JPWO2015046582A1 - 複合半透膜およびその製造方法 - Google Patents

複合半透膜およびその製造方法 Download PDF

Info

Publication number
JPWO2015046582A1
JPWO2015046582A1 JP2014552417A JP2014552417A JPWO2015046582A1 JP WO2015046582 A1 JPWO2015046582 A1 JP WO2015046582A1 JP 2014552417 A JP2014552417 A JP 2014552417A JP 2014552417 A JP2014552417 A JP 2014552417A JP WO2015046582 A1 JPWO2015046582 A1 JP WO2015046582A1
Authority
JP
Japan
Prior art keywords
semipermeable membrane
composite semipermeable
group
hydrophilic polymer
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014552417A
Other languages
English (en)
Other versions
JP6492663B2 (ja
Inventor
淳 岡部
淳 岡部
宏治 中辻
宏治 中辻
恵介 米田
恵介 米田
剛志 浜田
剛志 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2015046582A1 publication Critical patent/JPWO2015046582A1/ja
Application granted granted Critical
Publication of JP6492663B2 publication Critical patent/JP6492663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/383Polyvinylacetates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Transplantation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

本発明は、高い透過水量を達成でき、かつ、膜汚染物質に対する高い付着抑制能を持つ複合半透膜およびその製造方法を提供する。本発明は、基材および多孔性支持層を含む支持膜と、前記多孔性支持層上に設けられたポリアミド分離機能層とを備える複合半透膜であって、酸性基を含む親水性高分子が前記分離機能層表面にアミド結合で導入されている複合半透膜およびその製造方法である。

Description

本発明は、高い透過水量と膜汚染物質に対する高い付着抑制能を持つ複合半透膜に関するものである。本発明によって得られる複合半透膜は、例えばかん水の淡水化に好適に用いることができる。
混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがある。近年、省エネルギーおよび省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。これらの膜は、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、廃水処理、有価物の回収などに用いられている。
現在市販されている逆浸透膜およびナノろ過膜の大部分は複合半透膜であり、支持膜上にゲル層とポリマーを架橋した活性層を有するものと、支持膜上でモノマーを重縮合して形成された活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を支持膜上に被覆して得られる複合半透膜は、透過水量や選択分離性の高い分離膜として広く用いられている。
逆浸透膜を用いる造水プラントではランニングコストの一層の低減を図るため、より高い透過水量が求められている。このような要求に対し、分離機能層として架橋ポリアミド重合体を有する複合半透膜に、亜硝酸を含む水溶液を接触させる方法(特許文献1)や、塩素を含む水溶液を接触させる方法(特許文献2)などが知られている。
また、逆浸透膜を用いる造水プラントで起こる問題の一つに、無機物や有機物といった膜汚染物質(以下、ファウラントという)による透過水量の低下(以下、ファウリングという)が挙げられる。これを改善する方法として、ポリビニルアルコールを分離機能層表面にコーティングし、膜表面の荷電状態を中性にすることで、負荷電を持つファウラントとの相互作用を減らす方法(特許文献3)、架橋ポリアミド重合体の形成後、紫外線照射等を用いるフリーラジカル重合反応によって膜表面を修飾する方法(特許文献4)、及び架橋ポリアミド重合体の形成後に残余している酸塩化物に、アミノ基を有する親水性化合物を反応させ、膜表面を修飾する方法(特許文献5,6)が提案されている。
日本国特開2011−125856号公報 日本国特開昭63−54905号公報 国際公開第97/34686号 日本国特表2011−529789号公報 日本国特開2010−240651号公報 米国特許出願公開第2012/0241373号明細書
このように、逆浸透膜には塩除去性能や透過水量だけではなく、長期的に安定運転を行うための耐ファウリング性が必要である。特許文献1及び2に記載の膜は、透過水量を高くすることができるが、耐ファウリング性が低いという問題があった。一方、特許文献3ではコーティングにより耐ファウリング性は向上するが、透過水量の低下が生じる問題があった。また、特許文献4では紫外線照射を行った際に逆浸透膜のポリアミド分子鎖が切断されるため、塩除去性能が低下するという問題があった。また、特許文献5及び6では、親水性化合物による膜表面の修飾によって塩除去性能が低下するという問題があった。
本発明の目的は、高い透過水量及び塩除去性能を有し、かつ、耐ファウリング性が高い複合半透膜を提供することである。
上記目的を達成するための本発明は、以下の構成をとる。
(1)基材と、前記基材上に形成される多孔性支持層と、前記多孔性支持層上に形成される分離機能層とを備える複合半透膜であって、前記分離機能層がポリアミドと、酸性基を有する親水性高分子とを含み、かつ前記ポリアミドと前記親水性高分子がアミド結合によって結合している複合半透膜。
(2)前記分離機能層の表面の自乗平均面粗さが60nm以上である(1)に記載の複合半透膜。
(3)前記酸性基が、カルボキシ基、スルホン酸基、ホスホン酸基及びリン酸基からなる群から選択される少なくとも1つである(1)又は(2)に記載の複合半透膜。
(4)前記親水性高分子が、アクリル酸、メタクリル酸及びマレイン酸からなる群から選択されるいずれか1成分を含む化合物の重合体である(1)〜(3)のいずれか1つに記載の複合半透膜。
(5)前記親水性高分子中に占める前記酸性基を含む構造の共重合比が5mol%以上100mol%以下である(1)〜(4)のいずれか1つに記載の複合半透膜。
(6)前記親水性高分子の重量平均分子量が5,000以上である(1)〜(5)のいずれか1つに記載の複合半透膜。
(7)前記親水性高分子の重量平均分子量が100,000以上である(1)〜(6)のいずれか1つに記載の複合半透膜。
(8)前記親水性高分子が2成分以上の共重合体である(1)〜(7)のいずれか1つに記載の複合半透膜。
(9)前記2成分以上の共重合体が、ポリビニルアルコール、ポリ酢酸ビニル及びポリビニルピロリドンからなる群から選択される少なくとも1成分を含む(8)記載の複合半透膜。
(10)前記ポリアミドがアゾ基を有し、前記ポリアミドに含まれる官能基の内、(アゾ基のモル等量)/(アミド基のモル等量)の比が0.1以上であり、かつ(アミノ基のモル等量)/(アミド基のモル等量)の比が0.2以上である(1)〜(9)のいずれか1つに記載の複合半透膜。
(11)25℃において、pH6.5且つNaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で24時間透過させた後の透過水量が、0.80m/m/日以上である(1)〜(10)のいずれか1つに記載の複合半透膜。
(12)前記ポリアミドの表面が前記親水性高分子により被覆される前の複合半透膜を用いて、25℃において、pH6.5且つNaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、前記ポリアミドの表面が前記親水性高分子により被覆された後の透過水量をF2としたとき、F2/F1の値が0.80以上である(1)〜(11)のいずれか1つに記載の複合半透膜。
(13)25℃において、pH6.5且つNaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/Lの濃度となるように前記水溶液に加えて1時間ろ過したときの透過水量をF4としたとき、F4/F3の値が0.80以上である(1)〜(12)のいずれか1つに記載の複合半透膜。
(14)基材と、前記基材上に形成される多孔性支持層と、前記多孔性支持層上に形成される分離機能層とを備える複合半透膜の製造方法であって、前記分離機能層が、前記多孔性支持層上で多官能アミンを含む水溶液と多官能酸ハロゲン化物を含む有機溶媒とを接触させることでポリアミドを形成した後に、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生じる試薬を含む溶液に接触させる工程Aと、ジアゾニウム塩またはその誘導体と反応してジアゾカップリング反応を生じる試薬を含む溶液に接触させる工程B、及びカルボキシ基をカルボン酸誘導体に変換させる試薬と酸性基または水酸基の少なくとも一方を有する親水性高分子を含む溶液に接触させる工程Cを有する複合半透膜の製造方法。
本発明によって、複合半透膜における高い透過水量と膜汚染物質に対する高い付着抑制能との両立が実現される。
1.複合半透膜
本発明の複合半透膜は、基材および多孔性支持層を含む支持膜と、多孔性支持層上に設けられた架橋ポリアミド(以下、単に「ポリアミド」と称することもある。)と親水性高分子から形成された分離機能層とを備える。本発明の複合半透膜は親水性高分子がポリアミド表面にアミド結合で導入されている。
(1−1)分離機能層
分離機能層は、複合半透膜において溶質の分離機能を担う層である。分離機能層の組成および厚み等の構成は、複合半透膜の使用目的に合わせて設定される。
分離機能層は、具体的には、多官能アミンと多官能酸ハロゲン化物との界面重縮合によって得られる架橋ポリアミド及び架橋ポリアミドに対してアミド結合で導入される親水性高分子から形成される。
ここで多官能アミンは、芳香族多官能アミン及び脂肪族多官能アミンから選ばれた少なくとも1つの成分からなることが好ましい。
芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼンなどが例示される。また、そのN−アルキル化物として、N,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミンなどが例示される。性能発現の安定性から、特にメタフェニレンジアミン(以下、m−PDAという)、または1,3,5−トリアミノベンゼンが好ましい。
また、脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミン及びその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジン、エチレンジアミンなどが例示される。性能発現の安定性から、特に、ピペラジンまたは2,5−ジメチルピペラジンが好ましい。これらの多官能アミンは、1種を単独で用いても、2種類以上を混合物として用いてもよい。
多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記多官能アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸等のハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロライド(以下、TMCという)が好ましい。上記多官能酸ハロゲン化物は1種を単独で用いても、2種類以上を混合物として用いてもよい。
上記ポリアミドは、多官能アミンと多官能酸ハロゲン化物の重合反応に由来するアミド基、未反応末端官能基に由来するアミノ基及びカルボキシ基を有する。これらの官能基量は、複合半透膜の透水性能や塩除去率に影響を与える。
ポリアミド形成後に化学処理を行うと、ポリアミド中の官能基を変換したり、ポリアミドに新たな官能基を導入したりすることができ、これによって複合半透膜の透過水量や塩除去率を向上させることができる。導入する官能基としては、アルキル基、アルケニル基、アルキニル基、ハロゲン基、水酸基、アミノ基、カルボキシ基、エーテル基、チオエーテル基、エステル基、アルデヒド基、ニトロ基、ニトロソ基、ニトリル基、アゾ基等が挙げられる。
例えば、ポリアミドにアゾ基を導入すると、塩除去率が向上するため好ましい。アゾ基は、ポリアミド中の(アゾ基のモル等量)/(アミド基のモル等量)の比が0.1以上になるように導入されることが好ましい。この比が0.1以上であることで、高い塩除去率を得ることができる。
ポリアミド中のアミノ基は、親水性高分子中の酸性基との間でアミド結合を形成する。ポリアミド中の(アミノ基のモル等量/アミド基のモル等量)の比は、0.2以上であることが好ましく、0.3以上であることがより好ましい。ポリアミド中のアミノ基量が多いほど、親水性高分子をポリアミドに導入しやすく、優れた耐ファウリング性が実現される。
これらのポリアミド中の官能基量は、例えば、13C固体NMR測定で求めることができる。具体的には、複合半透膜から基材を剥離し、分離機能層と多孔性支持層を得た後、多孔性支持層を溶解・除去し、分離機能層を得る。得られた分離機能層をDD/MAS−13C固体NMR測定を行い、各官能基が結合している炭素原子のピークの積分値を算出する。この積分値から各官能基量を同定できる。
本発明では親水性高分子がポリアミド表面にアミド結合で導入されていることが必要である。本発明において親水性高分子とは、25℃の条件下で水1Lに対し0.5g以上溶解する高分子である。
親水性高分子は、具体的には、分離機能層の主成分であるポリアミドに、多くの場合はポリアミドの末端のアミノ基を介して、アミド結合によって結合する。また、より具体的には、親水性高分子は、分離機能層の表面(言い換えるとポリアミドで形成された層の表面)に配置されることが好ましい。後述するように、ポリアミドの形成後に親水性高分子が導入されることで、親水性高分子は、分離機能層中のポリアミドで形成された部分の表面に配置される。親水性高分子は、分離機能を実質的に担うポリアミドの層をほとんど通過しないと考えられるからである。また、分離機能層の表面において親水性高分子を検出し、その後エッチングし、さらに親水性高分子を検出する、という一連の測定操作を繰り返せば、親水性高分子が分離機能層の表面に多く存在することを確認することは可能である。
親水性高分子が分離機能層にアミド結合によって導入されていることで、分離膜は高い耐ファウリング性を発現することができる。親水性高分子が弱い結合や相互作用で導入されている場合には、薬液洗浄等により容易に脱離するため好ましくない。ここで、耐ファウリング性とは、ファウリングを抑制することと、ファウリングが起きたとしても性能低下を小さく抑えることとのいずれをも含み得る。親水性高分子によって耐ファウリング性が得られる理由については、以下のように考えられる。
親水性高分子は、その運動性によって、分離機能層に汚れが付着することを抑制できる。運動性よるファウリング抑制は、ノニオン、カチオンおよびアニオンのいずれの汚れについても効果的である。また、親水性高分子が分離機能層表面に存在するため、汚れはポリアミドよりも親水性高分子に付着しやすい。つまり、仮に汚れが分離機能層表面に付着しても、親水性高分子によって、汚れはポリアミドから離れた位置に付着すると考えられる。よって、分離膜の性能低下が低く抑えられる。
特に水への溶解性を向上させる効果や、負電荷を有するファウラントの付着を低減させる効果から、親水性高分子は酸性基を含むことが好ましい。
好ましい酸性基としては、カルボキシ基、ホスホン酸基、リン酸基およびスルホン酸基であり、親水性高分子にこれらのうちの1つが単独で含まれていてもよく、2つ以上が含まれていてもよい。これらの酸性基の構造としては、酸の形態、エステル化合物、無水物、および金属塩のいずれの状態で存在してもよい。
これら親水性高分子は、重合体の化学的安定性からエチレン性不飽和基を有するモノマーの重合体であることが好ましい。エチレン性不飽和基を有するモノマーは、2つ以上の酸性基を含有し得るが、モノマーの入手の容易さなどから、1つ、または2つの酸性基を含有するモノマーが好ましい。
上記のエチレン性不飽和基を有するモノマーの中でカルボキシ基を有するモノマーとしては、以下のものが例示される。マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、2−(ヒドロキシメチル)アクリル酸、4−(メタ)アクリロイルオキシエチルトリメリト酸および対応する無水物、10−メタクリロイルオキシデシルマロン酸、N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)−N−フェニルグリシンおよび4−ビニル安息香酸が挙げられ、中でも汎用性、共重合性の観点から、アクリル酸、メタクリル酸、マレイン酸が好ましい。
上記のエチレン性不飽和基を有するモノマーの中でホスホン酸基を有するモノマーとしては、ビニルホスホン酸、4−ビニルフェニルホスホン酸、4−ビニルベンジルホスホン酸、2−メタクリロイルオキシエチルホスホン酸、2−メタクリルアミドエチルホスホン酸、4−メタクリルアミド−4−メチル−フェニル−ホスホン酸、2−[4−(ジヒドロキシホスホリル)−2−オキサ−ブチル]−アクリル酸および2−[2−ジヒドロキシホスホリル)−エトキシメチル]−アクリル酸−2,4,6−トリメチル−フェニルエステルが例示される。
上記のエチレン性不飽和基を有するモノマーの中でリン酸エステル基を有するモノマーとしては、2−メタクリロイルオキシプロピル一水素リン酸および2−メタクリロイルオキシプロピル二水素リン酸、2−メタクリロイルオキシエチル一水素リン酸および2−メタクリロイルオキシエチル二水素リン酸、2−メタクリロイルオキシエチル−フェニル−水素リン酸、ジペンタエリトリトール−ペンタメタクリロイルオキシホスフェート、10−メタクリロイルオキシデシル−二水素リン酸、ジペンタエリトリトールペンタメタクリロイルオキシホスフェート、リン酸モノ−(1−アクリロイル−ピペリジン−4−イル)−エステル、6−(メタクリルアミド)ヘキシル二水素ホスフェートならびに1,3−ビス−(N−アクリロイル−N−プロピル−アミノ)−プロパン−2−イル−二水素ホスフェートが例示される。
上記のエチレン性不飽和基を有するモノマーの中でスルホン酸基を有するモノマーとしては、ビニルスルホン酸、4−ビニルフェニルスルホン酸または3−(メタクリルアミド)プロピルスルホン酸が挙げられる。
本発明に用いられる親水性高分子の重量平均分子量は2,000以上であることが好ましい。親水性高分子をポリアミド分離機能層表面に導入することで、親水性高分子の運動性により膜面へのファウラントの付着を抑制する効果があると考えられる。親水性高分子の重量平均分子量は5,000以上であるとより好ましく、さらに好ましくは100,000以上である。
親水性高分子は上記エチレン性不飽和基を有するモノマーの単独重合体でもよいが、目的に応じて2成分以上のモノマーの共重合体であってもよい。共重合成分の例としては、ポリビニルピロリドン、ポリビニルアルコール、ポリ酢酸ビニル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、またはこれらの親水性高分子と疎水性高分子のブロック共重合体、グラフト共重合体、ランダム共重合体などが挙げられる。上記親水性高分子の中でも、共重合の容易さ、ファウラントに対する付着性低減の観点から、ポリビニルピロリドン、ポリビニルアルコール、ポリ酢酸ビニルが好ましい。
親水性高分子において、モノマー単位として酸性基を含む構造の割合は、5mol%以上100mol%以下であることが好ましい。つまり、親水性高分子を構成するモノマーのうち、(酸性基を有するモノマーのmol数/親水性高分子を構成するモノマーのmol数)の比(共重合比)が、5%以上100%以下であることが好ましい。親水性高分子において、酸性基を含むモノマー単位の割合が5mol%以上であると、親水性高分子がポリアミドに十分に結合するので、親水性高分子の運動性により膜面へのファウラントの付着が抑制される。酸性基を含む構造の割合は10mol%以上100mol%以下であるとより好ましく、40mol%以上100mol%以下であるとさらに好ましい。
分離機能層表面の自乗平均面粗さ(以下、Rmsともいう)は、60nm以上であることが好ましい。自乗平均面粗さが60nm以上であることで、分離機能層の表面積が大きくなり、透過水量が高くなる。一方、自乗平均面粗さが60nm未満の場合には透過水量が低下する。
なお、自乗平均面粗さは原子間力顕微鏡(以下、AFMという)で測定できる。自乗平均面粗さは基準面から指定面までの偏差の自乗を平均した値の平方根である。ここで測定面とは全測定データの示す面をいい、指定面とは粗さ計測の対象となる面で、測定面のうちクリップで指定した特定の部分をいい、基準面とは指定面の高さの平均値をZ0とするとき、Z=Z0で表される平面をいう。AFMは、例えばデジタル・インスツルメンツ社製NanoScopeIIIaが使用できる。
分離機能層表面の自乗平均面粗さは、界面重縮合によって分離機能層を形成する時のモノマー濃度や温度によって制御できる。例えば、界面重縮合時の温度が低いと自乗平均面粗さは小さくなり、温度が高いと自乗平均面粗さは大きくなる。また、分離機能層表面に親水性高分子による修飾を行う場合は、親水性高分子層が厚いと自乗平均面粗さは小さくなるため、自乗平均面粗さが60nm以上となるように修飾することが好ましい。
(1−2)支持膜
支持膜は、分離機能層に強度を与えるためのものであり、それ自体は、実質的にイオン等の分離性能を有さない。支持膜は、基材と多孔性支持層からなる。
支持膜における孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面における微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい。
支持膜は、例えば基材上に高分子重合体を流延することで、基材上に多孔性支持層を形成することにより得ることができる。支持膜に使用する材料やその形状は特に限定されない。
基材としては、ポリエステルおよび芳香族ポリアミドから選ばれる少なくとも一種からなる布帛が例示される。機械的および熱的に安定性の高いポリエステルを使用するのが特に好ましい。
基材に用いられる布帛としては、長繊維不織布や短繊維不織布を好ましく用いることができる。基材上に高分子重合体の溶液を流延した際にそれが過浸透により裏抜けしたり、基材と多孔性支持層が剥離したり、さらには基材の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりすることがないような優れた製膜性が要求されることから、長繊維不織布をより好ましく用いることができる。
長繊維不織布としては、熱可塑性連続フィラメントより構成される長繊維不織布などが挙げられる。基材が長繊維不織布からなることにより、短繊維不織布を用いたときに起こる、毛羽立ちによって生じる高分子溶液流延時の不均一化や、膜欠点を抑制することができる。また、複合半透膜を連続製膜する工程においては、基材の製膜方向に張力がかけられることからも、基材としては、寸法安定性に優れる長繊維不織布を用いることが好ましい。
特に、基材の多孔性支持層と反対側に配置される繊維の配向が、製膜方向に対して縦配向であることにより、基材の強度を保ち、膜破れ等を防ぐことができるので好ましい。ここで、縦配向とは、繊維の配向方向が製膜方向と平行であることを言う。逆に、繊維の配向方向が製膜方向と直角である場合は、横配向と言う。
不織布基材の繊維配向度としては、多孔性支持層と反対側における繊維の配向度が0°以上25°以下であることが好ましい。ここで繊維配向度とは、支持膜を構成する不織布基材の繊維の向きを示す指標であり、連続製膜を行う際の製膜方向を0°とし、製膜方向と直角方向、すなわち不織布基材の幅方向を90°としたときの、不織布基材を構成する繊維の平均の角度のことを言う。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
複合半透膜の製造工程やエレメントの製造工程には、加熱工程が含まれるが、加熱により支持膜または複合半透膜が収縮する現象が起きる。特に連続製膜において、幅方向には張力が付与されていないので、幅方向に収縮しやすい。支持膜または複合半透膜が収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。
不織布基材において多孔性支持層と反対側に配置される繊維と、多孔性支持層側に配置される繊維との配向度差が10°以上90°以下であると、熱による幅方向の変化を抑制することができ好ましい。
基材の通気度は2.0cc/cm/sec以上であることが好ましい。通気度がこの範囲だと、複合半透膜の透過水量が高くなる。これは、支持膜を形成する工程で、基材上に高分子重合体を流延し、凝固浴に浸漬した際に、基材側からの非溶媒置換速度が速くなることで多孔性支持層の内部構造が変化し、その後の分離機能層を形成する工程においてモノマーの保持量や拡散速度に影響を及ぼすためと考えられる。
なお、通気度はJIS L1096(2010)に基づき、フラジール形試験機によって測定できる。例えば、200mm×200mmの大きさに基材を切り出し、サンプルとする。このサンプルをフラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファン及び空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から基材を通過する空気量、すなわち通気度を算出することができる。フラジール形試験機は、カトーテック株式会社製KES−F8−AP1などが使用できる。
また、基材の厚みは、10μm以上200μm以下の範囲内にあることが好ましく、より好ましくは30μm以上120μm以下の範囲内である。
多孔性支持層の素材にはポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして使用することができる。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなど、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどが使用できる。中でもポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーまたはコポリマーが好ましい。より好ましくは酢酸セルロース、ポリスルホン、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンが挙げられ、さらに、これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることからポリスルホンが一般的に使用できる。
具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、支持膜の孔径が制御しやすく、寸法安定性が高いため好ましい。
Figure 2015046582
例えば、上記ポリスルホンのN,N−ジメチルホルムアミド(以下、DMFという)溶液を、密に織ったポリエステル布あるいはポリエステル不織布の上に一定の厚さに流延し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した支持膜を得ることができる。
上記の支持膜の厚みは、得られる複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。支持膜の厚みは、十分な機械的強度および充填密度を得るためには、30μm以上300μm以下の範囲内にあることが好ましく、より好ましくは100μm以上220μm以下の範囲内である。
多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金−パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3〜15kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)によって観察する。高分解能電界放射型走査電子顕微鏡は、日立製作所社製S−900型電子顕微鏡などが使用できる。
本発明に使用する支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるし、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法などに従って製造することもできる。
多孔性支持層の厚みは、20μm以上100μm以下の範囲内にあることが好ましい。多孔性支持層の厚みが20μm以上であることで、良好な耐圧性が得られると共に、欠点のない均一な支持膜を得ることができるので、このような多孔性支持層を備える複合半透膜は、良好な塩除去性能を示すことができる。多孔性支持層の厚みが100μmを超えると、製造時の未反応物質の残存量が増加し、それにより透過水量が低下するとともに、耐薬品性が低下する。
なお、基材の厚みおよび複合半透膜の厚みは、デジタルシックネスゲージによって測定することができる。また、分離機能層の厚みは支持膜と比較して非常に薄いので、複合半透膜の厚みを支持膜の厚みとみなすことができる。従って、複合半透膜の厚みをデジタルシックネスゲージで測定し、複合半透膜の厚みから基材の厚みを引くことで、多孔性支持層の厚みを簡易的に算出することができる。デジタルシックネスゲージとしては、尾崎製作所株式会社のPEACOCKなどが使用できる。デジタルシックネスゲージを用いる場合は、20箇所について厚みを測定して平均値を算出する。
なお、基材の厚みもしくは複合半透膜の厚みをシックネスゲージによって測定することが困難な場合、走査型電子顕微鏡で測定してもよい。1つのサンプルについて任意の5箇所における断面観察の電子顕微鏡写真から厚みを測定し、平均値を算出することで厚みが求められる。
2.製造方法
次に、上記複合半透膜の製造方法について説明する。製造方法は、支持膜の形成工程および分離機能層の形成工程を含む。
(2−1)支持膜の形成工程
支持膜の形成工程は、基材に高分子溶液を塗布する工程および溶液を塗布した前記基材を凝固浴に浸漬させて高分子を凝固させる工程を含む。
基材に高分子溶液を塗布する工程において、高分子溶液は、多孔性支持層の成分である高分子を、その高分子の良溶媒に溶解して調製する。
高分子溶液塗布時の高分子溶液の温度は、高分子としてポリスルホンを用いる場合、10℃以上60℃以下であることが好ましい。高分子溶液の温度が、この範囲内であれば、高分子が析出することがなく、高分子溶液が基材の繊維間にまで充分含浸したのち固化される。その結果、アンカー効果により多孔性支持層が基材に強固に接合し、良好な支持膜を得ることができる。なお、高分子溶液の好ましい温度範囲は、用いる高分子の種類や、所望の溶液粘度などによって適宜調整することができる。
基材上に高分子溶液を塗布した後、凝固浴に浸漬させるまでの時間は、0.1秒以上5秒以下であることが好ましい。凝固浴に浸漬するまでの時間がこの範囲であれば、高分子を含む有機溶媒溶液が基材の繊維間にまで充分含浸したのち固化される。なお、凝固浴に浸漬するまでの時間の好ましい範囲は、用いる高分子溶液の種類や、所望の溶液粘度などによって適宜調整することができる。
凝固浴としては、通常水が使われるが、多孔性支持層の成分である高分子を溶解しないものであればよい。凝固浴の組成によって得られる支持膜の膜形態が変化し、それによって得られる複合半透膜も変化する。凝固浴の温度は、−20℃以上100℃以下が好ましく、さらに好ましくは10℃以上50℃以下である。凝固浴の温度がこの範囲以内であれば、熱運動による凝固浴面の振動が激しくならず、膜形成後の膜表面の平滑性が保たれる。また温度がこの範囲内であれば凝固速度が適当で、製膜性が良好である。
次に、このようにして得られた支持膜を、膜中に残存する溶媒を除去するために熱水洗浄する。このときの熱水の温度は40℃以上100℃以下が好ましく、さらに好ましくは60℃以上95℃以下である。この範囲内であれば、支持膜の収縮度が大きくならず、透過水量が良好である。また、温度がこの範囲内であれば洗浄効果が十分である。
(2−2)分離機能層の形成工程
次に、複合半透膜を構成する分離機能層の形成工程を説明する。分離機能層の形成工程は、
(a)多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を含有する有機溶媒溶液とを用い、支持膜の表面で界面重縮合を行うことにより、架橋ポリアミドを形成するステップと、
(b)上記(a)で得られたポリアミドに親水性高分子をアミド結合で導入するステップと、
を有する。また、分離機能層の形成工程は、さらに、
(c)得られた架橋ポリアミドを洗浄するステップ、
(d)架橋ポリアミド第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させるステップ、および
(e)ジアゾニウム塩またはその誘導体と反応する試薬と接触させることで、ポリアミドの官能基を変換したり、新たに官能基を導入したりするステップ
をさらに含んでもよい。上記ステップ(b)は、ステップ(a)の後であればよい。また、ステップ(c)〜(e)のいずれか1つ以上の工程が、ステップ(a)と(b)との間で行われてもよい。ステップ(e)として、後述のジアゾカップリング反応を行うとアミノ基が増えるので、その後でステップ(b)を行うことで、ステップ(e)の前にステップ(b)を行うよりも多くの親水性高分子を導入できると考えられる。
以下、各ステップを(a)、(c)、(d)、(e)および(b)の順に実行する場合の本工程について説明する。
ステップ(a)において、多官能酸ハロゲン化物を溶解する有機溶媒としては、水と非混和性のものであって、支持膜を破壊しないものであり、かつ、架橋ポリアミドの生成反応を阻害しないものであればいずれであってもよい。代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられる。オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカン、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセンなどの単体あるいはこれらの混合物が好ましく用いられる。
多官能アミン水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。
界面重縮合を支持膜上で行うために、まず、多官能アミン水溶液で支持膜表面を被覆する。ここで、多官能アミンを含有する水溶液の濃度は、0.1重量%以上20重量%以下が好ましく、より好ましくは0.5重量%以上15重量%以下である。
多官能アミン水溶液で支持膜表面を被覆する方法としては、支持膜の表面がこの水溶液によって均一にかつ連続的に被覆されればよく、公知の塗布手段、例えば、水溶液を支持膜表面にコーティングする方法、支持膜を水溶液に浸漬する方法等で行えばよい。支持膜と多官能アミン水溶液との接触時間は、5秒以上10分以下の範囲内であることが好ましく、10秒以上3分以下の範囲内であるとさらに好ましい。次いで、過剰に塗布された水溶液を液切り工程により除去することが好ましい。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。
その後、多官能アミン水溶液で被覆した支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、界面重縮合により架橋ポリアミドを形成させる。界面重縮合を実施する時間は、0.1秒以上3分以下が好ましく、0.1秒以上1分以下であるとより好ましい。
有機溶媒溶液における多官能酸ハロゲン化物の濃度は、特に限定されないが、低すぎると活性層であるポリアミドの形成が不十分となり欠点になる可能性があり、高すぎるとコスト面から不利になるため、0.01重量%以上1.0重量%以下程度が好ましい。
次に、反応後の有機溶媒溶液を液切り工程により除去することが好ましい。有機溶媒の除去は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1分以上5分以下であることが好ましく、1分以上3分以下であるとより好ましい。把持する時間が1分以上であることで目的の機能を有するポリアミドを得やすく、3分以下であることで有機溶媒の過乾燥による欠点の発生を抑制できるので、性能低下を抑制することができる。
次に、ステップ(c)として、上述の方法により得られたポリアミドを、25℃以上90℃以下の範囲内で1分以上60分以下熱水で洗浄処理することで、複合半透膜の溶質阻止性能や透過水量をより一層向上させることができる。ただし、熱水の温度が高すぎた場合、熱水洗浄処理後に急激に冷却すると耐薬品性が低下する。そのため、熱水洗浄は、25℃以上60℃以下の範囲内で行うことが好ましい。また、61℃以上90℃以下の高温で熱水洗浄処理する際には、熱水洗浄処理後は、緩やかに冷却することが好ましい。例えば、段階的に低い温度の熱水と接触させて室温まで冷却させる方法等がある。
また、上記の熱水洗浄する工程において、熱水中に酸またはアルコールが含まれていてもよい。酸またはアルコールを含むことで、ポリアミドにおける水素結合の形成をより制御しやすくなる。酸としては、塩酸、硫酸、リン酸などの無機酸や、クエン酸、シュウ酸などの有機酸などが挙げられる。酸の濃度は、pH2以下となるように調整することが好ましく、pH1以下であるとより好ましい。アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコールなどの1価アルコールや、エチレングリコール、グリセリンなどの多価アルコールが挙げられる。アルコールの濃度は、好ましくは10重量%以上100重量%以下であり、より好ましくは10重量%以上50重量%以下である。
次に、ステップ(d)として、洗浄したポリアミドを、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させ、官能基の変換を行うことが好ましい。第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬としては、亜硝酸およびその塩、ニトロシル化合物などの水溶液が挙げられる。亜硝酸やニトロシル化合物の水溶液は気体を発生して分解する性質を持つため、亜硝酸塩と酸性溶液との反応によって亜硝酸を逐次生成するのが好ましい。一般に、亜硝酸塩は水素イオンと反応して亜硝酸(HNO)を生成するが、水溶液のpHが7以下、好ましくは5以下、さらに好ましくは4以下で効率よく生成する。中でも、取り扱いの簡便性から水溶液中で塩酸または硫酸と反応させた亜硝酸ナトリウムの水溶液が特に好ましい。
前記第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬中の亜硝酸や亜硝酸塩の濃度は、好ましくは0.01重量%以上1重量%以下の範囲であり、より好ましくは0.05重量%以上0.5重量%以下の範囲である。0.01重量%以上の濃度であれば十分な効果が得られ、濃度が1重量%以下であれば溶液の取扱いが容易である。
亜硝酸水溶液の温度は15℃以上45℃以下であることが好ましい。15℃以上の温度であれば十分な反応時間が得られ、45℃以下であれば亜硝酸の分解が起こり難いため取り扱いが容易である。
亜硝酸水溶液との接触時間は、ジアゾニウム塩及びその誘導体のうち少なくとも一方が生成する時間であればよく、高濃度では短時間で処理が可能であるが、低濃度であると長時間必要である。そのため、上記濃度の溶液では10分間以内であることが好ましく、3分間以内であることがさらに好ましい。また、接触させる方法は特に限定されず、該試薬の溶液を塗布しても、該試薬の溶液に該複合半透膜を浸漬させてもよい。該試薬を溶かす溶媒は該試薬が溶解し、該複合半透膜が侵食されなければ、いかなる溶媒を用いてもかまわない。また、溶液には、第一級アミノ基と試薬との反応を妨害しないものであれば、界面活性剤や酸性化合物、アルカリ性化合物などが含まれていてもよい。
次にステップ(e)により、生成したジアゾニウム塩またはその誘導体の一部を異なる官能基へ変換する。ジアゾニウム塩またはその誘導体の一部は、例えば、水と反応することによりフェノール性水酸基へと変換される。また、塩化物イオン、臭化物イオン、シアン化物イオン、ヨウ化物イオン、フッ化ホウ素酸、次亜リン酸、亜硫酸水素ナトリウム、亜硫酸イオン、芳香族アミン、硫化水素、チオシアン酸等を含む溶液と接触させると、対応した官能基へ変換される。また、芳香族アミンと接触させることでジアゾカップリング反応が起こり膜面に芳香族基を導入することが可能となる。なお、これらの試薬は単一で用いても、複数混合させて用いてもよく、異なる試薬に複数回接触させてもよい。
ジアゾカップリング反応が生じる試薬としては、電子豊富な芳香環または複素芳香環を持つ化合物が挙げられる。電子豊富な芳香環または複素芳香環を持つ化合物としては、無置換の複素芳香環化合物、電子供与性置換基を有する芳香族化合物、および電子供与性置換基を有する複素芳香環化合物が挙げられる。電子供与性の置換基としては、アミノ基、エーテル基、チオエーテル基、アルキル基、アルケニル基、アルキニル基、アリール基などが挙げられる。上記化合物の具体的な例としては、例えば、アニリン、オルト位、メタ位、パラ位のいずれかの位置関係でベンゼン環に結合したメトキシアニリン、2個のアミノ基がオルト位、メタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸、3−アミノベンジルアミン、4−アミノベンジルアミン、スルファニル酸、3,3’−ジヒドロキシベンジジン、1−アミノナフタレン、2−アミノナフタレン、またはこれらの化合物のN−アルキル化物が挙げられる。
これらの試薬の中でも、特にアミノ基を有するフェニレンジアミンおよびトリアミノベンゼンが好ましく利用される。これはステップ(b)において膜面と親水性高分子との結合に必要なアミノ基をジアゾカップリング反応によって膜面に導入する効果が得られるためである。これらのジアゾニウム塩またはその誘導体と反応させる試薬を接触させる濃度と時間は、目的の効果を得るために適宜調節することができる。接触させる温度は10℃以上90℃以下が好ましい。10℃未満の時にはジアゾカップリング反応の進行が遅く、水との副反応によってフェノール性水酸基が生じるため好ましくない。また90℃より高温ではポリアミド分離機能層の収縮が生じ、透過水量が低下するため好ましくない。
最後に、ステップ(b)として、親水性高分子をポリアミドにアミド結合で導入する。この工程として、親水性高分子及び縮合剤を含む水溶液を、ポリアミド表面に接触させる方法が好適に用いられる。ポリアミド表面の官能基と、親水性高分子に含まれる活性化された官能基とが縮合反応によってアミド結合を形成するため、親水性高分子が導入される。分離機能層に親水性高分子及び縮合剤を含む水溶液を接触させる方法は特に限定されず、例えば、複合半透膜全体を親水性高分子と縮合剤とを含む水溶液中に浸漬してもよいし、親水性高分子及び縮合剤を含む水溶液を複合半透膜表面にスプレーしてもよく、ポリアミドと親水性高分子及び縮合剤が接触するのであれば、その方法は限定されない。
ポリアミド表面に接触させる親水性高分子は単独であっても数種混合して用いてもよい。親水性高分子は、重量濃度で10ppm以上1%以下の水溶液として使用するのが好ましい。親水性高分子の濃度が10ppm以上であれば、ポリアミドに存在する官能基と親水性高分子を十分に反応させることができる。一方で、1%を超えると親水性高分子層が厚くなるため、造水量が低下する。
また、親水性高分子の水溶液には必要に応じて他の化合物を混合することもできる。例えば、ポリアミド表面と親水性高分子の反応を促進するため、炭酸ナトリウム、水酸化ナトリウム、リン酸ナトリウムなどのアルカリ性金属化合物を添加してもよい。また、ポリアミド中に残存する、水と非混和性の有機溶媒や、多官能酸ハロゲン化物や多官能アミン化合物などのモノマー、及びこれらモノマーの反応で生じたオリゴマーなどを除去するために、ドデシル硫酸ナトリウム、ベンゼンスルホン酸ナトリウムなどの界面活性剤を添加することも好ましい。
本発明において縮合剤とは、水中でカルボキシ基を活性化させ、ポリアミドのアミノ基との縮合反応を進行する化合物を指す。このような化合物として、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、1,3−ビス(2,2−ジメチル−1,3−ジオキソラン−4−イルメチル)カルボジイミド、及び4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(以下、DMT−MMという)が挙げられる。これらの化合物の中でも、縮合反応時の安定性、及び縮合反応後の副生成物の毒性の低さなどから、DMT−MMが特に好ましく用いられる。
親水性高分子と縮合剤とを含む水溶液中の縮合剤の濃度は、活性化させるカルボキシ基濃度より高ければ特に限定されず、反応性基との縮合に十分な効果を得ることができる。
親水性高分子と縮合剤とを含む水溶液のpHは2以上6以下であることが好ましい。pHが6を超える場合、カルボキシ基の解離で生じた負電荷によってポリアミドと親水性高分子の接触頻度が低下し、縮合反応の効率が低下するため好ましくない。一方で、pH2未満の水溶液を用いると、酸による劣化が生じ、複合半透膜の塩除去性能が低下するため好ましくない。
本発明の複合半透膜は、ポリアミド表面を親水性高分子で被覆する前後で透過水量が低下しにくいことが好ましい。すなわち、親水性高分子によりポリアミド表面を被覆する前の複合半透膜を用いて、25℃、pH6.5、NaCl濃度が2,000mg/Lである水溶液を、1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、ポリアミド表面に親水性高分子を被覆した後に同様の条件で測定した際の透過水量をF2としたとき、F2/F1の値が0.80以上であることが好ましく、0.90以上であるとより好ましい。このような複合半透膜を用いることで、透過水量を大きく低下させることなく、分離機能層表面への汚れ物質の付着を抑制できる。
3.複合半透膜の利用
本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
本発明の複合半透膜を使用することにより、たとえば、操作圧力が0.1MPa以上3MPa以下、より好ましくは0.1MPa以上1.55MPa以下といった低圧領域で、高い透過水量を維持しつつ、複合半透膜や流体分離素子を使用することができる。操作圧力を低くすることができるため、用いるポンプなどの容量を小さくすることができ、消費電力を抑え、造水のコストダウンを図ることができる。操作圧力が0.1MPaを下回ると、透過水量が減少する傾向があり、3MPaを超えるとポンプなどの消費電力が増加するとともに、ファウリングによる膜の目詰まりを起こしやすくなる。
本発明の複合半透膜は、pH6.5、濃度が2,000mg/Lの塩化ナトリウム水溶液を用い、25℃において、操作圧力1.55MPaで24時間ろ過したときの透過水量が0.50m/m/日以上3.0m/m/日以下であることが好ましい。このような複合半透膜は、例えば、前述した製造方法を適宜選択することで、製造することができる。透過水量が0.50m/m/日以上3.0m/m/日以下であることで、ファウリングの発生を適度に抑え、安定的に造水することができる。透過水量が0.80m/m/日以上3.0m/m/日以下であると、実用上さらに好ましい。
本発明の複合半透膜で処理する下水中には、界面活性剤などの難生分解性有機物が、生物処理で完全には分解されず含まれていることがある。従来の複合半透膜で処理を行うと界面活性剤が膜表面に吸着し、透過水量が低下してしまう。しかし、本発明の複合半透膜は、高い透過水量と膜汚染物質に対する高い脱離性を持つため、安定した性能を発現することが可能である。
ここで、本発明の複合半透膜は、膜汚染物質に対する付着抑制能が高い。すなわち、25℃、pH6.5、NaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/Lの濃度となるように前記水溶液に加えて1時間ろ過したときの透過水量をF4としたとき、F4/F3の値が0.80以上であることが好ましい。さらに好ましくは0.90以上である。このような複合半透膜を用いることにより、膜の表面にファウリングが生じにくくなり、高い透過水量を長期間安定して維持することができる。
以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(NaCl除去率)
複合半透膜に、温度25℃、pH7、塩化ナトリウム濃度2,000ppmに調整した評価水を操作圧力1.55MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちNaCl濃度を得た。こうして得られたNaCl濃度および下記式に基づいて、NaCl除去率を算出した。
NaCl除去率(%)=100×{1−(透過水中のNaCl濃度/供給水中のNaCl濃度)}
(透過水量)
前項の試験において、供給水(NaCl水溶液)の膜透過水量を測定し、膜面1平方メートル当たり、1日の透水量(立方メートル)に換算した値を膜透過流束(m/m/日)とした。
なお、製膜時の膜性能の測定は以下のように行なった。初めに、ポリアミド表面に親水性高分子を導入する前の複合半透膜を用いて膜性能を測定した。25℃、pH6.5、NaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量を測定し、F1とした。次にポリアミド表面に親水性高分子を導入した後の複合半透膜を用いて同様の測定を行い、透過水量をF2とし、F2/F1の値を算出した。
ファウリング後の透過水量評価においては、25℃において、pH6.5、NaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/Lの濃度となるように水溶液に加えて1時間ろ過したときの透過水量をF4とし、F4/F3の値を算出した。
(自乗平均面粗さ)
複合半透膜を超純水で洗浄し、風乾させたものを、1cm角に切り出し、スライドグラスに両面テープで貼り付け、分離機能層の自乗平均面粗さ(RMS)を、原子間力顕微鏡(Nanoscope IIIa:デジタル・インスツルメンツ社)を用い、タッピングモードで測定した。カンチレバーはVeeco Instruments NCHV−1を用い、常温常圧下で測定した。スキャンスピードは1Hz、サンプリング点数は512ピクセル四方であった。解析ソフトはGwyddionを用いた。測定結果について、X軸およびY軸ともに1次元のベースライン補正(傾き補正)を行った。
(基材の繊維配向度)
不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で100〜1000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維について、不織布の長手方向(縦方向)を0°とし、不織布の幅方向(横方向)を90°としたときの角度を測定し、それらの平均値から小数点以下第一位を四捨五入して繊維配向度を求めた。
(通気度)
通気度は、JIS L1096(2010)に基づき、フラジール形試験機によって測定した。基材を200mm×200mmの大きさに切り出し、フラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファン及び空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から通気度を求めた。フラジール形試験機は、カトーテック株式会社製KES−F8−AP1を使用した。
13C固体NMR法によるポリアミドの官能基分析)
ポリアミドの13C固体NMR法測定を以下に示す。まず本発明に示した製造方法を用いて支持膜上にポリアミドを有する複合半透膜を形成した後、複合半透膜から基材を物理的に剥離させ、多孔性支持層及びポリアミドを回収した。25℃で24時間静置することで乾燥させた後、ジクロロメタンの入ったビーカー内に少量ずつ加えて撹拌し、多孔性支持層を構成するポリマーを溶解させた。ビーカー内の不溶物を濾紙で回収し、ジクロロメタンで数回洗浄した。回収したポリアミドは真空乾燥機で乾燥させ、残存するジクロロメタンを除去した。得られたポリアミドは凍結粉砕によって粉末状の試料とし、固体NMR法測定に用いられる試料管内に封入して、CP/MAS法、及びDD/MAS法による13C固体NMR測定を行った。13C固体NMR測定には、例えば、Chemagnetics社製CMX−300を用いることができる。得られたスペクトルから、各官能基が結合している炭素原子由来のピークごとにピーク分割を行い、分割されたピークの面積から官能基量を定量した。
(複合半透膜の作製)
(比較例1)
長繊維からなるポリエステル不織布(通気度2.0cc/cm/sec)上にポリスルホン(PSf)の15.0重量%DMF溶液を25℃の条件下でキャストし、ただちに純水中に浸漬して5分間放置することによって、多孔性支持層の厚みが40μmである支持膜を作製した。
次に、この支持膜を3.5重量%のm−PDA水溶液に浸漬した後、余分な水溶液を除去し、さらに0.14重量%のTMCとなるように溶解したn−デカン溶液を多孔性支持層の表面が完全に濡れるように塗布した。次に膜から余分な溶液を除去するために、膜を垂直にして液切りを行って、送風機を使い25℃の空気を吹き付けて乾燥させた後、40℃の純水で洗浄した。このようにして得られた複合半透膜の自乗平均面粗さ、製膜時膜性能、及びファウリング後膜性能を測定したところ、表1に示す値であった。
(実施例1)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量2,000、東亞合成社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例2)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量5,000、和光純薬社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例3)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量25,000、和光純薬社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例4)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量500,000、東亞合成社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例5)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量1,250,000、アルドリッチ社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例6)
比較例1で得られた複合半透膜をポリアクリル酸−ポリビニルピロリドン共重合体(重量平均分子量96,000、ポリアクリル酸含有率25%、アルドリッチ社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例7)
比較例1で得られた複合半透膜をポリアクリル酸−マレイン酸共重合体(重量平均分子量10,000、商品名:A−6330、東亞合成社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例8)
比較例1で得られた複合半透膜をポリアクリル酸−ビニルスルホン酸共重合体(重量平均分子量2,000、商品名:A−6016A、東亞合成社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例9)
比較例1で得られた複合半透膜をポリアクリル酸−ビニルスルホン酸共重合体(重量平均分子量10,000、商品名:A−6012、東亞合成社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(比較例2)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量5,000、和光純薬社製)100ppm水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(比較例3)
比較例1で得られた複合半透膜をコハク酸(和光純薬社製)100ppmとDMT−MM0.1%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(比較例4)
比較例1で得られた複合半透膜をポリビニルアルコール(けん化度88%、重量平均分子量2,000、ナカライテスク社製)0.5重量%と、グルタルアルデヒド0.2重量%とを含む水溶液に、酸触媒として塩酸を0.1モル/リットルとなるように添加した水溶液に2分間浸漬した。垂直で1分間保持し余分な液を切った後に熱風乾燥機で90℃、4分間乾燥して、分離機能層がポリビニルアルコールでコーティングされた複合半透膜を得た。複合半透膜は、評価前に10%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。このようにして得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
Figure 2015046582
(比較例5)
比較例1で得られた複合半透膜を、pH3、35℃に調整した0.2重量%の亜硝酸ナトリウム水溶液に1分間浸漬した。なお、亜硝酸ナトリウムのpHの調整は硫酸で行った。次に0.1重量%の亜硫酸ナトリウム水溶液に35℃で2分間浸漬することで、比較例5の複合半透膜を得た。得られた複合半透膜のポリアミド中の官能基量、自乗平均面粗さ、製膜時膜性能、及びファウリング後膜性能を測定したところ、表2に示す値であった。
(比較例6)
比較例1で得られた複合半透膜を、pH3、35℃に調整した亜硝酸ナトリウム0.2重量%水溶液に1分間浸漬した。なお、亜硝酸ナトリウムのpHの調整は硫酸で行った。次に、0.15重量%のm−PDA水溶液に35℃で1分間浸漬させ、ジアゾカップリング反応を行った。最後に、0.1重量%の亜硫酸ナトリウム水溶液に35℃で2分間浸漬することで、比較例6の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(比較例7)
比較例6で得られた複合半透膜を、0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、比較例7の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(比較例8)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸(重量平均分子量5,000、和光純薬工業株式会社製)を含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、比較例8の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(比較例9)
比較例6で得られた複合半透膜を、0.01重量%のコハク酸(和光純薬工業株式会社製)を含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、比較例9の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例10)
比較例5で得られた複合半透膜を、0.01重量%のポリアクリル酸(重量平均分子量5,000、東亞合成株式会社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例10の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例11)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸(重量平均分子量5,000)及び0.1重量%のDMT−MMを含むpH4の水溶液に20℃で24時間浸漬した後、純水で洗浄することで、実施例11の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例12)
ジアゾカップリング反応を0.05重量%のm−PDA水溶液に35℃で1分間浸漬させて行った以外は実施例11と同様にして、実施例12の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例13)
ジアゾカップリング反応を0.3重量%のm−PDA水溶液に35℃で1分間浸漬させて行った以外は実施例11と同様にして、実施例13の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例14)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸(重量平均分子量2,000、東亞合成株式会社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例14の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例15)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸(重量平均分子量500,000、東亞合成株式会社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例15の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例16)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸−ポリビニルピロリドン共重合体(重量平均分子量96,000、ポリアクリル酸含有率25%、アルドリッチ社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例16の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例17)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸−マレイン酸共重合体(重量平均分子量10,000、商品名:A−6330、東亞合成株式会社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例17の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例18)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸−ビニルスルホン酸共重合体(重量平均分子量2,000、商品名:A−6016A、東亞合成株式会社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例18の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
(実施例19)
比較例6で得られた複合半透膜を、0.01重量%のポリアクリル酸−ビニルスルホン酸共重合体(重量平均分子量10,000、商品名:A−6012、東亞合成株式会社製)及び0.1重量%のDMT−MMを含むpH4の水溶液に25℃で24時間浸漬した後、純水で洗浄することで、実施例19の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表2に示す値であった。
Figure 2015046582
以上のように、本発明の複合半透膜は、高い透過水量と膜汚染物質に対する高い付着抑制能を持ち、長期間安定して高い性能を維持することができる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年9月30日出願の日本特許出願(特願2013−203122)および2013年11月29日出願の日本特許出願(特願2013−247197)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の複合半透膜を用いれば、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。本発明の複合半透膜は、特に、かん水または海水の脱塩に好適に用いることができる。

Claims (14)

  1. 基材と、前記基材上に形成される多孔性支持層と、前記多孔性支持層上に形成される分離機能層とを備える複合半透膜であって、前記分離機能層がポリアミドと、酸性基を有する親水性高分子とを含み、かつ前記ポリアミドと前記親水性高分子がアミド結合によって結合している複合半透膜。
  2. 前記分離機能層の表面の自乗平均面粗さが60nm以上である請求項1記載の複合半透膜。
  3. 前記酸性基が、カルボキシ基、スルホン酸基、ホスホン酸基及びリン酸基からなる群から選択される少なくとも1つである請求項1または請求項2に記載の複合半透膜。
  4. 前記親水性高分子が、アクリル酸、メタクリル酸及びマレイン酸からなる群から選択されるいずれか1成分を含む化合物の重合体である請求項1〜請求項3のいずれか1項に記載の複合半透膜。
  5. 前記親水性高分子中に占める前記酸性基を含む構造の共重合比が5mol%以上100mol%以下である請求項1〜請求項4のいずれか1項に記載の複合半透膜。
  6. 前記親水性高分子の重量平均分子量が5,000以上である請求項1〜請求項5のいずれか1項に記載の複合半透膜。
  7. 前記親水性高分子の重量平均分子量が100,000以上である請求項1〜請求項6のいずれか1項に記載の複合半透膜。
  8. 前記親水性高分子が2成分以上の共重合体である請求項1〜請求項7のいずれか1項に記載の複合半透膜。
  9. 前記2成分以上の共重合体が、ポリビニルアルコール、ポリ酢酸ビニル及びポリビニルピロリドンからなる群から選択される少なくとも1成分を含む請求項8記載の複合半透膜。
  10. 前記ポリアミドがアゾ基を有し、前記ポリアミドに含まれる官能基の内、(アゾ基のモル等量)/(アミド基のモル等量)の比が0.1以上であり、かつ(アミノ基のモル等量)/(アミド基のモル等量)の比が0.2以上である請求項1〜請求項9のいずれか1項に記載の複合半透膜。
  11. 25℃において、pH6.5且つNaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で24時間透過させた後の透過水量が、0.80m/m/日以上である請求項1〜請求項10のいずれか1項に記載の複合半透膜。
  12. 前記ポリアミドの表面が前記親水性高分子により被覆される前の複合半透膜を用いて、25℃において、pH6.5且つNaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、前記ポリアミドの表面が前記親水性高分子により被覆された後の透過水量をF2としたとき、F2/F1の値が0.80以上である請求項1〜請求項11のいずれか1項に記載の複合半透膜。
  13. 25℃において、pH6.5且つNaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF3とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/Lの濃度となるように前記水溶液に加えて1時間ろ過したときの透過水量をF4としたとき、F4/F3の値が0.80以上である請求項1〜請求項12のいずれか1項に記載の複合半透膜。
  14. 基材と、前記基材上に形成される多孔性支持層と、前記多孔性支持層上に形成される分離機能層とを備える複合半透膜の製造方法であって、前記分離機能層が、前記多孔性支持層上で多官能アミンを含む水溶液と多官能酸ハロゲン化物を含む有機溶媒とを接触させることでポリアミドを形成した後に、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生じる試薬を含む溶液に接触させる工程Aと、ジアゾニウム塩またはその誘導体と反応してジアゾカップリング反応を生じる試薬を含む溶液に接触させる工程B、及びカルボキシ基をカルボン酸誘導体に変換させる試薬と酸性基または水酸基の少なくとも一方を有する親水性高分子を含む溶液に接触させる工程Cを有する複合半透膜の製造方法。
JP2014552417A 2013-09-30 2014-09-30 複合半透膜およびその製造方法 Active JP6492663B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013203122 2013-09-30
JP2013203122 2013-09-30
JP2013247197 2013-11-29
JP2013247197 2013-11-29
PCT/JP2014/076141 WO2015046582A1 (ja) 2013-09-30 2014-09-30 複合半透膜およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2015046582A1 true JPWO2015046582A1 (ja) 2017-03-09
JP6492663B2 JP6492663B2 (ja) 2019-04-03

Family

ID=52743703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014552417A Active JP6492663B2 (ja) 2013-09-30 2014-09-30 複合半透膜およびその製造方法

Country Status (6)

Country Link
US (1) US20160243503A1 (ja)
EP (1) EP3053643A4 (ja)
JP (1) JP6492663B2 (ja)
KR (1) KR102236713B1 (ja)
CN (1) CN105611994B (ja)
WO (1) WO2015046582A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437732A (zh) * 2020-04-07 2020-07-24 蓝星(杭州)膜工业有限公司 一种高选择性高通量纳滤膜的制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9943810B2 (en) * 2014-05-14 2018-04-17 Dow Global Technologies Llc Composite polyamide membrane post-treated with nitrous acid
JP2017012987A (ja) * 2015-06-30 2017-01-19 日東電工株式会社 複合半透膜及びその製造方法
EP3329986A4 (en) * 2015-07-31 2019-04-03 Toray Industries, Inc. Separating membrane, separating membrane element, water purifier and method for producing the separation membrane
KR101975155B1 (ko) 2015-10-27 2019-05-03 도레이 카부시키가이샤 복합 반투막 및 그의 제조 방법
CN109414660A (zh) * 2016-06-29 2019-03-01 东丽株式会社 复合半透膜及复合半透膜的制造方法
CN107970784B (zh) * 2016-10-21 2020-02-18 中国石油化工股份有限公司 一种反渗透膜及其制备方法和应用
KR102337641B1 (ko) * 2016-12-26 2021-12-10 도레이 카부시키가이샤 복합 반투막 및 그의 제조 방법
KR102220117B1 (ko) * 2017-03-24 2021-02-24 도레이첨단소재 주식회사 유량이 향상된 내산성 나노분리막 및 이의 제조방법
JP7010216B2 (ja) * 2017-04-28 2022-01-26 東レ株式会社 複合半透膜及びその製造方法
KR102031126B1 (ko) * 2018-02-14 2019-10-11 한남대학교 산학협력단 다기능성 고분자 섬유
WO2019168138A1 (ja) * 2018-02-28 2019-09-06 東レ株式会社 複合半透膜および複合半透膜エレメント
US11045773B2 (en) * 2018-08-31 2021-06-29 Pall Corporation Salt tolerant porous medium
CN109550413B (zh) * 2018-12-17 2020-09-25 中国科学院长春应用化学研究所 一种抗污染膜材料及其制备方法
CN110124355A (zh) * 2019-06-17 2019-08-16 天津工业大学 一种海泡石沉积的油水分离复合膜
CN110404417A (zh) * 2019-07-19 2019-11-05 中国石油大学(华东) 聚酰胺膜的改性方法及改性聚酰胺膜
CN114286938A (zh) * 2019-08-28 2022-04-05 株式会社堀场先进技术 过乙酸浓度计
CN115491225B (zh) * 2021-06-17 2024-03-26 中国石油化工股份有限公司 重质润滑油基础油滤液中脱蜡溶剂的回收方法
CN113634133B (zh) * 2021-08-05 2023-11-07 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179111A (ja) * 1983-03-31 1984-10-11 Teijin Ltd 耐久性複合膜の製造方法
JPS6451103A (en) * 1987-07-20 1989-02-27 Dow Chemical Co Coating for increasing salt exhausion rate of reverse osmosis membrane
JPH0952031A (ja) * 1995-08-18 1997-02-25 Toray Ind Inc 半透膜およびその製造方法
JP2001327840A (ja) * 2000-05-25 2001-11-27 Toray Ind Inc 複合半透膜およびその製造方法
JP2002224546A (ja) * 2000-11-29 2002-08-13 Toray Ind Inc 下水処理用複合半透膜およびその製造方法
JP2003200026A (ja) * 2002-01-08 2003-07-15 Toray Ind Inc 複合半透膜およびその製造方法
JP2005169332A (ja) * 2003-12-15 2005-06-30 Toray Ind Inc 複合半透膜、液体分離装置及び水の製造方法
JP2009536874A (ja) * 2006-05-12 2009-10-22 ダウ グローバル テクノロジーズ インコーポレイティド 改質膜
JP2010240651A (ja) * 2007-02-13 2010-10-28 Saehan Industries Inc 耐汚れ性に優れた選択的分離膜
WO2011078047A1 (ja) * 2009-12-24 2011-06-30 東レ株式会社 複合半透膜およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1182959A (en) * 1981-01-15 1985-02-26 Wolfgang J. Wrasidlo Reverse osmosis membrane and process for making the same
US4888115A (en) * 1983-12-29 1989-12-19 Cuno, Incorporated Cross-flow filtration
JPS6354905A (ja) 1986-08-25 1988-03-09 Toray Ind Inc 半透性複合膜の製造方法
US6177011B1 (en) 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
SG93879A1 (en) * 1999-08-25 2003-01-21 Mykrolis Corp Filtration and purification system for aqueous acids
AU2001238359A1 (en) * 2000-02-18 2001-08-27 Pall Corporation Membranes
JP2011125856A (ja) 2003-11-26 2011-06-30 Toray Ind Inc 複合半透膜の製造方法およびポリアミド複合半透膜
US8544658B2 (en) 2008-08-05 2013-10-01 Polymers Crc Limited Functionalized thin film polyamide membranes
CN102665883A (zh) * 2009-12-22 2012-09-12 东丽株式会社 半透膜及其制造方法
US9022227B2 (en) 2011-03-21 2015-05-05 International Business Machines Corporation Composite membranes and methods of preparation thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179111A (ja) * 1983-03-31 1984-10-11 Teijin Ltd 耐久性複合膜の製造方法
JPS6451103A (en) * 1987-07-20 1989-02-27 Dow Chemical Co Coating for increasing salt exhausion rate of reverse osmosis membrane
JPH0952031A (ja) * 1995-08-18 1997-02-25 Toray Ind Inc 半透膜およびその製造方法
JP2001327840A (ja) * 2000-05-25 2001-11-27 Toray Ind Inc 複合半透膜およびその製造方法
JP2002224546A (ja) * 2000-11-29 2002-08-13 Toray Ind Inc 下水処理用複合半透膜およびその製造方法
JP2003200026A (ja) * 2002-01-08 2003-07-15 Toray Ind Inc 複合半透膜およびその製造方法
JP2005169332A (ja) * 2003-12-15 2005-06-30 Toray Ind Inc 複合半透膜、液体分離装置及び水の製造方法
JP2009536874A (ja) * 2006-05-12 2009-10-22 ダウ グローバル テクノロジーズ インコーポレイティド 改質膜
JP2010240651A (ja) * 2007-02-13 2010-10-28 Saehan Industries Inc 耐汚れ性に優れた選択的分離膜
WO2011078047A1 (ja) * 2009-12-24 2011-06-30 東レ株式会社 複合半透膜およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437732A (zh) * 2020-04-07 2020-07-24 蓝星(杭州)膜工业有限公司 一种高选择性高通量纳滤膜的制备方法

Also Published As

Publication number Publication date
JP6492663B2 (ja) 2019-04-03
CN105611994A (zh) 2016-05-25
EP3053643A1 (en) 2016-08-10
KR102236713B1 (ko) 2021-04-06
KR20160063337A (ko) 2016-06-03
EP3053643A4 (en) 2017-06-21
WO2015046582A1 (ja) 2015-04-02
CN105611994B (zh) 2019-06-21
US20160243503A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6492663B2 (ja) 複合半透膜およびその製造方法
KR102315570B1 (ko) 복합 반투막 및 복합 반투막의 제조 방법
JP6485540B2 (ja) 複合半透膜およびその製造方法
JP6032011B2 (ja) 複合半透膜
JP6481366B2 (ja) 複合半透膜
CN110536743B (zh) 复合半透膜和其制造方法
JP7167442B2 (ja) 複合半透膜及びその製造方法
JP2018187533A (ja) 複合半透膜
WO2016052669A1 (ja) 複合半透膜
JP2012143750A (ja) 複合半透膜の製造方法
JP2017148771A (ja) 複合半透膜
WO2024048695A1 (ja) 複合半透膜及び複合半透膜の製造方法
JP2015116539A (ja) 複合半透膜およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6492663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151