 및 배기 가스들의 흐름을 적절하게 지향시킨다. 연소 가스 팬(92)은 연소 가스 연도(96)를 통해 연소 가스의 공급을 제공하고, 상기 연소 가스 연도에는 또한, 비상 연소 가스 유입구(94)가 제공된다.
점화의 방향이 전환되기 전에 특정한 노가 하나의 방향으로 점화되는 시간의 길이는 축열기들의 열용량, 내화물들의 품질 및 배기 가스들의 온도와 그들을 통한 배기 가스들의 흐름의 레이트에 의해 결정된다. 노가 하나의 방향으로 오래 점화될수록, 배기 축열기에서의 내화물들이 더 뜨거워지고, 이것은 하나의 방향으로의 점화의 시간을 제한한다. 이 시간의 길이는 전형적으로, 대부분의 유리 노들에 대해 15분과 30분 사이이다. 전환 동안, 전환 밸브(90)는 연소 가스를 대향 연관(88)을 따라 이전으로부터 대향 축열기로 지향시키기 위해 활성화된다. 전환 밸브(90)는 유사하게 배기 가스들의 흐름의 방향을 변경한다.
전환 동안, 불꽃들(86)이 없어지고, 어떠한 연료도 연소되지 않는다. 소위 "플레임 아웃(flame out)" 시간은 25초와 1분 30초 사이를 지속할 수 있다. 열분해 플랜트가 지속적으로 연료를 생산하기 때문에, 노에 대한 연료의 공급이 일시적으로 중단될 때, "플레임 아웃" 시간 동안 생산된 연료를 처리하기 위한 조치들이 요구된다.
예를 들면, 연료의 생산 레이트를 감소시키기 위해, 열분해 반응기의 교반을 정지하고 진화한 가스를, 압력이 상승하도록 허용되는 저장 수용기(도시되지 않음)로 우회시키는 것이 가능하다. 게다가, 가스 연료는 저장 수용기로 보내진 가스의 양을 감소시키기 위해 "플레임 아웃" 기간 동안 그것을 응축기(56)를 통해 이동시킴으로써 응축 부분을 빼앗길 수 있다. 응축된 액상 연료는 그 다음, 열분해 반응기(32)로 다시 보내지거나 액체 연료 저장 탱크(60)로 보내질 수 있다.
고온 가스 연료 저장 수용기는 축열기 전환의 어느 한 측 상의 연료의 작동 압력을 증가시키기 위해 송풍기에 의해 증가될 수 있고 그에 의해, 시스템의 기능이 증가한다. 저장 수용기는 응축물이 안전하게 제거되고 콜드 액체 연료 저장 탱크(60)로 보내지는 것을 가능하게 하기 위해 적절한 크기이어야 하고 응축 트랩들에 맞춰져야한다. 플랜트 오작동 동안 효율적으로 사용된 최종 조치 또는 고온 가스 수용기에서의 고압은 프로세스 플레어(process flare)(25)이고, 여기서 과도한 연료는 안전하게 연소되어 제거된다.
열분해 제품으로부터 0 내지 100%의 응축 부분의 일부가 냉각되고 응축되어 액체 연료 저장 탱크(60)로 보내진다. 액체 연료 저장 탱크를 직접적으로 채울 수 있는 이득은 노 요구조건을 초과하여 생산된 연료가, 열분해 플랜트가 예로서, 노 오염 제어 플랜트가 작동하지 않거나 뒤이은 장비 고장으로 인해 이용가능하지 않은 기간들 동안 장기간 저장될 수 있는 것이다. 게다가, 임펠러들과 같은 혼합 수단은 연료를 균질화하고 납 증가(wax build-up)들이 저장 탱크의 밑에 축적되는 것을 방지하기 위해 액체 저장 탱크(60) 내에 설치될 수 있다. 대안적으로, 회전 탱크가 연료를 교반하기 위해 이용될 수 있다.
전환 밸브(90)를 통해 이동한 후에, 배기 가스들은 주 연도(98)를 따라 흐르고, 상기 주 연도에는 노 내부의 압력을 조절하기 위한 노 압력 제어 밸브(도시되지 않음)가 제공된다. 주 배기 연도(98)는 배기 가스들이 오염 제어 플랜트로 또는 오염 제어 플랜트 경유 연도(102)를 따라 지향될 수 있는 연도 정크션(100)으로 이어진다. 플레어(25)에 의해 생성된 연소 가스들은 또한, 이 연도 정크션에서 배기 가스들에 조인한다.
오염 제어 플랜트는 전형적으로, 산 가스 스크러버(acid gas scrubber)(104), 정전기 집진기(106) 및 선택적 촉매 반응기(108)를 포함하고 배기 가스들은 이들 디바이스들의 각각을 통해 교대로 이동한다. 산 가스 스크러버(104)에서, 알칼리는 배기 가스들을 중화하기 위해 인젝터(110)를 통해 주입된다. 배기 가스들은 그 다음, 정전기 집진기(106)로 이동하고, 여기서 전압은 먼지를 집진하고 배기 가스들로부터 그것을 제거하기 위해 인가된다. 다음에, 배기 가스들은 질소산화물 가스들(NO 및 NO2)을 질소 및 물로 감소시키기 위해 촉매층(catalyst bed)(112) 및 암모니아 스프레이(114)가 제공되는 선택적 촉매 반응기(108)로 이동한다.
선택적 촉매 반응기(108)를 떠날 때, 깨끗해진 배기 가스들은 주 굴뚝(36)으로 이동한다. 오염 제어 플랜트 경유 연도(102)가 제공되어, 임의의 이유로 인해 배출 가스들이 오염 제어 플랜트를 통해 이동할 수 없으면, 배기 가스들이 대신에 그것을 경유하는 것을 가능하게 한다.
노와의 열분해 플랜트의 통합이 노로부터의 폐열을 폐 플라스틱의 열분해를 촉진하는 것을 허용하는 방법은 이미 설명되었다. 이러한 통합의 또 다른 장점은, 열분해 플랜트에 의해 생산된 연료가 노를 점화하기 위해 이용될 수 있다는 것이다. 바람직하게, 뜨거운 연료는 핫 연료 공급 파이프(54)를 통해 분해 반응기(32)로부터 노 연소기들로 직접적으로 흐르고, 상기 핫 연료 공급 파이프는 절연되고 열선(trace heating)(116)이 제공된다. 연료의 품질은 연료 품질 분석 포인트(118)에서 모니터링되고 연료의 흐름은 연료 흐름 제어 시스템(120)에 의해 조절된다. 연료 전달 파이프들(122)의 시스템은 연료를 노(70)에서의 연소기들로 전달한다. 명료성의 목적들을 위해, 연료 전달 파이프들은 단지 우측 연소기들에 대해 보여진다. 분해 반응기(32)로부터의 뜨거운 연료의 직접적 이용은 냉각되고, 저장될 연료에 대한 필요성을 회피하고 최대 연소 온도까지 그것을 다시 가열하기 위해 필요한 감지가능한 열을 절약한다.
때로는, 열분해 플랜트로부터의 연료의 생산의 레이트가 노에 의한 연료의 소비의 레이트를 초과할 수 있는 사실을 고려하여, 연료 저장 시스템이 또한 제공된다. 이것은 콜드 연료 저장 탱크(60), 콜드 연료 펌프(124) 및 콜드 연료 전달 파이프들(126)을 포함한다. 연료 품질 분석 포인트(118) 및 연료 흐름 제어 시스템(120)은 또한, 콜드 연료 저장 탱크(60)에 저장된 연료를 위해 제공된다. 저장된 연료는 그것이 연소될 수 있기 전에 재가열될 필요가 있을 수 있고, 따라서 연료 흐름 제어 시스템(120)은 연료 가열기를 통합할 수 있다. 노에서의 양호한 원자화 및 연소를 위한 원하는 운동학적 연료 점도는 18.5 센티스트로크(18.5 cSt=1.85e- 5m2/sec)이고, 연료 온도는 이것을 성취하기 위해 조절된다. 필요하다면, 연료 가열기는 또한, 연료가 펌프되는 것을 허용하기 위해 점도를 충분하게 감소시키기 위해 콜드 연료 저장 탱크(60)의 유출구에서 제공될 수 있다.
예비(back-up)가 이용가능하도록, 종래의 연료에 대해 연료 전달 시스템으로부터 분리되는 폐 플라스틱으로부터의 뜨거운 연료를 위해 연료 전달 시스템의 파이프들, 등을 제공하는 것은 신중하다.
제안된 발명의 또 다른 양상은 생산 공정에서 응축 단계를 회피함으로써 노로 뜨거운 연료를 직접적으로 전달하는 것이 가능하다는 것이다. 임의의 연소 공정의 제 1 단계는 연료 온도를 점화 온도로 상승시키는 것이다; 이 감지가능한 열은 공정의 열 효율성을 측정할 때 고려될 필요가 있는데, 이는 연료의 열 에너지의 일부가 연료를 그것의 자동 점화 온도로 상승시키기 위해 이용될 수 있기 때문이다. 열분해 반응기(32)의 마지막 단계가 300℃와 450℃ 사이에서 동작하기 때문에, 가스 연료를 제거하고 그것을 연소기들의 노즐들로 직접적으로 전달하는 것이 가능하며, 연료의 온도는 단지 뒤떨어지고, 필요한 경우에 열선 전달 파이프 동작으로부터의 손실들로 인해 감소된다.
400℃에서 주 노 연소기들에 대한 뜨거운 연료의 전달은 ~3%의 순 에너지 절약을 야기할 수 있다. 정정된 압력 및 온도인 고온 오리피스판(orifice plate)들은 연료 흐름 레이트를 측정하기 위해 이용될 수 있고 가스 크로마토그래프(gas chromatograph)는 연료의 품질 따라서, 노로 전달된 단위 시간 당 에너지를 결정하기 위해 이용될 수 있다. 전형적인 대용량 축열식 플로트 유리 노는 연료와 등가인 5000m3/hr의 천연 가스를 소비할 수 있다.
열분해 반응기(32)로부터 얻어진 연료는 노에 의해 요구된 바와 같이 분해된 연료의 생산을 증진하기 위해 분별작용 또는 촉매 작용을 통해 바꿔질 수 있다. 반응기로부터 산출된 분해된 연료는 제 2 이동을 위해 액체 연료를 반응기로 리턴시키기 위해 환류 응축기를 구비할 수 있고, 그에 의해 더 낮은 분자량 연료들의 효율성을 개선시킨다. 게다가, 시스템은 열분해 연료가 저장장치로 보내지거나 노에 의해 즉시 소비되는지의 여부에 의존하여 액체 일부 또는 가스 일부에 알맞게 하기 위해 유체 분해 촉매들을 구비할 수 있다.
도 2는 폐 플라스틱들로부터 연료를 생산하기 위한 플랜트의 단순화된 버전을 보여준다. 도 1에 보여진 플랜트와 비교하여 이 플랜트(211)에서의 주 차이는 어떠한 분리된 건조/탈염소 용기가 존재하지 않고 또한, 어떠한 분리된 분해 반응기도 존재하지 않다는 것이다. 대신에, 건조, 탈염소 및 열분해 또는 분해 단계들은 모두 폐 플라스틱을 위한 공급 디바이스 즉, 나사 공급기에서 발생한다. 나사 공급기는 발생할 모든 상기 단계들을 위한 시간 및 공간을 제공하기 위해 계획된 처리량에 관하여 적절한 길이여야 할 필요가 있다. 명백하게, 나사 공급기는 또한, 마주할 가능성이 있는 공격적(aggressive) 조건들 예로서, 폐 플라스틱들에서 PVC로부터의 뜨거운 HCI, 및 열분해 단계 동안 만연할 수 있는 상대적인 고온들(최대 대략 650℃ 플러스 안전 여유(safety margin)까지의)을 견딜 수 있는 적절한 물질들로부터 제조될 필요가 있다. 그러나, 이전에 언급한 바와 같이, 상기 온도들은 가스화를 위해 요구된 온도들보다 상당히 낮다.
도 1의 실시예에서와 같이, 폐 플라스틱은 락 호퍼(212)에 공급되고, 그로부터 플라스틱은 나사 공급기(214)로 이동한다. 나사 공급기는 전기 모터(216)에 의해 동력이 공급되고, 상기 전기 모터에는 그것이 소비하는 전류 및 그것의 회전 레이트를 측정하는 수단이 제공된다. 나사 공급기는 노(도 2에서 도시되지 않음)의 배기 가스들에 의해 즉, 연도 가스들에 의해 가열된다. 연도 가스들에 의해 나사 공급기를 가열하는 가장 단순한 방식은 나사 공급기(214)를 배기 가스 연도 예로서, 주 굴뚝(236)에 배치하는 것이다. 도 1의 실시예와 비교하여 또 다른 차는 이것으로부터 발생하는데 즉, 나사 공급기 및 연관된 배관에 대한 가열 자켓들이 생략되는 것이다.
도면에서 "TI"로 지정된 온도 측정 수단(218)은 나사 공급기를 따라 제공된다. 폐 플라스틱은 나사 공급기를 통해 압축되고, 건조되고, 탈염소화되며 열분해된다. 열분해의 휘발성 제품들을 포함하는 연료는 유출구(248)를 통해 나사 공급기를 떠나고, 낙-아웃 팟(knock-out pot)(220)으로 이동한다. 유출구(248)에는 온도 표시(TI) 및 압력 표시(PI)가 제공된다.
연료에서의 가장 무거운 부분들의 일부 초기 응축은 낙-아웃 팟(220)에서의 연료의 도달 시에 즉시 발생하고, 결과로 발생하는 액체는 콜드 연료 저장 탱크(260)로 이동한다. 가스로 남은 부분들은 응축기들(256 및 257)들로 위를 향해 이동하고, 그들은 냉각수 시스템(222)으로부터의 냉각수에 의해 냉각된다. 응축된 연료는 낙-아웃 팟(220)을 통해 연료 저장 탱크(260)로 아래를 향해 흐른다. 연료 저장 탱크(260) 및 차 수집 탱크(230)는 226으로 지정된 안전 영역으로 통기된다.
냉각수 시스템(222)은 종래적인 것이고 단지 관련 부분이 도시되며, 냉각수 피드부(223)로부터 냉각수 리턴부(224)로 연장한다. 온도 표시자들(TI)과 같은 제어의 표준 수단, 흐름 미터들, 및 밸브들이 제공된다.
연료의 응축 부분의 응축 후에, 비응축 가스들은 저장 용기(232)로 이동하고, 상기 저장 용기에는 다시 화재 억제 시스템(233)이 제공된다. 용기(232)로부터의 유출구는 노에서의 연소를 위해 파이프(234)를 통해 가스들을 노 연소기들로 운반한다. 용기(232)로부터의 유출구에는 산호 함유량을 확인하고 가스 크로마토그래프(GC)에 의해 가스들의 조성을 분석하기 위한 샘플링 포인트들이 제공된다.
안전의 이유들로 인해, 그리고 또한 생산된 연료의 칼로리 값이 원하지 않은 산화에 의해 저하되지 않음을 보장하기 위해, 플랜트(211)에는 또한 화재 억제 시스템으로서의 역할을 하는 불활성 가스 제거 시스템(213)이 제공된다. 이것은 사실상 종래적이지만, 완전성을 위해 간략하게 설명될 것이다.
질소의 소스(238) 예로서, 실린더는 적절한 밸브들을 통해 질소 및 압력 표시자(PI)를 매니폴드(manifold)(239)에 제공하고, 그로부터 그것은 질소를 그것이 요구되는 위치들로 운반하는 일련의 파이프들(240)로 분산된다. 상기 위치들은 락 호퍼(212)의 2개의 단부들, 나사 공급기(214), 및 차 수집 탱크(230)를 포함한다. 파이프들(240)에는 밸브들, 및 종래의 방식으로 흐름 표시자들(FI)이 제공된다.
폐 플라스틱의 처리량에 관하여 나사 공급기의 공정 능력은 주로 그것의 크기, 주로 그것의 지름에 의해 좌우된다. 그러나, 나사 공급기의 벽을 통한, 연도 가스로부터의 폐 플라스틱 내부로의 열 전달을 고려하는 것이 또한 중요하다. 혼합된 폐 플라스틱은 심지어 압축될 때, 불량한 열 전도도를 갖고, 이것은 이용될 수 있는 나사 공급기의 지름을 제한한다. 따라서, 플랜트의 공정 능력을 증가시키기 위해, 다수의 나사 공급기들이 병렬로 이용된다.
10: 장치 11, 211: 플랜트
12, 212: 락 호퍼
13: 불활성 가스 제거 시스템 14, 214: 나사 공급기
16, 216: 전기 모터
18: 가열된 건조 및 탈염소 용기 20: 유통관
22: 교반기 24: 안전 릴리프 밸브
25: 열 산화기 27: 데미스터
30: 도관 32: 가열된 분해 반응기
34: 압력 표시자 36, 236: 주 굴뚝
38: 침니 39: 통풍팬
40, 42, 44: 자켓 46: 밸브 파이프
48: 유출구 파이프 50: 흐름 미터
52: 연료 정크션 54: 공급 파이프
56: 응축기 58: 응축기 파이프
59: 보조 탱크 60: 콜드 연료 저장 탱크
62: 제어 밸브 64: 제어 및 분리 밸브
66: 배기통 67: 비상 밸브
68, 233: 화재 억제 시스템 70: 노
72: 용해 장치 74: 작동 단부
78: 관 80: 좌측 축열기
82: 우측 축열기 88: 좌측 연관
89: 우측 연관 90: 전환 밸브
92: 연소 가스 팬 94: 연소 가스 주입구
96: 연소 가스 연도 98: 주 배출 연도
100: 연도 정크션
102: 오염 제어 플랜트 경유 연도 104: 산 가스 스크러버
106: 정전기 집진기 108: 선택적 촉매 반응기
110: 인젝터 114: 암모니아 스프레이
116: 열선
118: 연료 품질 분석 포인트
120: 연료 흐름 제어 시스템 122: 연료 전달 파이프
124: 콜드 연료 펌프
126: 콜드 연료 전달 파이프
213: 불활성 가스 제거 시스템 220: 낙-아웃 팟
222: 냉각수 시스템 223: 냉각수 피드부
224: 냉각수 리턴부 230: 차 수집 탱크
232: 저장 용기 234: 파이프
239: 매니폴드 248: 유출구
256, 257: 응축기
260: 콜드 연료 저장 탱크

Claims (15)

  1. 연료를 연소시킴으로써 노(furnace)를 점화하는 방법에 있어서:
    - 연료의 공급을 상기 노에 제공하는 단계로서, 상기 노에 공급되고 상기 노에서 연소된 연료의 일부는 해중합화 공정(deploymerisation process)에 의해 폐 플라스틱들로부터 생산되고, 상기 노로부터의 폐열은 상기 해중합화 공정을 촉진시키기 위해 이용되는, 상기 제공 단계,
    - 제 1 및 제 2 대향된 방향들로 교대로 상기 노를 점화하는 단계로서, 점화 방향은 상기 제 1 방향과 상기 제 2 방향 사이에서 주기적으로 전환하는, 상기 점화 단계,
    - 상기 점화 방향이 전환하고 있는 동안 상기 노에 대한 상기 연료의 공급을 일시적으로 중단시키는 단계로서, 상기 일시적 중단 동안 생산된 연료를 담기 위한 수단이 제공되는, 상기 중단 단계를 포함하고,
    - 상기 노는 폐열 복구를 위해 축열기들을 구비하는, 노를 점화하는 방법.
  2. 제 1 항에 있어서,
    상기 해중합화 공정을 촉진시키기 위해 필요한 실질적인 모든 열은 상기 노로부터 공급되는, 노를 점화하는 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    폐 플라스틱들로부터 생산된 연료는 적어도 70%의 탄화수소들, 바람직하게 80%, 더 바람직하게 90%의 탄화수소들을 포함하는, 노를 점화하는 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    폐 플라스틱들로부터 생산된 연료는 10 내지 100 MJ/Nm3, 바람직하게 20 내지 80 MJ/Nm3, 더 바람직하게 25 내지 70 MJ/Nm3, 가장 바람직하게 30 내지 50 MJ/Nm3의 더 낮은 가열 값(LHV)을 갖는, 노를 점화하는 방법.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 연료는 350℃ 내지 650℃, 바람직하게 400℃ 내지 450℃에서 해중합화에 의해 폐 플라스틱들로부터 생산되는, 노를 점화하는 방법.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 해중합화 공정에 의해 생산된 연료는 상기 노에 공급되기 전에 저장되는, 노를 점화하는 방법.
  7. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 해중합화 공정에 의해 생산된 연료는 상기 노에 직접적으로 즉, 상기 연료를 저장하지 않고 공급되는, 노를 점화하는 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 노에서 연료를 연소시키는 것은 상기 해중합화 공정을 촉진시키기 위해 이용되는 폐열을 포함하는 배기 가스들을 생성하고, 상기 해중합화 공정은 반응기에서 발생하며, 상기 반응기는 상기 노의 배기 가스들과 상기 폐 플라스틱들 사이에 폐열을 교환하는 수단을 포함하는, 노를 점화하는 방법.
  9. 제 8 항에 있어서,
    상기 배기 가스들은 상기 반응기에 직접적으로 공급되는, 노를 점화하는 방법.
  10. 제 8 항에 있어서,
    폐열은 부 회로를 통해 상기 반응기에 공급되고, 상기 배기 가스들은 상기 부 회로에서의 열 교환기에 공급되고, 상기 열 교환기는 상기 배기 가스들로부터 열을 추출하며 상기 열을 상기 부 회로를 통해 상기 반응기에 공급하는, 노를 점화하는 방법.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 폐 플라스틱들은 상기 해중합화 공정 이전에 압축되는, 노를 점화하는 방법.
  12. 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 해중합화 공정은 불활성 환경 하에서 실행되는, 노를 점화하는 방법.
  13. 연료를 연소시킴으로써 그리고 해중합화 공정에 의해 폐 플라스틱들로부터 연료를 생산하기 위한 플랜트에 의해 점화되는 노에 있어서,
    상기 플랜트는 연료를 상기 노에 공급하고, 상기 노로부터의 폐열은 상기 해중합화 공정을 촉진시키기 위해 이용되고, 상기 노는 폐열 복구를 위해 축열기들을 구비하고, 상기 노는 제 1 및 제 2 대향된 방향들로 교대로 노를 점화되고, 상기 점화 방향은 상기 제 1 방향과 상기 제 2 방향들 사이에서 주기적으로 전환하며, 상기 점화 방향의 전환 동안 생산된 연료를 담기 위한 수단이 제공되는, 노.
  14. 제 13 항에 있어서,
    분해 반응기 및 상기 노로부터 상기 분해 반응기로 폐열을 공급하는 수단을 포함하는, 노.
  15. 제 14 항에 있어서,
    상기 분해 반응기로부터 상기 노로 상기 분해 반응기에서 생산된 연료를 공급하는 수단을 포함하는, 노.
KR1020177016654A 2014-12-17 2015-12-17 KR102502323B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1422537.9 2014-12-17
GB201422537 2014-12-17
PCT/GB2015/054054 WO2016097742A1 (en) 2014-12-17 2015-12-17 Furnace

Publications (2)

Publication Number Publication Date
KR20170096120A true KR20170096120A (ko) 2017-08-23
KR102502323B1 KR102502323B1 (ko) 2023-02-23

Family

ID=54937304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177016654A KR102502323B1 (ko) 2014-12-17 2015-12-17

Country Status (14)

Country Link
US (2) US10551059B2 (ko)
EP (2) EP3234071B1 (ko)
JP (3) JP6720182B2 (ko)
KR (1) KR102502323B1 (ko)
CN (2) CN112066741A (ko)
AU (1) AU2015365675B2 (ko)
BR (1) BR112017012697B1 (ko)
ES (1) ES2873523T3 (ko)
HU (1) HUE054514T2 (ko)
MX (1) MX2017007896A (ko)
MY (1) MY186393A (ko)
PL (1) PL3234071T3 (ko)
RU (1) RU2763026C2 (ko)
WO (1) WO2016097742A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186393A (en) * 2014-12-17 2021-07-22 Pilkington Group Ltd Furnace
US10059615B2 (en) * 2015-10-29 2018-08-28 Praxair Technology, Inc. Thermochemical regeneration and heat recovery in glass furnaces
US10538708B2 (en) * 2016-11-20 2020-01-21 Songpol Boonsawat Recycling and recovering method and system of plastic waste product
PL3410010T3 (pl) * 2017-05-29 2019-10-31 SWISS KRONO Tec AG Palnik do spalania materiału w postaci produktu rozdrobnionego drewna, zwłaszcza materiału drobnego
WO2021097124A1 (en) 2019-11-14 2021-05-20 Evalve, Inc. Catheter assembly with coaptation aid and methods for valve repair
US20220389327A1 (en) * 2019-11-14 2022-12-08 Exxonmobil Chemical Patents Inc. Process for feeding plastic waste material to a thermochemical or pyrolysis reactor
TWI830098B (zh) * 2020-12-22 2024-01-21 義大利商巴塞爾聚烯烴義大利股份有限公司 使塑膠廢料解聚合之方法
CN112963843B (zh) * 2021-03-25 2022-08-02 山东嘉柏广源环保科技有限公司 一种具有烟气余热回收结构的环保节能垃圾焚烧装置
IT202100033044A1 (it) * 2021-12-30 2023-06-30 Versalis Spa Procedimento per la pirolisi di materiale sostanzialmente plastico di composizione non costante, relativo reattore, apparato e prodotto ottenuto

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100183A (ja) * 1994-09-30 1996-04-16 Toshiba Corp 合成樹脂材の油化処理装置とその油化処理方法
KR20000020076A (ko) * 1998-09-17 2000-04-15 안봉조 고온 열분해식 자동 소각장치
JP2000176934A (ja) * 1998-12-14 2000-06-27 Toshiba Corp 廃プラスチック処理装置
CN1280288A (zh) * 2000-07-25 2001-01-17 宝山钢铁股份有限公司 预热式加热装置
US20040055517A1 (en) * 2002-09-25 2004-03-25 Nunemacher Robert C. Integrated pyrolysis systems and methods
KR20040045650A (ko) * 2002-11-25 2004-06-02 한국에너지기술연구원 열분해 비응축성 가스를 회수하는 고분자 폐기물열분해장치 및 그 방법
JP2006036806A (ja) * 2004-07-22 2006-02-09 Mugen System Kk 熱分解方法及び熱分解装置
JP2007246685A (ja) * 2006-03-16 2007-09-27 Aasu Recycle Kk 廃棄物の油化方法
JP2011511098A (ja) * 2008-01-05 2011-04-07 バイオ−エナジー−ホールディング アクチェンゲゼルシャフト 炭化水素系エネルギー源から中間留分を生成する方法および装置
KR20130041520A (ko) * 2011-10-17 2013-04-25 주식회사 아시아에너지 로터리 킬른 타입의 고분자 폐기물 유화장치
KR102060395B1 (ko) * 2019-07-30 2019-12-30 (주)이레이티에스 생산성 및 안전성 향상을 위한 폐합성수지의 열분해 유화발전 시스템, 이를 위한 가열로

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1356253A (en) 1970-05-06 1974-06-12 Ciba Geigy Uk Ltd Azo pigment compositions
US3829558A (en) 1971-06-21 1974-08-13 Us Health Education & Welfare Disposal of waste plastic and recovery of valuable products therefrom
GB1423420A (en) 1973-08-16 1976-02-04 Mitsubishi Heavy Ind Ltd Processing synthetic polymer waste
JPH03247520A (ja) * 1990-02-23 1991-11-05 Central Glass Co Ltd フロート法製板における溶融ガラス量の制御方法
US5216149A (en) 1991-06-07 1993-06-01 Midwest Research Institute Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products
US5608136A (en) 1991-12-20 1997-03-04 Kabushiki Kaisha Toshiba Method and apparatus for pyrolytically decomposing waste plastic
US6172275B1 (en) 1991-12-20 2001-01-09 Kabushiki Kaisha Toshiba Method and apparatus for pyrolytically decomposing waste plastic
CN1031199C (zh) 1992-06-20 1996-03-06 彭培安 用废塑料生产燃料的方法及其装置
US5569801A (en) 1992-08-27 1996-10-29 Fina Research, S.A. Polymer conversion process
TW280790B (ko) 1993-07-29 1996-07-11 Hitachi Shipbuilding Eng Co
DE4339350A1 (de) 1993-11-18 1995-05-24 Saechsische Olefinwerke Ag Verfahren zur thermischen Umwandlung von Kunststoffen
DE4344311A1 (de) 1993-12-23 1995-06-29 Linde Ag Verfahren und Vorrichtung zur thermischen Depolymerisation von Kunststoffen
DE4410672C2 (de) 1994-03-26 1996-04-04 Christian O Schoen Verfahren zur Wiederverwertung von Kunststoff
JP3376439B2 (ja) 1995-11-22 2003-02-10 日立造船株式会社 廃プラスチック油化装置
BE1010022A3 (fr) 1996-02-29 1997-11-04 Solvay Procede de recyclage de dechets plastiques.
US6048380A (en) * 1996-06-11 2000-04-11 Nkk Corporation Method for disposing synthetic resinous material
JP3492104B2 (ja) 1996-08-28 2004-02-03 三菱重工業株式会社 プラスチック廃棄物の油化方法及び装置
JP3096448B2 (ja) * 1997-11-10 2000-10-10 健 黒木 廃棄プラスチックの分解装置
EP0947573B1 (en) 1998-03-16 2003-01-08 MCC Co., Ltd. Recycling apparatus for obtaining oil from plastic waste
EP0947574B1 (en) 1998-03-16 2003-01-02 MCC Co., Ltd. Recycling apparatus for obtaining oil from plastic waste
CN2408118Y (zh) 1999-07-16 2000-11-29 周继福 一种用废塑料和或重油生产汽油柴油的设备
JP3413136B2 (ja) 1999-10-25 2003-06-03 汎洋興業株式会社 廃タイヤの再生処理方法および廃タイヤ再生処理装置
JP4131428B2 (ja) * 2000-08-10 2008-08-13 東芝プラントシステム株式会社 熱分解装置および熱分解方法
US20040050678A1 (en) * 2001-01-15 2004-03-18 Kenzo Takahashi Plastic liquefying device
DE10118880C2 (de) * 2001-04-18 2003-04-30 Sorg Gmbh & Co Kg Verfahren und Anordnungen zum Beheizen von Glasschmelzöfen mit fossilen Brennstoffen
US20030050519A1 (en) 2001-09-11 2003-03-13 Ming-Chin Cheng Method for decomposing plastic waste to produce fuel materials and equipment for the method
JP2003301183A (ja) * 2002-04-12 2003-10-21 Hitachi Ltd プラスチックの熱分解方法と該熱分解装置
US20030211193A1 (en) 2002-05-10 2003-11-13 Boris Timoshevsky Device for processing thermoplastic materials
US6748883B2 (en) 2002-10-01 2004-06-15 Vitro Global, S.A. Control system for controlling the feeding and burning of a pulverized fuel in a glass melting furnace
EP1405895A1 (en) 2002-10-04 2004-04-07 Danieli Corus Technical Services BV Apparatus and process for the treatment of a material under pyrolytical conditions, and use thereof
RU2225429C1 (ru) * 2003-03-24 2004-03-10 Тюменский государственный университет Опытная газогенераторная установка на древесном или торфяном топливе с паровоздушным дутьем
US7344622B2 (en) 2003-04-08 2008-03-18 Grispin Charles W Pyrolytic process and apparatus for producing enhanced amounts of aromatic compounds
JP4210222B2 (ja) * 2004-01-15 2009-01-14 乕 吉村 廃プラスチックの油化還元装置
DE102004003667A1 (de) 2004-01-24 2005-08-11 Nill Tech Gmbh Verfahren zum Gewinnen von fraktionierten Kohlenwasserstoffen aus Kunststoffwertstoffen und/oder ölhaltigen Reststoffen sowie Vorrichtung hierzu
US9096801B2 (en) 2004-03-14 2015-08-04 Future Energy Investments Pty Ltd Process and plant for conversion of waste material to liquid fuel
PL367011A1 (en) 2004-04-06 2005-10-17 Remigiusz Eliasz Method for continuous processing of plastic wastes to obtain hydrocarbon mixture and system for continuous processing of plastic wastes to obtain hydrocarbon mixture
KR100787958B1 (ko) 2004-09-25 2007-12-31 구재완 폐합성 고분자화합물의 연속식 열분해 시스템
CN200951998Y (zh) * 2006-03-13 2007-09-26 厦门日辉科技有限公司 一种环保垃圾再生炼油设备
CN2878390Y (zh) 2006-04-07 2007-03-14 王新明 多功能全自动远程恒温供热废旧轮胎裂化装置
JP4747981B2 (ja) * 2006-07-28 2011-08-17 Jfeスチール株式会社 焼成炉での廃プラスチックの利用方法
US7758729B1 (en) 2006-08-24 2010-07-20 Plas2Fuel Corporation System for recycling plastics
US8193403B2 (en) 2006-08-24 2012-06-05 Agilyx Corporation Systems and methods for recycling plastic
US8192586B2 (en) 2010-03-31 2012-06-05 Agilyx Corporation Devices, systems, and methods for recycling plastic
GB2446797B (en) 2006-12-19 2012-02-29 Used Tyre Distillation Res Ltd Recycling of carbon-containig material
ITBO20070104A1 (it) * 2007-02-21 2008-08-22 Kdvsistemi Brevetti S R L Apparato per la produzione di combustibile sintetico
DE102007027629A1 (de) 2007-06-12 2008-12-18 Abf Gmbh & Co. Kg Vorrichtung und Verfahren zum Behandeln von Kunststoff enthaltenden Abfall
US7626062B2 (en) 2007-07-31 2009-12-01 Carner William E System and method for recycling plastics
JP2009127990A (ja) * 2007-11-27 2009-06-11 Altis:Kk 溶解装置および溶解方法
EP2085456A3 (en) 2008-01-30 2009-12-16 Wilson, Paul Pyrolytic decomposition aparatus and use therefor and methof for pyrolytically decomposing organic substances
ITRE20080032A1 (it) 2008-03-28 2009-09-29 Sacmi '' metodo per la cottura di prodotti ceramici, e relativo forno ''
FR2929955B1 (fr) 2008-04-09 2012-02-10 Saint Gobain Gazeification de materiaux organiques combustibles
DE102008021628A1 (de) 2008-04-25 2009-12-24 Ibh Engineering Gmbh Vorrichtung und Verfahren sowie Verwendung eines Reaktors zur Herstellung von Roh,- Brenn- und Kraftstoffen aus organischen Substanzen
WO2009145884A1 (en) 2008-05-30 2009-12-03 Natural State Research, Inc. Method for converting waste plastic to hydrocarbon fuel materials
PL211917B1 (pl) 2008-10-31 2012-07-31 Bl Lab Społka Z Ograniczoną Odpowiedzialnością Układ do prowadzenia termolizy odpadowych tworzyw sztucznych oraz sposób prowadzenia termolizy w sposób ciągły
KR100978390B1 (ko) 2008-12-18 2010-08-30 (주)피이알이엔티 열분해를 이용한 에너지 회수장치
EP2210864A1 (en) * 2009-01-23 2010-07-28 Air Liquide Italia Service Alternating regenerative furnace and process of operating same
PL218781B1 (pl) 2009-05-25 2015-01-30 Bl Lab Spółka Z Ograniczoną Odpowiedzialnością Sposób wytwarzania wysokowartościowych produktów węglowodorowych z odpadowych tworzyw sztucznych i układ do sposobu wytwarzania wysokowartościowych produktów węglowodorowych z odpadowych tworzyw sztucznych
WO2010148308A2 (en) 2009-06-19 2010-12-23 Innovative Energy Solutions, Inc. Thermo-catalytic cracking for conversion of higher hydrocarbons into lower hydrocarbons
KR100955297B1 (ko) 2009-11-23 2010-04-30 주식회사 에코크레이션 폐플라스틱의 오일 환원 장치
ES2683357T3 (es) 2009-12-22 2018-09-26 Cynar Plastics Recycling Limited Conversión de material plástico residual en combustible
MX2012011432A (es) 2010-03-31 2013-03-25 Agilyx Corp Sistemas y metodos para reciclar plastico.
US9664382B2 (en) 2010-12-03 2017-05-30 Northeastern University Method and device for fuel and power generation by clean combustion of organic waste material
GB201020810D0 (en) 2010-12-08 2011-01-19 Univ Manchester Continuous plastics recycling process
AT511772B1 (de) 2011-05-05 2018-03-15 Omv Refining & Marketing Gmbh Verfahren und vorrichtung zur energieeffizienten aufbereitung sekundärer lagerstätten
US9200207B2 (en) 2011-05-31 2015-12-01 University Of Central Florida Research Foundation, Inc. Methods of producing liquid hydrocarbon fuels from solid plastic wastes
US20150001061A1 (en) 2011-07-28 2015-01-01 Jbi Inc. System and process for converting plastics to petroleum products
JP2013043913A (ja) 2011-08-23 2013-03-04 Hiroki Kinase プラスチック廃材の油化還元処理方法及び油化還元処理装置
US20140284198A1 (en) 2011-10-10 2014-09-25 Lepez Conseils Finance Innovations-Lcfi Process and installation for pyrolysis of a product in the form of divided solids, in particular polymer waste
US20130118885A1 (en) * 2011-11-10 2013-05-16 Moinuddin Sarker Methods and systems for converting plastic to fuel
KR101162612B1 (ko) 2011-11-30 2012-07-04 이엔에프씨 주식회사 폐원료로부터의 오일 생성 시스템 및 그 촉매
PL220056B1 (pl) 2011-12-12 2015-08-31 Lech Hys Sposób termodestrukcji oleju odpadowego i tworzyw sztucznych oraz urządzenie do termodestrukcji oleju odpadowego i tworzyw sztucznych
US20130224486A1 (en) 2012-02-27 2013-08-29 Community Energy Systems Plastic feedstock and method of preparing the same
GB2502126A (en) 2012-05-17 2013-11-20 Oil From Waste Ltd Thermal decomposition of waste plastic
EP2679659B1 (en) 2012-06-29 2016-08-24 Global Gateways Lux HoldCo S.A. Method and plant for production of a fuel gas from waste
FI125164B (en) 2012-07-06 2015-06-30 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for producing a pyrolysis product
CN102839020A (zh) 2012-07-27 2012-12-26 大连理工大学 利用塑料油、煤焦油、乙烯焦油或轮胎油混合炼制生产汽柴油的方法
CN202789107U (zh) 2012-09-26 2013-03-13 山东汇科通用机械有限公司 一种利用废塑料裂解气体的发电装置
CN202968484U (zh) 2012-12-07 2013-06-05 李永杰 废旧塑料炼油系统
CN203021511U (zh) 2013-01-16 2013-06-26 欧卓木 废塑料连续化油装置
CN203048877U (zh) 2013-01-16 2013-07-10 潍坊金丝达环境工程股份有限公司 塑料资源化连续气化裂解多效炉
GB2503065B (en) 2013-02-20 2014-11-05 Recycling Technologies Ltd Process and apparatus for treating waste comprising mixed plastic waste
GB2511115A (en) 2013-02-25 2014-08-27 Linde Ag An end port regenerative furnace
CN203360385U (zh) 2013-07-22 2013-12-25 郭锐 工业化废橡塑节能环保油化装置
CN203411508U (zh) 2013-07-31 2014-01-29 浙江山海环境科技股份有限公司 用于废塑料炼油装置的气渣自动分离装置
CN203393105U (zh) 2013-08-16 2014-01-15 郑州蓝德环保科技有限公司 一种塑料炼油装置
US9725655B2 (en) 2013-09-13 2017-08-08 Virens Energy, Llc Process and apparatus for producing hydrocarbon fuel from waste plastic
CN103482889B (zh) * 2013-09-16 2015-04-22 石家庄新华能源环保科技股份有限公司 蓄热式物料煅烧装置
CN203530234U (zh) 2013-10-22 2014-04-09 惠州市神州创宇低碳技术发展有限公司 一种废塑料解聚液化炼油装置
CN103555354B (zh) 2013-10-22 2015-04-01 惠州市神州创宇低碳技术发展有限公司 一种废塑料解聚液化炼油方法及其装置
CN103627420B (zh) 2013-12-05 2016-01-20 六盘水师范学院 利用两段式处理工艺提高煤与废塑料共液化油收率的方法
MY186393A (en) * 2014-12-17 2021-07-22 Pilkington Group Ltd Furnace

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100183A (ja) * 1994-09-30 1996-04-16 Toshiba Corp 合成樹脂材の油化処理装置とその油化処理方法
KR20000020076A (ko) * 1998-09-17 2000-04-15 안봉조 고온 열분해식 자동 소각장치
JP2000176934A (ja) * 1998-12-14 2000-06-27 Toshiba Corp 廃プラスチック処理装置
CN1280288A (zh) * 2000-07-25 2001-01-17 宝山钢铁股份有限公司 预热式加热装置
US20040055517A1 (en) * 2002-09-25 2004-03-25 Nunemacher Robert C. Integrated pyrolysis systems and methods
KR20040045650A (ko) * 2002-11-25 2004-06-02 한국에너지기술연구원 열분해 비응축성 가스를 회수하는 고분자 폐기물열분해장치 및 그 방법
JP2006036806A (ja) * 2004-07-22 2006-02-09 Mugen System Kk 熱分解方法及び熱分解装置
JP2007246685A (ja) * 2006-03-16 2007-09-27 Aasu Recycle Kk 廃棄物の油化方法
JP2011511098A (ja) * 2008-01-05 2011-04-07 バイオ−エナジー−ホールディング アクチェンゲゼルシャフト 炭化水素系エネルギー源から中間留分を生成する方法および装置
KR20130041520A (ko) * 2011-10-17 2013-04-25 주식회사 아시아에너지 로터리 킬른 타입의 고분자 폐기물 유화장치
KR102060395B1 (ko) * 2019-07-30 2019-12-30 (주)이레이티에스 생산성 및 안전성 향상을 위한 폐합성수지의 열분해 유화발전 시스템, 이를 위한 가열로

Also Published As

Publication number Publication date
WO2016097742A1 (en) 2016-06-23
US20200103107A1 (en) 2020-04-02
US20170336070A1 (en) 2017-11-23
RU2763026C2 (ru) 2021-12-24
CN107407523B (zh) 2020-09-08
MY186393A (en) 2021-07-22
JP2018505256A (ja) 2018-02-22
AU2015365675B2 (en) 2021-05-20
EP3234071A1 (en) 2017-10-25
EP3858951A1 (en) 2021-08-04
KR102502323B1 (ko) 2023-02-23
CN107407523A (zh) 2017-11-28
US10551059B2 (en) 2020-02-04
AU2015365675A1 (en) 2017-06-15
RU2017125095A (ru) 2019-01-17
PL3234071T3 (pl) 2021-08-16
US11530815B2 (en) 2022-12-20
EP3234071B1 (en) 2021-02-24
JP6924305B2 (ja) 2021-08-25
BR112017012697B1 (pt) 2021-11-03
JP6720182B2 (ja) 2020-07-08
ES2873523T3 (es) 2021-11-03
JP2020169328A (ja) 2020-10-15
HUE054514T2 (hu) 2021-09-28
MX2017007896A (es) 2017-10-18
BR112017012697A2 (pt) 2018-03-13
RU2017125095A3 (ko) 2019-06-19
CN112066741A (zh) 2020-12-11
JP2021178975A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US11530815B2 (en) Furnace
CN101495603A (zh) 用于产生氢和电的热还原气化方法
JP2000001677A (ja) 高分子系廃棄物の熱分解装置
CN102459516B (zh) 裂解气化有机废物的方法
CN107143856A (zh) 一种电子废弃物热解炉
CN106635079A (zh) 一种固废rdf处理方法
CN112126453A (zh) 含氯混合废旧塑料分级可控式热解系统及方法
KR20100100366A (ko) 폐합성수지 유화장치
CN106867559A (zh) 一种多级裂解连续生产的炼油方法
CN102827622A (zh) 一种油砂干馏炼油工艺及装置
CN101684410A (zh) 一种液体原料和废塑废胎连续化炼油新工艺与设备
CN213924651U (zh) 含氯混合废旧塑料分级可控式热解系统
EP1511823B1 (en) Indirectly heated waste plastic pyrolysis device
CN106675592A (zh) 一种高效节能的间接热脱附炭化装置及处理方法
CN206736179U (zh) 一种多级裂解连续生产的炼油装置
CN203393100U (zh) 一种组合式热解反应炉窑
CN203639415U (zh) 一种内热式煤干馏炉、内热式煤干馏系统
CN102464991A (zh) 一种环保型连续式炼油方法
CN201485419U (zh) 一种废旧聚乙烯和聚丙烯的裂解回收溶剂油的卧式炉
CZ2014531A3 (cs) Zařízení pro pyrolýzu polymerního odpadu a způsob provádění pyrolýzy
LT5679B (lt) Organinių medžiagų terminio perdirbimo būdas ir įrenginys
CN114989846A (zh) 一种塑料热裂解系统和方法
JPS60115686A (ja) プラスチツク廃棄物の連続乾溜方法
KR20060013952A (ko) 폐자재를 이용한 재생유 가공장치
UA75638C2 (en) A method for utilization of used car tires and a plant for realizing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right