JPWO2012029858A1 - 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置 - Google Patents

塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置 Download PDF

Info

Publication number
JPWO2012029858A1
JPWO2012029858A1 JP2012531919A JP2012531919A JPWO2012029858A1 JP WO2012029858 A1 JPWO2012029858 A1 JP WO2012029858A1 JP 2012531919 A JP2012531919 A JP 2012531919A JP 2012531919 A JP2012531919 A JP 2012531919A JP WO2012029858 A1 JPWO2012029858 A1 JP WO2012029858A1
Authority
JP
Japan
Prior art keywords
storage device
power storage
coating film
coating liquid
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012531919A
Other languages
English (en)
Other versions
JP5507696B2 (ja
Inventor
太一 上村
太一 上村
小林 誠幸
誠幸 小林
山南 隆徳
隆徳 山南
土田 真也
真也 土田
誠司 土居
誠司 土居
洋介 一宮
洋介 一宮
義彦 飯島
義彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Kyoritsu Chemical and Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Kyoritsu Chemical and Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2012531919A priority Critical patent/JP5507696B2/ja
Publication of JPWO2012029858A1 publication Critical patent/JPWO2012029858A1/ja
Application granted granted Critical
Publication of JP5507696B2 publication Critical patent/JP5507696B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

蓄電装置用電極板を構成する集電体の表面上に導電性塗工膜を形成するために用いられる塗工液である。(A)ポリマー酸と、(B)下記一般式(1)(R1は、H、Na、カルボン酸ビニルモノマーに由来する有機基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、R2〜R4は、独立して、H、Na、C1〜C6のアルキル基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、mとnの比率(m/n)は、0.0001〜1である)で表されるカルボン酸ビニル共重合体と、(C)導電性材料と、(D)極性溶媒とを含有する。

Description

本発明は、集電体と電極活物質層(以下、「電極層」とも記す)との間に配置する導電性塗工膜を形成するために用いられる塗工液、並びにこれを用いて得られる導電性塗工膜、電極板用部材、蓄電装置用電極板、及び蓄電装置に関する。さらに詳しくは、耐電解液性及び耐酸化性に優れるとともに、集電体と電極層との密着性を高めうる導電性塗工膜を集電体と電極層との間に形成可能な塗工液、並びにこれを用いて得られる導電性塗工膜、電極板用部材、蓄電装置用電極板、及び蓄電装置に関する。
携帯電話やノートパソコン等のモバイル機器の電源として、充放電可能なさまざまな電池(蓄電装置)が実用化されている。なかでも、軽量で電圧が高く容量も大きいリチウムイオン二次電池や、充放電レート特性の良い電気二重層キャパシタ等がよく用いられている。しかし、車載用等のパワー用途向けの電池においては、発車及び停車時に短時間で大電流を出し入れする必要があるため、従来の電池は、内部抵抗が高く、ハイレートにおける充放電サイクル特性が実用上十分ではない。また、従来の電池は、航続距離の観点から、充放電容量も十分ではなく、さらに安全性の観点から見て、電極活物質層と金属集電体間の密着性も十分ではない。
上記のように、電池として十分な特性を発揮できない一つの理由として、金属集電体と活物質層間の抵抗値が高く、また、金属集電体と活物質層間の密着力が不十分だったことを挙げることができる。この問題の改善策として、金属集電体に導電性のコート層(塗工層)を設け、この塗工膜の表面に活物質層を形成することにより、金属集電体と活物質層間の界面の抵抗を低減させ、密着力を向上させる方法が考案されている(特許文献1及び2)。
なかでも、下記の式(A)に示されるように、金属集電体表面の水酸基と化学的に結合する、シラノール基で変性したポリビニルアルコールを結着剤として用いる方法が考案されている(特許文献3及び4)。しかし、この方法では、車載用等のパワー用途向けの電池に対して、実用上十分なハイレートにおける充放電サイクル特性を達成できず、特に長期間充放電サイクル試験や高温放置試験を行った際の電池特性の劣化防止に対して不十分であった。
Figure 2012029858
(式(A)中、R10は、H又は−COCH3を示し、R11及びR12は、H又はエチル基を示す)
さらに、事前にシランカップリング剤等を用いて集電体表面を処理してから導電性組成物をコーティングする方法も考案されている(特許文献5)。しかし、この手法を用いると、薄いながらも絶縁層を介して活物質層が形成されるため、電池の内部抵抗値が上がり充放電速度が遅くなるという問題があった。
これらの問題に対し、ポリビニルアルコールと、シランカップリング剤と、集電体金属表面及びポリビニルアルコールの水酸基やシランカップリング剤のシラノール基とエステル結合を形成するポリカルボン酸と、導電助剤とを配合した導電性組成物を用いる方法が提案されている(特許文献6)。このポリカルボン酸を用いる方法は、従来のポリビニルアルコールのみを用いる方法やシラノール基変性ポリビニルアルコールを用いる方法よりも、集電体への活物質層の密着力を更に向上でき、ハイレートにおける充放電特性をさらに向上できる。しかし、長期間多サイクル充放電した後や、充電した状態で高温放置されたときに、電池特性の劣化を防ぐ点では十分ではなかった。
また、リチウムイオン二次電池の正極板は、極めて強い酸化条件下におかれる。一方、負極板は、極めて強い還元条件下におかれる。このため、集電体表面に形成される塗工膜についても、これらの過酷な条件に起因する劣化や破壊が問題になり、高い耐酸化性を具備した塗工膜の開発が望まれている。
さらに、従来の電池やキャパシタにおいては、上記のように電極層と集電体(基板)との密着性不良、電極層と基板との界面の高抵抗という問題があった。そして、種々の塗工液が提案されてはいるが、これらの塗工液により形成された導電性塗工膜によって密着性不良については改善される場合があるものの、耐電解液性や耐酸化性については不十分である。このため、電極層と集電体との間の抵抗がより一層高くなり、問題の解決には至っていないのが実情である。
特開昭63−121265号公報 特開平7−201362号公報 特許第3789427号公報 国際公開第2009/147989号 特開2008−153053号公報 特開2010−146726号公報 特公平1−17485号公報
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、耐電解液性及び耐酸化性に優れるとともに、アルミニウム箔や銅箔等の集電体との密着性が高く、かつ、表面抵抗率の低い導電性電極膜を形成可能な塗工液を提供することにある。
また、本発明の課題とするところは、耐電解液性及び耐酸化性に優れるとともに、アルミニウム箔や銅箔等の集電体との密着性が高く、かつ、表面抵抗率の低い導電性塗工膜、並びにこの導電性塗工膜を備えた電極板用部材、蓄電装置用電極板、及びこの蓄電装置用電極板の製造方法を提供することにある。
さらに、本発明の課題とするところは、充放電効率(サイクル特性)に優れる、放電容量が大きい、或いは内部抵抗が低い等の特性を有する蓄電装置を提供することにある。
電池特性の劣化が起きるのは、従来の結着剤が、ポリビニルアルコールの水酸基の水素をSiで置換した構造を有しているためであることが分かった。すなわち、下記の式(B)に記載したように、ポリビニルアルコールの水酸基の水素をSiで置換した構造(シロキサン結合)が電気化学的に容易に切断されるので、充放電時にコート層が容易に剥離し、このことが電池特性の劣化の原因となることを見出した。
Figure 2012029858
本発明は、カルボン酸ビニル共重合体の骨格炭素にSiが直接結合したカルボン酸ビニル共重合体、ポリマー酸、導電性材料、及び極性溶媒を配合した塗工液を用いることにより、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。
すなわち、本発明によれば、以下に示す塗工液が提供される。
[1]蓄電装置用電極板を構成する集電体の表面上に導電性塗工膜を形成するために用いられる塗工液であって、(A)ポリマー酸と、(B)下記一般式(1)で表されるカルボン酸ビニル共重合体と、(C)導電性材料と、(D)極性溶媒と、を含有する塗工液。
Figure 2012029858
(前記一般式(1)中、R1は、H、Na、カルボン酸ビニルモノマーに由来する有機基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、R2〜R4は、独立して、H、Na、C1〜C6のアルキル基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、mとnの比率(m/n)は、0.0001〜1である)
[2]前記カチオンが、リチウム又はテトラアルキルアンモニウムである前記[1]に記載の塗工液。
[3]チタン系カップリング剤及び/又はシランカップリング剤をさらに含有する前記[1]又は[2]に記載の塗工液。
[4]前記ポリマー酸が、ポリアクリル酸、ポリイタコン酸、及びポリマレイン酸からなる群より選択される少なくとも一種である前記[1]〜[3]のいずれかに記載の塗工液。
[5]前記導電性材料が、アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、単層又は多層カーボンナノファイバー、及び単層又は多層カーボンナノチューブからなる群より選択される少なくとも一種である前記[1]〜[4]のいずれかに記載の塗工液。
[6]前記導電性材料1質量部に対する、前記ポリマー酸の含有量が0.1〜3質量部であり、前記導電性材料1質量部に対する、前記カルボン酸ビニル共重合体の含有量が0.1〜3質量部であり、固形分濃度が0.02〜40質量%である前記[1]〜[5]のいずれかに記載の塗工液。
[7]前記ポリマー酸1質量部に対する、前記カルボン酸ビニル共重合体の含有量が0.1〜1質量部である前記[1]〜[6]のいずれかに記載の塗工液。
[8]架橋剤をさらに含有する前記[1]〜[7]のいずれかに記載の塗工液。
また、本発明によれば、以下に示す導電性塗工膜が提供される。
[9]前記[1]〜[8]のいずれかに記載の塗工液により形成される導電性塗工膜。
[10]前記塗工液からなる膜が80〜250℃で熱処理されて形成された、その乾燥膜厚が0.1〜10μmである前記[9]に記載の導電性塗工膜。
[11]硝子板上に乾燥膜厚4μmで形成された場合に、JIS K 7194に準拠して測定される表面抵抗率が3,000Ω/□以下である前記[9]又は[10]に記載の導電性塗工膜。
さらに、本発明によれば、以下に示す電極板用部材が提供される。
[12]集電体と、前記集電体の表面上に配設された前記[9]〜[11]のいずれかに記載の導電性塗工膜と、を備える電極板用部材。
また、本発明によれば、以下に示す蓄電装置用電極板、及びその製造方法が提供される。
[13]前記[12]に記載の電極板用部材と、前記導電性塗工膜の表面上に配設された電極活物質層と、を備える蓄電装置用電極板。
[14]前記集電体がアルミニウム箔であり、前記電極活物質層に正極活物質が含有される前記[13]に記載の蓄電装置用電極板。
[15]前記集電体が銅箔であり、前記電極活物質層に負極活物質が含有される前記[13]に記載の蓄電装置用電極板。
[16]前記集電体がアルミニウム箔であり、分極性電極板である前記[13]に記載の蓄電装置用電極板。
[17]前記[1]〜[8]のいずれかに記載の塗工液を集電体の表面に塗布して導電性塗工膜を形成する工程と、前記導電性塗工膜の表面上に電極活物質層を形成する工程と、を有する蓄電装置用電極板の製造方法。
[18]前記集電体の表面に前記塗工液を塗布した後、前記塗工液に含有される前記極性溶媒を加熱除去するか、又は前記極性溶媒を除去しながら80〜250℃で1秒〜60分熱処理する前記[17]に記載の蓄電装置用電極板の製造方法。
さらに、本発明によれば、以下に示す蓄電装置が提供される。
[19]前記[13]〜[16]のいずれかに記載の蓄電装置用電極板を備える蓄電装置。
[20]二次電池又はキャパシタである前記[19]に記載の蓄電装置。
本発明の塗工液は、集電体表面に存在する活性水素とカルボン酸ビニル共重合体のケイ素元素を置換して化学的に結合するため、集電体に対する密着力が高い。また、主鎖に対して電気化学的に分解されやすい「−C−O−Si−」結合構造を形成しないので、電気化学的にも安定な導電性塗工膜を形成することができる。このため、本発明の塗工液を用いれば、蓄電装置用電極板を構成する集電体と電極層との間に、耐電解液性及び耐酸化性に優れるとともに、アルミニウム箔や銅箔等の集電体との密着性が高く、かつ、表面抵抗率の低いアンダーコート層となる導電性電極膜を形成することができる。その結果、密着性、耐酸化性、及び耐電解液性等に優れた電極層が、アルミニウム箔や銅箔等の集電体の表面上に設けられた電極板用部材を提供することができる。さらには、集電体と電極層との接触抵抗も改良されるので、特性に優れる電池用の電極板やキャパシタ用の分極性電極板等の蓄電装置用電極板、及びそれらを備えた蓄電装置を提供することができる。
また、本発明の塗工液を用いれば、従来の導電性コート層よりも密着力が強い導電性塗工膜を形成できるので、電極をスリットする際に導電性のチッピングが発生しにくく、使用時のショートに由来する事故を防ぐことができる。
(1)塗工液
本発明の塗工液は、蓄電装置用電極板を構成する集電体の表面上に導電性塗工膜を形成するために用いられる塗工液である。そして、本発明の塗工液には、(A)ポリマー酸と、(B)下記一般式(1)で表されるカルボン酸ビニル共重合体と、(C)導電性材料と、(D)極性溶媒とが含有される。以下、その詳細について説明する。
Figure 2012029858
(前記一般式(1)中、R1は、H、Na、カルボン酸ビニルモノマーに由来する有機基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、R2〜R4は、独立して、H、Na、C1〜C6のアルキル基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、mとnの比率(m/n)は、0.0001〜1である)
(ポリマー酸)
本発明の塗工液にはポリマー酸が含有される。本明細書における「ポリマー酸」とは、カルボキシル基やリン酸基等の酸性基を複数個有するポリマーや、複数のカルボン酸化合物やリン酸化合物が重合したポリマーをいう。なお、酸性基はフリーな酸であっても、塩を形成していてもよい。また、ポリマー酸は、単独重合体であってもよいし、共重合体であってもよい。本発明の塗工液に含有されるポリマー酸は、後述するカルボン酸ビニル共重合体を架橋させて硬化させる架橋剤としての機能を有する成分である。
ポリマー酸としては、カルボキシル基含有ビニルモノマーの単独重合体、及びカルボキシル基含有ビニルモノマーとカルボキシル基非含有ビニルモノマーとの共重合体が好ましい。より好適なポリマー酸としては、フタロシアニンポリカルボン酸、フィチン酸、ヘキサメタリン酸、ポリリン酸、アクリル酸、メタクリル酸、イタコン酸、マレイン酸等の単独重合体及びそれらの共重合体;スチレン・マレイン酸共重合体、イソブチレン・マレイン酸共重合体、ビニルエーテル・マレイン酸共重合体、ペクチン酸、ポリグルタミン酸、ポリリンゴ酸、ポリアスパラギン酸、アクリル酸・マレイン酸・ビニルアルコール共重合体等を挙げることができる。なかでも、ポリアクリル酸、ポリイタコン酸、及びポリマレイン酸が特に好ましい。なお、ポリアクリル酸の市販品としては、商品名「ジュリマー水溶液 AC−10S」(重量平均分子量(Mw)=5000)の他、商品名「ジュリマー水溶液 AC−10L」、商品名「ジュリマー水溶液 10H」、及び商品名「ジュリマー水溶液 10SH」(重量平均分子量(Mw)=2万〜100万)(いずれも、東亜合成社製)等を挙げることができる。これらのポリアクリル酸を、一種単独で用いてもよいし、例えば粘度等を勘案しながら二種以上を組み合わせて用いてもよい。
(カルボン酸ビニル共重合体)
本発明の塗工液には、前記一般式(1)で表されるカルボン酸ビニル共重合体が含有される。なお、前記一般式(1)中のR1は、H、Na、カルボン酸ビニルモノマーに由来する有機基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択される。
カルボン酸ビニルモノマーに由来する有機基は、カルボン酸ビニル共重合体の原料であるカルボン酸ビニルモノマーに由来する有機基であり、カルボン酸ビニルモノマーのカルボン酸部分からカルボニルオキシを除いた有機基である。カルボン酸ビニルモノマーとしては、酢酸ビニル、プロピロン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニルが挙げられる。したがって、カルボン酸ビニルモノマーに由来する有機基は、ハロゲンで置換されてもよいC1〜C17直鎖又は分岐鎖のアルキル基(例えば、メチル基、エチル基、プロピル基、ペンチル基、ヘプチル基、ノニル基、ウンデカニル基、トリデカニル基、ペンタデカニル基、ヘプタデカニル基、モノクロロメチル基、1−エチル−ペンチル基)、C3〜C6シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基)、芳香族基(例えば、フェニル基)であり得る。
蓄電装置の電解質を構成し得るカチオンは、後述するとおりであり、例えば、リチウム、テトラエチルアンモニウム又はトリエチルメチルアンモニウムなどのテトラアルキルアンモニウム等である。
1としては、H、Na、又は蓄電装置の電解質を構成し得るカチオンが好ましく、蓄電装置の電解質を構成し得るカチオン(特にリチウム)がより好ましい。R1としては、カルボン酸ビニルモノマーに由来する有機基の割合が30%以下(すなわちケン化度が70%以上)であることが好ましく、20%以下(すなわちケン化度が80%以上)であることがさらに好ましく、10%以下(すなわちケン化度が90%以上)であることが特に好ましい。
前記一般式(1)中のR2〜R4は、独立して、H、Na、C1〜C6アルキル基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択される。
2〜R4におけるC1〜C6アルキル基としては、C1〜C6の直鎖又は分岐鎖のアルキル基であり、たとえば、メチル基、エチル基、n−プロピル、n−ブチルが挙げられ、エチル基が好ましい。
前記一般式(1)中のR2〜R4及び前述のR1おいて、蓄電装置の電解質を構成し得るカチオンは、二次電池やキャパシタ等の蓄電装置の電解質として使用できる電解質のカチオンであればよい。なかでも、本発明の塗工液を用いて製造する蓄電装置の電解質カチオンであることが特に好ましい。例えば、リチウムイオン二次電池の場合は、リチウムである。また、電気二重層キャパシタの場合は、テトラアルキルアンモニウムである。なお、四フッ化ホウ酸テトラエチルアンモニウムを用いた電気二重層キャパシタの場合は、テトラエチルアンモニウムであり、トリエチルメチルアンモニウムビス(トリフルオロメタンスルホニル)イミドを用いた電気二重層キャパシタの場合は、トリエチルメチルアンモニウムである。
前記一般式(1)中のR2〜R4としては、Na又は蓄電装置の電解質を構成し得るカチオンが好ましく、蓄電装置の電解質を構成し得るカチオン(特にリチウム)がより好ましい。
前記一般式(1)中のR1〜R4の少なくとも一つが、蓄電装置の電解質を構成し得るカチオンであることが好ましい。前記一般式(1)中のR1〜R4のすべてが前記カチオンに置換された場合を置換率100%とした場合に、電池容量や寿命の観点から、前記カチオンの置換率は5%以上であることが好ましく、20%以上であることがさらに好ましい。リチウム以外のカチオンとしては、Na及びK等のアルカリ金属やBe、Mg、Ca、及びSr等のアルカリ土類金属等を例示できる。
前記一般式(1)中のmとnの比率(m/n)は、0.0001〜1であり、0.005〜0.5がさらに好ましく、0.01〜0.1が特に好ましい。
前記一般式(1)中のmは、1〜10000が好ましく、5〜1000がさらに好ましく、10〜500が特に好ましい。
前記一般式(1)中のnは、20〜100000が好ましく、200〜20000がさらに好ましく、300〜1000が特に好ましい。
カルボン酸ビニル共重合体としては、酢酸ビニルとビニルトリエトキシシランを反応させることにより得られる共重合体を例示することができる(R1はメチル基;R2〜R4はエチル基)。この共重合体の酢酸ビニル部をケン化してヒドロキシ基とすること(R1及びR2〜R4はH)ができる。ケン化度は、耐電解液性の観点から50%以上が好ましく、80%以上が更に好ましく、90%以上が特に好ましい。加水分解したカルボン酸ビニル共重合体のR1及びR2〜R4に、Naや蓄電装置の電解質を構成し得るカチオンを導入するのが好ましい。
上記の反応において、酢酸ビニル以外に用いられるカルボン酸ビニル化合物としては、プロピロン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル等を例示することができる。価格や入手の容易さの観点で酢酸ビニルが好ましい。また、ビニルトリエトキシシラン以外に用いられるシラン化合物としては、ビニルトリメトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン等を例示することができる。価格や入手の容易さの観点でビニルトリエトキシシランが好ましい。
本発明の塗工液は、金属表面に存在する水酸基と化学的に結合するシラノール基を有するカルボン酸ビニル共重合体を結着剤として含有するものである。このため、金属製の集電体に対する密着力が高い導電性塗工膜を形成することができる。また、カルボン酸ビニル共重合体の主鎖炭素には、ケイ素原子が直接結合している。このため、電気化学的にも分解しにくい導電性塗工膜を形成することができる。
さらに、本発明の塗工液において、シラノール基の水素を、Naや使用する蓄電装置の電解質を構成し得るカチオンで置換すると、シラノール同士が保存中に縮合して増粘したり、導電性塗工膜の密着力が下がったりすることがない。酢酸ビニル部をケン化する際に水酸化ナトリウムを使用するため、前記一般式(1)中のR1〜R4がNaに置換されるが(特許文献7)、Naイオンは、電池の充放電時のイオン伝導を妨げたり、電池特性の劣化につながったりする場合がある。このため、前記一般式(1)中のR1〜R4は、電解質のカチオンで置換されたものがより好ましい。
前記一般式(1)中のR1〜R4がリチウム(Li)である場合には、本発明の塗工液は、リチウムイオン二次電池の集電体に用いられる塗工液として好ましい。このような塗工液は、シラノール基の水素及びヒドロキシル基の少なくとも一部をリチウムで置換したものである。このため、シラノール同士の縮合による劣化や、リチウムイオン二次電池に組み込んで充放電したときの寄生容量によるリチウムイオンの枯渇に対するイオン源になり得るので、充放電容量の向上に寄与できる。
(導電性材料)
本発明の塗工液には導電性材料が含有される。導電性材料を用いることにより、形成される導電性塗工膜の電気的接触が一段と向上する。このため、内部抵抗が低く、容量密度の高い蓄電装置を製造することができる。導電性材料は、導電性粒子若しくはフィラー、又はイオン性を有する液体であり得る。
導電性粒子又はフィラーとしては、Ag、Cu、Au、Al、Mg、Rh、W、Mo、Co、Ni、Pt、Pd、Cr、Ta、Pb、V、Zr、Ti、In、Fe、Zn等の金属粉末やフレーク又はコロイド;Sn−Pb系、Sn−In系、Sn−Bi系、Sn−Ag系、Sn−Zn系の合金粉末やフレーク;アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、単層又は多層カーボンナノファイバー、単層又は多層カーボンナノチューブ等の導電性炭素系材料;酸化亜鉛、酸化スズ、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)等のうち格子欠陥の存在により余剰電子が生成し導電性を示す金属酸化物系導電性フィラー等を挙げることができる。これらの導電性粒子又はフィラーは、一種単独で又は二種以上を組み合わせて用いることができる。さらに、これらの導電性粒子又はフィラーの表面をカップリング剤等で処理したものを利用することも好ましい。粒子の大きさは、導電性や液性の観点から0.001〜100μmの範囲が好ましく、0.01〜10μmの範囲がさらに好ましい。
イオン性を有する液体は、イオンが溶解した液体又はイオン性液体であり得る。イオンが溶解した液体のイオンとして、溶媒が水の場合、塩化ナトリウム、塩化カリウム、塩化リチウム等を例示することができる。溶媒がジメチルカーボネート等の有機物の場合、六フッ化リン酸リチウム等を例示することができる。イオン性液体の具体例としては、1,3−ジメチルイミダゾリウムメチルスルフェート、1−エチル−3−メチルイミダゾリウムビス(ペンタフルオロエチルスルフォニル)イミド、1−エチル−3−メチルイミダゾリウムブロミド等のイミダゾリウム塩誘導体;3−メチル−1−プロピルピリジミウムビス(トリフルオロメチルスルフォニル)イミド、1−ブチル−3−メチルピリジニウムビス(トリフルオロメチルスルフォニル)イミド等のピリジニウム塩誘導体;テトラブチルアンモニウムヘプタデカフルオロオクタンスルフォネート、テトラフェニルアンモニウムメタンスルフォネート等のアルキルアンモニウム誘導体;テトラブチルフォスフォニウムメタンスルフォネート等のホスホニウム塩誘導体等を挙げることができる。これらのイオン性を有する液体は、導電性粒子又はフィラーと組み合わせて用いてもよい。
(極性溶媒)
本発明の塗工液には極性溶媒が含有される。極性溶媒としては、従来公知のものを使用することができる。極性溶媒の具体例としては、水;メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類;エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート等のカーボネート類;ホルムアミド、N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ビニルホルムアミド、ビニルアセトアミド、アセトアミド、N−メチルアセトアミド、N−エチルアセトアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ビニルピロリドン、ピペリドン、N−メチルピペリドン、N−エチルピペリドン、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジノン、メチルオキサゾリジノン、エチルオキサゾリジノン等のアミド類;ジメチルスルホキシド等のスルホキシド類;テトラメチレンスルホン等のスルホン類等を挙げることができる。
これらのなかでも、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン及び、ジメチルスルホキシドが好ましい。これらの極性溶媒は、一種単独で又は二種以上を組み合わせて用いることができる。これらの極性溶媒は、市販品をそのまま用いてもよいし、必要に応じて精製してから用いてもよい。
(組成)
本発明の塗工液に含有されるカルボン酸ビニル共重合体の量は、導電性材料を1質量部とした場合に、0.1〜3質量部であることが好ましく、0.3〜2質量部であることがさらに好ましい。また、本発明の塗工液に含有されるポリマー酸の量は、導電性材料を1質量部とした場合に、0.1〜3質量部であることが好ましく、0.3〜2質量部であることがさらに好ましい。また、塗工液の固形分濃度は、塗工液の全体を100質量%とした場合に、0.02〜40質量%であることが好ましく、0.02〜35質量%であることがさらに好ましく、0.1〜35質量%であることが特に好ましい。
塗工液の全体を100質量部とした場合におけるカルボン酸ビニル共重合体の含有量は、1〜40質量部であることが好ましく、1〜20質量部であることがさらに好ましく、1〜10質量部であることが特に好ましい。また、塗工液の全体を100質量部とした場合におけるポリマー酸の含有量は、1〜40質量部であることが好ましく、1〜20質量部であることがさらに好ましい。また、塗工液の全体を100質量部とした場合における導電性材料の含有量は、0.1〜30質量部であることが好ましく、0.1〜20質量部であることがさらに好ましく、2〜15質量部であることが特に好ましい。
カルボン酸ビニル共重合体及びポリマー酸の含有量が少なすぎると、形成される導電性塗工膜の強度、集電体に対する密着性、及び耐電解液性が不足する場合がある。一方、カルボン酸ビニル共重合体及びポリマー酸の含有量が多すぎると、均一な塗工液を得にくくなる場合がある。また、導電性材料の含有量が少なすぎると、形成される導電性塗工膜の導電性が不足する場合がある。一方、導電性材料の含有量が多すぎると、相対的に他の成分の含有量が不足するので、形成される導電性塗工膜の性能が低下する場合がある。
ポリマー酸1質量部に対するカルボン酸ビニル共重合体の含有量は0.1〜1質量部であることが好ましい。ポリマー酸1質量部に対するカルボン酸ビニル共重合体の含有量が0.1質量部未満であると、形成される導電性塗工膜の耐電解液性が低下する場合がある。一方、ポリマー酸1質量部に対するカルボン酸ビニル共重合体の含有割合が1質量部超であると、形成される導電性塗工膜の耐酸化性が低下する場合がある。
(カップリング剤)
本発明の塗工液には、カップリング剤がさらに含有されていてもよい。カップリング剤としては、シランカップリング剤やチタン系カップリング剤が好ましい。シランカップリング剤の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピルメチルジメトキシシラン、γ−メタクリロキシキシプロピルトリメトキシシラン、γ−メタクリロキシキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等を挙げることができる。なお、フッ素系のシランカップリング剤の例として、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシランを挙げることができる。また、エポキシ変性シランカップリング剤の例として、信越化学社製のカップリング剤(商品名:KBM−403)を挙げることができる。さらに、オキセタン変性シランカップリング剤の例として、東亞合成社製のカップリング剤(商品名:TESOX)を挙げることができる。
チタン系カップリング剤の具体例としては、トリエタノールアミンチタネート、チタニウムアセチルアセトネート、チタニウムエチルアセトアセテート、チタニウムラクテート、チタニウムラクテートアンモニウム塩、テトラステアリルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、イソプロピルトリオクタイノルチタネート、イソプロピルジメタクリイソステアロイルチタネート、チタニウムラクテートエチルエステル、オクチレングリコールチタネート、イソプロピルトリイソステアロイルチタネート、トリイソステアリルイソプロピルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトラ(2−エチルヘキシル)チタネート、ブチルチタネートダイマー、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジ−トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトラ−i−プロピルチタネート、テトラ−n−ブチルチタネート、ジイソステアロイルエチレンチタネート等を挙げることができる。
これらのカップリング剤は、一種単独で又は二種以上を組み合わせて用いることができる。カップリング剤を塗工液に配合することにより、塗工液に含有される成分の水素結合性官能基と反応させてさらに架橋密度を向上させることができる。これにより、活物質を構成する元素と、集電体を構成する元素との相互置換反応をさらに抑制することができる。特に、チタン系カップリング剤やシランカップリング剤による架橋反応が起きることで、架橋速度を向上させたり、密着力、強度、及び電気化学的な耐性を向上させたりすることができる。また、塗工液に配合して用いることで、界面に過度な絶縁性の改質層を形成することを防止可能であるとともに、界面抵抗の増大を抑えることができる。
塗工液に含有させるカップリング剤の量は、カルボン酸ビニル共重合体100質量部に対して0.01〜20質量部であることが好ましく、0.1〜10質量部であることがさらに好ましく、0.3〜3質量部であることが特に好ましい。
(架橋剤)
本発明の塗工液には、前述のポリマー酸以外の架橋剤が含有されていてもよい。架橋剤を含有させることで、形成される導電性塗工膜を補強することができる。架橋剤の具体例としては、コハク酸、クエン酸等の天然に存在する有機酸;ブタンテトラカルボン酸、ホスホノブタントリカルボン酸、ピロメリット酸、トリメリット酸等の多塩基酸;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル等のエポキシ化合物;トルイレンジイソシアナート、キシリレンジイソシアナート、ヘキサメチレンジイソシアナート、フェニルジイソシアナート等のイソシアナート化合物;これらのイソシアナート化合物をフェノール類、アルコール類、活性メチレン類、メルカプタン類、酸アミド類、イミド類、アミン類、イミダゾール類、尿素類、カルバミン酸類、イミン類、オキシム類、亜硫酸類等のブロック剤でブロックしたブロックイソシアナート化合物;グリオキサール、グルタルアルデヒド、ジアルデヒド澱粉等のアルデヒド化合物を挙げることができる。
また、架橋剤のさらなる具体例として、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ヘキサンジオールジアクリレート等の(メタ)アクリレート化合物;メチロールメラミン、ジメチロール尿素等のメチロール化合物;酢酸ジルコニル、炭酸ジルコニル、乳酸チタン等の有機酸金属塩;アルミニウムトリメトキシド、アルミニウムトリブトキシド、チタニウムテトラエトキシド、チタニウムテトラブトキシド、ジルコニウムテトラブトキシド、アルミニウムジプロポキシドアセチルアセトネート、チタニウムジメトキシドビス(アセチルアセトネート)、チタニウムジブトキシドビス(エチルアセトアセテート)等の金属アルコキシド化合物を挙げることができる。
また、架橋剤のさらなる具体例として、メチルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン等のシラン化合物;カルボジイミド化合物等を挙げることができる。これらの架橋剤を含有させる場合において、架橋剤の含有量は、樹脂バインダーとして用いられるカルボン酸ビニル共重合体の0.01〜200質量%とすることが好ましい。
(安定剤)
本発明の塗工液には、必要に応じて安定剤がさらに含有されていてもよい。安定剤の具体例としては、2,6−ジ−tert−ブチル−フェノール、2,4−ジ−tert−ブチル−フェノール、2,6−ジ−tert−ブチル−4−エチル−フェノール、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチル−アニリノ)−1,3,5−トリアジン等のフェノール系酸化防止剤;アルキルジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン、N−フェニル−N’−イソプロピル−p−フェニレンジアミン等の芳香族アミン系酸化防止剤;ジラウリル−3,3’−チオジプロピオネート、ジトリデシル−3,3’−チオジプロピオネート、ビス[2−メチル−4−{3−n−アルキルチオプロピオニルオキシ}−5−tert−ブチル−フェニル]スルフィド、2−メルカプト−5−メチル−ベンゾイミダゾール等のサルファイド系ヒドロペルオキシド分解剤;トリス(イソデシル)ホスファイト、フェニルジイソオクチルホスファイト、ジフェニルイソオクチルホスファイト、ジ(ノニルフェニル)ペンタエリトリトールジホスファイト、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスファートジエチルエステル、ナトリウムビス(4−tert−ブチルフェニル)ホスファート等のリン系ヒドロペルオキシド分解剤;フェニルサリチラート、4−tert−オクチルフェニルサリチラート等のサリチレート系光安定剤;2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸等のベンゾフェノン系光安定剤;2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]等のベンゾトリアゾール系光安定剤;フェニル−4−ピペリジニルカルボナート、セバシン酸ビス−[2,2,6,6−テトラメチル−4−ピペリジニル]等のヒンダードアミン系光安定剤;[2,2’−チオ−ビス(4−t−オクチルフェノラート)]−2−エチルヘキシルアミン−ニッケル−(II)等のNi系光安定剤;シアノアクリレート系光安定剤;シュウ酸アニリド系光安定剤等を挙げることができる。これらの安定剤は、一種単独で又は二種以上を組み合わせて用いることができる。
これらの安定剤を含有させる場合において、安定剤の含有量は、カルボン酸ビニル共重合体100質量部に対して0.01〜10質量部とすることが好ましく、0.05〜5質量部とすることがさらに好ましく、0.1〜1質量部とすることが特に好ましい。
(その他の樹脂成分)
本発明の塗工液には、ビニルピロリドンを構成モノマーとするホモポリマー(ポリビニルピロリドン)、ビニルピロリドンを必須構成モノマーとする共重合体、キトサン、又はこれらの誘導体等の樹脂成分を添加することができる。これらの樹脂成分は、一種単独で又は二種以上を組み合わせて用いることができる。これらの樹脂成分を塗工液に含有させることで、塗工液中における導電性材料の分散性を向上させることができる。さらに、これらの樹脂成分は皮膜形成成分としても機能するので、より良好な特性を有する導電性塗工膜を形成することができる。
(界面活性剤)
本発明の塗工液には、ぬれ性を調整するために、各種の界面活性剤を含有させることができる。界面活性剤としては、アニオン性界面活性剤、両性界面活性剤、非イオン(ノニオン)型界面活性剤を用いることができる。
アニオン性界面活性剤の具体例としては、石ケン、ラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルフェニルエーテルリン酸、N−アシルアミノ酸塩、α−オレフィンスルホン酸塩、アルキル硫酸エステル塩、アルキルフェニルエーテル硫酸エステル塩、メチルタウリン酸塩等を挙げることができる。両性界面活性剤の具体例としては、塩酸アルキルジアミノエチルグリシン、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、ヤシ油脂肪酸アミドプロピルベタイン、脂肪酸アルキルベタイン、スルホベタイン、アミオキサイド等を挙げることができる。また、非イオン(ノニオン)型界面活性剤の具体例としては、ポリエチレングリコールのアルキルエステル型化合物、トリエチレングリコールモノブチルエーテル等のアルキルエーテル型化合物、ポリオキシソルビタンエステル等のエステル型化合物、アルキルフェノール型化合物、フッ素型化合物、シリコーン型化合物等を挙げることができる。これらの界面活性剤は、一種単独で又は二種以上を組み合わせて用いることができる。
これらの界面活性剤を含有させる場合において、界面活性剤の含有量は、カルボン酸ビニル共重合体100質量部に対して0.01〜50質量部とすることが好ましく、0.1〜20質量部とすることがさらに好ましく、1〜10質量部とすることが特に好ましい。
(絶縁性フィラー)
本発明の塗工液には、形成される導電性塗工膜の機械的強度や熱的特性を向上させるために、導電性を損なわない範囲で、必要に応じて各種の絶縁性フィラーを含有させることができる。絶縁性フィラーの具体例としては、アルミナ、シリカ、ジルコニア、チタニア等の金属酸化物の粉末;コロイダルシリカ、チタニアゾル、アルミナゾル等のゾル;タルク、カオリナイト、スメクタイト等の粘土鉱物;炭化ケイ素、炭化チタン等の炭化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の窒化物;窒化ホウ素、ホウ化チタン、酸化ホウ素等のホウ化物;ムライト等の複合酸化物;水酸化アルミニウム、水酸化マグネシウム等の水酸化物等;誘電率を上げることが可能なチタン酸バリウム等を挙げることができる。
これらの絶縁性フィラーを含有させる場合において、絶縁性フィラーの含有量は、カルボン酸ビニル共重合体100質量部に対して0.001〜10質量部とすることが好ましく、0.01〜5質量部とすることがさらに好ましく、0.1〜2質量部とすることが特に好ましい。
(調製方法等)
本発明の塗工液を調製するには、先ず、樹脂バインダーであるカルボン酸ビニル共重合体、導電性材料、ポリマー酸、及び必要に応じて用いられるその他の成分等を所定の割合となるように極性溶媒に添加する。そして、これらの成分を混合分散させれば、本発明の塗工液を調製することができる。各成分を混合分散させる際には、必要に応じて、従来公知のホモジナイザー、ビーズミル、ボールミル、サンドミル、ロールミル等の分散機や、プラネタリーミキサー等の混練機を用いることができる。
なお、各成分は、市販品をそのまま用いてもよいし、必要に応じて精製したものを用いてもよい。また、カルボン酸ビニル共重合体及びポリマー酸を極性溶媒に添加する順番は特に限定されず、カルボン酸ビニル共重合体とポリマー酸のいずれかを先に添加しても、両方を同時に添加してもよい。カルボン酸ビニル共重合体及びポリマー酸を極性溶媒に溶解させる際に、室温条件下で撹拌してもよいが、必要に応じて加熱条件下で撹拌してもよい。なお、80℃以上に加熱して溶解させることが好ましい。
本発明の塗工液は、従来公知の物理的加工手段を用いて、塗工前に物理的加工処理を施すことが好ましい。物理的加工手段としては、例えば、ビーズミル、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー等を用いる加工手段を挙げることができる。
例えば、ビーズミルを用いる加工手段の場合、セラミック製ベッセルにジルコニア製ビーズ(直径0.03〜3mm)を充填率50〜95%となるように充填し、ローター周速5〜20m/sで、バッチ式又は連続循環式にて分散処理を行えばよい。
さらに、形成される導電性塗工膜の表面抵抗率が3,000Ω/□以下となるように、塗工液を調製することが好ましい。導電性塗工膜の表面抵抗率を上記数値範囲とするには、例えば、導電性材料の含有割合を適宜調整すればよい。なお、導電性塗工膜の表面抵抗率は、硝子板の上に乾燥膜厚4μmの導電性塗工膜を形成し、JIS K 7194に準拠して測定することができる。
(2)導電性塗工膜、電極板用部材、及び蓄電装置用電極板
上述の塗工液を用いれば、二次電池やキャパシタ等の蓄電装置用電極板の構成材として有用な本発明の導電性塗工膜を形成することができる。導電性塗工膜は、例えば蓄電装置の電極板を構成する集電体等の表面に、乾燥膜厚が好ましくは0.1〜10μm、さらに好ましくは0.1〜5μm、特に好ましくは0.1〜2μmとなるように塗布した後、熱処理することで形成することができる。なお、熱処理の条件は、80〜250℃、1秒〜60分とすることが好ましい。このような条件で熱処理することで、樹脂バインダーであるカルボン酸ビニル共重合体を十分に架橋させて、集電体等に対する密着性及び耐電解液性がさらに向上した導電性塗工膜を形成することができる。
本発明の導電性塗工膜は、硝子板上に乾燥膜厚4μmで形成された場合に、JIS K 7194に準拠して測定される表面抵抗率が3,000Ω/□以下であることが好ましく、2,000Ω/□以下であることが好ましい。表面抵抗率が3,000Ω/□を超える導電性塗工膜を電極板に適用すると、内部抵抗が高くなるので、高効率で長寿命の電池やキャパシタを得ることが困難となる。
導電性塗工膜の表面抵抗率は、以下に示す方法に従って測定することができる。先ず、硝子板上に塗工液を塗布した後、200℃で1分間加熱処理して乾燥膜厚4μmの導電性塗工膜を形成する。JIS K 7194に準拠し、形成した導電性塗工膜の表面抵抗率を四探針法により測定する。なお、測定には商品名「ロレスターGP」及び「MCP−T610」(三菱化学アナリテック社製)を使用することができる。また、測定条件は、25℃、相対湿度60%とすればよい。
集電体の表面上に導電性塗工膜を形成した場合、この導電性塗工膜の表面上に、電池用正極層、電池用負極層、又はキャパシタ用の分極性電極層を形成することによって、電極層−集電体間の抵抗が小さく、環境負荷の少ない蓄電装置用電極板を得ることができる。
本発明の電極用部材は、集電体と、この集電体の表面上に配設された前述の導電性塗工膜とを備えるものである。また、本発明の蓄電装置用電極板は、上記の電極板用部材と、導電性塗工膜の表面上に配設された電極活物質層と、を備えるものである。すなわち、本発明の蓄電装置用電極板は、集電体と電極活物質層(電極層)との間に、本発明の塗工液を用いて形成された導電性塗工膜をアンダーコート層として配置したものである。したがって、蓄電装置用電極板を構成する導電性塗工膜には、樹脂バインダーとしてのカルボン酸ビニル共重合体、ポリマー酸、及び導電性材料が必須成分として含有されている。
(3)蓄電装置用電極板の製造方法
本発明の蓄電装置用電極板の製造方法は、前述の塗工液を集電体の表面に塗布して導電性塗工膜を形成する工程(第一の工程)と、形成された導電性塗工膜の表面上に電極活物質層を形成する工程(第二の工程)とを有する。集電体としては、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等の金属箔からなる正極集電体;銅等の金属箔からなる負極集電体を挙げることができる。正極集電体としては、電解液に対する耐食性を有し、軽量で機械加工が容易なアルミニウム箔が好ましい。金属箔(集電体)の厚さは5〜30μmであることが好ましく、8〜25μmであることがさらに好ましい。集電体の表面は、シラン系、チタネート系、アルミニウム系等のカップリング剤で予め処理しておくことが好ましい。
第一の工程では、各種塗工方法により集電体の表面に塗工液を塗布する。塗工液は、乾燥厚みで0.1〜10μmとなるように塗布することが好ましく、0.1〜5μmとなるように塗布することがさらに好ましく、0.1〜2μmとなるように塗布することが特に好ましい。0.1μm未満では均一に塗工するのが困難な場合がある。一方、10μmを超えると、形成される導電性塗工膜の可撓性が低下する場合がある。各種塗工方法の具体例としては、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマコート、スロットダイコート、スライドダイコート、ディップコート等を挙げることができる。
塗工液を塗布した後、例えば、塗工液に含有される極性溶媒を加熱除去するか、又は極性溶媒を除去しながら熱処理すれば、アンダーコート層として機能する導電性塗工膜を形成することができる。熱処理の条件は、80〜250℃、1秒〜60分とすることが好ましい。このような条件で熱処理することで、樹脂バインダーであるカルボン酸ビニル共重合体を十分に架橋させて、形成される導電性塗工膜の集電体に対する密着性及び耐電解液性をさらに向上させることができる。なお、熱処理の条件が80℃未満又は1秒未満であると、形成される導電性塗工膜の集電体に対する密着性、及び耐電解液性が不十分となる場合がある。
第二の工程では、形成された導電性塗工膜の表面上に電極活物質層(電極層)を形成する。これにより、蓄電装置用電極板を得ることができる。電極層の均質性をより向上させるために、金属ロール、加熱ロール、シートプレス機等を用いて電極層をプレス処理することが好ましい。プレス処理の条件は500〜7,500kgf/cm2とすることが好ましい。500kgf/cm2未満であると、電極層の均質性が向上しにくい場合がある。一方、7,500kgf/cm2を超えると、集電体を含めた蓄電装置用電極板自体が破損しやすくなる傾向にある。
上記のようにして得られる本発明の蓄電装置用電極板は、集電体と電極層の間に、適度に分散された導電性材料と、ポリマー酸で架橋された樹脂バインダーであるカルボン酸ビニル共重合体とからなる、密着性、耐酸化還元性、耐溶剤性に優れ可撓性を有するアンダーコート層が形成・配置されたものとなる。該アンダーコート層は前記の通りの特性を有している。
(4)蓄電装置
本発明の蓄電装置用電極板(正極板、負極板、及び分極性電極板)を用いれば、非水電解液二次電池等の二次電池や、電気二重層キャパシタ及びリチウムイオンキャパシタ等のキャパシタを製造することができる。すなわち、本発明の蓄電装置は、前述の蓄電装置用電極板を備えるものである。本発明の蓄電装置を構成する蓄電装置用電極板は、集電体と電極層間の密着力が向上しているので、使用時の剥離による電池特性の劣化が防止される。また、集電体と電極層との間の抵抗を低減されているので、ハイレートで充放電をすることができる。なお、集電体表面と導電性塗工膜との間には、電気化学的に安定な界面結合状態が形成されている。このため、長期多サイクル充放電を繰り返すか、或いは充電した状態で高温放置された場合の電気分解に伴う電池特性の劣化を防ぐことができる。
本発明の蓄電装置は、内部抵抗が低く、また集電体と電極層間の剥離が起き難い。このため、大電流を流すことが可能で、急速充放電が可能になる。また、導電性塗工膜は集電体表面に化学的に強固に結合しているので、界面の劣化に伴う抵抗値の増大を抑えることができる。さらに、充放電試験や保存試験等の長期信頼性試験後の電池特性の低下が小さい。特に、導電性塗工膜を形成するのに用いる塗工液に含有されるカルボン酸ビニル共重合体の主鎖炭素原子には、ケイ素が直接結合している。このため、カルボン酸ビニル共重合体は、集電体表面に存在する極性置換基(例えば水酸基等)と共有結合を形成する。したがって、形成される導電性塗工膜は、集電体表面に対する密着性に優れるとともに、電気化学的な耐久性にも優れる。また、塗工液に含有されるポリマー酸は、カルボン酸ビニル共重合体中の水酸基同士や集電体表面の水酸基との間を架橋するので、形成される導電性塗工膜を、電気化学的により分解しにくくする効果を有する。
(二次電池)
例えば、リチウム系の非水リチウムイオン電池を製造する場合には、溶質となるリチウム塩を有機溶剤やイオン液体に溶解させた非水電解液が用いられる。リチウム塩の具体例としては、LiClO4、LiBF4、LiPF6、LiAsF6、LiCl、LiBr等の無機リチウム塩;LiB(C654、LiN(SO2CF32、LiC(SO2CF33、LiOSO2CF3、LiOSO225、LiOSO237、LiOSO249、LiOSO2511、LiOSO2613、LiOSO2715等の有機リチウム塩等を挙げることができる。
有機溶剤としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等を挙げることができる。環状エステル類としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等を挙げることができる。
鎖状エステル類としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を挙げることができる。
環状エーテル類としては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等を挙げることができる。鎖状エーテル類としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等を挙げることができる。
イオン液体は、有機カチオンとアニオンの組み合わせによるイオンのみからなる液体である。有機カチオンとしては、例えば、1−エチル−3−メチルイミダゾリウムイオン等のジアルキルイミダゾリウムカチオン;1,2−ジメチル−3−プロピルイミダゾリウムイオン等のトリアルキルイミダゾリウムカチオン;ジメチルエチルメトキシアンモニウムイオン等のテトラアルキルアンモニウムイオン;1−ブチルピリジニウムイオン等のアルキルピリジニウムイオン;メチルプロピルピロリジニウムイオン等のジアルキルピロリジニウムイオン;メチルプロピルピペリジニウムイオン等のジアルキルピペリジニウムイオン等を挙げることができる。これらの有機カチオンは、一種単独で又は二種以上を組み合わせて用いることができる。
これらの有機カチオンの対となるアニオンとしては、AlCl4 -、PF6 -、PF3(C253 -、PF3(CF33 -、BF4 -、BF2(CF32 -、BF3(CF3-、CF3SO3 -(TfO;トリフレートアニオン)、(CF3SO22-(TFSI;トリフルオロメタンスルフォニル)、(FSO22-(FSI;フルオロスルフォニル)、(CF3SO23-(TFSM)等を挙げることができる。なお、二次電池のその他の構成は、従来公知の二次電池と同様である。
(キャパシタ)
キャパシタ用の分極性電極板を構成する導電性塗工膜には、カルボン酸ビニル共重合体、ポリマー酸、及び導電性材料が含有されている。分極性電極板を製造する際に用いる塗工液は、カルボン酸ビニル共重合体の含有量が、塗工液100質量部あたりの固形分量で1〜40質量部であることが好ましく、1〜20質量部であることがさらに好ましく、1〜10質量部であることが特に好ましい。カルボン酸ビニル共重合体の含有量が少なすぎると、形成される導電性塗工膜から塗工膜成分が脱落しやすくなる場合がある。一方、カルボン酸ビニル共重合体の含有量が多すぎると、導電性材料がカルボン酸ビニル共重合体に覆い隠されてしまい、得られる分極性電極板の内部抵抗が増大する場合がある。
ポリマー酸としては、カルボン酸ビニル共重合体に対する架橋性の面から、カルボキシル基やリン酸基等の酸性基の含有量が多いものが好ましい。塗工液に含有されるポリマー酸の量は、カルボン酸ビニル共重合体100質量部当たり100〜1000質量部であることが好ましく、100〜500質量部であることがさらに好ましい。ポリマー酸の含有量が100質量部未満であると、形成される導電性塗工膜の集電体に対する密着性及び耐電解液性が不十分となる場合がある。一方、ポリマー酸の含有量が1000質量部を超えると、形成されるカルボン酸ビニル共重合体の架橋物(架橋ポリマー)の電解液に対する不溶解性及び非膨潤性が低下する傾向にあるとともに、経済的にも不利になる傾向にある。
キャパシタ用の分極性電極板を製造する際に用いる塗工液に含有させる導電性材料としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、カーボンナノファイバー、カーボンナノチューブ等の導電性カーボンが好ましい。このような導電性材料を使用することで、形成される導電性塗工膜の電気的接触が一段と向上するとともに、キャパシタの内部抵抗が低くなり、かつ、容量密度を高くすることができる。塗工液に含有される導電性材料の量は、塗工液100質量部に対して0.1〜30質量部であることが好ましく、2〜15質量部であることがさらに好ましい。
キャパシタ用の電極板を製造する際に用いる塗工液を、必要に応じて、塗工前に物理的加工手段によって加工処理することが好ましい。物理的加工手段としては、例えば、ビーズミル、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー等を用いる加工手段を挙げることができる。また、各成分を混合する際に、導電性材料を擂潰機、プラネタリーミキサー、ヘンシェルミキサー、オムニミキサー等の混合機を用いて先ず処理しておき、次いで、カルボン酸ビニル共重合体やポリマー酸の溶液を添加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一な塗工液を得ることができる。また、均一な塗工液を用いることで、より良好な特性を有するキャパシタ用の分極性電極板を得ることができる。
集電体を構成する材料としては、導電性を有するとともに、電気化学的な耐久性を有する材料が好ましい。特に、耐熱性の観点からは、アルミニウム、チタン、タンタル、ステンレス鋼、金、白金等の金属材料からなる集電体が好ましく、アルミニウム又は白金からなる集電体がさらに好ましい。集電体の形状は特に制限されないが、通常、厚さ0.001〜0.5mm程度のシート状のものを用いる。
塗工液を集電体の表面に塗布して乾燥すれば、導電性塗工膜を形成することができる。塗工液の塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法、スプレーコート法等を挙げることができる。
塗工液の粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常10〜100,000mPa・s、好ましくは50〜50,000mPa・s、さらに好ましくは100〜20,000mPa・sである。塗布する塗工液の量は特に制限されないが、乾燥して極性溶媒を除去した後に形成される導電性塗工膜の厚さが、通常0.05〜100μm、好ましくは0.1〜10μmとなる量である。なお、乾燥方法及び条件等は、電池用の電極板を製造する場合と同様である。
上記の分極性電極板、電解液、及びセパレータ等の部品を使用し、常法に従って電気二重層キャパシタやリチウムイオンキャパシタを製造することができる。具体的には、セパレータを介して分極性電極板を積層して得られた積層体をキャパシタ形状に応じて巻く、折るなどして容器に入れる。次いで、容器に電解液を注入した後に封口すれば、キャパシタを製造することができる。
電解液としては、電解質を有機溶媒に溶解して得られる非水電解液が好ましい。電気二重層キャパシタ用の電解質としては、従来公知のものをいずれも使用することができる。このような電解質の具体例としては、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェート等を挙げることができる。また、リチウムイオンキャパシタ用の電解質の具体例としては、LiI、LiClO4、LiAsF6、LiBF4、LiPF6等のリチウム塩を挙げることができる。
これらの電解質を溶解させる有機溶媒(電解液溶媒)も、一般的な電解液溶媒として用いられるものであれば特に限定されない。電解液溶媒の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のカーボネート類;γ−ブチロラクトン等のラクトン類;スルホラン類;アセトニトリル等のニトリル類等を挙げることができる。これらの電解液溶媒は、一種単独で又は二種以上を組み合わせて用いることができる。これらのなかでもカーボネート類が、耐電圧が高いために好ましい。電解液の濃度は、通常0.5モル/L以上、好ましくは0.8モル/L以上である。
セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィン製の微孔膜又は不織布;一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜;等の公知のものを用いることができる。また、無機セラミック粉末と樹脂バインダーを溶剤に分散させたものを電極層上に塗布及び乾燥してセパレータを形成してもよい。さらに、セパレータに代えて固体電解質又はゲル電解質を用いてもよい。なお、容器等の他の材料については、通常のキャパシタに用いられるものをいずれも使用することができる。
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、文中の「部」又は「%」は、特に断りのない限り質量基準である。
(1)カルボン酸ビニル共重合体A〜Eの合成
(カルボン酸ビニル共重合体A)
冷却機付き10L三つ口フラスコに、メタノール1000部、酢酸ビニル1400部、及びビニルトリエトキシシラン50部を加え、撹拌しながらドライアルゴン置換を行い、60℃まで温度を上げた。そこへ、3.5%の2,2’−アゾビスイソブチロニトリルのメタノール溶液1200部を滴下した。ビニルトリエトキシシランの10%メタノール溶液100部を5時間かけて滴下しながら重合を行った。メタノール蒸気を導入することで未反応の酢酸ビニルを除去した。ここに水酸化ナトリウムの10%メタノール溶液100部を40℃で撹拌しながら滴下した。得られた白色ゲルを粉砕しメタノールで洗浄して未反応のビニルトリエトキシシランを除去し、次いで乾燥させることでカルボン酸ビニル共重合体Aを得た。得られたカルボン酸ビニル共重合体Aは、ICP−AES(Inductively Coupled Plasma Atomic Emission Spectroscopy)による元素分析の結果、ビニルシラン単位が1モル%含有されており、カルボン酸ビニル部の99%がケン化されていることが分かった。分子量はGPC(Gel Permeation Chromatography)で測定し、m/n=0.01、m=10、n=990であった。
(カルボン酸ビニル共重合体B)
冷却機付き10L三つ口フラスコに、メタノール1200部、酢酸ビニル1400部、及びビニルトリエトキシシラン200部を加え、撹拌しながらドライアルゴン置換を行い、60℃まで温度を上げた。そこへ、3.7%の2,2’−アゾビスイソブチロニトリルのメタノール溶液1300部を滴下した。ビニルトリエトキシシランの10%メタノール溶液200部を5時間かけて滴下しながら重合を行った。メタノール蒸気を導入することで未反応の酢酸ビニルを除去した。ここに水酸化ナトリウムの10%メタノール溶液150部を40℃で撹拌しながら滴下した。得られた白色ゲルを粉砕しメタノールで洗浄して未反応のビニルトリエトキシシランを除去し、次いで乾燥させることでカルボン酸ビニル共重合体Bを得た。得られたカルボン酸ビニル共重合体Bは、ICP−AESによる元素分析の結果、ビニルシラン単位が2.5モル%含有されており、カルボン酸ビニル部の99%がケン化されていることが分かった。分子量はGPCで測定し、m/n=0.026、m=25、n=975であった。
(カルボン酸ビニル共重合体C)
冷却機付き10L三つ口フラスコに、メタノール1000部、酢酸ビニル1400部、及びビニルトリエトキシシラン50部を加え、撹拌しながらドライアルゴン置換を行い、60℃まで温度を上げた。そこへ、3.5%の2,2’−アゾビスイソブチロニトリルのメタノール溶液1200部を滴下した。ビニルトリエトキシシランの10%メタノール溶液100部を5時間かけて滴下しながら重合を行った。メタノール蒸気を導入することで未反応の酢酸ビニルを除去した。ここに水酸化ナトリウムの10%メタノール溶液60部を40℃で撹拌しながら滴下した。得られた白色ゲルを粉砕しメタノールで洗浄して未反応のビニルトリエトキシシランを除去し、次いで乾燥させることでカルボン酸ビニル共重合体Cを得た。得られたカルボン酸ビニル共重合体Cは、ICP−AESによる元素分析の結果、ビニルシラン単位が1モル%含有されており、カルボン酸ビニル部の75%がケン化されていることが分かった。分子量はGPCで測定し、m/n=0.01、m=10、n=990であった。
(カルボン酸ビニル共重合体D)
冷却機付き10L三つ口フラスコに、メタノール1000部、酢酸ビニル1400部、及びビニルトリエトキシシラン50部を加え、撹拌しながらドライアルゴン置換を行い、60℃まで温度を上げた。そこへ、3.5%の2,2’−アゾビスイソブチロニトリルのメタノール溶液1200部を滴下した。ビニルトリエトキシシランの10%メタノール溶液100部を5時間かけて滴下しながら重合を行った。メタノール蒸気を導入することで未反応の酢酸ビニルを除去した。ここに水酸化リチウムの5%メタノール溶液250部を40℃で撹拌しながら滴下し、滴下終了後、60℃で5時間撹拌した。得られた白色ゲルを粉砕しメタノールで洗浄して未反応のビニルトリエトキシシランを除去し、次いで乾燥させることでLiタイプのカルボン酸ビニル共重合体Dを得た。得られたカルボン酸ビニル共重合体Dは、ICP−AESによる元素分析の結果、リチウムが5%含有されており、ビニルシラン単位が1モル%含有されており、カルボン酸ビニル部の98%がケン化されていることが分かった。分子量はGPCで測定し、m/n=0.01、m=10、n=990であった。
(カルボン酸ビニル共重合体E)
カルボン酸ビニル共重合体A100部をイオン交換水9900部に80℃×12時間加熱溶解し、その後室温まで冷却した。そこへ、テトラエチルアンモニウムクロリド5部を加え、30分撹拌した。そこへ、イオン交換性樹脂(商品名:AMP01、三菱化学社製)500部を加え、さらに12時間撹拌した。イオン交換性樹脂を取り除いた後、減圧蒸留で水分を取り除くことで、テトラエチルアミンタイプのカルボン酸ビニル共重合体Eを得た。得られたカルボン酸ビニル共重合体Eは、原料に用いたカルボン酸ビニル共重合体A中のナトリウムの70%がテトラエチルアンモニウムに置換されていた。
(2)塗工液の調製
(実施例1)
12.5%ポリアクリル酸水溶液40部にアセチレンブラック5部を加え、ディゾルバーで撹拌混合した後、ビーズミル(直径0.8mmのジルコニアビーズ、充填率70%)にて1時間分散処理を行って分散液を得た。得られた分散液に、カルボン酸ビニル共重合体A5部とイオン交換水50部を加え、30分撹拌混合して塗工液を調製した。なお、ポリアクリル酸水溶液としては、商品名「ジュリマー水溶液 AC−10S」(東亞合成社製、Mw=5000)を使用した。
(実施例2〜12、比較例1及び2)
各成分の配合を表1に示すようにしたこと以外は、前述の実施例1と同様にして塗工液を調製した。なお、表1中の略語の意味は以下に示す通りである。
・AB:アセチレンブラック
・KB:ケッチェンブラック
・FB:ファーネスブラック
・CNT:カーボンナノチューブ
・PMA:ピロメリット酸
・TMA:トリメリット酸
・MeOH:メチルアルコール
・IPA:イソプロピルアルコール
・NMP:N−メチル−2−ピロリドン
Figure 2012029858
(3)導電性塗工膜の作製
(実施例13)
厚さ20μmのアルミニウム箔(集電体)の片面上に、コンマロールコーターを用いて実施例1の塗工液を塗布した。オーブンを使用し、110℃で2分間加熱処理した後、さらに180℃で2分間加熱処理した。これにより、溶媒を除去するとともにポリマー成分を架橋させて、集電体上に乾燥膜厚1μmの導電性塗工膜を形成した。
(実施例14〜24、比較例3〜5)
表2に示す塗工液を用いたこと以外は、前述の実施例13と同様にして集電体上に導電性塗工膜を形成した。なお、比較例5は、ポリビニリデンフルオライドのNMP溶液5部にアセチレンブラック5部を分散させて得た塗工液(便宜上、表2中には「PVDF溶液」と記す)を用いた。
(密着性の評価)
カッターを使用し、作製した導電性塗工膜に直交する縦横11本ずつの平行線を1mmの間隔で引き、1cm2の範囲内に100個の升目を形成した。升目上にメンディングテープを貼り付けた後に剥離し、メンディングテープに貼り付かずに剥離しなかった升目の個数を計測し、10回の平均値を算出した。結果を表2に示す。なお、剥離しなかった升目の個数を、集電体に対する導電性塗工膜の密着性の指標とした。
(耐電解液性の評価)
エチレンカーボネート:プロピレンカーボネート:ジメトキシエタン=1:1:2(体積比)の混合溶媒1Lに、1molのLiPF6を支持塩として溶解して得られたLiPF6溶液(電解液)に、上記と同様の手順で升目を形成した導電性塗工膜を、70℃で72時間浸漬した。浸漬後の導電性塗工膜の状態を目視観察し、以下に示す基準に従って導電性塗工膜の耐電解液性(溶解・膨潤性)を評価した。結果を表2に示す。
◎:溶解、膨潤、及び剥離のいずれも認められない。
○:僅かに膨潤しているが、剥離は認められない。
×:溶解又は膨潤するとともに、剥離が認められる。
(耐酸化性の評価)
6%過酸化水素水溶液に導電性塗工膜を浸漬し、80℃で3時間加熱処理した後、水洗及び風乾した。導電性塗工膜(乾燥塗膜)の表面を人差し指の腹で擦り以下に示す基準に従って導電性塗工膜の耐酸化性を評価した。結果を表2に示す。
◎:加熱処理後に剥離しておらず、かつ、乾燥塗膜の表面を人指し指の腹で強く擦っても剥離せず、表面のカーボンも脱落しない。
○:加熱処理後に剥離しておらず、かつ、乾燥塗膜の表面を人指し指の腹で強く擦っても剥離しない。ただし、表面のカーボンが少し脱落する。
×:加熱処理後に剥離するか、又は加熱処理後に剥離しないが乾燥塗膜の表面を人指しの腹で強く擦ると剥離する。
(表面抵抗率の測定)
硝子板上にコンマロールコーターを用いて表2に示す塗工液をそれぞれ塗布した後、200℃で1分間加熱処理して乾燥膜厚4μmの導電性塗工膜を硝子板上に形成した。JIS K 7194に準拠し、形成した導電性塗工膜の表面抵抗率を四探針法により測定した。なお、測定には商品名「ロレスターGP」及び「MCP−T610」(三菱化学アナリテック社製)を使用した。また、25℃、相対湿度60%の条件下で測定した。
Figure 2012029858
(4)電池の作製
(実施例25〜29、比較例6)
実施例25〜29及び比較例6では、カルボン酸ビニル共重合体、ポリカルボン酸、及び導電性材料を含有する塗工液を用いてリチウムイオン二次電池を製造し、評価する方法を説明する。
[試験例1]
後述する実施例及び比較例で製造したリチウムイオン二次電池について、下記の特性を測定した。
(初期容量)
初期容量を出すために0.01mAの定電流で電圧が4.3Vになるまで充電し、次いで4.3Vの定電圧で2時間充電した。その後、0.01mAの定電流で電圧が3Vになるまで放電した。これを3回繰り返し、3回目の放電容量を初期容量とした。
(初期内部抵抗)
初期内部抵抗として、初期容量を測定した後のセルを4.3Vの電位にし、その電位をセンターに±10mVの電圧変化で1kHzのインピーダンスを測定した。
(レート特性)
初期容量から放電レートを求めて、放電レート別の放電容量を測定した。充電は毎回10時間かけて定電流で4.3Vまで電圧を上げた後、4.3V定電圧で2時間充電した。その後、10時間かけて定電流で3Vになるまで放電し、このときの放電容量を0.1Cの放電容量とした。次に同様に充電した後0.1Cで求めた放電容量から1時間で放電が完了する電流値で放電しそのときの放電容量を求め1Cのときの放電容量とした。同様に、3C、10C、30Cのときの放電容量を求め、0.1Cの時の放電容量を100%としたときの容量維持率を算出した。
(サイクル寿命)
1Cで4.3Vまで充電し、4.3Vの定電圧で2時間充電したあと1Cで放電する充放電試験を実施した。このとき、放電容量が最初の1回目の放電に対して何%になるかを計算し容量が80%をきったときの充放電回数を寿命とした。
(フロート試験)
60℃で0.1Cで4.3Vまで充電し、4.3Vの定電圧でのインピーダンス変化をおよそ1日おきに測定した。抵抗値が2倍になった時間を寿命とした。
(耐久試験後の電極の剥離試験)
電池を上記サイクル寿命条件で1000サイクル耐久充放電試験を行い、耐久試験後の正極及び負極から活物質層の脱離がないかを電池を分解して確認した。評価基準は以下の通りである。
○:全く脱離は見られない。
△:脱離が進行し、集電体の一部が剥き出しになっている。
×:活物質層が完全に脱離している。
<導電性塗工膜を形成した集電体の製造>
実施例13〜17及び比較例5と同様の工程で、正極用にアルミニウム箔、負極用に銅箔を使用し、それぞれの表面に導電性塗工膜を形成した。
<正極の製造>
冷却ジャケット付きの10Lプラネタリーミキサーに、PVDFの15%NMP溶液(商品名「クレハKFポリマー#1120」、クレハ社製)600部、コバルト酸リチウム(商品名「C−5H」、日本化学工業社製)900部、アセチレンブラック(商品名「デンカブラックHS−100」、電気化学工業社製)100部、及びNMP5000部を加え、液温が30℃を超えないように冷却しながら均一になるまで撹拌した。これを、導電性塗工膜を形成した集電体に幅180mm、厚さ200μmで塗工し、160℃温風炉で20秒乾燥させた。これを線圧400kgf/cmでロールプレスした。プレス後の正極活物質層の厚みは21μmであった。
<負極の製造>
冷却ジャケット付きの10Lプラネタリーミキサーに、PVDFの15%NMP溶液(商品名「クレハKFポリマー#9130、クレハ社製)600部、グラファイト(商品名「CGB−200」、日本黒鉛社製)1200部、及びNMP4000部を加え、液温が30℃を超えないように冷却しながら均一になるまで撹拌した。これを、導電性塗工膜を形成した集電体に幅180mm、厚さ200μmで塗工し、120℃温風炉で2分間乾燥させた。これを線圧400kgf/cmでロールプレスした。プレス後の負極活物質層の厚みは26μmであった。
<リチウムイオン二次電池の製造>
正極及び負極を短辺に10mm活物質層が無い領域が含まれるように40mm×50mmでカットし、金属がむき出しになっている部分に正極はアルミのタブを、負極にニッケルのタブを抵抗溶接で接合した。セパレータ(商品名「#2400」、セルガード社製)を幅45mm、長さ120mmにカットし、3つに折り返してその間に正極及び負極が対向するように挟み込んだ。これを幅50mm長さ100mmのアルミラミネートセルを二つ折りにしたもので挟み、タブが当たる部分にシーラントを挟み込んだ上でシーラント部分とそれに直行する辺を熱ラミネートして袋状にした。これを100℃の真空オーブンに12時間入れて真空乾燥させ、次いでドライブローブボックス中で六フッ化リン酸リチウム/EC:DEC=1:1の1M電解液(商品名「LBG−96533」、キシダ化学社製)を注入し、真空含浸した。その後、余った電解液を扱き出し、真空シーラーで接合密封して、リチウムイオン電池を製造した。
Figure 2012029858
Figure 2012029858
(5)キャパシタの作製
(実施例30〜34、比較例7)
実施例30〜34及び比較例7では、カルボン酸ビニル共重合体、ポリカルボン酸、及び導電性材料を含有する塗工液を用いて電気二重層キャパシタを製造し、評価する方法を説明する。
[試験例2]
後述する実施例及び比較例で製造した電気二重層型キャパシタについて、下記の特性を測定した。
(初期容量)
初期容量を出すために0.01mAの定電流で電圧が2Vになるまで充電した。その後、0.01mAの定電流で電圧が0Vになるまで放電した。これを3回繰り返し、3回目の放電容量を初期容量とした。
(初期内部抵抗)
初期内部抵抗として、初期容量を測定した後のセルを2Vの電位にし、その電位をセンターに±10mVの電圧変化で1kHzのインピーダンスを測定した。
(レート特性)
初期容量から放電レートを求めて、放電レート別の放電容量を測定した。充電は毎回1時間かけて定電流で2Vまで電圧を上げ充電した。その後、1時間かけて定電流で0Vになるまで放電し、このときの放電容量を1Cの放電容量とした。次に同様に充電した後1Cで求めた放電容量から0.1時間で放電が完了する電流値で放電しそのときの放電容量を求め10Cのときの放電容量とした。同様に、30C、100C、300Cのときの放電容量を求め、1Cの時の放電容量を100%としたときの容量維持率を算出した。
(サイクル寿命)
1Cで2Vまで充電したあと1Cで0Vまで放電する充放電試験を実施した。このとき、放電容量が最初の1回目の放電に対して何%になるかを計算し容量が80%を切ったときの充放電回数を寿命とした。
(フロート試験)
60℃、1Cで2.8Vまで充電し、2.8Vの定電圧でのインピーダンス変化をおよそ1日おきに測定した。抵抗値が2倍になった時間を寿命とした。
(耐久試験後の電極の剥離試験)
電池を上記フロート寿命条件で3000時間耐久フロート試験を行い、耐久試験後の電極集電体からの活物質層の脱離がないかを電気二重層型キャパシタを分解して確認した。評価基準は以下の通りである。
○:全く脱離は見られない。
△:脱離が進行し、集電体の一部が剥き出しになっている。
×:活物質層が完全に脱離している。
<導電性塗工膜を形成した集電体の製造>
実施例13〜17及び比較例5と同様の工程で、アルミ箔の表面に導電性塗工膜を形成した。
<電極の製造>
冷却ジャケット付きの10Lプラネタリーミキサーに、PVDFの15%NMP溶液(商品名「クレハKFポリマー#1120」、クレハ社製)3000部、活性炭(商品名「クラレコールRP−20」、クラレケミカル社製)1600部、及びNMP2500部を加え、液温が30℃を超えないように冷却しながら均一になるまで撹拌した。これを、導電性塗工膜を形成した集電体に幅180mm、厚さ200μmで塗工し、160℃温風炉で20秒乾燥させた。これを線圧400kgf/cmでロールプレスした。プレス後の電極活物質層の厚みは21μmであった。
<電気二重層型キャパシタの製造>
電極を短辺に10mm活物質層が無い領域が含まれるように40mm×50mmでカットし、金属がむき出しになっている部分にアルミのタブを抵抗溶接で接合した。セパレータ(商品名「#2400」、セルガード社製)を幅45mm、長さ120mmにカットし、3つに折り返してその間に2枚の電極が対向するように挟み込んだ。これを幅50mm長さ100mmのアルミラミネートセルを二つ折りにしたもので挟み、タブが当たる部分にシーラントを挟み込んだ上でシーラント部分とそれに直行する辺を熱ラミネートして袋状にした。これを100℃の真空オーブンに12時間入れて真空乾燥させ、次いでドライブローブボックス中でホウフッ化テトラエチルアンモニウム/PCの1M電解液(商品名「CPG−00005」、キシダ化学社製)を注入し、真空含浸した。その後、余った電解液を扱き出し、真空シーラーで接合密封して、電気二重層型キャパシタを製造した。
Figure 2012029858
本発明の塗工液を用いれば、アルミニウム材料等の金属材料表面に、密着性、耐溶剤性、及び耐酸化性に優れた導電性塗工膜を形成することができる。また、形成された導電性塗工膜は、アルミニウム箔や銅箔等からなる集電体に対して密着性に優れているとともに、耐電解液性にも優れており、かつ集電体との接触抵抗も改良されている。このため、本発明の塗工液を用いれば、優れた特性を有する導電性塗工膜、電極用部材、蓄電装置用電極板、及び蓄電装置を製造することができる。

Claims (20)

  1. 蓄電装置用電極板を構成する集電体の表面上に導電性塗工膜を形成するために用いられる塗工液であって、
    (A)ポリマー酸と、
    (B)下記一般式(1)で表されるカルボン酸ビニル共重合体と、
    (C)導電性材料と、
    (D)極性溶媒と、を含有する塗工液。
    Figure 2012029858
    (前記一般式(1)中、R1は、H、Na、カルボン酸ビニルモノマーに由来する有機基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、R2〜R4は、独立して、H、Na、C1〜C6のアルキル基、及び蓄電装置の電解質を構成し得るカチオンからなる群から選択され、mとnの比率(m/n)は、0.0001〜1である)
  2. 前記カチオンが、リチウム又はテトラアルキルアンモニウムである請求項1に記載の塗工液。
  3. チタン系カップリング剤及び/又はシランカップリング剤をさらに含有する請求項1又は2に記載の塗工液。
  4. 前記ポリマー酸が、ポリアクリル酸、ポリイタコン酸、及びポリマレイン酸からなる群より選択される少なくとも一種である請求項1〜3のいずれか一項に記載の塗工液。
  5. 前記導電性材料が、アセチレンブラック、ケッチェンブラック、黒鉛、ファーネスブラック、単層又は多層カーボンナノファイバー、及び単層又は多層カーボンナノチューブからなる群より選択される少なくとも一種である請求項1〜4のいずれか一項に記載の塗工液。
  6. 前記導電性材料1質量部に対する、前記ポリマー酸の含有量が0.1〜3質量部であり、
    前記導電性材料1質量部に対する、前記カルボン酸ビニル共重合体の含有量が0.1〜3質量部であり、
    固形分濃度が0.02〜40質量%である請求項1〜5のいずれか一項に記載の塗工液。
  7. 前記ポリマー酸1質量部に対する、前記カルボン酸ビニル共重合体の含有量が0.1〜1質量部である請求項1〜6のいずれか一項に記載の塗工液。
  8. 架橋剤をさらに含有する請求項1〜7のいずれか一項に記載の塗工液。
  9. 請求項1〜8のいずれか一項に記載の塗工液により形成される導電性塗工膜。
  10. 前記塗工液からなる膜が80〜250℃で熱処理されて形成された、その乾燥膜厚が0.1〜10μmである請求項9に記載の導電性塗工膜。
  11. 硝子板上に乾燥膜厚4μmで形成された場合に、
    JIS K 7194に準拠して測定される表面抵抗率が3,000Ω/□以下である請求項9又は10に記載の導電性塗工膜。
  12. 集電体と、前記集電体の表面上に配設された請求項9〜11のいずれか一項に記載の導電性塗工膜と、を備える電極板用部材。
  13. 請求項12に記載の電極板用部材と、
    前記導電性塗工膜の表面上に配設された電極活物質層と、を備える蓄電装置用電極板。
  14. 前記集電体がアルミニウム箔であり、
    前記電極活物質層に正極活物質が含有される請求項13に記載の蓄電装置用電極板。
  15. 前記集電体が銅箔であり、
    前記電極活物質層に負極活物質が含有される請求項13に記載の蓄電装置用電極板。
  16. 前記集電体がアルミニウム箔であり、
    分極性電極板である請求項13に記載の蓄電装置用電極板。
  17. 請求項1〜8のいずれか一項に記載の塗工液を集電体の表面に塗布して導電性塗工膜を形成する工程と、
    前記導電性塗工膜の表面上に電極活物質層を形成する工程と、を有する蓄電装置用電極板の製造方法。
  18. 前記集電体の表面に前記塗工液を塗布した後、前記塗工液に含有される前記極性溶媒を加熱除去するか、又は前記極性溶媒を除去しながら80〜250℃で1秒〜60分熱処理する請求項17に記載の蓄電装置用電極板の製造方法。
  19. 請求項13〜16のいずれか一項に記載の蓄電装置用電極板を備える蓄電装置。
  20. 二次電池又はキャパシタである請求項19に記載の蓄電装置。
JP2012531919A 2010-08-31 2011-08-31 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置 Expired - Fee Related JP5507696B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531919A JP5507696B2 (ja) 2010-08-31 2011-08-31 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010193498 2010-08-31
JP2010193498 2010-08-31
JP2012531919A JP5507696B2 (ja) 2010-08-31 2011-08-31 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
PCT/JP2011/069785 WO2012029858A1 (ja) 2010-08-31 2011-08-31 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置

Publications (2)

Publication Number Publication Date
JPWO2012029858A1 true JPWO2012029858A1 (ja) 2013-10-31
JP5507696B2 JP5507696B2 (ja) 2014-05-28

Family

ID=45772710

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012531822A Active JP5834008B2 (ja) 2010-08-31 2011-08-25 電池又は電気二重層キャパシタ集電体コート用導電性組成物、電池又は電気二重層キャパシタ集電体、電池および電気二重層キャパシタ
JP2012531919A Expired - Fee Related JP5507696B2 (ja) 2010-08-31 2011-08-31 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012531822A Active JP5834008B2 (ja) 2010-08-31 2011-08-25 電池又は電気二重層キャパシタ集電体コート用導電性組成物、電池又は電気二重層キャパシタ集電体、電池および電気二重層キャパシタ

Country Status (7)

Country Link
US (2) US9315680B2 (ja)
EP (2) EP2613386B1 (ja)
JP (2) JP5834008B2 (ja)
KR (2) KR101731671B1 (ja)
CN (2) CN103081192B (ja)
TW (2) TWI550036B (ja)
WO (2) WO2012029618A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081192B (zh) * 2010-08-31 2016-01-06 协立化学产业株式会社 电池或双电层电容器集电体涂布用导电性组合物、电池或双电层电容器集电体、电池及双电层电容器
EP2679637B1 (en) 2011-02-23 2017-05-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material
JP2013229187A (ja) * 2012-04-25 2013-11-07 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
JP5870195B2 (ja) 2012-08-21 2016-02-24 大日精化工業株式会社 水性液状組成物、水性塗工液、機能性塗工膜、及び複合材料
EP2892097B1 (en) * 2012-08-30 2018-06-06 Kaneka Corporation Current collector for battery and battery using same
KR101994261B1 (ko) * 2012-12-12 2019-06-28 삼성에스디아이 주식회사 이온성 액체를 포함하는 고체 전해질
US20160104918A1 (en) * 2013-05-24 2016-04-14 Joyce Wang Gel polymer electrolyte and lithium ion batteries employing the gel polymer electrolyte
JP6350150B2 (ja) * 2013-09-30 2018-07-04 株式会社Gsユアサ 蓄電素子
JP2015079669A (ja) * 2013-10-17 2015-04-23 協立化学産業株式会社 集電体用コート剤組成物
JP2015079708A (ja) * 2013-10-18 2015-04-23 協立化学産業株式会社 電池又は電気二重層キャパシタ集電体用コート剤組成物、電池又は電気二重層キャパシタ集電体、電池及び電気二重層キャパシタ
JP6224472B2 (ja) * 2013-10-24 2017-11-01 富士フイルム株式会社 導電膜形成用組成物、導電膜、有機薄膜トランジスタ、電子ペーパー、ディスプレイデバイスおよび配線板
US10497939B2 (en) 2013-10-29 2019-12-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Cation-conductive conformal ultrathin polymer electrolytes
KR102201317B1 (ko) 2014-02-24 2021-01-11 삼성전자주식회사 이차전지용 음극 및 이를 포함하는 이차전지
US10269504B2 (en) * 2014-07-10 2019-04-23 The United States Of America As Represented By The Secretary Of The Army Supercapacitor having holes formed in carbonaceous electrodes for increasing the frequency of operation
JP5729797B1 (ja) * 2014-08-25 2015-06-03 スリーエステクノ株式会社 導電性塗料および導電性塗料を用いた面状発熱体
JP6166235B2 (ja) * 2014-08-26 2017-07-19 大日精化工業株式会社 塗工液、塗工膜、及び複合材料
US20170214037A1 (en) * 2014-09-30 2017-07-27 Gs Yuasa International Ltd. Negative electrode for nonaqueous electrolyte energy storage device, nonaqueous electrolyte energy storage device, and energy storage apparatus
KR101705129B1 (ko) * 2014-11-24 2017-02-13 주식회사 이아이지 리튬 이차 전지용 전극 집전체 전처리 용액
JP6602130B2 (ja) * 2014-12-26 2019-11-06 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
EP3067948B1 (en) * 2015-03-09 2018-08-08 Heraeus Deutschland GmbH & Co. KG Conductive polymer in organic solvent with fluorinated non-ionic compound
US10199175B2 (en) * 2015-04-08 2019-02-05 Kemet Electronics Corporation Method of producing solid electrolytic capacitor and capacitor made thereby
CN106374080A (zh) * 2015-07-24 2017-02-01 东莞力朗电池科技有限公司 一种圆柱锂离子电池正极极片材料及制备方法
CN105470525A (zh) * 2015-11-24 2016-04-06 青岛能迅新能源科技有限公司 一种超导水性锂离子电池正极涂层及其制备方法
CN106816575A (zh) * 2015-11-30 2017-06-09 宁德新能源科技有限公司 正极片及锂离子电池
US10991936B2 (en) 2015-12-23 2021-04-27 Robert Bosch Gmbh Anode composition, method for preparing anode and lithium ion battery
JP6731724B2 (ja) * 2015-12-24 2020-07-29 関西ペイント株式会社 顔料ペースト及び塗工材
FR3046699B1 (fr) * 2016-01-08 2017-12-29 Commissariat Energie Atomique Accumulateur lithium-ion
KR101984723B1 (ko) * 2016-09-07 2019-05-31 주식회사 엘지화학 리튬 전극용 다공성 집전체 및 이를 포함하는 리튬 전극
US11387047B2 (en) * 2016-10-18 2022-07-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved performance at high temperatures and voltages
CN110268559A (zh) * 2017-02-08 2019-09-20 凸版印刷株式会社 碱性二次电池用正极及碱性二次电池
JP6747577B2 (ja) * 2017-03-14 2020-08-26 株式会社村田製作所 リチウムイオン二次電池
KR102306766B1 (ko) * 2017-06-13 2021-09-30 아테크 가부시키가이샤 수성도료 조성물, 공기 정화기구 및 공기 정화방법
JP7073689B2 (ja) * 2017-11-29 2022-05-24 株式会社Gsユアサ 極板、電極体及び蓄電素子
CN108269986B (zh) * 2018-01-25 2020-06-16 清陶(昆山)能源发展有限公司 一种固态电池用的复合硅烷偶联剂三元复合正极材料及其制备方法以及应用
US20190379010A1 (en) * 2018-06-08 2019-12-12 Cyberx Engineering Inc. Flexible batteries
US20200115564A1 (en) 2018-10-16 2020-04-16 Dupont Electronics, Inc. Stretchable conductive fluoroelastomer paste composition
TWI718931B (zh) 2020-04-14 2021-02-11 國立勤益科技大學 具二氧化矽微球之超級電容器電極及其製備方法
CN111916758B (zh) * 2020-07-28 2022-05-31 福建巨电新能源股份有限公司 一种改性三维编织网状集流体及其改性方法和锂离子电池
WO2022104213A1 (en) * 2020-11-16 2022-05-19 Novelis Inc. Covalently bonded coatings for foils used as current collectors in energy storage devices
CN113793936B (zh) * 2021-08-24 2023-04-11 广州市乐基智能科技有限公司 一种用于固态锂电池的复合粘结剂及其制备方法和应用
JP2023075573A (ja) * 2021-11-19 2023-05-31 日本電気硝子株式会社 蓄電デバイス用部材の製造方法
US20230317956A1 (en) * 2022-03-31 2023-10-05 Samsung Sdi Co., Ltd. Electrode for non-aqueous electrolyte rechargeable battery and non-aqueous electrolyte rechargeable battery

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729438A (en) * 1970-03-30 1973-04-24 Union Carbide Corp Latex polymers of vinylacetate and a silane
JPS58164604A (ja) 1982-03-25 1983-09-29 Kuraray Co Ltd ケイ素を含有する変性ポリビニルアルコ−ルの製造方法
JPH0770328B2 (ja) * 1986-11-08 1995-07-31 旭化成工業株式会社 二次電池
JPS6417485A (en) 1987-07-10 1989-01-20 Mitsubishi Electric Corp Image sensing element
JP3530544B2 (ja) * 1992-09-14 2004-05-24 キヤノン株式会社 二次電池
CA2110097C (en) 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
EP0662728B1 (en) 1993-12-29 1998-04-29 TDK Corporation Lithium secondary cell
JP3229740B2 (ja) * 1993-12-29 2001-11-19 ティーディーケイ株式会社 リチウム二次電池
JPH0997602A (ja) * 1995-09-29 1997-04-08 Mitsubishi Chem Corp 非水系二次電池
JPH0997625A (ja) * 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
JPH09237625A (ja) * 1996-02-27 1997-09-09 Dainippon Printing Co Ltd 非水電解液二次電池用電極板及びその製造方法
JPH11144735A (ja) * 1997-11-05 1999-05-28 Fujitsu Ltd 電 池
JPH11238503A (ja) * 1998-02-20 1999-08-31 Yuasa Corp 非水電解質二次電池
JPH11238502A (ja) * 1998-02-24 1999-08-31 Shin Kobe Electric Mach Co Ltd 蓄電池
JP3973003B2 (ja) * 1998-04-13 2007-09-05 Tdk株式会社 シート型電気化学素子
KR100276966B1 (ko) * 1998-07-31 2001-02-01 이병길 2차전지용 금속 알루미늄과 구리 집전체의 전처리 방법
TW200410439A (en) 2002-11-22 2004-06-16 Kureha Chemical Ind Co Ltd Binder composition for electrode of nonaqueous electrolyte battery, and use thereof
JP3789427B2 (ja) 2002-11-29 2006-06-21 本田技研工業株式会社 電気二重層コンデンサ用電極体
US6917094B2 (en) 2002-11-29 2005-07-12 Honda Motor Co., Ltd Electrode for electric double layer capacitor
KR100490543B1 (ko) * 2002-12-14 2005-05-17 삼성에스디아이 주식회사 음극 및 리튬 전지의 제조방법
DE602004025758D1 (de) * 2003-01-23 2010-04-15 Kuraray Co Polyvinylacetal und dessen Verwendung
KR101179378B1 (ko) 2005-02-10 2012-09-03 쇼와 덴코 가부시키가이샤 이차전지용 집전기, 이차전지 양극, 이차전지 음극, 이차전지 및 그들의 제조 방법
JP4593488B2 (ja) * 2005-02-10 2010-12-08 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
US9144824B2 (en) * 2006-11-10 2015-09-29 The Regents Of The University Of California Atmospheric pressure plasma-induced graft polymerization
JP2008153053A (ja) 2006-12-18 2008-07-03 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極板の製造方法および非水電解質二次電池
JP2010146726A (ja) * 2007-11-30 2010-07-01 Kyoritsu Kagaku Sangyo Kk 導電性組成物
KR101252941B1 (ko) * 2008-06-02 2013-04-12 다이니치 세이카 고교 가부시키가이샤 도공액, 전극판 제조용 도공액, 언더코트제 및 그 사용
JP5359074B2 (ja) * 2008-07-11 2013-12-04 東洋インキScホールディングス株式会社 水系炭素材料組成物及びそれを用いた電池用組成物
JP4646160B2 (ja) 2009-03-30 2011-03-09 ソニー株式会社 伝送装置および方法
US8501348B2 (en) * 2009-12-07 2013-08-06 Nanotek Instruments, Inc. Submicron-scale and lower-micron graphitic fibrils as an anode active material for a lithium ion battery
CN103081192B (zh) * 2010-08-31 2016-01-06 协立化学产业株式会社 电池或双电层电容器集电体涂布用导电性组合物、电池或双电层电容器集电体、电池及双电层电容器

Also Published As

Publication number Publication date
EP2613386A4 (en) 2017-01-04
KR20130107291A (ko) 2013-10-01
KR101731671B1 (ko) 2017-05-11
EP2613387B1 (en) 2017-10-11
KR101594661B1 (ko) 2016-02-24
EP2613386B1 (en) 2018-01-24
CN103155068B (zh) 2015-11-25
CN103081192A (zh) 2013-05-01
US20130164614A1 (en) 2013-06-27
EP2613386A1 (en) 2013-07-10
US20130157129A1 (en) 2013-06-20
US9315680B2 (en) 2016-04-19
US9181439B2 (en) 2015-11-10
JP5834008B2 (ja) 2015-12-16
CN103155068A (zh) 2013-06-12
WO2012029858A1 (ja) 2012-03-08
EP2613387A1 (en) 2013-07-10
JPWO2012029618A1 (ja) 2013-10-28
TWI473865B (zh) 2015-02-21
KR20130055004A (ko) 2013-05-27
TW201224084A (en) 2012-06-16
TW201224085A (en) 2012-06-16
CN103081192B (zh) 2016-01-06
TWI550036B (zh) 2016-09-21
JP5507696B2 (ja) 2014-05-28
EP2613387A4 (en) 2017-01-11
WO2012029618A1 (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5507696B2 (ja) 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
JP6073449B2 (ja) 導電性アンダーコート剤組成物
JP5596641B2 (ja) 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置
KR101420029B1 (ko) 전극판용의 수계 도공액, 축전 장치용 전극판, 축전 장치용 전극판의 제조방법 및 축전 장치
JP5431699B2 (ja) 二次電池電極用バインダー、それを用いてなる電極及び二次電池
WO2018164094A1 (ja) 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
JP6529700B1 (ja) 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
JP2015079669A (ja) 集電体用コート剤組成物
JP2017123264A (ja) 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
WO2018101299A1 (ja) 導電性組成物
JP2020198275A (ja) 全固体電池用集電体および全固体電池
JP2016219197A (ja) 集電体用コート剤組成物、蓄電デバイス用電極板及び蓄電デバイス
WO2021132522A1 (ja) 電気化学デバイス、電気化学デバイス用電極、電気化学デバイス用塗工液、及びその用途
CN115160845A (zh) 水性涂覆液、蓄电装置用电极以及蓄电装置
JP2021048014A (ja) 全固体電池

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees