JPS6182482A - GaAs電界効果トランジスタの製造方法 - Google Patents
GaAs電界効果トランジスタの製造方法Info
- Publication number
- JPS6182482A JPS6182482A JP59204416A JP20441684A JPS6182482A JP S6182482 A JPS6182482 A JP S6182482A JP 59204416 A JP59204416 A JP 59204416A JP 20441684 A JP20441684 A JP 20441684A JP S6182482 A JPS6182482 A JP S6182482A
- Authority
- JP
- Japan
- Prior art keywords
- film
- insulating film
- gate electrode
- gate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims abstract description 38
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 150000002500 ions Chemical class 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052681 coesite Inorganic materials 0.000 abstract description 11
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 11
- 238000001020 plasma etching Methods 0.000 abstract description 11
- 239000000377 silicon dioxide Substances 0.000 abstract description 11
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 11
- 229910052682 stishovite Inorganic materials 0.000 abstract description 11
- 229910052905 tridymite Inorganic materials 0.000 abstract description 11
- 229910008814 WSi2 Inorganic materials 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 239000000956 alloy Substances 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
- H01L29/66856—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
- H01L29/66863—Lateral single gate transistors
- H01L29/66878—Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
- H01L21/2815—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects part or whole of the electrode is a sidewall spacer or made by a similar technique, e.g. transformation under mask, plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
- H01L21/28587—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
- H01L21/28587—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
- H01L21/28593—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T asymmetrical sectional shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/812—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
- Drying Of Semiconductors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔発明の技術分野)
本発明は電界効果型半導体装置、特に基板にGaAsを
用いた電界効果型トランジスタ(FET)の製造方法に
関する。
用いた電界効果型トランジスタ(FET)の製造方法に
関する。
(発明の技術的背景とその問題点〕
GaAs FETは高周波増幅器や発振器などを構成
する個別半導体素子として広く使われている。また、最
近ではGaAs IGの基本素子としても重要な役割
を果しつつある。このいずれの応用でもGaAs F
ETの性能を十分引き出す−ことが要求される。GaA
s FETの高周波性能指数は良く知られているよう
にCgS/ C1mで記述される。ここでC(+3はゲ
ート・ソース間容量であり、gmはFETの相互コンダ
クタンスである。
する個別半導体素子として広く使われている。また、最
近ではGaAs IGの基本素子としても重要な役割
を果しつつある。このいずれの応用でもGaAs F
ETの性能を十分引き出す−ことが要求される。GaA
s FETの高周波性能指数は良く知られているよう
にCgS/ C1mで記述される。ここでC(+3はゲ
ート・ソース間容量であり、gmはFETの相互コンダ
クタンスである。
CgSを減らし、gmを大きくしてやることにより−高
周波性能指数は改善される。gmに着目すると、FET
の実質的なgmは g+a = gmo/ (1+ QmoRs )となる
ことが知られている。gmoはFETのチャンネル部の
特性から決まる真性相互コンダクタンスである。これが
引き出しうる最大のgmであるが現実にはソース・ゲー
ト間の直列抵抗Rsがあり、上式のように実質的な(1
mはgmoより小さなものとなってしまう。従って、こ
のR8をいかにして小さくするかが大きい相互コンダク
タンスを得てFETの高周波特性を改善するための1つ
の鍵である。
周波性能指数は改善される。gmに着目すると、FET
の実質的なgmは g+a = gmo/ (1+ QmoRs )となる
ことが知られている。gmoはFETのチャンネル部の
特性から決まる真性相互コンダクタンスである。これが
引き出しうる最大のgmであるが現実にはソース・ゲー
ト間の直列抵抗Rsがあり、上式のように実質的な(1
mはgmoより小さなものとなってしまう。従って、こ
のR8をいかにして小さくするかが大きい相互コンダク
タンスを得てFETの高周波特性を改善するための1つ
の鍵である。
もう1つはCJIO自体を大きくすることである。
gmをC(13を増大させることなく太き(する有効な
手段はゲート長(L(])を短くすることである。
手段はゲート長(L(])を短くすることである。
何故なら、
C−(ISCCL!II 、 (JIIIOCC1/L
Oなる関係があるからである。
Oなる関係があるからである。
さらに、高周波増幅器や発振器、集積回路の構、酸素子
としてGaAs FETを用いる場合に要求される性
能としてゲート・ドレイン間の耐圧がある。例えば、高
周波増幅器では、ドレイン電圧3V、ピンチオフ電圧−
2■とすると、ゲート・ドレイン間には最大5Vの電圧
がかかることになり、ゲート・ドレイン間耐圧としては
これ以上が必要である。さらに、高出力FETの場合で
は要求される耐圧が10膜以上となることもある。
としてGaAs FETを用いる場合に要求される性
能としてゲート・ドレイン間の耐圧がある。例えば、高
周波増幅器では、ドレイン電圧3V、ピンチオフ電圧−
2■とすると、ゲート・ドレイン間には最大5Vの電圧
がかかることになり、ゲート・ドレイン間耐圧としては
これ以上が必要である。さらに、高出力FETの場合で
は要求される耐圧が10膜以上となることもある。
これらの要求を満たす構造として、従来第3図に示すよ
うなリセス構造がとられてきた。すなわら、半絶縁性G
、a A S基板31上に動作層32を形成し、ゲー
ト電匝33形成に先立って動作層32を所望の深さだけ
エツチングし、動作層32を必要な厚さにまで薄クシて
いる。ソース・ゲート、ゲート・ドレイン間の動作層は
厚いまま残し、抵抗を低減する。また、ゲート電極33
形成のためのマスク合わせの際に、ゲート電極33をソ
ース電極34側に近づけ、ドレイン電極35側から遠ざ
けて形成することによりソース抵抗を低減し、かつドレ
イン耐圧の向上を計っている。
うなリセス構造がとられてきた。すなわら、半絶縁性G
、a A S基板31上に動作層32を形成し、ゲー
ト電匝33形成に先立って動作層32を所望の深さだけ
エツチングし、動作層32を必要な厚さにまで薄クシて
いる。ソース・ゲート、ゲート・ドレイン間の動作層は
厚いまま残し、抵抗を低減する。また、ゲート電極33
形成のためのマスク合わせの際に、ゲート電極33をソ
ース電極34側に近づけ、ドレイン電極35側から遠ざ
けて形成することによりソース抵抗を低減し、かつドレ
イン耐圧の向上を計っている。
しかしこの構造においては、ゲート電極33直下のチャ
ンネルとなる動作層32を化学的にエツチング除去しな
ければならず、その制御性・再現性が問題であった。さ
らに、ゲート・ソース間の厚い動作層32においても、
その不純物濃度はたかだか10”10113程度であり
、ゲート・ソース間抵抗を無視しうる程度にまで低減す
ることはできなかった。
ンネルとなる動作層32を化学的にエツチング除去しな
ければならず、その制御性・再現性が問題であった。さ
らに、ゲート・ソース間の厚い動作層32においても、
その不純物濃度はたかだか10”10113程度であり
、ゲート・ソース間抵抗を無視しうる程度にまで低減す
ることはできなかった。
この欠点をおぎなうものとして、近年セルファライン方
式が注目されてきた。これは第4図に示すように、半絶
縁性GaAs基板41に動作層42を形成した後、ゲー
ト金属43をマスクとして高濃度イオン注入することに
より、ゲート金属43に近接して低抵抗のソース領域4
4.ドレイン領域45を形成する方法である。
式が注目されてきた。これは第4図に示すように、半絶
縁性GaAs基板41に動作層42を形成した後、ゲー
ト金属43をマスクとして高濃度イオン注入することに
より、ゲート金属43に近接して低抵抗のソース領域4
4.ドレイン領域45を形成する方法である。
しかしこの方法においては、ゲートのオフセットができ
ず、ソース領域44.ドレイン領域45とも同様に近接
して形成されるため、ソース抵抗を充分に小さくすべく
、ソース領[44の不純物濃度を高くすると、ドレイン
領域45も同じく高い濃度に形成されるため、所望のド
レイン耐圧を得ることが難しかった。
ず、ソース領域44.ドレイン領域45とも同様に近接
して形成されるため、ソース抵抗を充分に小さくすべく
、ソース領[44の不純物濃度を高くすると、ドレイン
領域45も同じく高い濃度に形成されるため、所望のド
レイン耐圧を得ることが難しかった。
さらにこれら2つの方法においては、ゲート長は、リソ
グラフィの解像力の限界で決められる。
グラフィの解像力の限界で決められる。
このため、0.5μm以下の極短ゲートFETを得よう
とした場合には、高価で、かつウェハ処理能力の小さい
電子ビーム露光法や未だ充分に技術開発が進んでいない
X線リソグラフィなどを使わざるを得なかった。
とした場合には、高価で、かつウェハ処理能力の小さい
電子ビーム露光法や未だ充分に技術開発が進んでいない
X線リソグラフィなどを使わざるを得なかった。
本発明の目的は、ソース抵抗を充分に低減するとともに
高いドレイン耐圧を有する極短ゲートGaAs FE
Tを高価な装置を使用することなく、かつ歩留りよく製
造する方法を提供することにある。
高いドレイン耐圧を有する極短ゲートGaAs FE
Tを高価な装置を使用することなく、かつ歩留りよく製
造する方法を提供することにある。
本発明の第1の方法は、まず動作層の形成されたGaA
s基板上に厚さ1μm程度の第1の絶縁膜を形成し、こ
の絶縁膜を将来ゲート電極の端部となる部分に端部を有
しこれよりドレイン領域側を覆うようにパターニングす
る。この際、絶縁膜の加工を反応性イオンエツチング(
RIE)法などの異方性の得られるエッチグ方法により
行ない、その側面を基板表面に対してほぼ垂直になるよ
うにする。次に、ゲート金属として、耐熱性を有し80
0℃以上の高温においてもGaAsとほとんど反応しな
い金属を全面に堆積する。この際、ゲート金属の形成を
既知のCVD法など、段差被覆性に優れた方法で行なう
と、膜の成長は等方向に行なわれるため表面上の縦方向
の厚さと、段差部側壁での横方向の厚さとがほぼ同じに
なる。次にこのゲート金属膜をRIEなどの異方性エツ
チング法によりその厚さ相当分だけエツチングすると、
絶縁膜段差の垂直側壁の実効的に縦方向の厚さが厚かっ
た部分にのみゲート金属が残り、かつその幅は、最初に
堆積した時点での横方向の厚さとほぼ一致したものとな
る。この状態で絶縁膜を除去すると、ドレイン側は絶縁
膜の側壁を反映してほぼ垂直に切りたった形となり、ま
たソース側は堆積の際のプロファイルを反映してなだら
かな形となったゲート電極が得られる。
s基板上に厚さ1μm程度の第1の絶縁膜を形成し、こ
の絶縁膜を将来ゲート電極の端部となる部分に端部を有
しこれよりドレイン領域側を覆うようにパターニングす
る。この際、絶縁膜の加工を反応性イオンエツチング(
RIE)法などの異方性の得られるエッチグ方法により
行ない、その側面を基板表面に対してほぼ垂直になるよ
うにする。次に、ゲート金属として、耐熱性を有し80
0℃以上の高温においてもGaAsとほとんど反応しな
い金属を全面に堆積する。この際、ゲート金属の形成を
既知のCVD法など、段差被覆性に優れた方法で行なう
と、膜の成長は等方向に行なわれるため表面上の縦方向
の厚さと、段差部側壁での横方向の厚さとがほぼ同じに
なる。次にこのゲート金属膜をRIEなどの異方性エツ
チング法によりその厚さ相当分だけエツチングすると、
絶縁膜段差の垂直側壁の実効的に縦方向の厚さが厚かっ
た部分にのみゲート金属が残り、かつその幅は、最初に
堆積した時点での横方向の厚さとほぼ一致したものとな
る。この状態で絶縁膜を除去すると、ドレイン側は絶縁
膜の側壁を反映してほぼ垂直に切りたった形となり、ま
たソース側は堆積の際のプロファイルを反映してなだら
かな形となったゲート電極が得られる。
次に第2の絶縁膜をプラズマCVD法などの段差被覆性
に優れた方法で堆積し、全面を異方性エツチングでその
厚み相当分だけエツチングすることにより、ゲート電極
の垂直に切り立ったトレイン側にのみ第2の絶縁膜が残
置された構造を得る。
に優れた方法で堆積し、全面を異方性エツチングでその
厚み相当分だけエツチングすることにより、ゲート電極
の垂直に切り立ったトレイン側にのみ第2の絶縁膜が残
置された構造を得る。
この状態で高濃度イオン注入を行い、ゲート金属に近接
してソース領域を形成し、ゲート電極から第2の絶縁膜
の幅だけ離れたドレイン領域i域の幅だけ離れたトレイ
ン領域を形成する。
してソース領域を形成し、ゲート電極から第2の絶縁膜
の幅だけ離れたドレイン領域i域の幅だけ離れたトレイ
ン領域を形成する。
本発明の第2の方法は、上記第1の方法でのゲート電極
形成工程と、ゲート電極のドレイン側にオフセットを作
るための絶縁膜の形成工程を逆にする。即ちまず、ドレ
イン領域側端部に垂直壁をもつスペーサ膜をゲート領域
からソース領域を覆うように形成して、絶縁膜堆積、異
方性エツチングを行ってゲート・オフセット用の絶縁膜
を残置させる。このように形成された絶縁膜はゲート電
極側が垂直側壁をもったものとなる。この後、ゲート金
属の堆積、異方性エツチングを行って前記絶縁膜の垂直
側壁部にのみこれを残置させてゲート電極を形成する。
形成工程と、ゲート電極のドレイン側にオフセットを作
るための絶縁膜の形成工程を逆にする。即ちまず、ドレ
イン領域側端部に垂直壁をもつスペーサ膜をゲート領域
からソース領域を覆うように形成して、絶縁膜堆積、異
方性エツチングを行ってゲート・オフセット用の絶縁膜
を残置させる。このように形成された絶縁膜はゲート電
極側が垂直側壁をもったものとなる。この後、ゲート金
属の堆積、異方性エツチングを行って前記絶縁膜の垂直
側壁部にのみこれを残置させてゲート電極を形成する。
これ以降は第1の方法と同様である。
本発明によれば、ゲート長をゲート金属膜形成の際の厚
さにより決定できるため、従来高価な露光装置を必要と
していた0、5μm以下の極短ゲートGaAs FE
Tが容易に得られる。また、ソース領域はゲート電極に
近接して形成され、かつドレイン領域はゲート電極から
所定の距離だけ離れて形成されるため、ゲート・ソース
間の抵抗が充分に小さく、かつ高いドレイン耐圧を有す
るGaAs FETがきびしいマスク合わせを必要と
せずセルファラインで得られる。
さにより決定できるため、従来高価な露光装置を必要と
していた0、5μm以下の極短ゲートGaAs FE
Tが容易に得られる。また、ソース領域はゲート電極に
近接して形成され、かつドレイン領域はゲート電極から
所定の距離だけ離れて形成されるため、ゲート・ソース
間の抵抗が充分に小さく、かつ高いドレイン耐圧を有す
るGaAs FETがきびしいマスク合わせを必要と
せずセルファラインで得られる。
以下に本発明の詳細な説明をする。
第1図は本発明の第1の方法による実施例の製造工程を
示す。Crをドープされた半絶縁性GaAs基板11に
、Si+イオンを100KeV、3.0XIO12個/
dの条件で選択イオン注入して動作層12を形成する。
示す。Crをドープされた半絶縁性GaAs基板11に
、Si+イオンを100KeV、3.0XIO12個/
dの条件で選択イオン注入して動作層12を形成する。
次に基板11表面に常圧CVD法により第1の絶縁膜と
して5i02膜13を厚さ1μ瓦に堆積した後、将来ゲ
ート電極のドレイン側端部となる部分に端部を有し、か
つトレイン領域側を覆うようにマスクを形成し、SiO
2膜13を加工する。この際5i021美13の加工に
、CF4とH2の混合ガスや、CHF3ガス等を用いた
反応性イオンエツチング(RIE)法を用いれば、エツ
チングに際して強い異方性と高い選択比が得られるため
、S i 02膜13の側壁は基板11に対してほぼ垂
直に切り立った形状となる(第1図(a))。
して5i02膜13を厚さ1μ瓦に堆積した後、将来ゲ
ート電極のドレイン側端部となる部分に端部を有し、か
つトレイン領域側を覆うようにマスクを形成し、SiO
2膜13を加工する。この際5i021美13の加工に
、CF4とH2の混合ガスや、CHF3ガス等を用いた
反応性イオンエツチング(RIE)法を用いれば、エツ
チングに際して強い異方性と高い選択比が得られるため
、S i 02膜13の側壁は基板11に対してほぼ垂
直に切り立った形状となる(第1図(a))。
次に、WFsとSiH4の混合ガスを用いたCVD法に
よりゲート金属であるWSi2膜14を厚さ5000人
に形成する。ここでCVD法は段差被覆性に優れている
ため、膜の成長はほぼ等方向に成長し、5iO2111
13の垂直側壁にも横方向に同じ厚さの膜が形成される
(第1図(b))。
よりゲート金属であるWSi2膜14を厚さ5000人
に形成する。ここでCVD法は段差被覆性に優れている
ため、膜の成長はほぼ等方向に成長し、5iO2111
13の垂直側壁にも横方向に同じ厚さの膜が形成される
(第1図(b))。
引き続きCF4と02の混合ガスによるRIEでWSi
2膜14をその厚さ相当分だけエツチングする。この場
合にもエツチングは強い異方性を持つて進行するが、5
iOz膜13の垂直側壁に形成されたWSi21114
は蟲さ方向には実効的に厚い膜厚を有しているため、エ
ツチングをWSi21114の平坦部の膜厚相当分まで
行った時点で停止すると、SiO2膜13の側壁に、W
Si2膜14がゲート電極として残される。この場合前
述した理由により、残されるWSi21114の幅は、
最初にWSiz膜14膜堰4した厚さにほぼ等しく、約
5000人である(第1図(C))。
2膜14をその厚さ相当分だけエツチングする。この場
合にもエツチングは強い異方性を持つて進行するが、5
iOz膜13の垂直側壁に形成されたWSi21114
は蟲さ方向には実効的に厚い膜厚を有しているため、エ
ツチングをWSi21114の平坦部の膜厚相当分まで
行った時点で停止すると、SiO2膜13の側壁に、W
Si2膜14がゲート電極として残される。この場合前
述した理由により、残されるWSi21114の幅は、
最初にWSiz膜14膜堰4した厚さにほぼ等しく、約
5000人である(第1図(C))。
この後、SiO2膜13をフッ酸系のエツチング液によ
り除去すると、SiO2膜13に接していた側はS+0
2躾13の側壁形状を反映してほぼ垂直に切り立ち、ま
た反対側は段差部に堆積された形状を反映してなだらか
な傾斜をもつWSi21114によるゲート電極が得ら
れる(第1図(d))。
り除去すると、SiO2膜13に接していた側はS+0
2躾13の側壁形状を反映してほぼ垂直に切り立ち、ま
た反対側は段差部に堆積された形状を反映してなだらか
な傾斜をもつWSi21114によるゲート電極が得ら
れる(第1図(d))。
次にSiH+とN20の混合ガスを用いたプラズマCV
D法により第2の絶縁膜として5iOz膜15を再度全
面に3000人の厚さに堆積する。
D法により第2の絶縁膜として5iOz膜15を再度全
面に3000人の厚さに堆積する。
プラズマCVD法も、前述したCVD法と同様に段差被
覆性に優れているため、WSiz膜14膜堰4側壁にも
平坦部と同程度の厚さの膜が形成される(第1図(e)
)。
覆性に優れているため、WSiz膜14膜堰4側壁にも
平坦部と同程度の厚さの膜が形成される(第1図(e)
)。
そして、再びCF4とH2の混合ガスによるRIEで全
面の5i021115を、その平坦部の膜厚相当分だけ
エツチングすると、WSi2膜14の切り立った側面が
わは、垂直方向に厚い膜厚を有していたため5iO21
1115が残り、WSi2膜14のなだらかな側面上及
び基板表面上の5iO211*15はほぼ完全にエツチ
ングされる(第1図(f))。
面の5i021115を、その平坦部の膜厚相当分だけ
エツチングすると、WSi2膜14の切り立った側面が
わは、垂直方向に厚い膜厚を有していたため5iO21
1115が残り、WSi2膜14のなだらかな側面上及
び基板表面上の5iO211*15はほぼ完全にエツチ
ングされる(第1図(f))。
この状態で、FETの能動領域以外の部分をフォトレジ
スト等でマスクして、Si+イオンを150KeV、3
.0xlO”個/ ci注入することにより高濃度のソ
ース領域16.ドレイン領域17を形成する。このとき
WSi2膜14のゲート電極とSiO2膜15膜幅5ン
注入のマスクとして働くため、これらの直下には高濃度
不純物層は形成されず、動作層12がそのまま保持され
る。また、ゲート電極14のソース側にはソース領11
6が近接して形成され、かつ、ドレイン側は5iO21
1115が残置されているためドレイン領域17はゲー
ト電極14からSiO2膜15膜幅5.3μmだけ離れ
て形成される(第1図(q))。
スト等でマスクして、Si+イオンを150KeV、3
.0xlO”個/ ci注入することにより高濃度のソ
ース領域16.ドレイン領域17を形成する。このとき
WSi2膜14のゲート電極とSiO2膜15膜幅5ン
注入のマスクとして働くため、これらの直下には高濃度
不純物層は形成されず、動作層12がそのまま保持され
る。また、ゲート電極14のソース側にはソース領11
6が近接して形成され、かつ、ドレイン側は5iO21
1115が残置されているためドレイン領域17はゲー
ト電極14からSiO2膜15膜幅5.3μmだけ離れ
て形成される(第1図(q))。
続いてウェハをAS+−13とArの混合雰囲気中で8
50℃、10分間アニールすることにより注入不純物を
活性化した後、AuGe系合金によりソース電極18.
ドレイン電極19を形成してGaAs FETが完成
する(第1図(h))。
50℃、10分間アニールすることにより注入不純物を
活性化した後、AuGe系合金によりソース電極18.
ドレイン電極19を形成してGaAs FETが完成
する(第1図(h))。
本方法により製作したFETを測定したところ、ソース
の高濃度不純物層がゲートに近接しているためソース・
ゲート間抵抗が充分に小さく、またEB露光などの方法
を用いていないにもかかわらずゲート長が0.5μmと
短いためQlが従来のものに比較して極めて大きいもの
が得られた。さらにゲート・ドレイン間耐圧は、ドレイ
ン領域がゲート電極から0.3μm離れて形成されてい
るため約12Vと高かった。この値はドレイン領域がゲ
ート電極に近接している構造と比較すると、約2倍^い
値であった。
の高濃度不純物層がゲートに近接しているためソース・
ゲート間抵抗が充分に小さく、またEB露光などの方法
を用いていないにもかかわらずゲート長が0.5μmと
短いためQlが従来のものに比較して極めて大きいもの
が得られた。さらにゲート・ドレイン間耐圧は、ドレイ
ン領域がゲート電極から0.3μm離れて形成されてい
るため約12Vと高かった。この値はドレイン領域がゲ
ート電極に近接している構造と比較すると、約2倍^い
値であった。
本発明は上記実施例に限られない。例えばゲート金属は
耐熱性を有し、高温熱処理後もGaAsと良好なショッ
トキ接合を有するものであればよく、MO,W、MO8
i 2などを用い得る。また絶縁膜もS i 021c
限うfs i3N4 、 S i (0゜N)などを使
い得る。さらにそれらの形成方法。
耐熱性を有し、高温熱処理後もGaAsと良好なショッ
トキ接合を有するものであればよく、MO,W、MO8
i 2などを用い得る。また絶縁膜もS i 021c
限うfs i3N4 、 S i (0゜N)などを使
い得る。さらにそれらの形成方法。
加工方法についても上記実施例に限定されないことはい
うまでもない。
うまでもない。
次に本発明の第2の方法による実施例を、第2図を用い
て説明する。まず、半絶縁性GaAs基板21に先の実
施例と同様にして動作層22を形成し、次にスペーサ膜
として例えば多結晶シリコン膜23を5000人程度堆
積し、これをゲート領域のドレイン側端部が垂直壁をも
ってゲート領域よりソース領域側を覆うようにようにバ
ターニングする(第2図(a))。次に全面に厚さ30
00人のSiO2膜24膜設4被覆性に優れたCVD法
により堆積しく第2図(b)’) 、これをRIEで膜
厚相当分全面エツチングして、多結晶シリコン膜23の
垂直側壁にSiO2膜24膜設4させる(第2図(C)
)。
て説明する。まず、半絶縁性GaAs基板21に先の実
施例と同様にして動作層22を形成し、次にスペーサ膜
として例えば多結晶シリコン膜23を5000人程度堆
積し、これをゲート領域のドレイン側端部が垂直壁をも
ってゲート領域よりソース領域側を覆うようにようにバ
ターニングする(第2図(a))。次に全面に厚さ30
00人のSiO2膜24膜設4被覆性に優れたCVD法
により堆積しく第2図(b)’) 、これをRIEで膜
厚相当分全面エツチングして、多結晶シリコン膜23の
垂直側壁にSiO2膜24膜設4させる(第2図(C)
)。
この後、多結晶シリコン1!23を除去し、ゲートのオ
フセット用の5iOz124のみを残す(第2図(d)
)。次いで段差被覆性に優れたCvD法ニヨリケート金
11であるWS 121125を約5000人堆積する
(第2図(e))。そしてこのWSiz躾25をRfE
により全面エツチングして、SiO2膜24膜設4壁側
部に・のみゲート電極として残置させる(第2図(f)
)。
フセット用の5iOz124のみを残す(第2図(d)
)。次いで段差被覆性に優れたCvD法ニヨリケート金
11であるWS 121125を約5000人堆積する
(第2図(e))。そしてこのWSiz躾25をRfE
により全面エツチングして、SiO2膜24膜設4壁側
部に・のみゲート電極として残置させる(第2図(f)
)。
この後は先の実施例と同様、3i+のイオン注入により
ソース領域26.ドレイン領IIt27を形成しく第2
図(Q))、AuGe躾によりソース電極28.ドレイ
ン電極29を形成してGaAsFETが完成する(第2
図(h))。
ソース領域26.ドレイン領IIt27を形成しく第2
図(Q))、AuGe躾によりソース電極28.ドレイ
ン電極29を形成してGaAsFETが完成する(第2
図(h))。
この実施例によっても、先の実施例と同様の効果が得ら
れる。
れる。
またこの実施例についても先の実施例で説明したように
電極材料、絶縁膜材料の選定やその形成方法を種々変形
することができる。
電極材料、絶縁膜材料の選定やその形成方法を種々変形
することができる。
第1図(a)〜(h)は本発明の第1の方法による実施
例のGaAs電界効果トランジスタの製造工程図、第2
図(a)〜(h)は、第2の方法による実施例のGaA
s電界効果トランジスタの製造工程図、第3図および第
4図は従来法によるGaAs電界効果トランジスタを示
す断面図である。 11.21−・・半絶縁性GaAs基板、12゜22・
・・動作層、 13・・・5iO2111(第1の絶縁
膜)、15−3 ! 02膜(第2の絶縁膜)、24・
・・SiO2膜、23・・・多結晶シリコンI!(スペ
ーサ膜)、14.25・・・WS!zi!(ゲート電極
)、16.26・・・ソース領域、17.27・・・ド
レイン領域、18.28・・・ソース電極、19.29
・・・トレイン電極。
例のGaAs電界効果トランジスタの製造工程図、第2
図(a)〜(h)は、第2の方法による実施例のGaA
s電界効果トランジスタの製造工程図、第3図および第
4図は従来法によるGaAs電界効果トランジスタを示
す断面図である。 11.21−・・半絶縁性GaAs基板、12゜22・
・・動作層、 13・・・5iO2111(第1の絶縁
膜)、15−3 ! 02膜(第2の絶縁膜)、24・
・・SiO2膜、23・・・多結晶シリコンI!(スペ
ーサ膜)、14.25・・・WS!zi!(ゲート電極
)、16.26・・・ソース領域、17.27・・・ド
レイン領域、18.28・・・ソース電極、19.29
・・・トレイン電極。
Claims (4)
- (1)動作層が形成されたGaAs基板に、ゲート電極
のドレイン領域側端部となる位置に垂直側壁を有しこれ
よりドレイン領域側を覆う第1の絶縁膜を形成する工程
と、この後段差被覆性に優れた方法でゲート金属膜を形
成する工程と、このゲート金属膜を異方性エッチングに
よりその膜厚相当分エッチングして前記第1の絶縁膜の
垂直側壁部に残置させてゲート電極を形成する工程と、
前記第1の絶縁膜を除去した後段差被覆性に優れた方法
で第2の絶縁膜を形成する工程と、この第2の絶縁膜を
異方性エッチングによりその膜厚相当分エッチングして
前記ゲート電極のドレイン領域側垂直側壁部にのみ残置
させる工程と、残置された第2の絶縁膜及び前記ゲート
電極をマスクとして不純物のイオン注入を行いソース、
ドレイン領域を形成する工程とを備えたことを特徴とす
るGaAs電界効果トランジスタの製造方法。 - (2)ゲート金属膜は、CVD法によるW、Mo、WS
i_2、MoSi_2の中から選ばれた一種であり、第
2の絶縁膜はプラズマCVD法あるいは減圧CVD法に
よるSiO_2膜、Si_3N_4膜、Si(O、N)
膜の中から選ばれた一種であることを特徴とする特許請
求の範囲第1項記載のGaAs電界効果トランジスタの
製造方法。 - (3)動作層が形成されたGaAs基板に、ゲート電極
のドレイン領域側端部となる位置に垂直側壁を有しこれ
よりソース領域側を覆うスペーサ膜を形成する工程と、
この後段差被覆性に優れた方法で絶縁膜を形成する工程
と、この絶縁膜を異方性エッチングによりその膜厚相当
分エッチングして前記スペーサ膜の垂直側壁部に残置さ
せる工程と、この後段差被覆性に優れた方法でゲート金
属膜を形成する工程と、このゲート金属膜を異方性エッ
チングによりその膜厚相当分エッチングして前記絶縁膜
の垂直側壁部にのみ残置させてゲート電極を形成する工
程と、形成されたゲート電極及び前記絶縁膜をマスクと
して不純物のイオン注入を行いソース、ドレイン領域を
形成する工程とを備えたことを特徴とするGaAs電界
効果トランジスタの製造方法。 - (4)ゲート金属膜は、CVD法によるW、Mo、WS
i_2、MoSi_2の中から選ばれた一種であり、絶
縁膜はプラズマCVD法あるいは減圧CVD法によるS
iO_2膜、Si_3N_4膜、Si(O、N)膜の中
から選ばれた一種であることを特徴とする特許請求の範
囲第3項記載のGaAs電界効果トランジスタの製造方
法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59204416A JPS6182482A (ja) | 1984-09-29 | 1984-09-29 | GaAs電界効果トランジスタの製造方法 |
US06/755,799 US4645563A (en) | 1984-09-29 | 1985-07-17 | Method of manufacturing GaAs field effect transistor |
EP85305237A EP0177129B1 (en) | 1984-09-29 | 1985-07-23 | Method of manufacturing gaas field effect transistor |
DE8585305237T DE3569313D1 (en) | 1984-09-29 | 1985-07-23 | Method of manufacturing gaas field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59204416A JPS6182482A (ja) | 1984-09-29 | 1984-09-29 | GaAs電界効果トランジスタの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6182482A true JPS6182482A (ja) | 1986-04-26 |
Family
ID=16490177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59204416A Pending JPS6182482A (ja) | 1984-09-29 | 1984-09-29 | GaAs電界効果トランジスタの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US4645563A (ja) |
EP (1) | EP0177129B1 (ja) |
JP (1) | JPS6182482A (ja) |
DE (1) | DE3569313D1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253632A (ja) * | 1989-03-27 | 1990-10-12 | Matsushita Electric Ind Co Ltd | 電界効果型トランジスタの製造方法 |
JPH0591848A (ja) * | 1991-09-30 | 1993-04-16 | Mamegen:Kk | 苦汁100%による絹ごし豆腐の製造方法 |
US5994728A (en) * | 1995-11-15 | 1999-11-30 | Matsushita Electronics Corporation | Field effect transistor and method for producing the same |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4743565A (en) * | 1981-03-30 | 1988-05-10 | International Business Machines Corporation | Lateral device structures using self-aligned fabrication techniques |
JPS60137070A (ja) * | 1983-12-26 | 1985-07-20 | Toshiba Corp | 半導体装置の製造方法 |
US4956308A (en) * | 1987-01-20 | 1990-09-11 | Itt Corporation | Method of making self-aligned field-effect transistor |
DE3602461A1 (de) * | 1986-01-28 | 1987-07-30 | Telefunken Electronic Gmbh | Verfahren zum herstellen eines sperrschicht-feldeffekttransistors |
US4689869A (en) * | 1986-04-07 | 1987-09-01 | International Business Machines Corporation | Fabrication of insulated gate gallium arsenide FET with self-aligned source/drain and submicron channel length |
US4735681A (en) * | 1986-08-15 | 1988-04-05 | Motorola Inc. | Fabrication method for sub-micron trench |
FR2618011B1 (fr) * | 1987-07-10 | 1992-09-18 | Commissariat Energie Atomique | Procede de fabrication d'une cellule de memoire |
KR920009718B1 (ko) * | 1987-08-10 | 1992-10-22 | 스미도모덴기고오교오 가부시기가이샤 | 화합물반도체장치 및 그 제조방법 |
JP2685149B2 (ja) * | 1988-04-11 | 1997-12-03 | 住友電気工業株式会社 | 電界効果トランジスタの製造方法 |
JPH0748503B2 (ja) * | 1988-11-29 | 1995-05-24 | 三菱電機株式会社 | 電界効果トランジスタの製造方法 |
JP2553699B2 (ja) * | 1989-04-12 | 1996-11-13 | 三菱電機株式会社 | 半導体装置の製造方法 |
US5250453A (en) * | 1989-04-12 | 1993-10-05 | Mitsubishi Denki Kabushiki Kaisha | Production method of a semiconductor device |
EP0416141A1 (de) * | 1989-09-04 | 1991-03-13 | Siemens Aktiengesellschaft | Verfahren zur Herstellung eines FET mit asymmetrisch angeordnetem Gate-Bereich |
JPH0817184B2 (ja) * | 1989-11-08 | 1996-02-21 | 三菱電機株式会社 | 化合物半導体装置の製造方法 |
JP2786307B2 (ja) * | 1990-04-19 | 1998-08-13 | 三菱電機株式会社 | 電界効果トランジスタ及びその製造方法 |
JPH0475351A (ja) * | 1990-07-17 | 1992-03-10 | Mitsubishi Electric Corp | 化合物半導体装置の製造方法 |
US5110760A (en) * | 1990-09-28 | 1992-05-05 | The United States Of America As Represented By The Secretary Of The Navy | Method of nanometer lithography |
US5304511A (en) * | 1992-09-29 | 1994-04-19 | Mitsubishi Denki Kabushiki Kaisha | Production method of T-shaped gate electrode in semiconductor device |
US5773334A (en) * | 1994-09-26 | 1998-06-30 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing a semiconductor device |
KR19980078235A (ko) * | 1997-04-25 | 1998-11-16 | 문정환 | 반도체 소자의 제조 방법 |
DE10101825B4 (de) | 2001-01-17 | 2006-12-14 | United Monolithic Semiconductors Gmbh | Verfahren zur Herstellung eines Halbleiter-Bauelements mit einer T-förmigen Kontaktelektrode |
KR20040056839A (ko) * | 2002-12-24 | 2004-07-01 | 아남반도체 주식회사 | 반도체 소자 제조 방법 |
US20060046229A1 (en) * | 2004-08-26 | 2006-03-02 | Teich Thomas J | Dental implant |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4378627A (en) * | 1980-07-08 | 1983-04-05 | International Business Machines Corporation | Self-aligned metal process for field effect transistor integrated circuits using polycrystalline silicon gate electrodes |
US4400865A (en) * | 1980-07-08 | 1983-08-30 | International Business Machines Corporation | Self-aligned metal process for integrated circuit metallization |
US4455738A (en) * | 1981-12-24 | 1984-06-26 | Texas Instruments Incorporated | Self-aligned gate method for making MESFET semiconductor |
JPS59114871A (ja) * | 1982-12-21 | 1984-07-03 | Toshiba Corp | シヨツトキ−ゲ−ト型GaAs電界効果トランジスタの製造方法 |
JPS59124172A (ja) * | 1982-12-30 | 1984-07-18 | インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン | Fet製造方法 |
-
1984
- 1984-09-29 JP JP59204416A patent/JPS6182482A/ja active Pending
-
1985
- 1985-07-17 US US06/755,799 patent/US4645563A/en not_active Expired - Lifetime
- 1985-07-23 DE DE8585305237T patent/DE3569313D1/de not_active Expired
- 1985-07-23 EP EP85305237A patent/EP0177129B1/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253632A (ja) * | 1989-03-27 | 1990-10-12 | Matsushita Electric Ind Co Ltd | 電界効果型トランジスタの製造方法 |
JPH0591848A (ja) * | 1991-09-30 | 1993-04-16 | Mamegen:Kk | 苦汁100%による絹ごし豆腐の製造方法 |
US5994728A (en) * | 1995-11-15 | 1999-11-30 | Matsushita Electronics Corporation | Field effect transistor and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
US4645563A (en) | 1987-02-24 |
EP0177129A1 (en) | 1986-04-09 |
EP0177129B1 (en) | 1989-04-05 |
DE3569313D1 (en) | 1989-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6182482A (ja) | GaAs電界効果トランジスタの製造方法 | |
US7973368B2 (en) | Semiconductor device with T-gate electrode | |
JPH0228332A (ja) | 自己整合型ゲートプロセス | |
JPH0748503B2 (ja) | 電界効果トランジスタの製造方法 | |
JPH022142A (ja) | 電界効果トランジスタ及びその製造方法 | |
GB2230899A (en) | Method of producing a gate | |
US5384273A (en) | Method of making a semiconductor device having a short gate length | |
JPH02271537A (ja) | 半導体装置及びその製造方法 | |
JP3297937B2 (ja) | 半導体装置及びその製造方法 | |
JPH01251668A (ja) | 電界効果トランジスタの製造方法 | |
JP3146636B2 (ja) | 低濃度不純物導入領域を備える薄膜トランジスタの製造方法 | |
JP3197669B2 (ja) | 薄膜トランジスタ並びにその製造方法 | |
JPH01251667A (ja) | 電界効果トランジスタの製造方法 | |
JP3158591B2 (ja) | 化合物半導体mesfetにおけるldd構造の形成方法 | |
JPS61164269A (ja) | 半導体装置の製造方法 | |
JPH01223770A (ja) | 化合物半導体装置の製造方法 | |
JPH0332217B2 (ja) | ||
JPS6318678A (ja) | 半導体装置の製造方法 | |
JPH04369841A (ja) | 化合物半導体装置およびその製造方法 | |
JPH01253968A (ja) | 電界効果トランジスタの製造方法 | |
JPH01251670A (ja) | 電界効果トランジスタの製造方法 | |
JPH06302619A (ja) | 電界効果トランジスタの製造方法 | |
JPH03286538A (ja) | 半導体装置の製造方法 | |
JPH04346441A (ja) | 電界効果トランジスタおよびその製造方法 | |
JPS6290979A (ja) | 半導体装置の製造方法 |