JPWO2007125853A1 - 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置 - Google Patents

測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置 Download PDF

Info

Publication number
JPWO2007125853A1
JPWO2007125853A1 JP2008513187A JP2008513187A JPWO2007125853A1 JP WO2007125853 A1 JPWO2007125853 A1 JP WO2007125853A1 JP 2008513187 A JP2008513187 A JP 2008513187A JP 2008513187 A JP2008513187 A JP 2008513187A JP WO2007125853 A1 JPWO2007125853 A1 JP WO2007125853A1
Authority
JP
Japan
Prior art keywords
measurement
pattern
exposure
inspection
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008513187A
Other languages
English (en)
Other versions
JP5057248B2 (ja
Inventor
晋一 沖田
晋一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008513187A priority Critical patent/JP5057248B2/ja
Publication of JPWO2007125853A1 publication Critical patent/JPWO2007125853A1/ja
Application granted granted Critical
Publication of JP5057248B2 publication Critical patent/JP5057248B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Abstract

二重露光に用いられる一方のレチクルの検査においては、そのパターン領域を、(a)透光部であるか遮光部であるか、(b)他方のレチクルのパターン領域が、透光部であるか、遮光部であるか、パターンの近接部であるか、などによって、複数の領域に分割し、歩留まりに直結する異常を検出することができるように、領域ごとに、検査条件を変更する。これにより、デバイス生産の歩留まりに直結したレチクル(R1)、(R2)の欠陥検査が可能となる。

Description

本発明は、測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置に係り、さらに詳しくは、基板上の被露光領域の同一の領域に照射される複数の露光光それぞれの光路上に配置される複数のマスクの少なくとも1つを測定検査する測定検査方法、該測定検査方法を用いた測定検査装置、複数の露光光を基板上の被露光領域に照射する露光方法、複数の露光光を基板の被露光領域に照射する露光工程を含むデバイス製造方法及び該デバイス製造方法を用いたデバイス製造装置に関する。
従来、レチクル(マスク)のパターン形成面の欠陥検査は、スループットの観点から、露光直前ではなくレチクル製造後、あるいは、定期検査時などに実施されている。しかしながら、最近では、基板上に転写されるデバイスパターンの解像度の向上などを目的として、基板の被露光面上の同一の領域に、複数のパターンを重ね合わせて転写するいわゆる多重露光法が用いられるようになってきている(例えば、特許文献1参照)。多重露光法では、通常の露光法に比べ、露光光が照射されるパターンの有効面積が大きくなるので、露光直前のレチクル上のパターン形成面の欠陥検査の必要性が増している。
露光直前のレチクル欠陥検査では、スループット向上の観点から、デバイス生産の歩留まりに影響のある欠陥だけを検査できることが望ましい。しかし、多重露光法においては、基板上の露光結果は、複数のレチクル上のパターンの重ね合わせ転写結果であるため、パターン形成面上におけるデバイス生産の歩留まりに直結する欠陥と、そうでない欠陥との見極めは、通常の露光法に比べ、極めて困難である。
特開平10−209039号公報
本発明は、上記事情に鑑みてなされたもので、第1の観点からすると、基板上の被露光領域の同一の領域に照射される複数の露光光それぞれの光路上に配置される複数のマスクの少なくとも1つを測定検査する測定検査方法であって、前記複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報に応じて、前記複数のマスクのうちの前記第1マスクと異なる第2マスクに関する測定検査処理の処理内容を変更する測定検査方法である。
これによれば、基板上の同一領域に対する露光に用いられる複数のマスク各々の測定検査処理の処理内容を、他のマスクに関する情報に応じて変更する。これにより、個々のマスクによる露光状態だけでなく、基板上の被露光領域の同一の領域における総合的な露光状態を考慮した、デバイス生産の歩留まりに直結するマスクの測定検査が可能となる。
本発明は、第2の観点からすると、基板上の被露光領域の同一の領域に照射される複数の露光光それぞれの各光路上に配置される複数のマスクの少なくとも1つを測定検査する測定検査方法であって、前記被露光領域の同一領域に照射される前記複数露光光の総光量を求める工程を含む測定検査方法である。
これによれば、個々のマスクを介した各露光光による露光量だけでなく、基板上の被露光領域の同一の領域に照射される複数の露光光の総光量(光量の総量)を考慮した、デバイス生産の歩留まりに直結するマスクの測定検査が可能となる。
本発明は、第3の観点からすると、複数の露光光を基板上の被露光領域に照射する露光方法であって、前記複数の露光光それぞれの光路上に配置される複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報に応じて前記第1マスクと異なる第2マスクを測定検査処理し、前記測定検査処理の結果に基づいて、前記基板の露光処理を制御する露光方法である。
これによれば、複数の露光光の各光路上に配置される複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報を用いた第2マスクの測定検査結果、すなわち、複数のマスクに跨る総合的な測定検査結果に基づいて、前記基板の露光処理を制御することができる。これにより、総合的な測定検査を合格したマスクを用いた高精度な露光が可能となる。
本発明は、第4の観点からすると、複数の露光光を基板の被露光領域に照射する露光工程を含むデバイス製造方法であって、前記複数の露光光それぞれの光路上に配置される複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報に応じて前記第1マスクと異なる第2マスクを測定検査処理する工程を含むデバイス製造方法である。
これによれば、個々のマスクによる露光状態だけでなく、基板上の被露光領域の同一の領域における総合的な露光状態を考慮した、歩留まりに直結するマスクの測定検査が可能となり、デバイス生産の歩留まりが向上する。
本発明は、第5の観点からすると、複数の露光光を基板上の被露光領域に照射する露光工程を含むデバイス製造方法であって、前記複数の露光光それぞれの光路上に配置される複数のマスクそれぞれを介して前記被露光領域の所定位置に照射される前記複数露光光の総光量に基づいて、前記マスクに所定処理を施すデバイス製造方法である。
これによれば、複数の露光光の総光量に基づいて、マスクに所定処理を施すため、多重露光により生産されるデバイスの歩留まりを向上させることができる。
本発明は、第6の観点からすると、複数のパターンの像を物体上の同一領域に同時又は順次に形成して前記物体を露光する露光方法であって、同一又は異なるマスク上に形成される、前記複数のパターンのうちの1つのパターンが形成された領域の測定検査処理を、前記複数のパターンのうちの残りの少なくとも1つのパターンに関する情報を考慮して実行し、前記測定検査処理の結果に基づいて、前記物体の露光条件を制御する露光方法である。
これによれば、同一又は異なるマスク上に形成される、前記複数のパターンのうちの、別のパターンの情報を考慮した1つのパターンが形成された領域の測定検査結果、すなわち、複数のパターンに跨る総合的な測定検査結果に基づいて、前記物体の露光条件を制御することができる。これにより、総合的な測定検査に合格した複数のパターンを用いた高精度な露光が可能となる。
一実施形態に係るデバイス製造システムの構成を示す概略図である。 一実施形態に係る露光装置の構成を示す概略図である。 レチクル測定検査器の概略構成図である。 デバイス製造工程のフローチャートである。 レチクル最適化のフローチャートである。 図6(A)〜図6(E)は、パターン領域の分類を説明するための図である。 検査条件マップを作成する際の基準をまとめた表である。
以下、本発明の一実施形態を図1〜図7に基づいて説明する。
図1には、一実施形態に係るデバイス製造システムの概略構成が示されている。デバイス製造システム1000は、半導体ウエハを処理し、マイクロデバイスを製造するためにデバイス製造工場内に構築されたシステムである。図1に示されるように、デバイス製造システム1000は、露光装置100と、露光装置100に隣接して配置されたトラック200と、管理コントローラ160と、解析装置500と、ホストシステム600と、デバイス製造装置群900とを備えている。
露光装置100は、デバイスパターンを、フォトレジストが塗布されたウエハに転写する装置である。図2には、露光装置100の概略構成が示されている。露光装置100は、露光光IL1、IL2を射出する照明系10、露光光IL1により照明されるデバイスパターン等が形成されたレチクルR1と、露光光IL2により照明されるデバイスパターン等が形成されたレチクルR2とをレチクルホルダRHをそれぞれ介して保持するレチクルステージRST、露光光IL1、IL2により照明されたレチクルR1、R2にそれぞれ形成されたデバイスパターンの一部をウエハWの被露光面上に投影する両側テレセントリックな投影光学系PL、露光対象となるウエハWをウエハホルダWHを介して保持するウエハステージWST及びこれらを統括制御する主制御装置20を備えている。
レチクルR1、R2上には、それぞれ回路パターン等を含むデバイスパターンが形成されている。照明系10からの照明光IL1、IL2は、レチクルR1、R2それぞれのパターン形成面の一部に照射される。この照射領域を照明領域IAR1、IAR2とする。
照明領域IAR1、IAR2をそれぞれ経由した照明光IL1、IL2は、投影光学系PLを介して、ウエハステージWSTに保持されたウエハWの被露光面(ウエハ面)の一部に入射し、そこに照明領域IAR1、IAR2のデバイスパターンの投影像が重なるように形成される。この投影像が形成される領域を露光領域IAとする。ウエハWの被露光面には、フォトレジストが塗布されており、露光領域IAに対応する部分に投影像のパターンが転写されるようになる。
ここで、投影光学系PLの光軸に沿った座標軸をZ軸とするXYZ座標系を考える。ウエハステージWSTは、XY平面を移動可能であるとともに、ウエハWの被露光面を、Z軸方向のシフト、θx(X軸回りの回転)方向、θy(Y軸回りの回転)方向に調整することが可能である。また、レチクルR1、R2を保持するレチクルステージRSTは、ウエハWを保持するウエハステージWSTに同期してXY面内を移動可能である。
レチクルステージRSTと、ウエハステージWSTとの投影光学系PLの投影倍率に応じた同期走査により、レチクルR1、R2上のデバイスパターンが照明領域IAR1、IAR2を通過するのに同期して、ウエハWの被露光面が、露光領域IAを通過するようになる。これにより、レチクルR1、R2上のパターン形成面の全体のデバイスパターンが、ウエハWの被露光面上の一部の領域(ショット領域)に転写されるようになる。露光装置100は、露光光IL1、IL2に対する、上述したレチクルステージRSTとウエハステージWSTとの相対同期走査と、ウエハWを保持するウエハステージWSTのステッピングを繰り返すことにより、レチクルR1、R2上のデバイスパターンをウエハW上の複数のショット領域に転写している。すなわち、露光装置100は、いわゆる多重露光(二重露光)を行う走査露光(ステップ・アンド・スキャン)方式の露光装置である。
露光装置100では、レチクルホルダRHは、レチクルステージRSTと一体化してはおらず、脱着が可能である。勿論、レチクルR1、R2を保持していない状態でも、この脱着が可能であり、不図示のレチクルホルダ交換機により交換可能となっている。
主制御装置20は、露光装置100の構成各部を制御するコンピュータシステムである。主制御装置20は、デバイス製造システム1000内に構築された通信ネットワークに接続され、その通信ネットワークを介して外部とのデータ送受信が可能となっている。
図1に戻り、露光装置100には、露光に用いられるレチクルR1、R2を、レチクルステージRSTにロードする前に検査するレチクル測定検査器130がインラインにて接続されている。レチクル測定検査器130は、レチクルR1、R2の種々の測定検査を行う。
レチクルR1、R2のパターン形成面はガラス面であり、基本的には、このガラス面にクロム等の金属を蒸着して金属膜を形成し、この金属膜にパターニングを施すことで、パターン形成面上にパターン領域が形成されている。以下、このパターン領域に形成されたパターンをクロムパターンとも呼ぶ。
レチクル測定検査器130は、レチクルR1、R2のパターン形成面の外観検査によって、そのパターン形成面の欠陥を検出する。この欠陥は、ハード欠陥とソフト欠陥とに分類される。ハード欠陥には、クロムパターンの欠け、不要なクロムパターンの残留、及びガラス傷などがある。また、ソフト欠陥には、ゴミ、汚れ、及び異物などがある。ハード欠陥は、化学的・機械的なクリーニングプロセスで除去することができないが、ソフト欠陥は、それらのプロセスで除去が可能である。外観検査では、パターン形成面のハード欠陥及びソフト欠陥を検出する。
レチクルR1、R2のパターン形成面は、透光部と遮光部とに分けることができる。透光部上の欠陥は、パターン形成面を照明し、その裏側から撮像し、その撮像結果に基づいて欠陥を検出する。レチクル測定検査器130は、透過光により撮像したパターンを、チップ比較(die−to−die比較)、あるいは、データ比較(die−to−DB(database)比較)することにより、その比較結果における差異を、透光部における欠陥として検出する。一般的に、レチクル測定検査器130における、欠陥の検出感度は、標準で、設計パターンルールの1/3程度に設定されている。例えば、設計パターンルールが0.3μmである場合には、0.1μm程度の検出感度が標準で要求される。このような欠陥検査感度及び撮像データの画素数などは、パターン形成面内の各地点で、ある程度調整可能になっている。
パターン形成面の遮光部上の欠陥は、上記のような透過照明方式で検出するのが困難なため、レーザ散乱光方式を用いて検出する。図3に示されるように、レチクル測定検査器130は、露光装置100におけるレチクルステージRSTに相当するステージ(不図示)と、光源801と、振動ミラー802と、走査レンズ803と、受光器808、809、810とを含む。ステージは、レチクルステージRSTと同様に、レチクルR1を保持したレチクルホルダRHを真空吸着保持可能に構成されている。このステージには、前述のレチクルホルダ交換機により、レチクルホルダRHがロードされており、レチクルホルダRHは、ステージ上に吸着保持されている。そして、このレチクルホルダRH上には、レチクルR1がパターン形成面を上に向けて(すなわち、レチクルステージRST上とは表裏反対の向きで)吸着保持されている。レチクルR1のパターン形成面(被検面804)上には、回路パターンが形成されているものとし、その一部に異物806が付着しているものとする。なお、図3では図示が省略されているが、不図示のステージ上には、レチクルR2を保持可能なレチクルホルダも設けられている。
光源801から射出された光ビームL1は、振動ミラー(ガルバノスキャナーミラー又はポリゴンスキャナーミラー)802により偏向させられて走査レンズ803に入射し、この走査レンズ803から射出された光ビームL2が、被検面804上の走査線805上を走査する。この際に、光ビームL2の走査周期よりも遅い速度で被検面804をその走査線805に直交する方向に移動させると、光ビームL2により被検面804上の全面を走査することができるようになる。この場合、被検面804の表面上に異物806が存在する領域に光ビームL2が照射されると散乱光L3が発生する。また、被検面804上に付着した異物及びパターン欠陥などとは異なる、例えばレチクルR1上の回路パターンが存在する領域に光ビームL2が照射されると、そのパターン807からは回折光L4が発生する。
図3においては、受光器808、809及び810が相異なる方向から走査線805に対向するように配置されている。異物806から発生する散乱光L3は、ほとんど全方向に向かって発生する等方的散乱光となるのに対して、パターン807から発生する回折光L4は回折によって生じるため、空間的に離散的な方向に射出される指向性の強い光となる。この散乱光L3と、回折光L4との性質の違いを用いて、受光器808、809及び810のすべてで光を検出した場合には、その光は欠陥からの散乱光であると判断することができ、受光器808、809及び810の内で1つでも光を検出しない受光器が存在する場合には、その光はパターンからの回折光であると判断することができる。この結果、レチクル測定検査器130では、遮光部上の異物806を検出することが可能となる。
レチクル測定検査器130においては、光ビームの走査速度、及びレチクルR1を送る送り速度を走査中に変更することが可能である。これにより、精密に欠陥検査したい場所では、光の走査速度とレチクルR1を送る送り速度とを遅めに設定することも可能である。また、レチクル測定検査器130では、散乱光の検出感度を走査中に変更可能である。これにより、微小な欠陥を検出したい場所(例えば、パターンが微細であるような場所)では、検出感度を高めに設定したりすることが可能である。
さらに、レチクル測定検査器130は、フィゾー干渉計(不図示)を備えている。レチクル測定検査器130は、レチクルホルダRHに吸着保持された状態でのレチクルR1、R2のパターン形成面の面形状を、フィゾー干渉計などを用いて計測可能である。
パターン形成面の欠陥検査データ及び面形状の測定データなどの計測生データは、不図示の記憶装置に格納される。レチクル測定検査器130は、外部の通信ネットワークと接続され、外部の装置とデータの送受信が可能となっており、これらの計測生データを必要に応じて外部に送信する。
なお、デバイス製造システム1000では、同じパターンが形成されたレチクルが複数枚用意されている。すなわち、レチクルR1として使用される可能性のあるレチクルが複数枚、レチクルR2として使用される可能性のあるレチクルが複数枚用意されている。露光装置100では、これらのレチクルの中から、互いのパターン形成面同士の相性が良好なレチクルを選択して、露光を行うことになる。
[トラック]
トラック200は、露光装置100を囲むチャンバ(不図示)に接するように配置されている。トラック200は、内部に備える搬送ラインにより、主として露光装置100に対するウエハWの搬入・搬出を行っている。
[コータ・デベロッパ]
トラック200内には、レジスト塗布及び現像を行うコータ・デベロッパ(C/D)110が設けられている。C/D110は、その装置パラメータの設定により、その処理状態を、ある程度調整可能である。この結果、ウエハW上に塗布されるレジストの膜厚、現像時間などの調整が可能である。
C/D110は、露光装置100及びウエハ測定検査器120とは、独立して動作可能である。C/D110は、トラック200の搬送ラインに沿って配置されている。したがって、この搬送ラインによって、露光装置100とC/D110との間でウエハWの搬送が可能となる。また、C/D110は、デバイス製造システム1000内の通信ネットワークと接続されており、外部とのデータ送受信が可能となっている。C/D110は、例えば、そのプロセスに関する情報(上記トレースデータなどの情報)を出力可能である。
[ウエハ測定検査器]
トラック200内には、露光装置100でのウエハWの露光前後(すなわち、事前、事後)において、そのウエハWに対する様々な測定検査を行うことが可能な複合的なウエハ測定検査器120が設けられている。ウエハ測定検査器120は、露光装置100及びC/D110とは、独立して動作可能である。ウエハ測定検査器120は、露光前の事前測定検査処理と、露光後の事後測定検査処理とを行う。
事前測定検査処理では、ウエハWが露光装置100に搬送される前に、ウエハWの被露光面の面形状の測定、ウエハW上の異物の検査及びウエハW上のレジスト膜検査などを行う。一方、事後測定検査処理では、露光装置100で転写されC/D110で現像された露光後(事後)のウエハW上のレジストパターン等の線幅及び重ね合わせ誤差、並びにウエハ欠陥・異物検査などを行う。ウエハ測定検査器120は、事前測定検査の結果を、システム内の通信ネットワークを介して外部にデータ出力することが可能である。
ウエハ測定検査器120は、トラック200の搬送ラインに沿って配置されている。したがって、この搬送ラインによって、露光装置100と、C/D110と、ウエハ測定検査器120との間でウエハWの搬送が可能となる。すなわち、露光装置100と、トラック200とウエハ測定検査器120とは、相互にインライン接続されている。ここで、インライン接続とは、装置間及び各装置内の処理ユニット間を、ロボットアーム又はスライダ等のウエハWを自動搬送するための搬送装置を介して接続することを意味する。このインライン接続により、露光装置100とC/D110とウエハ測定検査器120との間でのウエハWの受け渡し時間を格段に短くすることができる。
インライン接続された露光装置100とC/D110とウエハ測定検査器120と、レチクル測定検査器130とは、これを一体として、1つの基板処理装置(100、110、120、130)とみなすこともできる。基板処理装置(100、110、120、130)は、レチクルR1、R2に対する測定検査工程と、ウエハWに対してフォトレジスト等の感光剤を塗布する塗布工程と、感光剤が塗布されたウエハW上にレチクルR1、R2のパターンの像を投影し、露光する露光工程と、露光工程が終了したウエハWを現像する現像工程等を行う。これらの工程の詳細については後述する。
デバイス製造システム1000では、露光装置100と、C/D110と、ウエハ測定検査器120と、レチクル測定検査器130とが(すなわち基板処理装置(100、110、120、130)が)、複数台設けられている。各基板処理装置(100、110、120、130)、デバイス製造装置群900は、温度及び湿度が管理されたクリーンルーム内に設置されている。また、各装置の間では、所定の通信ネットワーク(例えばLAN:Local Area Network)を介して、データ通信を行うことが可能である。この通信ネットワークは、顧客の工場、事業所あるいは会社に対して設けられたいわゆるイントラネットと呼ばれる通信ネットワークである。
基板処理装置(100、110、120、130)においては、ウエハWは複数枚(例えば25枚)を1単位(ロットという)として処理される。デバイス製造システム1000においては、ウエハWは1ロットを基本単位として処理され製品化されている。したがって、デバイス製造システム1000におけるウエハプロセスをロット処理ともいう。
なお、このデバイス製造システム1000では、ウエハ測定検査器120は、トラック200内に置かれ、露光装置100及びC/D110とインライン接続されているが、これらを、トラック200外に配置し、露光装置100及びC/D110とはオフラインに構成しても良い。また、レチクル測定検査器130を、露光装置100内、又は、トラック200内に置くようにしても良い。すなわち、レチクルR1、R2の測定検査を露光装置100内で行っても良い。要は、レチクル測定検査器130がレチクルR1、R2の搬送経路上に置かれるようにすれば良い。
上述した、ウエハ測定検査器120及びレチクル測定検査器130における情報処理を実現するハードウエアとしては、例えばパーソナルコンピュータ(以下、PCとも記述する)を採用することができる。この場合、この情報処理装置のCPU(不図示)で実行されるプログラムの実行により実現される。解析プログラムは、CD−ROMなどのメディア(情報記録媒体)により供給され、PCにインストールされた状態で実行される。
[解析装置]
解析装置500は、露光装置100及びトラック200とは独立して動作する装置である。解析装置500は、デバイス製造システム1000内の通信ネットワークと接続されており、外部とデータ送受信が可能となっている。解析装置500は、この通信ネットワークを介して各種装置から各種データ(例えばその装置の処理内容)を収集し、ウエハに対するプロセスに関するデータの解析を行う。このような解析装置500を実現するハードウエアとしては、例えばパーソナルコンピュータを採用することができる。この場合、解析処理は、解析装置500のCPU(不図示)で実行される解析プログラムの実行により実現される。この解析プログラムは、CD−ROMなどのメディア(情報記録媒体)により供給され、PCにインストールされた状態で実行される。
解析装置500は、レチクル測定検査器130の測定検査結果に基づいて、レチクルR1、R2の処理条件の最適化を行う。ここで、解析装置500の機能自体が、レチクル測定検査器130の中、あるいは、露光装置100の中に含まれていても良い。
[デバイス製造装置群]
デバイス製造装置群900としては、CVD(Chemical Vapor Deposition)装置910と、エッチング装置920と、CMP(Chemical Mechanical Polishing)装置930と、酸化・イオン注入装置940とが設けられている。CVD装置910は、ウエハ上に薄膜を生成する装置であり、エッチング装置920は、現像されたウエハに対しエッチングを行う装置である。また、CMP装置930は、化学機械研磨によってウエハの表面を平坦化する研磨装置であり、酸化・イオン注入装置940は、ウエハWの表面に酸化膜を形成し、又はウエハW上の所定位置に不純物を注入するための装置である。また、CVD装置910、エッチング装置920、CMP装置930及び酸化・イオン注入装置940も、露光装置100などと同様に複数台設けられており、相互間でウエハWを搬送可能とするための搬送経路が設けられている。デバイス製造装置群900には、この他にも、プロービング処理、リペア処理、ダイシング処理、パッケージング処理、及びボンディング処理などを行う装置も含まれている。
[管理コントローラ]
管理コントローラ160は、露光装置100により実施される露光工程を集中的に管理するとともに、トラック200内のC/D110及びウエハ測定検査器120の管理及びそれらの連携動作の制御を行う。このようなコントローラとしては、例えば、パーソナルコンピュータを採用することができる。管理コントローラ160は、デバイス製造システム1000内の通信ネットワークを通じて、処理、動作の進捗状況を示す情報、及び処理結果、測定・検査結果を示す情報を各装置から受信し、デバイス製造システム1000の製造ライン全体の状況を把握し、露光工程等が適切に行われるように、各装置の管理及び制御を行う。
[ホストシステム]
ホストシステム(以下、「ホスト」と呼ぶ)600は、デバイス製造システム1000全体を統括管理し、露光装置100、トラック200、ウエハ測定検査器120、レチクル測定検査器130、デバイス製造装置群900を統括制御するメインホストコンピュータである。このホスト600についても、例えばパーソナルコンピュータなどを採用することができる。ホスト600と、他の装置との間は、有線又は無線の通信ネットワークを通じて接続されており、相互にデータ通信を行うことができる。このデータ通信により、ホスト600は、このシステムの統括制御を実現している。
[デバイス製造工程]
次に、デバイス製造システム1000における一連のプロセスの流れについて説明する。図4には、このプロセスのフローチャートが示されている。デバイス製造システム1000の一連のプロセスは、ホスト600及び管理コントローラ160によってスケジューリングされ管理されている。
まず、図4のステップ201では、レチクルR1、R2をレチクル測定検査器130にロードする。レチクル測定検査器130のステージ上には、2つのレチクルホルダRHが吸着保持されており、レチクルR1、R2がそれぞれレチクルホルダRHに前述した向きで吸着保持される。
次のステップ202では、レチクルR1、R2のパターン形成面の面形状をそれぞれ測定する。この面形状データは、解析装置500に送られる。
次のステップ203では、レチクルR1の最適化を行う。ここでは、測定検査器120におけるレチクルR1のパターン形成面の欠陥検査と、その検査結果を用いた解析装置500におけるレチクルR1の最適化が行われる。
図5には、ステップ203で行われるレチクルR1の最適化のフロー図が示されている。図5に示されるように、ステップ301において、ホスト600が処理開始指令を、解析装置500に発する。解析装置500は、指令受信待ちとなっており、この指令を受信すると、ステップ302に進む。ステップ302において、解析装置500は、レチクル測定検査器130のレチクルR1を欠陥検査する際の検査条件マップを作成する。レチクル測定検査器130では、レチクルR1のパターン形成面の領域毎に、その検査条件を変更することが可能である。検査条件マップは、レチクルR1の欠陥検査において、デバイス生産の歩留まりに直接影響する欠陥のみを検出するための検査条件をパターン面内の場所に対応付けて示したものである。
検査条件マップの作成基準は、主として、その場所に形成されているパターンの属性に基づいている。例えば、第1に、レチクルR1のパターン領域内のある地点が、透光部であるか遮光部であるか否かによって、レチクルR1の検査条件を変更することができる。本実施形態では、透光部の欠陥は、遮光部の欠陥よりも、ウエハWの転写結果に影響を与えやすいので、透光部の欠陥が、より厳格に検出される様に検査条件を変更するのが望ましい。解析装置500は、レチクルR1のパターン領域(PA1とする)内の任意の地点を抜き出し、その地点が、透光部であるのか遮光部であるのかというその地点の属性(これを、パターン領域PA1の第1属性とする)によって分類する。
また、本実施形態では、レチクルR1のパターン領域PA1の検査条件を、相手方のレチクルR2のパターン領域(PA2とする)に応じて変更可能とする。解析装置500は、その地点に対応する、レチクルR2のパターン領域PA2の地点が、透光部であるのか、遮光部であるのかというその領域の属性(これを、パターン領域PA2の第1属性とする)、その点がパターンの近接領域であるか否かという属性(これを、パターン領域PA2の第2属性とする)、その近接するパターンの種類の属性(これを、パターン領域PA2の第3属性とする)で分類することにより、パターン領域PA1をさらに分割する。
この分類の際に適用されるルールについて説明する。
(1)レチクルR1のパターン領域PA1の属性(第1属性)が透光部であって、レチクルR2のパターン領域PA2の第1属性が透光部であり、第2属性が近接領域外である領域が、図6(A)に示されている。このような領域については、レチクルR1のその領域に微細な異物(図6(A)参照)が付着していたとしても、その異物等の存在によって露光されなかった部分が、相手方のレチクル(ここではレチクルR2)の透光部を透過した露光光により露光されるようになるので、ウエハW上の実際の露光結果に与えるこの異物の影響は比較的小さいものと考えられる。そこで、このような部分については、例えば、検出すべき異物の許容サイズを、標準よりも大きめに設定するのが望ましい。
しかしながら、多重露光では、この部分が、レチクルR1、R2ともに透光部であるという前提の下に、露光光IL1、IL2の露光量が設定されており、この異物により、全体の露光量の総量が無視できない程度に低下する場合には、異物に対する何らかの処置を行う必要がある。その意味からも、異物の許容サイズは、全体的な露光量を考慮して適切に設定される必要がある。
(2)レチクルR1のパターン領域PA1の第1属性が透光部であって、この部分が、レチクルR2のパターン領域PA2の第1属性が透光部であり、第2属性がパターンの近接領域であり、第3属性が通常パターンである部分に該当する部分である場合には、その地点に異物が付着していれば、光近接効果等により、ウエハWの転写結果への異物の影響が相乗的に増幅されるので、この領域における欠陥については、高感度に検出する必要がある。ここでは、このような領域を領域Bに分類する。図6(B)では、パターン領域PA1上に付着した異物が、パターン領域PA2上の通常パターンM1の近接領域に対応している様子が示されている。この領域Bでは、高感度に異物を検出する。
(3)レチクルR1のパターン領域PA1の第1属性が透光部であって、レチクルR2のパターン領域PA2の第1属性が透光部であって、第2属性がパターンの近接領域であり、第3属性がコンタクトホールパターンである領域を、領域Cに分類する。図6(C)では、パターン領域PA1上に付着した異物が、パターン領域PA2上のコンタクトホールパターンM2の近接領域(破線で示されている)に対応している様子が示されている。このような領域Cについても、検出感度を高く設定するのが望ましい。
(4)レチクルR1のパターン領域PA1の第1属性が透光部であって、レチクルR2のパターン領域PA2の第1属性が透光部であって、第2属性がパターンの近接領域(破線より右側の領域)であり、第3属性が位相シフトパターンである領域を、領域Dに分類する。図6(D)では、パターン領域PA1上に付着した異物が、パターン領域PA2上の位相シフトパターンM3の近接領域に対応する領域、すなわち領域Dに存在している様子が示されている。このような領域Dについても、検出感度を高感度に設定するのが望ましい。
(5)レチクルR1のパターン領域PA1の第1属性が透光部であって、レチクルR2のパターン領域PA2の第1属性が透光部であって、第2属性がパターンの近接領域であり、第3属性がOPC(Optical Proximity Correction)パターンに該当する部分である場合には、その領域を、領域Eに分類する。図6(E)では、パターン領域PA1上に付着した異物が、パターン領域PA2上のOPCパターンM4の近接領域(破線より右側の領域)に対応する領域に存在している様子が示されている。このような領域Eについても、高感度に検出するように設定するのが望ましい。
(6)レチクルR1のパターン領域PA1の第1属性が透光部であって、レチクルR2のパターン領域PA2の第1属性が遮光部に該当する部分である場合には、その領域を領域Fに分類する。この領域Fに異物が付着していれば、ウエハWの露光結果に与える影響が大となるので、ここでは、異物の許容サイズを標準よりも小さめに設定する。
(7)レチクルR1のパターン領域PA1の第1属性が遮光部である領域については、その領域を領域Gに分類する。この領域Gに異物が付着していても、そのままでは、ウエハWの露光結果に影響を与えない。特に、サブミクロンの異物は、一般的に表面に強く付着していて、重力、振動、ショック、エアブローなどでは動かない。しかしながら、比較的大きな(例えばミクロン単位の)異物は、レチクル搬送中などに透光部へ動く可能性があり、予め除去しておく必要がある。そこで、このような領域Gでは、異物の許容サイズを大きめに設定するのが望ましい。
図7には、上記(1)から(7)までのルールをまとめた表が示されている。なお、領域B〜Eの検出感度、領域A、F、Gの許容サイズは、独立して設定可能であり、近接パターンの大きさによって個別に変更可能である。
また、ここで、解析装置500については、ステップ202で求められたレチクルR1、R2の面形状データに基づいて、パターン領域PA1とパターン領域PA2との平坦度差を算出する。そして、この平坦度差が所定値を超えた領域については、精査できるように、検査データサンプリング分解能を高く設定する。ここで、検査データサンプリング分解能は、撮像による検査であればその部分の画素数(撮像倍率)の設定などを変更することで調整することが可能となり、レーザスキャンによる検査であれば、レーザ光のスキャン速度及び/又はレチクルの送り速度などによって調整することが可能である。
解析装置500は、この検査条件マップに関するデータを含む、処理開始指令を、レチクル測定検査器130に送る(ステップ303)。レチクル測定検査器130は、指令受信待ちとなっており、この指令を受信すると、ステップ304に進む。ステップ304において、レチクル測定検査器130は、レチクルR1のパターン形成面を検査する。
レチクルR1のパターン形成面の検査においては、ステップ302で作成された検査条件マップに従った検査条件の下で欠陥検査を行う。上述のように、検査条件マップでは、レチクルR1のパターン領域PA1を、領域A〜領域Gに分類しており、その領域毎に、検査条件、すなわち、検査感度、検査データサンプリング分解能、異物の許容サイズなどを変更しつつ、パターン領域PA1の欠陥検査を行う。この場合、レーザ散乱光方式を用いて、レチクルR1のパターン領域PA1及びレチクルR2のパターン領域PA2における遮光部の検査データを取得し、透過光による撮像方式を用いて、レチクルR1のパターン領域PA1及びレチクルR2のパターン領域PA2における透光部の検査データを取得する。
そして、次のステップ305において、レチクル測定検査器130は、欠陥検査の結果データを、解析装置500に送る。解析装置500では、欠陥検査データの受信待ちとなっており、このデータを受信すると、ステップ307に進む。ステップ307では、解析装置500は、検査結果の解析を行う。解析装置500は、欠陥検査の結果データを解析し、レチクルR1のパターン形成面内のハード欠陥、ソフト欠陥の有無、位置座標などを解析する。そして、解析装置500は、ハード欠陥が存在すればレチクルを変更するモードを設定し、ソフト欠陥が存在すればレチクルR1をクリーニングするモードを設定する。
次のステップ309では、解析装置500は、レチクル変更の有無をホスト600に通知する。ここで、ホスト600は、この通知の受信待ちとなっており、この通知を受けると、ステップ311に進む。ステップ311では、レチクル変更が必要であるか否かを判断し、ハード欠陥が存在し、この判断が肯定された場合には、ステップ313に進み、ハード欠陥が存在するレチクルR1、及び/又はレチクルR2を収納し、交換したレチクルに対する処理をリセットする。このリセットが行われば、新たにレチクルR1、R2として選択された2つのレチクルを用いてステップ201から処理が再スタートすることになる。一方、ステップ311で、レチクル変更が必要でないと判断された場合には、ホスト600は、再び受信待ちとなる。
一方、解析装置500は、ステップ309からステップ317に進み、レチクル測定検査器130に、レチクルR1の調整の有無を通知する。レチクル測定検査器130は、この通知の受信待ちとなっており、この通知を受信すると、ステップ319に進む。ステップ319において、レチクル測定検査器130は、レチクルR1の調整が必要であるか否かを判断する。必要であると判断した場合には、判断が肯定され、ステップ321に進み、ソフト欠陥を除去すべく、レチクルのクリーニングを行なう。
レチクルR1の調整終了後は、再び、レチクルR1、R2のパターン形成面の面形状の再検査を行う。
図5に戻り、解析装置500は、ステップ317の次のステップ323に進み、レチクル変更有り、又は、レチクル調整有りであるか否かを判断する。この判断が否定された場合のみ、ステップ325に進んで、ホスト600に対して正常終了を通知する。この通知後、あるいは、ステップ323において判断が肯定された後は、先頭に戻り、再び、受信待ち状態に戻る。一方、正常終了通知を受信したホスト600は、図4のステップ204に進む。
ステップ204では、上記ステップ203と同様にしてレチクルR2の最適化が行われる。ここでも、解析装置500において、レチクルR2のパターン形成面の検査条件マップが作成され、その検査条件マップに従って歩留まりに直結したレチクルR2のパターン形成面の欠陥検査が行われる。そして、ハード欠陥がある場合にはレチクルの交換が行われ、ソフト欠陥がある場合にはレチクルのクリーニングが行われる。
なお、上記ステップ203、204では、レチクルR1、R2の透過率の測定も行われる。この透過率の測定により、ウエハW上に到達する露光光IL1、IL2の全体の露光量がわかる。
次のステップ205では、レチクル交換機を用いて、レチクル測定検査器130のステージ上にレチクルホルダRHを介して保持されているレチクルR1、R2を、レチクルステージRST上のレチクルホルダRH上にそれぞれロードし、レチクルR1、R2の位置合わせ(レチクルアライメント)、及びベースライン(オフアクシスのアライメントセンサ(不図示)と、レチクルR1、R2のパターン中心との距離)の計測などの準備処理を行う。この準備処理により、レチクルR1、R2のパターン形成面上のデバイスパターンを、ウエハステージWST上で位置合わせされたウエハW上の任意の領域に対し、重ね合わせることが可能となる。なお、レチクル測定検査器130として、レチクルステージRST上と同様の向きでレチクルR1、R2をレチクルホルダRH上にそれぞれ保持した状態で、測定検査が可能な構造のレチクル測定検査器130を用いる場合には、レチクルR1を保持したレチクルホルダRHと、レチクルR2を保持したレチクルホルダRHとをレチクルステージRSTにロードするようにすることが可能である。
この後、ウエハWに対する処理が行われる。まず、CVD装置910においてウエハ上に膜を生成し(ステップ206)、そのウエハWをC/D110に搬送し、C/D110においてそのウエハ上にレジストを塗布する(ステップ207)。ここで、C/D110では、解析装置500又はホスト600からの指示の下、ステップ203、204において予め測定されている、レチクルR1、R2の透過率の総量に応じて、ウエハW上に塗布されるレジストの種類、膜厚等を調整することができる。
次に、ウエハWを、ウエハ測定検査器120に搬送し、ウエハ測定検査器120において、ウエハWの面形状の測定、ウエハ上の異物の検査などの事前測定検査処理を行う(ステップ209)。ウエハ測定検査器120の測定結果(すなわち、面形状などのデータ)は、露光装置100及び解析装置500に送られる。この測定結果は、露光装置100における走査露光時のフォーカス制御に用いられる。
続いて、ウエハを露光装置100に搬送し、露光装置100にて、レチクルR1、R2上の回路パターンをウエハW上に転写する露光処理を行う(ステップ211)。
露光装置100では、露光量制御系、ステージ制御系、レンズ制御系により露光量、同期精度、フォーカス、レンズの状態が目標値に追従した状態で、照明領域IAR1、IAR2内のパターンが、露光領域IAに投影され、投影光学系PLの焦点深度内にウエハWの被露光面が位置するようなフィードバック制御が行われる。この走査露光においては、レチクルR1、R2のパターンが、複数チップのデバイスパターンである場合、異常個所に該当するチップ領域を、照明系10によってブラインドし、正常なチップ領域のみに限定して露光処理を行うようにしても良い。
次に、ウエハWをC/D110に搬送して、C/D110にて現像処理を行う(ステップ213)。この現像処理においては、レチクルR1、R2の透過率から予想される露光量の総量に応じて、ウエハWの現像時間を調整することができる。すなわち、露光量の合計が、所定値に満たない場合には、現像時間を長く設定するようにしても良い。その後、このレジスト像の線幅の測定、ウエハW上に転写されたデバイスパターンの線幅測定、及びパターン欠陥検査などの事後測定検査処理を行う(ステップ215)。
この測定検査結果に関するデータは、解析装置500に送られる。次のステップ217において、解析装置500は、この測定検査結果の解析を行う。この測定検査結果を参照して、ウエハW上に転写形成されたデバイスパターンに欠陥が存在するか否かを確認し、その欠陥と、レチクルR1、R2の欠陥検査との相関をとり、相関が確認された場合には、レチクルR1、R2上のハード欠陥、ソフト欠陥を検出するための検査条件マップを作成するために予め設定されている検出感度、及び異物の許容サイズなどを調整する。
ウエハWは、ウエハ測定検査器120からエッチング装置920に搬送され、エッチング装置920においてエッチングを行い、不純物拡散、配線処理、CVD装置910にて成膜、CMP装置930にて平坦化、酸化・イオン注入装置940でのイオン注入などを必要に応じて行う(ステップ219)。エッチングにおいても、レチクルR1、R2の透過率の総量に応じて、ウエハWのエッチング時間を調整することができる。
そして、全工程が完了し、ウエハ上にすべてのパターンが形成されたか否かを、ホスト600において判断する(ステップ221)。この判断が否定されればステップ206に戻り、肯定されればステップ223に進む。このように、成膜・レジスト塗布〜エッチング等という一連のプロセスが工程数分繰り返し実行されることにより、ウエハW上に回路パターンが積層されていき、半導体デバイスが形成される。
繰り返し工程完了後、プロービング処理(ステップ223)、リペア処理(ステップ225)が、デバイス製造装置群900において実行される。このステップ223において、メモリ不良検出時は、ステップ225において、例えば、冗長回路へ置換する処理が行われる。不図示の検査装置では、ウエハW上の線幅異常が発生した箇所については、チップ単位で、プロービング処理、リペア処理の処理対象から除外することができる。その後、ダイシング処理(ステップ227)、パッケージング処理、ボンディング処理(ステップ229)が実行され、最終的に製品チップが完成する。なお、ステップ215のウエハ事後測定検査処理は、ステップ219のエッチング後に行うようにしても良い。この場合には、ウエハW上のエッチング像に対し線幅測定が行われるようになる。現像後、エッチング後の両方に行うようにしても良い。この場合には、レジスト像に対しても、エッチング像に対しても線幅測定が行われるようになるので、それらの測定結果に違いに基づいて、エッチング処理の処理状態を検出することができるようになる。
以上詳細に説明したように、本実施形態によれば、ウエハW上の同一領域への露光に用いられる一方のレチクルの欠陥検査を、他方のレチクルに関する情報を考慮して行うので、個々のレチクルR1、R2を用いた露光状態でなく、実際のウエハW上への総合的な露光状態を考慮した、デバイス生産の歩留まりに直結したレチクルR1、R2の欠陥検査が可能となる。
また、本実施形態では、実際のウエハW上のパターンの転写結果を測定検査し(ステップ215)、その測定検査結果に基づいて、レチクル測定検査器130の検査内容を調整する。すなわち、ウエハWの転写結果と、ステップ202、ステップ203、ステップ204で行われるレチクルR1、R2の欠陥検査との相関をとり、ウエハWの転写結果の異常の原因が、レチクルR1、R2のパターンにある場合には、その欠陥検査における検査感度及び閾値(すなわち検査条件マップで示される検査条件)などを調整する。これにより、実際に歩留まりに影響する欠陥だけを検出するように検査条件を最適化することが可能となる。特に、レチクルR1、R2のパターン領域内で、OPCパターン、又は位相シフトパターンなどが存在するなど、レチクル上のパターンが複雑になればなるほど、露光結果を、それらの検査条件に反映することがより重要となる。
また、本実施形態では、レチクルR1、R2の欠陥検査において、透光部の欠陥の方が、遮光部の欠陥よりも、デバイスの歩留まりへの影響が大きいと考えられるので、透光部の方をより精密に検査する。これにより、デバイス生産の歩留まりに影響する欠陥のみが検出されるような欠陥検査が可能となる。
また、本実施形態によれば、レチクルR1、R2の一方のレチクルに関する欠陥検査において、そのパターン領域中の透光部の特定位置に対応する他方のレチクル上の位置に、パターンの透光部が形成されているか遮光部が形成されているかに応じて、検出感度、異物の許容サイズを変更するなど、欠陥検査の処理内容を変更する。このようにすれば、ウエハWの露光結果への影響が大きい部分をより厳密に検査することができるようになり、デバイス生産の歩留まりに影響のある欠陥のみ検出する欠陥検査が可能となる。
また、本実施形態では、レチクルR1、R2の一方の欠陥検査において、他方のレチクル上のパターンに関する情報に応じて、検査条件マップを作成して、欠陥の検出感度を制御する。例えば、一方のレチクルが透光部で、他方のレチクルでパターンの近接領域である部分については、ウエハWの露光結果に対する欠陥の影響が大となるため、検出感度を高く設定する。このようにすれば、ウエハWの露光結果への影響が大きい部分をより高感度に検査可能となり、これにより、デバイス生産の歩留まりに影響のある欠陥のみ検出する欠陥検査が可能となる。
また、本実施形態によれば、レチクルR1、R2の最適化(ステップ203、204)では、透光部の検査結果データを解析装置500に出力する(ステップ305)。そして、他方のレチクルのパターンに関する情報に応じて、検出された異物の大きさとその許容サイズとの関係を変化させる。このようにすれば、異物のウエハWの露光結果への影響が大きい部分と小さい部分とで、許容サイズを異ならしめ、デバイス生産の歩留まりに影響のある異物のみ検出可能となる。
また、本実施形態によれば、一方のパターンに関する情報に応じて、他方のパターンの検査データサンプリング分解能を変化させる。このようにすれば、ウエハWの露光結果への影響が大きい部分を、より精密に検査することが可能となり、これによりデバイス生産の歩留まりに影響のある欠陥のみ検出する欠陥検査が可能となる。
また、本実施形態によれば、レチクル上のパターンの透光部に付着した異物を検出するとともに、そのレチクルの遮光部に付着した異物を検出する。遮光部に付着した異物については、そのままでは、ウエハWへの露光結果に対して影響を与えることはないが、この異物が、レチクル搬送中に透光部に移動する場合もありうるので、ある程度の大きさの異物であれば、検出する方が望ましいのである。
また、本実施形態では、レチクルR1、R2の最適化(ステップ203、204)では、透光部だけでなく、遮光部の検査結果データも解析装置500に出力している(ステップ305)。そして、この遮光部の検査においても、検出された異物の大きさに応じて出力内容を変化させている。このようにすれば、異物のウエハWの露光結果への影響が大きい部分と小さい部分とで、検査内容(例えば許容サイズ)を異ならしめ、デバイス生産の歩留まりに直結した欠陥の検出が可能となる。
また、本実施形態によれば、レチクルR1、R2のパターン中の特定位置に対応する他方のレチクルR2、R1上の位置の近傍に光近接補正パターン、位相シフトパターン、コンタクトホールパターンのいずれかが形成されているか否かに応じて、そのパターン中の特定位置に関する欠陥検査の処理内容を変更する。このようにすれば、異物のウエハWの露光結果への影響が大きい上記各パターンの近接領域とそうでない領域とで、検査内容(検査感度)を異ならしめ、デバイス生産の歩留まりに直結した欠陥の検出が可能となる。
なお、本実施形態では、事前に相手方のレチクルの情報に基づいて、検査条件を最適化したが、均一な検査条件の下で検査を行い、検出された欠陥が、デバイスに直結する欠陥であるか否かを相手方のレチクルの情報を用いて判定するようにしても良い。
また、本実施形態では、一方のレチクルのパターン中の特定位置に対応する他方のレチクル上の位置との面形状の差に応じて、パターン中の特定位置に関する欠陥検査の処理内容を変更する。このようにすれば、異物のウエハWの露光結果への影響が大きい平坦度差が大きい部分と小さい部分とで、検査内容(例えば検査データサンプリング分解能)を異ならしめ、デバイス生産の歩留まりに直結した欠陥検出が可能となる。
また、本実施形態では、ウエハWの被露光面上の同一の領域に照射される複数の露光光IL1、IL2それぞれの光路上に配置される複数のレチクルR1、R2の少なくとも一方を測定検査する場合に、ウエハWの被露光面上の同一の領域に照射される露光光IL1、IL2の総光量(光量の総量)を求める。そして、露光光IL1、IL2の総光量に応じて測定検査結果の出力内容を変化させる。このようにすれば、露光光IL1、IL2の総光量に応じて、測定検査結果の出力内容を異ならしめ、デバイス生産の歩留まりに直結した測定検査が可能となる。
また、本実施形態では、露光光IL1、IL2それぞれの光路上に配置される、レチクルR1上に形成されたパターンに関する情報に応じて、そのレチクルR1と異なる他のレチクルR2を測定検査処理した結果に基づいて、ウエハWの露光処理を制御する。このようにすれば、露光に用いられるすべてのレチクルに関する情報に基づいて、露光処理を制御することが可能となり、ひいては高精度、かつ、高スループットな露光が可能となり、デバイス生産の歩留まりが向上する。
また、本実施形態では、複数の露光光IL1、IL2をウエハWの被露光面に照射する多重露光(二重露光)を行う際に、複数の露光光IL1、IL2それぞれの光路上に配置されるレチクルR1、R2のうちの一方のレチクル上に形成されたパターンに関する情報に応じて他方のレチクルを欠陥検査する。このようにすれば、個々のレチクルを用いた露光状態でなく、実際のウエハW上への総合的な露光状態を考慮した、デバイス生産の歩留まりに直結したレチクルの欠陥検査が可能となる。
また、本実施形態によれば、相手方のレチクルとの組合せを考慮して、歩留まりに影響するレチクルの欠陥が検出された場合に、その欠陥がソフト欠陥である場合には、レチクルをクリーニングしたり、その欠陥がハード欠陥である場合には、レチクルを交換したりする。このようにすることで、レチクルの各種欠陥に対して適切な処置を施すことが可能となり、デバイス生産の歩留まりの向上が見込める。
なお、上記実施形態では、露光に用いられる2つのレチクルが、ともにガラスレチクルであったが、レチクルR1とレチクルR2とのいずれか一方を、その上に形成されるパターンを変更可能な液晶板などの電子マスクとすれば、さらに、デバイス生産の歩留まりを向上させることができる。
例えば、ガラスレチクルの透光部に異物が付着しており、その部分に対応する電子マスク上の部分が、設計上遮光部であっても、その遮光部を透光部に変更することができる。このようにすれば、その異物が存在する点に対応するウエハWの被露光面上の点は、電子マスクを介した露光光によって露光されるようになり、異物の大きさによってはレチクルをクリーニングする必要がなくなるので、スループットの面で有利である。
また、レチクルR1、R2の透過率が総合的に見て低く、全体の露光量の総量が弱すぎることが予想される場合には、ガラスレチクルのパターン領域に形成されていたパターンと同じパターン(例えば、コンタクトホールパターン又は微細なラインパターンなど)を、電子マスク上に形成するようにしても良い。このようにすれば、全体の露光量が弱すぎても、ウエハWの被露光面上にそのパターンを鮮明な状態で転写形成することが可能となる。
なお、上記実施形態では、一方のレチクルのパターン領域と、もう一方のレチクルのパターン領域とを、幾つかの領域に分類した。そして、その分類された領域毎に、検査条件を変更しつつ、パターン領域の欠陥検査を行った。しかしながら、本発明はこれには限られず、いずれかのパターン領域で、異常であると疑わしい事象を検出した場合に、もう一方のパターン領域に関する情報を考慮し、検出された事象を異常とみなすか異常でないとみなすかを判定するようにしても良い。
なお、上記実施形態では、解析装置500とレチクル測定検査器130とを個別に備えるようにしたが、両者は一体であっても良い。すなわち、レチクル測定検査器130が、解析装置500の機能を有していても良い。
なお、上記実施形態では、透過型のレチクルを用いたが、反射型のレチクルであっても構わない。また、本実施形態では、1回の露光処理に、2つのレチクルを使用したが、2つのパターン領域が形成された1つのレチクルを用いるようにしても良い。
なお、本実施形態では、2つのレチクルR1、R2のパターンの像を、同一の投影光学系PLを介して、ウエハW上に投影する露光装置100を用いたが、別々の投影光学系を介して、2つのパターン像を、ウエハW上に投影する露光装置であってもかまわない。
また、本実施形態に係る露光装置100は、パターンの同時二重露光により、デバイスパターンをウエハW上に転写したが、パターンを同時に3重露光、4重露光…、が可能な露光装置を用いても良いことは勿論である。この場合には、1つのレチクルの欠陥検査を行う場合に、他のすべてのレチクルに関する情報を考慮することが望ましい。
また、本実施形態に係る露光装置100は、複数のパターンを同時に露光するいわゆる多重露光を行う露光装置を用いたが、レチクルを随時交換して多重露光を行う露光装置にも本発明を採用することができるのは勿論である。
なお、本実施形態に係る多重露光法においては、レチクルR1、R2のパターンに関しては、特に制限はない。例えば、一方のパターン領域内のパターンを、ウエハW上に転写形成すべき設計上のデバイスパターンとし、もう一方のパターン領域内のパターンを、OPCパターンとしても良い。さらには、一方のパターン領域内のパターンを介した露光光と、もう一方のパターン領域内のパターンを介した露光光との位相差を180°とし、両方のレチクルを介した露光光に位相差を与えて、位相シフト効果を実現するように設計することも可能である。
両方のレチクルで位相シフト効果を得るには、それぞれのレチクルを介した光の位相差が設計値どおり(例えば180°)となっている必要があるため、レチクルの測定検査において、その位相差を測定可能となっているのが望ましい。この場合、個々のパターンのシフタの位相差を、マッハ・ツェンダ干渉計等を用いて測定検査し、シフタ間の位相差が設計値どおりになっていることを確認すれば良い。
なお、本発明は、露光装置の種類には限られない。例えば、特開平11−135400号公報、特開2000−164504号公報などに開示されるように、ウエハWを保持するウエハステージと、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用することができる。
また、上記実施形態では、ステップ・アンド・スキャン方式の投影露光装置について説明したが、本発明は、これらの投影露光装置の他、ステップ・アンド・リピート方式、プロキシミティ方式の露光装置など他の露光装置にも適用できることはいうまでもない。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置にも本発明を好適に適用することができる。これに代表されるように、各種装置についても、その種類には限定されない。
また、例えば国際公開第WO98/24115号パンフレット、国際公開第WO98/40791号パンフレットに開示されるような、ウエハステージを2基備えたツインステージ型の露光装置にも適用できる。また、例えば国際公開第WO99/49504号パンフレットに開示される液浸法を用いる露光装置にも本発明を適用することができるのは勿論である。この場合、投影光学系と基板との間に局所的に液体を満たす露光装置を採用しているが、本発明は、特開平6−124873号公報、特開平10−303114号公報、米国特許第5,825,043号明細書などに開示されているような露光対象の基板の被露光面全体が液体中に浸かっている状態で露光を行う液浸露光装置にも適用可能である。
また、本発明は、半導体製造工程に限らず、液晶表示素子などを含むディスプレイの製造工程にも適用可能である。また、デバイスパターンをガラスプレート上に転写する工程、薄膜磁気ヘッドの製造工程、及び撮像素子(CCDなど)、マイクロマシン、有機EL、DNAチップなどの製造工程の他、すべてのデバイス製造工程に本発明を適用することができるのは勿論である。
以上説明したように、本発明を用いることにより、例えば半導体素子、液晶表示素子、CCD等の撮像素子、薄膜磁気ヘッド等を製造するためのフォトリソグラフィ工程において、多重露光法を採用する際に、同時に使用する複数のレチクル(マスク)の組合せ毎に、複数のレチクル間における異物・欠陥の位置、大きさ、形状、種類、数、密度、周辺の露光パターンなどを解析し、その解析結果に応じて、異常判定及び/又はその後の処理を変更することにより、最適なレチクル管理が可能となり、高精度、かつ、高スループットなデバイス生産が可能となり、その歩留まりが向上する。
なお、本国際出願で指定した指定国(又は選択した選択国)の国内法令が許す限りにおいて、上記実施形態で引用した露光装置などに関する全ての、公報、国際公開パンフレット、及び米国特許明細書の開示を援用して本明細書の記載の一部とする。
本発明の測定検査方法、露光方法、デバイス製造方法、測定検査装置、露光装置、デバイス製造装置は、IC、LSI等の半導体デバイス、液晶パネル、CCD、薄膜磁気ヘッド等のデバイスを製造するのに適している。

Claims (29)

  1. 基板上の被露光領域の同一の領域に照射される複数の露光光それぞれの光路上に配置される複数のマスクの少なくとも1つを測定検査する測定検査方法であって、
    前記複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報に応じて、前記複数のマスクのうちの前記第1マスクと異なる第2マスクに関する測定検査処理の処理内容を変更する測定検査方法。
  2. 請求項1に記載の測定検査方法において、
    前記第2マスクに関する測定検査処理に際し、前記第2マスク上に形成された第2パターンの透光部に付着した異物を検出する測定検査方法。
  3. 請求項2に記載の測定検査方法において、
    前記第2マスクに関する測定検査処理に際し、前記第2パターン中の透光部の特定位置に対応する前記第1マスク上の位置に前記第1パターンの透光部が形成されているか遮光部が形成されているかに応じて、前記第2パターン中の透光部の前記特定位置に関する測定検査処理の処理内容を変更する測定検査方法。
  4. 請求項2又は3に記載の測定検査方法において、
    前記測定検査処理は、前記第1パターンに関する情報に応じて、異物を検出する際の検出感度を制御することを含む測定検査方法。
  5. 請求項2又は3に記載の測定検査方法において、
    前記測定検査処理は、検出結果を出力する処理を含み、
    前記第1パターンに関する情報に応じて、検出された異物の大きさと検出結果の出力内容との関係を変化させる測定検査方法。
  6. 請求項2又は3に記載の測定検査方法において、
    前記第1パターンに関する情報に応じて、前記測定検査処理を実行する頻度を変化させる測定検査方法。
  7. 請求項2〜6のいずれか一項に記載の測定検査方法において、
    前記第2マスクに関する測定検査処理に際し、前記第2パターンの透光部に付着した異物を検出するとともに、前記第2パターンの遮光部に付着した異物を検出する測定検査方法。
  8. 請求項7に記載の測定検査方法において、
    前記測定検査処理は、前記第2パターンの遮光部に付着した異物を検出した結果を出力する処理を含み、
    検出された異物の大きさに応じて出力内容を変化させる測定検査方法。
  9. 請求項1〜6のいずれか一項に記載の測定検査方法において、
    前記第2パターン中の特定位置に対応する前記第1マスク上の位置に前記第1パターン中の光近接補正パターン、位相シフトパターン、コンタクトホールパターン、及びラインアンドスペースパターンのいずれかが近接しているか否かに応じて、前記第2パターン中の特定位置に関する測定検査処理の処理内容を変更する測定検査方法。
  10. 請求項1〜6のいずれか一項に記載の測定検査方法において、
    前記第2パターン中の特定位置に対応する前記第1マスク上の位置との面形状の差に応じて、前記第2パターン中の特定位置に関する測定検査処理の処理内容を変更する測定検査方法。
  11. 基板上の被露光領域の同一の領域に照射される複数の露光光それぞれの光路上に配置される複数のマスクの少なくとも1つを測定検査する測定検査方法であって、
    前記被露光領域の同一領域に照射される前記複数の露光光の総光量を求める工程を含む測定検査方法。
  12. 請求項11に記載の測定検査方法において、
    測定検査結果を出力する工程を含み、
    前記総光量に応じて前記測定検査結果の出力内容を変化させる測定検査方法。
  13. 請求項1〜12のいずれか一項に記載の測定検査方法を用いて前記複数のマスクのうちの少なくとも1つを測定検査する測定検査装置。
  14. 複数の露光光を基板上の被露光領域に照射する露光方法であって、
    前記複数の露光光それぞれの光路上に配置される複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報に応じて前記第1マスクと異なる第2マスクを測定検査処理し、
    前記測定検査処理の結果に基づいて、前記基板の露光処理を制御する露光方法。
  15. 請求項14に記載の露光方法を用いて露光を行う露光装置。
  16. 複数の露光光を基板の被露光領域に照射する露光工程を含むデバイス製造方法であって、
    前記複数の露光光それぞれの光路上に配置される複数のマスクのうちの第1マスク上に形成された第1パターンに関する情報に応じて前記第1マスクと異なる第2マスクを測定検査処理する工程を含むデバイス製造方法。
  17. 請求項16に記載のデバイス製造方法において、
    前記第2マスクを測定検査した結果に基づいて、前記第1マスク又は前記第2マスクをクリーニングする工程をさらに含むデバイス製造方法。
  18. 請求項16に記載のデバイス製造方法において、
    前記第2マスクを測定検査した結果に基づいて、前記第1マスク又は前記第2マスクを交換する工程をさらに含むデバイス製造方法。
  19. 請求項16に記載のデバイス製造方法において、
    前記第2マスクを測定検査した結果に基づいて、前記第1マスク上の第1パターンと前記第2マスク上の第2パターンとのいずれかの変更を促すデバイス製造方法。
  20. 請求項19に記載のデバイス製造方法において、
    前記第1マスクと前記第2マスクとのいずれかは、その上に形成されるパターンを可変な電子マスクであるデバイス製造方法。
  21. 複数の露光光を基板上の被露光領域に照射する露光工程を含むデバイス製造方法であって、
    前記複数の露光光それぞれの光路上に配置される複数のマスクそれぞれを介して前記被露光領域の所定位置に照射される前記複数の露光光の総光量に基づいて、前記マスクに所定処理を施すデバイス製造方法。
  22. 請求項21に記載のデバイス製造方法において、
    前記被露光領域の所定位置に照射される前記複数の露光光の総光量に基づいて前記マスクに施させる所定処理が、前記複数マスクの少なくとも1つに対するクリーニング処理を含むデバイス製造方法。
  23. 請求項21又は22に記載のデバイス製造方法において、
    前記被露光領域の所定位置に照射される前記複数の露光光の総光量に基づいて前記マスクに施される所定処理が、前記複数マスクの少なくとも1つを交換する処理を含むデバイス製造方法。
  24. 請求項21〜23のいずれか一項に記載のデバイス製造方法において、
    前記被露光領域の所定位置に照射される前記複数露光光の総光量に基づいて前記マスクに施される所定処理が、前記複数マスクの少なくとも1つに形成されたパターンを変更する処理であるデバイス製造方法。
  25. 請求項24に記載のデバイス製造方法において、
    前記複数のマスクの少なくとも1つが、その上に形成されたパターンを変更可能な電子マスクであり、
    前記被露光領域の所定位置に照射される前記複数の露光光の総光量に基づいて前記マスクに施される所定処理が、前記電子マスク上のパターンを変更する処理であるデバイス製造方法。
  26. 請求項16〜25のいずれか一項に記載のデバイス製造方法を実行可能なデバイス製造システム。
  27. 複数のパターンの像を物体上の同一領域に同時又は順次に形成して前記物体を露光する露光方法であって、
    同一又は異なるマスク上に形成される、前記複数のパターンのうちの1つのパターンが形成された領域の測定検査処理を、前記複数のパターンのうちの残りの少なくとも1つのパターンに関する情報を考慮して実行し、
    前記測定検査処理の結果に基づいて、前記物体の露光条件を制御する露光方法。
  28. 請求項27に記載の露光方法において、
    前記複数のパターンは、3つ以上のパターンを含み、
    前記測定検査処理を、残りの全てのパターンに関する情報を考慮して実行する露光方法。
  29. 請求項27又は28に記載の露光方法を用いて物体を露光する工程と;
    露光によりパターンが形成された物体を少なくとも現像する工程と;を含むデバイス製造方法。
JP2008513187A 2006-04-27 2007-04-23 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置 Expired - Fee Related JP5057248B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513187A JP5057248B2 (ja) 2006-04-27 2007-04-23 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006123123 2006-04-27
JP2006123123 2006-04-27
PCT/JP2007/058716 WO2007125853A1 (ja) 2006-04-27 2007-04-23 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置
JP2008513187A JP5057248B2 (ja) 2006-04-27 2007-04-23 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置

Publications (2)

Publication Number Publication Date
JPWO2007125853A1 true JPWO2007125853A1 (ja) 2009-09-10
JP5057248B2 JP5057248B2 (ja) 2012-10-24

Family

ID=38655378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513187A Expired - Fee Related JP5057248B2 (ja) 2006-04-27 2007-04-23 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置

Country Status (5)

Country Link
US (1) US7688436B2 (ja)
JP (1) JP5057248B2 (ja)
KR (1) KR101357960B1 (ja)
TW (1) TW200746259A (ja)
WO (1) WO2007125853A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252249B2 (ja) * 2006-02-17 2013-07-31 株式会社ニコン デバイス製造処理方法
US8023102B2 (en) * 2008-04-18 2011-09-20 International Business Machines Corporation Test method for determining reticle transmission stability
KR101292570B1 (ko) * 2008-12-31 2013-08-12 엘지디스플레이 주식회사 액정표시장치의 변형 검사시스템
TWI488245B (zh) * 2009-05-19 2015-06-11 United Microelectronics Corp 檢測光阻圖案的方法
CN102822743B (zh) 2010-03-30 2014-09-03 Hoya株式会社 掩模坯料用基板的制造方法、掩模坯料的制造方法、转印用掩模的制造方法以及半导体器件的制造方法
JP5742370B2 (ja) * 2011-03-29 2015-07-01 凸版印刷株式会社 マスク基板の製造方法
NL2009853A (en) 2011-12-23 2013-06-26 Asml Netherlands Bv Methods and apparatus for measuring a property of a substrate.
JP5797582B2 (ja) * 2012-02-24 2015-10-21 株式会社アドテックエンジニアリング 露光描画装置、プログラム及び露光描画方法
JP6200224B2 (ja) * 2012-09-13 2017-09-20 日本メクトロン株式会社 フォトマスク、フォトマスク組、露光装置および露光方法
JP6310263B2 (ja) * 2014-01-30 2018-04-11 株式会社ニューフレアテクノロジー 検査装置
JP6942634B2 (ja) * 2015-03-03 2021-09-29 レブストック,ルッツ 点検システム
US9548274B1 (en) * 2015-11-20 2017-01-17 Taiwan Semiconductor Manufacturing Company Ltd. Reticle for non-rectangular die
EP3529667B1 (en) * 2016-10-21 2021-05-19 ASML Netherlands B.V. Methods of determining corrections for a patterning process
JP7262939B2 (ja) * 2018-07-20 2023-04-24 キヤノン株式会社 クリーニング装置、インプリント装置、リソグラフィ装置、および、クリーニング方法
JP2020076609A (ja) * 2018-11-06 2020-05-21 キヤノン株式会社 異物検査装置、処理装置および物品製造方法
KR102160170B1 (ko) * 2018-11-21 2020-09-25 에스케이실트론 주식회사 웨이퍼 표면의 파티클 측정 장치 및 방법

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598604A (en) * 1968-11-19 1971-08-10 Ibm Process of producing an array of integrated circuits on semiconductor substrate
DE2837590A1 (de) * 1978-08-29 1980-03-13 Ibm Deutschland Verfahren zur schattenwurfbelichtung
JPH0648380B2 (ja) * 1985-06-13 1994-06-22 株式会社東芝 マスク検査方法
NL8600639A (nl) * 1986-03-12 1987-10-01 Asm Lithography Bv Werkwijze voor het ten opzichte van elkaar uitrichten van een masker en een substraat en inrichting voor het uitvoeren van de werkwijze.
JPH0528273A (ja) * 1991-05-13 1993-02-05 Nikon Corp 画像処理方法および装置
US5370975A (en) * 1992-01-31 1994-12-06 Mitsubishi Denki Kabushiki Kaisha Method for forming resist pattern
EP0553543B1 (en) 1992-01-31 1997-12-29 Mitsubishi Denki Kabushiki Kaisha Phase shift mask and method for forming resist pattern using said mask
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP3409493B2 (ja) * 1995-03-13 2003-05-26 ソニー株式会社 マスクパターンの補正方法および補正装置
US5838433A (en) * 1995-04-19 1998-11-17 Nikon Corporation Apparatus for detecting defects on a mask
KR100206594B1 (ko) * 1995-09-27 1999-07-01 김주용 반도체 소자의 공정 결함 검사방법
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
CN1144263C (zh) 1996-11-28 2004-03-31 株式会社尼康 曝光装置以及曝光方法
JPH10209039A (ja) 1997-01-27 1998-08-07 Nikon Corp 投影露光方法及び投影露光装置
JPH10223512A (ja) * 1997-02-10 1998-08-21 Nikon Corp 電子ビーム投影露光装置
JP3626504B2 (ja) 1997-03-10 2005-03-09 アーエスエム リソグラフィ ベスローテン フェンノートシャップ 2個の物品ホルダを有する位置決め装置
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
US6757645B2 (en) * 1997-09-17 2004-06-29 Numerical Technologies, Inc. Visual inspection and verification system
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JP4264676B2 (ja) 1998-11-30 2009-05-20 株式会社ニコン 露光装置及び露光方法
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2001047600A (ja) * 1999-08-10 2001-02-20 Fuji Mach Mfg Co Ltd マスク印刷方法およびマスク印刷装置
JP2001174977A (ja) * 1999-12-20 2001-06-29 Nec Corp 露光パターン及び露光原版の検査方法
US6701004B1 (en) * 1999-12-22 2004-03-02 Intel Corporation Detecting defects on photomasks
JP2001250756A (ja) 2000-03-03 2001-09-14 Hitachi Ltd 半導体集積回路装置の製造方法
US6404481B1 (en) * 2000-05-25 2002-06-11 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Adaptive lithography membrane masks
DE10103958C1 (de) * 2001-01-30 2002-05-29 Infineon Technologies Ag Verfahren zur Inspektion von Defekten auf einer Maske
JP4104840B2 (ja) * 2001-08-23 2008-06-18 株式会社東芝 マスクパターン評価システム及びその方法
JP2004012779A (ja) * 2002-06-06 2004-01-15 Sony Corp マスクの検査方法およびマスク欠陥検査装置
JP2004191297A (ja) 2002-12-13 2004-07-08 Sony Corp マスク検査方法および検査装置

Also Published As

Publication number Publication date
US20070259290A1 (en) 2007-11-08
WO2007125853A1 (ja) 2007-11-08
US7688436B2 (en) 2010-03-30
TWI342038B (ja) 2011-05-11
JP5057248B2 (ja) 2012-10-24
KR101357960B1 (ko) 2014-02-03
KR20090009773A (ko) 2009-01-23
TW200746259A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP5057248B2 (ja) 測定検査方法、測定検査装置、露光方法、デバイス製造方法及びデバイス製造装置
JP5077770B2 (ja) デバイス製造方法、デバイス製造システム及び測定検査装置
US8566756B2 (en) Processing condition determining method and apparatus, display method and apparatus, processing apparatus, measurement apparatus and exposure apparatus, substrate processing system, and program and information recording medium
KR101208462B1 (ko) 리소그래피 장치를 제어하는 방법 및 장치
US7718327B2 (en) Overlay management method and apparatus, processing apparatus, measurement apparatus and exposure apparatus, device manufacturing system and device manufacturing method, and program and information recording medium
JP4710827B2 (ja) アライメント条件決定方法及び装置、並びに露光方法及び装置
WO2007094443A1 (ja) 調整方法、基板処理方法、基板処理装置、露光装置、検査装置、測定検査システム、処理装置、コンピュータ・システム、プログラム及び情報記録媒体
US8090875B2 (en) Device and method for connecting device manufacturing processing apparatuses, program, device manufacturing processing system, exposure apparatus and method, and measurement and inspection apparatus and method
JP5443405B2 (ja) リソグラフィ装置及びデバイス製造方法
JP2007115784A (ja) 露光システム、露光方法、及びデバイス製造工場
JP4947483B2 (ja) デバイス製造処理方法、デバイス製造処理システム、プログラム及び記憶媒体
JPWO2007049704A1 (ja) デバイス製造処理装置間の接続装置及び接続方法、プログラム、デバイス製造処理システム、露光装置及び露光方法、並びに測定検査装置及び測定検査方法
JP5128065B2 (ja) 情報処理装置、デバイス製造処理システム、デバイス製造処理方法、プログラム
JP2011119457A (ja) 位置合わせ条件最適化方法及びシステム、パターン形成方法及びシステム、露光装置、デバイス製造方法、並びに重ね合わせ精度評価方法及びシステム
JP2006294854A (ja) マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置
JP5152612B2 (ja) 情報管理方法、情報管理システム、プログラム、記録媒体、パターン検査装置及び基板検査装置
JP2007311580A (ja) 露光方法、露光装置、計測方法及び計測装置
JP5838594B2 (ja) ダブルパターニング最適化方法及びシステム、パターン形成方法、露光装置、並びにデバイス製造方法
JP5252249B2 (ja) デバイス製造処理方法
JP4947269B2 (ja) 測定検査方法、測定検査装置、露光装置及びデバイス製造処理装置
JP2007256577A (ja) 異物検査装置及び露光装置並びに光露光用マスク
JP4793686B2 (ja) 露光方法、デバイス製造処理方法、デバイス製造処理システム及び測定検査装置
WO2005045364A1 (ja) 位置検出方法、露光方法、位置検出装置、露光装置及びデバイス製造方法
JP2007178152A (ja) 異物検査装置及び露光装置
JP4383945B2 (ja) アライメント方法、露光方法、及び露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees