JPH08973B2 - 堆積膜形成法 - Google Patents

堆積膜形成法

Info

Publication number
JPH08973B2
JPH08973B2 JP62067334A JP6733487A JPH08973B2 JP H08973 B2 JPH08973 B2 JP H08973B2 JP 62067334 A JP62067334 A JP 62067334A JP 6733487 A JP6733487 A JP 6733487A JP H08973 B2 JPH08973 B2 JP H08973B2
Authority
JP
Japan
Prior art keywords
deposited film
gas
forming
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62067334A
Other languages
English (en)
Other versions
JPS6345371A (ja
Inventor
深照 松山
裕 平井
将雄 上木
明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to AU70770/87A priority Critical patent/AU7077087A/en
Priority to EP19870302781 priority patent/EP0240305B1/en
Priority to DE19873783632 priority patent/DE3783632T2/de
Publication of JPS6345371A publication Critical patent/JPS6345371A/ja
Priority to AU70237/91A priority patent/AU632204B2/en
Priority to US08/415,580 priority patent/US5593497A/en
Publication of JPH08973B2 publication Critical patent/JPH08973B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02642Mask materials other than SiO2 or SiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、機能性膜、殊に半導体デイバイス、光学的
画像入力装置用の光入力センサーデイバイス,電子写真
用の感光デイバイス等の電子デイバイスの用途に有用な
半導体性の膜を得るに有用な堆積膜形成法に関する。
〔従来の技術の説明及び問題点〕
従来、機能性膜、殊に結晶質の半導体膜は、所望され
る物理的特性や用途等の視点から個々に適した成膜方法
が採用されている。
例えば、必要に応じて、水素原子(H)やハロゲン原
子(X)等の補償剤で不対電子が補償された非晶質や多
結晶質の非単結晶シリコン〔以後「NON-Si(H,X)」と
略記し、その中でも殊に非晶質シリコンを示す場合には
「A-Si(H,X)」、多結晶質シリコンを示す場合には「p
oly-Si(H,X)」と記す。〕膜等のシリコン系堆積膜
〔尚、俗に言う微結晶シリコンは、A-Si(H,X)の概略
のものであることはいうまでもない。〕の形成には、真
空蒸着法,プラズマCVD法,熱CVD法,反応スパツタリン
グ法,イオンプレーテイング法,光CVD法などが試みら
れており、一般的にはプラズマCVD法が至的なものとし
て用いられ、企業化もされているところである。
而乍ら、従来から一般化されているプラズマCVD法に
よるシリコン系堆積膜の形成における反応プロセスは、
従来のCVD法に比較してかなり複雑であり、その反応機
構も不明な点が多々ある。又その堆積膜の形成パラメー
ターも、例えば基体温度,導入ガスの流料と比,形成時
の圧力,高周波電力,電極構造,反応容器の構造,排気
の速度,プラズマ発生方式など多くあり、これらの多く
のパラメータの組み合せによるため、時にはプラズマが
不安定な状態になり、形成された堆積膜に著しい悪影響
を与えることが少なくなかった。そのうえ装置特有のパ
ラメータを装置ごとに選定しなければならず、したがっ
て製造条件を一般化することがむずかしいというのが実
状であった。
又、プラズマCVD法において結晶質のシリコン系堆積
膜を形成する場合には、成膜用の基体の配されている成
膜空間に於いて高出力の高周波或いはマイクロ波等によ
ってプラズマを生成させるため、これにより発生する電
子や多数のイオン種が成膜過程に於いて膜にダメージを
与え、膜品質の低下,膜品質の不均一化をもたらしてし
まったりする。その上、堆積膜の結晶化の条件が狭く、
したがって特性の安定した多結晶質の堆積膜を生産する
ことは困難とされている。
ところで、シリコン,ゲルマニウム,II-VI族及びIII-
V族の半導体等のエピタキシヤル堆積膜の形成には、大
きく分けて気相エピタキシー及び液相エピタキシーが用
いられている(一般にエピタキシーの厳密な定義として
は、単結晶上へその単結晶軸と結晶軸のそろった単結晶
を成長させることであるが、本明細書中ではやや広義に
エピタキシーを解釈することにし、単結晶基板上への成
長に限られるものではない。)。
液相エピタキシーは、溶かして液体にした金属の溶媒
中に半導体用の原料を高温で過飽和状態まで溶解させ、
溶液を冷却させることにより基板上に半導体結晶を析出
させる方法である。この方法によると、結晶は各種のエ
ピタキシー技術の中で最も熱平衡に近い状態で作成され
る為、完全性の高い結晶が得られる反面、量産性が悪く
表面状態が悪い為、薄くかつ厚さが均一なエピタキシヤ
ル層を必要とする光デバイスなどでは、デバイス製作上
の歩留りやデバイスの特性に影響を及ぼす等の問題をと
もなうことから、あまり用いられていない。
他方、気相エピタキシーは真空蒸着法,スパツタリン
グ法などの物理的方法又は金属塩化物の水素還元法,有
機金属又は金属水素化物の熱分解法などの化学的方法等
により試みられている。中でも真空蒸着法の一種である
分子線エピタキシーは超高真空下でのドライプロセスで
ある為、結晶の高純度化,低温成長が可能であり、組成
や濃度の制御性が良く比較的平坦な堆積膜が得られると
いう利点があるが、成膜装置の甚大な費用がかかること
に加えて、表面欠陥密度が大きいこと、そして分子線の
指向性の有効な制御法が未開発であり、そしてまた大面
積化が困難であること及び量産性があまり良くないなど
多くの問題があることから、企業化されるには至ってい
ない。
金属塩化物の水素還元法あるいは有機金属又は金属水
素化物の熱分解法は、一般的にはハライドCVD法,ハイ
ドライドCVD法,MO-CVD法と呼ばれるものであり、これら
については成膜装置が比較的容易に作製でき、原料とさ
れる金属塩化物,金属水素化物及び有機金属について純
度の高いものが容易に入手出来るようになったことか
ら、現在では幅広く研究され各種デバイスへの応用も検
討されている。
而乍ら、これらの方法にあっては、基体温度を還元反
応又は熱分解反応が起る程度以上の高温に加熱する必要
があり、したがって基体材料の選択範囲が制限され、又
原料の分解が不十分であると炭素あるいはハロゲン等の
不純物による汚染が惹起されやすく、ドーピングの制御
性が悪いなどの欠点を有している。そしてまた堆積膜の
応用用途によっては、大面積化,膜厚均一化,膜品質の
均一性を十分満足させ、しかも高速成膜によって再現性
のある量産化を図るという要望があるところ、そうした
要望を満足する実用可能な特性を維持しながらの量産化
を可能にする技術は、未だ確立されていないのが実情で
ある。
〔発明の目的〕
本発明の主たる目的は、省エネルギー化を図ると同時
に膜品質の管理が容易で大面積に亘って所望の特性を均
一に有し、半導体特性に優れた結晶質の堆積膜が得られ
る堆積膜形成法を提供することにある。
本発明の他の目的は、生産性,量産性に優れ、高品質
で電気的,光学的,半導体的等の物理特性に優れた結晶
質の堆積膜を簡便にして効率的に形成できる堆積膜形成
法を提供することにある。
〔問題を解決する為の手段〕
本発明は、本発明者らが上述の各種問題を解決して前
記本発明の目的を達成すべく鋭意研究を重ねた結果完成
をみたものであり、堆積膜形成用の気体状原料物質
(I)と該原料物質(I)に酸化作用を及ぼす気体状ハ
ロゲン系酸化剤(II)のいずれか一方である原料物質
(A)を、堆積膜を形成する為の結晶核となる材料又は
該結晶核が選択的に形成され得る材料を表面上に離散的
に配して構成した基体が予め配されている成膜空間内に
導入して前記基体表面に吸着させて吸着層(I)を形成
する工程(A)と、他方である原料物質(B)を前記成
膜空間内に導入して前記吸着層(I)での表面反応を起
こさせて多結晶質の堆積膜を形成する工程(B)とを有
することを特徴とする堆積膜形成法である。
〔作用〕
前記構成の本発明の堆積膜形成法は、堆積膜形成用の
原料ガスに放電エネルギー等を作用させてプラズマ放電
を形成する従来のプラズマCVD法に代えて、気体状ハロ
ゲン系酸化剤を用いることによりプラズマ反応を介する
ことなく堆積膜を形成することを1つの特徴としてお
り、このことにより成膜中のエツチングあるいは異常放
電等による悪影響を受けることがないという利点を有し
ているものである。
また、本発明の堆積膜形成法は、気体状原料物質とこ
れに酸化作用を及ぼす気体状ハロゲン系酸化剤とのどち
らか一方を基体表面に吸着させて吸着層を形成した上で
他方を導入することにより、基体上に極薄い堆積膜を形
成することをもう一つの特徴としており、このことによ
り膜厚が均一で且つ膜質の均一な堆積膜が得られるとい
う利点がある。
また、本発明の堆積膜形成法は、堆積膜の構成元素と
なる気体状原料物質と気体状ハロゲン系酸化剤との酸化
還元反応を利用し、堆積に高温を必要としない為、熱に
よる構造の乱れがなく、生産時に於ける加熱設備とその
稼動に伴なう経費が不用であり、デバイスの低コスト化
が可能である。そして耐熱性に依らない高範囲な基体材
料の選択が可能となる。
また、本発明の堆積膜形成法は、気体状原料物質とそ
の気体状ハロゲン系酸化剤の反応が吸着分子に関して進
行させ堆積膜とする為、基体の形状,大きさに依らず大
面積化が可能であると同時に、原料もごくわずかであり
成膜空間を小さくできる為、収率を飛躍的に向上させる
ことが出来る。
また、本発明の堆積膜形成法は、結晶成長の核を任意
に基体上に配することで結晶粒の大きさを決定でき、目
的に合わせた特性の結晶質の堆積膜を所望の領域に堆積
することが出来る。
又、前述のごとき構成の本発明の堆積膜形成法によれ
ば、堆積膜形成における省エネルギー化を図ると同時
に、膜品質の管理が容易で大面積に亘って均一な膜質及
び特性を有する良好な結晶質の堆積膜の形成が可能とな
る。更に生産性及び量産性に優れ、高品質で電気的,光
学的,半導体的等の諸特性に優れた結晶質の堆積膜を効
率的に得ることができる。
本発明の堆積膜形成法に於いて、使用される堆積膜形
成用の基体状原料物質(以下、「気体状原料物質
(I)」とする)は、気体状ハロゲン系酸化剤(以下、
「ハロゲン系酸化剤(II)」とする)との接触により酸
化作用をうけるものであり、目的とする堆積膜の種類,
特性,用途等によって所望に従って適宜選択される。本
発明の方法に於いては、上記の気体状原料物質(I)及
びハロゲン系酸化剤(II)は、導入される際に気体状と
なっているものであればよく、通常の場合、気体であっ
ても液体であってもあるいは固体であってもよい。気体
状原料物質(I)あるいはハロゲン系酸化剤(II)が通
常状態において液体又は固体である場合には、Ar,He,
N2,H2等のキヤリアーガスを使用し、必要に応じて加熱
しながらバブリングを行って、成膜空間内に気体状原料
物質(I)又はハロゲン系酸化剤(II)を気体状として
導入した基体上に吸着層を形成し、次いで他方を気体状
で導入する。
この際、上記気体状原料物質(I)又はハロゲン系酸
化剤(II)の導入圧は、キヤリアーガスの流量あるいは
気体状原料物質(I)及びハロゲン系酸化剤(II)の蒸
気圧を調節することにより設定される。気体状原料物質
(I)あるいはハロゲン系酸化剤(II)が通常状態で気
体である場合には、必要に応じてAr,He,N2,H2等のキヤ
リアーガスによって希釈して導入することもできる。
本発明の方法に於いて使用される気体状原料物質
(I)としては、例えば周期律表第IV族に属するシリコ
ンの堆積膜を得るのであれば、直鎖状及び分岐状の鎖状
シラン化合物、環状シラン化合物等を有効なものとして
挙げることができる。
その様な気体状原料物質(I)と成り得るものとして
は、具体的には、直鎖状シラン化合物としてはSinH2n+2
(n=1,2,3,4,5,6,7,8)、分岐状鎖状シラン化合物と
してはSiH3SiH(SiH3)SiH2SiH3、環状シラン化合物と
してはSinH2n(n=3,4,5,6)等が挙げられる。
勿論、これ等のシリコン系化合物は1種のみならず2
種以上混合して使用すこともできる。
本発明の方法に於いて使用されるハロゲン系酸化剤
(II)は、成膜空間内に導入される際気体状とされ、同
時に堆積膜形成用の気体状原料物質(I)に接触するだ
けで効果的に酸化作用をする性質を有するもので、F2,C
l2,Br2,I2,ClF等のハロゲンガスを有効なものとして挙
げることができる。
これ等の気体状原料物質(I)又はハロゲン系酸化剤
(II)のいずれか一方が先ず気体状で堆積膜形成用の基
体が配されている成膜空間に所望の流量と供給圧が与え
られて導入されて前記基体上に吸着層が形成され、次い
で他方が所望の時間後に所望の流量と供給圧を与えられ
て導入されることで、両者が前記吸着層表面で衝突する
ことで表面化学反応を生起し、前記ハロゲン系酸化剤
(II)が前記気体状原料物質に酸化作用をして、成膜す
る堆積膜の結晶核となる材料乃至は結晶核が選択的に形
成し得る材料を表面上に離散的に有する基体上で堆積膜
が作成される。この様な本発明の堆積膜形成プロセスは
より効率良く、より省エネルギー化で進行し、膜全面に
亘って所望の良好な物理特性を有する堆積膜が従来より
も低い基体温度で形成される。
本発明の方法に於いては、堆積膜形成プロセスが円滑
に進行し高品質で所望の物理特性を有する膜が形成され
るべく、成膜因子としての堆積膜形成用の原料物質
(I)及びハロゲン系酸化剤(II)の種類と組み合せ、
反応時の圧力,流量,成膜空間内圧,基体の種類,吸着
時の圧力,ガスの流型,吸着温度と成膜温度(基体温度
及び雰囲気温度)が所望に応じて適時選択される。これ
等の成膜因子は有機的に関連し単独で決定されるもので
はなく、相互関連の下に夫々に応じて決定される。本発
明の方法に於いて、成膜空間に導入される堆積膜形成用
の気体状原料物質(I)と気体状ハロゲン系酸化剤(I
I)との吸着と反応のプロセスは、上記成膜因子のうち
関連する成膜因子との関係に於いて適宜所望に従って決
められる。
本発明の堆積膜形成法に於ける基体上への吸着層形成
工程の条件は適宜設定されるものである。
固体表面上への気体分子の吸着には分子間力が存在
し、原子価エネルギーによる化学吸着の方が、分散エネ
ルギー(フアンデアワールス力に対応)による物理吸着
よりも、その分子間力が大きい。
又、物理吸着が多層吸着となり易いのに対して、化学
吸着は単分子層吸着なので均質な薄膜堆積を制御するに
は、最終的にも化学吸着の形態となるのが好ましい。
しかしながら、本発明に於いて吸着層を設ける過程か
ら堆積膜形成の過程に於いては、気体分子の物理吸着と
化学吸着が複雑に関連していると考えられ、必ずしも吸
着の形態にこだわるものではない。一方この吸着状態を
決定しているのは、吸着分子の種類と固体表面の種類及
び表面状態さらに制御因子としての温度,圧力であり、
少なくても反応を所望の堆積膜が得られる様これらの制
御因子を決定する必要がある。
つまり、吸着から反応までの間に真空チヤンバー内の
圧力が低すぎると物理吸着の状態から脱離が起り易くな
り、温度が高すぎると化学吸着の状態から解離吸着とな
り易く、所望の堆積膜に敵した反応過程を選択しなけれ
ばならない。
本発明の堆積膜形成の1サイクル〔吸着層の形成工程
(A)と該吸着層と原料物質との反応による堆積膜形成
工程(B)〕に於いては、基体表面上に均一に所望され
る堆積膜が形成される前の工程として次の工程がある。
原料物質Aを成膜空間内に導入、基体上に適当量吸着さ
せて吸着層を形成する工程(第一の工程:工程
(A))、さらにその原料物質Aの吸着層を残留させ且
つ余分な原料物質Aを排出させる工程(第二の工程)で
ある。これ等の工程を行う際の圧力は前述の理由から適
宜設定され、第一の工程の圧力としては吸着を充分進行
させる為により高い方が良いが、好ましくは1×10-7
10Torr、より好ましくは1×10-4〜1Torrが望ましい。
第二の工程の圧力としては、余分な原料Aを排出する
為より低い方が良いが、好ましくは1×10-10〜1Torr、
より好ましくは1×10-9〜1×10-2Torrが好ましい。
さらに、本発明の堆積膜形成の1サイクルはこれに引
き続き原料Bを成膜空間に導入し、基板上の吸着層と表
面反応を起こさせて堆積膜を形成する工程(第三の工
程:工程(B))、次にこの時堆積膜以外に生成した副
生成物を成膜空間から排気する工程(第四の工程)から
成る。第三の工程の反応時の圧力としては原料物質A,B
の接触を確率的に高める為より高い方が良いが、反応性
を考慮して適宜所望に応じて最終値は決定される。
第三の工程の圧力として好ましくは1×10-8〜10Tor
r、より好ましくは1×10-6〜1Torrとされるのが望まし
い。
第四の工程の圧力としては、1×10-12〜1Torrが好ま
しい。
本発明に於いては、前記工程(A)と工程(B)とが
少なくとも一回行われるものであるが、場合によっては
工程(A)と工程(B)とをこの順で繰り返し必要回数
行っても良い。その場合、工程(A)と工程(B)の夫
々の時間は、サイクル毎に同じでも異なっていても良
い。
本発明の方法において、所望の結晶質の堆積膜を選択
的に形成させるる為には、あらかじめ成膜する堆積膜の
結晶核となる材料乃至結晶核が選択的に形成し得る材料
を基体表面の目的に応じた形で配置する必要がある。
前者の場合には、単結晶基体を部分的に非晶質薄膜で
覆ったものを基体として用いるか或いは単結晶粒子を基
体上に配することで、単結晶基体の露出部分か或いは単
結晶粒子が結晶核となって、単結晶と同一の材料を選択
的にエピタキシヤル成長させることができる。
また、成膜条件と結晶核となる結晶材料の種類を適宜
選ぶことにより、異なる種類の結晶質の堆積膜を選択的
に成膜することができる。
後者の場合には、堆積面材料の種類による堆積材料の
核形成密度の差を利用して、基体上に所望のパターンで
異種材料を離散的に配置におくことによって、選択的に
所望の結晶質の堆積膜を成膜することができる。
前者の場合に用いられる基体としては、シリコン単結
晶をシリコン酸化膜で覆って選択的に下地シリコン単結
晶を露出したもの、或いはシリコン結晶の成長性の小さ
い基体上にシリコン単結晶粒子を配置したものが使用さ
れる。さらに前述の様にこのシリコン結晶の代わりにシ
リコンと異なる種類の結晶を核として使用できるが、こ
れらの結晶の材料には次の様な条件が必要である。
1.基体表面の結晶材料の格子定数が堆積膜の格子定数と
一致しているか、きわめて近いこと。
2.基体表面の結晶材料と堆積膜の熱膨張係数が一致して
いるか、きわめて近いこと。
故に、例えば結晶質Siの堆積膜を得る為に適当な基体
の表面を構成すべき材料としてはGaF2,ZnS,Yb,Mn3Ga,Na
CoF3,Ni3Sn,Fe3C,NiTex(x<0.7),CoMnO3,NiMnO3,Ma
Zn3,CuCl,Alp,Siなどが挙げられる。
さらに前述の2つの条件から略の外れた場合でも、堆
積条件をより適切に選ぶことによって結晶質の堆積膜を
得ることも可能であり、本発明の堆積膜形成法は上述の
材料のみに限定されるものではない。
後者の場合に用いられる基体としては、例えばSiO2
上にSi3N4を離散的に配置したもの、或いはSi3N4膜上を
SiO2で覆い部分的に下地Si3N4を露出させたものが使用
される。
これはシリコン結晶核がSi3N4上で生成し易く、SiO2
上で生成し難い性質を利用したもので、本発明の堆積膜
形成法に於いては核形成の生成に難易差を有する材料で
あれば非晶質,結晶質に依らず使用することが可能であ
る。
成膜時の基体温度(Ts)は、形成する堆積膜の種類及
び用いる基板の種類により適宜設定される。
〔実施例〕
以下、実施例を用いて本発明の方法をより詳しく説明
するが、本発明はこれら実施例によって限定されるもの
ではない。
第1図は本発明の堆積膜形成法を具現するに好適な装
置の1実施例を示すものである。
第1図に示す堆積膜形成装置は、装置本体,排気系及
びガス供給系の3つに大別される。
装置本体には、成膜空間が設けられている。
101〜108は夫々、成膜する際に使用されるガス充填さ
れているボンベ,101a〜108aは夫々ガス供給パイプ,101b
〜108bは夫々各ボンベからのガスの流量調整用のマスフ
ローコントローラー,101c〜108cはそれぞれ圧力計,101d
〜108d及び101e〜108eは夫々バルブ,101f〜108fは夫々
対応するガスボンベ内の圧力を示す圧力計である。
120は真空チヤンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配のガス導入口に対向して、基体118
が設置される様に基体ホールダー112が設けられた成膜
空間が形成される構造を有する。ガス導入用の配管は三
配置構造となっており、中よりガスボンベ101,102より
のガスが導入される第1のガス導入管109,ガスボンベ10
3〜105よりのガスが導入される第2のガス導入間110及
びガスボンベ106〜108よりのガスが導入される第3のガ
ス導入管111を有する。
各導入管へのボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。
各ガス導入管,各ガス供給パイプライン及び真空チヤ
ンバー120は、メイン真空バルブ119を介して不図示の真
空排気装置により真空排気される。
基板118は基体ホルダー112を上,下,X,Y方向に移動さ
れることによって各ガス導入管からの位置を自由に設定
することができる。
本発明の方法の場合、この基板とガス導入管のガス導
入口の距離は、形成される堆積膜の種類及びその所望さ
れる特性,ガス流量,真空チヤンバーの内圧等を考慮し
て適切な状態になる様に決められるが、好ましくは数mm
〜20cm、より好ましくは5mm〜15cm程度とするのが望ま
しい。
130は原料Aのガス分子を基板118上に吸着しやすくす
る為の冷却パイプであり、流量コントローラ131に接続
されている。冷却は吸着している第一,第二の工程の他
成膜中,成膜後にも用いることができる。
113は基板118を成膜時に適当な温度に加熱したり、或
は成膜前に基体118を予備加熱したり、更には成膜後、
膜をアニールする為に加熱する基板加熱用ヒータであ
る。
基板加熱用ヒータ113は、導線114を介して電源115に
より電力が供給される。
116は基板温度(Ts)の温度を測定する為の熱電対で
温度表示装置117に電気的に接続されている。
126,127は液体原料用バブラーであり、液体の堆積膜
形成用原料物質128,129を詰めて用いる。堆積膜形成用
原料物質が通常状態の場合に気体であるときは液体原料
用バブラーを用いる必要はない。
実施例1 第1図に示す成膜装置を用いて、次の様にし本発明の
方法による堆積膜を形成した。
ボンベ101に充填されているSiH4ガスを流量40sccmで
ガス導入管109より、ボンベ106に充填されているF2ガス
を流量60sccm,ボンベ107に充填されているHeガスを流量
120sccmでガス導入管111より真空チヤンバー120内に導
入した。本実施例では液体原料用バブラー126,127は使
用しなかった。
基体118は第2図に示される工程で作成した。
まず、第2図(A)に示すような多結晶シリコン基板
201を洗浄し、続いてスパツタリング法(この場合、ス
パツタリング法の他に種々の薄膜堆積法、例えば真空蒸
着法,プラズマ放電法,MBE法,CVD法等も採用される)に
よって基板1の全面に酸化シリコン薄膜202を堆積させ
た[同図(B)]。
続いて薄膜202上に電子線レジスト層203を塗布し[同
図(C)]、所望パターンのホストマスクを用いて電子
線レジスト層203を感光させ、現像によって電子線レジ
スト層203を部分的に除去した[同図(D)]。
残留している電子線レジスト203Aをマスクとして酸化
シリコン薄膜202をエツチングし、所望パターンを有す
る薄膜202Aを形成した[同図(E)]。
以上の工程によって、多結晶シリコンのある結晶面が
定間隔で酸化シリコン膜から露光した基体118を得た。
基体118の表面で露出したシリコン結晶の領域は500μm
幅,300μmの間隔であった。
次に、不図示の排気装置によって真空チヤンバー120
を充分ベーキングして5×10-9Torrまで引く。ボンベ10
1に充填されているSiH4ガスを流量4sccmを排気バルブ11
9を調整することにより0.1mTorr/secの排気速度に保持
した状態で真空チヤンバー120へガス導入管109を通して
0.3sec間流した。続いてバルブ101dを閉じ、SiH4ガスの
供給を止め、排気バルブ119を開き真空度0.01Torrにな
るよう調整した状態で2sec間保持した。
ボンベ107に充填されているF2ガス(Heで10%に希
釈)を4sccmをガス導入管111より真空チヤンバー120内
に導入した。この時の排気速度は排気バルブ119を調整
して0.8mTorr/secであり、この状態を5sec保持した後、
バルブ107aを閉じF2ガス供給を止め、排気バルブ119を
開いて真空度0.004Torrになるよう調整した状態で3sec
保持した。
以上の操作を4200回繰り返し約4600Åの厚さの結晶シ
リコン堆積膜204が得られた。
基体118上に得られた結晶シリコン堆積膜204の断面の
模式図を第2図(F)に示す。
第2図(F)に於いて205は結晶粒界を示す。
さらに得られた各試料を用いて、X線回折法及び電子
線回折法により堆積膜の結晶性の評価を行ったところ。
多結晶質膜であることが確認され、この多結晶シリコン
の粒径は約250μ±20μmであった。結晶粒径のバラツ
キは基体全面にわたって均一であった。
又、走査型電子顕微鏡により試料の表面状態を観察し
たところ、平滑度は良好で波模様等が無く膜厚ムラはt
±4%以下であった。また、作成された資料の結晶Si堆
積膜の移動度及び導電率をVan der Pauw法により測定し
た処、それぞれ250(cm/V・sec),5×10-5(S・cm-1
であった。
実施例2 基体118を第3図に示される工程で作成した。
まず、第3図(A)に示される様な略々均一な組成材
料からなるガラス基板301を洗浄し、続いて熱CVD法によ
って基板301全面にアモルフアスSiN(A-SiN)薄膜302を
約2μmの厚さで成膜させた[同図(B)]。
続いて上記A-SiN薄膜302上にレーザーアニール装置に
依ってN2雰囲気中で上記A-SiN薄膜302の表面アニールを
行ない、A-SiN薄膜302の表面積(〜1μmの深さ)に結
晶質Si3N4(C-Si3N4)303を形成した[同図(C)]。
この時レーザーは、Ar-CWレーザー4880Åスキヤン速
度2.5cm/sec,エネルギー10Wで照射した。続いてこのC-S
i3N4層303の表面をO2雰囲気中で上記レーザーアニーー
ル装置によって走査し、選択的にSiO2層304を形成した
[同図(D)]。
以上の工程によって、C-Si3N4層303Aが定間隔で露出
し、他の部分がSiO2層304で覆われた基体118が形成され
た。基体表面で露出したC-Si3N4層303Aの領域は300μm
幅で200μmの間隔であった。
さらにこの基体118を用いて実施例1と同様に第1図
に示される装置によって結晶質シリコンの堆積を行っ
た。
まず、不図示の排気装置によって真空チヤンバー120
を充分ベーキングして5×10-9Torrまで引いた。ボンベ
101に充填されているSiH4ガスを流量5sccmを排気バルブ
119を調整することにより0.1mTorr/secの排気速度に保
持した状態で真空チヤンバー120へガス導入管109を通し
て0.3sec間流した。続いてバルブ101dを閉じSiH4ガスの
供給を止め、排気バルブ119を開き、真空度0.1Torrにな
るよう調整した状態で2sec間保持した。
ボンベ107に充填されているF2ガス(Heで10%に希
釈)を6sccmをガス導入管111より真空チヤンバー120内
に導入した。この時の排気速度は排気バルブ119を調整
して0.8mTorr/secであり、この状態を5sec保持した後、
バルブ107aを閉じF2ガスの供給を止め、排気バルブ119
を開いて真空度0.01Torrになるよう調整した状態で4sec
保持した。
以上の操作を4500回繰り返し約2.3μの厚さの結晶シ
リコン堆積膜305が得られた。
この基体118上に得られた結晶シリコン堆積膜305の断
面のい模式図を第3図(F)に示す。
第3図(F)に於ける306は結晶粒界を示す。
さらに得られた各試料を用いて、X線回折法及び電子
線回折法により堆積膜の結晶性の評価を行ったところ、
多結晶質シリコン膜である事が確認された。さらにシユ
ラー(Scherrar)法で求めた多結晶シリコンの粒径は約
120±25μmであった。結晶粒径のバラツキは基体全面
にわたってほとんど均一であった。
又、走査型電子顕微鏡により試料の表面状態を観察し
たところ、平滑度は良好で波模様等が無く、膜厚ムラは
±4%以下であった。また、得られた試料の多結晶Si堆
積膜の移動度導電率をVan der Pauw法により測定した
処、それぞれ120(cm/V・sec),9×10-6(S・cm-1)で
あった。
実施例3 第1図に示す成膜装置を用いて次の様にし、本発明の
方法による堆積膜を作成した。
ボンベ101に充填されているSiH4ガスを流量40sccmで
ガラス導入管109より、ボンベ106に充填されているF2
ス流量60sccm,ボンベ107に充填されているeガスを流量
120sccmでガス導入管111より真空チヤンバー120内に導
入した。本実施例では液体原料用バブラー126,127は使
用しなかった。
基体118は第4図で示される工程で作成した。
まず、第4図(A)に示すような多結晶シリコン基板
401を洗浄し、続いてスパツタリング法(この場合、ス
パツタリング法の他に種々の薄膜堆積法、例えば真空蒸
着法,プラズマ放電法,MBE法,CVD法等も採用される)に
よって基板401の全面に非晶質SiO2薄膜402を堆積させた
[同図(B)]。次に、該SiO2薄膜402上に非晶質のSi3
N4薄膜403を堆積させた[同図(C)]。
続いてSi3N4薄膜403上に電子線レジスト層404を塗布
し[同図(D)]、所望パターンのホトマスクを用いて
電子線レジスト層404を感光させ、現像によって電子線
レジスト層404を部分的に除去した[同図(E)]。
残留している電子線レジスト層404AをマスクとしてSi
3N4薄膜403をエツチングし、所望パターンのSi3N4薄膜4
03Aを形成した[同図(F)]。
以上の工程によって、SiO2層402の表面が定間隔でSi3
N4薄膜402から露出した部分402Aを有する基体118を得
た。
上記Si3N4薄膜403Aは、SiO2薄膜402上に、200μm幅
で200μmの間隔で配された。
次に、不図示の排気装置によって真空チヤンバー120
を充分ベーキングして5×10-9Torrまで引いた。ボンベ
101に充填されているSiH4ガスを流量4sccmで排気バルブ
119を調整することにより、0.1mTorr/secの排気速度に
保持した状態で真空チヤンバー120へガス導入管109を通
して0.3sec間流した。続いてバルブ101dを閉じ、SiH4
スの供給を止め、排気バルブ119を開き真空度0.01Torr
になるよう調整した状態で2sec間保持した。
ボンベ107に充填されているF2ガス(Heで10%に希
釈)を流量4sccmでガス導入管111より真空チヤンバー12
0内に導入した。この時の排気速度は排気バルブ119を調
整して0.8mTorr/secであり、この状態を5sec保持した
後、バルブ107aを閉じF2ガスの供給を止め、排気バルブ
119を開いて真空度0.004Torrになるよう調整した状態で
3sec保持した。
以上の操作を10000回繰り返し約3.0μの厚さの結晶シ
リコン体積膜405が得られた。
基体118上に得られた結晶シリコン体積膜405の断面の
模式図を第4図(G)に示す。
次に、得られた各試料を用いてX線回折法及び電子線
回折法によりシリコン堆積膜の結晶性の評価を行ったと
ころ、多結晶質シリコン膜であることが確認された。さ
らにシユラー(Scherrar)法で求めた多結晶シリコンの
粒径は約40±0.5μmであった。結晶粒径のバラツキは
基体全面にわたってほとんど均一であった。
又、走査型電子顕微鏡により試料の表面状態を観察し
たところ、平滑度は良好で波模様等が無く、膜厚ムラは
±4%以下であった。また作成された資料の結晶Si堆積
膜の移動度,導電率をVan der Pauw法により測定した
処、それぞれ300(cm/V・sec),9×10-6(S・cm-1)で
あった。
実施例4 基体118は第4図で示される工程で作成した。
まず、第4図(A)に示される様な均一な組成材料か
らなるガラス基板401を洗浄し、続いてプラズマCVD法に
よってSiH4ガスとNH3ガスを使用して基板401全面に非晶
質SiN:H薄膜402を約2μmの厚さで成膜させた[同図
(B)]。
続いて上記SiN:H薄膜402上にスパツターリング法によ
って非晶質のSiO2薄膜404を500Å厚に形成した[同図
(C)]。
続いて、SiO2薄膜403上に電子線レジスト層404を塗布
し[同図(D)]、所望パターンのホトマスクを用いて
電子線レジスト層404を露光し現像することで、電子線
レジスト層404を部分的に除去した[同図(E)]。残
留している電子線レジスト層404AをマスクとしてSiO2
膜403をエツチングし、所望パターンのSiO2薄膜403Aを
形成した[同図(F)]。
以上の工程によって、Si3N4層が定間隔で露出した部
分402Aを有し、他の部分がSiO2層403Aは覆われた基体11
8が形成された。基体118の表面に露出したSi3N4層402A
の領域は、約300μm幅で280μmの間隔で配された。
次に、この基体118を用いて実施例3と同様に第1図
に示される装置によって結晶質シリコンの堆積を行っ
た。
まず、不図示の排気装置によって真空チヤンバー120
を充分ベーキングして5×10-9Torrまで引いた。ボンベ
101に充填されているSiH4ガスを、流量5sccmを排気バル
ブ119を調整することにより0.1mTorr/secの排気速度に
保持した状態で真空チヤンバー120へガス導入管109を通
して0.3sec間流した。続いてバルブ101dを閉じ、SiH4
スの供給を止め、排気バルブ119を開き、真空度0.1Torr
になるよう調整した状態で2sec間保持した。
ボンベ107に充填されているF2ガス(Heで10%に希
釈)を6secmをガス導入管111より真空チヤンバー120内
に導入した。この時の排気速度は排気バルブ119を調整
して0.8mTorr/secであり、この状態を5sec保持した後、
バルブ107aを閉じF2ガスの供給を止め、排気バルブ119
を開いて真空度0.01Torrになるよう調整した状態で4sec
保持した。
以上の操作を7000回繰り返し約2.8μの厚さの結晶シ
リコン堆積膜405が得られた。
この基体118上に得られた結晶シリコン堆積膜405の断
面の模式図を第4図(G)に示す。
さらに、得られた各試料を用いて、X線回折法及び電
子線回折法により堆積膜の結晶性の評価を行ったとこ
ろ、多結晶質シリコン膜である事が確認され、その粒径
は約90±7μmであった。結晶粒径のバラツキは基体全
面にわたってほとんど均一であった。
又、走査型電子顕微鏡により試料の表面状態を観察し
たところ、平滑度は良好で波模様等が無く、膜厚ムラは
±4%以下であった。また得られた試料の多結晶Si堆積
膜の移動度,導電率をVan der Pauw法により測定した
処、それぞれ150(cm/V・sec),4×10-6(S・cm-1)で
あった。
実施例5 第1図に示す成膜装置を用いて次の様にし、本発明の
方法による堆積膜を作成した。
ボンベ101に充填されているSiH4ガスを流量40sccmで
ガス導入管109より、ボンベ106に充填されているF2ガス
を流量60sccm、ボンベ107に充填されているHeガスを流
量120sccmでガス導入管111より真空チヤンバー120内に
導入した。本実施例では液体原料用バブラー126,127は
使用しなかった。
基体118は第5図で示される工程で作成した。
まず、第5図(A)に示されすような多結晶シリコン
基板501を洗浄し、続いてスパツタリング法(この場合
スパツタリング法の他に種々の薄膜堆積法、例えば真空
蒸着法,プラズマ放電法,MBE法,CVD法等も採用される)
によって基板401の全面に酸化シリコン薄膜502を堆積さ
せた[同図(B)]。
続いて、薄膜502上に電子線レジスト層503を塗布し
[同図(C)]、所望パターンのホトマスクを用いて電
子線レジスト層503を感光させ、現像によって電子線レ
ジスト層503を部分的に除去した[同図(D)]。
残留している電子線レジスト層503Aをマスクとして酸
化シリコン薄膜502をエツチングし、所望パターンを有
する薄膜502Aを形成した[同図(E)]。
以上の工程によって、多結晶シリコンのある結晶面が
定間隔で酸化シリコン膜から露出した部分501Aを有する
基体118を得た。基体118の表面で露出したシリコン結晶
501Aの領域は、直径約数百Å,5μmの間隔であった。
次に、不図示の排気装置によって真空チヤンバー120
を充分ベーキングして5×10-9Torrまで引く。ボンベ10
1に充填されているSiH4ガスを、流量4sccmを排気バルブ
119を調整することにより0.1mTorr/secの排気速度に保
持した状態で真空チヤンバー120へガス導入管109を通し
て0.3sec間流した。続いてバルブ101dを閉じ、SiH4ガス
の供給を止め、排気バルブ119を開き真空度0.01Torrに
なるよう調整した状態で2sec間保持した。
ボンベ107に充填されているF2ガス(Heで10%に希
釈)を4sccmをガス導入管111より真空チヤンバー120内
に導入した。この時の排気速度は排気バルブ119を調整
して0.8mTorr/secであり、この状態を5sec保持した後、
バルブ107aを閉じF2ガスの供給を止め、排気バルブ119
を開いて真空度0.004Torrになるよう調整した状態で3se
c保持した。
以上の操作を4200回繰り返し、約4600Åの厚さの結晶
シリコン堆積膜505が得られた。
この基体118上に得られた結晶シリコン堆積膜505の断
面の模式図を第5図(F)に示す。
結晶粒界505は、酸化シリコン層の除かれた、結晶基
板501の露出部501Aから等距離になるように結晶粒のサ
イズが決定されていた。
さらに、得られた各試料を用いてX線回折法及び電子
線回折法により堆積膜の結晶性の評価を行ったところ、
多結晶質シリコン膜であることが確認された。さらにシ
ユラー(Scherrar)法で求めた多結晶シリコンの粒径は
約5±0.2μmであった。結晶粒径のバラツキは基体全
面にわたってほとんど無かった。
又、走査型電子顕微鏡により試料の表面状態を観察し
たところ、平滑度は良好で波模様等が無く、膜厚ムラは
±4%以下であった。また作成された資料の結晶Si堆積
膜の移動度,導電率をVan der Pauw法により測定した
処、それぞれ300(cm/V・sec),9×10-6(S・cm-1)で
あった。
実施例6 基体118を第6図に示される工程で作成した。
まず、第6図(A)に示される様な均一な材料からな
るガラス基板601を洗浄し、続いて熱CVD法によって、基
板601全面にアモルフアスSiN(A-SiN)薄膜602を約2μ
mの厚さで成膜させた[同図(B)]。
続いて上記A-SiN薄膜602上に、レーザーアニール装置
に依ってN2雰囲気中で上記A-SiN薄膜602の表面アニール
を行い、A-SiN薄膜602の表面層(〜1μmの深さ)に結
晶質Si3N4(C-Si3N4)603を形成した[同図(C)]。
この時レーザーは、Ar-CWレーザー4880Å,スキヤン
速度2.5cm/sec,エネルギー10Wで照射した。続いて、こ
のC-Si3N4層603の表面をO2雰囲気中で上記レーザーアニ
ール装置によって走査し、選択的にSiO2層604を形成し
た[同図(D)]。
以上の工程によって、C-Si3N4層が定間隔で露出した
部分603Aを有し、他の部分がSiO2層604で覆われた基体1
18が形成された。基体118の表面で露出したC-Si3N4層60
3Aの領域は直径約4Å,3μmの間隔であった。
さらに、この基体118を用いて実施例5と同様に第1
図に示される装置によって結晶質シリコンの堆積を行っ
た。
まず、不図示の排気装置によって真空チヤンバー120
を充分ベーキングして5×10-9Torrまで引いた。ボンベ
101に充填されているSiH4ガスを、流量5sccmを排気バル
ブ119を調整することにより0.1mTorr/secの排気速度に
保持した状態で真空チヤンバー120へガス導入管109を通
して0.3sec間流した。続いてバルブ101dを閉じ、SiH4
スの供給を止め、排気バルブ119を開き、真空度0.1Torr
になるよう調整した状態で2sec間保持した。
ボンベ107に充填されているF2ガス(Heで10%に希
釈)を6sccmをガス導入管111より真空チヤンバー120内
に導入した。この時の排気速度は排気バルブ119を調整
して0.8mTorr/secであり、この状態を5sec保持した後バ
ルブ107aを閉じ、F2ガスの供給を止め、排気バルブ119
を開いて真空度0.01Torrになるよう調整した状態で4sec
保持した。
以上の操作を4500回繰り返し、約5000Åの厚さの結晶
シリコン堆積膜605が得られた。
この基体118上に得られた結晶シリコン堆積膜605の断
面の模式図を第6図(E)に示す。
結晶粒界606はSiO2層604以外の、結晶基板601の露出
部603Aから等距離になるように結晶粒のサイズが決定さ
れていた。
さらに、得られた各試料を用いて、X線回折法及び電
子線回折法により堆積膜の結晶性の評価を行ったとこ
ろ、多結晶質シリコン膜である事が確認された。さらに
シユラー(Scherrar)法で求めた多結晶シリコンの粒径
は約3±0.5μmであった。結晶粒径のバラツキは基体
全面にわたってほとんどなかった。
又、走査型電子顕微鏡により試料の表面状態を観察し
たところ、平滑度は良好で波模様等が無く、膜厚ムラは
±4%以下であった。また得られた試料の多結晶Si堆積
膜の移動度をVan der Pauw法により測定した処、150(c
m/V・sec),4×10-6(S・cm-1)であった。
〔発明の効果〕
本発明の堆積膜形成法は、気体状原料物質と基体状ハ
ロゲン系酸化剤とを接触せしめるのみで堆積膜を生成す
ることができ、外部からの反応励起エネルギーを特に必
要としないという利点を有しており、そのため基体温度
の低温化を図ることも可能となるものである。又あらか
じめ堆積膜の結晶核となる材料乃至は結晶核が選択的に
形成し得る材料を基板表面上所望の位置に配置できる
為、任意の結晶質の堆積膜が形成できる。更に省エネル
ギー化を図ると同時に膜品質の管理が容易で、大面積に
亘って均一な膜質及び特性を有する結晶質の堆積膜を得
ることができる。また更に、生産性,量産性に優れ、高
品質で電気的,光学的,半導体的等の物理特性の優れた
結晶質の膜を簡単に得ることができる。
【図面の簡単な説明】
第1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 第2図乃至第6図は夫々本発明に係る基体作成工程図で
ある。図において、 101〜108……ガスボンベ 101a〜108a……ガスの導入管 101b〜108b……マスフロメーター 101c〜108c……ガス圧力計 101d〜108d及び101e〜108e……バルブ 101f〜108f……圧力計 109,110,111,123〜125……ガス導入管 112……基体ホルダー 113……基板加熱用ヒーター 116……基板温度モニター用熱電対、117……温度表示装
置 118……基体 119……真空排気バルブ 120……真空チヤンバー 121……基体ホルダー支持部材 126,127……液体原料用バブラー 128,129……堆積膜形成用液体原料 130……冷却パイプ 114,131……流量コントローラ 115,132……電源
───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 明 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭60−92475(JP,A)

Claims (13)

    【特許請求の範囲】
  1. 【請求項1】堆積膜形成用の気体状原料物質(I)と該
    原料物質(I)に酸化作用を及ぼす気体状ハロゲン系酸
    化剤(II)のいずれか一方である原料物質(A)を、堆
    積膜を形成する為の結晶核となる材料又は該結晶核が選
    択的に形成され得る材料を表面上に離散的に配して構成
    した基体が予め配されている成膜空間内に導入して前記
    基体表面に吸着させて吸着層(I)を形成する工程
    (A)と、他方である原料物質(B)を前記成膜空間内
    に導入して前記吸着層(I)での表面反応を起こさせて
    多結晶質の堆積膜を形成する工程(B)とを有すること
    を特徴とする堆積膜形成法。
  2. 【請求項2】前記吸着層(I)は、前記気体状ハロゲン
    系酸化剤(II)を前記基体表面に吸着させて形成される
    特許請求の範囲第(1)項に記載の堆積膜形成法。
  3. 【請求項3】前記吸着層(I)は、前記気体状原料物質
    (I)を前記気体表面に吸着させて形成される特許請求
    の範囲第(1)項に記載の堆積膜形成法。
  4. 【請求項4】前記堆積膜を形成する工程(B)の後に、
    該工程(B)で形成された堆積膜上に前記原料物質
    (A)を供給して吸着させて吸着層(II)を形成し、次
    いで該吸着層(II)上に前記原料物質(B)を供給して
    表面反応を起させて更に堆積膜を形成する工程を行う特
    許請求の範囲第(1)項に記載の堆積膜形成法。
  5. 【請求項5】前記気体原料物質(I)が、鎖状シラン化
    合物である特許請求の範囲第(1)項に記載の堆積膜形
    成法。
  6. 【請求項6】前記鎖状シラン化合物が、直鎖状シラン化
    合物である特許請求の範囲第(5)項に記載の堆積膜形
    成法。
  7. 【請求項7】前記直鎖状シラン化合物が、一般式SinH
    2n+2(nは1〜3の整数)で示される特許請求の範囲第
    (6)項に記載の堆積膜形成法。
  8. 【請求項8】前記直鎖状シラン化合物が、分岐状鎖状シ
    ラン化合物である特許請求の範囲第(5)項に記載の堆
    積膜形成法。
  9. 【請求項9】前記気体状原料物質(I)が、硅素の環状
    構造を有するシラン化合物である特許請求の範囲第
    (1)項に記載の堆積膜形成法。
  10. 【請求項10】前記気体状ハロゲン系酸化剤(II)が、
    ハロゲンガスを含む特許請求の範囲第(1)項に記載の
    堆積膜形成法。
  11. 【請求項11】前記気体状ハロゲン系酸化剤(II)が、
    弗素ガスを含む特許請求の範囲第(1)項に記載の堆積
    膜形成法。
  12. 【請求項12】前記気体状ハロゲン系酸化剤(II)が、
    塩素ガスを含む特許請求の範囲第(1)項に記載の堆積
    膜形成法。
  13. 【請求項13】前記気体状ハロゲン系酸化剤(II)が、
    弗素原子を構成成分として含むガスである特許請求の範
    囲第(1)項に記載の堆積膜形成法。
JP62067334A 1986-03-31 1987-03-20 堆積膜形成法 Expired - Fee Related JPH08973B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU70770/87A AU7077087A (en) 1986-03-31 1987-03-30 Forming a deposited film
EP19870302781 EP0240305B1 (en) 1986-03-31 1987-03-31 Method for forming a deposited film
DE19873783632 DE3783632T2 (de) 1986-03-31 1987-03-31 Herstellungsverfahren einer niedergeschlagenen schicht.
AU70237/91A AU632204B2 (en) 1986-03-31 1991-02-04 Method for forming a deposited film
US08/415,580 US5593497A (en) 1986-03-31 1995-04-03 Method for forming a deposited film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-73093 1986-03-31
JP7309386 1986-03-31

Publications (2)

Publication Number Publication Date
JPS6345371A JPS6345371A (ja) 1988-02-26
JPH08973B2 true JPH08973B2 (ja) 1996-01-10

Family

ID=13508374

Family Applications (3)

Application Number Title Priority Date Filing Date
JP62067336A Expired - Fee Related JP2662396B2 (ja) 1986-03-31 1987-03-20 結晶性堆積膜の形成方法
JP62067334A Expired - Fee Related JPH08973B2 (ja) 1986-03-31 1987-03-20 堆積膜形成法
JP62067335A Expired - Fee Related JP2670442B2 (ja) 1986-03-31 1987-03-20 結晶の形成方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62067336A Expired - Fee Related JP2662396B2 (ja) 1986-03-31 1987-03-20 結晶性堆積膜の形成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP62067335A Expired - Fee Related JP2670442B2 (ja) 1986-03-31 1987-03-20 結晶の形成方法

Country Status (3)

Country Link
US (2) US5593497A (ja)
JP (3) JP2662396B2 (ja)
CA (1) CA1320102C (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365464A (ja) * 1989-08-01 1991-03-20 Nippondenso Co Ltd アンチスキッド制御装置
US5849601A (en) * 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
KR950013784B1 (ko) 1990-11-20 1995-11-16 가부시키가이샤 한도오따이 에네루기 겐큐쇼 반도체 전계효과 트랜지스터 및 그 제조방법과 박막트랜지스터
US7081938B1 (en) 1993-12-03 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US6027960A (en) 1995-10-25 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and laser annealing device
US6368733B1 (en) * 1998-08-06 2002-04-09 Showa Denko K.K. ELO semiconductor substrate
JP3542014B2 (ja) * 1998-09-21 2004-07-14 セントラル硝子株式会社 単結晶または多結晶含有非晶質材料の作製方法及びその非晶質材料
JP3007971B1 (ja) * 1999-03-01 2000-02-14 東京大学長 単結晶薄膜の形成方法
US6814130B2 (en) * 2000-10-13 2004-11-09 Chien-Min Sung Methods of making diamond tools using reverse casting of chemical vapor deposition
US7132309B2 (en) 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
KR100385947B1 (ko) * 2000-12-06 2003-06-02 삼성전자주식회사 원자층 증착 방법에 의한 박막 형성 방법
US7087504B2 (en) * 2001-05-18 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by irradiating with a laser beam
EP1621258B1 (en) * 2003-04-15 2011-07-27 Nippon Soda Co., Ltd. Method for producing organic thin film
FR2864109B1 (fr) * 2003-12-23 2006-07-21 Commissariat Energie Atomique Croissance organisee de nano-structures
US7329319B2 (en) * 2004-11-10 2008-02-12 Illinois Institute Of Technology Method for producing crystals and screening crystallization conditions
US7619347B1 (en) 2005-05-24 2009-11-17 Rf Micro Devices, Inc. Layer acoustic wave device and method of making the same
US7408286B1 (en) * 2007-01-17 2008-08-05 Rf Micro Devices, Inc. Piezoelectric substrate for a saw device
US8490260B1 (en) * 2007-01-17 2013-07-23 Rf Micro Devices, Inc. Method of manufacturing SAW device substrates
US7846767B1 (en) 2007-09-06 2010-12-07 Chien-Min Sung Semiconductor-on-diamond devices and associated methods
FR2925220B1 (fr) * 2007-12-14 2010-01-08 Univ Paris Sud Procede d'hetero epitaxie localisee sur dielectrique, en particulier de germanium sur silicium oxyde, et procede et systeme de realisation d'une base de fabrication de circuit integre homogene ou heterogene
US7989325B2 (en) * 2009-01-13 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346414A (en) * 1964-01-28 1967-10-10 Bell Telephone Labor Inc Vapor-liquid-solid crystal growth technique
US3493431A (en) * 1966-11-25 1970-02-03 Bell Telephone Labor Inc Vapor-liquid-solid crystal growth technique
US3620833A (en) * 1966-12-23 1971-11-16 Texas Instruments Inc Integrated circuit fabrication
US3580732A (en) * 1968-01-15 1971-05-25 Ibm Method of growing single crystals
UST954009I4 (en) * 1973-03-24 1977-01-04 International Business Machines Corporation Method for the thermal oxidation of silicon with added chlorine
US3892608A (en) * 1974-02-28 1975-07-01 Motorola Inc Method for filling grooves and moats used on semiconductor devices
US4007294A (en) * 1974-06-06 1977-02-08 Rca Corporation Method of treating a layer of silicon dioxide
JPS5373072A (en) * 1976-12-13 1978-06-29 Sony Corp Formation of oxidized film
JPS5550636A (en) * 1978-10-09 1980-04-12 Hitachi Ltd Preparation of semiconductor device
JPS5571695A (en) * 1978-11-22 1980-05-29 Hitachi Ltd Production of epitaxial-grown wafer
US4402771A (en) * 1979-03-02 1983-09-06 Westinghouse Electric Corp. Substrate for silicon solar cells
US4239788A (en) * 1979-06-15 1980-12-16 Martin Marietta Corporation Method for the production of semiconductor devices using electron beam delineation
JPS5624925A (en) * 1979-08-08 1981-03-10 Hitachi Ltd Selective growth of silicon
WO1982002726A1 (en) * 1981-02-04 1982-08-19 Electric Co Western Growth of structures based on group iv semiconductor materials
US4371421A (en) * 1981-04-16 1983-02-01 Massachusetts Institute Of Technology Lateral epitaxial growth by seeded solidification
JPS6046074B2 (ja) * 1981-06-30 1985-10-14 日本電信電話株式会社 半導体結晶成長方法
US4637127A (en) * 1981-07-07 1987-01-20 Nippon Electric Co., Ltd. Method for manufacturing a semiconductor device
JPS5856321A (ja) * 1981-09-29 1983-04-04 Nec Corp 半導体基板の製造方法
JPS5856322A (ja) * 1981-09-29 1983-04-04 Nec Corp 半導体基板の製造方法
US4490208A (en) * 1981-07-08 1984-12-25 Agency Of Industrial Science And Technology Method of producing thin films of silicon
JPS58116739A (ja) * 1981-12-29 1983-07-12 Matsushita Electric Ind Co Ltd 膜多結晶体の粒子サイズの制御方法
JPS6050757B2 (ja) * 1982-01-12 1985-11-09 松下電器産業株式会社 単結晶膜の製造方法
US4462847A (en) * 1982-06-21 1984-07-31 Texas Instruments Incorporated Fabrication of dielectrically isolated microelectronic semiconductor circuits utilizing selective growth by low pressure vapor deposition
US4473598A (en) * 1982-06-30 1984-09-25 International Business Machines Corporation Method of filling trenches with silicon and structures
JPS5969495A (ja) * 1982-10-13 1984-04-19 Nippon Telegr & Teleph Corp <Ntt> シリコン単結晶膜の形成方法
JPS59169918A (ja) * 1983-03-14 1984-09-26 Showa Denko Kk ダイヤモンド合成法
US4522662A (en) * 1983-08-12 1985-06-11 Hewlett-Packard Company CVD lateral epitaxial growth of silicon over insulators
JPS6086096A (ja) * 1983-10-18 1985-05-15 Natl Inst For Res In Inorg Mater 膜状ダイヤモンドの析出法
JPS6092475A (ja) * 1983-10-25 1985-05-24 Anelva Corp 光化学的薄膜製造方法および装置
JPS612317A (ja) * 1984-06-15 1986-01-08 Hitachi Ltd 半導体装置の製造方法
JPH0766909B2 (ja) * 1984-07-26 1995-07-19 新技術事業団 元素半導体単結晶薄膜の成長法
US4657603A (en) * 1984-10-10 1987-04-14 Siemens Aktiengesellschaft Method for the manufacture of gallium arsenide thin film solar cells
US4592792A (en) * 1985-01-23 1986-06-03 Rca Corporation Method for forming uniformly thick selective epitaxial silicon
JPS61190925A (ja) * 1985-02-19 1986-08-25 Canon Inc 堆積膜形成法
JPS61190926A (ja) * 1985-02-19 1986-08-25 Canon Inc 堆積膜形成法
JPS61190923A (ja) * 1985-02-19 1986-08-25 Canon Inc 堆積膜形成法
JPH0633846B2 (ja) * 1985-09-11 1994-05-02 株式会社日本ピスコ 流体器具取付金具
CN1015008B (zh) * 1985-10-23 1991-12-04 佳能株式会社 形成沉积膜的方法
JPH0645886B2 (ja) * 1985-12-16 1994-06-15 キヤノン株式会社 堆積膜形成法
JPH0647730B2 (ja) * 1985-12-25 1994-06-22 キヤノン株式会社 堆積膜形成法
JP2566914B2 (ja) * 1985-12-28 1996-12-25 キヤノン株式会社 薄膜半導体素子及びその形成法
US4801474A (en) * 1986-01-14 1989-01-31 Canon Kabushiki Kaisha Method for forming thin film multi-layer structure member
US4671970A (en) * 1986-02-05 1987-06-09 Ncr Corporation Trench filling and planarization process
US4800173A (en) * 1986-02-20 1989-01-24 Canon Kabushiki Kaisha Process for preparing Si or Ge epitaxial film using fluorine oxidant

Also Published As

Publication number Publication date
JP2662396B2 (ja) 1997-10-08
JPS6345371A (ja) 1988-02-26
US5593497A (en) 1997-01-14
US5846320A (en) 1998-12-08
JPS6344717A (ja) 1988-02-25
CA1320102C (en) 1993-07-13
JPS6344718A (ja) 1988-02-25
JP2670442B2 (ja) 1997-10-29

Similar Documents

Publication Publication Date Title
JPH08973B2 (ja) 堆積膜形成法
JP2939500B2 (ja) 選択cvd法
JP2000223419A (ja) 単結晶シリコン層の形成方法及び半導体装置の製造方法、並びに半導体装置
EP0241204B1 (en) Method for forming crystalline deposited film
JP2002539327A (ja) 基板表面への金属酸化物の化学的気相成長法による成膜方法および装置
EP0240306B1 (en) Method for forming deposited film
EP0240314B1 (en) Method for forming deposited film
KR100480367B1 (ko) 비정질막을결정화하는방법
AU632204B2 (en) Method for forming a deposited film
US6818059B2 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
WO2007061273A1 (en) Method of forming silicon film by two step deposition
JPH0647735B2 (ja) 堆積膜形成法
JPS62186527A (ja) 堆積膜形成法
JPS62240768A (ja) 堆積膜形成法
JP2649221B2 (ja) 堆積膜形成法
JPS62193243A (ja) 堆積膜形成法
JPH04318921A (ja) 薄膜トランジスタの製造方法
KR100738659B1 (ko) 니켈 할로겐 화합물 분위기를 이용한 다결정 규소박막의제조방법
JP2000058460A (ja) シリコン薄膜製造方法
TW525215B (en) Method of improving exipaxy wafer quality
JP2002270511A (ja) 多結晶Si薄膜の堆積法、多結晶Si薄膜及び光起電力素子並びにターゲット
JPS62199014A (ja) 堆積膜形成法
JPS63233520A (ja) 堆積膜形成法
JPS62193242A (ja) 堆積膜形成法
JPS62243318A (ja) 堆積膜形成法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees