KR101426350B1 - 순수-상 리튬 알루미늄 티타늄 포스페이트 및 이의 제조 방법 및 이의 이용 방법 - Google Patents

순수-상 리튬 알루미늄 티타늄 포스페이트 및 이의 제조 방법 및 이의 이용 방법 Download PDF

Info

Publication number
KR101426350B1
KR101426350B1 KR1020127012496A KR20127012496A KR101426350B1 KR 101426350 B1 KR101426350 B1 KR 101426350B1 KR 1020127012496 A KR1020127012496 A KR 1020127012496A KR 20127012496 A KR20127012496 A KR 20127012496A KR 101426350 B1 KR101426350 B1 KR 101426350B1
Authority
KR
South Korea
Prior art keywords
lithium
titanium phosphate
compound
phase
doped
Prior art date
Application number
KR1020127012496A
Other languages
English (en)
Other versions
KR20120093958A (ko
Inventor
마이클 홀짜펠
막스 아이스그루버
게르하르트 누스플
Original Assignee
쉬드-케미 아이피 게엠베하 운트 코 카게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쉬드-케미 아이피 게엠베하 운트 코 카게 filed Critical 쉬드-케미 아이피 게엠베하 운트 코 카게
Publication of KR20120093958A publication Critical patent/KR20120093958A/ko
Application granted granted Critical
Publication of KR101426350B1 publication Critical patent/KR101426350B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 일반식 Li1 + xTi2 - xAlx(PO4)3 (x≤0.4)의 리튬 알루미늄 티타늄 포스페이트의 제조 방법, 그의 제조 방법, 및 이차 리튬 이온 전지의 고체 전해지질로서의 이의 이용 방법에 관한 것이다.

Description

순수-상 리튬 알루미늄 티타늄 포스페이트 및 이의 제조 방법 및 이의 이용 방법 {PHASE-SHIFT-FREE LITHIUM ALUMINIUM TITANIUM PHOSPHATE, AND METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF}
본 발명은 순수-상 리튬 알루미늄 티타늄 포스페이트, 이의 제조 방법, 이의 이용 방법, 및 상기 순수-상 리튬 알루미늄 티타늄 포스페이트를 함유하는 이차 리튬 이온 전지에 관한 것이다.
머지않은 장래에 화석 원료 물질이 더욱 부족해질 것이기 때문에, 최근에는 전지 동력 자동차에 대한 연구 및 개발이 더욱 중요해지고 있다.
이러한 적용예에 있어서 특히 리튬 이온 축전기(이차 리튬 이온 전지라고도 함)가 가장 유망한 전지 모델임이 드러났다.
이러한 소위 "리튬 이온 전지"는 전동 공구, 컴퓨터, 이동 전화, 등등과 같은 분야에도 널리 이용되어 왔다. 특히, 양극 및 전해질은 물론이고 음극도 리튬-함유 물질로 이루어진다.
예를 들면, LiMn2O4와 LiCoO2이 한동안 양극 물질로서 이용되고 있다. 최근에는, 특히 Goodenough 등 (US 5,910,382)의 연구성과 이후에, 도핑된 또는 비도핑된 혼합 리튬 전이 금속 포스페이트, 특히 LiFePO4도 이용되고 있다.
통상적으로, 예컨대 흑연, 또는 이미 언급한 바와 같은, 리튬 티타네이트와 같은 리튬 화합물이 특히 대용량 전지용 음극 물질로서 이용되고 있다.
본발명에서 리튬 티타네이트는 공간군 Fd3m의 Li1 + xTi2 - xO4 (0≤x≤1/3)형 도핑된 또는 비도핑된 리튬 티타늄 스피넬 및 일반식 LixTiyO(0≤x,y≤1)의 모든 혼합 티타늄 산화물을 의미한다.
통상적으로, 리튬 염 또는 이의 용액은 리튬 이온 축전기에서 고체 전해질용으로 이용되고 있다.
또한, 예컨대 Evonik Degussa (DE 196 53 484 A1)으로부터 상업적으로 입수할 수 있는 Separion®과 같은 세라믹 분리막이 제안되어 왔다. 그러나, 세파리온은 고체상 전해질이 아닌, 나노규모의 Al2O3 및 SiO2과 같은 세라믹 필러를 함유한다.
리튬 티타늄 포스페이트는 그동안 고체 전해질로서 언급되어 왔다(JP A 1990 2-225310). 리튬 티타늄 포스페이트는, 구조 및 도핑에 따라, 리튬 이온 전도성이 증가하고 전기 전도성이 낮은데, 이러한 성질은 강한 경도와 함께, 리튬 티타늄 포스페이트를 이차 리튬 이온 전지의 고체 전해질로서 사용하는 데에 매우 적합하다.
Aono 등은 도핑된 및 비도핑된 리튬 티타늄 포스페이트의 이온 (리튬) 전도성을 조사하였다(J. Electrochem. Soc., Vol. 137, No. 4, 1990, pp. 1023-1027, J. Electrochem. Soc., Vol. 136, No. 2, 1989, pp. 590-591).
특히 알루미늄, 스칸듐, 이트륨, 및 란타늄으로 도핑된 계(systems)를 실험하였다. 특히 알루미늄으로 도핑한 것이 좋은 결과가 나왔는데, 이는, 도핑의 정도에 따라, 알루미늄이 다른 도핑 물질에 비하여 최고의 리튬 이온 전도성을 유도하기 때문이며, 알루미늄은 결정 내의 양이온 반경이 작기 때문에(Ti4 + 보다 작음), 티타늄에 의하여 점유된 공간을 잘 메꿀 수 있음을 알아냈다.
Kosova 등은 Chemistry for Sustainable Development 13 (2005) 253-260에서 충전용 리튬 이온 전지의 양극, 음극, 및 전해질로서 적절히 도핑된 리튬 티타늄 포스페이트를 제안하고 있다.
EP 1 570 113 B1에는 전기화학 소자에서 부가적인 이온 전도성을 가지는 Li1.3Al0.3Ti1.7(PO4)가 "활성" 분리막 필름에서의 세라믹 필러로 제안되어 있다.
마찬가지로, 추가로 도핑된 리튬 티타늄 포스페이트, 특히 철, 알루미늄, 및 희토류로 도핑된 것이 US 4,985,317에 기재되어 있다.
그러나, 상기 언급된 리튬 티타늄 포스페이트들 모두에 고체 포스페이트로부터 시작하는 고체 상태 합성을 이용하는 고가의 합성법이 공통적으로 요구되고, 그렇게 해서 얻은 해당 리튬 티타늄 포스페이트는 예컨대, AlPO4 또는 TiP2O7와 같은 추가의 이물질에 의하여 통상적으로 오염된다. 순수-상 리튬 티타늄 포스페이트 또는 도핑된 리튬 티타늄 포스페이트는 아직까지 알려지지 않았다.
그러므로, 본 발명의 목적은 순수-상 리튬 티타늄 포스페이트를 제공하는 것으로, 순수-상 리튬 티타늄 포스페이트는 높은 리튬 이온 전도성의 특성과 낮은 전기 전도성을 가지고 있다. 또한 본 발명의 순수-상 리튬 티타늄 포스페이트는 이물질이 존재하지 않기 때문에, 종래 기술의 비-순수-상 리튬 알루미늄 티타늄 포스페이트와 대비하여 더 우수한 이온 전도성을 얻을 수 있다.
상기 목적은 식 Li1 + xTi2 - xAlx(PO4)3의 순수-상 리튬 알루미늄 티타늄 포스페이트를 제공함으로써 달성할 수 있는데, 여기에서 x는 ≤0.4이며, 자성 금속 및 Fe, Cr 및 Ni의 자성 금속 화합물의 농도는 ≤ 1 ppm이다.
본원에서 용어 "순수-상"은 분말 X-선 회절패턴(X-ray powder diffractogram, XRD)에서 이물질의 상이 인식되지 않는 것을 의미한다. 본 발명에 따른 리튬 알루미늄 티타늄 포스페이트에서 이물질의 상이 없다는 것은, 도 2에서 보인 바와 같이, AlPO4 및 TiP2O7와 같은 이물질의 최대 비율이 1%라는 것에 해당된다.
이물질은 고유의 이온 전도성을 감소시키고, 그 결과로, 이물질을 포함하는 종래 기술의 것들과 비교할 때, 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트는 종래 기술의 리튬 알루미늄 티타늄 포스페이트보다 더 높은 고유의 전도성을 가진다.
또한, 놀랍게도, 본 발명에 따른 리튬 알루미늄 티타늄 포스페이트에서 자성 금속 및 Fe, Cr 및 Ni의 금속 화합물 (∑Fe+Cr+Ni)의 농도가 ≤ 1 ppm임을 알아냈다. 종래 기술의 리튬 알루미늄 포스페이트(JP A 1990-2-225310에 따라 얻음)의 경우, 이 값은 보통 2 내지 3 ppm이다. 임의의 파괴성(disruptive) 아연을 고려하면, 본 발명에 따른 리튬 알루미늄 티타늄 포스페이트에서 총 농도 ∑Fe+Cr+Ni+Zn는 1.1 ppm이며, 이는 상술한 종래 기술에 따른 리튬 알루미늄 티타늄 포스페이트에서의 2.3 ~ 3.3 ppm과 비교된다.
특히, 본 발명에 따른 리튬 알루미늄 티타늄 포스페이트는 금속성 또는 자성 철 및 자성 철 화합물(예, Fe3O4)에 의하여는 단지 < 0.5 ppm의 극소 오염량을 보여준다. 자성 금속 또는 금속 화합물의 농도를 결정하는 것에 대하여는 아래 실험을 기재한 부분에서 자세히 설명한다. 종래 기술에서 알려진 리튬 알루미늄 티타늄 포스페이트 내의 자성 철 또는 자성 철 화합물의 통상적인 값은 대략 1 ~ 1000 ppm이다. 금속 철 또는 자성 철 화합물에 의한 오염의 결과는, 전류의 감소와 관련이 있는 덴드라이트(dendrites)를 형성할 뿐만 아니라, 리튬 알루미늄 티타늄 포스페이트를 고체 전해질로 이용하는 전기화학 전지에서는 단락의 위험성을 상당히 증가시키기 때문에, 산업적 규모로 전지를 생산하는 경우 위험요소가 된다. 이러한 문제들은 본 발명의 순수-상 리튬 알루미늄 티타늄 포스페이트로 해결할 수 있다.
놀랍게도, 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트는 <4.5 m2/g의 상당히 높은 BET 표면적을 가진다. 그 전형적인 값은 예를 들면 2.0 내지 3.5 m2/g이다. 한편, 문헌에서 공지된 리튬 알루미늄 티타늄 포스페이트는 1.5 m2/g 미만의 BET 표면적을 가진다.
본 발명에 따른 리튬 알루미늄 티타늄 포스페이트는 바람직하게는 d90 < 6 ㎛, d50 < 2.1 ㎛ 및 d10 < 1 ㎛의 입자 크기 분포를 가지고 있으며, 그 결과로 대부분의 입자들이 극히 작기 때문에 특별히 높은 이온 전도성을 달성할 수 있다. 이것은 다양한 연마 공정에 의하여 더 작은 입자 크기를 얻으려 한 상기 언급된 일본의 비심사 특허 출원으로부터 얻은 결과와 유사함을 보여주는 것이다. 그러나, 이것은 통상적인 연마 공정으로는 얻기 어려운데, 이는 리튬 알루미늄 티타늄 포스페이트가 높은 경도(모스 경도> 7, 즉 다이아몬드에 가까움)를 가지고 있기 때문이다.
본 발명의 더 바람직한 구체예에서, 상기 리튬 알루미늄 티타늄 포스페이트는 실험식 Li1 .2Ti1 .8Al0 .2(PO4)3을 가지며, 293K에서 총 이온 전도성이 대략 5 x 10-4 S/cm으로 매우 우수하며, 특히 순수-상 형태의 Li1 .3Ti1 .7Al0 .3(PO4)3에서는 293K에서 총 이온 전도성이 7 x 10-4 S/cm으로 매우 높다.
또한, 본 발명의 또 다른 목적은 하기 단계들을 포함하는 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트의 제조 방법을 제공하는 것이다.
a) 농축된 인산을 제공하는 단계,
b) 리튬 화합물, 이산화 티타늄, 및 산소-함유 알루미늄 화합물의 혼합물을 첨가하는 단계,
c) 고체 중간 생성물을 얻기 위하여 상기 혼합물을 가열하는 단계,
d) 상기 고체 중간 생성물을 하소하는 단계.
놀랍게도, 본 발명의 순수-상 리튬 알루미늄 티타늄 포스페이트의 제조방법은 종래 기술에서 공지된 모든 합성법과는 다르게, 고체 인산염 대신에 액상 인산도 이용할 수 있음을 알아냈다. 따라서 본 발명에 따른 방법은 수성 전구 현탁물의 규정된 침전법에 따라 진행한다. 인산을 이용함으로써 상기 방법을 더 간단하게 실행할 수 있어서, 용액 내의 이미 존재하는 불순물 또는 현탁물을 선택적으로 제거할 수 있으며, 그 결과로 더 높은 상 순도(phase purity)를 가지는 생성물을 얻을 수 있다.
인산으로서 농축된 인산, 즉, 예컨대 85% 오르토인산(orthophosphoric acid)을 바람직하게 사용할 수 있으며, 본 발명의 덜 바람직한 구체예에서, 예컨대 메타인산 등과 같은 기타 농축된 인산도 사용할 수 있다. 또한, 본 발명에 따르면, 예컨대, 캐터너리 (catenary) 폴리인산 (이인산, 삼인산, 올리고인산 등), 환형(annular) 메타인산 (삼-, 사-메타인산), 및 인산 P2O5의 무수물 (물속에 존재함)과 같은 오르토인산의 농축물 모두가 사용될 수 있다.
본 발명에 따르면, Li2CO3, LiOH, Li2O, LiNO3와 같은 임의의 적절한 리튬 화합물이 리튬 화합물로서 이용될 수 있으며, 여기에서 리튬 카보네이트가 특히 바람직한데, 이는 이것이 가장 비용면에서 유리한 원료이기 때문이다.
실제로, 임의의 알루미늄 산화물 또는 알루미늄 수산화물 또는 혼합 알루미늄의 산화물/수산화물이 산소-함유 알루미늄 화합물로 이용될 수 있다. 산화 알루미늄 Al2O3은 용이하게 입수할 수 있기 때문에 종래 기술에서 바람직하게는 이용된다. 그러나, 본 발명에서는 Al(OH)3로 가장 좋은 결과를 얻게 됨을 알게 되었다. Al(OH)3는 Al2O3에 비교하여 비용면에서 더 유리하며 또한 특히 하소 단계에서 Al2O3보다 더 반응성이 있다. 물론, Al2O3도 본 발명에 따른 방법에서 사용할 수 있지만, 덜 바람직하다; 그러나, Al(OH)3를 이용하는 것에 비하여 하소가 더 길어진다.
상기 혼합물을 가열하는 단계를 200 내지 300℃, 바람직하게는 200 내지 260℃, 특히 바람직하게는 200 내지 240℃의 온도에서 실시한다. 또한, 완만한 반응을 계속해서 조절함으로써 균질한 생성물을 확보할 수 있다
하소는 바람직하게는 830~1000℃, 특히 바람직하게는 880~900℃의 온도에서 실시하는데, 830℃ 미만에서는 이물질 상 발생의 위험이 특히 높다.
일반적으로, Li1 + xTi2 - xAlx(PO4)3 화합물 내의 리튬의 증기압 또한 >950℃의 온도에서 증가하는데, 즉 형성된 Li1 + xTi2 - xAlx(PO4)3 는 >950℃의 온도에서 더 많은 리튬을 잃게 되고 대기 중에서 오븐기의 벽 상에 Li2O와 Li2CO3로 증착된다. 이것은 후술되는 예컨대 과량의 리튬에 의하여 보상할 수 있으나, 화학양론적으로 정밀하게 설정하는 것은 더 어렵다. 따라서, 저온이 바람직하며, 이것은 놀랍게도 종래 기술에 비하여 본 발명의 실시에서 가능하다. 이러한 결과는 종래 기술의 고체 포스페이트와 비교하여, 수성 농축된 인산을 이용하는 것에 기인할 수 있다.
또한, >1000℃의 온도는 오븐과 도가니 물질을 더 요구하게 된다.
하소는 5 내지 10시간에 걸쳐서 실시한다. 본 발명의 더 바람직한 구체예에서, 제 2 하소 단계는 동일한 온도에서, 바람직하게는 동일한 시간에 걸쳐서 실시하며, 그렇게 함으로써 특히 순수-상 생성물을 얻게 된다.
본 발명의 다른 바람직한 구체예에서, 화학양론적으로 과량의 리튬 화합물을 b) 단계에서 이용한다. 상술한 바와 같이, 리튬 화합물은 사용된 반응 온도에서 종종 휘발하며, 그 결과로, 리튬 화합물에 따라 종종 작업을 과도하게 실시해야 한다. 이때, 바람직하게는 화학양론적으로 대략 8%의 과량을 사용하게 되는데, 이것은 종래 기술에 따른 고체-상태 방법에 비하여 대략 50%의 고가의 리튬 화합물의 양을 줄일 수 있음을 의미한다. 또한, 본 방법의 실시가 수성 침전 공정을 통하여 실시하기 때문에, 고체 상태 방법과 비교하여 화학양론적인 측정을 특히 용이하게 실시할 수 있다.
또한, 본 발명의 대상은 식 Li1 - xTi2 - xAlx(PO4)3 (x≤0.4)의 순수-상 리튬 알루미늄 티타늄 포스페이트이며, 이것은 본 발명에 따른 방법에 의하여 얻을 수 있으며, 본 발명의 실시의 의하여 특히 상기 정의된 의미 내에서 극히 순수-상을 얻을 수 있고, 상술한 바와 같이, ≤ 1 ppm의 소량의 자성 불순물을 함유한다. 또한, 고체 상태 합성 방법에 의하여 얻을 수 있는 공지된 모든 생성물-이미 언급했음-은 이물질을 더 가질 뿐만 아니라, 파괴성(disruptive) 자성 화합물의 양을 증가시키는데, 이러한 것은 본 발명에 따른 방법의 실시함으로써, 특히 고체 포스페이트 대신에 (수성) 농축된 인산을 사용함으로써 해결할 수 있다.
또한, 본 발명의 대상은 이차 리튬 이온 전지의 고체 전해질로서의 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트의 이용 방법에 대한 것이다.
본 발명의 목적은 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트를 함유하는 향상된 이차 리튬 이온 전지, 특히 고체 전해질을 제공하는 것에 의하여 달성할 수 있다. 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트는 높은 리튬 이온 전도성으로 인하여 고체 전해질에 특히 적합하며, 그의 상 순도와 낮은 철 함량으로 안정적이고 또한 단락에 잘 견딘다.
본 발명의 바람직한 구체예에서, 본 발명에 따른 이차 리튬 이온 전지의 양극은 양극으로서 도핑된 또는 비도핑된 리튬 전이 금속 포스페이트를 함유하며, 여기서 리튬 전이 금속 포스페이트의 전이 금속은 Fe, Co, Ni, Mn, Cr 및 Cu에서 선택된다. 도핑된 또는 비도핑된 리튬 철 포스페이트 LiFePO4이 특히 바람직하다.
본 발명의 더 바람직한 구체예에서, 양극 물질은, 이용된 리튬 전이 금속 포스페이트와는 다른 도핑된 또는 비도핑된 혼합 리튬 전이 금속 옥소(oxo) 화합물을 추가로 함유한다. 본 발명에 따른 적절한 리튬 전이 금속 옥소 화합물은 예컨대 LiMn2O4, LiNiO2, LiCoO2, NCA (LiNi1 -x- yCoxAlyO2, 예를 들면, LiNi0 .8Co0 .15Al0 .05O2), 또는 NCM (LiNi1 /3Co1 /3Mn1 /3O2)이다. 상기 조합에서 리튬 전이 금속 포스페이트의 비율은 1 내지 60wt%의 범위 내에 있다. 바람직한 비율은 LiCoO2/LiFePO4 혼합물에서는 예컨대 6~25 wt%, 바람직하게는 8~12 wt%이고, LiNiO2/LiFePO4 혼합물에서 25~60 wt%이다.
본 발명의 더 바람직한 구체예에서, 본 발명에 따른 이차 리튬 이온 전지의 음극 물질은 도핑된 또는 비도핑된 리튬 티타네이트를 함유한다. 덜 바람직한 구체예에서, 음극 물질은 배타적으로 탄소, 예컨대 흑연 등을 함유한다. 상기 언급된 바람직한 구체예에서의 리튬 티타네이트는 전형적으로 도핑된 또는 비도핑된 Li4Ti5O12이고, 그 결과로 도핑된 또는 비도핑된 리튬 전이 금속 포스페이트의 바람직한 양극에서 예컨대 2 볼트의 전위를 이룰 수 있다.
상술한 바와 같이, 본 발명의 구체예에서의 양극 물질의 리튬 전이 금속 포스페이트와 음극 물질의 리튬 티타네이트는 도핑되어 있거나 도핑되어 있지 않다. 도핑은 적어도 하나의 금속 또는 여러 개로 실시하며, 이로써 양극 또는 음극으로서 이용될 때 특히 도핑된 물질의 안정성 및 사이클 안정성을 증가시킬 수 있다. 양극 또는 음극 물질의 격자 구조에 결합될 수 있는, Al, B, Mg, Ga, Fe, Co, Sc, Y, Mn, Ni, Cr, V, Sb, Bi, Nb 또는 수개의 이러한 이온들과 같은 금속 이온은 도핑 물질로서 바람직하다. Mg, Nb 및 Al은 특히 바람직하다. 리튬 티타네이트는 바람직하게는 루틸(rutile)이 없어서 순수 상과 동등하다.
도핑용 금속 양이온은 상기 언급된 리튬 전이 금속 포스페이트 또는 리튬 티타네이트 내에 총 혼합 리튬 전이 금속 포스페이트 또는 리튬 티타네이트에 대하여 0.05 내지 3 wt%, 바람직하게는 1 내지 3 wt%의 양으로 존재한다. 도핑 금속 양이온(들)의 양은, 전이 금속 (at% 값)에 대하여, 또는 리튬 티타네이트의 경우에는 리튬 및/또는 티탄에 대하여, 20at%이며, 바람직하게는 5~10 at%이다.
도핑 금속 양이온은 금속 또는 리튬의 격자 위치를 차지한다. 이것에 대한 예외가 혼합 Fe, Co, Mn, Ni, Cr, Cu, 리튬 전이 금속 포스페이트인데, 이것들은 상기 언급된 원소들 중 적어도 둘을 포함하는 것으로, 도핑 금속 양이온이 더 많은 양으로 존재할 수 있으며, 극단적인 경우에는 50 wt%까지 존재할 수 있다.
본 발명에 따른 이차 리튬 이온 전지의 전극의 전형적인 추가 구성요소는, 상기 활성 물질, 즉 리튬 전이 금속 포스페이트 또는 리튬 티타네이트 이외에 카본 블랙 및 바인더이다.
본발명의 바인더는 바인더로서 당업자에게 알려진 것이 가능하며, 예컨대 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐리덴 디플루오라이드(polyvinylidene difluoride, PVDF), 폴리비닐리덴 디플루오라이드 헥사플루오로프로필렌 공중합체(polyvinylidene difluoride hexafluoropropylene copolymers, PVDF-HFP), 에틸렌-프로필렌-디엔 삼중합체(ethylene-propylene-diene terpolymers, EPDM), 테트라플루오로에틸렌 헥사플루오로에틸렌 공중합체(tetrafluoroethylene hexafluoropropylene copolymers), 폴리에틸렌 산화물(polyethylene oxides, PEO), 폴리아크릴로니트릴(polyacrylonitriles, PAN), 폴리아크릴 메타크릴레이트(polyacryl methacrylates, PMMA), 카르복시메틸셀룰로스(carboxymethylcelluloses, CMC), 및 이들의 유도체 및 혼합물을 사용할 수 있다.
본 발명의 틀 내에서, 전극 물질의 개별 구성요소들의 일반적인 비율은 바람직하게는 활성 질량 전극 물질 80 내지 98 중량부, 전도성 탄소 10 내지 1 중량부, 및 바인더 10 내지 1 중량부이다.
본 발명의 내용에서, 예로서, 납축 전지의 대체제로서 적합한, 대략 2 볼트의 단일 전지 전압을 가지는, 바람직한 양극/고체 전해질/음극 조합은, LiFePO4/Li1.3Ti1.7Al0.3(PO4)3/LixTiyO, 또는 LiCozMnyFexPO4/Li1 .3Ti1 .7Al0 .3(PO4)3/LixTiyO이며, 여기서 x, y 및 z는 상기에서 정의되어 있으며, 그 결과로 전지 전압을 증가시킬 수 있고 에너지 밀도를 향상시킬 수 있다.
도 1은 본 발명에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트의 구조를 나타낸다.
도 2는 본 발명에 따른 리튬 알루미늄 티타늄 포스페이트의 X-선 분말 회절 패턴(XRD)을 나타낸다.
도 3은 종래의 리튬 알루미늄 티타늄 포스페이트의 X-선 분말 회절패턴(XRD)을 나타낸다.
도 4는 본 발명에 따른 리튬 알루미늄 티타늄 포스페이트의 입자 크기 분포를 나타낸다.
본 발명을 아래 도면과 실시예를 참조하여 더 자세히 설명하나, 이들이 본 발명의 범위를 제한하는 것은 아니다.
1. 측정 방법
DIN 66131(DIN-ISO 9277)에 따라 BET 표면적을 측정하였다.
Malvern Mastersizer 2000을 이용한 레이저 입도측정에 의하여 DIN 66133에 따라 입자 크기 분포를 측정하였다.
X-선 분말 회절패턴(XRD)은 X'Pert PRO 회절계, PANalytical: Goniometer Theta/Theta, Cu 음극 PW 3376 (최대 출력 2.2kW), X'Celerator 검출기, X'Pert Software를 이용하여 측정하였다.
본 발명에 따른 리튬 알루미늄 티타늄 포스페이트 내의 자성 구성요소의 농도는 자석을 이용한 분리, 산을 이용한 분해, 및 연속해서, 형성된 용액을 ICP 분석하는 것에 의하여 측정하였다.
피시험 리튬 알루미늄 티타늄 포스페이트 분말을 특정 크기의 자석 (직경1.7 cm, 길이 5.5cm, < 6000 Gauss)을 이용하여 에탄올 내에 현탁하였다. 상기 에탄올 현탁액을 135 kHz의 진동수를 이용하여 초음파 배스(bath) 내의 자석에 30분동안 노출시킨다. 자석은 현탁액 또는 분말에서 자성 입자를 끌어당긴다. 이후, 자석은 자성입자와 함께 현탁액에서 제거된다. 자성 불순물을 산 분해에 의하여 용해하고, 자성 불순물의 정밀한 양 및 조성물을 측정하기 위하여, 이를 ICP (ion chromatography) 분석을 이용하여 측정한다. ICP 분석용 장치는 ICP-EOS, Varian Vista Pro 720-ES이었다.
실시예 1
Li 1 .3 Al 0 .3 Ti 1 .7 ( PO 4 ) 3 의 제조
1037.7g의 오르토인산 (85%)를 반응기에 주입한다. Teflon으로 코팅된 고정형 교반기로 강하게 교반하면서 144.3g의 Li2CO3, 431.5g의 TiO2(아나타제 형), 및 46.8g의 Al(OH)3(Gibbsite)의 혼합물을 유체 채널(fluid channel)을 통하여 천천히 첨가하였다. Li2CO3이 인산과 반응하면, CO2의 형성으로 현탁액에 강한 거품이 생기기 때문에, 상기 혼합물을 1 내지 1.5 시간에 걸쳐 아주 천천히 첨가하였다. 첨가가 끝날 즈음, 흰색의 현탁액은 더 많은 점성이 있게 되나 거품은 여전히 생성될 수 있다.
이어서, 상기 혼합물을 오븐에서 225℃로 가열하고, 이 온도에서 2시간 동안 놔두었다. 어렵게 반응기로부터 부분적으로 제거할 수 있는, 굳어서 부서지기 쉬운 조생성물(crude product)가 형성된다. 액체 상태에서 고무처럼 되는 현탁액의 완전한 고상화가 상대적으로 빠르게 일어났다. 한편, 오븐 대신에 예컨대 모래 또는 오일 배스(oil bath)도 이용할 수 있다.
이어서, < 50㎛의 입자 크기를 얻기 위하여 상기 조생성물을 6시간 동안 곱게 갈았다
곱게 간 예비혼합물을 6시간 내에 분당 2℃의 승온비율로 200℃에서 900℃로 가열하였다. 그렇지 않으면, 결정질 이물질 상이 X-선 분말 회절패턴(XRD)으로 검출될 수 있다. 이어서, 생성물을 900℃에서 24시간 동안 소결한 후, 자기제 구(porcelain spheres)를 이용하는 볼 밀(ball mill)에서 곱게 갈았다. 자성 Fe, Cr 및 Ni 및/또는 이의 자성 화합물의 총량은 0.75 ppm이었다. Fe 및 이의 자성 화합물의 총량은 0.25ppm이었다.
실시예 2
실시예 1에서와 같이 Li1 .3Al0 .3Ti1 .7(PO4)3을 합성하였으나, 리튬 카보네이트, TiO2 및 Al(OH)3의 첨가가 끝날 즈음에, 흰색 현택액을 항접착제로 코팅된 용기, 예컨대 테플론 벽이 있는 용기에 옮겼다. 그렇게 함으로써, 실시예 1에 비하여 형성된(cured) 중간 생성물을 매우 간단하게 제거하였다. 분석 데이터는 실시예 1의 데이터와 일치하였다.
실시예 3
갈았던 중간 생성물을 소결 전에 펠렛으로 압착한 것을 제외하고는, 실시예 2에서와 같이 Li1 .3Al0 .3Ti1 .7(PO4)3을 분석하였다. 분석 데이터는 실시예 1의 데이터와 일치하였다.
실시예 4
실온으로 냉각 후 상기 펠렛과 상기 곱게 갈았던 중간 생성물에 대하여 제 1 하소를 12시간에 걸쳐 실시하고, 제2 화소를 900℃에서 12시간 동안 더 실시한 것을 제외하고, 실시예 2 또는 3에서와 같이, Li1 .3Al0 .3Ti1 .7(PO4)3을 합성하였다. 후자의 경우에는, 이물질 상의 징후가 생성물에서 발견되지 않았다. 자성 Fe, Cr 및 Ni 및/또는 이의 자성 화합물의 총 량은 0.76 ppm이었다. Fe 및 이의 자성 화합물의 총량은 0.24ppm이었다. 반면에, JP A 1990 2-225310에 따라 생산된 비교예는, Fe, Cr, Ni의 총 ∑양이 2.79 ppm이고 자성 철 또는 철 화합물이 1.52 ppm인 것을 보여 주었다.
*본 발명에 따라 얻은 생성물 Li1 .3Al0 .3Ti1 .7(PO4)3의 구조가 도 1에 도시되어 있으며, 이는 소위 NASiCON (Na+ superionic conductor) 구조와 유사하다 (Nuspl 등, J. Appl. Phys. Vol. 06, No. 10, p. 5484 이하 (1999)을 참조).
동일한 결정 구조의 3차 Li+ 채널 및 이러한 채널 내에서의 Li 이동을 위한 0.30 eV의 매우 낮은 활성화 에너지는 고유의 Li 이온 전도성을 증가시킨다. Al 도핑은 이러한 고유의 Li+ 전도성에 거의 영향을 주지 않으나, 입자 경계에서 Li 이온 전도성을 감소시킨다.
Li3 x La2 /3- x TiO3 화합물 이외에, Li1 .3Al0 .3Ti1 .7(PO4)3도 문헌에 알려진 가장 높은 Li+ 이온 전도성을 가진 고체 전해질이다.
도 2에서의 실시예 4에서 얻은 생성물의 X-선 분말 회절패턴(XRD)에서 알 수 있는 바와 같이, 특히 순수-상 생성물은 본 발명에 따른 반응 공정에 의하여 얻을 수 있다.
이와 대조적으로, 도 3은 JP A 1990 2-225310에 따라 제조된 종래 기술의 리튬 알루미늄 티타늄 포스페이트의 X-선 분말 회절패턴을 도시한 것이며, TiP2O7 및 AlPO4와 같은 이물질을 가지고 있다. Kosova 등이 기술한 자료에서도 동일한 이물질이 발견된다. (상기 참조).
실시예 4에서의 생성물의 입자 크기 분포가 도 4에 도시되어 있으며, <6 ㎛의 d90, <2.1 ㎛의 d50, 및 < 1 ㎛의 d10 값을 가지는 전적으로 단봉(monomodal) 입자 크기 분포를 가진다.

Claims (20)

  1. 자성 금속 및 Fe, Cr 및 Ni의 자성 금속 화합물의 농도가 ≤1 ppm이며, 입자 크기 분포 d90가 <6 ㎛인 식 Li1+xTi2-xAlx(PO4)3(이 때, x≤0.4)인 석출된 순수-상 리튬 알루미늄 티타늄 포스페이트.
  2. 삭제
  3. 제1항에 있어서,
    철 금속 및 자성 철 화합물의 농도가 <0.5 ppm인 순수-상 리튬 알루미늄 티타늄 포스페이트.
  4. 제3항에 있어서,
    상기 x값은 0.2 또는 0.3인 순수-상 리튬 알루미늄 티타늄 포스페이트.
  5. 제1항 및 제3항 내지 제4항중 어느 한 항에 따른 자성 금속 및 Fe, Cr 및 Ni의 자성 금속 화합물의 농도가 ≤1 ppm인, Li1+xTi2-xAlx(PO4)3 (x≤0.4)을 제조하는 방법으로서, 상기 방법은,
    a) 농축된 인산을 제공하는 단계,
    b) 리튬 화합물, 이산화 티타늄, 및 산소-함유 알루미늄 화합물의 혼합물을 첨가하는 단계,
    c) 고체 중간 생성물을 얻기 위하여 상기 혼합물을 가열하는 단계,
    d) 상기 고체 중간 생성물을 하소하는 단계
    를 포함하는 방법.
  6. 제5항에 있어서,
    인산은 액상 농축된 인산 또는 수성 농축된 인산을 이용하며,
    및/또는 인산은 농축된 오르토인산(orthophosphoric acid) 또는 85% 오르토인산을 이용하는 방법.
  7. 제5항에 있어서,
    리튬 화합물은 리튬 카보네이트를 이용하는 방법.
  8. 제5항에 있어서,
    산소-함유 알루미늄 화합물은 Al(OH)3을 이용하는 방법.
  9. 제5항에 있어서,
    상기 가열 단계를 200℃ 내지 300℃의 온도에서 실시하는 방법.
  10. 제9항에 있어서,
    상기 하소는 850 내지 1000℃에서 실시하는 방법.
  11. 제10항에 있어서,
    상기 하소는 5 내지 24 시간동안 실시하는 방법.
  12. 제5항에 있어서,
    상기 b) 단계는 화학양론적으로 과량의 리튬 화합물을 이용하는 방법.
  13. 삭제
  14. 제1항 및 제3항 내지 제4항 중 어느 한 항에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트를 이차 리튬 이온 전지의 고체 전해질로서 이용하는 방법.
  15. 제1항 및 제3항 내지 제4항 중 어느 한 항에 따른 순수-상 리튬 알루미늄 티타늄 포스페이트를 함유하는 이차 리튬 이온 전지.
  16. 제15항에 있어서,
    양극 물질은 도핑된 또는 비-도핑된 리튬 전이 금속 포스페이트를 더 함유하는 이차 리튬 이온 전지.
  17. 제16항에 있어서,
    상기 리튬 전이 금속 포스페이트의 전이 금속은 Fe, Co, Ni, Mn, Cu, 및 Cr으로부터 선택되는 이차 리튬 이온 전지.
  18. 제17항에 있어서,
    상기 전이 금속은 Fe인 이차 리튬 이온 전지.
  19. 제18항에 있어서,
    상기 양극 물질은 도핑된 또는 비-도핑된 리튬 전이 옥소(oxo) 화합물을 더 함유하는 이차 리튬 이온 전지.
  20. 제15항에 있어서, 음극 물질은 도핑된 또는 비도핑된 리튬 티타네이트를 함유하는 이차 리튬 이온 전지.
KR1020127012496A 2009-10-16 2010-10-14 순수-상 리튬 알루미늄 티타늄 포스페이트 및 이의 제조 방법 및 이의 이용 방법 KR101426350B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009049693.9 2009-10-16
DE102009049693A DE102009049693A1 (de) 2009-10-16 2009-10-16 Phasenreines Lithiumaluminiumtitanphosphat und Verfahren zur Herstellung und dessen Verwendung
PCT/EP2010/006300 WO2011045067A1 (de) 2009-10-16 2010-10-14 Phasenreines lithiumaluminiumtitanphosphat und verfahren zur herstellung und dessen verwendung

Publications (2)

Publication Number Publication Date
KR20120093958A KR20120093958A (ko) 2012-08-23
KR101426350B1 true KR101426350B1 (ko) 2014-08-06

Family

ID=43446343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127012496A KR101426350B1 (ko) 2009-10-16 2010-10-14 순수-상 리튬 알루미늄 티타늄 포스페이트 및 이의 제조 방법 및 이의 이용 방법

Country Status (9)

Country Link
US (2) US20120295167A1 (ko)
EP (1) EP2488451B1 (ko)
JP (2) JP5749727B2 (ko)
KR (1) KR101426350B1 (ko)
CN (1) CN102648154B (ko)
CA (1) CA2777784C (ko)
DE (1) DE102009049693A1 (ko)
TW (1) TWI461355B (ko)
WO (1) WO2011045067A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006368A (ko) 2017-07-10 2019-01-18 주식회사 엘지화학 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049694A1 (de) * 2009-10-16 2011-04-28 Süd-Chemie AG Phasenreines Lithiumaluminiumtitanphosphat und Verfahren zur Herstellung und dessen Verwendung
US9315894B2 (en) 2011-03-30 2016-04-19 Asm Ip Holding B.V. Atomic layer deposition of metal phosphates and lithium silicates
US9118077B2 (en) * 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
DE102012000914B4 (de) * 2012-01-18 2012-11-15 Süd-Chemie AG Verfahren zur Herstellung von hochreinen Elektrodenmaterialien
WO2013146349A1 (ja) * 2012-03-30 2013-10-03 戸田工業株式会社 リチウムイオン伝導体の製造法
DE102012103409B3 (de) 2012-04-19 2012-11-22 Karlsruher Institut für Technologie Verfahren zur Herstellung Li-Ionenleitender Lithiumaluminiumtitanphosphate und deren Verwendung als Festkörperelektrolyte
JP6245269B2 (ja) * 2013-10-24 2017-12-13 富士通株式会社 固体電解質、これを用いた全固体二次電池、固体電解質の製造方法、及び全固体二次電池の製造方法
DE102014012926B3 (de) * 2014-09-05 2015-06-11 Forschungszentrum Jülich GmbH Festkörperelektrolyte für Li-Batterien sowie Verfahren zur Herstellung derselben
CN105304938B (zh) * 2015-09-29 2017-10-17 山东玉皇新能源科技有限公司 固体电解质磷酸钛铝锂的电化学制备方法
CN105161758B (zh) * 2015-09-29 2017-07-11 山东玉皇新能源科技有限公司 高纯度磷酸钛铝锂的电化学制备方法
TWI579233B (zh) * 2015-12-23 2017-04-21 財團法人工業技術研究院 用於鋰離子電池之添加劑配方、電極漿料組成物及鋰離子電池
JP6652705B2 (ja) * 2016-03-09 2020-02-26 富士通株式会社 固体電解質、及び全固体電池
MX2016004132A (es) * 2016-03-31 2017-09-29 Inst Mexicano Del Petróleo Catalizadores acidos heterogeneos a base de sales metalicas mixtas, proceso de obtencion y uso.
MX2016004133A (es) * 2016-03-31 2017-09-29 Inst Mexicano Del Petróleo Uso de catalizadores acidos heterogeneos a base de sales metalicas mxtas para producir biodiesel.
JP7045292B2 (ja) * 2018-09-11 2022-03-31 太陽誘電株式会社 全固体電池、全固体電池の製造方法、および固体電解質ペースト
CN113336213A (zh) * 2020-03-03 2021-09-03 台湾立凯电能科技股份有限公司 用于固态电解质的磷酸锂铝钛的制备方法
CN111848151B (zh) * 2020-08-10 2022-10-14 西安航空学院 一种磷酸钛镁铝锂lamtp单相陶瓷吸波材料及其制备方法与应用
CN112830465B (zh) * 2021-01-04 2022-06-24 宁波大学 一种改性latp材料的制备方法及其抑制锂枝晶生长的用途
CN113113578B (zh) * 2021-03-10 2023-01-13 欣旺达电动汽车电池有限公司 正极材料及其制备方法和锂离子电池
CN113178615A (zh) * 2021-03-30 2021-07-27 深圳市新创材料科技有限公司 一种latp固态电解质的制备方法
CN114551819B (zh) * 2021-07-16 2023-06-09 万向一二三股份公司 一种latp/高镍复合正极材料、正极片和电池
CN114804052A (zh) * 2022-03-28 2022-07-29 湖州南木纳米科技有限公司 一种磷酸钛铝前驱体材料及其制备方法和用途
CN115522261B (zh) * 2022-09-27 2024-03-15 合肥学院 一种二阶非线性光学晶体硼磷酸铝锂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030763A (ko) * 2003-09-26 2005-03-31 삼성에스디아이 주식회사 리튬 이온 이차 전지
KR20090015131A (ko) * 2006-06-05 2009-02-11 티/제이 테크놀로지스, 인코포레이티드 알칼리 금속 티타네이트 및 그 합성방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162605A (ja) * 1988-12-14 1990-06-22 Japan Synthetic Rubber Co Ltd リチウムイオン導電性固体電解質およびその製法
US4985317A (en) 1988-11-30 1991-01-15 Japan Synthetic Rubber Co., Ltd. Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
JPH02148655A (ja) * 1988-11-30 1990-06-07 Japan Synthetic Rubber Co Ltd リチウムイオン導電性固体電解質シートおよびその製造方法
JPH02225310A (ja) 1989-02-23 1990-09-07 Matsushita Electric Ind Co Ltd 固体電解質およびその製造法
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6447951B1 (en) 1996-09-23 2002-09-10 Valence Technology, Inc. Lithium based phosphates, method of preparation, and uses thereof
DE19653484A1 (de) 1996-12-20 1998-06-25 Fraunhofer Ges Forschung Verfahren zur Herstellung von Membran-Elektroden-Einheiten und eine so hergestellte Membran-Elektroden-Einheit
JP3655443B2 (ja) * 1997-09-03 2005-06-02 松下電器産業株式会社 リチウム電池
JP2001143754A (ja) * 1999-11-12 2001-05-25 Canon Inc 二次電池用固体電解質、その製造方法および該電解質を用いた二次電池。
JP2001319520A (ja) * 2000-05-08 2001-11-16 National Institute For Materials Science リチウムイオン伝導性固体電解質
JP2002042876A (ja) 2000-07-25 2002-02-08 Kyocera Corp リチウム電池
JP2002042878A (ja) * 2000-07-26 2002-02-08 Kyocera Corp リチウム二次電池
JP4691777B2 (ja) * 2000-11-15 2011-06-01 株式会社豊田中央研究所 リチウムイオン伝導体の製造方法
DE10257186A1 (de) 2002-12-06 2004-07-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von beschichteten Streckmetallen und Verwendung solcher Metalle als Stromableiter in elektrotechnischen Bauelementen
DE10353266B4 (de) * 2003-11-14 2013-02-21 Süd-Chemie Ip Gmbh & Co. Kg Lithiumeisenphosphat, Verfahren zu seiner Herstellung und seine Verwendung als Elektrodenmaterial
KR100883044B1 (ko) * 2004-12-13 2009-02-10 파나소닉 주식회사 활물질층과 고체 전해질층을 포함하는 적층체의 제조방법 및 이 적층체를 이용한 전고체 리튬 2차전지의 제조방법
JP5115920B2 (ja) * 2006-02-24 2013-01-09 日本碍子株式会社 全固体電池
JP2008053225A (ja) * 2006-07-28 2008-03-06 Sumitomo Chemical Co Ltd 金属リン酸塩とその製造方法
JP4767798B2 (ja) * 2006-09-05 2011-09-07 住友大阪セメント株式会社 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP5122847B2 (ja) * 2007-03-27 2013-01-16 日本碍子株式会社 全固体二次電池及びその製造方法
JP5211526B2 (ja) * 2007-03-29 2013-06-12 Tdk株式会社 全固体リチウムイオン二次電池及びその製造方法
JP2009181807A (ja) * 2008-01-30 2009-08-13 Sony Corp 固体電解質、および固体電解質電池、並びにリチウムイオン伝導体の製造方法、固体電解質の製造方法、および固体電解質電池の製造方法
JP5239375B2 (ja) * 2008-02-14 2013-07-17 トヨタ自動車株式会社 全固体電池およびその製造方法
JP5319943B2 (ja) * 2008-03-19 2013-10-16 株式会社オハラ 電池
US8460573B2 (en) * 2008-04-25 2013-06-11 Sumitomo Osaka Cement Co., Ltd. Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery
CN101320809B (zh) * 2008-07-17 2011-02-09 深圳市贝特瑞新能源材料股份有限公司 锂离子电池正极材料磷酸锰锂及其制备方法
CN101428781B (zh) * 2008-12-08 2011-01-19 广州丰江电池新技术有限公司 一种团聚型纳米结构磷酸铁锂正极材料及其制备方法
DE102009049694A1 (de) * 2009-10-16 2011-04-28 Süd-Chemie AG Phasenreines Lithiumaluminiumtitanphosphat und Verfahren zur Herstellung und dessen Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030763A (ko) * 2003-09-26 2005-03-31 삼성에스디아이 주식회사 리튬 이온 이차 전지
KR20090015131A (ko) * 2006-06-05 2009-02-11 티/제이 테크놀로지스, 인코포레이티드 알칼리 금속 티타네이트 및 그 합성방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
X. M. Wu 외 4인, Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol-gel technique, Materials Letters, 2004, vol. 58, p. 1227-1230. *
X. M. Wu 외 4인, Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol-gel technique, Materials Letters, 2004, vol. 58, p. 1227-1230.*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006368A (ko) 2017-07-10 2019-01-18 주식회사 엘지화학 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
US11735709B2 (en) 2017-07-10 2023-08-22 Unist (Ulsan National Institute Of Science And Technology) Positive electrode for lithium secondary battery, preparation method thereof, and lithium secondary battery including same

Also Published As

Publication number Publication date
KR20120093958A (ko) 2012-08-23
CN102648154A (zh) 2012-08-22
EP2488451A1 (de) 2012-08-22
TWI461355B (zh) 2014-11-21
DE102009049693A1 (de) 2011-04-21
US20120295167A1 (en) 2012-11-22
CN102648154B (zh) 2015-09-30
US9748557B2 (en) 2017-08-29
CA2777784C (en) 2013-09-10
JP5749727B2 (ja) 2015-07-15
JP6063503B2 (ja) 2017-01-18
US20150236339A1 (en) 2015-08-20
JP2013507318A (ja) 2013-03-04
EP2488451B1 (de) 2018-05-30
CA2777784A1 (en) 2011-04-21
WO2011045067A1 (de) 2011-04-21
JP2015145335A (ja) 2015-08-13
TW201125813A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
KR101426350B1 (ko) 순수-상 리튬 알루미늄 티타늄 포스페이트 및 이의 제조 방법 및 이의 이용 방법
CA2777780C (en) Phase-pure lithium aluminium titanium phosphate and method for its production and its use
EP3852170B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery
JP2021520333A (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
CN113707875B (zh) 一种尖晶石型镍锰酸锂、其制备方法和锂离子电池
Hou et al. Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping
WO2014030298A1 (ja) 全固体リチウムイオン電池及び正極合材
KR100830974B1 (ko) 리튬 이온 이차 전지용 음극 활물질의 제조 방법, 이에의해 제조된 리튬 이온 이차 전지용 음극 활물질, 및 이를포함하는 리튬 이온 이차 전지
CN102414880A (zh) 非水电解质电池、用于该非水电解质电池的活性物质、其制造方法、钛酸碱金属化合物的制造方法以及电池包
US20230118425A1 (en) Positive electrode active material for all-solid lithium-ion battery, electrode and all-solid lithium-ion battery
Zhang et al. Li2ZrO3-coated Li4Ti5O12 with nanoscale interface for high performance lithium-ion batteries
JP2012018832A (ja) リチウム二次電池用正極活物質とその製造方法、および該正極活物質の前駆体とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
KR20220129544A (ko) 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지
JP2020066560A (ja) 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
WO2021145179A1 (ja) 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP5769140B2 (ja) リチウム二次電池用正極活物質の製造方法
JP6861870B1 (ja) リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
JP7408912B2 (ja) リチウムイオン二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170710

Year of fee payment: 4