JPWO2005024935A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JPWO2005024935A1
JPWO2005024935A1 JP2005508748A JP2005508748A JPWO2005024935A1 JP WO2005024935 A1 JPWO2005024935 A1 JP WO2005024935A1 JP 2005508748 A JP2005508748 A JP 2005508748A JP 2005508748 A JP2005508748 A JP 2005508748A JP WO2005024935 A1 JPWO2005024935 A1 JP WO2005024935A1
Authority
JP
Japan
Prior art keywords
wiring
film
insulating film
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005508748A
Other languages
English (en)
Inventor
福山 俊一
俊一 福山
大和田 保
保 大和田
井上 裕子
裕子 井上
杉本 賢
賢 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2005024935A1 publication Critical patent/JPWO2005024935A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/101Forming openings in dielectrics
    • H01L2221/1015Forming openings in dielectrics for dual damascene structures
    • H01L2221/1036Dual damascene with different via-level and trench-level dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本発明は、多層配線構造を有する半導体装置において、半導体装置の層間絶縁膜の破損や剥離などを防止し、動作速度が高速であり、かつ安定な構造の半導体装置を実現することを目的としている。 本発明によれば、多層配線構造を有する半導体装置において、破壊靭性値の大きい絶縁膜を用いた配線構造を、多層配線構造中に形成することで、破壊靭性値の大きい絶縁膜によって、半導体装置にかかる応力の影響を緩和し、層間絶縁膜の破損や剥離を防止して安定な多層配線構造を形成することを可能とする。

Description

本発明は一般に半導体装置に係り、特には多層配線構造を有する、半導体装置に関する。
従来、半導体装置を微細化することにより、スケーリング則に沿った動作速度の高速化が図られている。一方、最近の高密度半導体集積回路装置では、個々の半導体装置間を配線するのに一般に多層配線構造が使用されるが、かかる多層配線構造では、半導体装置が非常に微細化された場合、多層配線構造中の配線パターンが近接し、配線パターン間の寄生容量による配線遅延の問題が生じる。このような寄生容量は、配線パターン間の距離に反比例し、配線パターン間の絶縁膜の誘電率に比例する。
配線間の絶縁膜として従来使われてきたCVD−SiO膜や、CVD−SiO膜にフッ素を添加したSiOF膜を用いた場合、誘電率は3.3〜4.0程度であり、さらに絶縁膜の誘電率を低下させる必要があった。
そのため、誘電率の低い絶縁膜として、例えばスピンコート法により形成される、誘電率を2.3〜2.5程度とすることが可能な有機絶縁膜を半導体装置の配線間の絶縁膜、すなわち層間絶縁膜として用いることが検討されてきた。
図1は、有機絶縁膜を層間絶縁膜に用いた、半導体装置100の構成を示す断面図である。
図1を参照するに、半導体装置100は、Si基板1上の素子分離絶縁膜102により分離された素子領域上に形成された、ゲート絶縁膜104Aと、当該ゲート絶縁膜104A上に形成されたゲート電極104と、当該ゲート電極104の両側に形成された拡散層105A、105Bとを含む。
前記ゲート電極104は側壁面が側壁絶縁膜103A,103Bにより覆われ、さらに前記Si基板101上には、例えばPSG膜(リンガラス膜)からなるプラグ間絶縁膜106が、前記ゲート電極104および側壁絶縁膜103A、103Bを覆うように形成され、さらに当該プラグ間絶縁膜106上には保護膜107が形成されている。
前記プラグ間絶縁膜106、および前記保護膜107には、前記拡散層105Bに通じるコンタクトホールが形成されており、当該コンタクトホール内壁にはバリア膜108が形成され、さらに前記バリア膜108が形成された当該コンタクトホールには、例えばW(タングステン)からなるコンタクトプラグ109が埋め込まれている。前記コンタクトプラグ109は、前記バリア膜108を介して前記拡散層105Bに電気的に接続される構造となっている。
前記保護膜107上には、例えば有機絶縁膜からなる配線間絶縁膜110が形成され、当該配線間絶縁膜110上にはキャップ膜111が形成されている。
当該配線間絶縁膜110および前記キャップ膜111には配線溝がエッチングにより形成され、当該配線溝にはCu配線112と、当該Cu配線112を囲むようにバリア膜112aが形成され、前記Cu配線112は、前記バリア膜112aを介して前記コンタクトプラグ109に電気的に接続されている。
前記キャップ膜111および前記Cu配線112上には保護膜113が形成され、当該保護膜113上には、例えば有機絶縁膜からなるプラグ間絶縁膜114が形成されて、さらに当該プラグ間絶縁膜114上には保護膜115が形成されている。
前記保護膜113、プラグ間絶縁膜114および保護膜115には、ビアホールがエッチングにより形成され、当該ビアホールには、Cuプラグ118と、当該Cuプラグ118を囲むようにバリア膜118aが形成され、前記Cuプラグ118は、前記バリア膜118aを介して前記Cu配線112に電気的に接続されている。
前記保護膜115上には、例えば有機絶縁膜からなる配線間絶縁膜116が形成され、当該配線間絶縁膜116上にはキャップ膜117が形成されている。
当該配線間絶縁膜116および前記キャップ膜117には配線溝がエッチングにより形成され、当該配線溝にはCu配線119と、当該Cu配線119を囲むようにバリア膜119aが形成され、前記Cu配線119は、前記Cuプラグ118と接続されている。
このようにして、例えば、前記保護膜113、プラグ間絶縁膜114、保護膜115、配線間絶縁膜116、キャップ膜117、Cuプラグ118、Cu配線119、バリア膜118a、およびバリア膜119aからなる配線構造120が、前記Cu配線112の上に形成されるている。
このように、半導体装置100においては、配線間絶縁膜やプラグ間絶縁膜に低誘電率の有機絶縁膜を用いているため、半導体装置を高速で動作させることが可能となっている。
特開平2003−31566号公報 特開平2002−124513号公報
しかし、近年の高性能化を要求される半導体装置では、さらに高速度での動作を要求されるため、配線遅延に対する要求が厳しくなり、層間絶縁膜に用いている有機絶縁膜の誘電率を、さらに低下させる必要が生じている。
例えば、このように誘電率をさらに低下させることを可能とする層間絶縁膜の材料としては、多孔質絶縁膜がある。多孔質絶縁膜とは、膜中に空孔を多数形成することによって、膜の誘電率を低下させたものである。
しかし、例えば図1の半導体装置100の構造において、有機絶縁膜を多孔質絶縁膜に変更した場合には、以下のような問題が生じる場合があった。
多孔質絶縁膜は、膜中に多数の空孔が存在するために、機械的な強度が弱い。そのために、前記多孔質絶縁膜に割れが発生して当該多孔質絶縁膜が破損してしまう場合があった。また、多孔質絶縁膜が、前記多孔質絶縁膜が形成されている周囲の膜から剥離してしまうという問題が生じていた。
本発明では、上記の問題を解決した新規の半導体装置を提供することを目的としている。
本発明の具体的な課題は、半導体装置の層間絶縁膜の破損や剥離などを防止し、動作速度が高速であり、かつ安定な構造の半導体装置を提供することである。
本発明では上記の課題を解決するために、基板と、第1の絶縁層と当該第1の絶縁層内に形成された第1の配線層とを有し、前記基板上に形成された第1の配線構造と、絶縁膜からなる緩衝層を含む第2の絶縁層と当該第2の絶縁層内に形成された第2の配線層とを有し、前記第1の配線構造上に形成された第2の配線構造と、第3の絶縁層と当該第3の絶縁層内に形成された第3の配線層とを有し、前記第2の配線構造上に形成された第3の配線構造とを備え、前記緩衝層の破壊靭性値が、前記第1の絶縁層および前記第3の絶縁層の破壊靭性値より大きいことを特徴とする半導体装置を用いた。
本発明によれば、多層配線構造を有する半導体装置において、破壊靭性値の大きい絶縁膜を用いた配線構造を、多層配線構造中に形成することで、破壊靭性値の大きい絶縁膜によって、半導体装置にかかる応力の影響を緩和し、層間絶縁膜の破損や剥離を防止して安定な多層配線構造を形成することを可能とする。
本発明では上記の課題を解決するために、基板と、第1の絶縁層と当該第1の絶縁層内に形成された第1のCu配線層とを有し、前記基板上に形成された第1の配線構造と、絶縁膜からなる緩衝層を含む第2の絶縁層と当該第2の絶縁層中に形成された第2のCu配線層とを有し、前記第1の配線構造上に形成された第2の配線構造とを備え、前記緩衝層の破壊靭性値が前記第1の絶縁層の破壊靭性値より大きいことを特徴とする半導体装置を用いた。
本発明によれば、Cu配線を用いた多層配線構造を有する半導体装置において、破壊靭性値の大きい絶縁膜を用いた配線構造を、多層配線構造中に形成することで、破壊靭性値の大きい絶縁膜によって、半導体装置にかかる応力の影響を緩和し、層間絶縁膜の破損や剥離を防止して安定な多層配線構造を形成することを可能とする。
図1は、従来の多層配線構造を有する半導体装置の構成を示す断面図である。
図2は、本発明の第1実施例による多層配線構造を有する半導体装置の構成を示す断面図である。
図3は、図2の半導体装置の配線構造の配線ピッチを示す一部拡大図である。
図4は、図2の半導体装置の変形図(その1)である。
図5は、図2の半導体装置の変形図(その2)である。
図6は、図2の半導体装置の変形図(その3)である。
図7A〜図7Pは、図2の半導体装置の製造方法を示す図である。
図8A〜図8Pは、図6の半導体装置の製造方法を示す図である。
次に、本発明の実施の形態に関して、図面に基づき説明する。
[第1実施例]
図2は、低誘電率である、例えば多孔質絶縁膜を層間絶縁膜に用いて配線遅延の影響を小さくし、動作速度の向上を可能とした半導体装置200の構成を示す断面図である。
本実施例においては、配線間の絶縁膜、およびビアプラグ間の絶縁膜を含む層間絶縁膜に、例えば多孔質絶縁膜を用いることで当該層間絶縁膜の誘電率を低くして配線間の寄生容量を低減し、配線遅延の影響を小さくすることで、半導体装置の高速での動作を可能にしている。
図2を参照するに、半導体装置200は、Si基板1上の素子分離絶縁膜2により分離された素子領域上に形成された、ゲート絶縁膜4Aと、当該ゲート絶縁膜4A上に形成されたゲート電極4と、および当該ゲート電極4との両側に形成された拡散層5A、5Bとを含む。
前記ゲート電極4は側壁面が側壁絶縁膜3A,3Bにより覆われ、さらに前記Si基板1上には、例えばPSG膜(リンガラス膜)からなるプラグ間絶縁膜6が、前記ゲート電極4および側壁絶縁膜3A、3Bを覆うように形成され、さらに当該プラグ間絶縁膜6上には保護膜7が形成されている。
前記プラグ間絶縁膜6、および前記保護膜7には、前記拡散層5Bに通じるコンタクトホールが形成されており、当該コンタクトホール内壁にはバリア膜8が形成され、さらに前記バリア膜8が形成された当該コンタクトホールには、例えばW(タングステン)からなるコンタクトプラグ9が埋め込まれている。前記コンタクトプラグ9は、前記バリア膜8を介して前記拡散層5Bに電気的に接続される構造となっている。
前記保護膜7上には、例えば多孔質絶縁膜からなる、低誘電率の配線間絶縁膜10が形成され、当該配線間絶縁膜10上にはキャップ膜11が形成されている。
前記配線間絶縁膜10および前記キャップ膜11には配線溝がエッチングにより形成され、当該配線溝にはCu配線12と、当該Cu配線12を囲むようにバリア膜12aが形成され、前記Cu配線12は、前記バリア膜12aを介して前記コンタクトプラグ9に電気的に接続されている。
前記キャップ膜11および前記Cu配線12上には保護膜13が形成され、当該保護膜13上には、例えば多孔質絶縁膜からなる、低誘電率のプラグ間絶縁膜14が形成されて、さらに当該プラグ間絶縁膜14上には保護膜15が形成されている。
前記保護膜13、プラグ間絶縁膜14および保護膜15には、ビアホールがエッチングにより形成され、当該ビアホールには、Cuプラグ18と、当該Cuプラグ18を囲むようにバリア膜18aが形成され、前記Cuプラグ18は、前記バリア膜18aを介して前記Cu配線12に電気的に接続されている。
前記保護膜15上には、例えば多孔質絶縁膜からなる、低誘電率の配線間絶縁膜16が形成され、当該配線間絶縁膜16上にはキャップ膜17が形成されている。
前記配線間絶縁膜16および前記キャップ膜17には配線溝がエッチングにより形成され、当該配線溝にはCu配線19と、当該Cu配線19を囲むようにバリア膜19aが形成され、前記Cu配線19は、前記Cuプラグ18と接続されている。また、Cu配線19とCuプラグ18は、例えば図7で後述するようにCu配線とCuプラグを同時に形成する、いわゆるデュアルダマシン法により、形成されるが、図6および図8で後述するように、シングルダマシン法で形成することも可能である。
このようにして、例えば、前記保護膜13、プラグ間絶縁膜14、保護膜15、配線間絶縁膜16、キャップ膜17、Cuプラグ18、Cu配線19、バリア膜18a、およびバリア膜19aからなる配線構造20が、前記Cu配線12の上に形成される。例えば、図2に示す半導体装置200の場合、当該配線構造20を、前記Cu配線12上に4層形成し、前記Cu配線12と合わせて、5層のCu配線を形成している。
また、多層に形成された配線構造20のうち、最上部、すなわち前記Si基板1から最も離れた側の配線構造20上には、前記配線構造20と同様にして形成された配線構造30が設けられている。
但し、本実施例に示す前記配線構造30の場合、Cu配線とCuプラグからなる配線層の層間絶縁膜に、前記配線構造20の層間絶縁膜より破壊靭性値の大きいものを用いている。そのため、例えば半導体装置200に応力が加えられた場合に、破壊靭性値の大きい層間絶縁膜が緩衝層となって、当該応力の影響が緩和される効果を奏する。
前記配線構造30の構成は以下のようになる。まず、前記キャップ膜17および前記Cu配線19上には保護膜31が形成され、当該保護膜31上には、例えば破壊靭性値の大きい有機絶縁膜からなるプラグ間絶縁膜32が形成され、さらに当該プラグ間絶縁膜32上には保護膜33が形成されている。
前記保護膜33、プラグ間絶縁膜32および保護膜33には、ビアホールがエッチングにより形成され、当該ビアホールには、Cuプラグ36と、当該Cuプラグ36を囲むようにバリア膜36aが形成され、前記Cuプラグ36は、前記バリア膜36aを介して前記Cu配線19に電気的に接続されている。
前記保護膜33上には、例えば破壊靭性値の大きい有機絶縁膜からなる配線間絶縁膜34が形成され、当該配線間絶縁膜34上にはキャップ膜35が形成されている。
前記配線間絶縁膜34および前記キャップ膜35には配線溝がエッチングにより形成され、当該配線溝にはCu配線37と、当該Cu配線37を囲むようにバリア膜37aが形成され、前記Cu配線37は、前記Cuプラグ36と接続されている。また、Cu配線37とCuプラグ36は、例えば図7で後述するようにCu配線とCuプラグを同時に形成する、いわゆるデュアルダマシン法により、形成されるが、図6および図8で後述するように、シングルダマシン法で形成することも可能である。
このようにして、例えば、前記保護膜31、プラグ間絶縁膜32、保護膜33、配線間絶縁膜34、キャップ膜35、Cuプラグ36、Cu配線37、バリア膜36a、およびバリア膜37aからなる配線構造30が、前記配線構造20の上に形成されている。
前記配線構造30で、前記配線構造20よりも破壊靭性値の大きい絶縁膜を用いていることにより、例えば半導体装置200に応力が加えられた場合、例えば前記プラグ間絶縁膜32、または配線間絶縁膜34が当該応力により変形しながらも、破壊靭性値が大きいために破壊しないことで応力の緩衝層となり、当該応力を緩和する効果を奏する。
このため、例えば前記配線構造20の層間絶縁膜である、前記プラグ間絶縁膜14、配線間絶縁膜16、またはプラグ間絶縁膜10などが、当該応力によって破壊されることを防止する効果を奏する。
また、前記応力によって、例えば前記プラグ間絶縁膜14、配線間絶縁膜16、またはプラグ間絶縁膜10などが剥離することを防止して、安定な構造の半導体装置を形成することを可能としている。
従来、低誘電率絶縁膜は機械的強度が小さいものが多く、例えば、多孔質絶縁膜は、膜中に多数の空孔部を有するために、特に機械的強度が小さく、応力が加えられることにより破損しやすい問題があった。
例えば、半導体装置を形成する工程において、応力が加えられるCMP(化学機械研磨)工程や、熱処理工程での熱収縮などの負荷において、機械的強度が小さい多孔質絶縁膜は破損しやすい傾向にあった。特に、半導体装置にパッドを形成してワイヤボンディングによってワイヤを接続する際の応力によって、多孔質絶縁膜が破損することは半導体装置の製造工程上深刻な問題であった。
しかし、高速化が要求される半導体装置の場合、配線遅延の影響を抑制する必要があるために、配線間の寄生容量を小さくする必要があり、そのため、層間絶縁膜の誘電率を小さくするために、膜中に多数の空孔部を有する多孔質絶縁膜を用いることは有用な技術であった。
そこで、本実施例では、機械的強度が小さく破損しやすい低誘電率絶縁膜、例えば多孔質絶縁膜の破損や剥離を効果的に防止することを可能とし、配線遅延が少ない低誘電率層間絶縁膜を用いた半導体装置を形成することを可能としている。
また、前記プラグ間絶縁膜32、配線間絶縁膜34を、有機絶縁膜を用いて形成した場合、有機絶縁膜は多孔質絶縁膜より誘電率は高いものの、従来用いられていたSiOC膜やSiO膜に比べて誘電率が低いため、配線間の寄生容量を小さく抑える効果がある。
前記配線構造30の場合、前記Cu配線37の幅W30が、前記配線構造20の前記Cu配線19の幅W20に比べて大きく、図示を省略する隣接するCu配線37との距離も前記配線構造20の場合に比べて大きい。このため、前記配線構造30では、層間絶縁膜に有機絶縁膜を用いることで、前記配線構造30において必要とされる層間絶縁膜の誘電率を達成することが可能である。
前記配線構造30上には、例えば、グローバル配線構造40が2層形成される。グローバル配線構造40は、例えば保護膜41と、当該保護膜41上に形成された、SiO膜からなる層間絶縁膜42、および当該層間絶縁膜中にCu配線44およびバリア膜44aが形成されている。なお、グローバル配線構造40では、ビアプラグ部分は図示を省略している。
また、グローバル配線構造40においては、配線幅W40が前記配線構造30に比べて大きく、また隣接する配線の間隔が前記配線構造30に比べて大きくなっている。
2層形成されたグローバル配線構造40上には、保護層51を介してSiO膜からなるキャップ膜52が形成され、さらに当該キャップ膜52上には、例えばAlからなるパッド部53が形成されている。前記パッド部53上には、ワイヤボンディングプロセスにより、ボンディングワイヤが接続される。ワイヤボンディングプロセスでは半導体装置200に応力が加えられるが、本実施例の場合は破壊靭性値の大きい絶縁膜を有する配線構造が形成されているため、応力の影響が緩和されて、低誘電率の多孔質絶縁膜からなる層間絶縁膜が破壊されることがない。
このように、半導体装置200においては、配線間絶縁膜やプラグ間絶縁膜に低誘電率の多孔質絶縁膜を用いることが可能となったため、配線間の寄生容量を小さくし、配線遅延の影響を小さくすることが可能となり、半導体装置を従来に比較してさらに高速で動作させることが可能となっている。
また、本実施例では、前記配線間絶縁膜10、前記プラグ間絶縁膜14、および前記配線間絶縁膜16に用いる多孔質絶縁膜として、多孔質シリカ膜を用いており、誘電率2.0〜2.5の低誘電率層間絶縁膜を形成している。
また、多孔質絶縁としては、例えば多孔質シリカ膜の他に、多孔質SiO膜、多孔質有機膜のいずれかを用いることが可能であり、本実施例中に記載した多孔質シリカ膜を用いた場合と同様の効果を奏する。
また、従来用いられてきた膜を多孔質にして用いることも可能であり、例えばSiOC膜、SiOF膜を多孔質にするなど、様々な絶縁膜を多孔質にすることにより、低誘電率絶縁膜として層間絶縁膜に用いることが可能である。
また、本実施例の場合、前記配線構造30の層間絶縁膜、すなわち前記プラグ間絶縁膜32または前記配線間絶縁膜34に用いる、有機絶縁膜にはアリルエーテルからなる絶縁膜を用いている。アリルエーテルの破壊靭性値は20〜30であり、前記配線構造20に用いている多孔質シリカ膜の破壊靭性値や、また前記グローバル配線構造40に用いているSiO膜の破壊靭性値5〜10にくらべて大きい値を示しており、このため、応力の緩衝層として効果を奏する。
また、応力の緩衝層として用いる有機絶縁膜としては、アリルエーテルの他に例えばベンゾシクロブテンを用いることが可能であり、アリルエーテルを用いた場合と同様の効果を奏する。
また、図3には前記配線構造20、配線構造30およびグローバル配線構造40の配線部の配線ピッチを表す図を示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図3を参照するに、前記配線構造20の前記配線幅W20が、前記配線構造30の、前記配線幅W30に比べて小さくなっている。同様に、前記配線構造20の前記Cu配線部19の配線ピッチP20が、前記配線構造30の、前記Cu配線部37の配線ピッチP30に比べて小さくなっている。
このように、下層配線、例えば前記配線構造20のように、配線幅が小さく、隣接する配線との間隔が小さい配線構造では、寄生容量を小さくするために層間絶縁膜には有機絶縁膜よりさらに低誘電率である絶縁膜、例えば多孔質絶縁膜を用いることが、半導体装置の動作速度を高める上で有利である。
一方、前記グローバル配線構造40の前記配線幅W40が、前記配線構造30の、前記配線幅W30に比べて大きくなっている。同様に、前記グローバル配線構造40の前記Cu配線部44の配線ピッチP40が、前記配線構造30の、前記Cu配線部37の配線ピッチP30に比べて大きくなっている。
このように、半導体装置の上層配線、例えば前記グローバル配線構造40においては、配線の間隔が大きく、配線構造において、層間絶縁膜の占める割合が大きい。そのため、グローバル配線構造の層間絶縁膜には、破壊靭性値は大きいものの、機械的強度の小さい有機絶縁膜を用いることは、グローバル配線構造の機械的強度が問題となるために困難である。そこで、グローバル配線構造の層間絶縁膜には、機械的強度の大きいSiO膜、もしくはSiOC膜を用いることが好ましい。
また、例えば、前記グローバル配線構造40などの上層配線では、配線の抵抗値が、下層配線ほど配線遅延に大きく影響しないため、例えば前記Cu配線44は、Al配線に置き換えてもよい。
[第2実施例]
次に、図2に示した半導体装置200の変形例について、図3に示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図3を参照するに、半導体装置200の変形例である半導体装置200Aは、応力の緩衝層を含む、前記配線構造30が2層形成されている。
このように、応力の緩衝層、例えば有機絶縁膜を含む配線構造は1層に限定されるものではなく、複数の、応力の緩衝層を含む配線構造を、半導体装置に形成することが可能である。本実施例の場合も、第1実施例に記載した場合と同様の効果を得ることが可能であり、第1実施例の場合に比べて、応力を緩和する効果が大きくなる。
但し、第1実施例の説明で記述したように、半導体装置の上層配線、例えばグローバル配線構造においては、配線の間隔が大きく、層間絶縁膜の占める割合が大きいため、機械的強度の大きいSiO膜、もしくはSiOC膜を用いることが好ましい。
また、前記配線構造20のように、下層配線、例えば配線幅が小さく、隣接する配線との間隔が小さい配線層では、寄生容量を小さくするために層間絶縁膜には有機絶縁膜よりさらに低誘電率である絶縁膜、例えば多孔質絶縁膜を用いることが、半導体装置の動作速度を高める上で有利である。
[第3実施例]
次に、図2に示した半導体装置200の別の変形例について、図4に示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図4を参照するに、半導体装置200の別の変形例である半導体装置200Bでは、前記配線構造30が、配線構造30bに変更されている。前記配線構造30bでは、前記配線構造30の有機絶縁膜からなる前記プラグ間絶縁膜32が、SiOC膜からなるプラグ間絶縁膜32bに変更されている。
このため、半導体装置200Bに応力が加えられた場合に、前記配線間絶縁膜34が応力を緩和する緩衝層として作用し、本実施例の場合も第1実施例の場合と同様の効果を奏する。
さらに、本実施例の場合には、前記プラグ間絶縁膜32bが、前記有機絶縁より機械的強度の大きい、すなわち硬度の大きいSiOC膜により形成されているため、半導体装置200Bに応力が加えられた場合、低誘電率絶縁膜である多孔質絶縁膜からなる前記配線間絶縁膜10、前記プラグ間絶縁膜14、および前記配線間絶縁膜16に加わる応力を小さくすることができる。
そのため、前記配線間絶縁34によって応力が緩和される効果と合わせて、さらに低誘電率絶縁膜である多孔質絶縁膜からなる前記配線間絶縁膜10、前記プラグ間絶縁膜14、および前記配線間絶縁膜16の破損を防止する効果、または剥離を防止する効果が大きくなる。
また、前記プラグ間絶縁膜32bには、SiO膜を用いても良く、SiOC膜を用いた場合と同様の効果が得られる。
また、前記配線間絶縁膜34をSiO膜またはSiOC膜によって形成し、プラグ間絶縁膜を有機絶縁膜とした構成とすることも可能である。
[第4実施例]
次に、図2に示した半導体装置200のさらに別の変形例について、図6に示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図6を参照するに、半導体装置200の別の変形例である半導体装置200Cでは、Cu配線がシングルダマシン法によって形成されている。このため、Cu配線とCuプラグは、バリア膜を介して電気的に接続される構造となる。
例えば、前記保護膜13、プラグ間絶縁膜14および保護膜15には、ビアホールがエッチングにより形成され、当該ビアホールには、Cuプラグ18cと、当該Cuプラグ18cを囲むようにバリア膜18acが形成され、前記Cuプラグ18cは、前記バリア膜18acを介して前記Cu配線12に電気的に接続されている。
前記配線間絶縁膜16および前記キャップ膜17には配線溝がエッチングにより形成され、当該配線溝にはCu配線19cと、当該Cu配線19cを囲むようにバリア膜19acが形成され、前記Cu配線19cは、前記Cuプラグ18cと前記バリア膜19acを介して電気的に接続される構造となる。
同様に、前記保護膜33、プラグ間絶縁膜32および保護膜33には、ビアホールがエッチングにより形成され、当該ビアホールには、Cuプラグ36cと、当該Cuプラグ36c囲むようにバリア膜36acが形成され、前記Cuプラグ36cは、前記バリア膜36acを介して前記Cu配線19cに電気的に接続されている。
前記配線間絶縁膜34および前記キャップ膜35には配線溝がエッチングにより形成され、当該配線溝にはCu配線37cと、当該Cu配線37cを囲むようにバリア膜37acが形成され、前記Cu配線37cは、前記バリア膜37acを介して前記Cuプラグ36cと電気的に接続される構造となる。
このようなシングルダマシンによる配線構造の形成方法に関しては図8以降で後述する。
[第5実施例]
次に、図2に示した前記半導体装置200の製造方法に関して説明する。
図7A〜図7Pは、図2に示す半導体装置200を形成する方法を模式的に示す図である。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
まず、図7Aに示す工程において、Siからなる基板1上に、素子間分離膜2で分離して形成した素子領域に、拡散層5Aと拡散層5B、側壁絶縁膜3A、3Bを有してゲート絶縁膜4A上に設けられたゲート電極4を形成する。
次に、図7Bに示す工程において、前記Si基板1上には、例えばPSG膜(リンガラス膜)からなるプラグ間絶縁膜6を、基板1の温度を600℃として、前記ゲート電極4および側壁絶縁膜3A、3Bを覆うように1.5μm形成した後、CMP工程により平坦化する。
平坦化された前記プラグ間絶縁膜6上に、SiC膜(ESL3、登録商標、Novellus社)からなる前記保護膜7を形成し、さらに当該保護膜7上にレジストをパターニングしたマスクを形成し、ドライエッチングによって、電極取り出し用のコンタクトホールを形成する。このコンタクトホールにスパッタ法でTiNからなるバリア膜8を形成した後に、例えば、WFと水素を混合し、還元することでWからなるコンタクトプラグ9を埋め込み、さらにCMPにより研削および平坦化を行い、図7Bに示す状態とする。
次に、図7Cに示す工程において、平坦化された前記保護膜7およびコンタクトプラグ9上に、多孔質絶縁膜、例えば、誘電率2.3の多孔質シリカ膜(NCS、登録商標、触媒化成製)からなる前記配線間絶縁膜10を150nm形成し、当該配線間絶縁膜10上にSiO膜からなる前記キャップ膜11を100nm積層する。
次に、図7Dに示す工程において、前記キャップ膜11上に形成した配線パターンを施したレジスト層をマスクに、例えばプラズマによるドライエッチングにより、配線溝10Aを加工する。
次に、図7Eに示す工程において、前記配線溝10Aに、前記多孔質絶縁膜10へのCuの拡散バリアとして働くTaNからなるバリア膜12aを30nmと、電解メッキの際に電極として働くCuシード層12bを30nmをスパッタにより形成する。
さらに、図7Fに示す工程において、電解メッキによりCuを前記配線溝に埋め込んだ後、CMPにより配線溝に埋め込まれたCu以外のCuやバリア膜を除去し、図7Fに示す状態のCu配線12を形成する。
また、図7Fの状態から、前記Cuプラグ部18およびCu配線部19、またはCuプラグ部36およびCu配線部37などを形成する方法としては、Cuプラグ部とCu配線部を同時に形成するデュアルダマシン法と、Cuプラグ部とCu配線部を別々に形成するシングルダマシン法があり、どちらの方法を用いてもよい。
まず図7G〜図7Pにおいて、デュアルダマシン法を用いた場合について、説明する。
図7Gに示す工程において、図7Fの状態から、例えば、プラズマCVD法により、SiC膜(ESL3、登録商標、Novellus社)からなる、Cu拡散防止を目的とした前記保護膜13を50nm形成し、当該保護膜13上に前記配線間絶縁膜10と同一の前記多孔質シリカ膜からなるプラグ間絶縁膜14を170nm形成する。
次に、前記プラグ間絶縁膜14上に、配線溝を形成する場合のエッチングストッパ膜として用いる前記保護膜15を50nm形成した後、当該保護膜15上に、前記プラグ間絶縁膜14と同一の前記多孔質シリカ膜からなる前記配線間絶縁膜16を150nm形成し、当該配線間絶縁膜16上にSiO膜からなる前記キャップ膜17を100nm形成する。また、この場合、エッチストッパ膜、すなわち前記保護膜15は省略した構造とすることも可能である。
次に、図7Hに示す工程において、前記キャップ膜17上にレジストによりビアパターンを形成し、当該レジストをマスクにして、例えばプラズマによるドライエッチングによって、ビアホール14Aを形成する。また、その際に、前記キャップ膜17、前記配線間絶縁膜16、前記保護膜15、前記プラグ間絶縁膜14および前記保護膜13は、それぞれ膜の組成が異なるため、エッチングの際には、エッチングに用いるガスまたはガス比を変更してドライエッチングを行い、前記キャップ膜17、前記配線間絶縁膜16、前記保護膜15、前記プラグ間絶縁膜14および前記保護膜13の順に加工する。
次に、図7Iに示す工程において、Cu配線のパターン形状を施したレジストをマスクにして、プラズマを用いたドライエッチングにより、配線溝16Aを形成する。
次に、図7Jに示す工程において、前記ビアホール14Aおよび前記配線溝16Aの内壁に、Cuが拡散することを防止する、拡散バリアとしてTaNからなるバリア膜18aおよび19aをそれぞれ30nm形成する。さらに当該バリア膜18aおよび19aの上に、Cuの電解メッキの際に電極として働くCuのシード層18bおよび19bを、30nmスパッタにより形成する。
次に、図7Kに示す工程において、電解メッキ法により、Cuをビアホールと配線溝に埋め込み、さらにCMPにより配線パターン部以外のCuとバリア膜を除去して、前記Cu配線19、前記Cuプラグ18を形成して、配線構造20を形成する。このように、図7G〜図7Kに示した工程を繰り返すことにより、配線構造20を多層にした構造を形成する。前記半導体装置200の場合、図7G〜図7Kの工程を4回繰り返すことにより、図7C〜図7Fにおいて形成される配線構造とあわせて5層配線が形成される。
次に、前記配線構造20上に、前記配線構造30を積層する場合について、図7L〜図7Pに基づき、説明する。
図7Lに示す工程においては、前記配線構造20の前記キャップ膜17および前記Cu配線19上に、例えばSiN膜からなるCu拡散防止を目的とした前記保護膜31を50nm形成し、当該保護膜31上に、破壊靭性値の大きい膜である有機絶縁膜、例えば破壊靭性値が25である、アリルエーテル(SiLK−J350、登録商標、ダウ・ケミカル社)からなる前記プラグ間絶縁膜32を形成する。
次に、前記プラグ間絶縁膜32上に、配線溝を形成する場合のエッチングストッパ膜として用いる前記保護膜33を50nm形成した後、当該保護膜33上に、前記プラグ間絶縁膜32と同一の前記有機絶縁膜からなる前記配線間絶縁膜34を形成し、当該配線間絶縁34膜上にSiO膜からなる前記キャップ膜35を100nm形成する。また、この場合、例えば前記プラグ間絶縁膜32と前記配線間絶縁膜34を合わせて膜厚が450nmとなるようし、エッチストッパ膜、すなわち前記保護膜33は省略した構造とすることもできる。
次に、図7Mに示す工程において、前記キャップ膜35上にレジストによりビアパターンを形成し、当該レジストをマスクにして、例えばプラズマにより、ドライエッチングによって、ビアホール32Aを形成する。
次に、図7Nに示す工程において、Cu配線のパターン形状を施したレジストをマスクにして、プラズマを用いたドライエッチングにより、配線溝34Aを形成する。
次に、図7Oに示す工程において、前記ビアホール32Aおよび前記配線溝34Aの内壁に、Cuが拡散することを防止する、拡散バリアとしてTaNからなるバリア膜36aおよび37aをそれぞれ30nm形成する。さらに当該バリア膜36aおよび37aの上に、Cuの電解メッキの際に電極として働くCuのシード層36bおよび37bを、30nmスパッタにより形成する。
次に、図7Pに示す工程において、電解メッキ法により、Cuをビアホールと配線溝に埋め込み、さらにCMPにより配線パターン部以外のCuとバリア膜を除去して、前記Cu配線36、前記Cuプラグ37を形成して、配線構造30を形成する。
さらに、前記配線構造30の上に、SiOを層間絶縁膜として前記グローバル配線構造40を形成し、当該グローバル配線構造40上に保護膜51、SiO膜からなるキャップ膜52を形成した後、Alからなるパッド53を形成して半導体装置200を形成する。
このようにして形成された半導体装置200を、400℃、30分の熱処理を5回繰り返す試験を行ったところ、配線構造で割れや剥離は観察されなかった。
比較のため、前記半導体装置200と同様の構造で、前記配線構造200の前記プラグ間絶縁膜32および前記配線間絶縁膜34を、それぞれ前記プラグ間絶縁膜14および前記配線間絶縁膜16と同一の材料である多孔質シリカ膜に変更し、同様に400℃、30分の熱処理を5回繰り返す試験を行ったところ、多孔質シリカ膜に割れが発生し、また前記プラグ間絶縁膜14と前記保護膜13の間に剥離が発生するのが確認された。
[第6実施例]
次に、図5に示した半導体装置200Bを形成する場合について示す。前記半導体装置200Bを形成する場合は、前記半導体装置200を形成する場合と同様にして、図7Lに示した工程で、前記有機絶縁膜からなる前記プラグ間絶縁膜32を、SiOC膜(例えばCORALPORA、登録商標、Novellus社)からなるプラグ間絶縁膜32bに変更し、図7Mに示した工程でビアホールをエッチングするガスを、前記プラグ間絶縁膜32bの材料に応じて変更すればよい。そこで、図7L〜図7Pに示した工程を、例えば前記半導体装置200Bの場合は2回繰り返すことにより、前記配線構造30cを2層形成することができる。
後の工程は、半導体装置200の場合と同一である。
このようにして形成された半導体装置200Bを、400℃、30分の熱処理を5回繰り返す試験を行ったところ、配線構造で割れや剥離は観察されなかった。
[第7実施例]
また、図7G〜図7Pに示したデュアルダマシン工程は、次に図8A〜図8Pに示すシングルダマシン工程によって形成することも可能であり、シングルダマシン法によって形成した場合、例えば図6に示す半導体装置200Cを形成することが可能であり、デュアルダマシン法を用いた場合と同様の効果を奏する。そこで、次にシングルダマシン法を用いて前記半導体装置200Cを形成する方法を図面に基づき、説明する。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
図7A〜図7Fに示した前記半導体装置200の工程は、前記半導体装置200Cの場合も同一である。次に、図8Aに示す工程において、例えば、プラズマCVD法により、SiC膜(ESL3、登録商標、Novellus社)からなるCu拡散防止を目的とした前記保護膜13を50nm形成し、当該保護膜13上に前記配線間絶縁膜10と同一の前記多孔質シリカ膜からなるプラグ間絶縁膜14を170nm形成し、当該プラグ間絶縁膜14上に、前記保護膜15を50nm形成する。
次に、前記図8Bに示す工程で、前記保護膜15上にレジストによりビアパターンを形成し、当該レジストをマスクにして、例えばプラズマにより、ドライエッチングによって、ビアホール14Aを形成する。
次に、図8Cに示す工程において、前記ビアホール14Aの内壁に、Cuが拡散することを防止する、拡散バリアとしてTaNからなるバリア膜18acを30nm形成する。さらに当該バリア膜18ac上に、Cuの電解メッキの際に電極として働くCuのシード層18bcを、30nmスパッタにより形成する。
次に、図8Dに示す工程において、電解メッキ法により、Cuをビアホールに埋め込み、さらにCMPによりビアホール部以外のCuとバリア膜を除去して、前記Cuプラグ18cを形成する。
次に、図8Eに示す工程において、前記保護膜15、前記Cuプラグ18c上に、前記プラグ間絶縁膜14と同一の前記多孔質シリカ膜からなる前記配線間絶縁膜16を150nm形成し、当該配線間絶縁膜上にSiO膜からなる前記キャップ膜17を100nm形成する。
次に、図8Fに示す工程において、Cu配線のパターン形状を施したレジストをマスクにして、プラズマを用いたドライエッチングにより、配線溝16Aを形成する。
次に、図8Gに示す工程において、前記配線溝16Aの内壁に、Cuが拡散することを防止する、拡散バリアとしてTaNからなるバリア膜19acを30nm形成する。さらに当該バリア膜19acの上に、Cuの電解メッキの際に電極として働くCuのシード層19bcを、30nmスパッタにより形成する。
次に、図8Hに示す工程において、電解メッキ法により、Cuを配線溝に埋め込み、さらにCMPにより配線部以外のCuとバリア膜を除去して、前記Cu配線19cを形成して、配線構造20cを形成する。このように、図8A〜図8Hに示した工程を繰り返すことにより、配線構造20cを多層にした構造を形成する。前記半導体装置200Cの場合、図8A〜図8Hの工程を4回繰り返すことにより、図7C〜図7Fにおいて形成される配線構造とあわせて5層配線が形成される。
次に、前記配線構造20c上に、前記配線構造30cを積層する場合について、図8I〜図8Pに基づき、説明する。
図8Iに示す工程において、前記キャップ膜17およびCu配線19c上に、例えば、プラズマCVD法により、SiN膜からなるCu拡散防止を目的とした前記保護膜31を50nm形成し、当該保護膜31上に、SiOC膜(例えばCORALPORA、登録商標、Novellus社)からなるプラグ間絶縁膜32bを200nm形成し、当該プラグ間絶縁膜32b上に、前記保護膜33を50nm形成する。但し、前記保護膜33は省略した構造とすることができる。
次に、図8Jに示す工程で、前記保護膜33上にレジストによりビアパターンを形成し、当該レジストをマスクにして、Fプラズマにより、ドライエッチングによって、ビアホール32bAを形成する。
次に、図8Kに示す工程において、前記ビアホール32bAの内壁に、Cuが拡散することを防止する、拡散バリアとしてTaNからなるバリア膜36acを30nm形成する。さらに当該バリア膜36ac上に、Cuの電解メッキの際に電極として働くCuのシード層36bcを、30nmスパッタにより形成する。
次に、図8Lに示す工程において、電解メッキ法により、Cuをビアホールに埋め込み、さらにCMPによりビアホール部以外のCuとバリア膜を除去して、前記Cuプラグ36cを形成する。
次に、図8Mに示す工程において、前記保護膜33、前記Cuプラグ36c上に、破壊靭性値の大きい膜である有機絶縁膜、例えばアリルエーテル(SiLK−J150、登録商標、ダウ・ケミカル社)からなる前記配線間絶縁膜34を170nm形成し、当該配線間絶縁膜34上にSiO膜からなる前記キャップ膜35を100nm形成する。
次に、図8Nに示す工程において、Cu配線のパターン形状を施したレジストをマスクにして、プラズマを用いたドライエッチングにより、配線溝34Aを形成する。
次に、図8Oに示す工程において、前記配線溝34Aの内壁に、Cuが拡散することを防止する、拡散バリアとしてTaNからなるバリア膜37acを30nm形成する。さらに当該バリア膜37acの上に、Cuの電解メッキの際に電極として働くCuのシード層37bcを、30nmスパッタにより形成する。
次に、図8Pに示す工程において、電解メッキ法により、Cuを配線溝に埋め込み、さらにCMPにより配線部以外のCuとバリア膜を除去して、前記Cu配線37cを形成して、配線構造30cを形成する。
前記半導体装置200Cの場合、図8A〜図8Hの工程を2回繰り返すことにより、前記配線構造30cが2層配線が形成される。
後の工程は、前記半導体装置200の場合と同一である。
このようにして形成された半導体装置200Cを、400℃、30分の熱処理を5回繰り返す試験を行ったところ、配線構造で割れや剥離は観察されなかった。
また、例えば多孔質絶縁膜を層間絶縁膜に用いた配線構造の層の数、また破壊靭性値の大きい応力の干渉層を有する配線構造の層の数、また上層配線層、すなわちグローバル配線構造の層の数などは任意であり、必要に応じて様々に変更することが可能である。
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
本発明によれば、多層配線構造を有する半導体装置の、低誘電率層間絶縁膜の破損や剥離などを防止し、動作速度が高速であり、かつ安定な構造の半導体装置を提供することが可能となる。

Claims (25)

  1. 基板と、
    第1の絶縁層と当該第1の絶縁層内に形成された第1の配線層とを有し、前記基板上に形成された第1の配線構造と、
    絶縁膜からなる緩衝層を含む第2の絶縁層と当該第2の絶縁層内に形成された第2の配線層とを有し、前記第1の配線構造上に形成された第2の配線構造と、
    第3の絶縁層と当該第3の絶縁層内に形成された第3の配線層とを有し、前記第2の配線構造上に形成された第3の配線構造とを備え、
    前記緩衝層の破壊靭性値が、前記第1の絶縁層および前記第3の絶縁層の破壊靭性値より大きいことを特徴とする半導体装置。
  2. 前記第2の絶縁層は、前記緩衝層より硬度の大きい別の絶縁膜を含むことを特徴とする請求項1記載の半導体装置。
  3. 前記第2の配線層は、トレンチ配線層とビア配線層からなり、当該トレンチ配線層は前記緩衝層中に形成され、当該ビア配線層は前記別の絶縁膜中に形成されることを特徴とする請求項2記載の半導体装置。
  4. 前記第1の配線層および前記第2の配線層は、Cuよりなることを特徴とする請求項1記載の半導体装置。
  5. 前記第3の配線層は、CuまたはAlよりなることを特徴とする請求項1記載の半導体装置。
  6. 前記第2の配線層の配線ピッチは、前記第1の配線層の配線ピッチより大きいことを特徴とする請求項1記載の半導体装置。
  7. 前記第3の配線層の配線ピッチは、前記第2の配線層の配線ピッチより大きいことを特徴とする請求項1記載の半導体装置。
  8. 前記緩衝層は、有機絶縁膜からなることを特徴とする請求項1記載の半導体装置。
  9. 前記有機絶縁膜は、アリルエーテルまたはベンゾシクロブテンのいずれかよりなることを特徴とする請求項8記載の半導体装置。
  10. 前記第1の絶縁層は、多孔質絶縁膜からなることを特徴とする請求項1記載の半導体装置。
  11. 前記多孔質絶縁膜は、多孔質シリカ膜、多孔質SiO膜および多孔質有機膜のいずれかよりなることを特徴とする請求項10記載の半導体装置。
  12. 前記別の絶縁膜はSiO膜またはSiOC膜のいずれかよりなることを特徴とする請求項2記載の半導体装置。
  13. 基板と、
    第1の絶縁層と当該第1の絶縁層内に形成された第1のCu配線層とを有し、前記基板上に形成された第1の配線構造と、
    絶縁膜からなる緩衝層を含む第2の絶縁層と当該第2の絶縁層中に形成された第2のCu配線層とを有し、前記第1の配線構造上に形成された第2の配線構造とを備え、
    前記緩衝層の破壊靭性値が前記第1の絶縁層の破壊靭性値より大きいことを特徴とする半導体装置。
  14. 前記第2の配線構造上には、第3の絶縁層と当該第3の絶縁層内に形成された第3の配線層を有する第3の配線構造が形成されることを特徴とする請求項13記載の半導体装置。
  15. 前記緩衝層の破壊靭性値が、前記第3の絶縁層の破壊靭性値より大きいことを特徴とする請求項14記載の半導体装置。
  16. 前記第2の絶縁層は、前記緩衝層より硬度の大きい別の絶縁膜を含むことを特徴とする請求項13記載の半導体装置。
  17. 前記第2の配線層は、トレンチ配線層とビア配線層からなり、当該トレンチ配線層は前記緩衝層中に形成され、当該ビア配線層は前記別の絶縁膜中に形成されることを特徴とする請求項16記載の半導体装置。
  18. 前記第3の配線層は、CuまたはAlよりなることを特徴とする請求項14記載の半導体装置。
  19. 前記第2の配線層の配線ピッチは、前記第1の配線層の配線ピッチより大きいことを特徴とする請求項13記載の半導体装置。
  20. 前記第3の配線層の配線ピッチは、前記第2の配線層の配線ピッチより大きいことを特徴とする請求項14記載の半導体装置。
  21. 前記緩衝層は、有機絶縁膜からなることを特徴とする請求項13記載の半導体装置。
  22. 前記有機絶縁膜は、アリルエーテルまたはベンゾシクロブデンのいずれかよりなることを特徴とする請求項21記載の半導体装置。
  23. 前記第1の絶縁層は、多孔質絶縁膜からなることを特徴とする請求項13記載の半導体装置。
  24. 前記多孔質絶縁膜は、多孔質シリカ膜、多孔質SiO膜または多孔質有機膜のいずれかよりなることを特徴とする請求項23記載の半導体装置。
  25. 前記別の絶縁膜はSiO膜またはSiOC膜のいずれかよりなることを特徴とする請求項16記載の半導体装置。
JP2005508748A 2003-08-28 2003-08-28 半導体装置 Withdrawn JPWO2005024935A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011001 WO2005024935A1 (ja) 2003-08-28 2003-08-28 半導体装置

Publications (1)

Publication Number Publication Date
JPWO2005024935A1 true JPWO2005024935A1 (ja) 2006-11-16

Family

ID=34260088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005508748A Withdrawn JPWO2005024935A1 (ja) 2003-08-28 2003-08-28 半導体装置

Country Status (5)

Country Link
US (1) US20060087041A1 (ja)
JP (1) JPWO2005024935A1 (ja)
CN (1) CN1771593A (ja)
TW (1) TWI285938B (ja)
WO (1) WO2005024935A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711912B1 (ko) * 2005-12-28 2007-04-27 동부일렉트로닉스 주식회사 반도체 소자의 금속 배선 형성 방법
JP4666308B2 (ja) * 2006-02-24 2011-04-06 富士通セミコンダクター株式会社 半導体装置の製造方法
JP4364258B2 (ja) * 2007-05-15 2009-11-11 株式会社東芝 半導体装置及び半導体装置の製造方法
WO2010082250A1 (ja) * 2009-01-13 2010-07-22 パナソニック株式会社 半導体装置及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845176B2 (ja) * 1995-08-10 1999-01-13 日本電気株式会社 半導体装置
JP3186040B2 (ja) * 1998-06-01 2001-07-11 日本電気株式会社 半導体装置の製造方法
US6127258A (en) * 1998-06-25 2000-10-03 Motorola Inc. Method for forming a semiconductor device
JP3690565B2 (ja) * 1998-06-26 2005-08-31 富士通株式会社 積層構造、配線構造、その製造方法、及び半導体装置
US6071809A (en) * 1998-09-25 2000-06-06 Rockwell Semiconductor Systems, Inc. Methods for forming high-performing dual-damascene interconnect structures
US6280794B1 (en) * 1999-03-10 2001-08-28 Conexant Systems, Inc. Method of forming dielectric material suitable for microelectronic circuits
JP3353743B2 (ja) * 1999-05-18 2002-12-03 日本電気株式会社 半導体装置とその製造方法
JP2001077196A (ja) * 1999-09-08 2001-03-23 Sony Corp 半導体装置の製造方法
JP3615979B2 (ja) * 2000-01-18 2005-02-02 株式会社ルネサステクノロジ 半導体装置及びその製造方法
JP2001358111A (ja) * 2000-06-12 2001-12-26 Toshiba Corp ウェーハ洗浄方法及び半導体装置の製造方法
US6333557B1 (en) * 2000-09-12 2001-12-25 International Business Machines Corporation Semiconductor chip structures with embedded thermal conductors
JP2002164428A (ja) * 2000-11-29 2002-06-07 Hitachi Ltd 半導体装置およびその製造方法
JP2002217198A (ja) * 2001-01-19 2002-08-02 Hitachi Ltd 半導体装置
JP2002305193A (ja) * 2001-04-05 2002-10-18 Sony Corp 半導体装置とその製造方法
JP2002353307A (ja) * 2001-05-25 2002-12-06 Toshiba Corp 半導体装置
JP3808866B2 (ja) * 2003-12-05 2006-08-16 株式会社東芝 半導体装置
JP2006024698A (ja) * 2004-07-07 2006-01-26 Toshiba Corp 半導体装置及びその製造方法
US7348280B2 (en) * 2005-11-03 2008-03-25 International Business Machines Corporation Method for fabricating and BEOL interconnect structures with simultaneous formation of high-k and low-k dielectric regions

Also Published As

Publication number Publication date
CN1771593A (zh) 2006-05-10
TWI285938B (en) 2007-08-21
WO2005024935A1 (ja) 2005-03-17
US20060087041A1 (en) 2006-04-27
TW200509295A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
JP5925611B2 (ja) 半導体装置およびその製造方法
JP2004282000A (ja) 半導体装置
KR100812731B1 (ko) 조화된 응력을 갖는 상호 접속물들 및 그의 제조 방법
JP2005203779A (ja) 犠牲無機ポリマ金属間誘電体を用いたダマシン配線およびビア・ライナ
KR20090004469A (ko) 반도체 장치
JP2004327909A (ja) 半導体装置及びその製造方法
JP2006216746A (ja) 半導体装置
JP4280204B2 (ja) 半導体装置
JP4419025B2 (ja) 半導体装置の製造方法
JP2011009581A (ja) 半導体装置の製造方法及びその半導体装置
JP5400355B2 (ja) 半導体装置
US7294568B2 (en) Formation of air gaps in an interconnect structure using a thin permeable hard mask and resulting structures
JP2007294625A (ja) 半導体装置の製造方法
US6962870B2 (en) Method of manufacturing semiconductor device and semiconductor device
JP5613272B2 (ja) 半導体装置
US6534870B1 (en) Apparatus and method for manufacturing a semiconductor device
JP2010123586A (ja) 半導体装置、半導体装置の製造方法
JP5369394B2 (ja) 半導体装置及びその製造方法
JP2003303880A (ja) 積層層間絶縁膜構造を利用した配線構造およびその製造方法
JPWO2005024935A1 (ja) 半導体装置
JP3657576B2 (ja) 半導体装置の製造方法
JP4868742B2 (ja) 半導体装置
JP4211910B2 (ja) 半導体装置の製造方法
JP2008294403A (ja) 半導体装置
JP2004072107A (ja) 変形されたデュアルダマシン工程を利用した半導体素子の金属配線形成方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090224