JPWO2003103166A1 - 歪補償装置 - Google Patents
歪補償装置 Download PDFInfo
- Publication number
- JPWO2003103166A1 JPWO2003103166A1 JP2004510129A JP2004510129A JPWO2003103166A1 JP WO2003103166 A1 JPWO2003103166 A1 JP WO2003103166A1 JP 2004510129 A JP2004510129 A JP 2004510129A JP 2004510129 A JP2004510129 A JP 2004510129A JP WO2003103166 A1 JPWO2003103166 A1 JP WO2003103166A1
- Authority
- JP
- Japan
- Prior art keywords
- distortion compensation
- signal
- phase
- distortion
- feedback signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 46
- 230000005856 abnormality Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 12
- 230000000737 periodic effect Effects 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 17
- 230000003044 adaptive effect Effects 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3294—Acting on the real and imaginary components of the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3282—Acting on the phase and the amplitude of the input signal
- H03F1/3288—Acting on the phase and the amplitude of the input signal to compensate phase shift as a function of the amplitude
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/366—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
- H04L27/367—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
- H04L27/368—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2201/00—Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
- H03F2201/32—Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
- H03F2201/3233—Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Abstract
Description
本発明は、参照信号と増幅器出力からのフィードバック信号の誤差を最小とするように適応アルゴリズムを動作させて歪補償係数を計算し、これを用いて増幅器の非線形歪を補償することで増幅器の効率を上げる、適応プリディストータ型歪補償装置に関する。
背景技術
図1は、従来の適応プリディストータ型歪補償装置の基本構成の例を示す図である。なお、同図においては、入力ベースバンド信号(1)は、I信号とQ信号からなる複素ベースバンド信号である。
入力ベースバンド信号(1)は、乗算器18において、歪補償係数と乗算され、直交変調器19に入力される。直交変調器19で変調された信号は、デジタル・アナログ変換器20によってアナログ信号に変換される。そして、このアナログ信号は、局部発振器21の周期波と乗算器22において乗算され、中間周波数(IF周波数)の信号に変換される。このようにして生成された中間周波数の信号は、バンドパスフィルタ23を通過し、局部発振器24の周期波と乗算器25において乗算され、高周波(RF)に変換され、(電力)増幅器26によって増幅されて送信される。
また、入力ベースバンド信号(1)は、電力演算器11によって電力値に変換され、入力ベースバンド信号(1)の電力値をアドレスとして歪補償係数をメモリに格納する歪補償テーブル10から歪補償係数を索引するのに使用される。
また、入力ベースバンド信号(1)は、参照信号(3)として、フィードバック信号(2)との誤差信号e(t)を求める減算器16にも入力される。
増幅器26からの出力は、フィードバック経路32によって分岐され、減衰器27によって減衰される。そして、局部発振器28の周期波と乗算器29において乗算され、中間周波数に戻される。更に、アナログ・デジタル変換器30においてデジタル信号に変換され、直交復調器31において復調され、I信号とQ信号とが生成される。I信号及びQ信号のそれぞれは、ローパスフィルタ17を通過し、回転器13に入力されると共に、フィードバック信号(2)として、減算器16にも入力される。
参照信号(3)と増幅器26からのフィードバック信号(2)をATTで示す減衰器27で適当な振幅に減衰した信号との差分である誤差信号e(t)をデジタル信号として演算を行っている。同図の例では、適応アルゴリズムとしてクリプトLMSアルゴリズムを用いており、e(t)を用いて、信号のそれぞれの量子化した振幅について、歪補償係数hn(p)(pは、参照信号の電力)を以下のような式で更新していく。
ここで、
ただし、y(t)はフィードバック信号を示し、*は複素共役を示し、jは虚数単位を示し、μは、歪補償係数の更新ステップを示す。これらの演算は、図1の回転器13、更新ステップ格納部12、乗算器15、加算器14、歪補償テーブル10によって行われる。このアルゴリズムは通常のLMSアルゴリズムでは複素乗算が必要な誤差信号との乗算の部分を、det[hn−1(p)]det[y(t)*]との乗算、つまり、0、π/2、π、3π/2の位相回転のみを行うことによって、回路構成を簡略化したものである。
なお、適応プリディストータ型歪補償の詳細については、特開平9−68733号を参照されたい。
ここで、参照信号(3)またはフィードバック信号(2)が装置故障などの原因で信号レベルが0になる、あるいは雑音成分のみにとなると、歪補償装置の様々な機能が正しく動作しなくなる。
発明の開示
本発明の課題は、参照信号またはフィードバック信号が装置故障等の原因で信号レベルが0となる、あるいは雑音成分のみとなった場合にも、歪補償装置の正しい動作を確保することのできる歪補償装置を提供することである。
本発明の歪補償装置は、通信装置に含まれる増幅器の非線形性を補償する歪補償装置において、入力ベースバンド信号に乗算して歪補償を行う歪補償係数を格納する歪補償係数格納手段と、該歪補償係数を更新する歪補償係数更新手段と、少なくとも該歪補償係数格納手段と該歪補償係数更新手段とからなる歪補償部の入力に異常が生じた場合に、該歪補償動作を停止する歪補償停止手段とを備えることを特徴とする。
本発明の歪補償方法は、通信装置に含まれる増幅器の非線形性を補償する歪補償方法において、入力ベースバンド信号に乗算して歪補償を行う歪補償係数を格納する歪補償係数格納ステップと、該歪補償係数を更新する歪補償係数更新ステップと、少なくとも該歪補償係数格納ステップと該歪補償係数更新ステップとからなる歪補償ステップの入力に異常が生じた場合に、該歪補償動作を停止する歪補償停止ステップとを備えることを特徴とする。
本発明によれば、装置故障などにより、歪補償に必要な情報が正しく得られなくなっても、不適当な歪補償動作を抑止することができる。従って、歪補償装置の動作が安定し、より精度の良い歪補償を行い、品質の良い通信を行うことができる。
発明を実施するための最良の形態
本発明の実施形態では、装置故障等の原因で歪補償機能の誤作動を防ぐために、異常を検出して各機能を停止することで、歪補償特性の劣化を防止する。以下に、各機能毎の実施形態を示す。
1.自動位相調整
図2は、位相調整回路を含む歪補償装置における本発明の実施形態を示す図である。なお、同図において、図1と同じ構成要素には同じ参照符号を付して、詳細な説明を省略する。
参照信号とフィードバック信号の位相(I−Q平面の位相)が一致しない状態で歪補償テーブルの更新を開始すると、歪補償係数が真の値に収束するために要する時間が長くなってしまう。そこで、位相を一致させるための調整を行う。これを自動位相調整と呼ぶ。自動位相調整は、位相制御回路40において、参照信号とフィードバック信号の位相差を検出し、これに基づいて、直交復調器31において、フィードバック経路32を伝搬してきた信号に、復調のために乗算する周期波の位相を調整させることによって行う。
位相調整のアルゴリズムは種々あるが、ここでは、参照信号s(t)とフィードバック信号y(t)の相関値を用いる方法を説明する。相関演算は以下のような式で表せる。
本式より、両信号の位相が一致している(θ=0)場合、相関値の実部が最大となり、虚部は0となる。この虚部の結果の符号ビットを位相更新情報として利用する。
図3は、位相制御回路のブロック図である。
同図中の更新制御部48には、参照信号、フィードバック信号、歪補償テーブルのアドレス、位相値のうちいずれかが位相更新判定回路46に入力される。すなわち、更新制御部48は、歪補償回路が歪補償するために必要とする当該回路の入力などを入力とし、位相更新判定回路46に位相更新を実行させるか、あるいは、位相更新を停止させるかの指示を出すものである。
前述の相関値演算の結果得られた位相更新情報は、アップ・ダウンカウンタ45に入力される。アップ・ダウンカウンタ45では、位相更新情報が入力される度に、カウントアップしたり、カウントダウンして、カウント値が所定値になった時に、位相更新判定回路46に位相値の更新を行うべきことを指示するものである。このようにすることによって、瞬間的に生じた位相更新情報の変化に過敏に反応することなく、位相値の更新を行うことができる。
位相更新判定回路46は、アップ・ダウンカウンタ45からの指示に基づき、位相カウンタ47に、予め定められたステップの位相値更新を指示する。このとき、アップ・ダウンカウンタ45から入力される位相更新指示の値の正負を判断し、位相値をプラスするかマイナスするかの指示を位相カウンタ47に行う。また、位相更新判定回路46は、位相カウンタ47に位相更新指示を出すと共に、アップ・ダウンカウンタ45にカウンタのリセット信号を入力する。したがって、アップ・ダウンカウンタ45は、更新の度に、所定値なるまでのカウントを行うことになる。
位相カウンタ47は、位相更新判定回路46からの指示に従い、位相値を所定ステップ分増加あるいは減少する。そして、このようにして得られた位相値を出力し、直交復調器に位相の調整を行わせる。
図4〜図6は、更新制御部48が行う処理を示すフローチャートである。
参照信号、フィードバック信号、歪補償テーブルのアドレス(入力ベースバンド信号の電力値)の場合には、その大きさがある閾値以下である場合、また、位相値の場合は、前の位相値との差がある閾値以上である場合に、位相更新を止めることで、位相値が異常な値となることを防止する。
参照信号、フィードバック信号、あるいは、歪補償テーブルのアドレスの異常を検出する処理を表すフローチャートを図4に示す。
図4において、xは、参照信号の信号値、フィードバック信号の信号値、あるいは歪補償テーブルのアドレス値である。まず、ステップS1において、xの絶対値が閾値より小さいか否かを判断する。これは、xが0やノイズ成分のみとなっているか否かを判断するものであり、閾値は当業者によって適宜定められるべきものである。
ステップS1における判断がNOの場合には、ステップS2において通常動作を行う。そして、ステップS4に進む。ステップS1における判断がYESの場合には、異常が検出されたので、ステップS3において、位相制御機能の停止、異常が検出される以前の信号値あるいはアドレス値の保持を行い、ステップS4に進む。ステップS4では、信号値あるいはアドレス値の異常を検出する時間間隔を更新制御部48が有するタイマ(不図示)によって計数する。このタイマがタイムアウトすると、再びステップS1に進み、処理を繰り返す。タイマがタイムアウトする時間としては、数秒〜数十秒などの時間が考えられる。
図5は、位相値の異常を検出する処理のフローチャートを示した図である。
まず、ステップS10において、前回の処理の時に記憶しておいた位相値と今回の処理で取得した位相値との差の絶対値が閾値より大きいか否かを判断する。この閾値も当業者によって適宜設定されるべきものである。
ステップS10の判断がNOの場合には、ステップS11において、通常動作を行い、ステップS13に進む。ステップS10の判断がYESの場合には、位相値に異常が発見されたので、位相制御機能を停止し、前回の位相値を保持して、ステップS13に進む。ステップS13では、タイマが時間を計り、タイムアウトしたら、ステップS10に戻って、処理を繰り返す。タイムアウトの時間は、前述と同様の時間である。
図6は、xであるフィードバック信号値が増幅器の故障などにより異常に大きな値となった場合を監視する処理のフローチャートを示す図である。
ステップS15において、xの絶対値が閾値より大きいか否かを判断する。この閾値もフィードバック信号値として予想される値の上限として当業者が適宜定めるものである。ステップS15の判断がNOの場合には、ステップS16において、通常動作を行い、ステップS18に進む。ステップS15の判断がYESの場合には、ステップS17において、位相制御機能を停止し、以前のフィードバック信号値を保持し、ステップS18に進む。ステップS18においては、前述の処理の場合と同様に、フィードバック信号値を監視する時間間隔を計数する。
このようなタイマを使用することにより、頻繁に変換する信号値、アドレス値、位相値を所定時間毎に監視し、異常が発見された時点で、自動位相制御を止めることにより、不適切な歪補償を行うことを防止することができる。
また、図4〜図6のフローは、更新制御部がそれぞれ受信した信号に基づいて実行するものであり、入力された信号の順に順次処理を行うようにする。そして、入力された信号の内、1つでも異常が発見されれば、位相制御機能を停止するようにするものである。
なお、ここでは、相関値を用いた自動位相調整装置について説明したが、他の方式においても、同様に位相更新をやめることで、本実施形態を適用できる。
なお、自動位相調整では、参照信号とフィードバック信号の位相を一致させるようにするが、実際には、僅かな誤差があり、この誤差を誤差信号で取り出し、歪補償係数の更新に反映させるものである。従って、参照信号とフィードバック信号の位相が一致しても、入力ベースバンド信号と送信される高周波信号の位相は一致しないことになる。しかし、無線で送信される高周波信号の位相は空中を伝搬する際にランダムに回転するので、高周波信号の位相は、受信側で調整して受信すべきものであることになる。したがって、入力ベースバンド信号の位相と送信される高周波信号の位相は特に一致していることが要求されるものではない。
なお、自動位相調整については、以下の特許明細書を参照されたい。
特願2002−95145号
2.自動遅延調整
適応プリディストータ型歪補償装置では、歪補償係数の更新に誤差信号を用いる。正しい誤差信号を得るためには参照信号とフィードバック信号の時間関係が、一致している必要がある。そこで、歪補償動作に入る前に、参照信号の遅延を変化させながら、参照信号とフィードバック信号の相関を計算し、その出力電力値が最大となるタイミングを検出し、遅延をあわせる方法を用いる。これを、自動遅延調整と呼ぶ。
図7は、自動遅延調整を考慮した適応プリディストータ型歪補償装置のブロック図である。なお、同図においては、図1と同じ構成要素には、同じ参照符号を付し、詳細な説明を省略する。
自動遅延調整の流れを以下に示す。
(1)フィードバック側のFIRフィルタ(ローパスフィルタ17)のタップ係数を直交復調された信号のシンボル点にあわせる。
(2)デジタル遅延(可変遅延器51〜53)を0に設定する。
(3)参照信号とフィードバック信号の相関を算出する(相関演算器50)。
(4)遅延制御部54が保持している最大相関値と、相関演算器50が演算した最新の相関値を比較し、大きい方の値とそのタイミングを保持する。
(5)デジタル遅延を+1する(遅延制御部54が可変遅延器51〜53のデジタル遅延の量を+1する)。
(6)デジタル遅延が最大値となるまで、(3)〜(5)の手順を繰り返す。
(7)相関値が最大となるタイミングの遅延量を可変遅延器51〜53に設定する。
(8)FIRフィルタ(ローパスフィルタ17)のタップ係数を変えながら、(3)、(4)の動作を行う。
(9)相関値が最大となるタイミングのタップ係数をFIRフィルタ(ローパスフィルタ17)に設定する。
図8は、遅延制御の処理フローをより詳細に示す図である。
まず、ステップS20において、FIRのタップをシンボル点に一致させる。すなわち、FIRフィルタによってフィードバック信号に与えられる遅延を0とする。次に、ステップS21において、参照信号とフィードバック信号の相関xを計算し、ステップS22において、最大相関値としてメモリに格納しておいたmax_xよりxが大きいか否かを判断する。ステップS22の判断がNOの場合には、ステップS24に進む。ステップS22の判断がYESの場合には、max_xにxを代入し、max_delayに相関値がxの時の遅延値delayを代入して、ステップS24に進む。ステップS24において、遅延値delayを+1し、ステップS25において、遅延値delayが最大か否かを判断する。ステップS25の判断がNOの場合には、ステップS21に戻って、処理を繰り返し、ステップS25の判断がYESの場合には、ステップS26に進む。ステップS26においては、可変遅延器にmax_delayの遅延値を設定する。ここまでで、可変遅延器の設定を終了する。
次に、FIRフィルタ係数の設定を行う。
まず、ステップS27において、参照信号とフィードバック信号の相関xを計算する。ステップS28において、前回までの相関の最大値max_xがxより小さいか否かを判断する。ステップS28の判断がNOの場合には、ステップS30に進み、ステップS28の判断がYESの場合には、ステップS29に進む。ステップS29においては、max_xにxを代入し、max_tapにタップ値tapを代入して、ステップS30に進む。
ステップS30においては、tapを+1し、ステップS31において、tapが最大か否かを判断する。ステップS31の判断がNOの場合には、ステップS27に進み、ステップS31の判断がYESの場合には、ステップS32において、FIRフィルタにmax_tapに対応する係数を設定する。
以上により、遅延値の設定を終了する。
ここで、同図中の更新制御部48からは、参照信号、フィードバック信号、歪補償テーブルのアドレス、自動位相調整の位相値の内、いずれかが遅延制御部54に入力される。参照信号、フィードバック信号、アドレスの場合には、その大きさがある閾値以下である場合、また位相値の場合は、前の位相値との差がある閾値以上である場合に、フィードバック信号の場合には更に、これが閾値以上の場合、可変遅延器51〜53、FIRフィルタ(ローパスフィルタ17)にタイミングを調整するための設定動作を中止し、直前の値を使用する。これによって、遅延値が異常な値となるのを防ぐ。この処理を表すフローチャートは、図4〜図6に示した通りである。ただし、同図の場合には、図4〜図6の停止する機能、通常同際において行う機能が、自動位相調整ではなく、自動遅延調整となる点が異なるのみである。
自動遅延調整の詳細については、以下の特許出願を参照されたい。
特開2001−189685号
特開2001−999995号
3.イコライザ
適応プリディストータ型歪補償装置のアナログ部、特にIF周波数に挿入されているバンドパスフィルタの特性によって、信号は、周波数特性を持つ。この周波数特性をイコライザを用いて補償することで、リニアライザの補償特性を改善することができる。
図9は、本発明の実施形態をイコライザを有する構成に適用した場合の適応プリディストータ型歪補償装置の構成例を示す図である。なお、同図において、図1と同じ構成要素には同じ参照符号を付して、説明を省略する。
図中の複素フィルタ57がイコライザの役割を果たす。この設定方法を以下に示す。
(1)フィルタ係数テーブル58には、周波数特性の傾きが負のものから正のものまで、順にフィルタ係数を格納しておく。
(2)フィルタ係数テーブル58の1つの係数をフィルタ係数設定部56を介して複素フィルタ57に格納する。
(3)ACLR(Adjacent Channel Leakage Ratio)を、FFTを用いて測定する(ACLR測定部55)。
(4)設定したフィルタ係数の前後のフィルタ係数についても、格納、ACLR測定を行う。
(5)ACLRの最も良いフィルタ係数を、複素フィルタに設定する。
(6)(2)〜(5)を繰り返し、温度変化などにも追従するようにする。
ここで、同図中の更新制御部48は、参照信号、フィードバック信号、歪補償テーブルのアドレス、自動位相調整の位相値のうちいずれかをフィルタ係数設定部56に入力する。参照信号、フィードバック信号、アドレスの場合には、その大きさがある閾値以下である場合、また位相値の場合は、前の位相値との差がある閾値以上である場合に、複素フィルタ部に新しいフィルタ係数を設定する動作を中止し、以前の値を使用する。これによって、イコライザが異常な動作をして、歪補償特性が劣化するのを防ぐ。この処理を表すフローチャートは、すでに図4〜図6に示したとおりである。ただし、図4〜図6において、停止する機能、通常動作の時に行う機能は、イコライザである複素フィルタのフィルタ係数の更新・設定である。
なお、イコライザの技術については、以下の特許出願を参照されたい。
特願2002−95920号
4.歪補償テーブル値の保護
図10は、歪補償テーブル値保護機能を付加した適応プリディストータ型歪補償装置を示す図である。なお、同図において、図1と同じ構成要素には同じ参照符号を付して説明を省略する。
同図中の更新制御部48は、参照信号、フィードバック信号、歪補償テーブルのアドレス、自動位相調整の位相値のうちいずれかを更新停止制御部60に入力する。参照信号、フィードバック信号、アドレスの場合には、その大きさがある閾値以下である場合、また位相値の場合は、前の位相値との差がある閾値以上である場合に、歪補償テーブルの更新を停止し、以前の値を使用する。これによって、歪補償特性が劣化するのを防ぐ。この処理を表すフォローチャートは、既に図4〜図6に示した通りである。ただし、この場合、停止する機能、通常行う機能は、歪補償テーブル10の書き込み禁止、書き込み許可など、メモリである歪補償テーブル10のライトイネーブル信号の出力制御である。
5.前述の4つの機能を含んだ構成例
図11は、自動位相制御、自動遅延制御、イコライザ制御、歪補償テーブル制御の4つの構成を全て含む歪補償装置の構成例を示す図である。なお、同図においては、図2、7、9、10の構成要素と同じ構成要素には同じ参照符号を付し、説明を省略する。
同図において、各機能の動作は、前述したとおりであるが、自動位相制御、自動遅延制御、イコライザ制御、歪補償テーブル制御における機能停止は、いずれも歪補償係数が不適切に更新されることを防止する意味がある。従って、歪補償テーブル10、加算器14、乗算器15、更新ステップ値格納部12、回転器13、減算器16からなる歪補償部の入力を監視し、歪補償部への入力に異常が発見された場合に、更新制御部48が、各機能を停止させる動作を行う。
産業上の利用可能性
本発明により、適応プリディストータ型歪補償装置において、装置故障などで信号に異常があった場合には、それをすぐに感知し、各機能を適切に停止させることによって、歪補償特性が急激に劣化するなどの影響を軽減できる。
【図面の簡単な説明】
図1は、従来の適応プリディストータ型歪補償装置の基本構成の例を示す図である。
図2は、位相調整回路を含む歪補償装置における本発明の実施形態を示す図である。
図3は、位相制御回路のブロック図である。
図4は、更新制御部48が行う処理を示すフローチャート(その1)である。
図5は、更新制御部48が行う処理を示すフローチャート(その2)である。
図6は、更新制御部48が行う処理を示すフローチャート(その3)である。
図7は、自動遅延調整を考慮した適応プリディストータ型歪補償装置のブロック図である。
図8は、遅延制御の処理フローをより詳細に示す図である。
図9は、本発明の実施形態をイコライザを有する構成に適用した場合の適応プリディストータ型歪補償装置の構成例を示す図である。
図10は、歪補償テーブル値保護機能を付加した適応プリディストータ型歪補償装置を示す図である。
図11は、自動位相制御、自動遅延制御、イコライザ制御、歪補償テーブル制御の4つの構成を全て含む歪補償装置の構成例を示す図である。
Claims (26)
- 通信装置に含まれる増幅器の非線形性を補償する歪補償装置において、
入力ベースバンド信号に乗算して歪補償を行う歪補償係数を格納する歪補償係数格納手段と、
該歪補償係数を更新する歪補償係数更新手段と、
少なくとも該歪補償係数格納手段と該歪補償係数更新手段とからなる歪補償部の入力に異常が生じた場合に、該歪補償動作を停止する歪補償停止手段と、を備えることを特徴とする歪補償装置。 - 前記歪補償部の入力は、前記入力ベースバンド信号を分岐して得た参照信号、前記増幅器の出力をフィードバックして得たフィードバック信号、前記歪補償係数格納手段から歪補償係数を読み出すためのアドレス、該参照信号と該フィードバック信号の位相をあわせるために行う位相制御の位相値の内、いずれかであることを特徴とする請求項1に記載の歪補償装置。
- 前記参照信号、フィードバック信号、アドレスの値が所定値以下になった場合に、歪補償動作を停止することを特徴とする請求項2に記載の歪補償装置。
- 前記フィードバック信号の値が所定値以上になった場合に、歪補償動作を停止することを特徴とする請求項2に記載の歪補償装置。
- 前記位相値が、前回の値と大きく異なる場合に、歪補償動作を停止することを特徴とする請求項2に記載の歪補償装置。
- 前記歪補償係数更新手段は、前記入力ベースバンド信号を分岐して得た参照信号と、前記増幅器の出力をフィードバックして得たフィードバック信号の位相差を補正する位相差補正手段を備え、
前記歪補償停止手段は、該位相差補正手段の位相差の自動更新機能を停止することを特徴とする請求項1に記載の歪補償装置。 - 前記位相差補正手段は、フィードバック経路に設けられる復調器において、前記フィードバック信号を得るために前記増幅器からの信号へ乗算する周期波の位相を制御することを特徴とする請求項6に記載の歪補償装置。
- 前記歪補償係数更新手段は、前記入力ベースバンド信号を分岐して得た参照信号と前記増幅器の出力をフィードバックして得たフィードバック信号から誤差信号を求める手段と、
該誤差信号を求める際に、該参照信号とフィードバック信号の遅延量を調整する遅延量調整手段とを備え、
前記歪補償停止手段は、該遅延量調整手段の自動遅延量調整機能を停止することを特徴とする請求項1に記載の歪補償装置。 - 前記遅延調整手段は、クロック単位の遅延を調整する遅延器と、クロック周期以下の遅延を調整するデジタルフィルタとを備えることを特徴とする請求項8に記載の歪補償装置。
- 前記歪補償係数更新手段は、前記通信装置の構成の内、アナログ信号を用いて処理を行うアナログ部で信号に与えられる信号の歪を等化するイコライザ手段を備え、
前記歪補償停止手段は、該イコライザ手段の自動等化機能を停止することを特徴とする請求項1に記載の歪補償装置。 - 前記イコライザ手段は、複素フィルタであることを特徴とする請求項10に記載の歪補償装置。
- 前記イコライザ手段は、フィードバック信号の隣接チャネル漏洩電力比を測定することによって等化処理を行うことを特徴とする請求項10に記載の歪補償装置。
- 前記歪補償係数格納手段の書き込みを制御する書き込み制御手段を備え、
前記歪補償停止手段は、該書き込み制御手段によって、該歪補償係数格納手段への書き込みを不可能にすることを特徴とする請求項1に記載の歪補償装置。 - 通信装置に含まれる増幅器の非線形性を補償する歪補償方法において、
入力ベースバンド信号に乗算して歪補償を行う歪補償係数を格納する歪補償係数格納ステップと、
該歪補償係数を更新する歪補償係数更新ステップと、
少なくとも該歪補償係数格納ステップと該歪補償係数更新ステップとからなる歪補償ステップの入力に異常が生じた場合に、該歪補償動作を停止する歪補償停止ステップと、
を備えることを特徴とする歪補償方法。 - 前記歪補償ステップの入力は、前記入力ベースバンド信号を分岐して得た参照信号、前記増幅器の出力をフィードバックして得たフィードバック信号、前記歪補償係数格納ステップで格納された歪補償係数を読み出すためのアドレス、該参照信号と該フィードバック信号の位相をあわせるために行う位相制御の位相値の内、いずれかであることを特徴とする請求項14に記載の歪補償方法。
- 前記参照信号、フィードバック信号、アドレスの値が所定値以下になった場合に、歪補償動作を停止することを特徴とする請求項15に記載の歪補償方法。
- 前記フィードバック信号の値が所定値以上になった場合に、歪補償動作を停止することを特徴とする請求項15に記載の歪補償方法。
- 前記位相値が、前回の値と大きく異なる場合に、歪補償動作を停止することを特徴とする請求項15に記載の歪補償方法。
- 前記歪補償係数更新ステップは、前記入力ベースバンド信号を分岐して得た参照信号と、前記増幅器の出力をフィードバックして得たフィードバック信号の位相差を補正する位相差補正ステップを備え、
前記歪補償停止ステップでは、該位相差補正手段の位相差の自動更新機能を停止することを特徴とする請求項14に記載の歪補償方法。 - 前記位相差補正ステップは、フィードバック経路に設けられる復調器において、前記フィードバック信号を得るために前記増幅器からの信号へ乗算する周期波の位相を制御することを特徴とする請求項19に記載の歪補償方法。
- 前記歪補償係数更新ステップは、前記入力ベースバンド信号を分岐して得た参照信号と前記増幅器の出力をフィードバックして得たフィードバック信号から誤差信号を求めるステップと、
該誤差信号を求める際に、該参照信号とフィードバック信号の遅延量を調整する遅延量調整ステップとを備え、
前記歪補償停止ステップは、該遅延量調整手段の自動遅延量調整機能を停止することを特徴とする請求項14に記載の歪補償方法。 - 前記遅延調整ステップは、クロック単位の遅延を調整する遅延器と、クロック周期以下の遅延を調整するデジタルフィルタとを用いて遅延調整を行うことを特徴とする請求21に記載の歪補償方法。
- 前記歪補償係数更新ステップは、前記通信装置の構成の内、アナログ信号を用いて処理を行うアナログ部で信号に与えられる信号の歪を等化するイコライザステップを備え、
前記歪補償停止ステップは、該イコライザステップの自動等化機能を停止することを特徴とする請求項14に記載の歪補償方法。 - 前記イコライザステップでは、複素フィルタを用いることを特徴とする請求項23に記載の歪補償方法。
- 前記イコライザステップは、フィードバック信号の隣接チャネル漏洩電力比を測定することによって等化処理を行うことを特徴とする請求項23に記載の歪補償方法。
- 前記歪補償係数格納ステップの書き込みを制御する書き込み制御ステップを備え、
前記歪補償停止ステップは、該書き込み制御ステップによって、該歪補償係数格納ステップの格納動作を不可能にすることを特徴とする請求項14に記載の歪補償方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2002/005372 WO2003103166A1 (ja) | 2002-05-31 | 2002-05-31 | 歪補償装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2003103166A1 true JPWO2003103166A1 (ja) | 2005-10-06 |
JP3957077B2 JP3957077B2 (ja) | 2007-08-08 |
Family
ID=29606644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004510129A Expired - Fee Related JP3957077B2 (ja) | 2002-05-31 | 2002-05-31 | 歪補償装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7106133B2 (ja) |
EP (1) | EP1511181B1 (ja) |
JP (1) | JP3957077B2 (ja) |
DE (1) | DE60234724D1 (ja) |
WO (1) | WO2003103166A1 (ja) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4961661B2 (ja) * | 2004-09-10 | 2012-06-27 | 株式会社日立製作所 | ディジタルプリディストーション型送信機および無線基地局 |
JP4284630B2 (ja) * | 2004-09-21 | 2009-06-24 | 株式会社日立国際電気 | 歪補償増幅装置 |
GB2421648B (en) * | 2004-12-23 | 2009-01-07 | Zetex Plc | Amplifier fault detection circuit |
JP4555702B2 (ja) * | 2005-02-21 | 2010-10-06 | 富士通株式会社 | 歪補償装置 |
JP4652091B2 (ja) * | 2005-03-16 | 2011-03-16 | 富士通株式会社 | 歪補償装置 |
JP4308163B2 (ja) * | 2005-03-22 | 2009-08-05 | 富士通株式会社 | 歪補償装置 |
CN101228690B (zh) | 2005-07-29 | 2010-08-18 | 富士通株式会社 | 延迟调整装置 |
JP4323470B2 (ja) * | 2005-08-08 | 2009-09-02 | 富士通株式会社 | アドレス生成装置およびその方法 |
JP4299819B2 (ja) | 2005-08-17 | 2009-07-22 | 富士通株式会社 | 歪補償装置及び歪補償方法 |
WO2007049474A1 (ja) * | 2005-10-24 | 2007-05-03 | Hitachi Kokusai Electric Inc. | プリディストーション方式歪補償増幅装置 |
JP4863729B2 (ja) * | 2006-02-14 | 2012-01-25 | 富士通株式会社 | 歪補償装置及び歪補償方法 |
JP4648214B2 (ja) | 2006-02-14 | 2011-03-09 | 富士通株式会社 | 呼制御装置および呼制御方法 |
JP4617265B2 (ja) | 2006-02-14 | 2011-01-19 | 富士通株式会社 | 歪補償装置及び歪補償方法 |
JP4617270B2 (ja) * | 2006-03-27 | 2011-01-19 | 株式会社日立国際電気 | 送信機 |
JP4755937B2 (ja) * | 2006-04-17 | 2011-08-24 | 富士通株式会社 | 歪補償装置及び歪補償方法 |
JP5034319B2 (ja) * | 2006-05-26 | 2012-09-26 | 富士通株式会社 | 歪補償装置及び歪補償方法 |
JP5242024B2 (ja) * | 2006-06-08 | 2013-07-24 | 株式会社東芝 | 歪補償装置、増幅装置、送信装置、歪補償方法 |
WO2008035439A1 (fr) * | 2006-09-22 | 2008-03-27 | Panasonic Corporation | Circuit de compensation de distorsion et procÉDÉ pour commander celui-ci |
JP2008205759A (ja) * | 2007-02-20 | 2008-09-04 | Japan Radio Co Ltd | 歪補償装置 |
US7957707B2 (en) * | 2007-03-30 | 2011-06-07 | Freescale Semiconductor, Inc. | Systems, apparatus and method for performing digital pre-distortion based on lookup table gain values |
US8482462B2 (en) | 2007-05-25 | 2013-07-09 | Rambus Inc. | Multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal |
WO2008147908A1 (en) * | 2007-05-25 | 2008-12-04 | Rambus Inc. | A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal |
WO2008146355A1 (ja) * | 2007-05-28 | 2008-12-04 | Panasonic Corporation | 歪補償装置 |
US8068574B2 (en) * | 2007-05-31 | 2011-11-29 | Freescale Semiconductor, Inc. | Systems, apparatus, and methods for performing digital pre-distortion with feedback signal adjustment |
JP5141694B2 (ja) * | 2007-07-19 | 2013-02-13 | 富士通株式会社 | 非線形歪み補償付き増幅装置 |
JP5218173B2 (ja) | 2009-03-12 | 2013-06-26 | 富士通株式会社 | 無線送信機の位相補正装置、無線送信機の歪補償装置 |
JP5120495B2 (ja) * | 2009-03-31 | 2013-01-16 | 富士通株式会社 | 位相調整回路の自己試験装置及び方法 |
JP2010258597A (ja) | 2009-04-22 | 2010-11-11 | Fujitsu Ltd | 電力増幅器の歪補償装置、電力増幅器の歪補償装置における故障検出方法 |
US8774314B2 (en) | 2009-06-23 | 2014-07-08 | Qualcomm Incorporated | Transmitter architectures |
JP5158034B2 (ja) * | 2009-08-12 | 2013-03-06 | 富士通株式会社 | 無線装置及び信号処理方法 |
US20110143697A1 (en) * | 2009-12-11 | 2011-06-16 | Qualcomm Incorporated | Separate i and q baseband predistortion in direct conversion transmitters |
US8880010B2 (en) * | 2009-12-30 | 2014-11-04 | Qualcomm Incorporated | Dual-loop transmit noise cancellation |
JP5488073B2 (ja) * | 2010-03-12 | 2014-05-14 | 富士通株式会社 | 無線装置、歪補償装置及び歪補償方法 |
JP5672728B2 (ja) * | 2010-03-12 | 2015-02-18 | 富士通株式会社 | 無線装置、歪補償装置及び歪補償方法 |
JP5434818B2 (ja) * | 2010-06-25 | 2014-03-05 | 富士通株式会社 | 歪補償装置、歪補償方法及び無線通信装置 |
JP5673238B2 (ja) * | 2011-03-10 | 2015-02-18 | 富士通株式会社 | 電力増幅装置、送信機及び電力増幅装置制御方法 |
CN103634252B (zh) * | 2012-08-20 | 2016-08-17 | 富士通株式会社 | 一种数字预失真系数的更新控制方法和装置 |
US8995571B2 (en) * | 2013-03-14 | 2015-03-31 | Analog Devices Global | Baseband digital pre-distortion architecture |
US9680422B2 (en) | 2013-03-27 | 2017-06-13 | Qualcomm Incorporated | Power amplifier signal compensation |
US20150092825A1 (en) * | 2013-09-27 | 2015-04-02 | Qualcomm Incorporated | Self-test using internal feedback for transmit signal quality estimation |
JP6446911B2 (ja) * | 2014-08-25 | 2019-01-09 | 富士通株式会社 | 歪補償方法、歪補償装置、及び歪補償プログラム |
JP6413795B2 (ja) * | 2015-01-23 | 2018-10-31 | 富士通株式会社 | 歪補償装置 |
JP2017069649A (ja) | 2015-09-28 | 2017-04-06 | 富士通株式会社 | 無線装置 |
JP6943104B2 (ja) * | 2017-09-15 | 2021-09-29 | 日本電気株式会社 | 増幅装置、破損検出装置および破損検出方法 |
US10454509B2 (en) | 2018-03-13 | 2019-10-22 | Qualcomm Incorporated | Communication circuit including a transmitter |
JP2020141379A (ja) | 2019-03-01 | 2020-09-03 | 富士通株式会社 | 歪み補償装置及び歪み補償方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968733A (ja) | 1995-09-04 | 1997-03-11 | Nikon Corp | ブレ補正機構,カメラ,レンズ装置及びボディ装置 |
US5903823A (en) * | 1995-09-19 | 1999-05-11 | Fujitsu Limited | Radio apparatus with distortion compensating function |
FR2746564B1 (fr) * | 1996-03-22 | 1998-06-05 | Matra Communication | Procede pour corriger des non-linearites d'un amplificateur, et emetteur radio mettant en oeuvre un tel procede |
US5892397A (en) * | 1996-03-29 | 1999-04-06 | Spectrian | Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude |
JP3360029B2 (ja) * | 1998-07-13 | 2002-12-24 | 松下電器産業株式会社 | 歪補償用アドレス発生器,歪補償回路および送信歪補償付き送信機 |
JP2000036767A (ja) | 1998-07-17 | 2000-02-02 | Hitachi Denshi Ltd | 送信機 |
US6275685B1 (en) * | 1998-12-10 | 2001-08-14 | Nortel Networks Limited | Linear amplifier arrangement |
JP2000228643A (ja) | 1999-02-08 | 2000-08-15 | Matsushita Electric Ind Co Ltd | 非線形歪補償装置 |
JP4183364B2 (ja) * | 1999-12-28 | 2008-11-19 | 富士通株式会社 | 歪補償装置 |
JP4014343B2 (ja) * | 1999-12-28 | 2007-11-28 | 富士通株式会社 | 歪補償装置 |
JP2001284976A (ja) * | 2000-03-29 | 2001-10-12 | Matsushita Electric Ind Co Ltd | アダプティブプリディストーション歪補償方法及び装置 |
JP4306933B2 (ja) | 2000-06-29 | 2009-08-05 | パナソニック株式会社 | 送信装置 |
JP2002111401A (ja) * | 2000-10-03 | 2002-04-12 | Fujitsu Ltd | 信号の歪補償装置および歪補償方法 |
WO2002101919A1 (fr) | 2001-06-12 | 2002-12-19 | Fujitsu Limited | Dispositif de compensation de distorsion |
JP3874688B2 (ja) | 2002-03-29 | 2007-01-31 | 富士通株式会社 | 歪補償装置 |
JP4015455B2 (ja) | 2002-03-29 | 2007-11-28 | 富士通株式会社 | 歪補償装置 |
-
2002
- 2002-05-31 JP JP2004510129A patent/JP3957077B2/ja not_active Expired - Fee Related
- 2002-05-31 EP EP02730843A patent/EP1511181B1/en not_active Expired - Lifetime
- 2002-05-31 DE DE60234724T patent/DE60234724D1/de not_active Expired - Lifetime
- 2002-05-31 WO PCT/JP2002/005372 patent/WO2003103166A1/ja active Application Filing
-
2004
- 2004-11-30 US US10/999,747 patent/US7106133B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7106133B2 (en) | 2006-09-12 |
EP1511181A4 (en) | 2005-07-27 |
US20050073361A1 (en) | 2005-04-07 |
JP3957077B2 (ja) | 2007-08-08 |
EP1511181A1 (en) | 2005-03-02 |
DE60234724D1 (de) | 2010-01-21 |
WO2003103166A1 (ja) | 2003-12-11 |
EP1511181B1 (en) | 2009-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3957077B2 (ja) | 歪補償装置 | |
US7327191B2 (en) | Distortion compensating apparatus and method | |
US7443923B2 (en) | Distortion compensating apparatus and method | |
US7639755B2 (en) | Distortion compensating apparatus | |
US7024608B2 (en) | Transmitting method and transmitting apparatus | |
US20070274471A1 (en) | Distortion compensating apparatus and method | |
EP1835626B1 (en) | Dc offset compensation method and device | |
JP2004254175A (ja) | 非線形歪補償回路および非線形歪補償方法ならびに送信回路 | |
JP4256446B2 (ja) | Dcオフセット補正装置及びその方法 | |
JP6059003B2 (ja) | 歪み補償装置及び歪み補償方法 | |
JP2004165900A (ja) | 通信装置 | |
JP2001060883A (ja) | 送信機及びデータ伝送装置 | |
US7418058B2 (en) | Distortion compensating apparatus and method | |
JPH0983417A (ja) | 無線機 | |
WO2009093396A1 (ja) | 非線形歪補償回路、送信回路、及び非線形歪補償方法 | |
JP2004128922A (ja) | 歪補償装置 | |
JP2004128921A (ja) | 歪補償装置 | |
JP2005117510A (ja) | 歪補償回路、歪み補償信号生成方法、及び電力増幅器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070123 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070501 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140518 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |