RU2230114C2 - Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот - Google Patents

Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот Download PDF

Info

Publication number
RU2230114C2
RU2230114C2 RU2001132473/13A RU2001132473A RU2230114C2 RU 2230114 C2 RU2230114 C2 RU 2230114C2 RU 2001132473/13 A RU2001132473/13 A RU 2001132473/13A RU 2001132473 A RU2001132473 A RU 2001132473A RU 2230114 C2 RU2230114 C2 RU 2230114C2
Authority
RU
Russia
Prior art keywords
glutamine
amino acid
strain
glutamine synthetase
mutant
Prior art date
Application number
RU2001132473/13A
Other languages
English (en)
Other versions
RU2001132473A (ru
Inventor
тинер М.М. Гус (RU)
М.М. Гусятинер
Л.В. Ивановска (RU)
Л.В. Ивановская
Т.В. Леонова (RU)
Т.В. Леонова
Е.И. Муханова (RU)
Е.И. Муханова
Ю.Г. Ростова (RU)
Ю.Г. Ростова
Д.В. Филиппов (RU)
Д.В. Филиппов
Д.А. Чудакова (RU)
Д.А. Чудакова
Original Assignee
Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" filed Critical Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика"
Priority to RU2001132473/13A priority Critical patent/RU2230114C2/ru
Priority to JP2002329583A priority patent/JP2003164297A/ja
Priority to US10/299,799 priority patent/US20030148474A1/en
Priority to BR0204882-5A priority patent/BR0204882A/pt
Priority to CNB021529620A priority patent/CN1250716C/zh
Publication of RU2001132473A publication Critical patent/RU2001132473A/ru
Application granted granted Critical
Publication of RU2230114C2 publication Critical patent/RU2230114C2/ru
Priority to US11/167,273 priority patent/US20050255567A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Аминокислоты, такие как L-глутамин, L-аргинин, L-триптофан,L-гистидин и L-глутамат получают культивированием бактерии, принадлежащей к роду Escherichia, трансформированной фрагментом ДНК, кодирующим мутантную глутаминсинтетазу, в которой аминокислотный остаток тирозина, соответствующий положению 397 в природной глутаминсинтетазе, заменен остатком другой аминокислоты, предпочтительно фенилаланином. В качестве штамма-продуцента может быть использован штамм Escherichia coli VL334thrC+/pMWglnAphe-4. 4 с. и 5 з.п. ф-лы, 1 ил., 1 табл.

Description

Область техники.
Настоящее изобретение относится к микробиологической промышленности, в частности к способу получения L-аминокислот. Конкретно, настоящее изобретение касается использования нового фермента, вовлеченного в биосинтез глутамина и пути ассимиляции азота в штаммах E.coli - продуцентах аминокислот, таких как глутамин и аргинин. Более конкретно, настоящее изобретение представляет новую мутантную глутаминсинтетазу и способ получения аминокислот, таких как глутамин, аргинин, триптофан, гистидин и глутамат, с использованием штаммов E.coli, содержащих указанный фермент.
Предшествующий уровень техники
У глутаминсинтетазы (GS) из E.coli две функции: образование глутамина и ассимиляция аммиака в условиях недостатка аммиака. Глутамин является донором азота в синтезе пуринов и пиримидинов, а также некоторых аминокислот, таких как аргинин, триптофан, аспарагин, гистидин и глутамат. В биосинтезе аргинина глутамин играет значительную роль, поскольку является единственным физиологическим донором аминогруппы в синтезе карбамоилфосфата - общего предшественника для аргинина и пиримидинов. При образовании триптофана глутамин используется в первой реакции биосинтеза триптофана, заключающейся в конверсии хоризмата и глутамина в антранилат, глутамин и пируват. Глутамин-зависимая аспарагинсинтетаза использует глутамин вместе с аспартатом и АТФ в главном пути биосинтеза аспарагина. В имидазольном кольце гистидина азот 3 получается из глутамина. И наконец, глутамин используется глутаматоксоглутарат аминотрансферазой (глутамат синтазой) (GOGAT) в синтезе глутамата.
Ввиду множества функций и важности GS в клеточном метаболизме обе ее каталитические активности и ее синтез тщательно регулируются.
Общая структура активной GS состоит из 12 субъединиц, скомпонованных в два гексамера друг напротив друга. Аденилирование тирозина-397 каждой субъединицы GS снижает ферментативную активность in vivo. Как аденилирование, так и де-аденилирование GS катализируется аденилтрансферазой, кодируемой геном glnE. Направление катализа определяется регуляторным белком PII (glnB), активность которого также определяется обратимой модификацией: немодифицированная форма белка PII активирует аденилирование, в то время как уридилированная форма белка PII активирует де-аденилирование GS. Специфическая уридилилтрансфераза катализирует перенос уридилильной группы с УТФ на белок PII, в то время как активность по удалению уридилильной группы вызывает процесс, противоположный уридилированию белка PII. Обе активности определяются геном glnD. Глутамин стимулирует активность по удалению уридилильной группы, 2-оксоглутарат стимулирует уридилирование белка PII. Таким образом, в конечном счете глутамин вызывает аденилированние GS, в то время как 2-оксоглутарат способствует образованию де-аденилированной (активной) формы GS (Escherichia coli and Salmonella, Second Edition, Editor in Chief: F.C.Neidhardt, ASM Press, Washington D.C., 1996).
Ранее были описаны мутантные глутаминсинтетазы из различных видов, не способные к аденилированию. Такими мутантами являются мутантная GS из Rhizobium meliloli (Arcondeguy et al, FEMS Microbiol. Lett., 1996, 145:1, 33-40), Y398F мутантная GS из Rhodospirillum rubrum (Zhang et al, J. Bacteriol., 2000, 182:4, 938-92) и Y407F мутантная GS из Azobacter vinelandii (Colnaghi et al, Microbiology, 2001, 147:5, 1267-76). Приведенные мутантные GS обладают уровнем активности природного фермента. Но в настоящее время нет сообщений об использовании мутантной GS, не способной к аденилированию, для продукции аминокислот.
Описание изобретения
В настоящем изобретении описывается конструирование мутантного и высокоактивного фермента, играющего ключевую роль в биосинтезе глутамина и аргинина в E.coli.
В настоящем изобретении описывается замена кодона ТАТ, кодирующего тирозин в положении 397 белка GS, на кодон ТТТ, кодирующий аминокислотный остаток фенилаланина, в гене glnA. Замена указанного аминокислотного остатка в аминокислотной последовательности приводит к экспрессии мутантного белка, не способного к аденилированию, причем уровень его активности соответствует уровню активности природного белка. Было установлено, что GS, мутированная, как описано выше, становится нечувствительной к непрямому (опосредованному) ингибированию глутамином. Затем авторы настоящего изобретения обнаружили, что бактерия, принадлежащая к роду Escherichia, - продуцент глутаминовой кислоты, трансформированная с помощью ДНК, содержащей такой мутантный ген, становится способной к продукции глутамина. Таким образом было совершено настоящее изобретение.
Настоящее изобретение включает в себя следующее:
(1). Глутаминсинтетаза, состоящая из последовательности аминокислот, приведенной в Списке последовательностей под номером 1, в которой остаток тирозина, соответствующий положению 397 в последовательности под номером 1, заменен на остаток любой другой аминокислоты;
(2). Глутаминсинтетаза в соответствии с (1), которая состоит из последовательности аминокислот, включающей делеции, замены, вставки и добавления одной или нескольких аминокислот в одном или нескольких положениях, отличных от положения 397, в последовательности аминокислот, приведенной в Списке последовательностей под номером 1;
(3). Глутаминсинтетаза в соответствии с (1) или (2), в которой остаток, соответствующий положению 397 в последовательности аминокислот, приведенной в Списке последовательностей под номером 1, заменен на фенилаланин;
(4). Глутаминсинтетаза в соответствии с (1)-(3), которая является глутаминсинтетазой из Escherichia coli;
(5). ДНК, кодирующая глутаминсинтетазу в соответствии с любым из (1)-(4);
(6). Бактерия, трансформированная с помощью ДНК в соответствии с (5);
(7). Бактерия в соответствии с (6), принадлежащая к роду Escherichia;
(8). Бактерия в соответствии с (7), обладающая способностью к продукции L-аминокислот.
(9). Способ получения L-аминокислоты, включающий стадии:
- выращивания бактерии в соответствии с (6)-(8) в питательной среде с целью продукции и накопления L-аминокислоты в питательной среде, и
- выделения L-аминокислоты из культуральной жидкости.
(10). Способ в соответствии с (9), в котором L-аминокислота выбрана из группы, состоящей из L-глутамина, L-аргинина, L-триптофана, L-гистидина, L-глутамата.
(11). Способ в соответствии с (10), в котором L-аминокислотой является L-глутамин.
Описанная выше GS, содержащая замену остатка тирозина, соответствующего положению 397 в последовательности под номером 1 в Списке последовательностей, упоминается как "мутантная GS". ДНК, кодирующая мутантную GS, упоминается как "мутантный ген glnА", а GS, не содержащая замен, упоминается как "природная GS". Далее настоящее изобретение более детально будет описано ниже.
<1> Мутантная GS и мутантный ген glnA.
Известно, что тирозин в положении 397 является местом аденилирования GS (нумерация остатков аминокислот указанного фермента приводится в соответствии с G.Colombo и J.J.Villafranca. J.Biol. Chem., Vol.261. Issue 23, 10587-10591, 1986). Аденилирование GS приводит к инактивации фермента. Замена аминокислотного остатка, соответствующего тирозину в положении 397, любой другой аминокислотой, предпочтительно фенилаланином, в последовательности аминокислот природной GS приводит к образованию мутантного белка с уровнем активности природного белка и не способного к аденилированию. Мутантная GS становится нечувствительной к непрямому (опосредованному) ингибированию глутамином.
Мутантная GS может быть получена на основе последовательности природного гена glnA путем введения мутаций с использованием обычных методов. В качестве природного гена glnA может быть упомянут ген glnА из E.coli (нуклеотиды с 6558 по 7967 в последовательности АЕ000462 U00096 в базе данных GenBank, SEQ ID NO:2).
Мутантная GS может содержать делеции, замены, вставки и добавления одной или нескольких аминокислот в одном или нескольких положениях, кроме положения 397, при условии, что активность GS не нарушается. Термин “активность GS” означает активность по катализу реакции образования глутамина из глутамата и аммиака с использованием АТР.
Число “нескольких” аминокислот различно в зависимости от положения или типа остатка аминокислоты в трехмерной структуре белка. Это объясняется следующими причинами. Например, некоторые аминокислоты являются в достаточной степени взаимозаменяемыми и отличия в этих аминокислотах не влияют в значительной степени на трехмерную структуру белка. Следовательно, мутантной GS согласно настоящему изобретению может быть мутантная GS, у которой степень гомологии не ниже чем 30-50%, предпочтительно 50-70%, по отношению ко всем остаткам аминокислот, составляющим GS согласно настоящему изобретению, и которая обладает активностью GS.
В настоящем изобретении “последовательность аминокислот, соответствующая положению 397” означает последовательность аминокислот, соответствующую последовательности аминокислот в положении 397 в последовательности аминокислот под номером 1 (SEQ ID NО:1). Положение остатка аминокислоты может быть изменено. Например, если какой-либо остаток аминокислоты добавлен в N-концевой участок, то остаток аминокислоты, находившийся ранее в положении 397, оказывается в положении 398. В таком случае остаток аминокислоты, соответствующий первоначальному положению 397, рассматривается как остаток аминокислоты в положении 397 согласно настоящему изобретению.
ДНК, кодирующая практически такой же белок, как мутантная GS, описанная выше, может быть получена, например, путем модификации последовательности нуклеотидов методом сайт-специфического мутагенеза таким образом, что белок, кодируемый подобной ДНК, будет в определенном положении содержать делеции, замены, вставки или добавления одного или нескольких остатков аминокислот. ДНК, модифицированная описанным выше способом, может быть получена традиционными способами мутагенеза.
К делециям, заменам, вставкам или добавлениям нуклеотидов, описанным выше, относятся мутации, которые встречаются в природных условиях (мутанты или варианты), например, в случае индивидуальных или родовых и видовых различий бактерий, содержащих GS.
<2> Бактерия согласно настоящему изобретению, принадлежащая к роду Escherichia.
Бактерией, принадлежащей к роду Escherichia, согласно настоящему изобретению является бактерия, принадлежащая к роду Escherichia, в которую введен мутантный ген glnA, описанный выше. Примером бактерии, принадлежащей к роду Escherichia, является Е.coli. Мутантный ген glnA может быть введен, например, путем трансформации бактерии, принадлежащей к роду Escherichia, рекомбинантной плазмидой, содержащей вектор, функционирующий в бактерии, принадлежащей к роду Escherichia, и мутантный ген glnA. Мутантный ген glnA также может быть введен заменой гена glnA в хромосоме на мутантный ген glnA.
Примерами векторов, которые можно использовать для введения мутантного гена glnA, являются плазмидные векторы, такие как pMW118, pBR322, pUC19 или подобные им, фаговые векторы, такие как 11059, 1BF101, M13mp9 или подобные им, и транспозоны, такие как Мu, Тn10, Тn5 или подобные им.
Введение ДНК в бактерию, принадлежащую к роду Escherichia, может быть осуществлено, например, по методу D.A.Morrison (Methods in Enzymology, 68, 326 (1979)) или методом, в котором бактериальная клетка - реципиент обрабатывается хлоридом кальция для увеличения проницаемости для ДНК (Mandel, M. and Higa, A., J.Mol.Biol. 53, 159 (1970)) или подобным им методом.
Бактерий, принадлежащих к роду Escherichia, которые обладают способностью к продукции значительных количеств L-глутамина, к настоящему времени описано не было. Отмечалось, что выращивание штамма E.coli К-12 в питательной среде, содержащей более 10 весовых частей азота на 100 весовых частей углерода, приводит к накоплению 0,36 мг/мл L-глутамина (патент Великобритании № 1113117). Таким образом, продуцируемое количество L-глутамина может быть увеличено путем введения мутантного гена glnA в бактерию дикого типа, принадлежащую к роду Escherichia, и экскретирующую глутамин.
Примерами бактерий, принадлежащих к другим родам, обладающих способностью к продукции L-глутамина, являются Brevibacterium flavum FERM-P 4272, Corynebacterium acetoacidophilum ATCC 13870, Microbacterium flavum FERM-BP 664 (AJ 3684), Brevibacterium flavum FERM-BP 662 (AJ 3409), Corynebacterium acetoglulamicum ATCC 13870, Corynebacterium glutamicum FERM-BP 663 (AJ 3682) (патент США 5164307).
Количество продуцируемого L-глутамина может быть увеличено путем введения мутантного гена glnA в бактерию, принадлежащую к роду Escherichia, - продуцент глутаминовой кислоты.
Примерами бактерий, принадлежащих к роду Escherichia, обладающих способностью к продукции L-глутаминовой кислоты, являются следующие штаммы E.coli: штаммы, обладающие устойчивостью к антиметаболитам аспарагиновой кислоты, и дефицитные по активности альфа-кетоглутаратдегидрогеназы, такие как AF13199 (FERM ВР-5807) (патент США 5908768), или штамм FERM Р-12379 дополнительно имеющий низкую активность по разложению L-глутаминовой кислоты (патент США 5393671); штамм E.coli AJ13138 (FERM BP-5565) (патент США 6110714) и подобные им.
Примерами бактерий, принадлежащих к роду Escherichia, обладающих способностью к продукции L-аргинина, являются штамм E.coli 237 (ВКПМ В-7925) (Российская патентная заявка 2000116481), штаммы продуценты аргинина, в которые введен ген argA, кодирующий N-ацетилглутаматсинтетазу (выложенная заявка Японии № 57-5693) и подобные им.
Примерами бактерий, принадлежащих к роду Escherichia, обладающих способностью к продукции L-триптофана, являются штаммы E.coli – производные штамма Genencor JB102/pBE7, содержащие триптофановый оперон, ген aroG и ген serA из E.coli (патент США 5939295), штаммы E.coli DSM10118, DSM 10121, DSM10122, DSM10123 (патент США 5756345), штамм Е.coli SV164 (pGH5) (EP1149911А2), штаммы Е.сoli NRRL В-12257-NRRL В-12264 (патент США 4371614) и подобные им.
Примерами бактерий, принадлежащих к роду Escherichia, обладающих способностью к продукции L-гистидина, являются штаммы E.coli NRRL В-12116, NRRL B-12118, NRRL B-12119, NRRL B-12120, NRRL B-12121 (патент США 4388405) и подобные им.
<3> Способ получения L-аминокислот.
К способам согласно настоящему изобретению относится способ продукции L-аминокислоты, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-аминокислоты в указанной питательной среде, и выделения L-аминокислоты из культуральной жидкости.
Как детально объяснено в нижеследующих примерах, к способу согласно настоящему изобретению относится способ продукции L-глутамина, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-глутамина в указанной питательной среде, и выделения L-глутамина из культуральной жидкости.
Глутамин является донором азота в синтезе пуринов и пиримидинов, а также некоторых аминокислот, таких как L-аргинин, L-триптофан, L-гистидин и L-глутамат. В биосинтезе аргинина глутамин играет значительную роль, поскольку является единственным физиологическим донором аминогруппы в синтезе карбамоилфосфата - общего предшественника для аргинина и пиримидинов. При образовании триптофана глутамин используется в первой реакции биосинтеза триптофана, заключающейся в конверсии хоризмата и глутамина в антранилат, глутамин и пируват. Глутамин-зависимая аспарагинсинтетаза использует глутамнн вместе с аспартатом и АТФ в главном пути биосинтеза аспарагина. В имидазольном кольце гистидина азот 3 получается из глутамина. И наконец, глутамин используется глутаматоксоглутарат аминотрансферазой (глутамат синтазой) (GOGAT) в синтезе глутамата. В случае, когда пути биосинтеза вышеперечисленных аминокислот оптимизированы для их продукции, доступность глутамина становится одним из лимитирующих факторов. Исходя из вышесказанного, увеличение способности микроорганизма к продукции L-глутамина также приводит к увеличению способности микроорганизма к продукции L-аргинина, L-триптофана, L-гистидина и L-глутамата. Поэтому к способам согласно настоящему изобретению относится способ продукции L-аргинина, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-аргинина в указанной питательной среде, и выделения L-аргинина из культуральной жидкости. Также к способам согласно настоящему изобретению относится способ продукции L-триптофана, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-триптофана в указанной питательной среде, и выделения L-триптофана из культуральной жидкости. Также к способам согласно настоящему изобретению относится способ продукции L-гистидина, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-гистидина в указанной питательной среде, и выделения L-гистидина из культуральной жидкости. И к способам согласно настоящему изобретению относится способ продукции L-глутамата, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-глутамата в указанной питательной среде, и выделения L-глутамата из культуралыюй жидкости.
В способе согласно настоящему изобретению выращивание бактерии, принадлежащей к роду Escherichia, сбор и очистка L-глутамина из культуральной жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых L-глутамин продуцируется с использованием бактерии. Также в способе согласно настоящему изобретению выращивание бактерии, принадлежащей к роду Escherichia, сбор и очистка L-аргинина из культуральной жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых L-аргинин продуцируется с использованием бактерии. Также в способе согласно настоящему изобретению выращивание бактерии, принадлежащей к роду Escherichia, сбор и очистка L-триптофанана из культуральной жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых L-триптофан продуцируется с использованием бактерии. Также в способе согласно настоящему изобретению выращивание бактерии, принадлежащей к роду Escherichia, сбор и очистка L-гистидина из культуральной жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых L-гистидин продуцируется с использованием бактерии. Также в способе согласно настоящему изобретению выращивание бактерии, принадлежащей к роду Escherichia, сбор и очистка L-глутамата из культуральной жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых L-глутумат продуцируется с использованием бактерии.
Питательная среда, используемая для выращивания, может быть как синтетической, так и натуральной, при условии, что указанная среда содержит источники углерода, азота, минеральные добавки и, если необходимо, соответствующее количество питательных добавок, которые требуются микроорганизму для роста. К источникам углерода относятся различные углеводы, такие как глюкоза и сахароза, и различные органические кислоты. В зависимости от степени ассимиляции используемого микроорганизма могут использоваться спирты, такие как этанол и глицерин. В качестве источника азота могут использоваться аммиак, различные соли аммония, такие как сульфат аммония, другие соединения азота, такие как амины, природные источники азота, такие как пептон, гидролизат соевых бобов и ферментолизат микроорганизмов. В качестве минеральных добавок используются монофосфат калия, сульфат магния, хлорид натрия, сульфат железа, сульфат марганца, хлорид кальция. Некоторые питательные добавки могут быть добавлены в питательную среду, если необходимо. Например, если микроорганизму для роста необходим изолейцин (ауксотрофия по изолейцину), подходящее количество изолейцина может быть добавлено в питательную среду для ферментации.
Выращивание осуществляется предпочтительно в аэробных условиях, таких как перемешивание, ферментация с аэрацией, при температуре от 20 до 40°С, предпочтительно от 30 до 38°С. Обычно выращивание осуществляют при рН питательной среды в пределах от 5 до 9, предпочтительно от 6,5 до 7,2. рН среды может регулироваться аммиаком, карбонатом кальция, различными кислотами, основаниями и буферами. Обычно выращивание в течение от 1 до 3 дней приводит к накоплению целевой L-аминокислоты в культуральной жидкости.
Выделение L-глутамина после выращивания может быть осуществлено путем удаления из культуральной жидкости твердых остатков, такие как клетки, методом центрифугирования или фильтрацией, а затем L-глутамин может быть собран и очищен методами ионообменной хроматографии, концентрирования и кристаллизации или подобными им.
Краткое описание чертежа.
На чертеже показано относительное положение затравок SEQ ID NО:3, 4 и 5, использованных в ПУР при получении матунтного гена glnA.
Наилучший способ осуществления изобретения
Настоящее изобретение более детально описано со ссылкой на следующие примеры.
Пример 1. Клонирование мутантного реагента glnA.
Природный ген glnA был получен методом амплификации с помощью ПЦР и клонирован в вектор pMW118. Полученная плазмида была названа pMWglnA12. Хромосомная ДНК штамма E.coli К-12 была использована в качестве матрицы, олигонуклеотиды, приведенные в Списке последовательностей под номерами 3 и 4, использовались в качестве затравок. ПЦР проводили следующим образом: предварительная обработка при 94°С в течение 5 мин, затем 40 циклов при 55°С в течение 30 сек, 72°С в течение 2 мин и 93°С в течение 30 сек. Полученный таким образом продукт ПЦР был обработан рестриктазами ХbаI и HindIII и лигирован в вектор pMW118, предварительно обработанный теми же рестриктазами. Полученная плазмида была названа pMWglnA12. Для замены кодона ТАТ, кодирующего тирозин-397 в белке GS, кодоном ТТТ, кодирующим фенилаланин, была использована процедура сайт-направленного мутагенеза. Плазмида pMWglnA12, содержащая природный ген glnA, использовалась в качестве матрицы, олигонуклеотиды, приведенные в Списке последовательностей под номерами 4 и 5, использовались в качестве затравок. ПЦР проводили следующим образом: 55°С в течение 30 сек, 72°С в течение 1 мин и 94°С в течение 30 сек, 25 циклов. Полученный таким образом продукт ПЦР был обработан рестриктазами NcoI и НindIII и лигирован в плазмиду pMWglnA12, предварительно обработанную теми же рестриктазами. Полученная плазмида была названа pMWglnAphe-4.
Пример 2. Конструирование штамма, дефицитного по ilvA, - производного штамма E.coli К-12, содержащего мутацию в гене ilvA.
Штамм VL334 (ВКПМ В-1641) является штаммом, ауксотрофным по изолейцину и треонину, содержащим мутации в генах thrC и ilvA (патент США 4278765). Аллель дикого типа гена thrC был перенесен методом общей трансдукции с использованием бактериофага Р1, выращенного на природном штамме E.coli К-12 (ВКПМ В-7). В результате был получен штамм VL334thrC+.
Затем плазмида pMWglnAphe-4 была введена в клетки штамма VL334thrC+. Полученный штамм был назван VL334thrC+/pMWglnAphe-4. В качестве контроля плазмида pMWglnA12 также была введена в клетки штамма VL334thrC+. Полученный штамм был назван VL334thrC+/pMWglnA12.
Пример 3. Продукция глутамина и глутаминовой кислоты штаммом, содержащим мутантный ген glnA, при ферментации в пробирках.
Условия выращивания при ферментации в пробирках были следующие. Питательная среда для ферментации содержала 60 г/л глюкозы, 35 г/л сульфата аммония, 2 г/л К2НРO4, 1 г/л MgSO4, 0,1 мг/л тиамина, 50 мг/л L-изолейцина, 5 г/л дрожжевого экстракта Difco, 25 г/л мела (рН 7,2). Глюкоза и мел стерилизовались раздельно. 2 мл питательной среды помещались в пробирку, засевались одной петлей тестируемых микроорганизмов, и выращивание продолжалось при 37°С в течение 2 дней с перемешиванием. Накопленное в культуральной жидкости количество глутамина и глутаминовой кислоты было определено с помощью тонкослойной хроматографии (ТСХ). Состав подвижной фазы для ТСХ: изопропанол: этилацетат: NH4ОH: H2O=16:8:5:10 (v/v). Результаты приведены в таблице.
Figure 00000002
Как видно из таблицы, штамм VL334thrC+/pMWglnAphe-4, содержащий мутантный ген glnA, приобрел способность к продукции L-глутамина.

Claims (9)

1. Мутантная глутаминсинтетаза, описанная в пункте (А) или (В): (A) глутаминсинтетаза, состоящая из последовательности аминокислот, приведенной в Списке последовательностей под номером 1, в которой остаток тирозина, соответствующий положению 397 в последовательности под номером 1, заменен на остаток любой другой аминокислоты; (B) глутаминсинтетаза, состоящая из последовательности аминокислот, включающей делеции, замены, вставки и добавления одной или нескольких аминокислот в одном или нескольких положениях, отличных от положения 397, в последовательности аминокислот, приведенной в Списке последовательностей под номером 1, при этом остаток тирозина, соответствующий положению 397 в последовательности под номером 1, заменен на остаток любой другой аминокислоты.
2. Мутантная глутаминсинтетаза по п.1, отличающаяся тем, что в такой глутаминсинтетазе остаток, соответствующий положению 397 в последовательности аминокислот, приведенной в Списке последовательностей под номером 1, заменен на фенилаланин.
3. Мутантная глутаминсинтетаза по п.1 или 2, отличающаяся тем, что такой глутаминсинтетазой является глутаминсинтетаза из Escherichia coli.
4. Фрагмент ДНК, кодирующий глутаминсинтетазу по любому из пп. 1-3.
5. Штамм Escherichia coli VL334thrC+/pMWglnAphe-4, трансформированный фрагментом ДНК, кодирующим мутантную глутаминсинтетазу, в которой остаток, соответствующий положению 397 в последовательности аминокислот, приведенной в Списке последовательностей под номером 1, заменен на фенилаланин, - продуцент L-глутамина.
6. Способ получения L-аминокислоты методом ферментации, включающий стадии выращивания штамма бактерии Escherichia coli - продуцента L-аминокислоты в питательной среде и выделения L-аминокислоты из культуральной жидкости, отличающийся тем, что в качестве штамма - продуцента используют штамм, трансформированный фрагментом ДНК по п.4.
7. Способ по п.6, отличающийся тем, что L-аминокислота выбрана из группы, состоящей из L-глутамина, L-аргинина, L-триптофана, L-гистидина, L-глутамата.
8. Способ по п.7, отличающийся тем, что такой L-аминокислотой является L-глутамин.
9. Способ по п.8, отличающийся тем, что в качестве штамма продуцента L-глутамина используют штамм Escherichia coli VL334thrC+/pMWglnAphe-4.
RU2001132473/13A 2001-11-30 2001-11-30 Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот RU2230114C2 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2001132473/13A RU2230114C2 (ru) 2001-11-30 2001-11-30 Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот
JP2002329583A JP2003164297A (ja) 2001-11-30 2002-11-13 新規変異型グルタミンシンテターゼ、およびアミノ酸の生産方法
US10/299,799 US20030148474A1 (en) 2001-11-30 2002-11-20 New mutant glutamine synthetase and method for producing amino acids
BR0204882-5A BR0204882A (pt) 2001-11-30 2002-11-28 Glutamina-sintetase, dna, bactéria, e, método para produzir um l-aminoácido
CNB021529620A CN1250716C (zh) 2001-11-30 2002-11-29 新的突变谷氨酰胺合成酶和产生氨基酸的方法
US11/167,273 US20050255567A1 (en) 2001-11-30 2005-06-28 Mutant glutamine synthetase and method for producing amino acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001132473/13A RU2230114C2 (ru) 2001-11-30 2001-11-30 Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот

Publications (2)

Publication Number Publication Date
RU2001132473A RU2001132473A (ru) 2003-08-20
RU2230114C2 true RU2230114C2 (ru) 2004-06-10

Family

ID=20254538

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001132473/13A RU2230114C2 (ru) 2001-11-30 2001-11-30 Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот

Country Status (5)

Country Link
US (2) US20030148474A1 (ru)
JP (1) JP2003164297A (ru)
CN (1) CN1250716C (ru)
BR (1) BR0204882A (ru)
RU (1) RU2230114C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023888B2 (en) 2014-10-08 2018-07-17 Cj Cheiljedang Corporation Microorganism for producing L-glutamine and method for producing L-glutamine using same
RU2787791C1 (ru) * 2021-01-25 2023-01-12 СиДжей ЧеилДжеданг Корпорейшн Новый вариант цитозинпермеазы и способ получения L-триптофана с его применением

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU756507B2 (en) * 1998-03-18 2003-01-16 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4427878B2 (ja) 1999-08-20 2010-03-10 味の素株式会社 析出を伴う発酵法によるl−グルタミン酸の製造法
RU2208640C2 (ru) * 2000-07-06 2003-07-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА, ШТАММ Escherichia coli - ПРОДУЦЕНТ L-АРГИНИНА
JP4560998B2 (ja) * 2001-02-05 2010-10-13 味の素株式会社 発酵法によるl−グルタミンの製造法及びl−グルタミン生産菌
BR122013017187B1 (pt) * 2001-02-13 2016-03-01 Ajinomoto Kk bactéria transgênica produtora de l-aminoácido pertencente ao gênero escherichia, e, método para produzir l-aminoácido
JP4599726B2 (ja) 2001-02-20 2010-12-15 味の素株式会社 L−グルタミン酸の製造法
US8211688B2 (en) 2004-06-25 2012-07-03 Kyowa Hakko Bio Co., Ltd. Process for producing L-glutamine using Escherichia coli with deficient glnB and glnE function
JP5592059B2 (ja) * 2005-12-27 2014-09-17 協和発酵バイオ株式会社 L−グルタミンの製造法
CN101374953B (zh) 2006-01-27 2011-09-28 味之素株式会社 用于产生l-氨基酸的方法
CN100392075C (zh) * 2006-06-29 2008-06-04 清华大学 谷氨酰胺合成酶及其专用表达工程菌与应用
JP5064396B2 (ja) 2006-09-01 2012-10-31 協和発酵バイオ株式会社 L‐グルタミンの製造法
JP2010041920A (ja) 2006-12-19 2010-02-25 Ajinomoto Co Inc L−アミノ酸の製造法
JP2010130899A (ja) 2007-03-14 2010-06-17 Ajinomoto Co Inc L−グルタミン酸系アミノ酸生産微生物及びアミノ酸の製造法
JP5319521B2 (ja) 2007-04-06 2013-10-16 協和発酵バイオ株式会社 ジペプチドの製造法
EP2298880A4 (en) 2008-03-18 2012-02-08 Kyowa Hakko Kirin Co Ltd INDUSTRIALLY USEFUL MICROORGANISM
EP2330184B1 (en) 2008-09-01 2020-11-25 Shinshu University Process for producing a useful substance in coryneform bacteria
JP5662167B2 (ja) 2009-02-09 2015-01-28 協和発酵バイオ株式会社 L−アミノ酸の製造法
US9023622B2 (en) 2009-02-10 2015-05-05 Kyowa Hakko Bio Co., Ltd. Method for producing L-amino acid using a microorganism with decreased aspartate aminotransferase activity
JPWO2010095642A1 (ja) 2009-02-18 2012-08-23 国立大学法人信州大学 有用物質の製造方法
US8859241B2 (en) 2010-01-08 2014-10-14 Kyowa Hakko Bio Co., Ltd. Process for production of L-amino acid
JP5827131B2 (ja) 2010-01-08 2015-12-02 協和発酵バイオ株式会社 L−グルタミンまたはl−グルタミン酸の製造法
US9567616B2 (en) 2011-02-09 2017-02-14 Kyowa Hakko Bio Co., Ltd. Process for producing target substance by fermentation
DK2738247T3 (en) 2011-07-29 2017-01-09 Mitsui Chemicals Inc MICROORGANISM WITH CARBON Dioxide FIXING CYCLE INTRODUCED THERE
BR112013016373B1 (pt) 2011-11-11 2021-05-18 Ajinomoto Co., Inc método para produzir uma substância alvo
US20150118720A1 (en) 2012-04-13 2015-04-30 Kyowa Hakko Bio Co., Ltd. Process for producing amino acid
MY172023A (en) 2013-01-24 2019-11-12 Mitsui Chemicals Inc Microorganism having carbon dioxide fixation cycle introduced thereinto
JP2016165225A (ja) 2013-07-09 2016-09-15 味の素株式会社 有用物質の製造方法
JP2016192903A (ja) 2013-09-17 2016-11-17 味の素株式会社 海藻由来バイオマスからのl−アミノ酸の製造方法
JP6459962B2 (ja) 2013-10-21 2019-01-30 味の素株式会社 L−アミノ酸の製造法
JP6582997B2 (ja) 2014-01-31 2019-10-02 味の素株式会社 変異型グルタミン酸−システインリガーゼ、及び、γ−グルタミルバリルグリシンの製造法
MX2018000615A (es) * 2015-07-13 2018-08-01 Pivot Bio Inc Metodos y composiciones para mejorar atributos de plantas.
KR101830002B1 (ko) * 2016-10-11 2018-02-19 대상 주식회사 부기질의 공급 강화를 통한 l-트립토판이 과발현되는 균주 및 이를 이용하는 l-트립토판의 제조 방법
JP7066977B2 (ja) 2017-04-03 2022-05-16 味の素株式会社 L-アミノ酸の製造法
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen
JP7124338B2 (ja) 2018-02-27 2022-08-24 味の素株式会社 変異型グルタチオン合成酵素、及び、γ-グルタミルバリルグリシンの製造法
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
CN109628518B (zh) * 2018-12-23 2021-11-02 新疆阜丰生物科技有限公司 一种生产和提取l-谷氨酰胺的方法
CN109943548A (zh) * 2019-04-03 2019-06-28 江南大学 一种提高钝齿棒杆菌合成l-精氨酸产量的方法
CN110699343A (zh) * 2019-10-12 2020-01-17 仲恺农业工程学院 一种用于γ-D谷氨酰肽合成的酶及γ-D谷氨酰肽的合成方法
CN111057727B (zh) * 2019-12-16 2021-10-08 新疆阜丰生物科技有限公司 一种生产、分离和提取l-谷氨酰胺的方法
KR102198072B1 (ko) * 2020-03-04 2021-01-04 씨제이제일제당 주식회사 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
CN112481147B (zh) * 2020-12-10 2022-04-29 科稷达隆(北京)生物技术有限公司 一种谷氨酰胺合成酶基因功能缺失的酵母突变体及其制备方法和应用
CN114277003B (zh) * 2021-12-14 2023-06-06 廊坊梅花生物技术开发有限公司 谷氨酰胺合酶突变体及其应用
US20240117393A1 (en) 2022-09-30 2024-04-11 Ajinomoto Co., Inc. Method for producing l-amino acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2201454C2 (ru) * 1999-07-09 2003-03-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Мутантная альфа-изопропилмалат синтаза (ipms), днк, кодирующая мутантную ipms, способ получения штамма escherichia coli, способ получения l-лейцина
BR122013017187B1 (pt) * 2001-02-13 2016-03-01 Ajinomoto Kk bactéria transgênica produtora de l-aminoácido pertencente ao gênero escherichia, e, método para produzir l-aminoácido
RU2264459C2 (ru) * 2001-08-03 2005-11-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Новая мутантная карбамоилфосфатсинтетаза и способ продукции соединений - производных карбамоилфосфата

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023888B2 (en) 2014-10-08 2018-07-17 Cj Cheiljedang Corporation Microorganism for producing L-glutamine and method for producing L-glutamine using same
RU2665830C1 (ru) * 2014-10-08 2018-09-04 Сиджей Чейлджеданг Корп. Мутантный штамм Corynebacterium glutamicum, продуцирующий L-глутамин (варианты), и способ получения L-глутамина
RU2787791C1 (ru) * 2021-01-25 2023-01-12 СиДжей ЧеилДжеданг Корпорейшн Новый вариант цитозинпермеазы и способ получения L-триптофана с его применением
RU2790565C1 (ru) * 2021-01-25 2023-02-27 СиДжей ЧеилДжеданг Корпорейшн Новый вариант экспортирующей медь АТФазы А Р-типа и способ получения L-триптофана с его применением
RU2790563C1 (ru) * 2021-01-25 2023-02-27 СиДжей ЧеилДжеданг Корпорейшн Новый вариант дезоксигуанозинтрифосфаттрифосфогидролазы и способ получения l-триптофана с его применением
RU2791243C1 (ru) * 2021-04-28 2023-03-06 СиДжей ЧеилДжеданг Корпорейшн Новый вариант растворимой пиридиннуклеотидтрансгидрогеназы и способ получения l-триптофана с его применением

Also Published As

Publication number Publication date
US20030148474A1 (en) 2003-08-07
CN1421527A (zh) 2003-06-04
JP2003164297A (ja) 2003-06-10
US20050255567A1 (en) 2005-11-17
BR0204882A (pt) 2004-06-15
CN1250716C (zh) 2006-04-12

Similar Documents

Publication Publication Date Title
RU2230114C2 (ru) Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот
KR100976072B1 (ko) 에스세리키아속 세균을 사용하는 l-트레오닌의 제조방법
EP1611241B1 (en) Method for producing l-amino acid using bacteria having enhanced expression of the gene pcka
RU2549689C2 (ru) Микроорганизм с повышенной продукцией l-аминокислот и способ получения l-аминокислот с его применением
AU2003202509B2 (en) Method for producing L-amino acid
KR100230878B1 (ko) 환원된 니코틴아미드 아데닌 디뉴클레오타이드로부터 환원된 니코틴아미드 아데닌 디뉴클레오타이드 포스페이트를 생산하는 능력이 증가된 미생물에서 표적물질을 제조하는 방법
US7179623B2 (en) Method of producing amino acids using E. coli transformed with sucrose PTS genes
US7211419B2 (en) Mutant carbamoylphosphate synthetase and method for producing compounds derived from carbamoylphosphate
US7335496B2 (en) Method for producing target substance
JP2001136991A (ja) 発酵法によるl−アミノ酸の製造法
HU224895B1 (en) Process for producing l-amino acids
US20100015673A1 (en) Microorganism Of Corynebacterium Genus Having Enhanced L-Lysine Productivity And A Method Of Producing L-Lysine Using The Same
US7785860B2 (en) Method for producing L-histidine using Enterobacteriaceae bacteria which has an enhanced purH gene produced
KR100815041B1 (ko) 아미노산 생산의 대사 공학
KR20100127784A (ko) 5&#39;-구아닐산의 제조법
JP2001231584A (ja) 変異型ilvH遺伝子及びL−バリンの製造法
US20100323409A1 (en) Process for producing (2s,3r,4s)-4-hydroxy-l-isoleucine
EP2049676B1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with attenuated expression of the ydin gene or the ydib gene or combination thereof
US6919190B2 (en) Regulation of carbon assimilation
EP1689876B1 (en) L-threonine producing bacterium belonging to the genus escherichia and method for producing l-threonine
US7220572B2 (en) Method for producing L-leucine
WO2005075626A1 (en) MICROORGANISM PRODUCING L-THREONINE HAVING INACTIVATED tyrR GENE, METHOD OF PRODUCING THE SAME AND METHOD OF PRODUCING L-THREONINE USING THE MICROORGANISM
WO2001000852A1 (en) Regulation of carbon assimilation
VERWENDUNG et al. EXPRESSION OF THE GENE PCKA
KR20100038639A (ko) 변형된 purC 유전자를 가진 미생물 및 이를 이용한 이노신의 생산방법