JP2006294854A - マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置 - Google Patents

マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置 Download PDF

Info

Publication number
JP2006294854A
JP2006294854A JP2005113310A JP2005113310A JP2006294854A JP 2006294854 A JP2006294854 A JP 2006294854A JP 2005113310 A JP2005113310 A JP 2005113310A JP 2005113310 A JP2005113310 A JP 2005113310A JP 2006294854 A JP2006294854 A JP 2006294854A
Authority
JP
Japan
Prior art keywords
mark
waveform
wafer
alignment
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005113310A
Other languages
English (en)
Inventor
Shinichi Nakajima
伸一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005113310A priority Critical patent/JP2006294854A/ja
Publication of JP2006294854A publication Critical patent/JP2006294854A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】処理効率を高め、マークの位置情報の検出精度を向上する。
【解決手段】ウエハ上に形成されたマークMXp,MYpを含む領域の撮像データから得られる、その領域に対応する波形データのマーク波形らしさを示すスコアSを算出し、2つの閾値値(T1,T2)と比較する。例えばスコアSが良好である場合(S<T1)には、そのウエハに対する処理を当初の予定どおり実行したり、良好でない場合(S≧T2)には、その後のウエハに対する処理を中断したり、どちらともいえない場合(T1≦S<T2)には、そのウエハに対する幾つかの処理を省略したりすることができるようになる。このようにすれば、マーク波形パターンが著しく崩れていない限りは、ウエハに対する処理を中断しないので、ウエハに対する処理効率を向上させることが可能となる。
【選択図】図4

Description

本発明は、マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置に係り、さらに詳しくは、物体上に形成されたマークを検出するマーク検出方法、該マーク検出方法を用いた位置合わせ方法及び該位置合わせ方法を用いた露光方法、物体上に形成された複数のマークを検出するマーク検出するためにコンピュータに実行させるプログラム及び該プログラムを実行するコンピュータを備えるマーク計測装置に関する。
近年、半導体素子等のデバイスの製造工程では、ステップ・アンド・リピート方式、又はステップ・アンド・スキャン方式等の露光装置、ウエハプローバ、或いはレーザリペア装置等が用いられている。これらの装置では、基板上に配置された複数のショット領域の各々を、基板の移動位置を規定する静止座標系(すなわちレーザ干渉計によって規定される直交座標系、これをステージ座標系とする)内の所定の基準点(例えば、各種装置の加工処理点)に対して極めて精密に位置合わせ(アライメント)する必要がある。
特に、露光装置では、基板(以下、「ウエハ」という)上に10層以上の回路パターン(レチクルパターン)を重ね合わせて転写するが、各層間での重ね合わせ精度が良好でない場合には、回路上の特性に不都合が生じることがある。このような場合、チップが所期の特性を満足せず、最悪の場合にはそのチップが不良品となり、歩留まりを低下させてしまう。そこで、露光装置では、ウエハ上の複数のショット領域の各々に予めアライメントマークを付設しておき、ステージ座標系におけるそのマークの位置(座標値)を検出する。しかる後、このマーク位置情報と既知のレチクルパターンの位置情報(これは事前測定されている)とに基づいてウエハ上の1つのショット領域をレチクルパターンに対して位置合わせするウエハアライメントが行われる。
このウエハアライメントにおいては、ステージ座標系におけるアライメントマークを含むウエハ上の領域に対応する光電変換信号(例えば、その領域を撮像することにより得られる画像信号)を表す波形データを取得し、その波形データに対し所定の波形処理を施すことにより、その領域に含まれるマークに相当する波形パターンとみられる部分を抽出し、波形データにおけるその部分の位置情報に基づいて、ステージ座標系におけるアライメントマークの位置情報を算出している。したがって、このウエハアライメントを正確に行うためには、マークの位置情報を精度良く算出することができるように、マークの形状等に基づく波形パターンが正確に再現された波形データが取得されることが必要不可欠となる。
そこで、従来より、露光装置では、波形データを用いたマークの位置情報の検出に先立って、取得された波形データが、マークの位置情報を精度良く検出することができる程度にマークの波形パターンを正確に再現したもの、すなわちマーク波形らしいものであるかどうかを判断している。この判断においては、その波形のマーク波形らしさを示す指標値を算出し、その指標値が予め設定されていた閾値よりも低い場合には、この波形データを用いてマーク位置情報を精度良く算出することが望めないため、これ以上このウエハに対し処理を続行することが困難であるものとして、いわゆる「マーク検出エラー」を発生させ、そのウエハに対する処理を中断して、そのウエハをリジェクトしていた。
しかしながら、波形データがマーク波形らしくないと評価されたとしても、中には、そのマークの形だけが崩れていて、ウエハ上の他のマークの形は崩れていない場合や、指標値を検出するための装置パラメータが誤設定などで、良好な波形を取得できない状態となっているだけで、ウエハ側の原因ではないだけの場合もあり、このような場合にもプロセスを逐一中断するのは、生産効率の点からすると望ましいものではない。
本発明は、第1の観点からすると、物体上に形成された複数のマークを検出するマーク検出方法であって、前記物体上のいずれか1つのマークを含む領域に対応する光電変換信号の波形を取得する取得工程と;前記波形のマーク波形らしさを示す指標値を算出する算出工程と;前記算出された指標値を、複数の異なる閾値と比較して、その比較結果に応じてその後の処理内容を決定する決定工程と;を含むマーク検出方法である。
これによれば、波形のマーク波形らしさを示す指標値を比較する閾値を複数設けている。このようにすれば、その指標値が複数の異なる閾値によって規定されるどの区間内に含まれるかによって、その後の処理内容をフレキシブルに決定することができるようになる。例えば、閾値を2つ設定した場合には、指標値が良好である場合と、指標値が良好でない場合と、良好とも良好でないともいえない場合との3つに場合分けすることが可能となるので、指標値が良好である場合には、その物体に対する処理を当初の予定どおり実行したり、良好でない場合には、その後の物体に対する処理を中断したり、どちらともいえない場合には、その物体に対する幾つかの処理を省略したりすることができるようになる。このようにすれば、指標値が良好とも良好でないともいえない場合には、プロセスを停止させることなく、他のマークの計測処理に移行することができるようになるので、その物体に対する処理効率を向上させることが可能となる。また、評価内容が複数種類存在する場合には、それぞれの評価の基準となる閾値を別々に設定することができるので、それぞれの閾値を厳格に設定することができるようになり、処理精度を高めることもできるようになる。
本発明は、第2の観点からすると、複数のマークが形成された物体の位置合わせを行う位置合わせ方法であって、本発明のマーク検出方法を用いて検出されたマークの位置情報を用いて、前記物体の位置合わせを行う工程を含む位置合わせ方法である。かかる場合には、本発明のマーク検出方法を用いて検出されたマークの位置情報に基づいて物体の位置合わせを行うので、高精度かつ高効率な物体の位置合わせが可能となる。
本発明は、第3の観点からすると、マスクに形成されたパターンを物体上に転写する露光方法であって、本発明の位置合わせ方法を用いて複数のマークが形成された物体の位置合わせを行う工程と;前記位置合わせされた物体に対し前記パターンを転写する工程と;を含む露光方法である。かかる場合には、本発明の位置合わせ方法を用いて位置合わせされた物体に対してパターンの転写を行うため、高精度かつ高スループットな露光が可能となる。
≪第1の実施形態≫
以下、本発明の第1の実施形態を図1〜図4に基づいて説明する。図1には、本発明のマーク検出方法が適用される第1の実施形態に係る露光装置100の概略構成が示されている。この露光装置100は、ステップ・アンド・スキャン方式の投影露光装置である。
この露光装置100は、不図示の照明系、レチクルRが載置されるレチクルステージRST、投影光学系PL、フォトレジストが塗布されたウエハWが載置されるウエハステージWST、アライメント系AS及び装置全体を統括制御する主制御装置20等の制御系を含んで構成されている。
不図示の照明系は、照明光(露光光)ILによりほぼ均一な照度で回路パターン等が描かれたレチクルR上を照明する。ここで、照明光ILとしては、KrFエキシマレーザ光(波長248nm)、ArFエキシマレーザ光(波長193nm)などの遠紫外光や、F2レーザ光(波長157nm)などの真空紫外光などが用いられる。照明光ILとして、超高圧水銀ランプからの紫外域の輝線(g線、i線等)を用いることも可能である。また、照明光ILにより、照明される領域は、不図示の照明系に備えられたレチクルブラインドでスリット状に規定されており、その領域を、以下では、照明領域(X軸方向に細長い長方形状の照明領域)IARともいう。
前記レチクルステージRST上にはレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、リニアモータ、ボイスコイルモータ等を駆動源とする不図示のレチクルステージ駆動部により、不図示の照明系の光軸(後述する投影光学系PLの光軸AXに一致)に垂直なXY平面内で微少駆動可能であるとともに、所定方向(ここでは図1における紙面内左右方向であるY軸方向とする)に、設定された走査速度で駆動可能となっており、θz方向(Z軸回りの回転方向)にも微小に回転可能となっている。レチクルステージRSTの位置情報、すなわちステージ移動面(XY平面)内の位置及びθz方向(Z軸回りの回転方向)の回転量(ヨーイング量)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)16によって、例えば0.5〜1nm程度の分解能で常時計測されている。レチクル干渉計16からのレチクルステージRSTの位置情報は、ステージ制御装置19及びこれを介して主制御装置20に供給される。ステージ制御装置19は、主制御装置20からの指示に応じて、レチクルステージRSTの位置情報に基づいて不図示のレチクルステージ駆動部を介してレチクルステージRSTを駆動制御し、レチクルステージRST上に保持されたレチクルRの位置を制御する。
前記投影光学系PLは、レチクルステージRSTの図1における下方に配置され、その光軸AXの方向がZ軸方向とされている。投影光学系PLとしては、両側テレセントリックで所定の縮小倍率β(例えば1/5、又は1/4)を有する屈折光学系が使用されている。このため、不図示の照明系からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRの回路パターンの照明領域部分の縮小像(部分倒立像)が投影光学系PLを介してウエハW上の前記照明領域IARに共役な投影光学系PLの視野内の露光領域IAに投影され、ウエハWの表面のレジスト層に転写される。
前記ウエハステージWSTは、投影光学系PLの図1における下方で、不図示のベース上に配置されている。このウエハステージWST上にウエハホルダ25が載置されている。このウエハホルダ25上にウエハWが例えば真空吸着等によって固定されている。ウエハステージWSTは、図1のウエハステージ駆動部24により、X、Y、Z、θz(Z軸回りの回転方向)、θx(X軸回りの回転方向)及びθy(Y軸回りの回転方向)の6自由度方向に駆動可能な単一のステージである。ウエハステージWSTの位置情報は、その外部に配置されたウエハレーザ干渉計(以下、「ウエハ干渉計」という)18により、例えば、0.5〜1nm程度の分解能で常時計測されている。ウエハ干渉計18は、ウエハステージWSTのX、Y位置の他、回転(ヨーイング(Z軸回りの回転であるθz回転)、ピッチング(X軸回りの回転であるθx回転)、ローリング(Y軸回りの回転であるθy回転))も計測可能となっている。ステージ制御装置19は、主制御装置20からの指示に応じて、ウエハステージWSTの位置情報に基づいてウエハステージ駆動部24を介してウエハステージWSTを駆動制御し、ウエハステージWST上に保持されたウエハWの位置を制御する。
また、ウエハステージWST上のウエハWの近傍には、基準マーク板FMが固定されている。この基準マーク板FMの表面は、ウエハWの表面とほぼ同じ高さに設定され、この表面には少なくとも一対のレチクルアライメント用基準マーク、及びアライメント系ASのベースライン計測用の基準マーク等が形成されている。
前記アライメント系ASは、投影光学系PLの側面に配置された、オフアクシス方式のアライメントセンサである。このアライメント系ASとしては、例えばウエハ上のレジストを感光させないブロードバンドな検出光束を対象マークに照射し、その対象マークからの反射光により受光面に結像された対象マークの像と不図示の指標(アライメント系AS内に設けられた指標板上の指標パターン)の像とを撮像素子(CCD)等を用いて撮像し、それらの撮像信号を出力する画像処理方式のFIA(Field Image Alignment)系のセンサが用いられている。なお、アライメント系ASのアライメントセンサとしては、FIA系に限らず、コヒーレントな検出光を対象マークに照射し、その対象マークから発生する散乱光又は回折光を検出するアライメントセンサを単独であるいは適宜組み合わせて用いることは勿論可能である。このアライメント系ASの撮像結果は、主制御装置20へ出力されている。
制御系は、図1中、主制御装置20及びこの配下にあるステージ制御装置19などによって主に構成される。主制御装置20は、CPU(中央演算処理装置)、メインメモリ、ディスプレイ等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含んで構成され、装置全体を統括して制御する。主制御装置20には、例えばハードディスクから成る記憶装置、キーボード,マウス等のポインティングデバイス等を含んで構成される入力装置、及びCRTディスプレイ(又は液晶ディスプレイ)等の表示装置(いずれも図示省略)、並びにCD(Compact Disc),DVD(Digital Versatile Disc),MO(Magneto-Optical Disc)あるいはFD(Flexible Disc)等の情報記録媒体のドライブ装置(不図示)が、外付けで接続されている。ステージ制御装置19は、主制御装置20からの指示に従って、レチクルステージRSTやウエハステージWSTの制御を行う。
さらに、本第1の実施形態の露光装置100は、投影光学系PLの最良結像面に向けて複数のスリット像を形成するための結像光束を光軸AX方向に対して斜め方向より供給する不図示の照射系と、その結像光束のウエハWの表面での各反射光束を、それぞれスリットを介して受光する不図示の受光系とから成る斜入射方式の多点フォーカス検出系を備えている。この多点フォーカス検出系としては、例えば特開平6−283403号公報などに開示されるものと同様の構成のものが用いられ、この多点フォーカス検出系の出力が主制御装置20に供給されている。ステージ制御装置19は、主制御装置20からの指示により、この多点フォーカス検出系からのウエハの位置情報に基づいて、ステージ制御装置19及びウエハステージ駆動部24を介してウエハステージWSTをZ方向及び傾斜方向に駆動する。
また、レチクルRの上方には、レチクルアライメント検出系(図示省略)が配置されている。このレチクルアライメント検出系は、CCDカメラなどの撮像素子で撮像したアライメントマークの画像データを画像処理してマーク位置を計測するVRA(Visual Reticle Alignment)方式の検出系であり、このレチクルアライメント検出系の撮像結果に基づく信号を用いて、後述するレチクルアライメントが行われる。
次に、上述のようにして構成された本第1の実施形態の露光装置100により、ウエハWに対して第2層目(セカンドレイヤ)以降の層の露光処理を行う際の動作について、図2(A)〜図4に基づいて説明する。
ウエハW上には、図2(A)に示されるように、前層までの処理工程で複数(例えばN個)のショット領域SAp(P=1、2、3、…)がマトリックス状の配置で形成されている。この配置によって規定される座標系をウエハ座標系とし、X軸にほぼ平行な軸をα軸とし、Y軸にほぼ平行な軸をβ軸とする。また、図2(B)に示されるように、隣接するショット領域間の100μm幅程度のストリートライン上に、アライメント用のマークMXp、MYp(それぞれは、ラインパターンを3本含む。ライン・アンド・スペース・パターン(L/Sパターン)である)がそれぞれ形成されている。このうち、マークMXpのX位置は、ショット領域SAp(の中心Cp)のX座標に設計上一致し、マークMYpのY位置は、ショット領域SAp(の中心Cp)のY座標に設計上一致するようになっている。すなわち、設計上は、マークMXpのX位置とマークMYpのY位置とにより、ショット領域SAp(の中心Cp)の位置座標が求められるようになっている。なお、本第1の実施形態では、ここでショット領域SApの添え字Pは、マークの計測順に付与されているものとする。
なお、上述したようなウエハW上のショット領域などに関する情報(ショット数、ショットサイズ、配置、アライメントマークの配置、種類などに関するいわゆるショットマップデータ)は、露光装置100が稼動するリソグラフィシステムのホストコンピュータから主制御装置20にダウンロードされているものとし、主制御装置20及びステージ制御装置19は、ウエハW上の前層のショット領域や、ウエハマークのおおよその位置を算出できるようになっている。
まず、不図示のレチクルローダにより、レチクルステージRST上にレチクルRをロードし、レチクルアライメント及びベースライン計測等の準備処理を行なう。具体的には、ウエハステージWST上の基準マーク板FMを、投影光学系PLの直下に位置決めし、不図示のレチクルアライメント系を用いてレチクルR上のレチクルアライメントマークと基準マーク板FM上の第1基準マークとの相対位置を検出した後、ウエハステージWSTを所定量、例えばベースラインの設計値だけXY平面内で移動させて、アライメント系ASを用いて基準マーク板上の第2基準マークを検出させる。主制御装置20は、このとき得られるアライメント系ASの検出中心と第2基準マークの相対位置関係及び先に計測したレチクルアライメントマークと基準マーク板FM上の第1基準マークとの相対位置と、それぞれに対応するウエハ干渉計18の計測値とに基づいて、ベースラインを計測する。次に、不図示のウエハローダを用いてウエハステージWST上のウエハホルダ25にウエハWをロードする。
次に、サーチアライメントを行う。ウエハW上には、図2(A)に示されるように、各ショット領域の回路パターンや、各ショット領域SAp間のストリートライン上にショット領域SAp毎に形成されたそのショット領域SApのXY位置情報を検出するための不図示のファインアライメントマークとしてのXマーク及びYマークの他に、ショット領域でない部分の所定位置に少なくとも2つのサーチアライメントマークSYM、SθMが形成されているものとする。サーチアライメントマークSYM、SθMは、X軸方向の間隔が長く、かつ、ウエハWの中心位置からのY軸方向の距離が長くなるような位置に配置されている。サーチアライメントマークSYM、SθMは、ショット領域SApに付随して形成されているので、その形成位置を求めることができれば、複数のショット領域SAの配列座標系をラフに把握できるようにウエハW上に形成されている。ここでは、ウエハステージWSTをXY平面内で移動させて、サーチアライメントマークSYM、SθMを含む領域をアライメント系ASにより撮像し、その撮像結果から得られる波形データから、ステージ座標系におけるそれらのマークの位置情報を算出し、ウエハWの配列座標系のオフセット成分、回転成分をラフに検出する。後述するウエハアライメントを行う際のウエハステージWSTのXY平面内の移動は、この配列座標系に従って行われることになる。
このようなサーチアライメントの後、ウエハアライメントを行う。図3には、このウエハアライメントを行う際の主制御装置20の処理アルゴリズムを示すフローチャートが示されている。図3に示されるように、まず、ステップ301では、アライメント系ASの倍率をサーチアライメント実行時よりも高倍率に設定し、ステップ303では、カウンタ値pを1に初期化し、カウンタ値i,j,k,rを0に初期化する。次のステップ305では、アライメント系ASの撮像視野内に、マークMXpが入るように、ウエハステージWSTを移動させ、ステップ307では、マークMXpを含む領域をアライメント系ASに撮像させる。これにより、その領域の撮像データが取得される。この撮像データは、アライメント系ASのCCDカメラの各画素でのその領域上の点の輝度値のデータ群から成る光電変換信号である。
次のステップ309では、取得された撮像データから得られる波形データに対する波形前処理を行う。この波形前処理は、取得した撮像データから得られる波形データが、マークの位置情報を検出することができる程度にマーク波形パターンが崩れていない波形のデータであるか否かなどを判断するために行われる。この判断は、スコアSと呼ばれる指標値を算出することにより行われる。このスコアSは、取得した波形に、マークMXpに対応するマーク波形パターンがどの程度含まれているかを示す指標値であり、マークMXpの波形パターンが有している幾つかの特徴がどの程度波形に現れているかを測る尺度となる値である。
この波形前処理では、まず、撮像データのY軸方向の中心付近におけるX軸方向の複数本(例えば50本)の走査線上の強度の分布の平均を求めることによりホワイトノイズを相殺した後、波形の平滑化を行って、平均的なX軸方向に関する波形データとしての信号強度分布を求める。次に、その信号強度分布の微分波形を求める。この微分波形には、幾つかのピークが現れるようになり、これら複数のピークが現れた位置が、マークMXpのラインパターンのエッジに相当する位置の候補となる。
次に、複数のピークの中から、ラインパターンのエッジに相当するものを選択する。ここでは、そのピークの輝度値が許容範囲にあること、X軸方向に微分波形を辿った場合に、正のピークと負のピークとが交互に表れること、正のピークから負のピークまでのX軸方向の距離が、ラインパターンの設計上の幅とほぼ同じであることなどを条件として、エッジ候補を6つ(本第1の実施形態では、3本のラインパターンを有するL/Sパターンを採用しているため)に絞り込む。
このマークMXpの特徴の1つに、例えば、3本のラインパターンが同一のライン幅を有しているというものがある。以下では、この特徴を、「特徴1」とする。また、マークMXpの特徴の1つに、各ラインパターンが、所定間隔でY軸方向に沿って並んでいるというものがある。以下では、この特徴を、「特徴2」とする。また、マークMXpの特徴の1つに、例えば、各ラインパターンが同様のエッジ形状を有しているというものがある。以下では、この特徴を、「特徴3」とする。
本第1の実施形態では、前述した6つのエッジ候補を用いて、マークMXpの各ラインパターンの特徴1〜3に関して、取得した波形データのマーク波形らしさを数値にして表す。
まず、特徴1については、6つのエッジ候補のうちの隣り合うエッジ候補、すなわち−X側から1番目と2番目のエッジ候補の距離、3番目と4番目のエッジ候補の距離、5番目と6番目のエッジ候補の距離を算出し、それらとラインパターンの設計上の幅との偏差の標準偏差を、特徴量1として算出する。これをΔS1とする。
また、特徴2については、6つのエッジ候補のうち、2番目のエッジ候補と3番目のエッジ候補との距離、4番目のエッジ候補と5番目のエッジ候補との距離を算出し、それらとラインパターンの設計上の間隔との偏差の標準偏差を、特徴量2として算出する。これをΔS2とする。
また、特徴3については、6つのエッジ候補のピーク値の標準偏差を特徴量3として算出する。これをΔS3とする。
これら3つの特徴量ΔS1,ΔS2,ΔS3は、その値が小さければ小さいほど、取得した波形データが、マーク波形らしいということになる。したがって、ここでは、波形のマーク波形らしさを示すスコアSとして、S=a・ΔS1+b・ΔS2+c・ΔS3を算出する。a,b,cは重み(正の数)であり、ユーザが自由に設定可能となっている。すなわち、このスコアSが小さいほど、その波形データをマーク波形らしいと判断することができる。
上述したように、このステップ309では、波形前処理として、取得した波形データのマーク波形らしさを示すスコアSを算出する。
次のステップ311では、算出されたスコアSが、閾値T1を下回っているか否かを判断する。この判断が肯定されればステップ313に進み、否定されればステップ317に進むものとする。ここでの判断は、図4に示されるように、この波形データが、マークの位置情報を検出するのに足るものであるか否かを判定するものであり、S<T1である場合には、その位置情報を検出することができると判断するのである。したがって、判断が肯定された後に実行されるステップ313では、カウンタ値iを1だけインクリメントし、次のステップ315では、波形後処理を行う。この波形後処理とは、実際にこの波形データを精査して、この波形データからマークMXpの位置情報を検出する処理のことである。以下では、このマークMXpの位置情報の検出処理について説明する。
まず、上述した波形前処理で得られた、X軸方向の信号強度分布の波形データに対し、例えばディジタルフィルタリング処理の一種であるSINC補間を行い、離散データの波形である上記1次元波形における位置の検出精度を高める。そして、検出精度が高められた1次元波形に対して走査する所定幅の観察窓を用いた相関演算により、その1次元波形の軸方向位置に対する全体の鏡映(反転)対称性相関度を示す相関関数やマークMXpの各ラインパターンの反転対称性相関度を示す相関関数などを求め、各反転対称性相関度の相関関数同士を乗じてその相関度を示す波形を尖鋭なものとしたり、2次関数フィッティングを施したりして、検出精度を高めつつ、反転対称性(鏡映対称性)が最大となる位置を、その計測範囲内のマークMXpの中心位置(すなわちL/S位置)として検出する。これにより、マークMXpの位置情報が精度良く検出される。検出された位置情報は、不図示の記憶装置に格納される。
一方、ステップ311の判断が否定されたときに実行されるステップ317では、スコアSが閾値T2を下回っているか否かを判断する。この判断が肯定されればステップ323に進み、否定されればステップ319に進む。この判断は、図4に示されるように、その波形データが、「マーク検出エラー」を発生させるべきものであるか否かを判断するために行われる。ここでは、S≧T2であれば、ステップ319に進み、カウンタ値kを1だけインクリメントし、次のステップ321では、カウンタ値kが、その最大値kmaxを超えたか否かを判断する。カウンタ値kは、S≧T2となったマークMXpの数を示しており、ここでは、その数が所定数kmaxを超えたときに判断が肯定される。判断が肯定されると、「マーク検出エラー」を発生させるべく、ステップ349のアラーム処理に進み、不図示の表示装置に「マーク検出エラー」を表示させ、ウエハアライメントを強制終了し、ウエハWのプロセスを中断させる。また、ステップ321における判断が否定されると、ステップ323に進む。
一方、ステップ317で判断が肯定された場合には、図4に示されるように、スコアSは、T1とT2との間にあることになる。すなわち、このT1≦S<T2となった波形データは、必ずしもマーク波形らしいものではなく、マークの位置情報を高精度に検出することができるものではないが、「マーク検出エラー」を発生させるほどマークの波形パターンが崩れていない波形であるものとみなし、この場合には、ステップ313におけるカウンタ値iのインクリメントと、ステップ315における波形後処理(すなわちマークの位置情報の検出)を行うことなく、ステップ323に進むものとする。
ステップ315終了後、ステップ317で判断が肯定された後、又はステップ321で判断が否定された後に行われるステップ323では、アライメント系ASの撮像視野内にマークMYpが入るように、ウエハステージWSTを移動させ、次のステップ325では、マークMYpを含む領域をアライメント系ASに撮像させる。これにより、その領域の撮像データが取得される。
次のステップ329〜ステップ339までの処理は、上述したマークMXpに対するステップ311〜ステップ321までの処理と同じである。すなわち、ステップ327で、マークMYpの含む撮像データに対する波形前処理を行ってそのスコアSを算出し、そのスコアSが閾値T1よりも小さければ、ステップ329の判断が肯定され、ステップ331でカウンタ値jがインクリメントされ、ステップ331でマークMYpの位置情報が検出され、ステップ343に進む。また、そのスコアSがT1とT2との間にあれば、波形後処理(マークMYpの位置情報の検出)を行うことなく、ステップ343に進む。また、スコアSが、閾値T2よりも大きければ、ステップ337に進み、カウンタ値rを1だけインクリメントし、次のステップ339では、カウンタ値rが、その最大値rmaxを超えたか否かを判断する。カウンタ値rは、S≧T2となったマークMYpの数を示しており、ここでは、その数が所定数kmaxを超えたときに判断が肯定される。判断が肯定されると、「マーク検出エラー」を発生させるべく、ステップ349のアラーム処理に進み、不図示の表示装置に「マーク検出エラー」を表示させ、ウエハアライメントを強制終了し、ウエハWのプロセスを中断させる。
ステップ333終了後、ステップ335で判断が肯定された後、又はステップ339で判断が否定された後に実行されるステップ343では、カウンタ値pを1だけインクリメントさせ、次のステップ345では、カウンタ値i,jがそれぞれ、ウエハアライメントに必要な計測マーク数Smax以上になったか否かを判断する。この判断が肯定されれば、ステップ347に進み、否定されれば、ステップ305に戻る。ここでは、まだ、最大でもi=1、j=1なので、判断は否定され、ステップ305に戻る。
この時点で、ステップ301〜ステップ345の処理により、マークMX1,MY1に対する撮像及び波形前処理が行われたことになる。そして、それぞれのマークを含む領域の撮像データから得られる波形のマーク波形らしさが評価され、マーク波形らしいと評価された場合には、そのマークMX1,MY1の位置情報の検出が行われ、マーク波形らしくはないが、その波形が著しく崩れてはいない場合には、その波形を用いてマークMX1,MY1の位置情報を検出を行わず、マーク波形らしさが全くみられない波形が所定数(kmax,,rmax)以上となった場合には、「マーク検出エラー」を発生させるようになる。ここで、カウンタ値i,jは、それぞれX、Y軸方向において、位置情報検出済みのマーク数を表し、ステップ345では、位置情報検出済みのマーク数i,jがともにウエハアライメントに必要な数Smaxを超えたか否かが判断されることになる。
以降、このように、必要な数Smaxだけマークの位置情報が検出されるか、又は、ステップ321、339における判断が肯定され、ステップ349におけるアラーム処理が行われるまで、ステップ305〜ステップ345のループが繰り返され、マークMXp,MYpを含む波形データに対する処理が行われる。
ステップ345における判断が肯定されると、ステップ347に進む。ステップ347では、これまでに検出されたマークの位置情報を用いて、EGA方式で行われている統計処理方法により全てのショット領域の配列座標を算出する、いわゆるEGA演算を行う。これにより、ウエハW上の全てのショット領域のステージ座標系(静止座標系)上における配列座標が算出される。この処理については、例えば特開昭61−44429号公報などに開示されているので、詳細な説明を省略する。ステップ347終了後は、ウエハアライメントを終了する。
そして、次に、EGA演算にて算出された露光対象領域の配列座標に基づいて、ウエハWの位置がウエハW上の露光対象領域を露光するための加速開始位置となるようにウエハステージWSTを移動させるとともに、レチクルRの位置が加速開始位置となるようにステージ制御装置19、レチクルステージ駆動部(不図示)を介して、レチクルステージRSTを移動させる。そして、レチクルステージRSTとウエハステージWSTの相対走査を開始する。そして両ステージがそれぞれの目標走査速度に達し、等速同期状態に達すると、不図示の照明系からの照明光ILによってレチクルRのパターン領域が照明され始め、走査露光が開始される。そして、レチクルRのパターン領域の異なる領域が照明光ILで逐次照明され、パターン領域全面に対する照明が完了することにより走査露光が終了する。これにより、レチクルRのパターンが投影光学系PLを介してウエハW上の露光対象領域に縮小転写される。
上述のようにして、全てのショット領域に露光が行われ、全てのショット領域へのパターンの転写が終了すると、不図示のウエハローダにウエハWのアンロードを指示する。これにより、ウエハWは、不図示のウエハローダにより、ウエハホルダ25上からアンロードされた後、不図示のウエハ搬送系により、露光装置100にインラインにて接続されている不図示のコータ・デベロッパ(C/D)に搬送される。これにより、ウエハWに対する露光処理動作が終了する。次のウエハWの露光を行う場合には、上述した動作を繰り返せばよい。
これまでの説明から明らかなように、本第1の実施形態では、ステップ307、ステップ325が、取得工程に対応し、ステップ309、327が、算出工程に対応し、ステップ311、317、321、329、335、339が決定工程に対応する。
以上詳細に述べたように、本第1の実施形態によれば、ウエハWのマークMXp,MYpを含む領域の撮像データから得られる、その領域に対応する波形データのマーク波形らしさを示すスコアSを比較する閾値を2つ(T1,T2)設けている。このようにすれば、そのスコアSが2つの閾値(T1,T2)によって規定されるどの区間内に含まれるかにより、その後の処理内容をフレキシブルに決定することができるようになる。閾値(T1,T2)を2つ設定した場合には、例えば、スコアSが良好である場合(S<T1)と、スコアSが良好でない場合(S≧T2)と、良好とも良好でないともいえない場合(T1≦S<T2)との3つに場合分けすることが可能となるので、スコアSが良好である場合には、そのウエハWに対する処理を当初の予定どおり実行したり、良好でない場合には、その後のウエハWに対する処理を中断したり、どちらともいえない場合には、そのウエハWに対する幾つかの処理を省略したりすることができるようになる。このようにすれば、スコアSが良好とも良好でないともいえない場合には、プロセスを停止させることなく、例えば他のマークの計測処理に移行することができるようになるので、ウエハWに対する処理効率を向上させることが可能となる。
また、評価内容が複数種類存在する場合には、それぞれの評価の基準となる閾値(T1,T2)を別々に設定することができるので、それぞれの閾値を厳格に設定することができるようになり、処理精度を高めることもできるようになる。本第1の実施形態によれば、その後の処理を停止するか否かの基準となる閾値T2に対して、マークMX1,MY1の位置情報を検出するためにその波形を用いるか否かの基準となる閾値T1を別々に設定可能とすることにより、これらの閾値を厳格に設定することができるので、例えば、位置情報を検出するための波形の基準(T1)を厳しく設定することができるようになり、マークの位置情報の検出精度を高めることも可能となる。
このように、本第1の実施形態によれば、複数の異なる閾値には、閾値T1と、閾値T1よりも条件的に緩和された値である閾値T2とが含まれ、ステップ311、329では、ステップ307、325で取得された波形データを用いて当該マークMXp,MYpの位置情報の検出を行うか否かを、閾値T1を基準として決定し、かつ、ウエハWに対する処理を続行するか否かを、閾値T2を基準として決定する。「マーク検出エラー」の基準となる閾値T2を、閾値T1に対して条件的に緩和された値とすることにより、「マーク検出エラー」を発生させ、ウエハWに対する処理を必要以上に停止させるのを防止して、生産効率を上げることができる。
なお、露光装置100においては、閾値(T1、T2)は、装置パラメータとし、オペレータにより設定可能であるのが望ましい。例えば、不図示の入力装置による操作により、装置パラメータの設定画面が出力され、閾値(T1,T2)の設定画面が表示され、この状態で、キーボード入力により、オペレータが、閾値(T1,T2)を自由に設定することができるようになっているのが望ましい。
他にも、上記各実施形態における、kmax、rmax、Smax、mmax、nmaxなどの各種上限値を装置パラメータとしてオペレータが、設定可能となっていてもよい。この場合Smaxは、EGAでの統計処理を精度良く行うことができる程度の数に設定されている必要がある。
なお、閾値は2つである必要はなく、3つ以上あっても良い。この場合には、その後に行われる処理内容をさらに細分化できるようになる。例えば、もう一度、そのマークを撮像して評価するか否かなどの基準を設け、それぞれの基準に対して閾値を設定することも可能である。また、3つ以上の閾値を用いてスコアSに応じて波形データをランク付けし、そのランクと対応付けて波形データを記録しておき、後から評価可能とするようにしても良い。
また、本第1の実施形態によれば、閾値T2を満たせなかったマーク波形の個数(k、r)が所定数(kmax、rmax)以上であれば、ステップ349において、ウエハWに対する処理を中断させる。このようにすれば、1回や2回程度のマーク波形におけるマーク検出の失敗では、ウエハWに対する処理を停止させることがなくなるので、生産効率の観点から有利である。なお、本第1の実施形態では、閾値T2を満たせなかったマーク波形の個数k,r(これを第1所定数とする)を、ウエハWに対する処理の停止の条件としたが、これに限らず、計測したマーク個数全体に対する、閾値T2を満たせなかったマーク波形の個数k、rの割合が所定の割合(これを、第1割合とする)以上であれか否かを基準として、ウエハWに対する処理を中断するようにしてもよい。
勿論、ステップ317、335で判断が否定された場合には、即、ステップ349に移行して、アラーム処理を行うようにしても良い。すなわち、1つでも、スコアSが閾値T2より大きいものがあれば、「マーク検出エラー」を発生させるようにしてもよい。
なお、本第1の実施形態では、閾値T1を、マークの位置情報を検出するか否かの基準としたが、閾値T2とともに、閾値T1を、ウエハWに対する処理を停止するか否かの基準として用いるようにしてもよい。すなわち、ウエハWに関して、T1≦S<T2となった波形データの数が、所定数(これを、第2所定数とする)を超えた場合、又は、計測された波形データの個数全体に対して、T1≦S<T2となった波形の数が、所定の割合(これを、第2割合とする)を超えた場合には、ウエハWに対する処理を中断し、ウエハWをリジェクトするようにしてもよい。この場合、第2所定数、第2割合は、第1所定数、第1割合に対して、小さめに設定するのが望ましい。
また、本第1の実施形態によれば、ステップ317、335では、スコアSがT1とT2との間にある場合には、波形データを用いてそのマークの位置情報を検出することなく、ウエハW上の他のマークに対し、ステップ307、ステップ325における撮像と、ステップ309、327における波形前処理と、ステップ311、317、321、329、335、339における判断処理を行うことを決定する。このように、本第1の実施形態によれば、1つのマークの撮像結果が、そのマークの位置情報を精度良く検出することができる程度に良好でなかったとしても、他のマークの処理に移行することができるので、プロセスを中断する必要がなくなるため、処理効率の観点から有利である。
また、スコアSがT1とT2との間にあり、他のマークを含む領域の撮像結果から得られる波形データを取得する際には、ステップ307、325におけるマークMXp,MYpの撮像条件を、それ以前の撮像に使用していた撮像条件(例えば、アライメント系AS内におけるマークを照明する照明光学系の開口数、その照明に使用される照明光の波長の照明条件、フォーカス、撮像倍率など)とは異なる条件に切り替えるようにしても良い。このようにすれば、もしスコアSが閾値T1よりも良好でない原因が、上述した撮像条件であった場合には、その撮像条件を改善することができるようになり、他のマークに対する良好な波形データを取得することができるようになる。
また、本第1の実施形態によれば、波形前処理におけるスコアSにより、マークの位置情報を検出しない波形データについては、精密な検出処理を行わないようにすることにして、他のマークの計測に移行することができるので、処理効率をさらに高めることができる。
≪第2の実施形態≫
次に、本発明の第2の実施形態について、図5、図6に基づいて説明する。本発明のマーク検出方法が適用される第2の実施形態に係る露光装置の装置構成は、図1に示される上記第1の実施形態の露光装置100と同一であり、そのマークを含む領域の撮像結果から得られる波形データの評価方法のみが異なるため、以下においては、重複説明を避けるため、第1の実施形態との相違点を中心に説明する。また、同様の趣旨から同一若しくは同等の構成部分について同一の符号を用いるとともに、その説明を省略するものとする。
図5、図6には、本発明の第2の実施形態におけるマーク検出方法を実行する際の主制御装置20の処理アルゴリズムを示すフローチャートが示されている。この処理アルゴリズムは、上記第1の実施形態における処理アルゴリズムと同様に、サーチアライメントの後、露光前に実行される。
ステップ401では、アライメント系ASの倍率を高倍率に設定し、ステップ403では、カウンタ値m,nを0に初期化する。次のステップ405では、カウンタ値pを1に初期化し、カウンタ値i,jを0に初期化する。
次のステップ407では、アライメント系ASの撮像視野内に、計測すべきマークMXpが入るように、ウエハステージWSTを移動させ、ステップ409では、マークMXpを含む領域をアライメント系ASに撮像させる。これにより、その領域の撮像データが取得される。
次のステップ411では、波形前処理を行う。この波形前処理では、上記第1の実施形態におけるステップ309と同様の処理が行われ、上記撮像データから得られた波形データのスコアSの値が算出される。
次のステップ413では、算出されたスコアSが、閾値T1を下回っているか否かを判断する。この判断が肯定されればステップ415に進み、否定されればステップ419に進むものとする。ここでの判断は、この波形データが、マークの位置情報を検出するのに足るものであるか否かを判定するものであり、S<T1である場合には、この波形データを用いてマークの位置情報を検出することができると判断するのである。したがって、判断が肯定された後に実行されるステップ415では、カウンタ値iを1だけインクリメントし、次のステップ417では、波形後処理を行う。この波形後処理とは、マークの位置情報を精査に検出する処理であり、上記第1の実施形態におけるステップ315の処理と同じであるので詳細な説明を省略する。ステップ417終了後は、図6のステップ501に進む。
ステップ413における判断が否定された後、ステップ419では、スコアSが閾値T2より小さいか否かを判断する。この判断が肯定されればステップ423に進み、否定されればステップ421に進む。ステップ421では、不図示の表示装置に「マーク検出エラー」を表示させ、ウエハアライメントを強制終了し、ウエハWのプロセスを中断する。
一方、ステップ423では、カウンタ値mが所定数mmaxより大きいか否かを判断する。この判断が肯定されれば、図6のステップ501に進み、否定されれば、ステップ425に進む。
ステップ425では、撮像条件の調整を行う。このような撮像条件には、例えば、アライメント系AS内におけるマークを照明する照明光学系の開口数、その照明に使用される照明光の波長などの照明条件や、フォーカス、撮像倍率などがある。次のステップ427では、カウンタ値mが1だけインクリメントされ、ステップ405に戻る。
上述したように、ステップ401〜427では、ステップ411において算出された波形のスコア値Sが、閾値T1よりも良好であれば、その波形データを用いてマークの位置情報を算出し、T1<S<T2であれば、ステップ425で撮像条件を調整して、ウエハW上のマーク計測を最初からやり直し、スコアSが閾値T2以上であれば、不図示の表示装置に「マーク検出エラー」を表示させ、ウエハアライメントを強制終了し、ウエハWのプロセスを中断させる。カウンタ値mが所定回数mmax以下であり、T1<S<T2であるうちは、ステップ405→407→409→411→413→419→423→425→427が繰り返され、撮像条件が最適化されるようになる。
ステップ417実行後、又はステップ423で判断が肯定された後に行われる図6のステップ501では、アライメント系ASの撮像視野内に、マークMYpが入るように、ウエハステージWSTを移動させ、ステップ503では、マークMYpを含む領域をアライメント系ASに撮像させる。これにより、その領域の撮像データが取得される。
次のステップ505では、波形前処理を行い、撮像データから得られた波形データのスコアSの値を算出する。次のステップ507〜ステップ521の処理は、上述したマークMXpに対するステップ413〜ステップ427の処理と同じである。すなわち、そのスコアSが閾値T1よりも小さければ、ステップ509でカウンタ値jがインクリメントされ、ステップ511でマークMYpの位置情報が検出され、ステップ523に進む。また、そのスコアSがT1とT2との間にあれば、マークMYpの位置情報を検出することなく、ステップ517で、n>nmax(最大調整回数)となり、判断が肯定されれば、ステップ523に進み、否定されればステップ519に進んで、撮像条件を調整し、ステップ521でカウンタ値nを1だけインクリメントして、ステップ405に戻る。また、スコアSが、T2よりも大きければ、「マーク検出エラー」を発生させるべく、ステップ515のアラーム処理に進み、不図示の表示装置に「マーク検出エラー」を表示させ、ウエハアライメントを強制終了し、ウエハWのプロセスを中断する。
ステップ523では、カウンタ値pを1だけインクリメントさせ、次のステップ525では、カウンタ値i,jがそれぞれ、ウエハアライメントに必要な計測マーク数Smax以上になったか否かを判断する。この判断が肯定されれば、ステップ527に進み、否定されれば、ステップ407に戻る。ここでは、まだ、最大でもi=1、j=1なので、判断は否定され、ステップ407に戻る。
以降、ステップ407〜ステップ525における処理が行われ、マークMXp,MYpの計測を行う。ステップ525における判断が肯定されると、ステップ527に進む。ステップ527では、上記第1の実施形態におけるステップ345と同様に、これまでに検出されたマークの位置情報を用いて、EGA方式で行われている統計処理方法により全てのショット領域の配列座標を算出する、いわゆるEGA演算を行う。ステップ527終了後は、ウエハアライメントを終了する。ウエハアライメント後は、上記第1の実施形態と同様に、全てのショット領域に対する露光が行われ、全てのショット領域へのパターンの転写が終了し、ウエハWのアンロード、C/Dへの搬送が行われる。これにより、ウエハWに対する露光処理動作が終了する。次のウエハWの露光を行う場合には、上述した動作を繰り返す。
以上詳細に述べたように、本第2の実施形態によれば、上記第1の実施形態とは異なり、ステップ507では、スコアSが、T1とT2との間にある場合には、画像の撮像条件を変更したうえで、そのマークを再び撮像してスコアSを算出しなおし、そのスコアSを、閾値T1や閾値T2と改めて比較し、その後に行う処理を決定する。このようにすれば、マークの検出状態が良好でない原因が、撮像条件にある場合には、その改善により、スコアSの値が良好となって、スコアSが良好な波形を用いたマークの位置情報の検出を高精度に行うことができる。また、このような検出条件の調整を所定回数繰り返し行っても、スコアSの値が改善されない場合には、他の原因により、波形をマーク波形らしさが改善されないものとみなして、そのマークの位置情報を検出を中止し、他のマークに対する処理に移行するようになる。
なお、本第2の実施形態によれば、T1<S<T2であった場合には、撮像条件を変更したが、スコアを検出するための検出パラメータ、例えば、上記スコアを算出するためのマークの設計上のデータや、波形の平滑化条件などを調整するようにしても良い。
なお、本第2の実施形態によれば、T1<S<T2となる波形データが1つでもあれば、撮像条件を調整したが、これには限られず、T1<S<T2となる波形データが所定数以上となった場合に、その撮像条件を調整するようにしても良い。また、本第2の実施形態では、全てのマークを撮像条件を同じとするために、撮像条件を調整した場合には、図5のステップ405に戻り、最初のマークから計測し直すようにしたが、これに限らず、ステップ405ではなく、ステップ409に戻るようにして、スコアSがT1<S<T2だったそのマークを再度計測するようにし、それ以前に既に計測済みのマーク(スコアSが(S<T1だったマーク))の位置情報については、ステップ527の統計演算に用いるようにしても良い。
上記各実施形態では、図3、図5、図6のフローチャートに示されるような処理アルゴリズムにより検出されたマークの位置情報を用いたウエハアライメントにより、露光時のウエハWの位置合わせを高精度に行うことができるようになり、高精度に位置合わせされたウエハWに対して露光を行うので、高精度な重ね合わせ露光を実現することができる。
なお、上記各実施形態では、同一のサンプルショット領域SApのマークMXp,MYpを順に計測したがこれには限られない。例えば複数のマークMXpを先にまとめて計測するようにしてもよい。このように、各フローチャートに示される処理は、適宜変更し得るものである。
なお、上記各実施形態では、マークの波形データをロギングしておき、その波形データを、後から不図示の表示装置に表示しておけるようにしておくのが、装置メンテナンス等の観点から望ましい。これにより、その波形の形状から、オペレータが目視で確認し、そのスコアが悪化している原因を究明することができるようになる。例えば、波形の形状は比較的鮮明にマーク波形パターンが再現されているのに、スコアSが良好でない場合には、波形の検出パラメータ、すなわち上記3つの特徴量を算出するための情報となるラインパターンの設計上の幅、ラインパターンの設計上の幅などの設定値の誤設定を疑ってみる必要がある。これらのパラメータの誤設定であった場合には、そのウエハWに対する露光動作をリトライすることができる。
また、上記各実施形態では、ウエハW上の幾つかのマークの検出波形をスコアSを算出し、そのスコアSに応じて、ウエハアライメントの処理手順を制御したが、それらのスコアSは記録されるのが望ましい。そして、ウエハWの処理を終了した後に、そのウエハWのショットマップのイメージ表示上に、それぞれのマークが計測されたサンプルショット領域上にスコアSがそれぞれ表示されるようにし、例えば、ウエハW上のサンプルショット領域のロケーションとスコアとの因果関係などを、オペレータが目視で確認することもできる。
なお、上記各実施形態では、「マーク検出エラー」が発生した後に、プロセスを中断させたが、この場合には、ウエハW上に付着した異物が原因である場合も考えられるので、ウエハWを一旦クリーニングした後、プロセスを再実行するようにしても良い。
なお、上記各実施形態では、ウエハアライメントマークの検出にマーク検出方法を適用する場合について説明したが、これには限られない。例えば、上述したサーチアライメントを行う際のサーチアライメントマークSYM、SθMの検出に、本発明に係るマーク検出方法を適用するようにしてもよい。図2(A)では、サーチアライメントマークをSYM,SθMの2つしか図示していないが、ウエハW上には、サーチアライメントに成り得るマークが多数形成されており、その中から、スコアSが良好であった2つのマークをサーチアライメントに用いれば良い。
また、上記各実施形態では、ウエハW上のマークを検出する際について述べたが、これに限らず、本発明は、アライメント系ASによる基準マーク板FM上の各種基準マークの検出などにも適用することができ、レチクルR上に形成されたマーク、例えばレチクルアライメントマークを検出するレチクルアライメント系(例えばVRA(Visual Reticle Alignment))の撮像結果から得られる波形データのマーク波形らしさの評価にも用いることができる。
また、上記各実施形態では、検出マークをL/Sパターンとしたが、本発明は、マークの形状には限られず、十字マークやボックスマークであってもよい。マークの形状が変われば、スコアを算出する際の特徴量も当然、そのマークに形状に応じたものとなることはいうまでもない。
また、上記各実施形態ではEGA方式の使用を前提としたが、計測対象のアライメントマークを選択するアライメント方式であれば、いかなるアライメント方式でも良い。また、上記各実施形態では、アライメント系ASとして、FIA方式のアライメントセンサを用いたが、前述したように、レーザ光をウエハW上の点列状のアライメントマークに照射し、そのマークにより回折又は散乱された光を用いてマーク位置を検出するLSA(Laser Step Alignment)方式のアライメントセンサや、そのアライメントセンサと上記FIA方式とを適宜組み合わせたアライメントセンサにも本発明を適用することは可能である。
なお、アライメント系はオン・アクシス方式(例えばTTL(Through The Lens)方式など)でも良い。また、アライメント系は、アライメント系の検出視野内にアライメントマークをほぼ静止させた状態でその検出を行うものに限られるものではなく、アライメント系から照射される検出光とアライメントマークとを相対移動させる方式であっても良い(例えば前述のLSA系など)。かかる検出光とアライメントマークとを相対移動させる方式の場合には、その相対移動方向を、前述の各アライメントマークを検出する際のウエハステージWSTの移動方向と同一方向とすることが望ましい。
また、上記各実施形態では、本発明がステップ・アンド・スキャン方式の走査型露光装置に適用された場合について説明したが、本発明の適用範囲がこれに限定されないのは勿論である。すなわち、ステップ・アンド・リピート方式、ステップ・アンド・スティッチ方式、ミラープロジェクション・アライナー、及びフォトリピータなどにも好適に適用することができる。例えば国際公開WO99/49504号パンフレットなどに開示される、投影光学系PLとウエハとの間に液体(例えば純水など)が満たされる液浸型露光装置などにも適用できる。なお、上記各実施形態の露光装置は、例えば特開平10−214783号公報や国際公開WO98/40791号パンフレットなどに開示されているように、投影光学系を介してレチクルパターンの転写が行われる露光位置と、ウエハアライメント系によるマーク検出が行われる計測位置(アライメント位置)とにそれぞれウエハステージを配置して、露光動作と計測動作とをほぼ並行して実行可能なツイン・ウエハステージタイプでも良い。さらに、投影光学系PLは、屈折系、反射屈折系、及び反射系のいずれでもよいし、縮小系、等倍系、及び拡大系のいずれでも良い。
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(または位相パターン・減光パターン)を形成した光透過型マスク、あるいは光反射性の基板上に所定の反射パターンを形成した光反射型マスクを用いたが、これらのマスクに代えて、露光すべきパターンの電子データに基づいて透過パターンまたは反射パターン、あるいは発光パターンを形成する電子マスクを用いてもよい。このような電子マスクは、例えば米国特許第6,778,257号公報に開示されている。ここではこの米国特許第6,778,257号公報を参照して援用する。
なお、上述の電子マスクとは、非発光型画像表示素子と自発光型画像表示素子との双方を含む概念である。ここで、非発光型画像表示素子は、空間光変調器(Spatial Light Modulator)とも呼ばれ、光の振幅、位相あるいは偏光の状態を空間的に変調する素子であり、透過型空間光変調器と反射型空間光変調器とに分けられる。透過型空間光変調器には、透過型液晶表示素子(LCD:Liquid Crystral Display)、エレクトロクロミックディスプレイ(ECD)等が含まれる。また、反射型空間光変調器には、DMD(Digital Mirror Device,またはDigital Micro-mirror Device)、反射ミラーアレイ、反射型液晶表示素子、電気泳動ディスプレイ(EPD:ElectroPhoretic Display)、電子ペーパ(又は電子インク)、光回折ライトバルブ(Grating Light Value)等が含まれる。
また、自発光型画像表示素子には、CRT(Cathod Ray Tube)、無機EL(Electro Luminescence)ディスプレイ、電界放出ディスプレイ(FED:Field Emission Display)、プラズマディスプレイ(PDP:Plasma Display Panel)や、複数の発光点を有する固体光源チップ、チップを複数個アレイ状に配列した固体光源チップアレイ、または複数の発光点を1枚の基板に作り込んだ固体光源アレイ(例えばLED(Light Emitting Diode)ディスプレイ、OLED(Organic Light Emitting Diode)ディスプレイ、LD(Laser Diode)ディスプレイ等)等が含まれる。なお、周知のプラズマディスプレイ(PDP)の各画素に設けられている蛍光物質を取り除くと、紫外域の光を発光する自発光型画像表示素子となる。
さらに、本発明が適用される露光装置の光源は、KrFエキシマレーザやArFエキシマレーザ、F2レーザとしたが、他の真空紫外域のパルスレーザ光源であっても良い。この他、露光用照明光として、例えば、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
なお、複数のレンズから構成される照明光学系、投影光学系、並びにアライメント系ASを露光装置本体に組み込み、光学調整をするとともに、多数の機械部品からなるレチクルステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、更に総合調整(電気調整、動作確認等)をすることにより、上記各実施形態の露光装置を製造することができる。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
なお、本発明は、半導体製造用の露光装置に限らず、液晶表示素子などを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイスパターンをセラミックウエハ上に転写する露光装置、撮像素子(CCDなど)、有機EL、マイクロマシン及びDNAチップなどの製造に用いられる露光装置などにも適用することができる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用することができる。ここで、DUV(遠紫外)光やVUV(真空紫外)光などを用いる露光装置では一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、ホタル石、フッ化マグネシウム、又は水晶などが用いられる。また、プロキシミティ方式のX線露光装置、又は電子線露光装置などでは透過型マスク(ステンシルマスク、メンブレンマスク)が用いられ、マスク基板としてはシリコンウエハなどが用いられる。
また、本発明に係るマーク検出方法は、露光装置に限らず、物体上に形成された複数のマークを検出し、その検出結果を用いて以降の処理を行う装置であれば、適用が可能である。
以上説明したように、本発明のマーク検出方法は、物体上のマークを検出するのに適しており、本発明の位置合わせ方法は、物体を位置合わせするのに適しており、本発明の露光方法は、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程に適している。
本発明の第1の実施形態に係る露光装置の概略構成を示す図である。 図2(A)は、ウエハ上に形成されたサーチアライメントマークとショット配列とを模式的に示す図であり、図2(B)は、ウエハ上に形成されたショット領域に付設されたアライメントマークを模式的に示す図である。 本発明の第1の実施形態に係る露光装置におけるウエハアライメントを行う際の主制御装置の処理アルゴリズムを示すフローチャートである。 2つの閾値で規定されるスコアSと、評価結果との関係との関係を概略的に示す図である。 本発明の第2の実施形態に係る露光装置におけるウエハアライメントを行う際の主制御装置の処理アルゴリズムを示すフローチャート(その1)である。 本発明の第2の実施形態に係る露光装置におけるウエハアライメントを行う際の主制御装置の処理アルゴリズムを示すフローチャート(その2)である。
符号の説明
16…レチクル干渉計、18…ウエハ干渉計、19…ステージ制御装置、20…主制御装置、24…ウエハステージ駆動部、25…ウエハホルダ、100…露光装置、AS…アライメント系、AX…光軸、Cp…中心、FM…基準マーク板、IA…露光領域、IAR…照明領域、MXp、MYp…アライメントマーク、PL…投影光学系、R…レチクル(マスク)、RST…レチクルステージ、SAp…ショット領域、W…ウエハ(物体)、WST…ウエハステージ、α、β…座標軸。

Claims (15)

  1. 物体上に形成された複数のマークを検出するマーク検出方法であって、
    前記物体上のいずれか1つのマークを含む領域に対応する光電変換信号の波形を取得する取得工程と;
    前記波形のマーク波形らしさを示す指標値を算出する算出工程と;
    前記算出された指標値を、複数の異なる閾値と比較して、その比較結果に応じてその後の処理内容を決定する決定工程と;を含むマーク検出方法。
  2. 前記複数の異なる閾値には、第1の閾値と、該第1の閾値よりも条件的に緩和された値である第2の閾値とが含まれ、
    前記決定工程では、
    前記取得工程で取得された波形を用いて当該マークの位置情報の検出を行うか否かを、前記第1の閾値を基準として決定し、かつ、
    前記物体に対する処理を続行するか否かを、前記第2の閾値を基準として決定することを特徴とする請求項1に記載のマーク検出方法。
  3. 前記決定工程では、
    前記第2の閾値を満たせなかったマーク波形の個数が第1所定数以上であれば、又は、計測したマーク個数全体に対して第1割合以上であれば、前記物体に対する処理を中断することを特徴とする請求項2に記載のマーク検出方法。
  4. 前記決定工程では、
    前記第1の閾値を満たせなかったマーク波形の個数が第2所定数以上であれば、又は、計測したマーク個数全体に対して第2割合以上であれば、前記物体に対する処理を中断することを特徴とする請求項2又は3に記載のマーク検出方法。
  5. 前記決定工程では、
    前記指標値が前記第1の閾値と前記第2の閾値との間にある場合には、前記波形を用いて前記マークの位置情報を検出することなく、前記物体上の他のマークに対し、前記取得工程と、前記算出工程と、前記決定工程とを行うことを決定することを特徴とする請求項2〜4のいずれか一項に記載のマーク検出方法。
  6. 前記取得工程の際の前記光電変換信号の波形の取得条件を、それ以前の取得工程に使用していた取得条件とは異なる条件に切り替えて、前記他のマークに対応する光電変換信号の波形を取得することを特徴とする請求項5に記載のマーク検出方法。
  7. 前記決定工程では、
    前記指標値が前記第1の閾値と前記第2の閾値との間にある場合には、前記波形の取得条件を変更して、前記マークに対し、前記取得工程と、前記算出工程と、前記決定工程とを再び行うことを決定することを特徴とする請求項2〜4のいずれか一項に記載のマーク検出方法。
  8. 前記取得条件は、前記マークを照明する照明光学系の開口数と、該照明に使用される照明光の波長とのうちの少なくとも一方を含むことを特徴とする請求項6又は7に記載のマーク検出方法。
  9. 複数のマークが形成された物体の位置合わせを行う位置合わせ方法であって、
    請求項1〜8のいずれか一項に記載のマーク検出方法を用いて検出されたマークの位置情報を用いて、前記物体の位置合わせを行う工程を含む位置合わせ方法。
  10. マスクに形成されたパターンを物体上に転写する露光方法であって、
    請求項9に記載の位置合わせ方法を用いて複数のマークが形成された物体の位置合わせを行う工程と;
    前記位置合わせされた物体に対し前記パターンを転写する工程と;を含む露光方法。
  11. 物体上に形成された複数のマークの検出処理を、コンピュータに実行させるためのプログラムであって、
    前記物体上のいずれか1つのマークを含む領域に対応する光電変換信号の波形を取得する取得手順と;
    前記波形におけるマーク波形らしさを示す指標値を算出する算出手順と;
    前記算出された指標値を、複数の異なる閾値と比較して、その比較結果に応じてその後の処理内容を決定する決定手順と;をコンピュータに実行させるためのプログラム。
  12. 前記複数の異なる閾値には、第1の閾値と、該第1の閾値よりも条件的に緩和された値である第2の閾値とが含まれ、
    前記決定手順では、
    前記取得手順で取得された当該マークの波形を用いて当該マークの位置情報の検出を行うか否かを、前記第1の閾値を基準として決定し、かつ、
    前記物体に対する処理を続行するか否かを、前記第2の閾値を基準として決定する手順をコンピュータに実行させることを特徴とする請求項11に記載のプログラム。
  13. 前記決定手順では、
    前記指標値が前記第1の閾値と前記第2の閾値との間にある場合には、前記波形を用いて前記マークの位置情報を検出することなく、前記物体上の他のマークに対し、前記取得手順と、前記算出手順と、前記決定手順とを実行することを決定する手順をコンピュータに実行させることを特徴とする請求項11又は12に記載のプログラム。
  14. 前記決定手順では、
    前記指標値が前記第1の閾値と前記第2の閾値との間にある場合には、前記波形の検出条件を変更して、前記マークに対し、前記取得手順と、前記算出手順と、前記決定手順とを再び実行することを決定する手順をコンピュータに実行させることを特徴とする請求項11〜13のいずれか一項に記載のプログラム。
  15. 請求項11〜14のいずれか一項に記載のプログラムを実行するコンピュータと;
    該コンピュータの処理結果に従って、物体上に形成された複数のマークの位置情報の検出を行う位置検出装置と;を備えるマーク計測装置。

JP2005113310A 2005-04-11 2005-04-11 マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置 Pending JP2006294854A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113310A JP2006294854A (ja) 2005-04-11 2005-04-11 マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113310A JP2006294854A (ja) 2005-04-11 2005-04-11 マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置

Publications (1)

Publication Number Publication Date
JP2006294854A true JP2006294854A (ja) 2006-10-26

Family

ID=37415102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113310A Pending JP2006294854A (ja) 2005-04-11 2005-04-11 マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置

Country Status (1)

Country Link
JP (1) JP2006294854A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016762A (ja) * 2007-07-09 2009-01-22 Canon Inc 露光装置及びデバイス製造方法
JP2010103216A (ja) * 2008-10-22 2010-05-06 Canon Inc 露光装置
JP2017519380A (ja) * 2014-03-21 2017-07-13 オムロン株式会社 光学系における光学的障害を検出しかつ緩和するための方法および装置
US10185876B2 (en) 2014-01-20 2019-01-22 Canon Kabushiki Kaisha Detection apparatus, detection method, and lithography apparatus
US10732522B2 (en) 2015-04-08 2020-08-04 Canon Kabushiki Kaisha Imprint apparatus and article manufacturing method
CN115661148A (zh) * 2022-12-26 2023-01-31 视睿(杭州)信息科技有限公司 一种晶圆晶粒排列检测方法及系统
WO2023236069A1 (zh) * 2022-06-08 2023-12-14 李永春 对位校正系统及其方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016762A (ja) * 2007-07-09 2009-01-22 Canon Inc 露光装置及びデバイス製造方法
JP2010103216A (ja) * 2008-10-22 2010-05-06 Canon Inc 露光装置
US10185876B2 (en) 2014-01-20 2019-01-22 Canon Kabushiki Kaisha Detection apparatus, detection method, and lithography apparatus
US11156929B2 (en) 2014-01-20 2021-10-26 Canon Kabushiki Kaisha Detection apparatus detection method and lithography apparatus
JP2017519380A (ja) * 2014-03-21 2017-07-13 オムロン株式会社 光学系における光学的障害を検出しかつ緩和するための方法および装置
US10085001B2 (en) 2014-03-21 2018-09-25 Omron Corporation Method and apparatus for detecting and mitigating mechanical misalignments in an optical system
US10732522B2 (en) 2015-04-08 2020-08-04 Canon Kabushiki Kaisha Imprint apparatus and article manufacturing method
WO2023236069A1 (zh) * 2022-06-08 2023-12-14 李永春 对位校正系统及其方法
CN115661148A (zh) * 2022-12-26 2023-01-31 视睿(杭州)信息科技有限公司 一种晶圆晶粒排列检测方法及系统

Similar Documents

Publication Publication Date Title
US6538721B2 (en) Scanning exposure apparatus
US7838858B2 (en) Evaluation system and method of a search operation that detects a detection subject on an object
JP5002440B2 (ja) 投影システムの焦点面に対して基板のターゲット部分を位置合わせする方法
US7518717B2 (en) Exposure apparatus and a device manufacturing method using the same
JP2007013192A (ja) 測定方法及び較正基板
JP6380412B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
KR20080059572A (ko) 광학 특성 계측 방법, 노광 방법 및 디바이스 제조 방법,그리고 검사 장치 및 계측 방법
US8384900B2 (en) Exposure apparatus
JP2006294854A (ja) マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置
JP2005252281A (ja) 基板の表側または裏側に結像するためのリソグラフィ装置、基板識別方法、デバイス製造方法、基板、およびコンピュータプログラム
CN112180696A (zh) 检测装置、曝光装置和物品制造方法
JP2010103476A (ja) 位置合わせ装置及び露光装置
JP5147865B2 (ja) デバイス製造方法、リソグラフィ装置およびコンピュータプログラム
JP4984074B2 (ja) 評価システム及び評価方法
WO2010125813A1 (ja) 露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法
JP2007281126A (ja) 位置計測方法、位置計測装置及び露光装置
EP1675176A1 (en) Method for measuring the bonding quality of bonded substrates, metrology apparatus, and method of producing a device from a bonded substrate
JPH10189443A (ja) 位置検出用マーク、マーク検出方法及びその装置並びに露光装置
JP2007027219A (ja) 最適化方法及び表示方法
JP2006310683A (ja) 調整方法
JP2005311198A (ja) 露光装置、合焦位置検出装置及びそれらの方法、並びにデバイス製造方法
CN108292111B (zh) 用于在光刻设备中处理衬底的方法和设备
US20020021433A1 (en) scanning exposure apparatus
JP2007048857A (ja) 液浸露光装置および液浸露光方法
JP2005064369A (ja) 最適化方法、露光方法、最適化装置、露光装置、デバイス製造方法、及びプログラム、並びに情報記録媒体