WO2010125813A1 - 露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法 - Google Patents

露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法 Download PDF

Info

Publication number
WO2010125813A1
WO2010125813A1 PCT/JP2010/003043 JP2010003043W WO2010125813A1 WO 2010125813 A1 WO2010125813 A1 WO 2010125813A1 JP 2010003043 W JP2010003043 W JP 2010003043W WO 2010125813 A1 WO2010125813 A1 WO 2010125813A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
mark
exposure
optical system
exposure method
Prior art date
Application number
PCT/JP2010/003043
Other languages
English (en)
French (fr)
Inventor
森田泰洋
蛭川茂
藤井光一
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2010125813A1 publication Critical patent/WO2010125813A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation

Definitions

  • the present invention relates to an exposure method, a device manufacturing method, and an overlay error measurement method, and more particularly, an exposure method for forming a pattern on an object via a projection optical system, and an electronic device using the exposure method.
  • the present invention relates to a device manufacturing method to be manufactured, and an overlay error measuring method for measuring an overlay error between patterns of different layers formed by being superimposed on a plurality of partitioned regions arranged on an object.
  • steppers step-and-repeat projection exposure apparatuses
  • step-and- A scanning projection exposure apparatus a so-called scanning stepper (also called a scanner) or the like is used.
  • a substrate wafer, glass plate coated with a photosensitive agent (resist) through a projection optical system is irradiated with illumination light onto a mask (or reticle) on which a pattern is formed. Etc.), the pattern is transferred onto each of a plurality of shot areas on the substrate. Then, the above electronic device is manufactured by forming a plurality of layered patterns on the substrate. For this reason, high overlay accuracy is required for accurately overlaying and transferring a pattern image onto a pattern already formed in each shot region on the substrate.
  • a street also referred to as a scribe line or a scribe lane
  • an alignment mark or the like may be formed may be recessed with respect to a shot region where a device pattern is formed.
  • the alignment mark may be transferred to the street in a defocused state, and an alignment mark that is deformed and / or displaced may be formed.
  • the projection optical system has a high NA due to the recent miniaturization of the pattern and the depth of focus is also reduced accordingly, even if the degree of defocusing is small, it can bring about a large deformation that misdetects the alignment mark. Therefore, if the pattern is superimposed using the alignment mark formed by deformation and / or misalignment, an overlay error that cannot be ignored may occur.
  • an exposure method in which a pattern is superimposed on each of a plurality of first regions arranged on an object via a projection optical system, and the exposure method is arranged on the object.
  • the projection optics of the second region in which marks are formed corresponding to the plurality of first regions and the first region corresponding to the marks An exposure method is provided that includes performing means for suppressing exposure errors due to in-plane misalignment perpendicular to the optical axis of the system.
  • the exposure error may include not only a position error but also a rotation, magnification and / or shape error.
  • the suppression includes a case where the occurrence of the exposure error is prevented.
  • an exposure method in which a pattern is superimposed on each of a plurality of first regions arranged on an object, wherein a plurality of second regions corresponding to the plurality of first regions are formed.
  • the first area of the target portion of at least a part of the second area where the plurality of first marks are formed by detecting one mark and aligning the object with a predetermined point based on the detection result Exposing the object to reduce the level difference with respect to the object; detecting the plurality of first marks, aligning the object with a predetermined point based on the detection result, and exposing the object
  • a second exposure method including: forming a second mark on the target portion and forming the pattern so as to overlap each of the plurality of first regions.
  • a pattern is formed on the object using any one of the first and second exposure methods of the present invention; and the object on which the pattern is formed is developed. And a device manufacturing method is provided.
  • a device manufacturing method including forming a pattern on each of a plurality of first regions arranged on an object, the plurality of first regions. And detecting a plurality of first marks corresponding to the target, aligning the object with a predetermined point based on the detection result, and at least a target of the second region in which the plurality of first marks are formed Performing a flattening process for flattening the portion and the first region; detecting the plurality of first marks and performing alignment with respect to a predetermined point of the object based on the detection result; Forming a second mark on the target portion that is planarized with respect to one region.
  • an overlay error measurement method for measuring an overlay error between two patterns formed on a reference layer and a target layer on an object via a projection optical system.
  • a first positional shift in a plane perpendicular to the optical axis of the projection optical system between the image of the pattern and the image of the mark projected onto the object is determined between the image of the pattern and the image of the mark.
  • Relationship Exposure is performed using a first mask in which a known first pattern and a first mark are formed, and the first pattern is formed in a plurality of first regions in a reference layer on the object via the projection optical system.
  • first mark in a second region corresponding to the plurality of first regions; a first pattern having a known positional relationship; and a second mark having a design condition optimized by the optimization Exposure is performed using a second mask having the second pattern, and the second pattern of the target layer is formed on the first pattern on the object, and at the same time, the second mark is superimposed on the first mark in the second region. Measuring the positional deviation between the first mark and the second mark formed in the second region on the object, thereby superimposing the first pattern and the second pattern. Calculate error Thing to; overlay error measuring method including, are provided.
  • an overlay error measurement method for measuring an overlay error between two patterns formed on a reference layer and a target layer on an object via a projection optical system.
  • the pattern image projected onto the first area on the object via the projection optical system and the second area on the object via the projection optical system In consideration of at least the optical characteristics of the projection optical system, the pattern image projected onto the first area on the object via the projection optical system and the second area on the object via the projection optical system.
  • a first positional deviation in a plane perpendicular to the optical axis of the projection optical system with respect to the projected image of the mark; and a first pattern having a known positional relationship and a first measurement mark are formed Exposure is performed using a mask, and the first pattern is formed in the first region of the reference layer on the object via the projection optical system, and at the same time, the first measurement mark is formed in the second region.
  • Exposure is performed using a mask in which a known second pattern and a second measurement mark are formed, and the second pattern of the target layer is formed on the first pattern on the object, and at the same time, the second region Forming a second measurement mark overlying the first measurement mark; measuring a positional deviation between the first measurement mark and the second measurement mark formed in the second region on the object;
  • An overlay error measurement method including: calculating an overlay error between the first pattern and the second pattern using the measurement result and the first displacement is provided.
  • FIG. 2 is a block diagram for explaining an input / output relationship of a main controller provided in the exposure apparatus of FIG. 1.
  • FIG. 3A is a plan view showing the surface of the reticle
  • FIG. 3B is an enlarged view of an alignment mark formed on the reticle.
  • 4A is a view for explaining a shot area on the wafer
  • FIG. 4B is an enlarged view of the periphery of one shot area
  • FIG. 4C is a view of FIG. 4B.
  • FIG. 13A is a diagram showing the lateral shift obtained for each image height in the exposure region
  • FIGS. 13B to 13D are the offset, X scaling, and the exposure region obtained from the lateral shift, respectively. It is a figure which shows orthogonality. It is a figure for demonstrating the reticle used in dummy pattern exposure.
  • FIGS. 15A to 15C are views (No. 1) for explaining a procedure for forming a dummy pattern and forming a new alignment mark on the formed dummy pattern, respectively.
  • FIGS. 16A to 16D are views (No.
  • FIGS. 18A to 18C are diagrams for explaining a modification example related to overlay error measurement.
  • FIG. 1 shows a schematic configuration of an exposure apparatus 100 used for carrying out the exposure method of the first embodiment.
  • the exposure apparatus 100 is a step-and-scan projection exposure apparatus, a so-called scanner.
  • the exposure apparatus 100 includes an illumination system IOP, a reticle stage RST that holds a reticle R, a projection unit PU that includes a projection optical system PL, a wafer stage WST that holds a wafer W, and a control system thereof. Etc.
  • the direction parallel to the optical axis AXp of the projection optical system PL is the Z-axis direction
  • the scanning direction in which the reticle R and the wafer W are relatively scanned in a plane perpendicular to the Z-axis direction is the Y-axis direction.
  • the direction orthogonal to the axis is defined as the X-axis direction
  • the rotation directions around the X-axis, Y-axis, and Z-axis are described as the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the illumination system IOP includes a light source and an illumination optical system connected to the light source via a light transmission optical system.
  • the illumination system IOP includes a slit-shaped illumination area IAR that extends in the X-axis direction defined by the reticle blind (masking system). Illumination is performed with substantially uniform illuminance by illumination light (exposure light) IL.
  • illumination light exposure light
  • ArF excimer laser light wavelength 193 nm
  • the configuration of the illumination system IOP is disclosed in, for example, US Patent Application Publication No. 2003/0025890.
  • Reticle stage RST is arranged on the ⁇ Z side of illumination system IOP. On reticle stage RST, reticle R is fixed, for example, by vacuum suction.
  • the reticle stage RST can be finely driven in the XY plane and driven within a predetermined stroke range in the Y-axis direction by a reticle stage drive system 11 (not shown in FIG. 1, see FIG. 2) including a linear motor, for example. It has become.
  • Position information of the reticle stage RST in the XY plane (including rotation information in the ⁇ z direction) is formed on the end face of the reticle stage RST by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 14.
  • reticle interferometer a reticle laser interferometer
  • Measurement information of reticle interferometer 14 is supplied to main controller 120 (not shown in FIG. 1, see FIG. 2).
  • the reticle stage RST for example, TTR (Through The Reticle) alignment using light having an exposure wavelength disclosed in, for example, US Pat. No. 5,646,413.
  • a pair of reticle alignment detection systems 13 (see FIG. 2) is provided. The detection signal of each reticle alignment detection system 13 is supplied to the main controller 120.
  • Projection unit PU is arranged on the ⁇ Z side of reticle stage RST.
  • Projection optical system PL is held in lens barrel 40.
  • the projection optical system PL for example, a refractive optical system including a plurality of optical elements (lens elements) arranged along the optical axis AXp is used.
  • the projection optical system PL is, for example, double-sided telecentric and has a predetermined projection magnification ⁇ ( ⁇ is, for example, 1/4, 1/5, or 1/8).
  • An alignment detection system AS that detects alignment marks and reference marks formed on the wafer W is provided on the side surface of the lens barrel 40 of the projection unit PU.
  • the alignment detection system AS is a type of image-forming alignment sensor that measures the mark position by illuminating a mark with broadband light such as a halogen lamp and processing the mark image.
  • a certain FIA (Field Image Alignment) system is used.
  • the alignment detection system AS incorporates a focus detection system that detects a position (defocus amount) in the optical axis direction (Z-axis direction) of the alignment optical system in the region where the mark is formed during mark detection. Yes.
  • An imaging type alignment sensor incorporating such a focus detection system is disclosed in, for example, US Pat. No. 5,721,605. Detection information and measurement information of the alignment detection system AS are supplied to the main controller 120.
  • Wafer stage WST is driven on stage base 22 arranged on the ⁇ Z side of projection unit PU with a predetermined stroke in the X-axis direction and Y-axis direction by stage drive system 24 including a linear motor, for example. It is finely driven in the Z-axis direction, ⁇ x direction, ⁇ y direction, and ⁇ z direction.
  • wafer W On wafer stage WST, wafer W is held by vacuum suction or the like via a wafer holder (not shown). Instead of wafer stage WST, a first stage that moves in the X-axis direction, the Y-axis direction, and the ⁇ z direction, and a second stage that finely moves in the Z-axis direction, ⁇ x direction, and ⁇ y direction on the first stage.
  • a stage device provided can also be used.
  • the reference plate FP On the wafer stage WST, the reference plate FP is fixed in a state where the surface thereof is the same height as the surface of the wafer W. On the surface of the reference plate FP, a reference mark used for baseline measurement of the alignment detection system AS and at least a pair of reference marks detected by the reticle alignment detection system 13 are formed.
  • an aerial image measuring device that measures an aerial image of a pattern projected onto wafer W via projection optical system PL, and an intensity (illuminance) of illumination light irradiated on wafer W are measured.
  • An illuminance monitor or illuminance unevenness sensor
  • a wavefront aberration measuring instrument both not shown
  • the aerial image measuring instrument a measuring instrument having a configuration disclosed in, for example, US Patent Application Publication No. 2002/0041377 can be employed.
  • the illuminance unevenness sensor for example, a sensor having a configuration disclosed in US Pat. No. 4,465,368 can be employed.
  • the wavefront aberration measuring instrument for example, a Shack-Hartman type measuring instrument disclosed in International Publication No. 03/065428 can be employed.
  • an aerial image measuring device may be used to detect the reticle R mark and the wafer stage WST reference mark. In this case, the reticle alignment detection system 13 may not be provided.
  • Position information of wafer stage WST in the XY plane (including rotation information (yaw amount (rotation amount ⁇ z in ⁇ z direction), pitching amount (rotation amount ⁇ x in ⁇ x direction), rolling amount (rotation amount ⁇ y in ⁇ y direction))) Is resolved by a laser interferometer system (hereinafter abbreviated as “interferometer system”) 18 via a movable mirror 16 (or a reflection surface formed on the end face of wafer stage WST), for example, about 0.25 nm. Always detected.
  • interferometer system laser interferometer system
  • the measurement information of the interferometer system 18 is supplied to the main controller 120.
  • Main controller 120 controls the position (including rotation in the ⁇ z direction) of wafer stage WST in the XY plane via stage drive system 24 based on the measurement information of interferometer system 18.
  • the position and inclination amount of the surface of the wafer W in the Z-axis direction are determined by, for example, a focus sensor AF comprising an oblique incidence type multi-point focal position detection system disclosed in US Pat. (See FIG. 2).
  • the measurement information of the focus sensor AF is supplied to the main controller 120.
  • the reticle R is composed of a rectangular glass substrate.
  • a device pattern (simply referred to as a pattern). ) Is formed.
  • similar alignment marks AM are respectively formed on the ⁇ X side and the + X side of the pattern region RS.
  • the alignment mark AM has two line and space patterns (L / S patterns) LSX and LSY arranged in the Y-axis direction, as shown in FIG. 3B.
  • the L / S pattern LSX is a set of five line patterns having a line width L (for example, 2 ⁇ m) arranged at equal intervals d (for example, 6 ⁇ m) in the X-axis direction.
  • the L / S pattern LSY is a set of five line patterns having a line width L arranged at equal intervals d in the Y-axis direction.
  • the pattern region RS is composed of a light-shielding portion that shields light, and a pattern composed of a light-transmitting portion that transmits light is formed in the light-shielding portion. That is, the reticle R is a negative reticle (negative photomask).
  • a region RT excluding the pattern region RS is a translucent part.
  • an alignment mark AM including a line pattern composed of a light shielding portion is formed.
  • the first surface (object surface) of the projection optical system PL substantially matches the pattern surface.
  • the reduced illumination image of the circuit pattern of the reticle R in the illumination area IAR via the projection optical system PL (projection unit PU) by the illumination light IL that has passed through the reticle R arranged in this manner (a reduced image of a part of the circuit pattern).
  • reticle R is moved relative to illumination area IAR (illumination light IL) in the scanning direction (Y-axis direction) and exposure area IA (illumination light IL).
  • illumination area IAR illumination light IL
  • exposure area IA illumination light IL
  • a pattern of the reticle R is generated on the wafer W by the illumination system IOP and the projection optical system PL, and the pattern on the wafer W is exposed by exposure of the photosensitive layer (resist layer) on the wafer W by the illumination light IL.
  • a pattern is formed.
  • reticle R is placed on reticle stage RST by a reticle loader (not shown).
  • a coater / developer (C / D) (not shown) connected in-line with the exposure apparatus 100 is coated with a photosensitive agent (resist) on the surface thereof, and a wafer W on which a resist layer is formed becomes a wafer stage WST. It is placed on a wafer holder (not shown).
  • a plurality of shot regions S are arranged on the wafer W.
  • a pattern is formed by exposure to the previous layer and device processing.
  • a plurality of alignment marks AM are formed in the gap SL between adjacent shot regions.
  • the gap SL is also referred to as a street line or a scribe line, and is simply referred to as a street below.
  • alignment marks AM are formed on the street SL surrounding one shot region S.
  • the alignment mark AM is positioned on the + Y side, and on the ⁇ Y side of the two alignment marks AM on the + X side of the shot area S.
  • the alignment mark AM is an alignment mark attached to the shot area S.
  • the positional relationship between the two alignment marks AM attached to the shot region S and the shot region S corresponds to the positional relationship between the alignment mark AM on the reticle R and the pattern region RS.
  • the remaining alignment marks AM are alignment marks attached to adjacent shot areas.
  • Main controller 120 performs alignment measurement for detecting a plurality of predetermined alignment marks AM among alignment marks AM formed on street SL on wafer W using alignment detection system AS.
  • the X position and the Y position are detected for each alignment mark AM to be detected. Is done.
  • the main controller 120 uses, for example, a statistical method using a least square method disclosed in US Pat. No. 6,876,946 and the like to arrange coordinates of all shot regions on the wafer W.
  • a deformation amount (magnification, rotation, orthogonality) including the magnification of each shot is obtained (hereinafter, this alignment method is referred to as “multi-point EGA within a shot”).
  • Main controller 120 obtains the relative positional relationship between the projection center of projection optical system PL and each shot area on wafer W based on the result of wafer alignment measurement (multi-point EGA within shot).
  • Main controller 120 monitors the measurement results of reticle interferometer 14 and interferometer system 18 and moves reticle stage RST and wafer stage WST to their respective scan start positions (acceleration start positions).
  • Main controller 120 relatively drives reticle stage RST and wafer stage WST in opposite directions along the Y-axis direction.
  • Main controller 120 illuminates reticle R with illumination light IL when reticle stage RST and wafer stage WST reach their target speeds. Thereby, scanning exposure is started.
  • Main controller 120 performs reticle stage RST and wafer stage WST so that the speed ratio between reticle stage RST and wafer stage WST is maintained at a speed ratio corresponding to projection magnification ⁇ of projection optical system PL during scanning exposure. And control.
  • Main controller 120 moves (steps) wafer stage WST to the scanning start position (acceleration start position) for the next shot area.
  • Main controller 120 performs scanning exposure for the next shot area in the same manner as described above.
  • main controller 120 repeatedly performs step movement between shot areas and scanning exposure for the shot areas, transfers the device pattern of reticle R to all shot areas, and transfers alignment marks AM to street SL.
  • a plurality of patterns are overlapped and formed on the wafer W by repeating the above-described exposure processing and device processing such as etching.
  • FIG. 4C which is a cross-sectional view taken along the line BB of FIG. 4B, a street SL around the shot area S may be recessed.
  • the aerial image intensity distribution shows a substantially ideal concave distribution.
  • a fine structure derived from the aberration and non-telecentricity of the projection optical system PL, illumination conditions, etc. appears at the bottom of the concave shape in the aerial image intensity distribution.
  • the alignment mark is formed with almost no deformation.
  • the two portions CR 2 corresponding to the side lobes are exposed, and a resist pattern including two defects derived from the side lobes is formed. As a result, a deformed and / or misaligned alignment mark is formed.
  • FIG. 8 shows the relationship between the shift amount and the defocus amount ⁇ Z, which is a deviation from the design position of the alignment mark detection position by the alignment detection system AS.
  • the shift in the + X direction is “+”, and the shift in the ⁇ X direction is “ ⁇ ”.
  • ⁇ Z the distribution of the aerial image intensity is distorted as a whole with defocus (change in ⁇ Z), and the center shifts.
  • the alignment mark transferred in the defocused state due to one of the aberration and non-telecentricity of the projection optical system PL, illumination conditions, or the like, or two or more of them correlate with each other. Deformation and / or displacement.
  • the device pattern is transferred while focusing on the shot area S
  • the alignment mark AM is transferred to the street SL in a defocused state.
  • the alignment mark AM is detected at a position shifted to the ⁇ X side with respect to the design position. This causes erroneous detection of the alignment mark in wafer alignment, that is, an overlay error.
  • the projection position of the pattern image projected onto the wafer W via the projection optical system PL and the projection position of the alignment mark image are placed on the surface of the wafer W.
  • a shift (horizontal shift) with respect to a parallel direction (direction intersecting the optical axis AXp) is obtained with respect to a shift (vertical shift) with respect to a direction parallel to the optical axis AXp.
  • the aberration, telecentricity, etc. are considered as the optical characteristics of the projection optical system PL.
  • Optical characteristics are measured in advance using an aerial image measuring instrument mounted on wafer stage WST or using a test exposure method using a reference wafer. To do.
  • Examples of aberration include spherical aberration (aberration at the imaging position), coma aberration (aberration at magnification), astigmatism, curvature of field, distortion (distortion), and the like.
  • the intensity distribution I (X) in the X-axis direction of the aerial image of the L / S pattern LSX included in the alignment mark AM formed on the reticle R is calculated.
  • Illumination conditions include, for example, the light source to be used (wavelength characteristics such as the center wavelength and wavelength width of the illumination light), the illumination method (bipolar illumination, tripolar illumination, etc.), the illuminance on the reticle and wafer, and the like. These illumination conditions are usually set according to the pattern to be formed on the wafer, and the illuminance is appropriate according to the characteristics (for example, type, layer thickness, etc.) of the resist layer provided on the wafer. Determined.
  • the surface of the shot area S on which the pattern is projected in the Z-axis direction coincides with the focal position (or the best focus position) of the projection optical system PL, and the alignment mark AM Is projected by ⁇ Z with respect to the focal position of the projection optical system PL.
  • the vertical shift corresponds to a shift (referred to as a defocus amount ⁇ Z) from the focal point (or the best focus position) of the surface position of the street SL on which the image of the alignment mark AM is projected.
  • a shape distribution F (X) in the X-axis direction of an alignment mark (hereinafter also referred to as “formation mark” for convenience) formed on the street SL by transferring the L / S pattern LSX is obtained from the following equation (1).
  • ⁇ (I) is a step function defined as the following equation (2).
  • I th is the threshold intensity.
  • F (X) ⁇ ( ⁇ I (X) + I th ) (1)
  • X AM ⁇ dXF (X) ⁇ X / ⁇ dXF (X) (3)
  • ⁇ X AM X AM ⁇ X AM0 (4)
  • the surface of the shot region S is in the projection optical system PL in the Z-axis direction. If it coincides with the focal position, the lateral shift ⁇ X AM of the formation mark can be substituted.
  • the lateral shift ⁇ X AM ( ⁇ Z) as a function of the defocus ⁇ Z for example, by determining the lateral shift ⁇ X AM or the relative lateral shift ⁇ X AM ′ with respect to the defocus ⁇ Z in the range of the depth of focus of the projection optical system PL, for example.
  • a relative lateral shift ⁇ X AM ′ ( ⁇ Z) is determined.
  • the design condition of the alignment mark AM is optimized based on the obtained lateral shift ⁇ X AM ( ⁇ Z) or relative lateral shift ⁇ X AM ′ ( ⁇ Z).
  • the design condition includes, for example, at least one of a mark type, a shape, a position (image height), and the like.
  • the position shown in FIG. 3A is considered as the L / S pattern as the mark type and the position (image height).
  • the line width L, the pitch d, and the like of the line pattern are included as design conditions for the shape.
  • the line width L of the line pattern constituting the L / S pattern is optimized under conditions such as the type and position (image height) of these marks.
  • FIG. 10 shows the relationship between the obtained lateral shift ⁇ X AM and the defocus amount ⁇ Z for five types of L / S patterns LSX with different line widths L (a ⁇ b ⁇ c ⁇ d ⁇ e). ing.
  • the defocus amount ⁇ Z is ⁇ 0.5 ⁇ to + 0.5 ⁇
  • the intensity distribution is distorted as a whole and the center shifts. Therefore, the lateral shift ⁇ X AM is moderate with respect to the defocus amount ⁇ Z. To change.
  • the defocus amount ⁇ Z is -0.75 ⁇ less, and + when the above 0.75Deruta, appear side lobe having a strength exceeding the threshold intensity I th in the bottom of the intensity distribution, further absolute value of the defocus amount ⁇ Z is Since the number of side lobes increases as it increases, the lateral shift ⁇ X AM greatly oscillates with respect to the defocus amount ⁇ Z.
  • a detection condition for detecting the alignment mark AM formed on the wafer W using the alignment detection system AS is considered.
  • the detection conditions include at least one of detection light irradiation conditions for irradiating the alignment mark AM, such as intensity, wavelength characteristics, and illumination distribution.
  • an input to the alignment detection system AS that is, a detection result (signal intensity) f (X) of the alignment detection system AS with respect to the shape distribution F (X) of the alignment mark AM (see the above-described equation (1)).
  • f (X) ⁇ dX′ ⁇ (XX ′) ⁇ F (X ′) (6)
  • the alignment mark AM having the ideal shape distribution F 0 (X) is detected using the alignment detection system AS, and the obtained detection result (signal intensity) f (X) is applied to the equation (6).
  • the response function ⁇ (X) can be obtained empirically.
  • a detection result (signal intensity) f (X) by the alignment detection system AS is obtained from the shape distribution F (X) of the alignment mark AM obtained previously.
  • FIG. 12 shows an example of the obtained signal strength f (X).
  • the signal intensity f (X) five continuous bottom portions corresponding to the five line patterns constituting the alignment mark AM appear. Furthermore, side lobes corresponding to the defects in the line pattern appear on the individual bottoms.
  • This lateral shift ⁇ x AM or relative lateral shift ⁇ x AM ′ is used in place of the aforementioned lateral shift ⁇ X AM or relative lateral shift ⁇ X AM ′ to optimize the design conditions of the alignment mark AM in the same manner as before. H. For all design conditions, the same design conditions are optimized for each illumination condition and each detection condition.
  • the optimum condition for the line width L is similarly determined for another L / S pattern LSY included in the alignment mark AM.
  • the horizontal shift ( ⁇ X AM or the image of the alignment mark AM projected onto the wafer W is taken into consideration in consideration of the illumination conditions and the optical characteristics of the projection optical system PL.
  • ⁇ x AM is obtained, and the design conditions of the alignment mark AM formed on the reticle R are optimized based on the lateral shift ( ⁇ X AM or ⁇ x AM ).
  • the deformation and displacement of the alignment mark formed on the wafer W can be reduced. Therefore, each of the plurality of shot areas on the wafer W can be aligned with a predetermined position, for example, the projection position of the pattern of the reticle R with high accuracy, thereby improving the overlay accuracy.
  • the main controller 120 uses a reticle provided with an optimum alignment mark AM corresponding to the illumination conditions of the exposure apparatus 100. select. Further, a reticle provided with an optimum alignment mark AM corresponding to the illumination condition of the exposure apparatus 100 may be selected by a host computer that performs overall control of the device manufacturing system including the exposure apparatus 100.
  • a reticle having a two-stage structure (hereinafter referred to as a stepped reticle) in which alignment marks are formed at step portions having different surface positions with respect to a pattern portion (pattern region) where a device pattern is formed. It is also effective to optimally design the alignment mark formed on the step portion.
  • ⁇ Z W is the depth of the recess in the street on the wafer
  • is the projection magnification of the projection optical system.
  • n is the refractive index of the image-side medium.
  • the refractive index of the atmosphere n 1.0
  • a wet type that exposes the wafer through liquid (water) described later 1.44.
  • FIGS. 14 (A) to 16 (D) an exposure method and a device manufacturing method according to the second embodiment of the present invention will be described with reference to FIGS. 14 (A) to 16 (D).
  • the above-described exposure apparatus 100 is used.
  • the description of the configuration of the apparatus is omitted from the viewpoint of avoiding redundant description.
  • symbol shall be used about the same structural member.
  • the main controller 120 corrects the alignment mark detection result.
  • the intensity distribution I (X) of the aerial image is also obtained for each of the design conditions.
  • the design conditions include, for example, at least two of the mark type, shape, and position (image height).
  • the line width L, the pitch d, and the like of the line pattern are included as design conditions for the shape.
  • an intensity distribution I (X) is also obtained for each of a plurality of different defocus amounts ⁇ Z.
  • the depression in the street SL with respect to the shot area S on the wafer is taken up, only the defocus area ⁇ Z ⁇ 0 needs to be considered.
  • the lateral shift ⁇ X AM ( ⁇ Z) as a function of the defocus ⁇ Z is obtained by obtaining the lateral shift or the relative lateral shift with respect to the defocus ⁇ Z (where ⁇ ⁇ 0) within the range of the focal depth of the projection optical system PL.
  • ⁇ x AM ( ⁇ Z) or a relative lateral shift ⁇ X AM ′ ( ⁇ Z) or ⁇ x AM ′ ( ⁇ Z) is obtained.
  • AM ′ ( ⁇ Z) or ⁇ y AM ′ ( ⁇ Z) is obtained.
  • the obtained lateral shift ⁇ X AM ( ⁇ Z), ⁇ Y AM ( ⁇ Z) or ⁇ x AM ( ⁇ Z), ⁇ y AM ( ⁇ Z), or relative lateral shift ⁇ X AM ′ ( ⁇ Z), ⁇ Y AM ′ ( ⁇ Z) or ⁇ x AM ′ ( ⁇ Z) and ⁇ y AM ′ ( ⁇ Z) are stored in a memory (not shown) in association with illumination conditions, alignment mark design conditions, detection conditions of the alignment detection system AS, and the like.
  • the alignment mark formed on the wafer W is detected by using the alignment detection system AS
  • the surface positions of the shot area S and the street SL are detected by a focus sensor. Measurement is performed using the AF and the focus detection system provided in the alignment detection system AS. Then, the depression depth ⁇ Z of the street SL with respect to the surface position of the shot area S is obtained.
  • the lateral shift ⁇ X AM ( ⁇ Z), ⁇ Y AM ( ⁇ Z) or ⁇ x AM ( ⁇ Z), ⁇ y AM ( ⁇ Z), or relative lateral Shifts ⁇ X AM ′ ( ⁇ Z), ⁇ Y AM ′ ( ⁇ Z) or ⁇ x AM ′ ( ⁇ Z), ⁇ y AM ′ ( ⁇ Z) are obtained, and an alignment mark formed on the wafer W is detected in the exposure process.
  • the horizontal shift ⁇ X AM , ⁇ Y AM or ⁇ x corresponding to the vertical shift (defocus amount ⁇ Z) obtained from the measurement result.
  • the detection result of the alignment mark for example, an EGA parameter (off Set, X scaling, orthogonality) can be corrected.
  • an alignment mark detection error associated with the depression of the street SL can be corrected. Therefore, each of the plurality of shot areas on the wafer W can be aligned with a predetermined position, for example, the projection position of the pattern of the reticle R with high accuracy, thereby improving the overlay accuracy.
  • the alignment marks are directly aligned using the lateral shifts ⁇ X AM , ⁇ Y AM or ⁇ x AM , ⁇ y AM , or the relative lateral shifts ⁇ X AM ′, ⁇ Y AM ′, ⁇ x AM ′, ⁇ y AM ′.
  • the position, magnification, and orthogonality of the shot region S on the wafer W obtained from the baseline measurement result or the alignment mark detection result may be corrected.
  • the lateral shift ⁇ X AM , ⁇ Y AM or ⁇ x AM , ⁇ y AM , or the relative lateral shift ⁇ X AM ′, ⁇ Y AM ′ or ⁇ x AM ′, ⁇ y AM ′ is exposed.
  • a plurality of positions in the area IA in the X-axis direction are obtained.
  • the lateral shifts ⁇ X AM and ⁇ Y AM or ⁇ x AM and ⁇ y AM obtained at the five positions are shown using vectors.
  • the offset (position shift), magnification (X scaling), and orthogonality representing the lateral shift of the exposure area IA are obtained in the same manner as the position, magnification, and orthogonality of the shot area S are obtained.
  • Ask for. These offset, magnification, and orthogonality are obtained for a plurality of different ⁇ Zs and stored in the memory.
  • FIG. 13B shows an exposure area IA ′ that is laterally shifted only by the offset.
  • FIG. 13C shows an exposure area IA ′ that is laterally shifted only by the magnification.
  • FIG. 13D shows an exposure area IA ′ shifted laterally only by the orthogonality.
  • Main controller 120 corrects the position, magnification, and orthogonality of shot region S using the offset, magnification, and orthogonality values corresponding to the depth of the depressions of street SL in the wafer alignment with respect to wafer W as correction values. To do.
  • the depth of the depression of the street SL is at least the wafer alignment. It is necessary that all the alignment marks detected in the measurement (such as multi-point EGA in a shot) are substantially equal.
  • an alignment error (so-called focus error) of wafer W in the Z-axis direction may occur.
  • the previous assumption that is, the assumption that the surface position of the shot region S on the wafer W on which the pattern image is projected coincides with the focus (or the best focus position) of the projection optical system PL is not necessarily assumed. It does not hold. Therefore, the lateral shift ⁇ X AM may be obtained as a function of the surface position of the shot area S in the Z-axis direction and the depth of the depression of the street SL with reference to the surface position of the shot area S.
  • the lateral shift ⁇ X AM is averaged for the surface position of the shot region S, and the average value of the obtained lateral shift ⁇ X AM is calculated as described above.
  • the lateral shift ⁇ X AM may be used instead.
  • the alignment mark detection result instead of correcting the alignment mark detection result using the average value of the horizontal shift, the relative horizontal shift, or the horizontal shift, it is obtained from the result of the baseline measurement or the detection result of the alignment mark.
  • EGA results such as the position, magnification, and orthogonality of the shot area S on the wafer W may be corrected.
  • the positional relationship between the reference mark and the wafer mark may be corrected.
  • FIGS. 14 (A) to 16 (D) Next, an exposure method and a device manufacturing method according to the third embodiment of the present invention will be described with reference to FIGS. 14 (A) to 16 (D).
  • the above-described exposure apparatus 100 is used.
  • the description of the configuration of the apparatus is omitted from the viewpoint of avoiding redundant description.
  • symbol shall be used about the same structural member.
  • dummy pattern exposure and alignment mark formation are performed in order to avoid erroneous detection of alignment marks.
  • reticle R0 shown in FIG. 14A is placed on reticle stage RST by a reticle loader (not shown) in response to an instruction from main controller 120.
  • the reticle R0 is formed on a glass substrate with a pattern region RS0 including a device pattern and a dummy pattern region RD that surrounds the pattern region RS0 and has a dummy pattern formed thereon.
  • the dummy pattern region RD has a shape and a size corresponding to the street SL.
  • the pattern region RS0 includes a light shielding portion, a device pattern including a light transmitting portion is formed in the light shielding portion, and the dummy pattern region RD serves as a light shielding portion.
  • a functional film L1 such as a conductive thin film or an insulating thin film and a positive resist film (resist layer) CR1 are laminated on the surface of the wafer W. It is assumed that the alignment mark AM is formed on the street SL. Wafer W is carried into exposure apparatus 100, placed on a wafer holder mounted on wafer stage WST, and held by suction.
  • the main controller 120 detects an alignment mark AM of the street SL through the resist layer CR1 and the functional film L1 using the alignment detection system AS, and may perform wafer alignment (the above-mentioned in-shot multipoint EGA may be used.
  • the EGA disclosed in Japanese Patent No. 4,780,617 may be executed).
  • Main controller 120 sequentially performs scanning exposure on all shot areas on wafer W based on the result of wafer alignment.
  • the dummy pattern region RD is a light shielding portion, the illumination light IL is not irradiated onto the resist layer CR1 of the street SL.
  • each shot area S on the wafer W is covered with a resist pattern having the same opening (groove portion) as the device pattern of the reticle R0, and the street SL has no opening as shown in FIG. Completely covered with no resist pattern.
  • the functional film L1 is etched using the resist pattern as an etching mask, and the resist layer CR1 is further removed. As a result, the same pattern as the device pattern of the reticle R0 is formed on the functional film L1 on the shot region S.
  • the functional film L1 on the street SL is embedded as a dummy pattern DP1 in a recess generated in the street SL without being etched.
  • the surface of the functional film L1 on the shot region S and the surface of the dummy pattern DP1 are almost flush with each other, and the surface of the wafer W becomes flat.
  • a plurality of layers where the alignment mark is not formed are continuous, it may not be flat by one dummy pattern exposure. In such a case, exposure may be repeated a plurality of times until the surface becomes sufficiently flat.
  • the functional film L2 and the positive resist are formed on the surface of the wafer W on which the dummy pattern DP1 is formed.
  • a film (resist layer) CR2 is laminated. Wafer W is carried into exposure apparatus 100, placed on a wafer holder mounted on wafer stage WST, and held by suction.
  • Main controller 120 detects alignment SL AM on street SL through functional film L2 and dummy pattern DP1 using alignment detection system AS, and executes wafer alignment.
  • Main controller 120 performs scanning exposure on all shot areas based on the result of wafer alignment. As a result, the device pattern of the reticle R is transferred to the resist layer CR2 on the shot region S, and the alignment mark AM of the reticle R is transferred to the resist layer CR2 on the street SL as shown in FIG. Is transcribed.
  • the wafer W is developed.
  • the exposed portion of the resist layer CR2 formed on the wafer W is dissolved, and the unexposed portion remains on the wafer surface as a resist pattern. Therefore, the shot area S is covered with a resist pattern having the same opening (groove portion) as the device pattern of the reticle R, and the street SL is only the resist pattern corresponding to the alignment mark AM as shown in FIG. Partly covered.
  • the functional film L2 is etched using the resist pattern as an etching mask, and a portion not covered with the resist pattern is etched. Further, the resist layer CR2 is removed. Thereby, the same pattern as the device pattern of the reticle R is formed on the functional film L2 on the shot region S, and the dummy pattern DP1 on the street SL is etched as shown in FIG. A part of the functional film L2 remaining without being formed is formed as a new alignment mark AM2.
  • wafer alignment (such as in-shot multipoint EGA) is performed using the new alignment mark AM2.
  • wafer alignment can be performed using the alignment mark AM and the newly formed alignment mark AM2.
  • the dummy pattern DP1 is formed on the street SL where the alignment mark AM is formed to flatten the wafer W, and a new alignment mark is formed on the dummy pattern DP1.
  • AM2 is formed.
  • the alignment mark AM2 is formed on the wafer W without being deformed by defocusing. Therefore, erroneous detection of the alignment mark can be avoided during wafer alignment, and sufficient overlay accuracy can be maintained.
  • a dummy pattern may be formed only on a part of the street SL.
  • reticle R0 instead of reticle R0, reticle R0 'shown in FIG. 17 can be used as an example.
  • a dummy pattern region RD' in which a dummy pattern is formed is provided only in the vicinity of the region corresponding to the region in which the alignment mark AM of the reticle R is formed.
  • a dummy pattern may be formed instead of the dummy pattern exposure of the third embodiment.
  • a reticle in which a dummy pattern region RD or RD ′ and a pattern region formed entirely from a light shielding pattern can be used.
  • the exposure may be repeated a plurality of times until the surface becomes sufficiently flat. Needless to say, it should be flat so that misdetection of an alignment mark formed by deformation due to defocusing can be ignored.
  • only a dummy pattern may be formed on the street on the wafer, or a process for filling a portion where the dummy pattern is formed with a predetermined material may be performed. That is, a flattening process for flattening at least part of a target portion and a shot region portion of a recess (street) that partitions a plurality of shot regions (partition regions) on the wafer may be performed.
  • a dummy pattern is formed on the street on the wafer immediately before the exposure of the layer accompanying the transfer of the alignment mark. You may do it. It is not necessary to use a functional film material such as a conductive thin film or an insulating thin film as the material of the dummy pattern.
  • the dummy pattern exposure instead of the dummy pattern exposure, exposure may be performed in which a part of the positive resist (corresponding to at least a part of the target portion of the street) becomes a non-exposed portion.
  • a positive type resist instead of the reticle R0, a reticle is used in which the dummy pattern region RD is a light-transmitting portion and a portion other than the pattern region RS0 and the dummy pattern region RD is a light-shielding portion.
  • the present invention is not limited to this.
  • the formation position of the new alignment mark AM2 is determined, the dummy pattern DP1 is formed on only a part of the alignment marks AM or at an arbitrary position, and the new alignment mark AM2 is formed thereon. Also good.
  • ⁇ Z R ⁇ Z W / (n ⁇ 2 ).
  • the focus sensor AF or the like is used to detect a dent (step information) on the surface of the wafer W. Based on the result, the dummy pattern DP1 and the new alignment are detected. The position where the mark AM2 is provided may be determined. In this case, when the depth of the dent exceeds a predetermined depth, the dummy pattern exposure may be performed to form a new alignment mark.
  • the dummy pattern exposure may be performed each time a predetermined pattern of a plurality of layers is overlaid.
  • the material, thickness, etc. of the dummy pattern DP1 are taken into consideration. Then, the detection conditions of the alignment detection system AS, for example, the intensity, wavelength, beam size, etc. of the detection light may be optimized.
  • the dummy pattern exposure does not necessarily have to be performed via the exposure apparatus, that is, the projection optical system.
  • another apparatus or a dummy pattern exposure module (unit) is placed at a predetermined position (for example, on the wafer) of the exposure apparatus. It may be provided on the unload path.
  • a spatial light modulator may be used as a pattern generator, for example.
  • the said embodiment demonstrated the case where the street was dented with respect to the shot area
  • each of the first to third embodiments can be suitably applied if there is a step between the region where the alignment mark is formed and the region where the pattern is formed.
  • the detection result of the alignment mark AM using the lateral shift ⁇ X AM ( ⁇ Z) or ⁇ x AM ( ⁇ Z) obtained in the optimum design in addition to the optimum design of the alignment mark described above. May be corrected.
  • the pattern can be overlaid (positioned) with higher accuracy.
  • the correction of the detection result of the alignment mark AM in this case first, when the alignment mark AM is detected using the alignment detection system AS, the shot region S on which the pattern of the wafer W is formed and the alignment mark AM are attached.
  • Each surface position of the street SL is measured by using a focus detection system provided in the focus sensor AF and the alignment detection system AS, and a depth ⁇ Z of the depression of the street SL with respect to the surface position of the shot area S is obtained.
  • a lateral shift corresponding to the exposure condition (illumination condition, etc.) of the wafer W and the detection condition of the alignment detection system AS is selected from the lateral shifts obtained in the optimum design of the alignment mark.
  • the horizontal shift ⁇ X AM ( ⁇ Z) or ⁇ x AM ( ⁇ Z) of the alignment mark corresponding to the depth ⁇ Z is obtained.
  • the detection result of the alignment mark AM is corrected using the obtained lateral shift as a correction value.
  • the result of baseline measurement or the EGA parameter may be corrected. This eliminates even an overlay (positioning) error derived from a minute deformation (lateral shift) of the optimally designed alignment mark.
  • the surface of the wafer W is flattened as much as possible by forming a dummy pattern on the concave street SL generated on the wafer W as in the third embodiment. . It is also effective to newly form an alignment mark on the completely or substantially flattened street SL, and to optimally design the newly formed alignment mark. In this case, the lateral shift accompanying the defocus of the alignment mark formed by flattening the surface of the wafer W is eliminated, and the lateral shift accompanying the aberration of the remaining projection optical system is eliminated by the optimum design of the alignment mark. .
  • the alignment mark optimally designed in this way is formed on the street SL, and alignment measurement is performed using the alignment mark. Further, the alignment mark detection result is corrected using the lateral shift ⁇ X AM ( ⁇ Z) or ⁇ x AM ( ⁇ Z) obtained in the optimum design. As a result, the pattern can be overlaid (positioned) with higher accuracy.
  • a dummy pattern is formed on the concave street SL generated on the wafer W in the same manner as in the third embodiment described above to form the surface of the wafer W (the street and the partition by this).
  • the surface of the shot area is flattened as much as possible, and a new alignment mark is formed on the completely or substantially flat street SL, and the detection error of the newly formed alignment mark is corrected. It is also effective to do.
  • the lateral shift accompanying defocus of the alignment mark to be formed is eliminated, and the lateral shift accompanying the remaining aberration of the projection optical system is eliminated by correction. For this reason, it is possible to superimpose (align) the patterns with higher accuracy.
  • an alignment mark with a small deformation of the transferred image due to defocus is designed in the same manner as in the first embodiment described above.
  • Exposure pattern transfer
  • the shift amount of the projection position of the image of the alignment mark projected onto the wafer via the projection optical system is obtained for defocusing.
  • the type, shape, formation position, and the like of the alignment mark may be optimized so that the obtained shift amount is minimized, or the degree of change of the shift amount with respect to defocus is minimized.
  • the arrangement of the alignment marks described in the first to third embodiments is merely an example.
  • the number of alignment marks may be one or more, and the shape thereof may be arbitrary.
  • the alignment mark is not limited to the street line, and may be formed in the shot area.
  • EGA disclosed in, for example, U.S. Pat. No. 4,780,617 is executed as wafer alignment instead of multi-shot EGA in a shot. In this case, only one alignment mark may be measured in one shot area.
  • any two of the first to third embodiments described above may be applied in combination, or all of the first to third embodiments may be combined and applied.
  • the alignment mark used for aligning the pattern is optimally described.
  • the alignment mark is not limited to two different layers (reference layer and target layer) on the wafer. It is also possible to optimally design a mark or the like for measuring an overlay error between two patterns formed on each of the above.
  • FIG. 18A as an example, an overlay error measurement mark MO 0 (shown as symbol MO in FIG. 18A) together with the device pattern at the time of exposure of the reference layer is shown in each shot area SA.
  • Four wafers W transferred and formed are shown for each p .
  • symbols MX p and MY p are an X alignment mark and a Y alignment mark, respectively.
  • a reticle (referred to as a first reticle) in which a device pattern having a known positional relationship and an overlay error measurement mark MO 0 are formed is used.
  • a first reticle in which a device pattern having a known positional relationship and an overlay error measurement mark MO 0 are formed is used.
  • Using this first reticle as shown in FIG. 18 (A), and at the same time to form a device pattern of the reference layer on the shot area S p, to form the error measuring mark MO 0 superimposed on street SL.
  • a step is formed in the shot area Sp and the street SL by the processing of the process until the exposure of the target layer.
  • a reticle (referred to as a second reticle) in which a device pattern having a known positional relationship and an overlay error measurement mark MO 1 (see FIG. 18C) are formed is used.
  • overlay error measuring mark MO 1 on the second reticle in accordance with the procedure described in the first embodiment described above, is optimally designed.
  • shot area S overlapping the p on the device pattern and at the same time to form a device pattern of the target layer, overlay superimposed on overlay error measuring mark MO 0 on the street SL error measuring mark MO Form 1
  • the overlay error measurement marks MO 0 and MO 1 for example, a Bar in Bar mark as shown in FIG. 18C is used.
  • the overlay error measurement mark MO 0 includes a pair of line patterns that are arranged in parallel at a predetermined distance in the Y-axis direction and whose longitudinal direction is the X-axis direction, and in the X-axis direction.
  • a substantially square rectangular mark (Box mark) that includes four line patterns including a pair of line patterns that are arranged in parallel at a predetermined distance and whose longitudinal direction is the Y-axis direction, and lacks four corner portions as a whole. It has such a shape.
  • the overlay error measurement mark MO 1 has a shape like a substantially square rectangular mark (Box mark) lacking the four corners as a whole, and is almost similar to the overlay error measurement mark MO 0 and slightly larger. It is.
  • These two overlay error measurement marks MO 0 and MO 1 are designed in such a positional relationship that the centers of the reference layer and the target layer substantially coincide with each other when exposure is performed without an overlay error.
  • overlay measurement apparatus also referred to as a misalignment inspection apparatus
  • the positional deviation (dx, dy) between the error measurement mark MO 0 and the overlay error measurement mark MO 1 is measured.
  • a plurality attached to the same overlay error measuring mark is shot areas S p, determining the positional deviation (dx, dy) overlay error of the device pattern formed by overlapping the shot area S p of all the marks .
  • the overlay error measurement mark MO 1 is optimally designed according to the above-described procedure, there is almost no position measurement error of the overlay error measurement mark MO 1 due to at least the step between the shot region Sp and the street. Does not occur. Therefore, when the step between the shot area (device pattern area) of the reference layer and the street is almost zero, it is possible to accurately measure the overlay error of the device pattern formed on the target layer with respect to the device pattern of the reference layer. It becomes possible. If the overlay error measurement mark MO 0 is optimally designed according to the above-described procedure, overlay error can be measured with higher accuracy.
  • the overlay error measurement mark the aforementioned overlay error measurement mark MO (MO 0 , MO 1 ) composed of a Bar in Bar mark can be used (see FIGS. 18A and 18C).
  • the device pattern of the target layer is formed on the functional film L2 on the shot area S p
  • an overlay error measurement mark MO 1 (and a new alignment mark) is formed on the dummy pattern DP1 of the street SL.
  • the error measuring mark MO 1 overlay superimposed on the error measuring mark MO 0 overlay formed simultaneously with the reference layer of the device pattern is formed.
  • the two overlay error measurement marks MO 0 and MO 1 are designed in such a positional relationship that the centers of the overlay error measurement marks MO 0 and MO 1 substantially coincide with each other when the exposure is performed without an overlay error. Has been.
  • an overlay measurement device also called a misalignment inspection device
  • a plurality attached to the same overlay error measuring mark is shot areas S p, the positional deviation (dx, dy) overlay from the device pattern formed by superimposing the shot area S p errors for all the marks calculated It is done.
  • overlay error of the device pattern formed on the target layer by exposure to the device pattern of the reference layer can be measured.
  • overlay error measuring mark MO 1 is formed on the wafer W (the dummy pattern DP1 in the street SL) without deforming by defocusing. Therefore, the above overlay error measurement can be performed with high accuracy.
  • the present invention is not limited to the alignment mark. It is also possible to correct the detection result.
  • the overlay error measurement mark the aforementioned overlay error measurement mark MO (MO 0 , MO 1 ) composed of a Bar in Bar mark can be used (see FIGS. 18A and 18C).
  • the overlay error measurement mark MO 1 is formed on the street SL so as to overlap the overlay error measurement mark MO 0 .
  • a plurality annexed similar overlay error measuring mark within the shot area S p, positional displacement for all marks (dx, dy) and the corrected positional relationship ( ⁇ X, ⁇ Y) are superimposed from the shot area S p
  • An overlay error of the formed device pattern is obtained. Thereby, the overlay error of the device pattern formed on the target layer with respect to the device pattern of the reference layer can be accurately measured.
  • overlay error measurement marks MO (MO 0 , MO 1 ) shown in FIGS. 18A to 18C are merely examples, and the size, number per shot area, wafer mark The arrangement position and shape of the overlay error measurement mark can be changed as appropriate. Therefore, for example, a Box in Box mark may be used as the overlay error measurement mark.
  • an encoder (an encoder system composed of a plurality of encoders) may be used in place of the reticle interferometer 14 or together with the reticle interferometer 14.
  • an encoder (an encoder system composed of a plurality of encoders) may be used instead of or together with the interferometer system 18.
  • the image processing type alignment detection system is used.
  • the present invention is not limited to this, and other detection type alignment detection systems, for example, a coherent detection light is irradiated to the target mark, A method of detecting scattered light or diffracted light generated from a target mark, or detecting two diffracted lights (for example, diffracted light of the same order or diffracted in the same direction) generated from the target mark by interference.
  • the alignment sensors can be used alone or in appropriate combination.
  • 2007/097379 (corresponding to US Patent Application Publication No. 2008/0088843).
  • the design conditions of the alignment mark AM may be optimized, or a lateral shift or a relative lateral shift may be obtained.
  • the exposure apparatus 100 is a scanning exposure apparatus.
  • the exposure apparatus 100 may be a stationary exposure apparatus.
  • a step-and-stitch reduction projection exposure apparatus, a proximity exposure apparatus, or a mirror projection aligner that synthesizes a shot area and a shot area may be used.
  • the focus sensor AF is not provided in the vicinity of the projection optical system, and it may be provided only in the measurement station (in the vicinity of the alignment detection system).
  • the exposure apparatus may include a measurement stage including
  • the projection optical system PL in the first to third embodiments may be not only a reduction system but also an equal magnification system or an enlargement system.
  • the projection optical system PL may be not only a refraction system but also a reflection system or a catadioptric system, and the projection image may be an inverted image or an erect image.
  • the illumination area and the exposure area are rectangular in shape, but the shape is not limited to this, and may be, for example, an arc, a trapezoid, or a parallelogram.
  • the light source of the exposure apparatus 100 is not limited to the ArF excimer laser, but is a KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser ( A pulse laser light source such as an output wavelength of 126 nm) or a Kr 2 laser (output wavelength of 146 nm), or an ultrahigh pressure mercury lamp that emits a bright line such as g-line (wavelength of 436 nm) or i-line (wavelength of 365 nm) may be used. A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, U.S. Pat. No.
  • a single wavelength laser beam in the infrared region or visible region oscillated from a DFB semiconductor laser or fiber laser is used as vacuum ultraviolet light.
  • a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the illumination light IL of the exposure apparatus 100 is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used.
  • each of the above embodiments can be applied to an EUV exposure apparatus that uses EUV (Extreme Ultraviolet) light in a soft X-ray region (for example, a wavelength region of 5 to 15 nm).
  • EUV Extreme Ultraviolet
  • the above embodiments can also be applied to an exposure apparatus that uses charged particle beams such as an electron beam or an ion beam.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scan exposure.
  • the above embodiments can also be applied to an exposure apparatus that performs double exposure of two shot areas almost simultaneously.
  • the object on which the pattern is to be formed is not limited to the wafer, but a glass plate, a ceramic substrate, a film member, or a mask. Other objects such as blanks may be used.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing, but for example, an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head, an image sensor (CCD, etc.), micromachines, DNA chips and the like can also be widely applied to exposure apparatuses. Further, in order to manufacture reticles or masks used in not only microdevices such as semiconductor elements but also light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates or silicon wafers, etc. The embodiments described above can also be applied to an exposure apparatus that transfers a circuit pattern.
  • An electronic device such as a semiconductor element includes a step of designing a function / performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and the exposure apparatus (pattern forming apparatus) of the above-described embodiment.
  • a lithography step for transferring the mask (reticle) pattern to the wafer by the exposure method, a development step for developing the exposed wafer, and an etching step for removing the exposed member other than the portion where the resist remains by etching, It is manufactured through a resist removal step for removing a resist that has become unnecessary after etching, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like.
  • the exposure method described above is executed using the exposure apparatus of each of the above embodiments, and a device pattern is formed on the wafer. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the exposure method of the present invention is suitable for forming an overlapping pattern on an object.
  • the device manufacturing method of the present invention is suitable for manufacturing electronic devices such as semiconductor elements and liquid crystal display elements.
  • the overlay error measurement method of the present invention is suitable for measuring an overlay error between patterns of different layers formed by being superimposed on a plurality of partitioned regions arranged on an object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 照明条件及び投影光学系の光学特性を考慮して、互いに異なる複数の線幅(a~d)及びデフォーカス量(ΔZ)について、ウエハに投影されるアライメントマークの像の横シフトΔXAMを求め、横シフトΔXAMの平均(ΔZ=0での横シフト)及びばらつき(フォーカス誤差の程度の範囲内での横シフトの変化)が最も小さくなるように、アライメントマークの線幅を最適化する。これにより、デフォーカス状態で転写されても変形の小さいアライメントマークを設計することが可能となる。

Description

露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法
 本発明は、露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法に係り、さらに詳しくは、物体上に投影光学系を介してパターンを形成する露光方法、及び該露光方法を用いて電子デバイスを製造するデバイス製造方法、並びに物体上に配列された複数の区画領域に重ね合わせて形成された異なる層のパターン同士の重ね合わせ誤差を計測する重ね合わせ誤差計測方法に関する。
 従来、半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、主として、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが用いられている。
 この種の露光装置では、照明光をパターンが形成されたマスク(又はレチクル)に照射して、パターンの像を投影光学系を介して感光剤(レジスト)が塗布された基板(ウエハ、ガラスプレート等)上に投影することによって、パターンが基板上の複数のショット領域にそれぞれ転写される。そして、基板上に複数層のパターンを重ね合わせて形成することによって、上記の電子デバイスが製造される。このため、パターンの像を基板上の各ショット領域に既に形成されたパターンに正確に重ね合わせて転写する高い重ね合わせ精度が要求される。
 ところで、基板上にパターンを重ね合わせて形成することにより、基板の表面に凹凸が発生することがある。特に、デバイスパターンが形成されるショット領域に対して、アライメントマークなどが形成されるストリート(スクライブライン又はスクライブレーンとも呼ばれる)が凹むことがある。この場合に、ショット領域にフォーカスを合わせてデバイスパターンを転写すると、デフォーカス状態でアライメントマークがストリートに転写され、変形及び/又は位置ずれしたアライメントマークが形成されるおそれがある。
 近年のパターンの微細化により投影光学系が高NA化し、それに伴って焦点深度も狭くなっているため、デフォーカスの程度が小さくても、アライメントマークを誤検出するほどの大きな変形をもたらし得る。従って、変形及び/又は位置ずれして形成されたアライメントマークを利用してパターンの重ね合わせを行うと、無視することができない程度の重ね合わせ誤差が発生するおそれがある。
 本発明の第1の態様によれば、物体上に配列された複数の第1領域のそれぞれに投影光学系を介してパターンを重ね合わせて形成する露光方法であって、前記物体上に配列された複数の第1領域のそれぞれに前記パターンを形成する際における、前記複数の第1領域に対応してマークが形成された第2領域と前記マークに対応する前記第1領域との前記投影光学系の光軸に直交する面内の位置ずれに起因する露光誤差を抑制する手段を実行することを含む露光方法が、提供される。
 これによれば、複数の第1領域のそれぞれにパターンを形成する際に、投影光学系の光軸に直交する面内の位置ずれに起因する露光誤差が抑制されるので、重ね合わせ精度の良好な露光を行うことが可能になる。
 ここで、露光誤差は、位置誤差だけでなく、回転、倍率及び/又は形状誤差を含んでも良い。要は、その誤差を抑制することで、投影光学系の光軸に直交する面内での重ね合わせ(オーバーレイ)精度向上をもたらすものであれば良い。また、抑制は、上記露光誤差の発生を阻止する場合をも含む。
 本発明の第2の態様によれば、物体上に配列された複数の第1領域のそれぞれにパターンを重ね合わせて形成する露光方法であって、前記複数の第1領域に対応する複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記複数の第1マークが形成された第2領域の少なくとも一部の目標部分の前記第1領域に対する段差を小さくするための前記物体に対する露光を行うことと;前記複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記物体を露光することにより前記目標部分に第2マークを形成すると共に前記複数の第1領域のそれぞれに前記パターンを重ね合わせて形成することと;を含む第2の露光方法が、提供される。
 これによれば、十分な重ね合わせ精度を維持することが可能となる。
 本発明の第3の態様によれば、本発明の第1及び第2の露光方法のいずれかを用いて物体上にパターンを形成することと;前記パターンが形成された前記物体を現像することと;を含むデバイス製造方法が、提供される。
 これによれば、高集積度のデバイスを生産性(歩留まりを含む)良く製造することが可能となる。
 また、本発明の第4の態様によれば、物体上に配列された複数の第1領域のそれぞれにパターンを重ね合わせて形成することを含むデバイス製造方法であって、前記複数の第1領域に対応する複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記複数の第1マークが形成された第2領域の少なくとも一部の目標部分と前記第1領域とを平坦化する平坦化処理を行うことと;前記複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記第1領域に対して平坦化された前記目標部分に第2マークを形成することと;を含むデバイス製造方法が、提供される。
 これによれば、第2マークを用いて、物体上に配列された複数の第1領域のそれぞれにパターンを重ね合わせて形成することで、十分な重ね合わせ精度を維持することが可能となり、結果的に、高集積度のデバイスを生産性良く製造することが可能となる。
 本発明の第5の態様によれば、物体上の基準層及びターゲット層のそれぞれに投影光学系を介して形成された2つのパターン同士の重ね合わせ誤差を計測する重ね合わせ誤差計測方法であって、位置関係が既知のパターンとマークとが形成されたマスクを照明するための照明条件を少なくとも含む複数の条件のそれぞれについて、前記投影光学系の光学特性を考慮して、前記投影光学系を介して前記物体上に投影される前記パターンの像と前記マークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを、前記パターンの像と前記マークの像との前記光軸に平行な方向に関する第2の位置ずれに対して求め、前記第2の位置ずれと対応する前記第1の位置ずれとに基づいて前記マークの設計条件を最適化することと;位置関係が既知の第1パターンと第1マークとが形成された第1マスクを用いて露光を行い、前記物体上の基準層における複数の第1領域に前記投影光学系を介して前記第1パターンを形成すると同時に、前記複数の第1領域に対応する第2領域に前記第1マークを形成することと;位置関係が既知の第1パターンと前記最適化により設計条件が最適化された第2マークとを有する第2マスクを用いて露光を行い、前記物体上の前記第1パターンに重ねてターゲット層の前記第2パターンを形成すると同時に、前記第2領域の前記第1マークに重ねて第2マークを形成することと;前記物体上の前記第2領域に形成された前記第1マークと前記第2マークとの位置ずれを計測することで、前記第1パターンと前記第2パターンとの重ね合わせ誤差を算出することと;を含む重ね合わせ誤差計測方法が、提供される。
 これによれば、物体上の基準層及びターゲット層のそれぞれに投影光学系を介して形成された第1パターンと第2パターンとの重ね合わせ誤差を精度良く計測することが可能になる。
 本発明の第6の態様によれば、物体上の基準層及びターゲット層のそれぞれに投影光学系を介して形成された2つのパターン同士の重ね合わせ誤差を計測する重ね合わせ誤差計測方法であって、少なくとも前記投影光学系の光学特性を考慮して、前記物体上の第1領域に前記投影光学系を介して投影されるパターンの像と前記物体上の第2領域に前記投影光学系を介して投影されるマークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを求めることと;位置関係が既知の第1パターンと第1計測マークとが形成されたマスクを用いて露光を行い、前記物体上の基準層における前記第1領域に前記投影光学系を介して前記第1パターンを形成すると同時に、前記第2領域に前記第1計測マークを形成することと;位置関係が既知の第2パターンと第2計測マークとが形成されたマスクを用いて露光を行い、前記物体上の前記第1パターンに重ねてターゲット層の前記第2パターンを形成すると同時に、前記第2領域の前記第1計測マークに重ねて第2計測マークを形成することと;前記物体上の前記第2領域に形成された前記第1計測マークと前記第2計測マークとの位置ずれを計測し、該計測結果と前記第1の位置ずれとを用いて、前記第1パターンと前記第2パターンとの重ね合わせ誤差を算出することと;を含む重ね合わせ誤差計測方法が、提供される。
 これによれば、物体上の基準層及びターゲット層のそれぞれに投影光学系を介して形成された第1パターンと第2パターンとの重ね合わせ誤差を精度良く計測することが可能になる。
第1の実施形態の露光方法の実施に用いられる露光装置の概略構成を示す図である。 図1の露光装置が備える主制御装置の入出力関係を説明するためのブロック図である。 図3(A)はレチクルの表面を示す平面図であり、図3(B)はレチクルに形成されたアライメントマークの拡大図である。 図4(A)はウエハにおけるショット領域を説明するための図であり、図4(B)は1つのショット領域の周辺を拡大した図であり、図4(C)は図4(B)のB-B断面図である。 図5(A)及び図5(B)は、それぞれデフォーカス量ΔZ=0のときに形成されるレジストパターンを説明するための図である。 図6(A)及び図6(B)は、それぞれΔZ=-1のときに形成されるレジストパターンを説明するための図である。 図7(A)及び図7(B)は、それぞれΔZ=+1のときに形成されるレジストパターンを説明するための図である。 横シフトΔXAMとデフォーカス量ΔZとの関係を説明するための図である。 L/SパターンLSXの空間像のX軸方向に関する強度分布を説明するための図である。 線幅と横シフトΔXAMとデフォーカス量ΔZとの関係を説明するための図である。 線幅Lと横シフトΔXAMの平均及び傾きの関係を説明するための図である。 アライメント検出系を用いて検出されるL/SパターンLSXの検出信号の強度分布を説明するための図である。 図13(A)は露光領域内の像高毎に求められた横シフトを示す図、図13(B)~図13(D)はそれぞれ横シフトから求められた露光領域に対するオフセット、Xスケーリング、直交度を示す図である。 ダミーパターン露光において使用されるレチクルを説明するための図である。 図15(A)~図15(C)は、それぞれダミーパターンを形成し、形成されたダミーパターン上に新しいアライメントマークを形成する手順を説明するための図(その1)である。 図16(A)~図16(D)は、それぞれダミーパターンを形成し、形成されたダミーパターン上に新しいアライメントマークを形成する手順を説明するための図(その2)である。 ダミーパターン露光において使用されるレチクルの変形例を説明するための図である。 図18(A)~図18(C)は、重ね合わせ誤差計測に係る変形例を説明するための図である。
《第1の実施形態》
 以下、本発明の第1の実施形態を、図1~図12に基づいて説明する。図1には、第1の実施形態の露光方法の実施に用いられる露光装置100の概略的な構成が示されている。この露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。
 露光装置100は、図1に示されるように、照明系IOP、レチクルRを保持するレチクルステージRST、投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWST、及びこれらの制御系等を備えている。
 以下においては、投影光学系PLの光軸AXpと平行な方向をZ軸方向、これに直交する面内でレチクルRとウエハWとが相対走査される走査方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。
 照明系IOPは、光源、及び光源に送光光学系を介して接続された照明光学系を含み、レチクルブラインド(マスキングシステム)で規定されたX軸方向に細長く伸びるスリット状の照明領域IARを、照明光(露光光)ILによりほぼ均一な照度で照明する。ここでは、照明光ILとして、ArFエキシマレーザ光(波長193nm)が用いられている。なお、照明系IOPの構成は、例えば米国特許出願公開第2003/0025890号明細書等に開示されている。
 レチクルステージRSTは、照明系IOPの-Z側に配置されている。レチクルステージRST上には、レチクルRが、例えば真空吸着により固定されている。
 レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系11(図1では図示省略、図2参照)によって、XY平面内で微小駆動可能であるとともに、Y軸方向に所定ストローク範囲で駆動可能となっている。
 レチクルステージRSTのXY平面内の位置情報(θz方向の回転情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)14によって、移動鏡12(又はレチクルステージRSTの端面に形成された反射面)を介して、例えば0.25nm程度の分解能で常時検出される。レチクル干渉計14の計測情報は、主制御装置120(図1では図示省略、図2参照)に供給される。
 レチクルステージRSTの上方に、図1では図示が省略されているが、例えば、米国特許第5,646,413号明細書などに開示される露光波長の光を用いたTTR(Through The Reticle)アライメント系から成る一対のレチクルアライメント検出系13(図2参照)が設けられている。各レチクルアライメント検出系13の検出信号は、主制御装置120に供給される。
 投影ユニットPUは、レチクルステージRSTの-Z側に配置されている。投影光学系PLは、鏡筒40内に保持されている。
 投影光学系PLとしては、例えば、光軸AXpに沿って配列された複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率β(βは、例えば1/4、1/5又は1/8など)を有している。
 投影ユニットPUの鏡筒40の側面には、ウエハWに形成されたアライメントマーク及び基準マークを検出するアライメント検出系ASが設けられている。ここでは、アライメント検出系ASとして、ハロゲンランプ等のブロードバンド(広帯域)光でマークを照明し、このマーク画像を画像処理することによってマーク位置を計測する画像処理方式の結像式アライメントセンサの一種であるFIA(Field Image Alignment)系が用いられている。また、アライメント検出系ASは、マーク検出の際にそのマークが形成された領域のアライメント光学系の光軸方向(Z軸方向)に関する位置(デフォーカス量)を検出する焦点検出系が組み込まれている。かかる焦点検出系が組み込まれた結像式アライメントセンサは、例えば米国特許第5,721,605号明細書等に開示されている。このアライメント検出系ASの検出情報及び計測情報は、主制御装置120に供給される。
 ウエハステージWSTは、投影ユニットPUの-Z側に配置されたステージベース22上を、例えばリニアモータ等を含むステージ駆動系24によって、X軸方向、Y軸方向に所定ストロークで駆動されるとともに、Z軸方向、θx方向、θy方向、及びθz方向に微小駆動される。
 ウエハステージWST上には、ウエハWがウエハホルダ(不図示)を介して真空吸着等によって保持されている。なお、ウエハステージWSTに代えて、X軸方向、Y軸方向及びθz方向に移動する第1ステージと、該第1ステージ上でZ軸方向、θx方向及びθy方向に微動する第2ステージとを備えるステージ装置を用いることもできる。
 ウエハステージWST上には、基準板FPが、その表面がウエハWの表面と同じ高さとなる状態で固定されている。基準板FPの表面には、アライメント検出系ASのベースライン計測等に用いられる基準マーク、及びレチクルアライメント検出系13で検出される少なくとも一対の基準マークなどが形成されている。
 さらに、ウエハステージWSTには、投影光学系PLを介してウエハW上に投影されるパターンの空間像を計測する空間像計測器、ウエハWに照射される照明光の強度(照度)を計測する照度モニタ(又は照度むらセンサ)及び波面収差計測器(いずれも不図示)等が備えられている。空間像計測器としては、例えば米国特許出願公開第2002/0041377号明細書などに開示されている構成の計測器を採用することができる。照度むらセンサとして、例えば米国特許第4,465,368号明細書などに開示されている構成のセンサを採用することができる。波面収差計測器としては、例えば国際公開第03/065428号などに開示されているシャック-ハルトマン(Shack-Hartman)方式の計測器を採用することができる。なお、レチクルアライメント検出系13の代わりに空間像計測器を用いて、レチクルRのマークとウエハステージWSTの基準マークとの検出を行うようにしても良い。この場合、レチクルアライメント検出系13は設けなくても良い。
 ウエハステージWSTのXY平面内の位置情報(回転情報(ヨーイング量(θz方向の回転量θz)、ピッチング量(θx方向の回転量θx)、ローリング量(θy方向の回転量θy))を含む)は、レーザ干渉計システム(以下、「干渉計システム」と略述する)18によって、移動鏡16(又はウエハステージWSTの端面に形成された反射面)を介して、例えば0.25nm程度の分解能で常時検出される。
 干渉計システム18の計測情報は、主制御装置120に供給される。主制御装置120は、干渉計システム18の計測情報に基づいて、ステージ駆動系24を介してウエハステージWSTのXY平面内の位置(θz方向の回転を含む)を制御する。
 また、ウエハWの表面のZ軸方向の位置及び傾斜量は、例えば、米国特許第5,448,332号明細書などに開示される斜入射方式の多点焦点位置検出系から成るフォーカスセンサAF(図2参照)によって計測される。フォーカスセンサAFの計測情報は、主制御装置120に供給される。
 ところで、レチクルRは、矩形状のガラス基板から構成されている。そして、該ガラス基板上には、一例としてレチクルRをパターン面側(図1における-Z側)から見た平面図である図3(A)に示されるように、デバイスパターン(単にパターンと呼ぶ)を有するパターン領域RSが形成されている。また、ガラス基板上には、パターン領域RSの-X側及び+X側に、それぞれ同様なアライメントマークAMが形成されている。
 アライメントマークAMは、一例として図3(B)に示されるように、Y軸方向に並ぶ2つのラインアンドスペースパターン(L/Sパターン)LSX,LSYを有している。L/SパターンLSXは、X軸方向に等間隔d(例えば6μm)で配列された線幅L(例えば2μm)の5本のラインパターンの集合である。L/SパターンLSYは、Y軸方向に等間隔dで配列された線幅Lの5本のラインパターンの集合である。
 なお、レチクルRにおいて、パターン領域RSは光を遮蔽する遮光部から成り、該遮光部内に光を透過させる透光部から成るパターンが形成されている。すなわち、レチクルRは、ネガ型レチクル(ネガ型フォトマスク)である。レチクルRにおいて、パターン領域RSを除く領域RTは、透光部となっている。領域RTには、遮光部から成るラインパターンを含むアライメントマークAMが形成されている。
 本実施形態の露光装置100では、照明系IOPからの照明光ILによってレチクルR上の照明領域IARが照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PL(投影ユニットPU)を介してその照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLの第2面(像面)側に配置される、表面にレジスト(感光剤)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では照明系IOP、及び投影光学系PLによってウエハW上にレチクルRのパターンが生成され、照明光ILによるウエハW上の感光層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
 ここで、露光装置100における露光方法について簡単に説明する。
 主制御装置120の指示に応じ、不図示のレチクルローダにより、レチクルRがレチクルステージRST上に載置される。
 露光装置100に併設、例えばインライン接続された不図示のコータ・デベロッパ(C/D)にてその表面に感光剤(レジスト)が塗布され、レジスト層が形成されたウエハWが、ウエハステージWSTのウエハホルダ(不図示)上に載置される。
 ウエハW上には、一例として図4(A)に示されるように、複数のショット領域Sが配列されている。そして、各ショット領域には、前層までの露光及びデバイス加工処理によりパターンが形成されている。また、隣接するショット領域間の隙間SLには、複数のアライメントマークAMが形成されている。この隙間SLは、ストリートラインあるいはスクライブラインなどとも呼ばれ、以下では単にストリートと呼ぶ。
 1つのショット領域Sを取り囲むストリートSLには、一例として図4(B)に示されるように、4つのアライメントマークAMが形成されている。ここでは、ショット領域Sの-X側にある2つのアライメントマークAMのうち+Y側に位置するアライメントマークAMと、ショット領域Sの+X側にある2つのアライメントマークAMのうち-Y側に位置するアライメントマークAMとが、ショット領域Sに付設されたアライメントマークである。ショット領域Sに付設された2つのアライメントマークAMとショット領域Sとの位置関係は、レチクルR上のアライメントマークAMとパターン領域RSとの位置関係に対応している。なお、残りのアライメントマークAMは、隣接するショット領域に付設されたアライメントマークである。
 主制御装置120は、ウエハW上のストリートSLに形成された複数のアライメントマークAMのうち、予め定められた複数のアライメントマークAMを、アライメント検出系ASを用いて検出するアライメント計測を実行する。この結果、検出対象の個々のアライメントマークAMについて、X位置とY位置(正確には、アライメントマークAMを構成するL/SパターンLSXのX位置とL/SパターンLSYのY位置)とが検出される。そして、主制御装置120は、例えば、米国特許第6,876,946号明細書などに開示される最小2乗法を利用した統計学的手法を用いてウエハW上の全てのショット領域の配列座標及び各ショットの倍率を含む変形量(倍率、回転、直交度)を求める(以下、このアライメント手法を「ショット内多点EGA」と呼ぶ)。
 主制御装置120は、ウエハアライメント計測(ショット内多点EGA)の結果に基づいて、投影光学系PLの投影中心とウエハW上の各ショット領域の相対位置関係を求める。
 主制御装置120は、レチクル干渉計14及び干渉計システム18の計測結果を監視して、レチクルステージRST及びウエハステージWSTをそれぞれの走査開始位置(加速開始位置)に移動させる。
 主制御装置120は、レチクルステージRSTとウエハステージWSTとを、Y軸方向に沿って、互いに逆向きに相対駆動する。主制御装置120は、レチクルステージRST及びウエハステージWSTがそれぞれの目標速度に達すると、照明光ILによってレチクルRを照明する。これにより、走査露光が開始される。
 主制御装置120は、走査露光中、レチクルステージRSTとウエハステージWSTとの速度比が、投影光学系PLの投影倍率βに対応する速度比に維持されるように、レチクルステージRSTとウエハステージWSTとを制御する。
 レチクルRのパターンがショット領域Sに転写され、アライメントマークAMがストリートSLに転写されると、ウエハW上のショット領域の1つに対する走査露光が終了する。
 主制御装置120は、ウエハステージWSTを、次のショット領域に対する走査開始位置(加速開始位置)へ移動(ステップ移動)させる。
 主制御装置120は、上記と同様にして、次のショット領域に対する走査露光を行う。
 以降、主制御装置120は、ショット領域間のステップ移動とショット領域に対する走査露光とを繰り返し行い、全てのショット領域にレチクルRのデバイスパターンを転写し、ストリートSLにアライメントマークAMを転写する。
 上記露光処理及びエッチング等のデバイス加工処理を繰り返すことにより、ウエハW上に複数のパターンが重ね合わせて形成される。
 ところで、図4(B)のB-B線断面図である図4(C)に示されるように、ショット領域Sに対して、その周囲のストリートSLが凹むことがある。
 ここで、露光の際のZ軸方向に関するウエハWの表面の位置と、レジスト層の感光状態との関係の一例を、レチクルRにおけるL/SパターンLSXの1つのラインパターンのみによって遮光された照明光ILが、投影光学系PLを介して、ウエハW上のポジ型のレジスト層CRに照射される場合を、取り上げて説明する。なお、Z軸方向に関して、投影光学系PLの焦点位置からの距離をΔZとし、投影光学系PLの焦点位置よりも+Z側を「+」、-Z側を「-」とする。また、ポジ型レジストの場合、感光した部分が現像により除去され、感光しなかった部分がレジストパターンとしてウエハW上に残る。
 図5(A)に示されるように、Z軸方向に関してウエハWの表面の位置が投影光学系PLの焦点に一致している場合、すなわちデフォーカス量ΔZ=0の場合、一例として図5(B)に示されるように、空間像強度分布は、ほぼ理想的な凹形状の分布を示す。但し、空間像強度分布における凹形状の底部には、投影光学系PLの収差及び非テレセントリック性、並びに照明条件等に由来する微細構造が現れている。この場合には、レジスト層CRにおいて、閾強度を超える強度の照明光ILが照射された部分CRが感光し、閾強度を超えない強度の照明光ILが照射された部分CRは感光しない。そのため、アライメントマークは殆ど変形することなく形成される。
 一方、図6(A)に示されるように、Z軸方向に関してウエハWの表面が投影光学系PLの焦点よりも-Z側にある場合、例えばΔZ=-Δの場合、図6(B)に示される空間像強度分布が得られる。上のΔZ=0の場合と比較すると、空間像強度分布が全体的に歪み、その中心が幾分-X側にシフトしている。さらに、空間像強度分布の底部には、その+X側に閾強度を超える強度を有するサイドローブが現れている。従って、上記部分CRに加えてサイドローブに対応する部分CRが感光し、サイドローブに由来する欠陥を含むレジストパターンが形成されることとなる。その結果、変形及び/又は位置ずれしたアライメントマークが形成される。
 また、図7(A)に示されるように、Z軸方向に関してウエハWの表面が投影光学系PLの焦点よりも+Z側にある場合、例えばΔZ=+Δの場合、図7(B)に示される空間像強度分布が得られる。上のΔZ=0の場合と比較すると、空間像強度分布が全体的に歪み、その中心が幾分+X側にシフトしている。さらに、空間像強度分布の底部には、+X側に現れたサイドローブに加えて、-X側にも閾強度を超える強度を有する別のサイドローブが現れている。従って、上記部分CRに加えてサイドローブに対応する2つの部分CRが感光し、サイドローブに由来する2つの欠陥を含むレジストパターンが形成されることとなる。その結果、変形及び/又は位置ずれしたアライメントマークが形成される。
 図8には、アライメント検出系ASによるアライメントマークの検出位置の設計位置からのずれであるシフト量とデフォーカス量ΔZとの関係が示されている。なお、図8では、+X方向へのシフトを「+」、-X方向へのシフトを「-」としている。これによると、小さいデフォーカス量ΔZ(=-0.5Δ~+0.5Δ)に対しては、デフォーカス(ΔZの変化)とともに空間像強度の分布が全体的に歪み、その中心がシフトするため、形成されるアライメントマークの検出位置が緩やかにシフトする。ΔZ=0の場合、アライメントマークは、ほぼ設計位置(若干-X側)に検出されることがわかる。
 一方、大きなデフォーカス量ΔZ(≦-0.75Δ及び≧+0.75Δ)に対しては、図6(B)及び図7(B)に示されるように分布の底部にサイドローブが現れ、加えてその数も増えるため、形成されるアライメントマークの検出位置はデフォーカス量ΔZに対して大きく振動する。ΔZ=-Δの場合(図6(B))、空間像強度分布の中心が-X側にシフトするとともに、底部の+X側にサイドローブが現れたため、アライメントマークの検出位置は設計位置から-X側に大きくシフトしている。また、ΔZ=+Δの場合(図7(B))、底部の+X側にサイドローブが現れ、さらに-X側に別のサイドローブが現れたため、シフト量は逆に小さくなっている。
 以上のように、投影光学系PLの収差及び非テレセントリック性、並びに照明条件等のうちの1つにより、あるいはそれらのうちの2以上が互いに相関することにより、デフォーカス状態で転写されるアライメントマークの変形及び/又は位置ずれが発生する。ここで、ストリートSLが凹んで、例えば、上記ΔZ=-Δと同様のときに、ショット領域Sにフォーカスを合わせてデバイスパターンを転写すると、ストリートSLには、デフォーカス状態でアライメントマークAMが転写され、該アライメントマークAMは、設計位置に対して-X側にシフトした位置に検出される。これは、ウエハアライメントおけるアライメントマークの誤検出、すなわち、重ね合わせ誤差の原因となる。
 次に、デフォーカス状態で転写されても変形及び位置ずれの小さい(アライメント検出系ASによる検出位置のシフトの小さい)アライメントマークを設計する方法について説明する。
 まず、投影光学系PLの光学特性を考慮して、投影光学系PLを介してウエハW上に投影されるパターンの像の投影位置とアライメントマークの像との投影位置とのウエハWの表面に平行な方向(光軸AXpに交差する方向)に関するシフト(横シフト)を、光軸AXpに平行な方向に関するシフト(縦シフト)に対して求める。
 ここで、投影光学系PLの光学特性として、収差、テレセントリック性(テレセントリシティー)等が考慮される。光学特性(収差、テレセントリック性等)は、予め、ウエハステージWSTに搭載されている空間像計測器等を用いて、あるいは基準ウエハを用いた試験露光法等を利用して計測されているものとする。なお、収差には、一例として、球面収差(結像位置の収差)、コマ収差(倍率の収差)、非点収差、像面湾曲、歪曲収差(歪み)等がある。
A. 照明条件及び投影光学系PLの光学特性を考慮して、レチクルRに形成されるアライメントマークAMに含まれるL/SパターンLSXの空間像のX軸方向に関する強度分布I(X)を算出する。ここでは、互いに異なる複数の線幅L及びデフォーカス量ΔZについて、それぞれ強度分布I(X)を求める。なお、本実施形態の露光装置100はステップ・アンド・スキャン方式の露光装置なので、非走査方向(X軸方向)についての空間像の強度分布I(X)=∫dYI(X,Y)を求める。照明条件には、例えば、使用する光源(照明光の中心波長、波長幅などの波長特性)、照明方式(二極照明、三極照明等)、レチクル及びウエハ上での照度等が含まれる。これらの照明条件は、通常、ウエハに形成すべきパターンに応じて照明方式などが設定され、ウエハ上に設けられるレジスト層の特性(例えば、種類、層厚等)に応じて照度などが適切に定められる。
 空間像の強度分布I(X)を求めるに際し、Z軸方向に関して、パターンが投影されるショット領域Sの表面は、投影光学系PLの焦点位置(あるいは最良フォーカス位置)に一致し、アライメントマークAMが投影されるストリートSLの表面は、投影光学系PLの焦点位置に対してΔZだけ凹んでいるものとする。この場合、縦シフトは、アライメントマークAMの像が投影されるストリートSLの面位置の、焦点(あるいは最良フォーカス位置)からのずれ(デフォーカス量ΔZと呼ぶ)に対応する。
 デフォーカス量ΔZ=-Δのときに、ここで得られた強度分布I(X)が、図9に示されている。なお、図9における符号βは、投影光学系PLの投影倍率である。
B. L/SパターンLSXの転写によりストリートSLに形成されるアライメントマーク(以下では、便宜上、「形成マーク」ともいう)の、X軸方向に関する形状分布F(X)を、次式(1)から求める。ここで、θ(I)は、次式(2)のように定義されるステップ関数である。また、Ithは閾強度である。
 F(X)=θ(-I(X)+Ith) ……(1)
Figure JPOXMLDOC01-appb-M000001
C. 形成マークの中心位置XAMを、次式(3)から求める。
 XAM=∫dXF(X)・X/∫dXF(X) ……(3)
D. 形成マークの横シフトΔXAMを、次式(4)から求める。ここで、XAM0は、形成マークの設計上の中心位置である。この設計上の中心位置XAM0としては、投影光学系PLの収差及び非テレセントリック性のない理想状態において得られた中心位置が用いられる。
 ΔXAM=XAM-XAM0 ……(4)
 但し、ショット領域Sに形成されるパターン(以下では、便宜上、「形成パターン」ともいう)の中心位置が、理想状態におけるその中心位置に対してシフトしている場合には、次式(5)から相対横シフトΔXAM’を求める。ここで、ΔXは、形成パターンの中心位置のシフトである。このΔXは、形成マークの横シフトΔXAMと同様に、但し、デフォーカス量ΔZ=0のみに対して求められる。
 ΔXAM’=XAM-XAM0-ΔX ……(5)
 ところで、厳密には、形成パターンの中心位置から形成マークの中心位置までの距離の設計上の距離からのずれを考えなければならないが、Z軸方向に関して、ショット領域Sの表面が投影光学系PLの焦点位置に一致している場合には、形成マークの横シフトΔXAMを代用することができる。
 横シフトΔXAM又は相対横シフトΔXAM’を、例えば投影光学系PLの焦点深度の範囲内のデフォーカスΔZに対して求めることにより、デフォーカスΔZの関数としての横シフトΔXAM(ΔZ)又は相対横シフトΔXAM’(ΔZ)が求められる。
E. 次に、求められた横シフトΔXAM(ΔZ)又は相対横シフトΔXAM’(ΔZ)に基づいて、アライメントマークAMの設計条件を最適化する。ここで、設計条件には、例えば、マークの種類、形状、及び位置(像高)等の少なくとも1つが含まれる。本実施形態では、例として、マークの種類としてL/Sパターン、位置(像高)として図3(A)に示される位置を考えている。L/Sパターンの場合、その形状についての設計条件として、ラインパターンの線幅L、ピッチd等が含まれる。ここでは、一例として、これらのマークの種類と位置(像高)等の条件の下で、L/Sパターンを構成するラインパターンの線幅Lを最適化するものとする。
 図10には、それぞれ線幅Lが異なる5種類(a<b<c<d<e)のL/SパターンLSXについて、得られた横シフトΔXAMとデフォーカス量ΔZとの関係が示されている。これによると、デフォーカス量ΔZが-0.5Δ~+0.5Δのときは、強度分布が全体的に歪み、その中心がシフトするため、横シフトΔXAMは、デフォーカス量ΔZに対して緩やかに変化する。また、デフォーカス量ΔZが-0.75Δ以下、及び+0.75Δ以上のときは、強度分布の底部に閾強度Ithを超える強度を有するサイドローブが現れ、さらにデフォーカス量ΔZの絶対値が大きくなるにつれてサイドローブの数が増えるため、横シフトΔXAMはデフォーカス量ΔZに対して大きく振動する。
 また、線幅Lが異なっていても、横シフトΔXAMのデフォーカス量ΔZに対する振舞いはほぼ同じであるが、線幅Lが大きくなると、変化の程度が大きくなることがわかる。図11には、線幅Lに対する、デフォーカス量ΔZ=0での横シフトΔXAMの平均(ΔXAM(ΔZ=0))、及び傾き(dΔXAM/dΔZ|ΔZ=0)が示されている。平均は、線幅Lに対してほぼ一定であるのに対し、傾きは線幅Lが大きくなるほど大きいことがわかる。そこで、平均が最も小さく、且つ傾きが最も小さい線幅aを、線幅Lの最適条件として選ぶ。
F. アライメントマークAMに関する他の設計条件について、照明条件毎に、上記A.~E.と同様の手順で、最適条件を求める。
G. さらに、より最適なアライメントマークAMを設計するために、アライメント検出系ASを用いてウエハW上に形成されたアライメントマークAMを検出するための検出条件を考慮する。検出条件には、アライメントマークAMに照射する検出光の照射条件、例えば強度、波長特性、照明分布等の少なくとも1つが含まれる。これらの検出条件に応じて、アライメント検出系ASに対する入力、すなわちアライメントマークAMの形状分布F(X)(前述の式(1)参照)に対するアライメント検出系ASの検出結果(信号強度)f(X)の応答を表す応答関数φ(X)が定められる。ここで、信号強度f(X)は、形状分布F(X)と応答関数φ(X)を用いて、次式(6)のように求められる。
  f(X)=∫dX’φ(X-X’)・F(X’) …(6)
 なお、理想的な形状分布F(X)を有するアライメントマークAMを、アライメント検出系ASを用いて検出し、得られる検出結果(信号強度)f(X)を式(6)に適用して、応答関数φ(X)を経験的に求めることも可能である。
 式(6)を用いて、先に求められたアライメントマークAMの形状分布F(X)から、アライメント検出系ASによる検出結果(信号強度)f(X)を求める。図12には、求められた信号強度f(X)の一例が示されている。信号強度f(X)には、アライメントマークAMを構成する5つのラインパターンに対応する5つの連続する底部が現れている。さらに、個々の底部には、ラインパターンの欠陥に対応するサイドローブが現れている。
 信号強度f(X)を用いて、次式(7)で表される、アライメントマークAM(L/SパターンLSX)の検出位置xAMを求め、さらに設計上の中心位置XAM0からの検出位置xAMのずれから次式(8)で表される横シフトΔxAMを求める。
 xAM=∫dXf(X)・X/∫dXf(X) …(7)
 ΔxAM=xAM-XAM0           …(8)
 また、先と同様に、パターンの中心位置も理想状態における中心位置からシフトする場合、次式(9)を用いて、相対横シフトΔxAM’を求める。
 ΔxAM’=xAM-XAM0-Δx       …(9)
 パターンの中心位置のシフトΔxは、横シフトΔxAMと同様に、求められる。ただし、デフォーカスΔZ=0のみに対して求められる。
 この横シフトΔxAM又は相対横シフトΔxAM’を前述の横シフトΔXAM又は相対横シフトΔXAM’に代えて使用して、先と同様に、アライメントマークAMの設計条件を最適化する。
H. 全ての設計条件について、照明条件毎に、かつ検出条件毎に、同様の設計条件の最適化を行う。
I. アライメントマークAMに含まれるもう1つのL/SパターンLSYに対しても、同様にして線幅Lの最適条件を求める。
 このようにして得られた最適条件を満足するアライメントマークAMをレチクルRに形成することにより、デフォーカス状態で転写されても変形及び位置ずれの小さいアライメントマークをストリートSLに形成することができる。
 以上説明したように、本実施形態に係る露光装置100によると、照明条件及び投影光学系PLの光学特性を考慮して、ウエハWに投影されるアライメントマークAMの像の横シフト(ΔXAM又はΔxAM)を求め、該横シフト(ΔXAM又はΔxAM)に基づいて、レチクルRに形成されるアライメントマークAMの設計条件を最適化している。この場合に、デフォーカス状態でウエハWに転写されても、ウエハWに形成されるアライメントマークの変形及び位置ずれを小さくすることができる。従って、ウエハW上の複数のショット領域のそれぞれを、所定位置、例えばレチクルRのパターンの投影位置に対して高精度に位置合わせすることができ、これにより重ね合わせ精度の向上が可能になる。
 なお、上記実施形態において、ポジ型レジストに代えてネガ型レジストを用いても良い。この場合には、上記(1)式に代えて、次式(10)が用いられる。
 F(X)=θ(I(X)-Ith) ……(10)
 また、上記実施形態において、レチクルの種類毎に異なる照明条件が用いられる場合には、照明条件毎に最適条件が求められる。
 また、上記実施形態において、互いに照明条件が異なる複数のレチクルが準備されている場合には、主制御装置120は、露光装置100の照明条件に対応する最適なアライメントマークAMが設けられたレチクルを選択する。また、露光装置100を含むデバイス製造システムを統括制御するホストコンピュータにより、露光装置100の照明条件に対応する最適なアライメントマークAMが設けられたレチクルが選択されても良い。
 また、上記実施形態において、デバイスパターンが形成されたパターン部(パターン領域)に対して面位置の異なる段部にアライメントマークが形成された二段構造のレチクル(以下、段付きレチクルと呼ぶ)を用いて露光することとし、その段部に形成されるアライメントマークを最適設計することも有効である。この場合において、パターン部と段部の面位置のずれ(段差)はΔZ=ΔZ/nβを満足するように選ぶと良い。ここで、ΔZは、ウエハ上のストリート内の凹みの深さ、βは投影光学系の投影倍率である。また、nは像側媒質の屈折率であり、上記実施形態におけるドライタイプの露光装置の場合、大気の屈折率n=1.0、後述する液体(水)を介してウエハを露光するウェットタイプの露光装置の場合、液体(水)の屈折率n=1.44である。
《第2の実施形態》
 次に、本発明の第2の実施形態に係る露光方法及びデバイス製造方法を、図14(A)~図16(D)を参照して説明する。本第2の実施形態では、前述した露光装置100が用いられる。ここでは、重複説明を避ける観点から装置の構成等についてはその説明を省略する。また、同一の構成部材については、同一の符号を用いるものとする。
 本第2の実施形態では、ウエハ上のショット領域(パターンの形成領域)とストリート(アライメントマーク等の形成領域)との段差に起因する露光誤差の発生を抑制するため、以下のようにして、主制御装置120により、アライメントマークの検出結果の補正が行われる。
a. まず、前述した第1の実施形態中で説明したA.~G.と同様の手順で、L/SパターンLSXの転写によりストリートSLに形成されるアライメントマーク(形成マーク)、ショット領域Sに形成されるパターン(形成パターン)について、互いに異なる複数のΔZについて、横シフトΔXAM若しくはΔxAM、又は相対横シフトΔXAM’若しくはΔxAM’を求める。
 このとき、空間像の強度分布I(X)は、アライメントマークAMの設計条件が複数ある場合、さらに設計条件のそれぞれについても求められる。設計条件には、例えば、マークの種類、形状、及び位置(像高)等の少なくとも2つが含まれる。例えばL/Sパターンの場合、その形状についての設計条件として、ラインパターンの線幅L、ピッチd等が含まれる。また、互いに異なる複数のデフォーカス量ΔZについて、それぞれ強度分布I(X)も求められる。ただし、この場合、ウエハ上のショット領域Sに対するストリートSL内の凹みを取り上げているので、デフォーカス領域ΔZ≦0のみを考えれば良い。
 投影光学系PLの焦点深度の範囲内のデフォーカスΔZ(ただし、Δ≦0)に対して、横シフト又は相対横シフトを求めることにより、デフォーカスΔZの関数としての横シフトΔXAM(ΔZ)若しくはΔxAM(ΔZ)、又は相対横シフトΔXAM’(ΔZ)若しくはΔxAM’(ΔZ)が求められる。
b. アライメントマークAMに含まれるもう1つのL/SパターンLSYに対しても、同様にしてデフォーカスΔZの関数としての横シフトΔYAM(ΔZ)若しくはΔyAM(ΔZ)、又は相対横シフトΔYAM’(ΔZ)若しくはΔyAM’(ΔZ)を求める。
c. 得られた横シフトΔXAM(ΔZ),ΔYAM(ΔZ)若しくはΔxAM(ΔZ),ΔyAM(ΔZ)、又は相対横シフトΔXAM’(ΔZ),ΔYAM’(ΔZ)若しくはΔxAM’(ΔZ),ΔyAM’(ΔZ)は、照明条件、アライメントマークの設計条件、アライメント検出系ASの検出条件等に対応付けて、不図示のメモリに保存する。
d. 露光工程において、ウエハW上に形成されたアライメントマークをアライメント検出系ASを用いて検出する際に、ショット領域S及びストリートSLの面位置(それぞれの表面のZ軸方向に関する位置)を、フォーカスセンサAF及びアライメント検出系ASが備える焦点検出系をそれぞれ用いて計測する。そして、ショット領域Sの面位置を基準とするストリートSLの凹みの深さΔZを求める。
e. そのときのウエハWに対する露光条件(に含まれる照明条件、使用するレチクルRに形成されたアライメントマークの設計条件、アライメント検出系ASの検出条件等)に対応する横シフトΔXAM(ΔZ),ΔYAM(ΔZ)若しくはΔxAM(ΔZ),ΔyAM(ΔZ)、又は相対横シフトΔXAM’(ΔZ),ΔYAM’(ΔZ)若しくはΔxAM’(ΔZ),ΔyAM’(ΔZ)をメモリ(不図示)から読み出し、読み出した横シフト又は相対横シフトを用いて、ストリートSLの凹みの深さΔZに対応するアライメントマークの横シフトΔXAM(ΔZ),ΔYAM(ΔZ)若しくはΔxAM(ΔZ),ΔyAM(ΔZ)、又は相対横シフトΔXAM’(ΔZ),ΔYAM’(ΔZ)若しくはΔxAM’(ΔZ),ΔyAM’(ΔZ)を求める。
f. 求められた横シフトΔXAM(ΔZ),ΔYAM(ΔZ)若しくはΔxAM(ΔZ),ΔyAM(ΔZ)、又は相対横シフトΔXAM’(ΔZ),ΔYAM’(ΔZ)若しくはΔxAM’(ΔZ),ΔyAM’(ΔZ)を補正値として、アライメントマークAMの検出結果を補正する。
 以上説明したように、本第2の実施形態に係る露光方法によると、予め、横シフトΔXAM(ΔZ),ΔYAM(ΔZ)若しくはΔxAM(ΔZ),ΔyAM(ΔZ)、又は相対横シフトΔXAM’(ΔZ),ΔYAM’(ΔZ)若しくはΔxAM’(ΔZ),ΔyAM’(ΔZ)を求めておき、露光工程において、ウエハW上に形成されているアライメントマークを検出する際に、ショット領域Sの面位置を基準とするストリートSLの面位置を計測することにより、その計測結果から得られる縦シフト(デフォーカス量ΔZ)に対応する横シフトΔXAM,ΔYAM若しくはΔxAM,ΔyAM、又は相対横シフトΔXAM’,ΔYAM’若しくはΔxAM’,ΔyAM’を用いて、アライメントマークの検出結果、例えばEGAパラメータ(オフセット、Xスケーリング、直交度)、を補正することができる。この場合には、ストリートSLの凹みに伴うアライメントマークの検出誤差を補正することができる。従って、ウエハW上の複数のショット領域のそれぞれを、所定位置、例えばレチクルRのパターンの投影位置に対して高精度に位置合わせすることができ、これにより重ね合わせ精度の向上が可能になる。
 なお、上記第2の実施形態において、横シフトΔXAM,ΔYAM若しくはΔxAM,ΔyAM、又は相対横シフトΔXAM’,ΔYAM’若しくはΔxAM’,ΔyAM’を用いて直接アライメントマークの検出結果を補正する代わりに、ベースライン計測の結果、あるいはアライメントマークの検出結果から求められるウエハW上のショット領域Sの位置、倍率、及び直交度を補正しても良い。
 この場合、図13(A)に示されるように、横シフトΔXAM,ΔYAM若しくはΔxAM,ΔyAM、又は相対横シフトΔXAM’,ΔYAM’若しくはΔxAM’,ΔyAM’を、露光領域IA内のX軸方向に関する複数位置について求める。図13(A)では、5つの位置にて得られた横シフトΔXAM,ΔYAM若しくはΔxAM,ΔyAMが、それぞれベクトルを用いて示されている。これらの結果を用いて、ショット領域Sの位置、倍率、及び直交度を求めるのと同様にして、露光領域IAの横シフトを表すオフセット(位置のシフト)、倍率(Xスケーリング)、及び直交度を求める。これらのオフセット、倍率、及び直交度は、互いに異なる複数のΔZについて求められ、メモリに保存される。
 図13(B)には、オフセットのみにより横シフトした露光領域IA’が示されている。また、図13(C)には、倍率のみにより横シフトした露光領域IA’が示されている。そして、図13(D)には、直交度のみにより横シフトした露光領域IA’が示されている。
 主制御装置120は、ウエハWに対するウエハアライメントにおいて、ストリートSLの凹みの深さに対応するオフセット、倍率、及び直交度の値を補正値として、ショット領域Sの位置、倍率、及び直交度を補正する。
 なお、この補正は、図13(A)に示される露光領域IAの横シフトが、ウエハWの全面に等しく反映されることを前提としているため、ストリートSLの凹みの深さは、少なくともウエハアライメント計測(ショット内多点EGAなど)において検出されるアライメントマークの全てについてほぼ等しいことが必要である。
 ところで、ステージ駆動系24によるウエハステージWSTの駆動制御において、Z軸方向に関するウエハWの位置合わせ誤差(いわゆるフォーカス誤差)が発生する場合がある。この場合には、先の仮定、すなわちパターンの像が投影されるウエハW上のショット領域Sの面位置は投影光学系PLの焦点(又は最良フォーカス位置)に一致しているとの仮定が必ずしも成り立たない。そこで、横シフトΔXAMを、Z軸方向に関するショット領域Sの面位置、及びショット領域Sの面位置を基準とするストリートSLの凹みの深さの関数として求めると良い。そして、ショット領域Sの面位置に対して横シフトΔXAMの変化がさほど大きくないときには、ショット領域Sの面位置について横シフトΔXAMを平均し、得られた横シフトΔXAMの平均値を上記横シフトΔXAMに代えて使用しても良い。
 第2の実施形態において、横シフト、相対横シフト、あるいは横シフトの平均値を用いて、アライメントマークの検出結果を補正する代わりに、ベースライン計測の結果、あるいはアライメントマークの検出結果から求められるウエハW上のショット領域Sの位置、倍率、及び直交度などのEGA結果を補正しても良い。この他、基準マークとウエハマークとの位置関係を補正しても良い。
《第3の実施形態》
 次に、本発明の第3の実施形態に係る露光方法及びデバイス製造方法を、図14(A)~図16(D)を参照して説明する。本第3の実施形態では、前述した露光装置100が用いられる。ここでは、重複説明を避ける観点から装置の構成等についてはその説明を省略する。また、同一の構成部材については、同一の符号を用いるものとする。
 本第3の実施形態では、アライメントマークの誤検出を回避するため、ダミーパターン露光、及びアライメントマークの形成が行われる。
 主制御装置120の指示に応じ、不図示のレチクルローダにより、一例として図14(A)に示されるレチクルR0がレチクルステージRST上に載置される。レチクルR0は、ガラス基板上に、デバイスパターンを含むパターン領域RS0、及び該パターン領域RS0を取り囲み、ダミーパターンが形成されたダミーパターン領域RDが形成されている。ダミーパターン領域RDは、ストリートSLに対応する形状及び大きさを有している。そして、レチクルR0において、パターン領域RS0は遮光部から成り、該遮光部内に透光部から成るデバイスパターンが形成され、ダミーパターン領域RDは遮光部となっている。
 図15(A)に示されるように、ウエハWの表面に導電性薄膜や絶縁性薄膜等の機能膜L1と、ポジ型レジスト膜(レジスト層)CR1とが積層形成される。なお、ストリートSLには、アライメントマークAMが形成されているものとする。このウエハWが露光装置100に搬入され、ウエハステージWST上に搭載されたウエハホルダ上に載置され、吸着保持される。
 主制御装置120は、アライメント検出系ASを用いて、レジスト層CR1及び機能膜L1を介してストリートSLのアライメントマークAMを検出し、ウエハアライメント(前述のショット内多点EGAでも良いし、例えば米国特許第4,780,617号明細書などに開示されるEGAでも良い)を実行する。
 主制御装置120は、ウエハアライメントの結果に基づいて、ウエハW上の全ショット領域内に、順次、走査露光を行う。ここでは、ダミーパターン領域RDが遮光部であるため、照明光ILはストリートSLのレジスト層CR1には照射されない。
 全ショット領域の走査露光が終了すると、ウエハWが現像される。この現像により、ウエハW上に形成されたレジスト層CR1のうち、感光した部分が溶解し、残りの部分がレジストパターンとしてウエハ表面に残る。従って、ウエハW上の各ショット領域Sは、レチクルR0のデバイスパターンと同じ開口(溝部)を有するレジストパターンに覆われ、ストリートSLは、図15(B)に示されるように、一切の開口のないレジストパターンに完全に覆われる。
 現像が終了すると、レジストパターンをエッチングマスクとして機能膜L1がエッチング加工され、さらにレジスト層CR1が除去される。これにより、ショット領域S上の機能膜L1には、レチクルR0のデバイスパターンと同じパターンが形成される。一方、ストリートSL上の機能膜L1は、図15(C)に示されるように、エッチングされることなくダミーパターンDP1としてストリートSLに生じた凹みに埋設される。
 これにより、ショット領域S上の機能膜L1の表面とダミーパターンDP1の表面とがほぼ面一となり、ウエハWの表面が平坦になる。この場合において、アライメントマークの形成を行わない層が複数層連続する場合に、1回のダミーパターン露光で平坦にならない場合もあり得る。このような場合には、表面が十分に平坦になるまで、複数回、露光を繰り返すと良い。勿論、デフォーカスによって変形して形成されるアライメントマークの誤検出が無視できる程度に、平坦に(ショット領域表面とストリートSLに生じた凹みとの段差が小さく)なれば良い。
 次の層の露光(アライメントマークの転写形成を伴う露光)に際しては、図16(A)に示されるように、ダミーパターンDP1が形成されたウエハWの表面に、機能膜L2と、ポジ型レジスト膜(レジスト層)CR2とが積層形成される。このウエハWが露光装置100に搬入され、ウエハステージWST上に搭載されたウエハホルダ上に載置され、吸着保持される。
 主制御装置120は、アライメント検出系ASを用いて、機能膜L2及びダミーパターンDP1を介してストリートSLのアライメントマークAMを検出し、ウエハアライメントを実行する。
 主制御装置120は、ウエハアライメントの結果に基づいて、全ショット領域に走査露光を行う。これにより、ショット領域S上のレジスト層CR2には、レチクルRのデバイスパターンが転写され、ストリートSL上のレジスト層CR2には、図16(B)に示されるように、レチクルRのアライメントマークAMが転写される。
 全ショット領域の走査露光が終了すると、ウエハWが現像される。この現像により、ウエハW上に形成されたレジスト層CR2のうち、感光した部分が溶解し、感光しなかった部分がレジストパターンとしてウエハ表面に残る。従って、ショット領域Sは、レチクルRのデバイスパターンと同じ開口(溝部)を有するレジストパターンに覆われ、ストリートSLは、図16(C)に示されるように、アライメントマークAMに対応するレジストパターンのみにより一部が覆われる。
 現像が終了すると、レジストパターンをエッチングマスクとして機能膜L2がエッチング加工され、レジストパターンによって覆われていない部分がエッチングされる。さらに、レジスト層CR2が除去される。これにより、ショット領域S上の機能膜L2には、レチクルRのデバイスパターンと同じパターンが形成され、ストリートSLのダミーパターンDP1上には、図16(D)に示されるように、エッチングされることなく残った機能膜L2の一部が新しいアライメントマークAM2として形成される。
 そして、以降の露光処理では、新しいアライメントマークAM2を用いてウエハアライメント(ショット内多点EGAなど)を行う。なお、先に形成済みのアライメントマークAMの一部が使用可能である場合、そのアライメントマークAMと新しく形成されたアライメントマークAM2とを用いてウエハアライメントを行うことも可能である。
 以上説明したように、本第3の実施形態によると、アライメントマークAMが形成されているストリートSL上に、ダミーパターンDP1を形成してウエハWを平坦にし、ダミーパターンDP1上に新たなアライメントマークAM2を形成している。この場合には、アライメントマークAM2は、デフォーカスによって変形することなくウエハW上に形成される。従って、ウエハアライメントに際してそのアライメントマークの誤検出を回避することができ、十分な重ね合わせ精度を維持することが可能となる。
 なお、本第3の実施形態のダミーパターン露光において、ストリートSLの一部にのみダミーパターンを形成することとしても良い。この場合には、レチクルR0に代えて、一例として図17に示されるレチクルR0’を用いることができる。このレチクルR0’では、レチクルRのアライメントマークAMが形成された領域に対応する領域の近傍のみに、ダミーパターンが形成されたダミーパターン領域RD’が、設けられている。
 また、本第3の実施形態のダミーパターン露光に代えて、ダミーパターンのみを形成することとしても良い。その場合、ダミーパターン領域RD又はRD’と、全面が遮光パターンから成るパターン領域とが形成されたレチクルを用いることができる。この場合において、1回のダミーパターン露光で平坦にならないときは、表面が十分に平坦になるまで、複数回、露光を繰り返すと良い。勿論、デフォーカスによって変形して形成されるアライメントマークの誤検出が無視できる程度に、平坦になれば良い。この他、例えば電子ビーム露光装置などを用いて、ウエハ上のストリートにダミーパターンのみを形成しても良いし、そのダミーパターンを形成する部分を所定の材料で埋める処理を行っても良い。すなわち、ウエハ上の複数のショット領域(区画領域)を区画する凹部(ストリート)の少なくとも一部の目標部分とショット領域部分とを平坦化する平坦化処理を行えば良い。なお、パターンの転写を伴わず、平坦化処理(ダミーパターンの形成を含む)のみを行う場合には、アライメントマークの転写を伴う層の露光直前に、ウエハ上のストリートにダミーパターンを形成するなどしても良い。なお、ダミーパターンの材料として、導電性薄膜や絶縁性薄膜等の機能膜の材料を用いる必要はない。
 また、上記第3の実施形態において、ダミーパターン露光に代えて、ポジ型レジストの一部(ストリートの少なくとも一部の目標部分に相当)が非露光部となる露光を行っても良い。また、ポジ型レジストに限らず、ネガ型レジストを用いても良い。この場合には、前記レチクルR0に代えて、ダミーパターン領域RDが透光部で、かつパターン領域RS0及びダミーパターン領域RD以外が遮光部であるレチクルが用いられる。
 また、上記第3の実施形態では、アライメントマークAMの上に重ねて新しいアライメントマークAM2を形成する場合について説明したが、これに限定されるものではない。たとえば、新しいアライメントマークAM2の形成位置が定められていれば、一部のアライメントマークAMのみに重ねて、あるいは任意の位置にダミーパターンDP1を形成し、その上に新しいアライメントマークAM2を形成しても良い。
 また、上記第3の実施形態のダミーパターンの露光に代えてあるいは併用して、前述の段付きレチクルを用いて露光することも可能である。この場合も、パターン部と段部の面位置のずれ(段差)はΔZ=ΔZ/(nβ)と選ぶと良い。
 また、上記第3の実施形態において、露光開始に先立って、例えばフォーカスセンサAF等を用いてウエハWの表面の凹み(段差情報)を検出し、その結果に基づいて、ダミーパターンDP1及び新しいアライメントマークAM2を設ける位置を決定しても良い。この場合に、凹みの深さが予め定められた深さを超えたときに、上記ダミーパターン露光を行い、新しいアライメントマークを形成しても良い。
 また、所定の複数層のパターンを重ね合わせて形成する毎に、上記ダミーパターン露光を実行することとしても良い。
 また、上記第3の実施形態において、アライメント検出系ASを用いて、ストリートSLに形成済みのアライメントマークAMをダミーパターンDP1を介して検出する際に、ダミーパターンDP1の材質、厚さ等を考慮して、アライメント検出系ASの検出条件、例えば、検出光の強度、波長、ビームサイズ等を最適化しても良い。
 なお、ダミーパターン露光は必ずしも露光装置、すなわち投影光学系を介して行う必要はなく、前述の如く別の装置、あるいはダミーパターン露光モジュール(ユニット)を露光装置の内部の所定位置(例えば、ウエハのアンロード経路上など)に設けても良い。このダミーパターン露光モジュールでは、例えば空間光変調器などを例えばパターンジェネレータとして用いても良い。また、上記実施形態では、ストリートがショット領域(パターン形成領域)に対して凹んでいる場合について説明したが、その反対、すなわちストリートに対してショット領域が凹んでいても良い。要は、アライメントマークが形成される領域とパターンが形成される領域との間に段差があれば、上記第1~第3の実施形態のそれぞれは好適に適用できる。
 なお、前述した第1の実施形態において、前述のアライメントマークの最適設計に加えて、最適設計において求められた横シフトΔXAM(ΔZ)又はΔxAM(ΔZ)を用いてアライメントマークAMの検出結果を補正しても良い。これにより、さらに高精度なパターンの重ね合わせ(位置合わせ)が可能となる。この場合のアライメントマークAMの検出結果の補正では、まず、アライメント検出系ASを用いてアライメントマークAMを検出する際に、ウエハWのパターンが形成されたショット領域SとアライメントマークAMが付設されたストリートSLのそれぞれの面位置をフォーカスセンサAF及びアライメント検出系ASが備える焦点検出系を用いて計測し、ショット領域Sの面位置を基準とするストリートSLの凹みの深さΔZを求める。次に、アライメントマークの最適設計において求められた横シフトの中から、ウエハWの露光条件(照明条件等)及びアライメント検出系ASの検出条件に対応する横シフトを選択する。選択した横シフトを用いて深さΔZに対応するアライメントマークの横シフトΔXAM(ΔZ)又はΔxAM(ΔZ)を求める。最後に、求められた横シフトを補正値として用いて、アライメントマークAMの検出結果を補正する。あるいは、ベースライン計測の結果又はEGAパラメータを補正しても良い。これにより、最適設計されたアライメントマークについての微小な変形(横シフト)に由来する重ね合わせ(位置合わせ)誤差までもが解消する。
 また、前述した第1の実施形態において、上記第3の実施形態と同様にウエハW上に生じた凹状のストリートSLに、ダミーパターンを形成するなどしてウエハW表面を可能な限り平坦化する。そして、完全にあるいは略平坦化されたストリートSL上に新たにアライメントマークを形成することとし、その新たに形成するアライメントマークを最適設計することも有効である。この場合、ウエハW表面を平坦にすることにより形成されるアライメントマークのデフォーカスに伴う横シフトが解消され、残る投影光学系の収差に伴う横シフトをアライメントマークの最適設計により解消することになる。このようにして最適設計されたアライメントマークをストリートSL上に形成し、そのアライメントマークを用いてアライメント計測を行う。さらには、最適設計において求められた横シフトΔXAM(ΔZ)又はΔxAM(ΔZ)を用いてアライメントマークの検出結果を補正する。これにより、さらに高精度なパターンの重ね合わせ(位置合わせ)が可能となる。
 また、前述した第2の実施形態において、前述の第3の実施形態と同様にウエハW上に生じた凹状のストリートSLに、ダミーパターンを形成するなどしてウエハW表面(ストリートとこれによって区画されるショット領域との表面)を可能な限り平坦化し、完全にあるいは略平坦化されたストリートSL上に新たにアライメントマークを形成することとし、その新たに形成されるアライメントマークの検出誤差を補正することも有効である。この場合、ウエハW表面を平坦にすることによって、形成されるアライメントマークのデフォーカスに伴う横シフトが解消され、残る投影光学系の収差に伴う横シフトを補正により解消することになる。このため、さらに高精度なパターンの重ね合わせ(位置合わせ)が可能となる。
 また、前述した第3の実施形態において、ダミーパターン露光と組み合わせて、前述の第1の実施形態と同様にしてデフォーカスによる転写像の変形の小さいアライメントマークを設計し、設計されたアライメントマークが形成されたレチクルを用いて露光(パターンの転写)を行っても良い。例えば、投影光学系PLの収差、テレセントリック性等の光学特性を考慮して、投影光学系を介してウエハ上に投影されるアライメントマークの像の投影位置のシフト量をデフォーカスに対して求め、得られるシフト量が最も小さくなるように、あるいはデフォーカスに対するシフト量の変化の程度が最も小さくなるように、アライメントマークの種類、形状、形成位置等を最適化しても良い。但し、パターンが投影されるウエハ上のショット領域の面位置は、投影光学系の焦点に一致していると仮定している。さらに、レチクル及びウエハの照明条件、アライメント検出系ASの検出条件等も考慮する。これにより、アライメントマークの誤検出、すなわち重ね合わせ誤差の発生を更に回避することが可能となる。
 なお、上記第1~第3の実施形態中で説明したアライメントマークの配置などは一例にすぎず、例えばアライメントマークはその数が1つ以上あれば良く、その形状などは任意で良い。また、アライメントマークはストリートラインに限らずショット領域内に形成しても良い。
また、上記第1~第3の実施形態のそれぞれではウエハアライメントとして、ショット内多点EGAに代えて、例えば米国特許第4,780,617号明細書などに開示されているEGAを実行しても良く、この場合には、1つのショット領域で1つのアライメントマークを計測するだけでも良い。
 また、上述した第1~第3実施形態のうちの任意の2つを組み合わせて適用しても良いし、あるいは第1~第3実施形態の全てを組み合わせて適用しても良い。
《重ね合わせ誤差計測》
 また、上記第1の実施形態では、パターンを位置合わせするために用いられるアライメントマークを最適設計する場合について説明したが、アライメントマークに限らず、ウエハ上の異なる2つの層(基準層とターゲット層)のそれぞれに形成された2つのパターン同士の重ね合わせ誤差を計測するためのマーク等を最適設計することも可能である。図18(A)には、一例として、基準層の露光の際にデバイスパターンとともに重ね合わせ誤差計測マークMO(図18(A)中では符号MOとして示されている)が、各ショット領域SApにつき4つずつ、転写、形成されたウエハWが示されている。図18(A)において、符号MX,MYは、それぞれXアライメントマーク、Yアライメントマークである。
 この場合、基準層の露光処理において、位置関係が既知のデバイスパターンと重ね合わせ誤差計測マークMOとが形成されたレチクル(第1レチクルと呼ぶ)が用いられる。この第1レチクルを用いて、図18(A)に示されるように、ショット領域S上に基準層のデバイスパターンを形成すると同時に、ストリートSL上に重ね合わせ誤差計測マークMOを形成する。そして、ターゲット層の露光までの間のプロセスの処理により、ショット領域SとストリートSLとに段差が形成されたものとする。その後のターゲット層の露光処理において、位置関係が既知のデバイスパターンと重ね合わせ誤差計測マークMO(図18(C)参照)とが形成されたレチクル(第2レチクルと呼ぶ)が用いられる。ここで、第2レチクル上の重ね合わせ誤差計測マークMOは、前述の第1の実施形態で説明した手順に従って、最適設計されている。そして、第2レチクルを用いて、ショット領域S上のデバイスパターンに重ねてターゲット層のデバイスパターンを形成すると同時に、ストリートSL上の重ね合わせ誤差計測マークMOに重ねて重ね合わせ誤差計測マークMO1を形成する。この場合、重ね合わせ誤差計測マークMO、MOとしては、一例として、図18(C)に示されるようなBar in Barマークが用いられる。
 重ね合わせ誤差計測マークMOは、図18(C)から分かるように、Y軸方向に所定距離離れて平行に配置されたX軸方向を長手方向とする一対のラインパターンと、X軸方向に所定距離離れて平行に配置されたY軸方向を長手方向とする一対のラインパターンとの4本のラインパターンを含み、全体として4つのコーナー部分が欠落したほぼ正方形の矩形マーク(Boxマーク)のような形状を有している。
 重ね合わせ誤差計測マークMOは、全体として4つのコーナー部分が欠落したほぼ正方形の矩形マーク(Boxマーク)のような形状を有し、重ね合わせ誤差計測マークMOとほぼ相似で一回り大きなマークである。
 これら2つの重ね合わせ誤差計測マークMO、MOは、重ね合わせ誤差なく露光が行われた場合、基準層とターゲット層とでそれぞれの中心がほぼ一致するような位置関係に設計されている。
 従って、重ね合わせ誤差計測マークMOが形成されたウエハを現像(及びエッチング加工)後、重ね合わせ計測装置(合わせずれ検査装置とも呼ばれる)等を用いてストリートSL上に重ねて形成された重ね合わせ誤差計測マークMOと重ね合わせ誤差計測マークMOとの位置ずれ(dx,dy)を計測する。同様の重ね合わせ誤差計測マークがショット領域Sに複数付設され、全てのマークについての位置ずれ(dx,dy)からショット領域S内に重ね合わせて形成されたデバイスパターンの重ね合わせ誤差を求める。このとき、重ね合わせ誤差計測マークMOは、前述の手順に従って、最適設計されているので、少なくともショット領域Sとストリートとの段差に起因する重ね合わせ誤差計測マークMOの位置計測誤差は殆ど生じない。従って、基準層のショット領域(デバイスパターン領域)とストリートとの段差が殆どゼロの場合には、基準層のデバイスパターンに対するターゲット層に形成されるデバイスパターンの重ね合わせ誤差を精度良く計測することが可能になる。なお、重ね合わせ誤差計測マークMOを、前述の手順に従って、最適設計していれば、さらに高精度に重ね合わせ誤差計測を行うことが可能である。
 また、上記第2の実施形態では、ダミーパターンを形成してウエハを平坦化し、そのダミーパターン上に新たなアライメントマークを形成する場合について説明したが、アライメントマークに限らず、例えば重ね合わせ誤差計測マーク等を形成することも可能である。重ね合わせ誤差計測マークとしては、Bar in Barマークから成る前述の重ね合わせ誤差計測マークMO(MO、MO)を用いることができる(図18(A),図18(C)参照)。
 この場合、前述の手順に従って、図16(D)の場合と同様に、図18(B)に示されるように、ショット領域S上の機能膜L2にターゲット層のデバイスパターンが形成されると同時に、ストリートSLのダミーパターンDP1上に重ね合わせ誤差計測マークMO(及び新しいアライメントマーク)が形成される。この場合、基準層のデバイスパターンと同時に形成された重ね合わせ誤差計測マークMOに重ねて重ね合わせ誤差計測マークMOが形成される。
 ここで、前述したように2つの重ね合わせ誤差計測マークMO、MOは、重ね合わせ誤差なく露光が行われた場合、とターゲット層とでそれぞれの中心がほぼ一致するような位置関係に設計されている。
 従って、ストリートSLのダミーパターンDP1上に重ね合わせ誤差計測マークMO(及び新しいアライメントマーク)が形成されたウエハを現像(及びエッチング加工)後、重ね合わせ計測装置(合わせずれ検査装置とも呼ばれる)等を用いてストリートSL上に重ねて形成された重ね合わせ誤差計測マークMOと重ね合わせ誤差計測マークMOとの位置ずれ(dx,dy)が計測される。同様の重ね合わせ誤差計測マークがショット領域Sに複数付設され、全てのマークについての位置ずれ(dx,dy)からショット領域S内に重ね合わせて形成されたデバイスパターンの重ね合わせ誤差が求められる。これにより、基準層のデバイスパターンに対する露光によってターゲット層に形成されるデバイスパターンの重ね合わせ誤差を計測することができる。この場合にも、重ね合わせ誤差計測マークMOは、デフォーカスによって変形することなくウエハW(のストリートSLのダミーパターンDP1)上に形成される。従って、上記の重ね合わせ誤差計測を精度良く行うことが可能である。
 また、上記第3の実施形態では、パターンを位置合わせするために用いられるアライメントマーク(ウエハマーク)の検出結果を補正する場合について説明したが、アライメントマークに限らず、例えば重ね合わせ誤差計測マーク等の検出結果を補正することも可能である。重ね合わせ誤差計測マークとしては、Bar in Barマークから成る前述の重ね合わせ誤差計測マークMO(MO、MO)を用いることができる(図18(A),図18(C)参照)。
 この場合、基準層の露光処理において、位置関係が既知のデバイスパターンと重ね合わせ誤差計測マークMOとが形成された前述の第1レチクルを用いて、図11(A)に示されるように、ショット領域S上に基準層のデバイスパターンを形成すると同時に、ストリートSL上に重ね合わせ誤差計測マークMOを形成する。そして、ターゲット層の露光までの間のプロセスの処理により、ショット領域SとストリートSLとに段差が形成されたものとする。その後のターゲット層の露光処理において、位置関係が既知のデバイスパターンと重ね合わせ誤差計測マークMOとが形成された前述の第2レチクルを用いて、ショット領域S上のデバイスパターンに重ねてターゲット層のデバイスパターンを形成すると同時に、ストリートSL上に重ね合わせ誤差計測マークMOに重ねて重ね合わせ誤差計測マークMO1を形成する。
 そして、前述と同様に、重ね合わせ誤差計測マークMOが形成されたウエハを現像(及びエッチング加工)後、重ね合わせ計測装置(合わせずれ検査装置とも呼ばれる)等を用いてストリートSL上に重ねて形成された重ね合わせ誤差計測マークMOと重ね合わせ誤差計測マークMOとの位置ずれ(dx,dy)を計測する。さらに、重ね合わせ誤差計測マークMOのデバイスパターンに対する位置関係(ΔX,ΔY)を、前述のように横シフトΔXAM,ΔYAM等を用いて補正する。同様の重ね合わせ誤差計測マークがショット領域Sに複数付設され、全てのマークについての位置ずれ(dx,dy)と補正された位置関係(ΔX,ΔY)からショット領域S内に重ね合わせて形成されたデバイスパターンの重ね合わせ誤差を求める。これにより、基準層のデバイスパターンに対するターゲット層に形成されるデバイスパターンの重ね合わせ誤差を精度良く計測することができる。
 なお、図18(A)~図18(C)に示される重ね合わせ誤差計測マークMO(MO,MO)は、あくまで一例であって、そのサイズ、ショット領域1つ当たりの数、ウエハマーク及び重ね合わせ誤差計測マークの配置位置、形状などは、適宜変更され得るものである。従って、重ね合わせ誤差計測マークとして、例えばBox in Boxマークを用いても良い。
 また、上記の各実施形態において、前記レチクル干渉計14に代えてあるいは前記レチクル干渉計14とともに、エンコーダ(複数のエンコーダから構成されるエンコーダシステム)を用いても良い。同様に、前記干渉計システム18に代えてあるいは前記干渉計システム18とともに、エンコーダ(複数のエンコーダから構成されるエンコーダシステム)を用いても良い。
 なお、上記の各実施形態において、画像処理方式のアライメント検出系を用いるものとしたが、これに限らず、他の検出方式のアライメント検出系、例えばコヒーレントな検出光を対象マークに照射し、その対象マークから発生する散乱光又は回折光を検出する、あるいはその対象マークから発生する2つの回折光(例えば同次数の回折光、あるいは同方向に回折する回折光)を干渉させて検出する方式のアライメントセンサを単独であるいは適宜組み合わせて用いることは勿論可能である。
 また、上記の各実施形態では、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置に適用された場合について説明したが、これに限らず、例えば国際公開第99/49504号、欧州特許出願公開第1,420,298号明細書、国際公開第2004/055803号、特開2004-289126号公報(対応米国特許第6,952,253号明細書)などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置にも上記各実施形態を適用することができる。また、例えば国際公開第2007/097379号(対応米国特許出願公開第2008/0088843号明細書)に開示される、液浸露光装置などにも、上記各実施形態を適用することができる。これらの液浸露光装置を、前述の第1の実施形態又は第3の実施形態で用いる場合には、照明条件及び投影光学系PLの光学特性とともに、例えば使用する液体の屈折率(あるいは温度又はその分布)も考慮して、アライメントマークAMの設計条件を最適化する、あるいは横シフト又は相対横シフトを求めても良い。
 また、上記第1ないし第3の実施形態では、露光装置100が走査型露光装置の場合について説明したが、これに限定されるものではない。例えば、露光装置100が静止型露光装置であっても良い。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどであっても良い。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されている、複数のウエハステージを備えたマルチステージ型の露光装置であっても良い。かかる露光装置では、ベースラインを求める必要はなく、露光ステーション(投影光学系を介してウエハの露光が行われる位置)でレチクルマークの投影位置を計測するだけで良い。また、投影光学系近傍にフォーカスセンサAFを設けず計測ステーション(アライメント検出系の近傍)のみに設ければ良い。
 また、例えば国際公開第2005/074014号(対応米国特許出願公開第2007/0127006号明細書)などに開示されている、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置であっても良い。
 また、上記第1ないし第3の実施形態における投影光学系PLは、縮小系のみならず等倍系及び拡大系のいずれでも良い。また、投影光学系PLは、屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。また、照明領域及び露光領域はその形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
 また、上記第1ないし第3の実施形態において、露光装置100の光源には、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、Fレーザ(出力波長157nm)、Arレーザ(出力波長126nm)、Krレーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いても良い。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
 また、上記第1ないし第3の実施形態において、露光装置100の照明光ILとして、波長100nm以上の光に限らず、波長100nm未満の光を用いても良い。例えば、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を用いるEUV露光装置に上記各実施形態を適用することができる。その他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記各実施形態は適用できる。
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記各実施形態を適用することができる。
 なお、上記第1ないし第3の実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。
 露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記各実施形態を適用できる。
 半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置(パターン形成装置)及びその露光方法によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記各実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
 なお、これまでの説明で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。
 本発明の露光方法は、物体上にパターンを重ね合わせて形成するのに適している。また、本発明のデバイス製造方法は、半導体素子、液晶表示素子等の電子デバイスを製造するのに適している。また、本発明の重ね合わせ誤差計測方法は、物体上に配列された複数の区画領域に重ね合わせて形成された異なる層のパターン同士の重ね合わせ誤差を計測するのに適している。
 

Claims (62)

  1.  物体上に配列された複数の第1領域のそれぞれに投影光学系を介してパターンを重ね合わせて形成する露光方法であって、
     前記物体上に配列された複数の第1領域のそれぞれに前記パターンを形成する際における、前記複数の第1領域に対応してマークが形成された第2領域と前記マークに対応する前記第1領域との前記投影光学系の光軸に直交する面内の位置ずれに起因する露光誤差を抑制する手段を実行することを含む露光方法。
  2.  前記露光誤差を抑制する手段は、前記位置ずれが最小になるように前記マークを最適設計することを含む請求項1に記載の露光方法。
  3.  前記マークの最適設計は、前記パターンと前記マークとが形成されたマスクを照明するための照明条件を少なくとも含む複数の条件のそれぞれについて、前記投影光学系の光学特性を考慮して、前記投影光学系を介して前記物体上に投影される前記パターンの像と前記マークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを、前記パターンの像と前記マークの像との前記光軸に平行な方向に関する第2の位置ずれに対して求め、前記第2の位置ずれと、対応する前記第1の位置ずれと、に基づいて、前記マークの設計条件を最適化することを含む請求項2に記載の露光方法。
  4.  前記第2の位置ずれに対する前記第1の位置ずれの変化の程度が最小になるように前記設計条件を最適化する請求項3に記載の露光方法。
  5.  前記パターンの像が投影される前記物体上の面は、前記投影光学系の焦点に位置すると仮定する請求項3又は4に記載の露光方法。
  6.  前記設計条件には、少なくとも前記マークの種類、形状、及び位置の少なくとも1つが含まれる請求項3~5のいずれか一項に記載の露光方法。
  7.  前記照明条件には、使用する光源、照明方式、前記マスク上での照度、前記物体上での照度の少なくとも1つが含まれる請求項3~6のいずれか一項に記載の露光方法。
  8.  前記複数の条件には、前記物体上に形成されたマークを検出するための検出条件がさらに含まれる請求項3~7のいずれか一項に記載の露光方法。
  9.  前記検出条件には、前記マークを検出するために該マークに照射する検出光の照射条件が含まれる請求項8に記載の露光方法。
  10.  前記投影光学系の光学特性として収差とテレセントリック性との少なくとも一方が考慮される請求項3~9のいずれか一項に記載の露光方法。
  11.  前記最適設計された前記マークが前記パターンとともに形成されたマスクと、前記投影光学系と、を介して、前記物体上に形成された感光層にエネルギビームを照射することによって、前記複数の第1領域のそれぞれに前記パターンを形成すると共に前記第2領域に前記マークを形成することをさらに含む請求項2~10のいずれか一項に記載の露光方法。
  12.  前記物体上の複数の第1領域のそれぞれに対応して前記第2領域に形成された複数の前記マークのうちの少なくとも一部のマークを検出し、該検出結果に基づいて前記複数の第1領域に形成された前記パターン上に次のパターンを重ね合わせて形成することをさらに含む請求項11に記載の露光方法。
  13.  前記マークを検出するに際し、前記パターンが形成された前記物体上の複数の第1領域と前記マークが形成された前記第2領域の一部の領域との前記投影光学系の光軸に平行な方向に関する第3の位置ずれを計測し、該計測した前記第3の位置ずれと所定の補正情報とを用いて前記マークの検出結果を補正する請求項12に記載の露光方法。
  14.  前記補正情報は、前記パターンを重ね合わせて形成するに先立って、少なくとも前記投影光学系の光学特性を考慮して、前記物体上の前記複数の第1領域に前記投影光学系を介して投影される前記パターンの像と前記第2領域の一部の領域に前記投影光学系を介して投影される前記マークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを、前記パターンの像と前記マークの像との前記光軸に平行な方向に関する第2の位置ずれに対して求めることによって得られる請求項13に記載の露光方法。
  15.  前記検出結果を補正するに際し、前記第3の位置ずれの計測結果に等しい前記第2の位置ずれに対応する前記第1の位置ずれを用いる請求項14に記載の露光方法。
  16.  前記露光誤差を抑制する手段は、前記複数の第1領域のそれぞれに対応して前記マークが形成される前記第2領域の少なくとも一部の目標部分と前記第1領域との間に段差が生じないように平坦化処理を行うことを含む請求項1~10のいずれか一項に記載の露光方法。
  17.  前記平坦化処理は、前記第2領域の少なくとも一部の目標部分の前記第1領域に対する段差を小さくするような露光を行うことを含む請求項16に記載の露光方法。
  18.  前記平坦化処理は、前記目標部分を所定の材料で埋めることを含む請求項16に記載の露光方法。
  19.  前記物体の所定点に対する位置合わせを行って、前記平坦化処理により前記第1領域に対する段差が小さくなるようにされた部分にマークを形成することをさらに含む請求項16~18のいずれか一項に記載の露光方法。
  20.  前記マークを形成することの後に、少なくとも前記マークを含む複数のマークを検出し、該検出結果に基づいて、前記複数の第1領域のそれぞれに前記パターンを重ね合わせて形成することをさらに含む請求項19に記載の露光方法。
  21.  前記露光誤差を抑制する手段は、前記物体上の前記複数の第1領域に前記投影光学系を介して投影される前記パターンの像と前記物体上の前記第2領域の一部の領域に前記投影光学系を介して投影される前記第1領域に対応するマークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを求めることを含む請求項1~10、16~18のいずれか一項に記載の露光方法。
  22.  少なくとも前記投影光学系の光学特性を考慮して前記第1の位置ずれを求める請求項21に記載の露光方法。
  23.  前記パターンの像と前記マークの像との前記投影光学系の光軸に平行な方向に関する第2の位置ずれに対して前記第1の位置ずれを求める請求項22に記載の露光方法。
  24.  前記投影光学系の光学特性として収差とテレセントリック性との少なくとも1つが考慮される請求項22又は23に記載の露光方法。
  25.  前記パターンと前記マークとが形成されるマスクを照明するための照明条件をさらに考慮する請求項21~24のいずれか一項に記載の露光方法。
  26.  前記照明条件には、使用する光源、照明方式、前記マスク上での照度、前記物体上での照度、前記物体上に設けられる感光層の種類の少なくとも1つが含まれる請求項25に記載の露光方法。
  27.  前記第1の位置ずれは、前記マスク上の前記パターンと前記マークとの位置ずれに対応する前記物体上での位置ずれを基準にして求められる請求項25又は26に記載の露光方法。
  28.  前記物体上の第2領域に形成されたマークの位置を検出することと;
     求められた前記第1の位置ずれと前記マークの位置の検出結果とを用いて、前記物体上の前記第1領域に前記パターンを形成することと;をさらに含む請求項21~27のいずれか一項に記載の露光方法。
  29.  前記形成することでは、前記パターンの投影位置に対する前記マークの位置の検出結果を、前記第1の位置ずれを用いて補正する請求項28に記載の露光方法。
  30.  前記形成することでは、前記パターンの投影位置に対して位置合わせすべき前記物体の目標位置を、前記第1の位置ずれを用いて補正する請求項28に記載の露光方法。
  31.  前記形成することでは、前記パターンが形成された前記第1領域と前記マークが形成された前記第2領域との前記光軸に平行な方向に関する第3の位置ずれを計測し、該計測結果をさらに用いて前記物体上に前記パターンを形成する請求項30に記載の露光方法。
  32.  前記形成することでは、前記第3の位置ずれの計測結果に等しい前記第2の位置ずれに対応する前記第1の位置ずれを用いる請求項31に記載の露光方法。
  33.  前記検出することに先立って、
     前記物体上の前記複数の第1領域のそれぞれに対応する前記マークが形成される前記第2領域の少なくとも一部の部分の、対応する第1領域に対する段差を少なくするための処理を行うことと;
     前記対応する第1領域に対する段差が少なくなった部分に前記マークを形成することと;をさらに含む請求項28~32のいずれか一項に記載の露光方法。
  34.  前記求めることでは、前記物体上に形成された前記マークを検出するための検出条件をさらに考慮する請求項21~33のいずれか一項に記載の露光方法。
  35.  前記求めることでは、少なくとも前記マークの種類、形状、及び位置を含む前記マークの設計条件をさらに考慮する請求項21~34のいずれか一項に記載の露光方法。
  36.  前記求めることでは、前記パターンの像が投影される前記第1領域は前記投影光学系の焦点深度内に位置すると仮定する請求項21~35のいずれか一項に記載の露光方法。
  37.  物体上に配列された複数の第1領域のそれぞれにパターンを重ね合わせて形成する露光方法であって、
     前記複数の第1領域に対応する複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記複数の第1マークが形成された第2領域の少なくとも一部の目標部分の前記第1領域に対する段差を小さくするための前記物体に対する露光を行うことと;
     前記複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記物体を露光することにより前記目標部分に第2マークを形成すると共に前記複数の第1領域のそれぞれに前記パターンを重ね合わせて形成することと;
    を含む露光方法。
  38.  前記露光を行うことでは、前記目標部分の一部を露光部とし、他の一部を非露光部とする露光を行う請求項37に記載の露光方法。
  39.  前記露光を行うことでは、前記目標部分にダミーパターンを形成するための露光を前記物体に対して行う請求項37又は38に記載の露光方法。
  40.  前記露光を行うことでは、前記ダミーパターンを形成すると共に前記複数の第1領域のそれぞれにパターンを重ね合わせて形成するための露光を前記物体に対して行う請求項39に記載の露光方法。
  41.  前記露光を行うことの処理を複数回繰り返して前記物体の上面を平坦化する請求項37~40のいずれか一項に記載の露光方法。
  42.  前記パターンを重ね合わせて形成することの後、少なくとも前記第2マークを含む複数のマークを検出し、該検出結果に基づいて、前記複数の第1領域のそれぞれに前記パターンをさらに重ね合わせて形成することをさらに含む請求項37~41のいずれか一項に記載の露光方法。
  43.  前記複数の第1マークの少なくとも一部は前記第2領域内に存在し、
     前記露光を行うことでは、前記少なくとも一部の第1マークを含む前記第2領域内の部分を前記目標部分とする請求項37~42のいずれか一項に記載の露光方法。
  44.  前記パターンを重ね合わせて形成することでは、前記第2マークを前記少なくとも一部の第1マークに重ねて形成する請求項43に記載の露光方法。
  45.  前記パターンを重ね合わせて形成することでは、前記少なくとも一部の第1マークを検出するための検出条件を、前記第2領域内の前記第1マークを覆う部材の特性に応じて定める請求項44に記載の露光方法。
  46.  前記少なくとも一部の第1マークと該第1マークに重ねて形成される前記第2マークとは、重ね合わせ誤差計測マークである請求項44又は45に記載の露光方法。
  47.  前記第2領域の深さが閾深さを超える毎に前記露光を行うこと及びパターンを重ね合わせて形成することを実行する請求項37~46のいずれか一項に記載の露光方法。
  48.  所定の複数層のパターンを重ね合わせて形成する毎に前記露光を行うこと及びパターンを重ね合わせて形成することを実行する請求項37~47のいずれか一項に記載の露光方法。
  49.  前記露光を行うことでは、前記物体上面の凹凸を計測して前記第2領域を特定する請求項37~48のいずれか一項に記載の露光方法。
  50.  前記パターンは、該パターン及びマークが形成されたマスクと投影光学系とを介して前記パターンの像を前記物体上に投影することによって該物体上に形成され、
     前記マークは、前記投影光学系の光学特性を考慮して、前記投影光学系を介して前記物体上に投影される前記パターンの像と前記マークの像との前記投影光学系の光軸に直交する面内の位置ずれを、前記パターンの像と前記マークの像との前記光軸に平行な方向に関する位置ずれに対して求めて得られる結果に基づいて設計される請求項37~49のいずれか一項に記載の露光方法。
  51.  前記物体上への前記パターン、前記第1マーク及び前記第2マークの形成は、前記物体上に形成された感応層にエネルギビームを照射することによって行われる請求項37~50のいずれか一項に記載の露光方法。
  52.  請求項1~51のいずれか一項に記載の露光方法を用いて物体上にパターンを形成することと;
     前記パターンが形成された前記物体を現像することと;
    を含むデバイス製造方法。
  53.  物体上に配列された複数の第1領域のそれぞれにパターンを重ね合わせて形成することを含むデバイス製造方法であって、
     前記複数の第1領域に対応する複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記複数の複数の第1マークが形成された第2領域の少なくとも一部の目標部分と前記第1領域とを平坦化する平坦化処理を行うことと;
     前記複数の第1マークを検出し、該検出結果に基づいて、前記物体の所定点に対する位置合わせを行って、前記第1領域に対して平坦化された前記目標部分に第2マークを形成することと;
    を含むデバイス製造方法。
  54.  前記平坦化処理を行うことでは、前記目標部分を所定の材料で埋める請求項53に記載のデバイス製造方法。
  55.  前記平坦化処理を行うことでは、前記標部分にダミーパターンを形成する請求項53又は54に記載のデバイス製造方法。
  56.  物体上の基準層及びターゲット層のそれぞれに投影光学系を介して形成された2つのパターン同士の重ね合わせ誤差を計測する重ね合わせ誤差計測方法であって、
     位置関係が既知のパターンとマークとが形成されたマスクを照明するための照明条件を少なくとも含む複数の条件のそれぞれについて、前記投影光学系の光学特性を考慮して、前記投影光学系を介して前記物体上に投影される前記パターンの像と前記マークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを、前記パターンの像と前記マークの像との前記光軸に平行な方向に関する第2の位置ずれに対して求め、前記第2の位置ずれと対応する前記第1の位置ずれとに基づいて前記マークの設計条件を最適化することと;
     位置関係が既知の第1パターンと第1マークとが形成された第1マスクを用いて露光を行い、前記物体上の基準層における複数の第1領域に前記投影光学系を介して前記第1パターンを形成すると同時に、前記複数の第1領域に対応する第2領域に前記第1マークを形成することと;
     位置関係が既知の第1パターンと前記最適化により設計条件が最適化された第2マークとを有する第2マスクを用いて露光を行い、前記物体上の前記第1パターンに重ねてターゲット層の前記第2パターンを形成すると同時に、前記第2領域の前記第1マークに重ねて第2マークを形成することと;
     前記物体上の前記第2領域に形成された前記第1マークと前記第2マークとの位置ずれを計測することで、前記第1パターンと前記第2パターンとの重ね合わせ誤差を算出することと;を含む重ね合わせ誤差計測方法。
  57.  前記第2の位置ずれに対する前記第1の位置ずれの変化の程度が最小になるように前記設計条件を最適化する請求項56に記載の重ね合わせ誤差計測方法。
  58.  前記最適化により前記第1マスクの前記第1マークの設計条件を最適化することをさらに含む請求項56又は57に記載の重ね合わせ誤差計測方法。
  59.  物体上の基準層及びターゲット層のそれぞれに投影光学系を介して形成された2つのパターン同士の重ね合わせ誤差を計測する重ね合わせ誤差計測方法であって、
     少なくとも前記投影光学系の光学特性を考慮して、前記物体上の第1領域に前記投影光学系を介して投影されるパターンの像と前記物体上の第2領域に前記投影光学系を介して投影されるマークの像との前記投影光学系の光軸に直交する面内の第1の位置ずれを求めることと;
     位置関係が既知の第1パターンと第1計測マークとが形成されたマスクを用いて露光を行い、前記物体上の基準層における前記第1領域に前記投影光学系を介して前記第1パターンを形成すると同時に、前記第2領域に前記第1計測マークを形成することと;
     位置関係が既知の第2パターンと第2計測マークとが形成されたマスクを用いて露光を行い、前記物体上の前記第1パターンに重ねてターゲット層の前記第2パターンを形成すると同時に、前記第2領域の前記第1計測マークに重ねて第2計測マークを形成することと;
     前記物体上の前記第2領域に形成された前記第1計測マークと前記第2計測マークとの位置ずれを計測し、該計測結果と前記第1の位置ずれとを用いて、前記第1パターンと前記第2パターンとの重ね合わせ誤差を算出することと;を含む重ね合わせ誤差計測方法。
  60.  前記算出することでは、前記計測結果を前記第1の位置ずれを用いて補正する請求項59に記載の重ね合わせ誤差計測方法。
  61.  前記求めることでは、前記第1の位置ずれを、前記パターンの像と前記マークの像との前記投影光学系の光軸に平行な方向に関する第2の位置ずれに対して求める請求項59又は60に記載の重ね合わせ誤差計測方法。
  62.  前記算出することでは、前記第2パターンが形成された前記第1領域と前記第2マークが形成された前記第2領域との前記光軸に平行な方向に関する第3の位置ずれを計測し、該計測結果をさらに用いて前記重ね合わせ誤差を算出する請求項61に記載の重ね合わせ誤差計測方法。
     
PCT/JP2010/003043 2009-04-30 2010-04-28 露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法 WO2010125813A1 (ja)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2009-110654 2009-04-30
JP2009110641 2009-04-30
JP2009-110641 2009-04-30
JP2009-110627 2009-04-30
JP2009110654 2009-04-30
JP2009110627 2009-04-30
JP2010-102458 2010-04-27
JP2010-102434 2010-04-27
JP2010102434 2010-04-27
JP2010-102399 2010-04-27
JP2010102458 2010-04-27
JP2010102399 2010-04-27

Publications (1)

Publication Number Publication Date
WO2010125813A1 true WO2010125813A1 (ja) 2010-11-04

Family

ID=43031970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003043 WO2010125813A1 (ja) 2009-04-30 2010-04-28 露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法

Country Status (3)

Country Link
US (1) US20100296074A1 (ja)
TW (1) TW201101369A (ja)
WO (1) WO2010125813A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102015934B1 (ko) * 2012-07-05 2019-08-29 에이에스엠엘 네델란즈 비.브이. 리소그래피를 위한 계측법
JP6085433B2 (ja) * 2012-08-14 2017-02-22 株式会社アドテックエンジニアリング 描画装置、露光描画装置、プログラム及び描画方法
US10139740B2 (en) * 2015-07-16 2018-11-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN112838018B (zh) * 2019-11-25 2023-09-15 致茂电子(苏州)有限公司 光学量测方法
KR20220036133A (ko) * 2020-09-15 2022-03-22 삼성전자주식회사 Euv 포토마스크 및 이를 이용한 마스크 패턴의 형성 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218019A (ja) * 1988-02-26 1989-08-31 Mitsubishi Electric Corp アライメントマークが形成された半導体基板
JPH11121327A (ja) * 1997-10-09 1999-04-30 Nec Corp 半導体装置及びその製造方法
JP2001274063A (ja) * 2000-03-27 2001-10-05 Nec Corp 半導体装置の製造方法
JP2004119663A (ja) * 2002-09-26 2004-04-15 Nikon Corp 位置検出装置、位置検出方法、露光装置、および露光方法
JP2004356193A (ja) * 2003-05-27 2004-12-16 Canon Inc 露光装置及び露光方法
JP2009016762A (ja) * 2007-07-09 2009-01-22 Canon Inc 露光装置及びデバイス製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117238A (en) * 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
US4780617A (en) * 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
KR100300618B1 (ko) * 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
US20010049589A1 (en) * 1993-01-21 2001-12-06 Nikon Corporation Alignment method and apparatus therefor
JP3412704B2 (ja) * 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
US5721605A (en) * 1994-03-29 1998-02-24 Nikon Corporation Alignment device and method with focus detection system
US5601957A (en) * 1994-06-16 1997-02-11 Nikon Corporation Micro devices manufacturing method comprising the use of a second pattern overlying an alignment mark to reduce flattening
AU5067898A (en) * 1996-11-28 1998-06-22 Nikon Corporation Aligner and method for exposure
WO1998028665A1 (en) * 1996-12-24 1998-07-02 Koninklijke Philips Electronics N.V. Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
CN100578876C (zh) * 1998-03-11 2010-01-06 株式会社尼康 紫外激光装置以及使用该紫外激光装置的曝光装置和曝光方法
US6771350B2 (en) * 2000-02-25 2004-08-03 Nikon Corporation Exposure apparatus and exposure method capable of controlling illumination distribution
US20020041377A1 (en) * 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP4714403B2 (ja) * 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
JP3977324B2 (ja) * 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7439001B2 (en) * 2005-08-18 2008-10-21 International Business Machines Corporation Focus blur measurement and control method
EP3115844B1 (en) * 2006-02-21 2018-08-15 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP5194770B2 (ja) * 2007-12-20 2013-05-08 富士通セミコンダクター株式会社 半導体装置の製造方法及びそのプログラム
US8084872B2 (en) * 2008-07-01 2011-12-27 Macronix International Co., Ltd. Overlay mark, method of checking local aligmnent using the same and method of controlling overlay based on the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218019A (ja) * 1988-02-26 1989-08-31 Mitsubishi Electric Corp アライメントマークが形成された半導体基板
JPH11121327A (ja) * 1997-10-09 1999-04-30 Nec Corp 半導体装置及びその製造方法
JP2001274063A (ja) * 2000-03-27 2001-10-05 Nec Corp 半導体装置の製造方法
JP2004119663A (ja) * 2002-09-26 2004-04-15 Nikon Corp 位置検出装置、位置検出方法、露光装置、および露光方法
JP2004356193A (ja) * 2003-05-27 2004-12-16 Canon Inc 露光装置及び露光方法
JP2009016762A (ja) * 2007-07-09 2009-01-22 Canon Inc 露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
TW201101369A (en) 2011-01-01
US20100296074A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
KR20010042133A (ko) 노광방법, 노광장치, 포토마스크, 포토마스크의 제조방법,마이크로디바이스, 및 마이크로디바이스의 제조방법
JP4434372B2 (ja) 投影露光装置およびデバイス製造方法
WO2015107976A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2008053618A (ja) 露光装置及び方法並びに該露光装置を用いたデバイス製造方法
US7027127B2 (en) Exposure apparatus, device manufacturing method, stage apparatus, and alignment method
WO2010125813A1 (ja) 露光方法及びデバイス製造方法、並びに重ね合わせ誤差計測方法
JP5257832B2 (ja) 較正方法、移動体駆動方法及び移動体駆動装置、露光方法及び露光装置、パターン形成方法及びパターン形成装置、並びにデバイス製造方法
JP2009200122A (ja) 露光装置およびデバイス製造方法
JP2000133579A (ja) 露光装置および露光方法
US7050151B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2006294854A (ja) マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置
JP2003197502A (ja) 計測方法及び露光方法、露光装置、並びにデバイス製造方法
JP2009099873A (ja) 露光装置およびデバイス製造方法
JP2010192744A (ja) 露光装置、露光方法、及びデバイス製造方法
JP2006261419A (ja) 投影露光装置およびデバイス製造方法
JP2011258922A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2006030021A (ja) 位置検出装置及び位置検出方法
JP2009252994A (ja) 露光方法及びデバイス製造方法、並びに露光装置
JP2005175383A (ja) 露光装置、アライメント方法、及び、デバイスの製造方法
JP2003059808A (ja) 露光方法及びデバイス製造方法
JP2010040632A (ja) 計測条件最適化方法及びプログラムの作成方法、並びに露光装置
JP4529099B2 (ja) レチクル、露光方法および半導体装置の製造方法
JP2007316340A (ja) マスク、収差計測方法、調整方法及び露光方法
JP2005064369A (ja) 最適化方法、露光方法、最適化装置、露光装置、デバイス製造方法、及びプログラム、並びに情報記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP