JPWO2015060314A1 - L−アミノ酸の製造法 - Google Patents

L−アミノ酸の製造法 Download PDF

Info

Publication number
JPWO2015060314A1
JPWO2015060314A1 JP2015507848A JP2015507848A JPWO2015060314A1 JP WO2015060314 A1 JPWO2015060314 A1 JP WO2015060314A1 JP 2015507848 A JP2015507848 A JP 2015507848A JP 2015507848 A JP2015507848 A JP 2015507848A JP WO2015060314 A1 JPWO2015060314 A1 JP WO2015060314A1
Authority
JP
Japan
Prior art keywords
gene
acpp
strain
fabf
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015507848A
Other languages
English (en)
Other versions
JP6459962B2 (ja
Inventor
未来 戸矢崎
未来 戸矢崎
景子 野口
景子 野口
美加 守屋
美加 守屋
由利 上原
由利 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Publication of JPWO2015060314A1 publication Critical patent/JPWO2015060314A1/ja
Application granted granted Critical
Publication of JP6459962B2 publication Critical patent/JP6459962B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L−アミノ酸の製造法を提供する。acpP−fabFオペロンが弱化されるように改変されたL−アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養し、該培地または菌体よりL−アミノ酸を採取することにより、L−アミノ酸を製造する。

Description

本発明は、細菌を用いたL−アミノ酸の製造法に関する。L−アミノ酸は、動物飼料用の添加物、調味料や飲食品の成分、又はアミノ酸輸液等として、産業上有用である。
L−アミノ酸は、例えば、L−アミノ酸生産能を有する各種微生物を用いた発酵法により工業生産されている。発酵法によるL−アミノ酸の製造法としては、例えば、野生型微生物(野生株)を用いる方法、野生株から誘導された栄養要求株を用いる方法、野生株から種々の薬剤耐性変異株として誘導された代謝調節変異株を用いる方法、栄養要求株と代謝調節変異株の両方の性質を持った株を用いる方法が挙げられる。
また、近年は、組換えDNA技術によりL−アミノ酸生産能を向上させた微生物がL−アミノ酸の製造に利用されている。微生物のL−アミノ酸生産能を向上させる方法としては、例えば、L−アミノ酸生合成系酵素をコードする遺伝子の発現を増強すること(特許文献1、特許文献2)やL−アミノ酸生合成系への炭素源の流入を増強すること(特許文献3)が挙げられる。
acpP遺伝子は、アシルキャリアタンパク質(acyl carrier protein;ACP)をコードする遺伝子である(非特許文献1)。ACPは、不活性なapo-ACPとして翻訳され、その後、ACPシンターゼ(ACP synthease)によりapo-ACPの36位(エシェリヒア・コリの場合)のセリン残基に4’−ホスホパンテテイン(4'-phosphopanteheine)が補因子として付加され、活性なholo-ACPとなる。ACPは、細菌等の脂肪酸生合成において重要な役割を担うタンパク質である。具体的には、ACP(holo-ACP)は、脂肪酸生合成の際に、4’−ホスホパンテテイン基を介して脂肪酸鎖と結合し、脂肪酸鎖を担持する。
fabF遺伝子は、β−ケトアシル−ACPシンターゼII(beta-ketoacyl-ACP synthase II)をコードする遺伝子である(非特許文献1)。β−ケトアシル−ACPシンターゼIIは、脂肪酸生合成酵素の1つであり、脂肪酸鎖の伸長に関与する。具体的には、β−ケトアシル−ACPシンターゼIIは、アシル−ACP(炭素数n)とマロニル−ACPから、3−オキソアシル−ACP(炭素数n+2)を生成する反応を触媒する(EC 2.3.1.41)。
エシェリヒア・コリにおいて、acpP遺伝子およびfabF遺伝子を含む脂肪酸生合成に関与する遺伝子群は、yceD-rpmF-plsX-fabHDG-acpP-fabF遺伝子クラスターとして存在する。同クラスターの遺伝子群は、いくつかの遺伝子ペアとして共転写される(非特許文献1)。例えば、acpP遺伝子およびfabF遺伝子はacpP-fabFオペロンとして共転写される。なお、fabF遺伝子は、自前のプロモーターから個別にも転写される。また、acpP遺伝子は、yceD-rpmF-plsX-fabHDG-acpP-fabF遺伝子クラスター中の、fabD遺伝子およびfabG遺伝子から共転写され得る。
しかしながら、acpP遺伝子およびfabF遺伝子とL−アミノ酸生産との関係は知られていなかった。
米国特許第5,168,056号明細書 米国特許第5,776,736号明細書 米国特許第5,906,925号明細書
Zhang Y, Cronan JE Jr., J Bacteriol. 1996 Jun; 178(12): 3614-20.
本発明は、細菌のL−アミノ酸生産能を向上させる新規な技術を開発し、効率的なL−アミノ酸の製造法を提供することを課題とする。
本発明者は、上記課題を解決するために鋭意研究を行った結果、acpPおよびfabF遺伝子の発現が低下するように細菌を改変することによって、細菌のL−アミノ酸生産能を向上させることができることを見出し、本発明を完成させた。
すなわち、本発明は以下の通り例示できる。
[1]
L−アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養してL−アミノ酸を該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL−アミノ酸を採取すること、を含むL−アミノ酸の製造法であって、
前記細菌が、acpP−fabFオペロンが弱化されるように改変されていることを特徴とする、方法。
[2]
前記acpP−fabFオペロンの弱化が、acpP−fabFオペロンの遺伝子にコードされるタンパク質の活性の低下である、前記方法。
[3]
acpP−fabFオペロンの遺伝子の発現が弱化されることにより、前記オペロンが弱化された、前記方法。
[4]
前記acpP−fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化された、前記方法。
[5]
前記acpP−fabFオペロンの遺伝子が、acpP遺伝子および/またはfabF遺伝子である、前記方法。
[6]
前記acpP−fabFオペロンの遺伝子が、acpP遺伝子およびfabF遺伝子である、前記方法。
[7]
acpP遺伝子の翻訳開始点の上流−34位のシトシンが他の塩基に置換されることにより、前記acpP−fabFオペロンの遺伝子の発現が弱化された、前記方法。
[8]
acpP遺伝子の翻訳開始点の上流−34位のシトシンがアデニンに置換されることにより、前記acpP−fabFオペロンの遺伝子の発現が弱化された、前記方法。
[9]
前記細菌が、エシェリヒア属、パントエア属、またはエンテロバクター属に属する細菌である、前記方法。
[10]
前記細菌が、エシェリヒア・コリである、前記方法。
[11]
前記L−アミノ酸が、L−リジンである、前記方法。
[12]
L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、
前記エシェリヒア・コリにおいて、acpP−fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化されていることを特徴とする、方法。
[13]
L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、
前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流−34位のシトシンが他の塩基に置換されていることを特徴とする、方法。
[14]
L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、
前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流−34位のシトシンがアデニンに置換されていることを特徴とする、方法。
以下、本発明を詳細に説明する。
本発明の方法は、L−アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養してL−アミノ酸を該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL−アミノ酸を採取すること、を含むL−アミノ酸の製造法であって、前記細菌が、acpP-fabFオペロンが弱化されるように改変されていることを特徴とする、方法である。同方法に用いられる細菌を、「本発明の細菌」ともいう。
<1>本発明の細菌
本発明の細菌は、L−アミノ酸生産能を有する腸内細菌科に属する細菌であって、且つ、acpP-fabFオペロンが弱化されるように改変された細菌である。
<1−1>L−アミノ酸生産能を有する細菌
本発明において、「L−アミノ酸生産能を有する細菌」とは、培地で培養したときに、目的とするL−アミノ酸を生成し、回収できる程度に培地中または菌体内に蓄積する能力を有する細菌をいう。L−アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL−アミノ酸を培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、L−アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL−アミノ酸を培地に蓄積することができる細菌であってもよい。
L−アミノ酸としては、L−リジン、L−オルニチン、L−アルギニン、L−ヒスチジン、L−シトルリン等の塩基性アミノ酸、L−イソロイシン、L−アラニン、L−バリン、L−ロイシン、グリシン等の脂肪族アミノ酸、L−スレオニン、L−セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L−プロリン等の環式アミノ酸、L−フェニルアラニン、L−チロシン、L−トリプトファン等の芳香族アミノ酸、L−システイン、L−シスチン、L−メチオニン等の含硫アミノ酸、L−グルタミン酸、L−アスパラギン酸等の酸性アミノ酸、L−グルタミン、L−アスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の細菌は、1種のL−アミノ酸の生産能のみを有していてもよく、2種またはそれ以上のL−アミノ酸の生産能を有していてもよい。
本発明において、「アミノ酸」という用語は、特記しない限り、L−アミノ酸を意味してよい。また、生産されるL−アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。すなわち、本発明において、「L−アミノ酸」という用語は、特記しない限り、フリー体のL−アミノ酸、その塩、またはそれらの混合物を意味してよい。塩の例については後述する。
腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。
エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、プロトタイプの野生株K-12由来のエシェリヒア・コリW3110(ATCC 27325)やエシェリヒア・コリMG1655(ATCC 47076)が挙げられる。
エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea agglomeransと分類されているものも存在する。
パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091)、及びSC17(0)株(VKPM B-9246)が挙げられる。なお、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。
エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。
これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。
本発明の細菌は、本来的にL−アミノ酸生産能を有するものであってもよく、L−アミノ酸生産能を有するように改変されたものであってもよい。L−アミノ酸生産能を有する細菌は、例えば、上記のような細菌にL−アミノ酸生産能を付与することにより、または、上記のような細菌のL−アミノ酸生産能を増強することにより、取得できる。
L−アミノ酸生産能の付与または増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77〜100頁参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L−アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L−アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L−アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L−アミノ酸生産菌の育種において、活性が増強されるL−アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。
L−アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL−アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N−メチル−N’−ニトロ−N−ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。
また、L−アミノ酸生産能の付与又は増強は、目的のL−アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。酵素活性を増強する詳細な手法については後述する。
また、L−アミノ酸生産能の付与又は増強は、目的のL−アミノ酸の生合成経路から分岐して目的のL−アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL−アミノ酸の生合成経路から分岐して目的のL−アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。
以下、L−アミノ酸生産菌、およびL−アミノ酸生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するようなL−アミノ酸生産菌が有する性質およびL−アミノ酸生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。
<L−グルタミン酸生産菌>
L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、L−グルタミン酸生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタミン酸シンテターゼ(gltBD)、イソクエン酸デヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ホスホエノールピルビン酸カルボキシラーゼ(ppc)、ピルビン酸カルボキシラーゼ(pyc)、ピルビン酸デヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、ホスホエノールピルビン酸シンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセリン酸キナーゼ(pgk)、グリセルアルデヒド−3−リン酸デヒドロゲナーゼ(gapA)、トリオースリン酸イソメラーゼ(tpiA)、フルクトースビスリン酸アルドラーゼ(fbp)、ホスホフルクトキナーゼ(pfkA, pfkB)、グルコースリン酸イソメラーゼ(pgi)、6−ホスホグルコン酸デヒドラターゼ(edd)、2−ケト−3−デオキシ−6−ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げられる。なお、カッコ内は、その酵素をコードする遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタミン酸デヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルビン酸カルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。
クエン酸シンターゼ遺伝子、ホスホエノールピルビン酸カルボキシラーゼ遺伝子、および/またはグルタミン酸デヒドロゲナーゼ遺伝子の発現が増大するように改変された腸内細菌科に属する株としては、EP1078989A、EP955368A、及びEP952221Aに開示されたものが挙げられる。また、エントナー・ドゥドロフ経路の遺伝子(edd, eda)の発現が増大するように改変された腸内細菌科に属する株としては、EP1352966Bに開示されたものが挙げられる。
また、L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、L−グルタミン酸の生合成経路から分岐してL−グルタミン酸以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、イソクエン酸リアーゼ(aceA)、α−ケトグルタル酸デヒドロゲナーゼ(sucA)、ホスホトランスアセチラーゼ(pta)、酢酸キナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセト乳酸シンターゼ(ilvI)、ギ酸アセチルトランスフェラーゼ(pfl)、乳酸デヒドロゲナーゼ(ldh)、アルコールデヒドロゲナーゼ(adh)、グルタミン酸デカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)、1−ピロリン−5−カルボキシレートデヒドロゲナーゼ(putA)が挙げられる。これらの酵素の中では、例えば、α−ケトグルタル酸デヒドロゲナーゼ活性を低下又は欠損させることが好ましい。
α−ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌、及びそれらの取得方法は、米国特許第5,378,616号及び第5,573,945号に記載されている。また、パントエア属細菌、エンテロバクター属細菌、クレブシエラ属細菌、エルビニア属細菌等の腸内細菌においてα−ケトグルタル酸デヒドロゲナーゼ活性を低下または欠損させる方法は、米国特許6,197,559号公報、米国特許6,682,912号公報、米国特許6,331,419号公報、米国特許8,129,151号公報、およびWO2008/075483に開示されている。α−ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、例えば、下記の株が挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
E. coli W3110sucA::Kmr は、E. coli W3110のα−ケトグルタル酸デヒドロゲナーゼをコードするsucA遺伝子を破壊することにより得られた株である。この株は、α−ケトグルタル酸デヒドロゲナーゼ活性を完全に欠損している。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis AJ13355株(FERM BP-6614)、Pantoea ananatis SC17株(FERM BP-11091)、Pantoea ananatis SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL−グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選択された株である(米国特許第6,596,517号)。SC17株は、2009年2月4日に、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、α−ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したパントエア属細菌も挙げられる。そのような株としては、AJ13355株のα−ケトグルタル酸デヒドロゲナーゼのE1サブユニット遺伝子(sucA)欠損株であるAJ13356株(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA株(米国特許第6,596,517号)が挙げられる。AJ13356株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417が付与され、2004年2月26日に独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-8646として寄託されている。
尚、AJ13355株は、分離された当時はEnterobacter agglomeransと同定されたが、近年、16S rRNAの塩基配列解析などにより、Pantoea ananatisに再分類されている。よって、AJ13355株及びAJ13356株は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis SC17sucA/RSFCPG+pSTVCB株、Pantoea ananatis AJ13601株、Pantoea ananatis NP106株、及びPantoea ananatis NA1株等のパントエア属細菌も挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)、およびグルタミン酸デヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得られた株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL−グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、α−ケトグルタル酸デヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両方が低下または欠損した株も挙げられる(特開2010-041920号)。そのような株として、具体的には、例えば、Pantoea ananatis NA1のsucAsdhA二重欠損株が挙げられる(特開2010-041920号)。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、栄養要求性変異株も挙げられる。栄養要求性変異株として、具体的には、例えば、E. coli VL334thrC+ (VKPM B-8961) (EP 1172433) が挙げられる。E. coli VL334 (VKPM B-1641) は、thrC遺伝子及びilvA遺伝子に変異を有するL−イソロイシン及びL−スレオニン要求性株である (米国特許第4,278,765号)。E. coli VL334thrC+は、thrC遺伝子の野生型アレルをVL334に導入することにより得られた、L−イソロイシン要求性のL−グルタミン酸生産菌である。thrC遺伝子の野生型アレルは、野生型E. coli K-12株 (VKPM B-7) の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、アスパラギン酸アナログに耐性を有する株も挙げられる。これらの株は、例えば、α−ケトグルタル酸デヒドロゲナーゼ活性を欠損していてもよい。アスパラギン酸アナログに耐性を有し、α−ケトグルタル酸デヒドロゲナーゼ活性を欠損した株として、具体的には、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5,908,768号)、さらにL−グルタミン酸分解能が低下したE. coli FFRM P-12379 (米国特許第5,393,671号)、E. coli AJ13138 (FERM BP-5565) (米国特許第6,110,714号) が挙げられる。
また、L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、D−キシルロース−5−リン酸−ホスホケトラーゼ及び/又はフルクトース−6−リン酸ホスホケトラーゼの活性が増大するように細菌を改変する方法も挙げられる(特表2008-509661)。D−キシルロース−5−リン酸−ホスホケトラーゼ活性及びフルクトース−6−リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。なお、本明細書ではD−キシルロース−5−リン酸−ホスホケトラーゼとフルクトース−6−リン酸ホスホケトラーゼをまとめてホスホケトラーゼと呼ぶことがある。
D−キシルロース−5−リン酸−ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース−5−リン酸をグリセルアルデヒド−3−リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献 (Methods Enzymol., 9,515-520 (1966)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。
また、フルクトース−6−リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6−リン酸をエリスロース−4−リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, Eの文献 (Methods Enzymol., 5, 276-280 (1962)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。
また、L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、L−グルタミン酸排出遺伝子であるyhfK遺伝子(WO2005/085419)やybjL遺伝子(WO2008/133161)の発現を増強することも挙げられる。
<L−グルタミン生産菌>
L−グルタミン生産能を付与又は増強するための方法としては、例えば、L−グルタミン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。なお、グルタミンシンセターゼの活性は、グルタミンアデニニルトランスフェラーゼ遺伝子(glnE)の破壊やPII制御タンパク質遺伝子(glnB)の破壊によって増強してもよい(EP1229121)。
また、L−グルタミン生産能を付与又は増強するための方法としては、例えば、L−グルタミンの生合成経路から分岐してL−グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。
L−グルタミン生産菌又はそれを誘導するための親株として、具体的には、例えば、グルタミンシンセターゼの397位のチロシン残基が他のアミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(米国特許出願公開第2003-0148474号明細書)。
<L−プロリン生産菌>
L−プロリン生産能を付与又は増強するための方法としては、例えば、L−プロリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、グルタミン酸−5−キナーゼ(proB)、γ‐グルタミル−リン酸レダクターゼ、ピロリン−5−カルボキシレートレダクターゼ(putA)が挙げられる。酵素活性の増強には、例えば、L−プロリンによるフィードバック阻害が解除されたグルタミン酸−5−キナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
また、L−プロリン生産能を付与又は増強するための方法としては、例えば、L−プロリン分解に関与する酵素の活性が低下するように細菌を改変する方法が挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。
L−プロリン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、E. coli VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のE. coliプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のE. coliプラスミド変異体、3,4−デヒドロキシプロリンおよびアザチジン−2−カルボキシレートに耐性のE. coli 702株(VKPMB-8011)、702株のilvA遺伝子欠損株であるE. coli 702ilvA株(VKPM B-8012) (EP 1172433) が挙げられる。
<L−スレオニン生産菌>
L−スレオニン生産能を付与又は増強するための方法としては、例えば、L−スレオニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びスレオニンシンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。L−スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578号)が挙げられる。
L−スレオニン生合成系酵素の活性は、最終産物のL−スレオニンによって阻害される。従って、L−スレオニン生産菌を構築するためには、L−スレオニンによるフィードバック阻害を受けないようにL−スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); WO02/26993; WO2005/049808; WO2003/097839参照)。
スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715号パンフレット参照)。また、スレオニン生合成関与遺伝子がラムダファ−ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(欧州特許第0593792号明細書参照)。また、L−スレオニンによるフィードバック阻害を受けないように改変された細菌は、L−スレオニンアナログであるα-amino-β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。
このようにL−スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ−ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。
また、L−スレオニン生産能を付与または増強する方法としては、宿主にL−スレオニン耐性を付与する方法やL−ホモセリン耐性を付与する方法も挙げられる。耐性の付与は、例えば、L−スレオニンに耐性を付与する遺伝子、L−ホモセリンに耐性を付与する遺伝子の発現を強化することにより達成できる。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123−135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK遺伝子、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また、宿主にL−スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や国際公開第90/04636号パンフレットに記載の方法を参照出来る。
L−スレオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL−21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)、ならびにE. coli VKPM B-5318 (EP 0593792 B) が挙げられる。
VKPM B-3996株は、TDH-6株に、プラスミドpVIC40を導入した株である。TDH-6株は、スクロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有する。また、VKPM B-3996株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-3996で寄託されている。
VKPM B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-5318で国際寄託されている。
E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337〜2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801〜3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734〜5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。
E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764〜1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。
E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511〜3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。
また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742〜984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。
<L−リジン生産菌>
L−リジン生産能を付与又は増強するための方法としては、例えば、L−リジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラーゼ(phosphoenolpyruvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenase)(asd)、アスパラギン酸アミノトランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。また、L−リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL−リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L−リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用してもよい(米国特許5,932,453号明細書)。また、ジヒドロジピコリン酸合成酵素(dapA)L−リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L−リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。
また、L−リジン生産能を付与又は増強するための方法としては、例えば、L−リジンの生合成経路から分岐してL−リジン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。
また、L−リジン生産菌又はそれを誘導するための親株としては、L−リジンアナログに耐性を有する変異株が挙げられる。L−リジンアナログは腸内細菌科の細菌やコリネ型細菌等の細菌の生育を阻害するが、この阻害は、L−リジンが培地に共存するときには完全にまたは部分的に解除される。L−リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S−(2−アミノエチル)−L−システイン(AEC)、γ−メチルリジン、α−クロロカプロラクタムが挙げられる。これらのリジンアナログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。
L−リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11442(FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びE. coli VL611が挙げられる。これらの株では、アスパルトキナーゼのL−リジンによるフィードバック阻害が解除されている。L−リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJIK01株(NITE BP-01520)も挙げられる。AJIK01株は、E. coli AJ111046と命名され、2013年1月29日に、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、2014年5月15日にブダペスト条約に基づく国際寄託に移管され、受託番号NITE BP-01520が付与されている。
L−リジン生産菌又はそれを誘導するための親株として、具体的には、E. coli WC196株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与することにより育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され、1994年12月6日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。
好ましいL−リジン生産菌として、E. coli WC196ΔcadAΔldcやE. coli WC196ΔcadAΔldc/pCABD2が挙げられる(WO2010/061890)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldcに、リジン生合成系遺伝子を含むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-11027として国際寄託された。pCABD2は、L−リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L−リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでいる。
<L−アルギニン生産菌>
L−アルギニン生産能を付与又は増強するための方法としては、例えば、L−アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、N−アセチルグルタミン酸シンターゼ(argA)、N−アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N−アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)オルニチンカルバモイルトランスフェラーゼ(argF)、アルギニノコハク酸シンターゼ(argG)、アルギニノコハク酸リアーゼ(argH)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。N−アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位〜19位に相当するアミノ酸残基が置換され、L−アルギニンによるフィードバック阻害が解除された変異型N−アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(欧州出願公開1170361号明細書)。
L−アルギニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、変異型N−アセチルグルタミン酸シンターゼをコードするargA遺伝子が導入されたその誘導株 (ロシア特許出願第2001112869号, EP1170361A1)、237株由来の酢酸資化能が向上した株であるE. coli 382株 (VKPM B-7926) (EP1170358A1)、及び382株にE. coli K-12株由来の野生型ilvA遺伝子が導入された株であるE. coli 382ilvA+株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管された。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7926の受託番号で寄託されている。
また、L−アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログ等への耐性を有する株も挙げられる。そのような株としては、例えば、α−メチルメチオニン、p−フルオロフェニルアラニン、D−アルギニン、アルギニンヒドロキサム酸、S−(2−アミノエチル)−システイン、α−メチルセリン、β−2−チエニルアラニン、またはスルファグアニジンに耐性を有するエシェリヒア・コリ変異株(特開昭56-106598号公報参照)が挙げられる。
<L−シトルリン生産菌およびL−オルニチン生産菌>
L−シトルリンおよびL−オルニチンは、L−アルギニンと生合成経路が共通している。よって、N−アセチルグルタミン酸シンターゼ(argA)、N−アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、および/またはアセチルオルニチンデアセチラーゼ(argE)の酵素活性を上昇させることによって、L−シトルリンおよび/またはL−オルニチンの生産能を付与または増強することができる(国際公開2006-35831号パンフレット)。
<L−ヒスチジン生産菌>
L−ヒスチジン生産能を付与又は増強するための方法としては、例えば、L−ヒスチジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル−AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル−ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ−5−アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
これらの内、hisG及びhisBHAFIにコードされるL−ヒスチジン生合成系酵素は、L−ヒスチジンにより阻害されることが知られている。従って、L−ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、付与または増強させることができる(ロシア特許第2003677号及び第2119536号)。
L−ヒスチジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli NRRL B-12116〜B12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)、L−ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM P-5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE. coli株 (EP1016710A)、スルファグアニジン、DL−1,2,4−トリアゾール−3−アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株 (VKPM B-7270, ロシア特許第2119536号) などのエシェリヒア属に属する株が挙げられる。
<L−システイン生産菌>
L−システイン生産能を付与又は増強するための方法としては、例えば、L−システイン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼ(cysE)や3−ホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571や米国特許公開第20050112731に開示されている。また、3−ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3−ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3−ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
また、L−システイン生産能を付与又は増強するための方法としては、例えば、L−システインの生合成経路から分岐してL−システイン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、例えば、L−システインの分解に関与する酵素が挙げられる。L−システインの分解に関与する酵素としては、特に制限されないが、シスタチオニン−β−リアーゼ(metC)(特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA)(特開2003-169668、Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218)、O−アセチルセリンスルフヒドリラーゼB(cysM)(特開2005-245311)、malY遺伝子産物(特開2005-245311)、Pantoea ananatisのd0191遺伝子産物(特開2009-232844)が挙げられる。
また、L−システイン生産能を付与又は増強するための方法としては、例えば、L−システイン排出系を増強することや硫酸塩/チオ硫酸塩輸送系を増強することも挙げられる。L−システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。
L−システイン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害耐性の変異型セリンアセチルトランスフェラーゼをコードする種々のcysEアレルで形質転換されたE. coli JM15 (米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO01/27307A1)が挙げられる。
<L−メチオニン生産菌>
L−メチオニン生産菌又はそれを誘導するための親株としては、L−スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L−メチオニン生産菌又はそれを誘導するための親株としては、L−メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US20090029424)。なお、L−メチオニンはL−システインを中間体として生合成されるため、L−システインの生産能の向上によりL−メチオニンの生産能も向上させることができる(特開2000-139471、US20080311632)。
L−メチオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11539 (NRRL B-12399)、E. coli AJ11540 (NRRL B-12400)、E. coli AJ11541 (NRRL B-12401)、E. coli AJ11542 (NRRL B-12402) (英国特許第2075055号)、L−メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株 (VKPM B-8125)(ロシア特許第2209248号)や73株 (VKPM B-8126) (ロシア特許第2215782号)、E. coli AJ13425 (FERM P-16808)(特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS−アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ−シンターゼ活性、及びアスパルトキナーゼ−ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来のL−スレオニン要求株である。
<L−ロイシン生産菌>
L−ロイシン生産能を付与又は増強するための方法としては、例えば、L−ロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L−ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
L−ロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、ロイシン耐性のE. coli株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))、β−2−チエニルアラニン、3−ヒドロキシロイシン、4−アザロイシン、5,5,5−トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられる。
<L−イソロイシン生産菌>
L−イソロイシン生産能を付与又は増強するための方法としては、例えば、L−イソロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
L−イソロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、6−ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、イソロイシンアナログに加えてDL−エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号) 等のエシェリヒア属細菌が挙げられる。
<L−バリン生産菌>
L−バリン生産能を付与又は増強するための方法としては、例えば、L−バリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸シンターゼを、ilvCはイソメロリダクターゼ(国際公開00/50624号)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L−バリン、L−イソロイシン、および/またはL−ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL−バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L−イソロイシン生合成系の律速段階であるL−スレオニンから2−ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L−バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
また、L−バリン生産能を付与又は増強するための方法としては、例えば、L−バリンの生合成経路から分岐してL−バリン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、L−ロイシン合成に関与するスレオニンデヒドラターゼやD−パントテン酸合成に関与する酵素が挙げられる(国際公開00/50624号)。
L−バリン生産菌又はそれを誘導するための親株として、具体的には、例えば、ilvGMEDAオペロンを過剰発現するように改変されたE. coli株(米国特許第5,998,178号) が挙げられる。
また、L−バリン生産菌又はそれを誘導するための親株としては、アミノアシルt-RNAシンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。また、L−バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。
<L−トリプトファン生産菌、L−フェニルアラニン生産菌、L−チロシン生産菌>
L−トリプトファン生産能、L−フェニルアラニン生産能、および/またはL−チロシン生産能を付与又は増強するための方法としては、例えば、L−トリプトファン、L−フェニルアラニン、および/またはL−チロシンの生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3−デオキシ−D−アラビノヘプツロン酸−7−リン酸シンターゼ(aroG)、3−デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5−エノール酸ピルビルシキミ酸3−リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(欧州特許763127号)。これらの酵素をコードする遺伝子の発現はチロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(欧州特許763127号)。
L−トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L−トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL−トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL−セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)の発現を増大させることによりL−トリプトファン生産能を付与または増強してもよい(WO2005/103275)。
L−フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ−プレフェン酸デヒドラターゼはL−フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
L−チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ−プレフェン酸デヒドロゲナーゼはL−チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
L−トリプトファン、L−フェニルアラニン、および/またはL−チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L−トリプトファン、L−フェニルアラニン、および/またはL−チロシンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L−トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L−フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L−チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。
L−トリプトファン生産菌又はそれを誘導するための親株として、具体的には、例えば、部分的に不活化されたトリプトファニル-tRNAシンテターゼをコードする変異型trpS遺伝子を保持するE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィードバック阻害を受けないホスホグリセリン酸デヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株 (特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、ホスホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株 (米国特許出願公開2003/0148473 A1及び2003/0157667 A1) が挙げられる。
L−フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、コリスミ酸ムターゼ−プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ−プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E. coli MWEC101-b (KR8903681)、E. coli NRRL B-12141、NRRL B-12145、NRRL B-12146、NRRL B-12147 (米国特許第4,407,952号)が挙げられる。また、L−フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害が解除されたコリスミ酸ムターゼ−プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 <W3110 (tyrA)/pPHAB> (FERM BP-3566)、E. coli K-12 <W3110 (tyrA)/pPHAD> (FERM BP-12659)、E. coli K-12 <W3110 (tyrA)/pPHATerm> (FERM BP-12662)、E. coli K-12 AJ 12604 <W3110 (tyrA)/pBR-aroG4, pACMAB> (FERM BP-3579)も挙げられる(EP 488424 B1)。また、L−フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(US2003/0148473、US2003/0157667、WO03/044192)。
また、L−アミノ酸生産能を付与または増強する方法としては、例えば、細菌の細胞からL−アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L−アミノ酸を排出する活性は、例えば、L−アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874号公報)。
また、L−アミノ酸生産能を付与または増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。
糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6−リン酸イソメラーゼ遺伝子(pgi;国際公開第01/02542号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps;欧州出願公開877090号明細書)、ホスホエノ−ルピルビン酸カルボキシラ−ゼ遺伝子(ppc;国際公開95/06114号パンフレット)、ピルビン酸カルボキシラーゼ遺伝子(pyc;国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)、ホスホグルコムターゼ遺伝子(pgm;国際公開03/04598号パンフレット)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;国際公開03/04664号パンフレット)、ピルビン酸キナーゼ遺伝子(pykF;国際公開03/008609号パンフレット)、トランスアルドラーゼ遺伝子(talB;国際公開03/008611号パンフレット)、フマラーゼ遺伝子(fum;国際公開01/02545号パンフレット)、non-PTSスクロース取り込み遺伝子遺伝子(csc;欧州出願公開149911号パンフレット)、スクロース資化性遺伝子(scrABオペロン;国際公開第90/04636号パンフレット)が挙げられる。
エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許 5,830,716号明細書)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;欧州特許出願公開1070376号明細書)が挙げられる。
なお、上記のL−アミノ酸生産菌の育種に使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、L−アミノ酸生産菌の育種に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、後述するacpP遺伝子およびfabF遺伝子ならびにそれらがコードするタンパク質のバリアントに関する記載を準用できる。
<1−2>acpP-fabFオペロンの弱化
本発明の細菌は、acpP-fabFオペロンが弱化されるように改変されている。acpP-fabFオペロンは脂肪酸生合成に関与する(非特許文献1)ため、acpP-fabFオペロンが弱化された細菌を用いてL−アミノ酸生産培養を行った場合、非改変株を用いてL−アミノ酸生産培養を行った場合と比較して、脂肪酸生合成経路への炭素の流入が減る結果、余剰の炭素や還元力がL−アミノ酸生産に用いられ、L−アミノ酸生産が向上すると推定される。本発明の細菌は、L−アミノ酸生産能を有する細菌を、acpP-fabFオペロンが弱化されるように改変することにより取得できる。また、本発明の細菌は、acpP-fabFオペロンが弱化されるように細菌を改変した後に、L−アミノ酸生産能を付与または増強することによっても得ることができる。また、本発明の細菌は、acpP-fabFオペロンが弱化されるように改変されたことによりL−アミノ酸生産能を獲得したものであってもよい。本発明の細菌を構築するための改変は、任意の順番で行うことができる。
「acpP-fabFオペロンが弱化される」とは、acpP-fabFオペロンの遺伝子にコードされるタンパク質の活性が低下すること、および/または、acpP-fabFオペロンの遺伝子の発現が低下することを意味する。「遺伝子の発現が低下する」とは、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質の量)が低下することを意味する。「acpP-fabFオペロンの遺伝子」とは、acpP遺伝子および/またはfabF遺伝子をいう。すなわち、「acpP-fabFオペロンの遺伝子にコードされるタンパク質」とは、acpP遺伝子にコードされるタンパク質および/またはfabF遺伝子にコードされるタンパク質(すなわち、AcpPタンパク質および/またはFabFタンパク質)をいう。タンパク質の活性は、後述するように、例えば、同タンパク質をコードする遺伝子の発現を弱化することや、同タンパク質をコードする遺伝子を破壊することにより、達成できる。すなわち、「acpP-fabFオペロンが弱化される」とは、例えば、acpP-fabFオペロンの遺伝子の発現が弱化されることであってよい。本発明においては、例えば、acpP遺伝子およびfabF遺伝子のいずれかの発現が弱化されてもよく、両方の発現が弱化されてもよい。すなわち、acpP-fabFオペロン全体の発現が弱化されてもよい。
acpP遺伝子は、アシルキャリアタンパク質(acyl carrier protein;ACP)をコードする遺伝子である。「ACP」とは、脂肪酸生合成の際に、4’−ホスホパンテテイン基を介して脂肪酸鎖と結合し、脂肪酸鎖を担持する機能を有するタンパク質をいう。また、当該機能を、「ACP活性」ともいう。なお、ACPは、不活性なapo-ACPとして翻訳され、その後、ACPシンターゼ(ACP synthease)によりapo-ACPの36位(エシェリヒア・コリの場合)のセリン残基に4’−ホスホパンテテイン(4'-phosphopanteheine)が補因子として付加され、活性なholo-ACPとなる。
fabF遺伝子は、β−ケトアシル−ACPシンターゼII(beta-ketoacyl-ACP synthase II)をコードする遺伝子である。「β−ケトアシル−ACPシンターゼII」とは、アシル−ACP(炭素数n)とマロニル−ACPから、3−オキソアシル−ACP(炭素数n+2)を生成する反応を触媒する酵素をいう(EC 2.3.1.41)。また、同反応を触媒する活性を、「β−ケトアシル−ACPシンターゼII活性」ともいう。
Escherichia coli K-12 MG1655株のacpP遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1150838〜1151074位の配列に相当する。MG1655株のacpP遺伝子は、ECK1080、JW1080と同義である。また、MG1655株のAcpPタンパク質は、GenBank accession NP_415612 (version NP_415612.1 GI:16129057, locus_tag="b1094")として登録されている。
Escherichia coli K-12 MG1655株のfabF遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1151162〜1152403位の配列に相当する。MG1655株のfabF遺伝子は、ECK1081、JW1081と同義である。また、MG1655株のFabFタンパク質は、GenBank accession NP_415613 (version NP_415613.1 GI:16129058, locus_tag="b1095")として登録されている。
MG1655株のacpP-fabFオペロンの塩基配列(上流210 bpを含む)を、配列番号7に示す。配列番号7において、acpP遺伝子の塩基配列は211〜447位に、fabF遺伝子の塩基配列は535〜1776位に、それぞれ相当する。また、MG1655株のAcpPタンパク質およびFabFタンパク質のアミノ酸配列を、それぞれ配列番号8および9に示す。
Pantoea ananatis AJ13355株のacpP遺伝子は、NCBIデータベースに、GenBank accession NC_017531 (VERSION NC_017531.1 GI:386014600)として登録されているゲノム配列中、986154〜986528位の配列に相当する。また、AJ13355株のAcpPタンパク質は、GenBank accession YP_005933706 (version YP_005933706.1 GI:386015425)として登録されている。
Pantoea ananatis AJ13355株のfabF遺伝子は、NCBIデータベースに、GenBank accession NC_017531 (VERSION NC_017531.1 GI:386014600)として登録されているゲノム配列中、986650〜987855位の配列に相当する。また、AJ13355株のFabFタンパク質は、GenBank accession YP_005933707 (version YP_005933707.1 GI:386015426)として登録されている。
AJ13355株のacpP-fabFオペロンの塩基配列(上流210 bpを含む)を、配列番号10に示す。配列番号10において、acpP遺伝子の塩基配列は211〜585位に、fabF遺伝子の塩基配列は707〜1912位に、それぞれ相当する。また、AJ13355株のAcpPタンパク質およびFabFタンパク質のアミノ酸配列を、それぞれ配列番号11および12に示す。
AcpPタンパク質またはFabFタンパク質は、元の機能が維持されている限り、上記AcpPタンパク質またはFabFタンパク質のバリアントであってもよい。同様に、acpP遺伝子またはfabF遺伝子は、元の機能が維持されている限り、上記acpP遺伝子またはfabF遺伝子のバリアントであってもよい。なお、そのような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。「AcpPタンパク質」または「FabFタンパク質」という用語は、それぞれ、上記AcpPタンパク質またはFabFタンパク質に加えて、それらの保存的バリアントを包含するものとする。同様に、「acpP遺伝子」または「fabF遺伝子」という用語は、それぞれ、上記acpP遺伝子またはfabF遺伝子に加えて、それらの保存的バリアントを包含するものとする。保存的バリアントとしては、例えば、上記AcpPタンパク質またはFabFタンパク質や上記acpP遺伝子またはfabF遺伝子の、ホモログや人為的な改変体が挙げられる。
「元の機能が維持されている」とは、タンパク質または遺伝子のバリアントが、元のタンパク質または遺伝子の機能(活性や性質)に対応する機能(活性や性質)を有することをいう。すなわち、例えば、AcpPタンパク質についての「元の機能が維持されている」とは、タンパク質がACP活性を有することをいい、FabFタンパク質についての「元の機能が維持されている」とは、タンパク質がβ−ケトアシル−ACPシンターゼII活性を有することをいう。また、例えば、acpP遺伝子についての「元の機能が維持されている」とは、遺伝子がACP活性を有するタンパク質をコードすることをいい、fabF遺伝子についての「元の機能が維持されている」とは、遺伝子がβ−ケトアシル−ACPシンターゼII活性を有するタンパク質をコードすることをいう。
上記AcpPタンパク質またはFabFタンパク質のホモログをコードする遺伝子は、例えば、上記acpP遺伝子またはfabF遺伝子の塩基配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、上記AcpPタンパク質またはFabFタンパク質のホモログをコードする遺伝子は、例えば、細菌等の生物の染色体を鋳型にして、これら公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。
acpP遺伝子またはfabF遺伝子は、上記AcpPタンパク質またはFabFタンパク質の保存的バリアントをコードする遺伝子であってよい。例えば、acpP遺伝子またはfabF遺伝子は、元の機能が維持されたタンパク質をコードする限りにおいて、上記アミノ酸配列(例えば、配列番号8、9、11、または12のアミノ酸配列)において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。この場合、対応する活性(ACP活性やβ−ケトアシル−ACPシンターゼII活性)は、1又は数個のアミノ酸が置換、欠失、挿入、又は付加される前のタンパク質に対して、通常70%以上、好ましくは80%以上、より好ましくは90%以上が維持され得る。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には、1〜50個、1〜40個、1〜30個、好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個、特に好ましくは1〜3個を意味する。
上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
さらに、上記のような保存的変異を有する遺伝子は、上記アミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有し、かつ、元の機能が維持されたタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を意味する。
また、acpP遺伝子またはfabF遺伝子は、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列(例えば、配列番号7の211〜447位、配列番号7の535〜1776位、配列番号10の211〜585位、または配列番号10の707〜1912位の塩基配列)の全体または一部に対する相補配列とストリンジェントな条件下でハイブリダイズし、元の機能が維持されたタンパク質をコードするDNAであってもよい。また、acpP-fabFオペロンは、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列(例えば、配列番号7の全体、配列番号7の211〜1776位、配列番号10の全体、または配列番号10の211〜1912位の塩基配列)の全体または一部に対する相補配列とストリンジェントな条件下でハイブリダイズし、元の機能が維持されたタンパク質をコードするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2〜3回洗浄する条件を挙げることができる。
上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いることができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。
また、acpP遺伝子またはfabF遺伝子は、元の機能が維持されたタンパク質をコードする限り、任意のコドンがそれと等価のコドンに置換されたものであってもよい。例えば、acpP遺伝子またはfabF遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されたものであってもよい。
なお、上記の遺伝子やタンパク質の保存的バリアントに関する記載は、L−アミノ酸生合成系酵素等の任意のタンパク質、およびそれらをコードする遺伝子にも準用できる。
<1−3>タンパク質の活性を低下させる手法
以下に、AcpPタンパク質やFabFタンパク質等のタンパク質の活性を低下させる手法について説明する。
「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が野性株や親株等の非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成される。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
なお、例えばE. coliにおいて、acpP遺伝子は必須(essential)であることが知られている。よって、AcpPタンパク質の活性を低下させる場合は、必要により、本発明の細菌を培地で培養した際に、本発明の細菌が増殖でき、目的のL−アミノ酸が生産される程度に、AcpPタンパク質の活性を残存させる。すなわち、AcpPタンパク質の活性は、非改変株と比較して、0%には低下しない(完全には消失しない)ものとする。例えば、AcpPタンパク質の活性は、非改変株と比較して、1%以上、5%以上、10%以上、15%以上、17%以上、20%以上、30%以上、または50%以上残存してよい。AcpPタンパク質の活性は、具体的には、例えば、非改変株と比較して、1%〜90%、5%〜80%、10%〜70%、15%〜60%、または17%〜55%に低下してもよい。また、acpP遺伝子の発現量は、非改変株と比較して、0%には低下しないものとする。例えば、acpP遺伝子の発現量は、非改変株と比較して、1%以上、5%以上、10%以上、20%以上、15%以上、17%以上、30%以上、または50%以上残存してよい。acpP遺伝子の発現量は、具体的には、例えば、非改変株と比較して、1%〜90%、5%〜80%、10%〜70%、15%〜60%、または17%〜55%に低下してもよい。このようなAcpPタンパク質の活性を低下させる場合の記載は、FabFタンパク質の活性を低下させる場合に準用してもよい。
遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。AcpPタンパク質は細胞内で豊富なタンパク質として知られており、よって、acpP遺伝子の野生型プロモーターの活性は強いことが示唆される(非特許文献1)。従って、例えば、acpP遺伝子の野生型プロモーターをより活性の弱いプロモーターに置換することにより、acpP遺伝子の発現を低下させることができる。acpP遺伝子の野生型プロモーターより活性の弱いプロモーターとしては、例えば、lacプロモーターや、ロシア特許出願公開第2006/134574号公報に記載のPtac84プロモーターが挙げられる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。また、遺伝子の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。
acpP遺伝子およびfabF遺伝子はacpP-fabFオペロンとして共転写される。なお、fabF遺伝子は、自前のプロモーターから個別にも転写される。また、acpP遺伝子は、yceD-rpmF-plsX-fabHDG-acpP-fabF遺伝子クラスター中の、fabD遺伝子およびfabG遺伝子から共転写され得る。よって、例えば、acpP-fabFオペロンの共転写を制御するプロモーターを改変することにより、acpP遺伝子およびfabF遺伝子の発現をまとめて低下させてもよい。また、例えば、fabF遺伝子の自前のプロモーターを改変することにより、fabF遺伝子の発現を単独で低下させてもよい。また、例えば、fabD遺伝子および/またはfabG遺伝子のプロモーターを改変することにより、それらの遺伝子とともにacpP遺伝子の発現を低下させてもよい。また、例えば、acpP遺伝子および/またはfabF遺伝子のコード領域に、遺伝子の発現が低下するような変異を導入することにより、acpP遺伝子および/またはfabF遺伝子の発現を低下させてもよい。
また、acpP遺伝子および/またはfabF遺伝子の発現が低下する変異として、具体的には、例えば、acpP遺伝子の翻訳開始点の上流−34位のシトシン(C)が他の塩基に置換される変異が挙げられる。他の塩基は、アデニン(A)であるのが好ましい。
ここでいう「acpP遺伝子の翻訳開始点の上流−34位」とは、配列番号7に示す塩基配列における、acpP遺伝子の開始コドン(ATG)のAから数えて、上流に34番目に相当する位置を意味する。なお、開始コドン(ATG)のAが+1位、その上流側の隣が−1位である。言い換えると、「acpP遺伝子の翻訳開始点の上流−34位」とは、配列番号7に示す塩基配列の177位(すなわち、GenBank accession NC_000913として登録されているEscherichia coli K-12 MG1655株のゲノム配列の1150804位)に相当する位置を意味する。なお、「acpP遺伝子の翻訳開始点の上流−34位」は、配列番号7を基準とした相対的な位置を示すものであって、塩基の欠失、挿入、付加などによってその絶対的な位置は前後することがある。すなわち、「acpP遺伝子の翻訳開始点の上流−34位」は、配列番号7において、177位の塩基と開始コドンのAの間で1塩基が欠失している場合は、acpP遺伝子の開始コドンのAから数えて、上流に33番目の位置を意味する。また、「acpP遺伝子の翻訳開始点の上流−34位」は、配列番号7において、177位の塩基と開始コドンのAの間で1塩基が挿入されている場合は、acpP遺伝子の開始コドンのAから数えて、上流に35番目の位置を意味する。
任意の細菌のacpP-fabFオペロンにおいて、いずれの塩基が「acpP遺伝子の翻訳開始点の上流−34位」の塩基であるかは、例えば、当該細菌のacpP遺伝子の上流配列と、配列番号7におけるacpP遺伝子の上流配列とで、アライメントを行うことにより決定できる。アライメントは、例えば、公知の遺伝子解析ソフトウェアを利用して行うことができる。具体的なソフトウェアとしては、日立ソリューションズ製のDNASISや、ゼネティックス製のGENETYXなどが挙げられる(Elizabeth C. Tyler et al., Computers and Biomedical Research, 24(1), 72-96, 1991;Barton GJ et al., Journal of molecular biology, 198(2), 327-37. 1987)。
また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。
また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1〜2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。
また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。
染色体上の遺伝子を上記のように改変することは、例えば、遺伝子の部分配列を欠失し、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。
また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN−メチル−N'−ニトロ−N−ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。
なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が低下する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、複数のアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。
タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。
タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。
遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT−PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。mRNAの量は、非改変株と比較して、例えば、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。ただし、acpP遺伝子から転写されるmRNAの量は、非改変株と比較して、0%には低下しないものとする。例えば、acpP遺伝子の発現が低下する場合、同遺伝子から転写されるmRNAの量は、非改変株と比較して、1%以上、5%以上、10%以上、15%以上、17%以上、20%以上、または30%以上、または50%以上残存してもよい。acpP遺伝子の発現が低下する場合、同遺伝子から転写されるmRNAの量は、具体的には、例えば、非改変株と比較して、1%〜90%、5%〜80%、10%〜70%、15%〜60%、または17%〜55%に低下してよい。
タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。ただし、AcpPタンパク質の量は、非改変株と比較して、0%には低下しないものとする。例えば、acpP遺伝子の発現が低下する場合、AcpPタンパク質の量は、非改変株と比較して、1%以上、5%以上、10%以上、15%以上、17%以上、20%以上、または30%以上、または50%以上残存してもよい。acpP遺伝子の発現が低下する場合、AcpPタンパク質の量は、具体的には、例えば、非改変株と比較して、1%〜90%、5%〜80%、10%〜70%、15%〜60%、または17%〜55%に低下してよい。
遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。
上記したタンパク質の活性を低下させる手法は、acpP-fabFオペロンの弱化に加えて、任意のタンパク質、例えば目的のL−アミノ酸の生合成経路から分岐して目的のL−アミノ酸以外の化合物を生成する反応を触媒する酵素、の活性低下や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現低下に利用できる。
<1−4>タンパク質の活性を増大させる手法
以下に、タンパク質の活性を増大させる手法について説明する。
「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が野生株や親株等の非改変株に対して増大していることを意味する。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下または消失させた上で、好適な標的のタンパク質の活性を付与してもよい。
タンパク質の活性は、非改変株と比較して増大していれば特に制限されないが、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、非改変株が標的のタンパク質の活性を有していない場合は、同タンパク質をコードする遺伝子を導入することにより同タンパク質が生成されていればよいが、例えば、同タンパク質はその酵素活性が測定できる程度に生産されていてよい。
タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。
遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。
遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。相同組み換えは、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、またはファージを用いたtransduction法により行うことができる。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。
染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。
また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ等の腸内細菌科の細菌において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロンテック社製)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、広宿主域ベクターRSF1010が挙げられる。
遺伝子を導入する場合、遺伝子は、発現可能に本発明の細菌に保持されていればよい。具体的には、遺伝子は、本発明の細菌で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。また、例えば、遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、本発明の細菌において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。ターミネーターとして、具体的には、例えば、T7ターミネーター、T4ターミネーター、fdファージターミネーター、tetターミネーター、およびtrpAターミネーターが挙げられる。各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。
また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に本発明の細菌に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。「2またはそれ以上の遺伝子を導入する場合」としては、例えば、2またはそれ以上の酵素をそれぞれコードする遺伝子を導入する場合、単一の酵素を構成する2またはそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、およびそれらの組み合わせが挙げられる。
導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。
なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が目的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種またはそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。
また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、およびPLプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。
また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。
本発明においては、プロモーター、SD配列、およびRBSと開始コドンとの間のスペーサー領域等の遺伝子の発現に影響する部位を総称して「発現調節領域」ともいう。発現調節領域は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節領域の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。
遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。エシェリヒア・コリ等において、mRNA分子の集団内に見出される61種のアミノ酸コドン間には明らかなコドンの偏りが存在し、あるtRNAの存在量は、対応するコドンの使用頻度と直接比例するようである(Kane, J.F., Curr. Opin. Biotechnol., 6(5), 494-500 (1995))。すなわち、過剰のレアコドンを含むmRNAが大量に存在すると翻訳の問題が生じうる。近年の研究によれば、特に、AGG/AGA、CUA、AUA、CGA、又はCCCコドンのクラスターが、合成されたタンパク質の量および質の両方を低下させ得ることが示唆されている。このような問題は、特に異種遺伝子の発現の際に生じうる。よって、遺伝子の異種発現を行う場合等には、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。
また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。
上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。
また、タンパク質の活性が増大するような改変は、例えば、タンパク質の比活性を増強することによっても達成できる。比活性の増強には、フィードバック阻害の低減および解除も含まれる。比活性が増強されたタンパク質は、例えば、種々の生物を探索し取得することができる。また、在来のタンパク質に変異を導入することで高活性型のものを取得してもよい。導入される変異は、例えば、タンパク質の1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されるものであってよい。変異の導入は、例えば、上述したような部位特異的変異法により行うことができる。また、変異の導入は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN−メチル−N'−ニトロ−N−ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強させる手法と任意に組み合わせて用いてもよい。
形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S.and Choen, S.N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気パルス法(特開平2-207791)を利用することもできる。
タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。
タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。
遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et al., Molecular Cloning A Laboratory Manual/Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
上記したタンパク質の活性を増大させる手法は、任意のタンパク質、例えばL−アミノ酸生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。
<2>本発明のL−アミノ酸の製造法
本発明の方法は、本発明の細菌を培地で培養してL−アミノ酸を該培地中又は該細菌の菌体内に生成蓄積すること、および該培地又は菌体よりL−アミノ酸を採取することを含む、L−アミノ酸の製造法である。本発明においては、1種のL−アミノ酸が製造されてもよく、2種またはそれ以上のL−アミノ酸が製造されてもよい。
使用する培地は、本発明の細菌が増殖でき、L−アミノ酸が生産される限り、特に制限されない。培地としては、例えば、細菌等の微生物の培養に用いられる通常の培地を用いることができる。培地は、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有してよい。培地成分の種類や濃度は、使用する細菌の種類や製造するL−アミノ酸の種類等の諸条件に応じて適宜設定してよい。
炭素源は、本発明の細菌が資化してL−アミノ酸を生成し得るものであれば、特に限定されない。炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸、リンゴ酸等の有機酸類、グリセロール、粗グリセロール、エタノール等のアルコール類、脂肪酸類が挙げられる。炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。
培地中での炭素源の濃度は、本発明の細菌が増殖でき、L−アミノ酸が生産される限り、特に制限されない。培地中での炭素源の濃度は、L−アミノ酸の生産が阻害されない範囲で可能な限り高くするのが好ましい。培地中での炭素源の初発濃度は、例えば、通常5〜30 %(W/V)、好ましくは10〜20 %(W/V)であってよい。また、発酵の進行に伴う炭素源の消費に応じて、炭素源を追加で添加してもよい。
窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。
リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。
硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。
その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L−リジン生産菌は、L−リジン生合成経路が強化され、L−リジン分解能が弱化されている場合が多い。よって、そのようなL−リジン生産菌を培養する場合には、例えば、L−スレオニン、L−ホモセリン、L−イソロイシン、L−メチオニンから選ばれる1またはそれ以上のアミノ酸を培地に補添するのが好ましい。
また、培養時の発泡を抑えるために、培地には市販の消泡剤を適量添加しておくことが好ましい。
培養条件は、本発明の細菌が増殖でき、L−アミノ酸が生産される限り、特に制限されない。培養は、例えば、細菌等の微生物の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類や製造するL−アミノ酸の種類等の諸条件に応じて適宜設定してよい。
培養は、液体培地を用いて行うことができる。培養の際には、本発明の細菌を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、本発明の細菌を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。培養開始時に培地に含有される本発明の細菌の量は特に制限されない。例えば、OD660=4〜8の種培養液を、培養開始時に、本培養用の培地に対して0.1質量%〜30質量%、好ましくは1質量%〜10質量%、添加してよい。
培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養が種培養と本培養とに分けて行われる場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。
培養は、例えば、好気的に行うことができる。例えば、培養は、通気培養または振盪培養で行うことができる。酸素濃度は、例えば、飽和酸素濃度の5〜50%、好ましくは10%程度に制御されてよい。培地のpHは、例えば、pH 3〜10、好ましくはpH 4.0〜9.5であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培養温度は、例えば、20〜45℃、好ましくは25℃〜37℃であってよい。培養期間は、例えば、1時間以上、4時間以上、10時間以上、または15時間以上であってよく、168時間以下、120時間以下、90時間、または72時間以下であってよい。培養期間は、具体的には、例えば、10時間〜120時間であってよい。培養は、例えば、培地中の炭素源が消費されるまで、あるいは本発明の細菌の活性がなくなるまで、継続してもよい。このような条件下で本発明の細菌を培養することにより、菌体内および/または培地中にL−アミノ酸が蓄積する。
また、L−グルタミン酸を製造する場合、L−グルタミン酸が析出する条件に調整された液体培地を用いて、培地中にL−グルタミン酸を析出させながら培養を行うことも出来る。L−グルタミン酸が析出する条件としては、例えば、pH5.0〜3.0、好ましくはpH4.9〜3.5、さらに好ましくはpH4.9〜4.0、特に好ましくはpH4.7付近の条件が挙げられる(欧州特許出願公開第1078989号明細書)。尚、培養は、その全期間において上記pHで行われてもよく、一部の期間のみ上記pHで行われてもよい。「一部の期間」とは、例えば、培養の全期間の50%以上、70%以上、80%以上、90%以上、95%以上、または99%以上の期間であってよい。
また、L−リジン等の塩基性アミノ酸を製造する場合、重炭酸イオン及び/又は炭酸イオンを塩基性アミノ酸の主なカウンタイオンとして利用して塩基性アミノ酸を発酵生産する方法を利用してもよい(特開2002-65287、US2002-0025564A、EP1813677A)。これらの方法によれば、塩基性アミノ酸のカウンタイオンとして従来利用されていた硫酸イオン及び/又は塩化物イオンの使用量を削減しつつ、塩基性アミノ酸を製造することができる。
L−アミノ酸が生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は適宜組み合わせて用いることができる。
生成したL−アミノ酸の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、および晶析法が挙げられる。これらの手法は適宜組み合わせて用いることができる。なお、菌体内にL−アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL−アミノ酸を回収することができる。回収されるL−アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。例えば、L−リジンは、フリー体のL−リジン、L−リジン硫酸塩、L−リジン塩酸塩、L−リジン炭酸塩、またはそれらの混合物であってもよい。また、例えば、L−グルタミン酸は、フリー体のL−グルタミン酸、L―グルタミン酸ナトリウム(MSG)、L−グルタミン酸アンモニウム塩、またはそれらの混合物であってもよい。
また、L−アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL−アミノ酸は、培地中に溶解しているL−アミノ酸を晶析した後に、併せて単離してもよい。
尚、回収されるL−アミノ酸は、L−アミノ酸以外に、例えば、細菌菌体、培地成分、水分、及び細菌の代謝副産物等の成分を含んでいてもよい。回収されたL−アミノ酸の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、85%以上、90%(w/w)以上、または95%(w/w)以上であってよい (JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714, US2005/0025878)。
本発明の方法の一態様は、L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、前記エシェリヒア・コリにおいて、acpP−fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化されていることを特徴とする方法であってよい。また、本発明の方法の一態様は、L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流−34位のシトシンが他の塩基に置換されていることを特徴とする方法であってもよい。また、本発明の方法の一態様は、L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流−34位のシトシンがアデニンに置換されていることを特徴とする方法であってもよい。本発明の方法のこれらの態様については、上述した本発明の細菌や本発明の方法に関する記載を準用できる。
以下、本発明を実施例によりさらに具体的に説明する。
実施例1:acpPおよびfabF遺伝子の発現が低下したL−リジン生産菌の構築(1)
L−リジン生産菌として、E. coli WC196ΔcadAΔldc株(FERM BP-11027;WO2010/061890)(以下、WC196LC株ともいう)を用いた。同株のacpPおよびfabF遺伝子からなるacpP-fabFオペロンの上流に、DatsenkoとWannerによって最初に開発された「Red-driven integration」と呼ばれる方法(Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645)を用いて点変異を導入した。この方法によれば、標的とする遺伝子に対応する配列を合成オリゴヌクレオチドの5'側にデザインし、抗生物質耐性遺伝子に対応する配列を3'側にデザインした合成オリゴヌクレオチドを用いて得られたPCR産物を用いて、一段階で変異導入株を構築することが出来る。手順を以下に示す。
Escherichia coli MG1655株(ATCC 47076)の染色体DNAを鋳型として、配列番号1及び2に示す合成オリゴヌクレオチドをプライマーに用いて、PCRを行った。配列番号1のプライマーは、プラスミドpMW118(λattL-Kmr-λattR) (WO2006/093322)のBglIIサイト周辺に対応する配列をプライマーの5’末端に、acpP遺伝子の上流配列の一部に対応する配列をプライマーの3’末端に有する。配列番号2のプライマーは、プラスミドpMW118(λattL-Kmr-λattR) (WO2006/093322)のBglIIサイト周辺に対応する配列をプライマーの5’末端に、fabF遺伝子の下流配列の一部に対応する配列をプライマーの3’末端に有する。得られたDNA断片を、制限酵素BglIIで処理したベクターpMW118(λattL-Kmr-λattR) とIn-Fusion HD Cloning Kit (TAKARA BIO)を用いて連結した。In-Fusion反応液を用いてE. coli JM109を形質転換した。50 mg/Lのカナマイシンを含むL-寒天培地上で形質転換体を選択した。形質転換体よりプラスミドを抽出し、目的の断片が挿入されていることを確認した。このプラスミドをpMW118(λattL-Kmr-λattR)-acpP-fabFと命名した。
pMW118(λattL-Kmr-λattR)-acpP-fabFを鋳型とし、配列番号3及び4に示す合成オリゴヌクレオチドをプライマーとして、QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies)を用いて点変異を導入したプラスミドを構築した。この変異はacpP遺伝子の翻訳開始点の34塩基上流のシトシンをアデニンに置換したものである。このプラスミドをpMW118(λattL-Kmr-λattR)-acpP*-fabFと命名した。
pMW118(λattL-Kmr-λattR)-acpP*-fabFを鋳型とし、配列番号5及び6に示す合成オリゴヌクレオチドをプライマーに用いて、PCRを行った。得られたDNA断片を用いて、米国特許出願公開第2006/0160191号公報及びWO2005/010175に記載のλ-red法を用いて、E. coli WC196LC株から、WC196LCacpP*株を構築した。WC196LCacpP*株は、acpP遺伝子の翻訳開始点の34塩基上流のシトシンがアデニンに置換されている。λ-red法におけるカナマイシン耐性組換え体の取得は、37℃でカナマイシン50 mg/Lを含むL-寒天培地上で平板培養し、カナマイシン耐性組換え体を選択することにより行った。
プラスミドpCABD2(米国特許第6,040,160号明細書)を用いてWC196LCacpP*株を形質転換し、20 mg/Lのストレプトマイシンを含むL-寒天培地上で形質転換体を選択して、WC196LCacpP*/pCABD2株を得た。pCABD2は、L−リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L−リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含む。
実施例2:L−リジン生産培養(1)
作成したWC196LCacpP*/pCABD2株を用いて、L−リジン生産培養を行った。同株を、20 mg/Lのストレプトマイシンを含むL-寒天培地にてOD600が約0.6となるまで37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した。その後、適当量ずつ分注、-80℃に保存し、グリセロールストックとした。
WC196LCacpP*/pCABD2株のグリセロールストックを、20 mg/Lのストレプトマイシンを含むL-寒天培地に均一に塗布し、37℃にて24時間培養した。WC196LC株にpCABD2が導入された対照株であるWC196LC/pCABD2株も、20 mg/Lのストレプトマイシンを含むL-寒天培地上で同様に培養した。生育した菌体を3.0 mLの表1に示すL−リジン生産培地(MS-Glc培地)に懸濁し、得られた懸濁液をOD600が15になるように同培地にて希釈した。得られた希釈懸濁液1.0 mLを、20 mg/Lのストレプトマイシンを含む19 mLのL−リジン生産培地を張り込んだ500 mL容坂口フラスコに植菌し、往復振とう培養装置を用いて37℃で培養を行った。培養開始後48時間目に、残存するグルコースの量と生成したL−リジンの量を定量した。
Figure 2015060314
培養48時間目における残存グルコース濃度とL−リジン蓄積濃度を表2に示す。対照株であるWC196LC/pCABD2株と比較して、acpPおよびfabF遺伝子の発現が低下したWC196LCacpP*/pCABD2株では、L−リジン収率が大きく向上した。
Figure 2015060314
実施例3:RT-PCRによるacpP遺伝子の発現量の確認(1)
実施例1で作成したWC196LCacpP*/pCABD2株およびWC196LC/pCABD2株をそれぞれ実施例2に記載の条件で培養し、培養液を培養17時間目にサンプリングした。RNAprotect Bacteria Reagent (Qiagen) とRNeasy Mini Kit (Qiagen) を用いて培養液からRNAを抽出した。得られたRNAを鋳型とし、PrimeScript RT reagent Kit (Takara Bio) を用いて逆転写PCRを行った。得られたcDNAを鋳型とし、配列番号13と14に示す合成オリゴヌクレオチド及び配列番号15と16に示す合成オリゴヌクレオチドをプライマーに用い、Power SYBR Green PCR Master Mix (Applied Biosystems) を用いて定量PCRを行った。配列番号13と14に示すオリゴヌクレオチドはacpP遺伝子の塩基配列に対応する。配列番号15と16に示すオリゴヌクレオチドはrrsA (16s rRNA)のORF内部の配列に対応する。rrsA (16s rRNA)を内部標準として、acpP遺伝子のmRNA量を算出した。
培養17時間目におけるacpP遺伝子のmRNA量を表3に示す。データは、pCABD2/WC196LC株のacpP遺伝子のmRNA量を1とした相対値として示した。対照株であるpCABD2/WC196LC株と比較して、pCABD2/WC196LC acpP*株では、acpP遺伝子のmRNA量が大きく低下した。
Figure 2015060314
実施例4:acpPおよびfabF遺伝子の発現が低下したL−リジン生産菌の構築(2)
L−リジン生産菌として、WC196LC株を用いる。同株のacpPおよびfabF遺伝子からなるacpP-fabFオペロンの上流の領域を、「Red-driven integration」法により、Ptac84プロモーター(ロシア特許出願公開第2006/134574号公報)又はlacプロモーターに置換する。置換される領域は、acpP-fabFオペロンの転写開始点の上流-200〜-1の一部または全体であってよい。例えば、acpP-fabFオペロンの転写開始点の上流-100〜-1、上流-50〜-1、上流-30〜-1、又は上流-30〜-10の領域を置換する。
以下、WC196LC株のacpP-fabFオペロンの上流の領域をPtac84プロモーターに置換した株をWC196LC Ptac84acpP株、lacプロモーターに置換した株をWC196LC Plac acpP株と呼ぶ。
プラスミドpCABD2を用いてWC196LC Ptac84acpP株とWC196LC Plac acpP株を形質転換し、20 mg/Lのストレプトマイシンを含むL-寒天培地上で形質転換体を選択して、WC196LC Ptac84acpP /pCABD2株とWC196LC Plac acpP /pCABD2株を得る。
実施例5:L−リジン生産培養(2)
実施例4で作成したWC196LC Ptac84acpP /pCABD2株とWC196LC Plac acpP /pCABD2株、および対照株としてWC196LC /pCABD2株を用いて、実施例2に記載の方法に従いL−リジン生産培養を行う。
実施例6:RT-PCRによるacpP遺伝子の発現量の確認(2)
実施例4で作成したWC196LC Ptac84acpP /pCABD2株とWC196LC Plac acpP /pCABD2株、およびWC196LC/pCABD2株をそれぞれ実施例2に記載の条件で培養し、実施例3に記載の方法を用いてacpP遺伝子のmRNA量を算出する。
実施例7:acpPおよびfabF遺伝子の発現が低下したL−スレオニン生産菌の構築
L−スレオニン生産菌として、E. coli TDH-6株(特開2001-346578号)を用いる。TDH-6株は、E. coli TDH-6/pVIC40 (VKPM B-3996) からプラスミドpVIC40を除去することにより得られる(特開2001-346578号)。実施例1に記載した方法を用いて、TDH-6株のacpP遺伝子の翻訳開始点の34塩基上流のシトシンをアデニンに置換する。又は、実施例4に記載した方法を用いて、TDH-6株のacpP-fabFオペロンの上流の領域をPtac84プロモーター又はlacプロモーターに置換する。置換される領域は、acpP-fabFオペロンの転写開始点の上流-200〜-1の一部または全体であってよい。例えば、acpP-fabFオペロンの転写開始点の上流-100〜-1、上流-50〜-1、上流-30〜-1、又は上流-30〜-10の領域を置換する。
以下、TDH-6株のacpP遺伝子の翻訳開始点の34塩基上流のシトシンをアデニンに置換した株をTDH-6acpP*株、TDH-6株のacpP-fabFオペロンの上流の領域をPtac84プロモーターに置換した株をTDH-6 Ptac84acpP株、lacプロモーターに置換した株をTDH-6 Plac acpP株と呼ぶ。
プラスミドpVIC40(米国特許第5,705,371号)を用いてTDH-6acpP*株、TDH-6 Ptac84acpP株、TDH-6 Plac acpP株を形質転換し、TDH-6acpP*/pVIC40株、TDH-6 Ptac84acpP/pVIC40株、TDH-6 Plac acpP/pVIC40株を得る。
実施例8:L−スレオニン生産培養
実施例7で作成したTDH-6acpP*/pVIC40株、TDH-6 Ptac84acpP/pVIC40株、TDH-6 Plac acpP/pVIC40株、および対照株としてTDH-6/pVIC40株を用いて、米国特許第7,915,018号に記載の方法に従いL−スレオニン生産培養を行う。
実施例9:RT-PCRによるacpP遺伝子の発現量の確認(3)
実施例7で作成したTDH-6acpP*/pVIC40株、TDH-6 Ptac84acpP/pVIC40株、TDH-6 Plac acpP/pVIC40株、および対照株としてTDH-6/pVIC40株を用いて、米国特許第7,915,018号に記載の方法に従ってL−スレオニン生産培養を行い、その培養液を用い実施例3に記載の方法に従ってacpP遺伝子のmRNA量を算出する。
本発明によれば、細菌のL−アミノ酸生産能を向上させることができ、L−アミノ酸を効率よく製造することができる。
<配列表の説明>
配列番号1〜6:プライマー
配列番号7:E. coli MG1655のacpP-fabFオペロンおよびその上流配列の塩基配列
配列番号8:E. coli MG1655のAcpPタンパク質のアミノ酸配列
配列番号9:E. coli MG1655のFabFタンパク質のアミノ酸配列
配列番号10:Pantoea ananatis AJ13355のacpP-fabFオペロンおよびその上流配列の塩基配列
配列番号11:Pantoea ananatis AJ13355のAcpPタンパク質のアミノ酸配列
配列番号12:Pantoea ananatis AJ13355のFabFタンパク質のアミノ酸配列
配列番号13〜16:プライマー

Claims (14)

  1. L−アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養してL−アミノ酸を該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL−アミノ酸を採取すること、を含むL−アミノ酸の製造法であって、
    前記細菌が、acpP−fabFオペロンが弱化されるように改変されていることを特徴とする、方法。
  2. 前記acpP−fabFオペロンの弱化が、acpP−fabFオペロンの遺伝子にコードされるタンパク質の活性の低下である、請求項1に記載の方法。
  3. acpP−fabFオペロンの遺伝子の発現が弱化されることにより、前記オペロンが弱化された、請求項1または2に記載の方法。
  4. 前記acpP−fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化された、請求項3に記載の方法。
  5. 前記acpP−fabFオペロンの遺伝子が、acpP遺伝子および/またはfabF遺伝子である、請求項2〜4のいずれか1項に記載の方法。
  6. 前記acpP−fabFオペロンの遺伝子が、acpP遺伝子およびfabF遺伝子である、請求項5に記載の方法。
  7. acpP遺伝子の翻訳開始点の上流−34位のシトシンが他の塩基に置換されることにより、前記acpP−fabFオペロンの遺伝子の発現が弱化された、請求項3〜6のいずれか1項に記載の方法。
  8. acpP遺伝子の翻訳開始点の上流−34位のシトシンがアデニンに置換されることにより、前記acpP−fabFオペロンの遺伝子の発現が弱化された、請求項7に記載の方法。
  9. 前記細菌が、エシェリヒア属、パントエア属、またはエンテロバクター属に属する細菌である、請求項1〜8のいずれか1項に記載の方法。
  10. 前記細菌が、エシェリヒア・コリである、請求項9に記載の方法。
  11. 前記L−アミノ酸が、L−リジンである、請求項1〜10のいずれか1項に記載の方法。
  12. L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、
    前記エシェリヒア・コリにおいて、acpP−fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化されていることを特徴とする、方法。
  13. L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、
    前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流−34位のシトシンが他の塩基に置換されていることを特徴とする、方法。
  14. L−リジン生産能を有するエシェリヒア・コリを培地で培養してL−リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL−リジンを採取すること、を含むL−リジンの製造法であって、
    前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流−34位のシトシンがアデニンに置換されていることを特徴とする、方法。
JP2015507848A 2013-10-21 2014-10-21 L−アミノ酸の製造法 Active JP6459962B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013218221 2013-10-21
JP2013218221 2013-10-21
PCT/JP2014/077993 WO2015060314A1 (ja) 2013-10-21 2014-10-21 L-アミノ酸の製造法

Publications (2)

Publication Number Publication Date
JPWO2015060314A1 true JPWO2015060314A1 (ja) 2017-03-09
JP6459962B2 JP6459962B2 (ja) 2019-01-30

Family

ID=52992908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015507848A Active JP6459962B2 (ja) 2013-10-21 2014-10-21 L−アミノ酸の製造法

Country Status (8)

Country Link
US (1) US9487806B2 (ja)
EP (1) EP2886651B1 (ja)
JP (1) JP6459962B2 (ja)
CN (1) CN104736707B (ja)
BR (1) BR112015005215B1 (ja)
ES (1) ES2694011T3 (ja)
PL (1) PL2886651T3 (ja)
WO (1) WO2015060314A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3368695A2 (en) 2015-10-27 2018-09-05 Ajinomoto Co., Inc. Method for producing aldehyde
US10428359B2 (en) 2016-10-03 2019-10-01 Ajinomoto Co, Inc. Method for producing L-amino acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526416A (ja) * 2003-06-03 2006-11-24 サイトジェニックス, インコーポレイテッド 細菌及び真菌の病態の予防及び治療用ヌクレオチド
WO2009031564A1 (ja) * 2007-09-04 2009-03-12 Ajinomoto Co., Inc. L-アミノ酸生産菌及びl-アミノ酸の製造法
JP2010505388A (ja) * 2006-05-19 2010-02-25 エルエス9・インコーポレイテッド 脂肪酸およびその誘導体の生産
WO2012002486A1 (ja) * 2010-07-01 2012-01-05 味の素株式会社 L-アミノ酸の製造法
JP2012504963A (ja) * 2008-10-07 2012-03-01 エルエス9・インコーポレイテッド 脂肪アルデヒドを生産するための方法および組成物
JP2013526841A (ja) * 2010-06-03 2013-06-27 味の素株式会社 ペプチダーゼをコードする遺伝子の弱化された発現を有する腸内細菌科の細菌を使用するl−アミノ酸の製造方法

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (fr) 1904-09-20 1905-12-07 Charles Glauser Perrin Mécanisme de remontoir et de mise à l'heure
JPS5848147B2 (ja) 1975-12-15 1983-10-26 味の素株式会社 シリヨウノセイゾウホウ
SU875663A1 (ru) 1978-06-30 1982-09-15 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штаммы е.coLI ВНИИГенетика VL 334 @ N6 и ВНИИГенетика VL 334 @ N7-продуценты L-треонина и способ их получени
JPS561890A (en) 1979-06-15 1981-01-10 Ajinomoto Co Inc Preparation of l-phenylalanine by fermentation
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
JPS5618596A (en) 1979-07-23 1981-02-21 Ajinomoto Co Inc Production of l-lysine through fermentation process
JPS5672695A (en) 1979-11-15 1981-06-16 Ajinomoto Co Inc Preparation of l-leucine
JPS56106598A (en) 1980-01-30 1981-08-24 Ajinomoto Co Inc Preparation of l-arginine by fermentation method
JPS56144093A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-proline by fermentation
JPS56144092A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-methionine by fermentation
US4371614A (en) 1980-08-22 1983-02-01 Ajinomoto Co., Inc. E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan
DE3127361A1 (de) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin
US4533129A (en) 1984-01-09 1985-08-06 Minnesota Mining And Manufacturing Company Electrical connector locator plate
EP0163836B1 (de) 1984-04-07 1988-10-12 Bayer Ag Verfahren und Vorrichtung zur Herstellung von Granulaten
JPH06102024B2 (ja) 1986-04-16 1994-12-14 味の素株式会社 新規プロモーター及び該プロモーターを用いた遺伝子発現方法
FR2603581B1 (fr) 1986-04-28 1993-08-13 Ajinomoto Kk Procede pour isoler et purifier des aminoacides par chromatographie
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
US4783213A (en) 1986-10-16 1988-11-08 Stauffer Chemical Company Certain 2-(2-substituted benzoyl)-4-(substituted oxy or substituted thio)-1,3-cyclohexanediones
JP2536570B2 (ja) 1987-10-12 1996-09-18 味の素株式会社 発酵法によるl―イソロイシンの製造法
FR2627508B1 (fr) 1988-02-22 1990-10-05 Eurolysine Procede pour l'integration d'un gene choisi sur le chromosome d'une bacterie et bacterie obtenue par ledit procede
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
DE3891417T1 (de) 1988-10-25 1991-01-10 Vnii Genetiki Selektsii Promy Stamm der bakterien escherichia coli bkiim b-3996, produziert von l-threonin
JPH02207791A (ja) 1989-02-07 1990-08-17 Ajinomoto Co Inc 微生物の形質転換法
JPH07108228B2 (ja) 1990-10-15 1995-11-22 味の素株式会社 温度感受性プラスミド
EP0488424B1 (en) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
US5534421A (en) 1991-05-30 1996-07-09 Ajinomoto Co., Inc. Production of isoleucine by escherichia coli having isoleucine auxotrophy and no negative feedback inhibition of isoleucine production
FR2680178B1 (fr) 1991-08-07 1994-10-14 Ajinomoto Kk Procede pour produire l'acide l-glutamique par fermentation.
JP3006926B2 (ja) 1991-09-04 2000-02-07 協和醗酵工業株式会社 発酵法によるl−スレオニンの製造法
DE4130868C2 (de) 1991-09-17 1994-10-13 Degussa Tierfuttermittelsupplement auf der Basis einer Aminosäure und Verfahren zu dessen Herstellung
JP3036930B2 (ja) 1991-11-11 2000-04-24 協和醗酵工業株式会社 発酵法によるl−イソロイシンの製造法
JP3151073B2 (ja) 1992-02-25 2001-04-03 協和醗酵工業株式会社 発酵法によるアミノ酸の製造法
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
DE4232468A1 (de) 1992-09-28 1994-03-31 Consortium Elektrochem Ind Mikroorganismen für die Produktion von Tryptophan und Verfahren zu ihrer Herstellung
DE69219775T3 (de) 1992-10-14 2004-08-05 Ajinomoto Co., Inc. Neuartiges L-threoninproduzierendes Mikrobakterium und eine Herstellungsmethode für L-Threonin
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
US5776736A (en) 1992-12-21 1998-07-07 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
WO1995006114A1 (fr) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Allele de phosphenolpyruvate carboxylase, gene de cet allele et procede de production de l'acide amine
KR100230878B1 (ko) 1993-10-28 1999-11-15 이나모리 순스케 환원된 니코틴아미드 아데닌 디뉴클레오타이드로부터 환원된 니코틴아미드 아데닌 디뉴클레오타이드 포스페이트를 생산하는 능력이 증가된 미생물에서 표적물질을 제조하는 방법
JPH07155184A (ja) 1993-12-08 1995-06-20 Ajinomoto Co Inc 発酵法によるl−リジンの製造法
JP3880636B2 (ja) 1994-01-10 2007-02-14 味の素株式会社 発酵法によるl−グルタミン酸の製造法
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
JP3698758B2 (ja) 1994-06-30 2005-09-21 協和醗酵工業株式会社 発酵法によるl−ロイシンの製造法
CN1124340C (zh) 1994-08-30 2003-10-15 味之素株式会社 L-缬氨酸和l-亮氨酸的生产方法
DE69534848T2 (de) 1994-09-16 2006-11-23 The Texas A & M University System, College Station Mikroorganismen und Verfahren zur Überproduktion von DAHP mittels klonierten PPSGens
CN101220366B (zh) 1994-12-09 2011-10-05 味之素株式会社 新的赖氨酸脱羧酶基因以及生产l-赖氨酸的方法
DK0805867T3 (da) 1995-01-23 2004-04-13 Novozymes As DNA integration ved transposition
CN1193343A (zh) 1995-08-23 1998-09-16 味之素株式会社 通过发酵制备l-谷氨酸的方法
JP4032441B2 (ja) 1995-08-30 2008-01-16 味の素株式会社 L−アミノ酸の製造方法
GB2304718B (en) 1995-09-05 2000-01-19 Degussa The production of tryptophan by the bacterium escherichia coli
DE19539952A1 (de) 1995-10-26 1997-04-30 Consortium Elektrochem Ind Verfahren zur Herstellung von O-Acetylserin, L-Cystein und L-Cystein-verwandten Produkten
JPH09285294A (ja) 1996-04-23 1997-11-04 Ajinomoto Co Inc 発酵法によるl−グルタミン酸の製造法
DE19621930C1 (de) 1996-05-31 1997-12-11 Degussa Verfahren zur Herstellung eines Tierfuttermittel-Zusatzes auf Fermentationsbrühe-Basis
US5939307A (en) 1996-07-30 1999-08-17 The Archer-Daniels-Midland Company Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
JP4088982B2 (ja) 1996-10-15 2008-05-21 味の素株式会社 発酵法によるl−アミノ酸の製造法
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
DE19726083A1 (de) 1997-06-19 1998-12-24 Consortium Elektrochem Ind Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolidinderivaten
JP2002508921A (ja) 1997-10-04 2002-03-26 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング アスパラギン酸−及び(又は)グルタミン酸系アミノ酸の微生物による産生方法及びこの方法で使用可能な剤
RU2140450C1 (ru) 1997-10-29 1999-10-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") Штамм бактерий escherichia coli продуцент l-лейцина (варианты)
JP4151094B2 (ja) 1997-11-25 2008-09-17 味の素株式会社 L−システインの製造法
AU756507B2 (en) 1998-03-18 2003-01-16 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
AU746542B2 (en) 1998-03-18 2002-05-02 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
EP1070376A1 (de) 1998-04-09 2001-01-24 Siemens Aktiengesellschaft Anordnung und verfahren zur elektrischen energieversorgung einer elektrischen last
JP4294123B2 (ja) 1998-07-03 2009-07-08 協和発酵バイオ株式会社 ホスホリボシルピロリン酸を経由して生合成される代謝産物の製造法
BRPI9909409B1 (pt) 1998-09-25 2016-03-22 Ajinomoto Kk processos para produzir um ácido l-glutâmico
RU2144564C1 (ru) 1998-10-13 2000-01-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" ФРАГМЕНТ ДНК rhtB, КОДИРУЮЩИЙ СИНТЕЗ БЕЛКА RhtB, ПРИДАЮЩЕГО УСТОЙЧИВОСТЬ К L-ГОМОСЕРИНУ БАКТЕРИЯМ ESCHERICHIA COLI, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ
JP4110641B2 (ja) 1998-11-17 2008-07-02 味の素株式会社 発酵法によるl−メチオニンの製造法
EP1010755B1 (en) 1998-12-18 2010-10-06 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
RU2148642C1 (ru) 1998-12-23 2000-05-10 ЗАО "Научно-исследовательский институт АДЖИНОМОТО-Генетика" (ЗАО "АГРИ") Фрагмент днк rhtc, кодирующий синтез белка rhtc, придающего повышенную устойчивость к l-треонину бактериям escherichia coli, и способ получения l-аминокислоты
RU2175351C2 (ru) 1998-12-30 2001-10-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот
JP2000262288A (ja) 1999-03-16 2000-09-26 Ajinomoto Co Inc コリネ型細菌の温度感受性プラスミド
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
JP2003159092A (ja) 1999-07-02 2003-06-03 Ajinomoto Co Inc L−アミノ酸の製造法
JP2003144160A (ja) 1999-07-02 2003-05-20 Ajinomoto Co Inc L−アミノ酸の製造法
RU2201454C2 (ru) 1999-07-09 2003-03-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Мутантная альфа-изопропилмалат синтаза (ipms), днк, кодирующая мутантную ipms, способ получения штамма escherichia coli, способ получения l-лейцина
JP4427878B2 (ja) 1999-08-20 2010-03-10 味の素株式会社 析出を伴う発酵法によるl−グルタミン酸の製造法
JP4245746B2 (ja) 1999-09-20 2009-04-02 協和発酵バイオ株式会社 発酵法によるアミノ酸の製造法
CA2319283A1 (en) 1999-09-20 2001-03-20 Kuniki Kino Method for producing l-amino acids by fermentation
RU2207376C2 (ru) 1999-10-14 2003-06-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислоты методом ферментации, штамм бактерии escherichia coli - продуцент l-аминокислоты (варианты)
DE19949579C1 (de) 1999-10-14 2000-11-16 Consortium Elektrochem Ind Verfahren zur fermentativen Herstellung von L-Cystein oder L-Cystein-Derivaten
AU2000230762A1 (en) 2000-01-21 2001-07-31 Ajinomoto Co. Inc. Process for producing l-lysine
RU2212447C2 (ru) 2000-04-26 2003-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты)
RU2215783C2 (ru) 2001-05-15 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА
JP4682454B2 (ja) 2000-06-28 2011-05-11 味の素株式会社 新規変異型n−アセチルグルタミン酸合成酵素及びl−アルギニンの製造法
JP4380029B2 (ja) 2000-07-05 2009-12-09 味の素株式会社 微生物を利用した物質の製造法
RU2208640C2 (ru) 2000-07-06 2003-07-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА, ШТАММ Escherichia coli - ПРОДУЦЕНТ L-АРГИНИНА
RU2207371C2 (ru) 2000-09-26 2003-06-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислот семейства l-глутаминовой кислоты, штамм бактерии escherichia coli - продуцент l-аминокислоты (варианты)
DE60120570T2 (de) 2000-07-06 2007-01-25 Ajinomoto Co., Inc. Bakterium, das befähigt ist L-Glutaminsäure, L-Prolin und L-Arginin herzustellen, und Verfahren zur Herstellung von L-Glutaminsäure, L-Prolin und L-Arginin
JP4362959B2 (ja) 2000-08-24 2009-11-11 味の素株式会社 塩基性アミノ酸の製造方法
US7220571B2 (en) 2000-09-28 2007-05-22 Archer-Daniels-Midland Company Escherichia coli strains which over-produce L-threonine and processes for the production of L-threonine by fermentation
JP4560998B2 (ja) 2001-02-05 2010-10-13 味の素株式会社 発酵法によるl−グルタミンの製造法及びl−グルタミン生産菌
JP4622111B2 (ja) 2001-02-09 2011-02-02 味の素株式会社 L−システイン生産菌及びl−システインの製造法
RU2215782C2 (ru) 2001-02-26 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ, ШТАММ Escherichia coli - ПРОДУЦЕНТ L-АМИНОКИСЛОТЫ (ВАРИАНТЫ)
BR122013017189B1 (pt) 2001-02-13 2017-02-07 Ajinomoto Kk bactéria produtora de l-aminoácido pertencente ao gênero escherichia, e, método para produzir l-aminoácido
JP2002238592A (ja) 2001-02-20 2002-08-27 Ajinomoto Co Inc L−グルタミン酸の製造法
RU2209248C2 (ru) 2001-06-26 2003-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-метионина, штамм бактерии escherichia coli вкпм в-8125 - продуцент l-метионина
ATE449167T1 (de) 2001-07-06 2009-12-15 Evonik Degussa Gmbh Verfahren zur herstellung von l-aminosäuren mit stämmen der familie enterobacteriaceae
DE60225011T2 (de) 2001-07-18 2009-02-05 Evonik Degussa Gmbh Verfahren zur herstellung von l-threonin durch enterobakteriaceae-stämmen mit verstärkter exprimierung des phoe-gens
JP4186564B2 (ja) 2001-09-28 2008-11-26 味の素株式会社 L−システイン生産菌及びl−システインの製造法
RU2229513C2 (ru) 2001-11-23 2004-05-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты)
DE60236684D1 (de) 2001-11-23 2010-07-22 Ajinomoto Kk Verfahren zur l-aminosäureproduktion mit escherichia
RU2230114C2 (ru) 2001-11-30 2004-06-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот
JP3932945B2 (ja) 2002-03-27 2007-06-20 味の素株式会社 L−アミノ酸の製造法
KR100459758B1 (ko) 2002-05-15 2004-12-03 씨제이 주식회사 이소루이신 조절이 해제된 트레오닌 오페론 염기서열 및그를 포함하는 형질전환 세포를 이용한 l-트레오닌의생산방법
DE10232930A1 (de) 2002-07-19 2004-02-05 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
EP1484410B1 (en) 2003-06-05 2011-11-02 Ajinomoto Co., Inc. Fermentation methods using modified bacteria with increased byproduct uptake.
DE10331366A1 (de) 2003-07-11 2005-01-27 Degussa Ag Verfahren zur Granulation eines Tierfuttermittel-Zusatzes
JP4923573B2 (ja) 2003-07-16 2012-04-25 味の素株式会社 変異型セリンアセチルトランスフェラーゼ及びl−システインの製造法
RU2003121601A (ru) 2003-07-16 2005-02-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) Мутантная серинацетилтрансфераза
JP4894134B2 (ja) 2003-07-29 2012-03-14 味の素株式会社 物質生産に影響する代謝フラックスの決定方法
JP4380305B2 (ja) 2003-11-21 2009-12-09 味の素株式会社 発酵法によるl−アミノ酸の製造法
CN101243177B (zh) 2004-01-30 2012-12-05 味之素株式会社 生产l-氨基酸的微生物和生产l-氨基酸的方法
US7344874B2 (en) 2004-03-04 2008-03-18 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing L-glutamic acid
JP4479283B2 (ja) 2004-03-04 2010-06-09 味の素株式会社 L−システイン生産菌及びl−システインの製造法
JP4604537B2 (ja) 2004-03-31 2011-01-05 味の素株式会社 L−システイン生産菌及びl−システインの製造法
WO2005103275A1 (ja) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. 発酵法によるl-トリプトファンの製造法
WO2005111202A1 (en) 2004-05-12 2005-11-24 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
EP1789547B1 (en) 2004-08-10 2010-04-07 Ajinomoto Co., Inc. The use of phosphoketolase for producing useful metabolites
EP1801206B1 (en) 2004-09-28 2010-03-24 Kyowa Hakko Bio Co., Ltd. Method for producing l-arginine, l-ornithine or l-citrulline
CA2813540C (en) 2004-10-07 2018-06-05 Ajinomoto Co., Inc. Method for producing basic substance
US7915018B2 (en) 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
EP1838726A1 (en) 2005-01-18 2007-10-03 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
WO2006093322A2 (en) 2005-03-03 2006-09-08 Ajinomoto Co., Inc. Method for manufacturing 4-hydroxy-l-isoleucine or a salt thereof
DK2314710T3 (en) 2006-01-04 2016-06-13 Metabolic Explorer Sa A process for the production of methionine by culturing a microorganism modified to enhance the production of cysteine
CN101490241A (zh) * 2006-05-19 2009-07-22 Ls9公司 脂肪酸及其衍生物的制备
RU2418069C2 (ru) 2006-09-29 2011-05-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea, и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea
JP2010041920A (ja) 2006-12-19 2010-02-25 Ajinomoto Co Inc L−アミノ酸の製造法
BRPI0810011B1 (pt) 2007-04-17 2021-11-30 Ajinomoto Co., Inc Método para produzir uma substância ácida tendo um grupo carboxila
ATE498017T1 (de) 2008-03-06 2011-02-15 Ajinomoto Kk L-zystein-produzierendes bakterium und verfahren zur herstellung von l-zystein
PE20110369A1 (es) 2008-09-08 2011-06-24 Ajinomoto Kk Un microorganismo que produce l-aminoacido y un metodo para producir un l-aminoacido
JP2012029565A (ja) 2008-11-27 2012-02-16 Ajinomoto Co Inc L−アミノ酸の製造法
JP5521347B2 (ja) * 2009-02-16 2014-06-11 味の素株式会社 L−アミノ酸生産菌及びl−アミノ酸の製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526416A (ja) * 2003-06-03 2006-11-24 サイトジェニックス, インコーポレイテッド 細菌及び真菌の病態の予防及び治療用ヌクレオチド
JP2010505388A (ja) * 2006-05-19 2010-02-25 エルエス9・インコーポレイテッド 脂肪酸およびその誘導体の生産
WO2009031564A1 (ja) * 2007-09-04 2009-03-12 Ajinomoto Co., Inc. L-アミノ酸生産菌及びl-アミノ酸の製造法
JP2012504963A (ja) * 2008-10-07 2012-03-01 エルエス9・インコーポレイテッド 脂肪アルデヒドを生産するための方法および組成物
JP2013526841A (ja) * 2010-06-03 2013-06-27 味の素株式会社 ペプチダーゼをコードする遺伝子の弱化された発現を有する腸内細菌科の細菌を使用するl−アミノ酸の製造方法
WO2012002486A1 (ja) * 2010-07-01 2012-01-05 味の素株式会社 L-アミノ酸の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE LAY, NR., ET AL.: "In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis.", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, no. 28, JPN6015001707, 2007, pages 20319 - 20328, XP055199505, ISSN: 0003854521, DOI: 10.1074/jbc.M703789200 *

Also Published As

Publication number Publication date
EP2886651A1 (en) 2015-06-24
US9487806B2 (en) 2016-11-08
US20150275246A1 (en) 2015-10-01
ES2694011T3 (es) 2018-12-17
JP6459962B2 (ja) 2019-01-30
EP2886651A4 (en) 2016-05-25
PL2886651T3 (pl) 2018-11-30
WO2015060314A1 (ja) 2015-04-30
BR112015005215B1 (pt) 2022-12-13
CN104736707A (zh) 2015-06-24
CN104736707B (zh) 2017-08-25
EP2886651B1 (en) 2018-08-22
BR112015005215A2 (pt) 2015-09-22

Similar Documents

Publication Publication Date Title
CN107893089B (zh) 用于生产l-氨基酸的方法
US7833762B2 (en) Method for producing L-amino acid
CN108690856B (zh) 生产l-氨基酸的方法
US20090104667A1 (en) L-amino acid-producing microorganism and a method for producing an l-amino acid
JP2019165635A (ja) L−アミノ酸の製造法
EP2382320B1 (en) Process for producing l-amino acids employing bacteria of the enterobacteriacea family in a culture medium with controlled glycerol concentration
US10787691B2 (en) Method for producing L-amino acid
US10563234B2 (en) Method for producing L-amino acids
WO2012002486A1 (ja) L-アミノ酸の製造法
JP6459962B2 (ja) L−アミノ酸の製造法
US20150211033A1 (en) Method for Producing L-Amino Acid
US20150218605A1 (en) Method for Producing L-Amino Acid
WO2010101053A1 (ja) L-アミノ酸の製造法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6459962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250