JP7182758B2 - リチウムバッテリのためのアノードおよびその製造方法 - Google Patents

リチウムバッテリのためのアノードおよびその製造方法 Download PDF

Info

Publication number
JP7182758B2
JP7182758B2 JP2016567613A JP2016567613A JP7182758B2 JP 7182758 B2 JP7182758 B2 JP 7182758B2 JP 2016567613 A JP2016567613 A JP 2016567613A JP 2016567613 A JP2016567613 A JP 2016567613A JP 7182758 B2 JP7182758 B2 JP 7182758B2
Authority
JP
Japan
Prior art keywords
silicon layer
anode
nanowires
substrate
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016567613A
Other languages
English (en)
Other versions
JP2017521812A (ja
Inventor
ワン、ウェイジー
リウ、ズキン
ハン、ソング
ボーンステイン、ジョナサン
イオネル ステファン、コンスタンチン
Original Assignee
アンプリウス テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンプリウス テクノロジーズ インコーポレイテッド filed Critical アンプリウス テクノロジーズ インコーポレイテッド
Publication of JP2017521812A publication Critical patent/JP2017521812A/ja
Priority to JP2021066099A priority Critical patent/JP7311169B2/ja
Application granted granted Critical
Publication of JP7182758B2 publication Critical patent/JP7182758B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

[関連出願の相互参照] 本出願は、2014年5月12日に出願された米国仮特許出願第61/992,121号に対する優先権を主張し、これは、その全体で全ての目的のために、本明細書において参照により組み込まれる。
[政府支援の陳述]
本明細書において説明され特許請求される本発明は、一部分において、米国エネルギー省によって契約番号第DE-EE0005474の下で供給される資金を使用して作成された。政府は、本発明において一定の権利を有する。
[発明の分野]
本発明は、概してナノ構造に関し、より具体的には、バッテリアノードにおいて有用な多層シリコンナノワイヤ構造に関する。
リチウムバッテリアノードにおいてシリコンを使用する方法を見つけるべく、多くの努力がなされてきている。シリコンは、現在使用されているグラファイトとして、10倍のリチウム容量を有するので、はるかに期待できる。しかし、残念ながら、大量のリチウムの吸収において、シリコンは400%膨張し、これにより、通常、シリコンの崩壊および短いバッテリ寿命がもたらされる。
一態様において、リチウムバッテリのアノードが提供され、そのアノードは、基板と、基板に固着されたナノワイヤテンプレートと、ナノワイヤテンプレートを実質的にコーティングし、第1の密度を有する第1のシリコン層と、第1のシリコン層および任意の露光されたナノワイヤテンプレートの上の第2のシリコン層と、を含み、第2のシリコン層は、第1のシリコン層の密度より高い密度を有する。様々な実施形態によると、第1の密度は、2.2g/cm未満、2.1g/cm未満、2.0g/cm未満、1.9g/cm未満、1.8g/cm未満、または1.7g/cm未満であってよい。第2のシリコン層は、いくつかの実施形態において、2.25g/cmより高い密度を有してよい。いくつかの実施形態において、第2のシリコン層は、第1のシリコン層の密度より少なくとも0.05g/cmまたは0.15g/cm高い密度を有する。
第1のシリコン層は、ナノワイヤテンプレートに対して非コンフォーマルであってよい。いくつかの実施形態において、第2のシリコン層は、下に存在する表面に対してコンフォーマルである。いくつかの実施形態において、第1のシリコン層の水素含有量は、少なくとも10%である。同じ、または他の複数の実施形態において、第2のシリコン層の水素含有量は、5%以下であってよい。様々な実施形態によると、ナノワイヤテンプレートは、伝導率であってよく、シリサイドナノワイヤを含み得る。ある例は、ニッケルシリサイドナノワイヤテンプレートである。
いくつかの実施形態において、第1のシリコン層は、その最大径において、約5から20ミクロンの間の厚さである。いくつかの実施形態において、第2のシリコン層は、約5から500ナノメートルの間の厚さ、例えば約5から100ナノメートルの間の厚さである。
本開示の別の態様は、上記で説明されたアノードと、リチウム含有カソードと、アノードおよびカソードの両方とイオンで連通している電解質とを含むリチウムバッテリに関する。
本開示の別の態様は、第1の密度を有する第1のシリコン層と、第1のシリコン層上の第2のシリコン層であって、第1のシリコン層の密度より高い密度を有する、第2のシリコン層とを含むナノ構造に関する。様々な実施形態によれば、第1の密度は、2.2g/cm未満、2.1g/cm未満、2.0g/cm未満、1.9g/cm未満、1.8g/cm未満、または1.7g/cm未満であってよい。第2のシリコン層は、いくつかの実施形態において、2.25g/cmより高い密度を有してよい。いくつかの実施形態において、第2のシリコン層は、第1のシリコン層の密度より少なくとも0.05g/cmまたは0.15g/cm高い密度を有する。いくつかの実施形態において、ナノ構造は、第1のシリコンワイヤ内にナノワイヤを含む。ナノワイヤは、基板に固着されて成長してよい。
本開示のさらに別の態様は、リチウムバッテリのためのアノードを製造する方法に関し、その方法は、基板を提供する段階と、基板から複数のナノワイヤを成長させる段階と、PECVD法を用いて複数のナノワイヤ上に第1のシリコン層を堆積させる段階と、熱CVD法を用いて第1のシリコン層、複数のナノワイヤ、および基板上に第2のシリコン層を堆積させる段階と、を含む。いくつかの実施形態において、複数のナノワイヤは、シリサイドナノワイヤである。いくつかの実施形態において、PECVD法は、拡張する熱プラズマ(ETP)法である。
これらおよび他の複数の態様が、更に以下において、図を参照して説明される。
前述の態様および他の態様は、添付の図面と併せて読まれる場合、複数の例示的な実施形態の以下の説明から、当業者によって容易に認識されるであろう。
シリコン層が、熱CVD(化学気相成長)を用いて上に堆積されている複数のナノワイヤの概略図である。
シリコン層が、PECVD(プラズマ増強化学気相成長)を用いて上に堆積されている複数のナノワイヤの概略図である。
本発明の実施形態に従って、第1のシリコン層が、PECVDを用いて上に堆積されており、次に、第2のシリコン層が、熱CVDを用いて上に堆積されている、複数のナノワイヤの概略図である。
シリコン層が、PECVDを用いて上に堆積されている、複数のナノワイヤのSEM(走査型電子顕微鏡)上面画像である。
本発明の実施形態に従って、第1のシリコン層が、PECVDを用いて上に堆積されており、次に、第2のシリコン層が、熱CVDを用いて上に堆積されている、複数のナノワイヤのSEM上面図画像である。
本発明の実施形態による、PECVDシリコンの内部コアおよび熱CVDシリコンの外層を有するナノ構造のSEM断面図画像である。
テンプレートナノワイヤ上の非コンフォーマルなシリコンコーティングを表した概略的描写を示す。
PECVD+熱CVD(TCVD)テンプレートSi層、PECVDのみのテンプレートSi層、およびTCVDのみのテンプレート層を有する複数の電極に対して、容量対充放電回数を示すグラフである。 PECVD+熱CVD(TCVD)テンプレートSi層、PECVDのみのテンプレートSi層、およびTCVDのみのテンプレート層を有する複数の電極に対して、容量保持対充放電回数を示すグラフである。
特定の実施形態による、本明細書で説明される複数の電極を使用する部分的にアセンブルされた電気化学セルの概略平面図である。
特定の実施形態による、本明細書で説明される複数の電極を使用する部分的にアセンブルされた電気化学セルの電極スタックの概略断面図である。
特定の実施形態による、セルを形成すべく、2つのシートのセパレータを共に巻き付けられた複数の電極の様々な概略図である。 特定の実施形態による、セルを形成すべく、2つのシートのセパレータを共に巻き付けられた複数の電極の様々な概略図である。 特定の実施形態による、セルを形成すべく、2つのシートのセパレータを共に巻き付けられた複数の電極の様々な概略図である。
特定の実施形態による、複数のセルを含むスタックされたセルの概略断面図である。 特定の実施形態による、複数のセルを含むスタックされたセルの概略斜視図である。
特定の実施形態による、巻き付けられた円筒状セルの概略断面図である。
特定の実施形態が、複数のシリサイドナノワイヤの上へシリコンが堆積された状況において示される。しかしながら、当業者は、本明細書で開示される材料および方法が、堆積を調節して特定の特性を有する層を生成することが有用な、多数の他の状況における用途を有することを容易に理解するであろう。例えば、様々な実施形態が、本明細書において、ナノワイヤに関して説明される。しかしながら、特に指定がない限り、本明細書におけるナノワイヤへの言及は、ナノチューブ、ナノ粒子、ナノスフェア、ナノロッド、ナノウィスカ等のような、本明細書において参照によって組み込まれる米国特許第8,257,866号で説明されるような他のタイプのナノ構造を含むことが理解されるべきである。
一般に、「ナノ構造」という用語は、約1ミクロン未満である少なくとも1つの寸法を有する構造を指す。この寸法は、例えば、ナノ構造(例えば、シリサイドテンプレートナノワイヤ)の直径、テンプレート上に形成されるシェルの厚さ(例えば、アモルファスシリコン層の厚さ)、または、何らかの他のナノ構造の寸法であり得る。最終的なコーティング構造の全体的な寸法(長さおよび直径)のいずれもナノスケールである必要はないことが、理解されるべきである。例えば、最終的な構造は、層を含み得、その層は、その最大直径における厚さが約10ミクロンであり、直径が約100ナノメートルで、長さが20ミクロンのテンプレート上にコーティングされる。この全体的な構造は、約10.1ミクロンの最大の直径、および20ミクロンの長さである一方、それは、テンプレートの寸法に起因して「ナノ構造」と概して呼ばれる。特定の実施形態において、「ナノワイヤ」という用語は、ナノスケールのシェルが細長いテンプレート構造の上に位置付けられている構造を指す。
ナノワイヤは(ナノ構造の具体例として)、1よりも大きいアスペクト比、典型的には少なくとも約2であり、より頻繁には少なくとも約4であるアスペクト比を有する。特定の実施形態において、ナノワイヤは、少なくとも約10のアスペクト比を有し、少なくとも約100または500のアスペクト比さえも有する。ナノワイヤは、その大きい1つの寸法を使用して他の電極構成要素(例えば、伝導率基板、他の活性物質構造、または伝導率添加剤)に接続し得る。例えば、複数のナノワイヤの大部分の一端(または何らかの他の一部)が、基板と接触するように、ナノワイヤには、基板が固着されていてよい。2つの他の寸法は小さく、拡張可能な隣接する空隙容量があるので、リチオ化(例えば、シリサイドテンプレート上に位置付けられたナノシェルの拡張)の間にナノワイヤに蓄積される内部応力も小さく、(より大きな構造に起こるように)ナノワイヤを破壊しない。ナノワイヤの特定の寸法(例えば、全体的な直径および/またはシェルの厚さ)は、使用される活性物質の対応する破壊レベル以下で保持される。ナノワイヤは、また、テンプレート構造の高さに対応する細長い構造により、電極表面の単位面積当たりの比較的高い容量を可能にする。これは、これらの比較的高いアスペクト比および基板への末端接続の結果として生じる。
シリコンナノ構造は、純シリコンでないナノワイヤテンプレート構造を最初に成長させ、次にシリコンでテンプレートをコーティングすることによって、作成され得る。熱CVD(化学気相成長)、HWCVD(ホットワイヤCVD)、および/またはPECVD(プラズマエンハンスト化学気相成長)が、シリコンを堆積させるのに使用されてよい。
様々な堆積プロセスは、シリコンをナノワイヤ上へ堆積させるとき、異なる外形を生成する。例えば、熱CVDは、コンフォーマルなアモルファスSiコーティングを生成する。HWCVD(触媒CVDとしても周知である)は、ナノワイヤの先端部でより厚く、基板の近くのナノワイヤの根もとでより薄い、高密度の非コンフォーマルなアモルファスSiコーティングを形成する。PECVDも、ナノワイヤの端部でより厚く、基板の近くのナノワイヤの根もとでより薄い非コンフォーマルなアモルファスSiコーティングを生成するが、そのコーティングは、多くの小さい空隙であり低密度である。
図1は、コンフォーマルなシリコン層が、熱CVDを用いて上に堆積されているナノワイヤの概略図である。ナノワイヤテンプレート110は、基板120から成長している。シリコン層130は、ナノワイヤテンプレート110の上へ堆積される。シリコン層130は、ナノワイヤ110および基板120の両方をコーティングし、コーティングは、どこでもおよそ同じ厚さを有することに留意されたい。
図1に示される構造の1つの利点は、その構造が非常に高密度であることである。そのような構造を用いて作成されたアノードが、バッテリにおいて充放電を繰り返す場合、シリコン上に形成する固体電解質界面(SEI)層は、熱CVDによって形成されるシリコンが非常に高密度であることから、非常に薄い。図1に示される構造の複数の欠点の1つは、ナノワイヤの根もとにおけるシリコンの厚い層である。そのような構造を用いて作成されたアノードが、バッテリにおいて充放電を繰り返す場合、シリコン層において大きな拡張および収縮が生じる。根もと部分における拡張は、Si層の皺およびナノワイヤの剥離を引き起こし得、バッテリ故障の原因となる。別の欠点は、テンプレートにおけるナノワイヤが、図1に示されるように正確に平行でないかもしれないことから、起こる。代わりに、それらは、異なる角度で成長し、クラスタで成長する場合が非常に多い。ナノワイヤは、全てが同じ長さを有するわけではない。熱CVDによってコーティングされる場合、クラスタの根もとは、いくつかの短いナノワイヤと共に、連続シリコン層も形成し得、それも剥離に繋がり得る。
図2は、PECVDを用いてシリコン層が上に堆積されている、ナノワイヤの概略図である。最初に、PECVDは、基板上にかつナノワイヤの根もとにおいて、シリコンの非常に薄い層(1ミクロン未満であり、典型的には、0.1から0.4ミクロン等、はるかに1ミクロン未満である)を堆積させてよい。しかしながら、これらの部分は、ナノワイヤの先端部におけるその後の堆積によってすぐに陰になる。基板面にわたるナノワイヤの均一性によっては、基板上の非常に薄い層は、連続していてもよく、または連続していなくてもよい。理想的な表面および堆積条件の下で、均一な薄い層が期待されてよいが、実際の場合、基板・ナノワイヤ界面において、表面上のナノワイヤの不均一な分布に起因する不連続性が存在し得る。
図2において、ナノワイヤテンプレート210は、基板220から成長させられる。シリコン層240は、ナノワイヤテンプレート210上へ堆積させられる。シリコン層240は、ナノワイヤ210の先端部で最も厚く、ナノワイヤの210の根もとにおいてシリコンが実質的に無くなるまで先細りすることに留意されたい。基板220上においても、シリコンは、実質的に無い。
図2に示される構造の1つの利点は、ナノワイヤの根もと部分が、この非常に薄いシリコン層だけでコーティングされていることである。そのような構造を用いて作成されたアノードが、バッテリにおいてサイクルされる場合、ナノワイヤ根もと部分における拡張によって生じる欠陥の可能性は、大いに低減される。別の利点は、PECVDコーティングが、熱CVDコーティングほど高密度でなく、大量の空隙および孔を含み得ることである。そのような欠陥は、シリコンが、リチウムを吸収するにつれてシリコンが中で拡張し得る空間を提供することにおいて非常に役立つことが可能である。
図2に示される構造の欠点の1つは、ナノワイヤの根もと部分が、効果的にコーティングされないことである。そのような構造を用いて作成されたアノードが、バッテリにおいてサイクルされる場合、根もとの周りの領域は、電気化学的に関与することが出来なく、したがって、バッテリの体積エネルギー密度の減少を引き起こす。より多くのシリコンが、ナノワイヤ上に堆積させられた場合、ナノワイヤの先端部におけるシリコン層は、厚くなり過ぎて、サイクルの間にシリコンの破砕、およびそれに続くアノードの故障を引き起こす。別の欠点は、空隙の存在は、コーティングされたナノワイヤの表面面積の増加および層内もしくは表面における水の吸収に繋がり得る。バッテリが充放電を繰り返すにつれて、非常に厚いSEI層が形成し得、したがって、クーロン効率を下げ、バッテリの充放電寿命を短縮させる。
本発明の一実施形態において、上記で議論された複数の堆積法は、2つのシリコン層が上に堆積されているナノワイヤの概略図である図3に示されるように、最適なSiコーティングを設けるべく、組み合わされる。ナノワイヤテンプレート310は、基板320から成長させられる。先細りした外形を有する第1のシリコン層340は、PECVDを用いてナノワイヤテンプレート310上に堆積させられる。第1のシリコン層340は、ナノワイヤの上部において、例えば、約0.5から10ミクロンの間の厚さであってよい。いくつかの実施形態において、第1のシリコン層はより厚くてよく、例えば、約10から50ミクロンの間、または10から20ミクロンの間であってもよい。コンフォーマルな形状を有する第2のシリコン層330は、熱CVDを用いて第1のシリコン層340の上に堆積させられる。第2のシリコン層330は、例えば、約10から500nmの間の厚さであってもよい。結果として得られる構造は、ナノワイヤの先端部において、その根もと端部よりもはるかに多くのシリコンを有する。より特定の実施形態において、第2のシリコン層は、5から200nmの間の厚さ、または10から90nmの間の厚さであってもよい。第2のシリコン層330は、下に存在する表面に対してコンフォーマルであり、それは、第1のシリコン層340、基板320、およびナノワイヤテンプレート340の任意の露出部分を含む。上で述べたように、第2のシリコン層は、およそ均一な厚さを有する。
様々な実施形態によると、基板面上の層は、連続していても連続していなくてもよい。基板上の層が、厚くなり過ぎて(例えば、2ミクロンより厚い)連続していない限り、高性能が、実現され得る。
図4は、シリコン層が、PECVDを用いて上に堆積させられているナノワイヤのSEM(走査型電子顕微鏡)上面画像である。
図5は、第1のシリコン層が、PECVDを用いて上に堆積させられ、次に、第2のシリコン層が、熱CVDを用いて上に堆積させられているナノワイヤのSEM上面画像である。
本明細書において説明される新規な構造は、多くの利点を有する。いくつかの実施形態において、ナノワイヤの先端部の近くにおいて、根もとにおいてよりも多くのシリコンがあるが、根もとにおいて、まだいくらかのシリコンがある。根もとにおいてそのような薄いシリコン層を有することで、サイクルの間に、剥離が起こらないことが保証される。いくつかの実施形態において、ナノワイヤの全体の長さにわたって電気化学的な関与もあってよい。更に、SEI層形成が、安定化されてよい。
いくつかの実施形態において、堆積させられた第1のシリコン層は、アモルファスであり、約1.70g/cm以下、または2.10g/cm以下、または2.2g/cm以下、または2.25g/cm未満の密度のような低密度を有し、多くの小さい空隙を含んでもよい。堆積させられた第2のシリコン層は、アモルファスであり、約2.25g/cm以上の密度のような高密度を有する。それぞれの層の密度は、結晶シリコンの密度より低い。
様々な実施形態によると、ナノ構造は、第1のシリコン層上の第2のシリコン層によって特徴付けられてよく、第2のシリコン層は、第1のシリコン層の密度より高い密度を有する。上記で議論されたように、いくつかの実施形態において、第1のシリコン層は、シリコンが、リチウムを吸収するにつれて中で拡張し得る空間を提供する一方で、第2のシリコン層は、SEI層形成を減少させる。そのように、それぞれの層の密度は、電解質、バッテリの容量、ナノワイヤテンプレート密度等に応じて調整されてよい。したがって、いくつかの実施形態において、それらの密度は、絶対密度ではなく、または絶対密度に加えて、複数の層の密度間の差に関して特徴付けられてよい。いくつかの実施形態において、第2のシリコン層は、第1のシリコン層よりも少なくとも0.05g/cm高い密度、または第1のシリコン層よりも少なくとも0.1g/cm高い密度、または第1のシリコン層よりも少なくとも0.2g/cm高い密度、または第1のシリコン層よりも少なくとも0.3g/cm高い密度を有してよい。
図6は、本発明の実施形態による、PECVDシリコン640の内部コアおよび熱CVDシリコン630の外層を有するナノ構造のSEM断面図画像である。PECVDシリコン640の多孔性形態は、熱CVDシリコン630の非多孔性形態と同じように明瞭に見ることが可能である。
本明細書で開示される方法および構造の態様は、シリコンに加え、またはそれの代わりに、他の高容量活性物質で実装されてよい。電気化学的に活性の物質は、少なくとも約500mAh/g、より具体的には少なくとも約1000mAh/gの理論的リチオ化容量を有してよい。そのような容量を有する活性物質は、「高容量活性物質」と呼ばれてよい。アモルファスシリコンに加えて、高容量活性物質の例は、シリコン含有化合物、スズおよびスズ含有化合物、ゲルマニウムおよびゲルマニウム含有化合物を含む。例えば、いくつかの実施形態において、電極は、低密度を有する第1の内層およびより高い密度を有する第2の外層を含む二重密度ゲルマニウム層を含んでよい。
特定の実施形態において、高容量活性物質またはテンプレートは、基板に固着されたナノ構造として形成される。これらのナノ構造は、この電極のための電流コレクタとして機能してよい伝導率基板に物理的および導電的に取り付けられてよい。物理的取り付けは、単なる機械的接触にとどまらなくてもよく、それは、例えば、個別のナノ構造を有するバインダを基板上にコーティングすることにより生じるかもしれない。いくつかの実施形態において、物理的取り付けは、ナノ構造を基板へ融合させること、またはナノ構造のまたはナノ構造の一部を基板上へ直接、例えば、CVD技術を用いて、または、よりさらに具体的に、気相‐液相‐固相CVD成長を用いて、堆積させることにより生じる。さらに別の例において、物理的取り付けは、ナノ構造を基板上に衝撃を加えて突き刺すことから生じる。特定の実施形態において、物理的取り付けは、2つの接合された材料の合金(例えば、シリサイド)の形成のような、特定の形態の金属結合を含む。
多くの実施形態において、ナノワイヤテンプレートは伝導率材料であり、伝導率テンプレートの例に、金属テンプレートおよび金属シリサイドテンプレートが含まれる。いくつかの実施形態において、伝導率テンプレートは、酸化物を含んでよい。本明細書で使用されるとき、「伝導率」という用語は、半導体および絶縁体とははっきりと異なるものとして、導電体を広範に指す。ナノワイヤテンプレートは、少なくとも約10S/mの伝導率、またはより具体的には、少なくとも約10S/mの伝導率、または少なくとも約10S/mの伝導率さえ有してもよい。伝導率テンプレートは、電気化学的に活性な材料であるシリコンから電流コレクタへのトランスポート経路を提供するとともに、シリコン層を機械的にサポートするのに有用であり得る。しかしながら、いくつかの実施形態において、ナノワイヤテンプレートは、機械的サポートをシリコンに提供する半導体または絶縁体(例えば、酸化物)であってよい。シリコンナノワイヤは、本明細書で説明されるようにシリコンナノワイヤの上にа‐Siの1または複数のコーティングを堆積させてテンプレートとして使用されてもよい。シリコンナノワイヤアノードは、本明細書に参照によって組み込まれる米国特許第7,816,031号において説明されている。
ナノワイヤテンプレートのナノワイヤは、非分岐線形ナノワイヤまたは分岐ナノワイヤであってよい。電極は、非分岐ナノワイヤと分岐ナノワイヤとの組み合わせを含んでよく、またはこれらのタイプの一方だけを含むだけでもよい。テンプレートは、概して細長いテンプレート構造であってよいが、上記のように、ナノスフェア、ナノロッド、ナノウィスカ、ナノ粒子等が使用されてもよい。ナノワイヤテンプレートは、多次元構造の一部であってよい、またはそれを含んでもよい。そのような構造の一例は、複数のナノワイヤが取り付けられ、「毛玉状」または「雪玉状」の構造を形成する中核である。そのような構造の例は、本明細書において参照によって組み込まれる米国特許出願第13/277,821号に示されている。
特定の実施形態において、ナノワイヤテンプレートにおけるナノワイヤは、約10ナノメートルから100ナノメートルの間の直径、および、約10ミクロンから100ミクロンの間の長さを有する。一例において、構造は、5から40ミクロンにわたる範囲のナノワイヤを含んでよい。しかしながら、他の寸法を有するナノワイヤが使用されてもよい。
ナノワイヤ密度は、ナノワイヤの長さ、所望される容量、活性物質の膨張率、および特定の用途に依存し得る。複数のテンプレート構造の間の間隔が、コーティングの厚さ未満である場合、それは、活性物質層のかなり大きい相互接続をもたらし得る。根もとの近くの相互接続は、凝集した、または連続した膜状構造を生成し得、それは、良好な充放電性能を妨げる。ナノワイヤは、様々な長さを有し、ランダムに方向付けられて、ランダムに分布してよい。しかしながら、いくつかの実装において、均一な密度および/または方向性を生み出す、テンプレートまたはガイドによる成長法が、使用されてよい。一例において、テンプレート構造のナノワイヤは、様々なサイズの範囲、例えば、短いサイズ、中間のサイズ、および長いサイズの範囲にグループ化されてよい。長いナノワイヤは、上記に示されるように、上から見たSEM画像で見えるものとして識別されてよい。例示的な密度は、100ミクロン平方当たり0.5から20個の長いナノワイヤ、および100ミクロン平方当たり合計で2から400個のナノワイヤであってよい。いくつかの実施形態において、ナノワイヤ密度は、特定の質量負荷について決定されてよい。例えば、2.5から2.9Mg/cmの間の質量負荷の場合、Siコーティングの上部の直径4から6ミクロンは、底部の直径0.2から0.3ミクロンについて、上部のナノワイヤ密度は、センチメートル平方当たり、長いナノワイヤが2×10から6×10個であってよい。
特に、ナノワイヤテンプレートが、基板に固着されており、バッテリにおいて電流コレクタとして使用されてよい場合、基板は、概して、少なくとも約10S/mの伝導率、またはより具体的には少なくとも約10S/mの伝導率、または少なくとも約10S/mの伝導率さえ有する伝導率材料である。これは、基板が固着された構造が、バッテリまたは燃料電池用に完全に製造された電極として使用される場合に望ましいであろう。伝導率基板材料の例として、銅、複数の金属酸化物でコーティングされた銅、ステンレス鋼、チタン、アルミニウム、ニッケル、クロム、タングステン、他の複数の金属、金属シリサイド、および他の複数の伝導率金属化合物、カーボン、カーボンファイバ、グラファイト、グラフェン、カーボンメッシュ、伝導率ポリマー、ドープされたシリコンまたは多層構造を含む上記の組み合わせが挙げられる。基板は、ホイル、フィルム、メッシュ、発泡体、スタック体、ワイヤ、チューブ、粒子、多層構造、または任意の他の適切な構成として形成されてよい。特定の実施形態において、基板は、約1ミクロンから50ミクロンの間の厚さ、またはより具体的には、約5ミクロンから30ミクロンの間の厚さを有する金属ホイルである。
様々な実施形態によると、シリコンコーティングは、形状(モホロジーとも呼ばれる)、密度、並びにバルクおよび表面組成のうち1または複数によって特徴付けてよい。モホロジーに関して、第1のシリコン層は、非コンフォーマルとして概して特徴付けられてよく、基板に対して垂直な方向において変化し得る厚さを有する。
いくつかの実施形態において、シリコン層は、概して円対称性を有する。例えば、図4における上面SEM画像を参照されたい。概して円対称性を有するナノワイヤのアレイは、2つのナノワイヤが、十分に近接しており、これらのコーティングが互いに境を接することに起因して、非対称性が導入され得る複数のアレイを含むことに留意すべきである。
図7は、水滴または円錐台としてのコーティングを表した概略的描写を示す。d1、d2およびhといった寸法は、d1が、コーティングの最大直径であり、d2が、コーティングの底部の直径であり、hが、コーティング後のアノードの高さであるとしてラベル付けされる。非コンフォーマルコーティング(多孔性非コンフォーマルコーティング単独、または高密度のコーティングでコンフォーマルにコーティングされた多孔性非コンフォーマルコーティング)は、いくつかの実施形態において、以下の比、1/2から1/9のd1/h比、1/400から1/70のd2/h比、および50:1から1.5:1のd1/d2比によって、特徴付けられてよい。
一例において、d1は、4から15ミクロンの間、または4から12ミクロンの間であってよく、d2は、約0.2から2ミクロンの間であってよく、高さは、約20から50ミクロンの間、例えば、約30から40ミクロンの間であってよい。コーティングは、いくつかの実施形態において、ナノワイヤの高さの上に10から20ミクロンの間で延在してよい。非コンフォーマル層は、ナノワイヤを実質的にコーティングし、非コンフォーマルコーティングは、ナノワイヤの長さの少なくとも大部分にまで延び、いくつかの実施形態においては、テンプレート全体をコーティングする。上記のように、ナノワイヤテンプレートの近くにまたはその根もとにおいて、不連続性があってよい。
一例において、約10から50nmの直径および約10から25ミクロンの間の長さを有するナノワイヤは、シリコンでコーティングされ、コーティング後には、その結果根もとにおけるナノ構造の直径が、100から400nmになり、最大径が、2から20ミクロンになり、アノードの合計の高さが、20から40ミクロンになる。
いくつかの実施形態において、非コンフォーマル層は、少なくとも10%の水素(H)含有量によって特徴付けられてもよい。いくつかの実施形態において、コンフォーマルな高密度層は、7%以下、または5%以下の体積水素含有量によって特徴付けられてよい。
非コンフォーマルな、多孔性のシリコン層は、PECVDの代わりに、またはそれに加えて、蒸着または他の物理的気相成長(PVD)法またはHWCVD等の方法により堆積させられてよい。
PECVDプロセスにおいて、様々な実装によると、プラズマが、基板が配置されるチャンバにおいて生成されてよく、またはチャンバの上流に生成されて、チャンバ内に供給されてもよい。容量結合プラズマ、誘導結合プラズマ、および導電性結合プラズマを含む任意のタイプのプラズマが、使用されてよい。DC、AC、RFを含む任意の適当なプラズマ源が、使用されてよく、マイクロ波源が、使用されてもよい。
PECVDプロセス条件は、特定のプロセスおよび使用されるツールにより、変化し得る。かなり広い範囲の温度、例えば、180℃から600℃の温度が使用されてよい。圧力は、プラズマプロセスでは、概して低く、例えば、プロセスに応じて、50mTorrから400Torr、または200mTorrから10Torrにわたる範囲にある。
いくつかの実装においてPECVDプロセスは、拡張する熱プラズマ化学気相成長(ETP‐CVD)プロセスである。そのようなプロセスにおいて、プラズマ発生ガスは、直流アークプラズマジェネレータの中を通過して、プラズマを形成し、ナノワイヤテンプレートを含むウェブまたは他の基板は、隣接している真空チャンバ内にある。シリコンの原料ガスが、プラズマ内に注入され、ラジカルが生成される。プラズマは、発散ノズルを介して拡張され、真空チャンバ内に、そして基板に向かって注入され、アモルファスシリコンの非コンフォーマル層が、ナノワイヤテンプレート上に形成される。プラズマ発生ガスの例にアルゴン(Ar)がある。いくつかの実施形態において、プラズマにおけるイオン化アルゴン種は、複数のシリコンの原料分子と衝突し、シリコン原料のラジカル種を形成し、ナノワイヤテンプレート上に堆積が生じる。DCプラズマ源の電圧および電流についての例示的な範囲は、それぞれ、60から80ボルト、および、50から70アンペアである。
コンフォーマルで高密度のシリコン層は、熱CVDの代わりに、またはそれに加えて、原子層堆積(ALD)のような方法によって堆積させられてよい。低圧力CVD(LPCVD)等の任意の適当な熱CVDプロセスが、使用されてよい。金属基板を用いるときの温度の増加により、金属シリサイドが、ナノワイヤ‐基板界面の周りに形成されない限り、温度は、いくつかの実施形態において、サーマルバジェットが許容するほど高くてもよい。
シリコン層を形成すべく、シラン(SiH)、ジクロロシラン(HSiCl)、モノクロロシラン(HSiCl)、トリクロロシラン(HSiCl)、および四塩化シリコン(SiCl)を含む任意の適当なシリコン原料が、非コンフォーマルおよびコンフォーマルなシリコン層に使用されてもよい。使用される気体によっては、アモルファスシリコン層が、水素還元等による、分解または別の化合物との反応によって形成されてよい。様々な実施形態によると、同じまたは異なるシリコン原料が、複数の層のそれぞれに使用されてよい。
様々な実施形態によると、PECVDプロセスは、シリコン前駆体の気相ラジカル生成および気相核生成およびテンプレートの表面上における凝結に起因する非コンフォーマルコーティングをもたらす。対照的に、熱CVD反応は、表面反応をもたらす複数の条件で実行される。表面における高エネルギーおよび移動性は、コンフォーマル層をもたらす。いくつかの実施形態において、熱CVDプロセスの間のチャンバ圧は、例えば100mTorrから2Torrで、低い圧力に保持され、気相反応および非コンフォーマル堆積を防止する。より高い圧力、例えば、2Torrより高い、つまり500Torrで、非コンフォーマル堆積が生じ得る。
制御された密度を有する活性物質層を堆積させることの更なる説明は、本明細書において参照によって組み込まれる米国特許出願第13/277,821号において見られ得る。
上に示されるように、ナノ構造は、第1のシリコン層上の第2のシリコン層によって特徴付けられてよく、第2のシリコン層は、第1のシリコン層の密度より高い密度を有する。いくつかの実施形態において、第1のシリコン層は、ナノワイヤテンプレート上に直接堆積させられてよく、第2のシリコン層は、コーティングされたテンプレートの最外殻である。しかしながら、いくつかの実施形態において、他の層が存在してもよい。例えば、薄い高密度シリコン層が、ナノワイヤテンプレート上に堆積させられてよく、その後に、より厚い多孔性の層および第2の薄い高密度層が続く。
まだ更に、非Si層が、いくつかの実施形態において、ナノ構造の最外殻であってもよい。複数の層の例には、酸化アルミニウム、酸化チタン、酸化コバルト、および酸化ジルコニウム等の金属酸化物、金属窒化物、並びにシリコン窒化物が挙げられる。いくつかの実施形態において、これらのいずれかの薄い層が、上記の高密度なSi層に加えて、またはその代わりに堆積させられてよい。
様々な実施形態によると、第1のおよび第2のシリコン層のそれぞれが、均一な密度を有してよい。しかしながら、いくつかの実施形態において、一方または両方の層において密度勾配を提供すべく、堆積中に堆積条件が調整されてもよい。例えば、どちらの層も、層の外側部分に向かってより密度が高くなってもよい。そのような実施形態において、層の平均密度が、上記のような層の密度を特徴付けるのに使用されてよい。
いくつかの実施形態において、シリコンが、HWCVDによって堆積させられてよい。いくつかのそのような実装において、通常PECVDによって堆積させられるものと、通常TCVDによって堆積させられるものとの間の密度を有する単独のSi層が、堆積させられてよい。それは、また、堆積プロセスを調整することによって、第1のおよび第2のSiコーティングの両方をコーティングするのに使用され得る。
[実験]
本明細書において説明されるようなSiの2つの層を有するナノワイヤからの充放電データは、そのような構造が、PECVDだけ、または熱CVDだけを用いて作成される構造を上回る、増加した充放電寿命を有することを示す。図8Aおよび図8Bは、PECVD+熱CVD(TCVD)のテンプレートSi層、PECVDのみのテンプレートSi層、およびTCVDのみのテンプレート層を有する複数の電極について、容量対充放電回数、および容量保持対充放電回数を示すグラフである。容量および容量保持は、PECVD+TCVD Si層に対して最も高い。上記のように、PECVD層は、より多孔性であり、より密度が低い内部層であり、TCVD層は、より密度の高い外部層である。
[アセンブリ]
図9Aは、特定の実施形態による、本明細書において説明される複数の電極を使用する部分的にアセンブルされた電気化学セルの平面図である。セルは、正電流コレクタ903の大部分を覆うことが示される正電極活性層902を有する。セルは、負の電流コレクタ905の大部分を覆うことが示される負電極活性層904も有する。セパレータ906が、正電極活性層902と負電極活性層904との間にある。
一実施形態において、負電極活性層904は、正電極活性層902よりもわずかに大きく、正電極活性層902から放出されるリチウムイオンが負電極活性層904の活性材料によってトラッピングされることを確実にする。一実施形態において、負電極活性層904は、1または複数の方向において、正電極活性層902を超えて少なくとも約0.25ミリメートルから7ミリメートルの間にわたって延在する。より具体的な実施形態によると、負電極活性層904は、1または複数の方向において、正電極活性層902を超えて約1ミリメートルから2ミリメートルの間にわたって延在する。特定の実施形態によると、セパレータ906の縁部は、少なくとも負電極活性層904の外側の縁部を超えて延在し、負電極および他のバッテリ構成要素の完全な電子的絶縁を提供する。
図9Bは、特定の実施形態による、本明細書において説明される複数の電極を使用する部分的にアセンブルされた電気化学セルの電極スタック900の断面図である。片側に正電極活性層902a、および、反対側に正電極活性層902bを有する正電流コレクタ903がある。片側に負電極活性層904a、および、反対側に負電極活性層904bを有する負の電流コレクタ905がある。正電極活性層902aと負電極活性層904aとの間にセパレータ906aがある。セパレータシート906aおよび906bは、正電極活性層902aと負電極活性層904aとの間の機械的な距離を保持する機能を果たし、後に加えられるであろう液体電解質(図示せず)を吸収するスポンジとして作用する。活性物質が上に無い電流コレクタ903、905の端部は、セルの適切な端子(図示せず)に接続するために使用され得る。
共に、電極層902a、904a、電流コレクタ903、905、およびセパレータ906aは、1つの電気化学的セルユニットを形成すると言及され得る。図9Bに示される完全なスタック900は、電極層902b、904bおよび更なるセパレータ906bを含む。電流コレクタ903、905は、複数の隣接セルの間で共有され得る。そのようなスタックが繰り返される場合、結果として、単一のセルユニットの容量より大きい容量を有するセルまたはバッテリがある。
大きい容量を有するバッテリまたはセルを形成する別の方法は、1つの非常に大きいセルユニットを形成し、それ自体に巻き付けて複数のスタックを形成することである。図10Aにおける断面概略図は、場合によりゼリーロール1000と呼ばれるバッテリまたはセルを形成すべく、2つのシートのセパレータと共に巻き付けられ得る電極が、どの程度長く狭いか示す。ゼリーロールは、湾曲し、多くの場合円筒状のケース1002の内部寸法に適合するように形作られサイズ決定されている。ゼリーロール1000は、正電極1006および負電極1004を有する。複数の電極の間の白色空間は、セパレータシートである。ゼリーロールは、ケース1002内に挿入され得る。いくつかの実施形態において、ゼリーロール1000は、最初の巻き付け直径を確立し、内側の巻線が、中央の軸領域を占有することを防止するマンドレル1008を中央に有してよい。マンドレル1008は、伝導率材料で作成されてよく、いくつかの実施形態においては、セル端子の一部であってもよい。図10Bは、ゼリーロール1000の斜視図を示し、正のタブ1012および負のタブ1014は、正電流コレクタ(図示せず)および負の電流コレクタ(図示せず)からそれぞれ延びている。タブは、電流コレクタに溶接されてもよい。
電極の長さおよび幅は、セルの全体的な寸法および活性層および電流コレクタの厚さに依存する。例えば、18mmの直径および85mmの長さを有する従来の18650タイプのセルは、約300から1000mmの間の長さである複数の電極を有してよい。低いレート/より高い容量の用途に対応するより短い電極は、より分厚く、より少ない巻線を有する。
円筒状設計が、いくつかのリチウムイオンセルに対して、特に、サイクルの間に電極が膨張し、したがってケーシングに圧力を加える場合に使用されてもよい。セルにおいて十分な圧力を維持することがいまだに可能な間に(良好な安全性の余地があり)、可能な限り薄い円筒状ケーシングを使用することが有用である。角柱状の(平坦な)セルが同様に巻き付けられてもよいが、これらのケースは、これらが内圧を許容すべく長辺に沿って屈曲し得るように、可撓性を有する。さらに、圧力は、セルの複数の異なる部分内で同じでなくてもよく、角柱セルの角は、空のままで残されてもよい。空のポケットは、リチウムイオンセル内で回避されてよい。これは、電極が、電極が膨張する間に、これらのポケット内に不均一に押し込まれる傾向があるからである。さらに、電解質は、空のポケットにおいて凝集してよく、電極間に乾燥したエリアを残してよく、電極間のリチウムイオントランスポートに負の影響を与える。それにもかかわらず、矩形の形状因子によって決定づけられるもの等の特定の用途では、角柱セルが適切である。いくつかの実施形態において、角柱セルは、矩形電極のスタックおよびセパレータシートを使用し、巻き付けられた角柱セルで直面する困難性のいくつかを回避する。
図10Cは、巻き付けられた角柱ゼリーロール1020の上面図を示す。ゼリーロール1020は、正電極1024および負電極1026を含む。電極間の白色空間は、セパレータシートである。ゼリーロール1020は、矩形の角柱ケース1022で包まれている。図12に示される円筒状ゼリーロールと異なり、角柱ゼリーロールの巻線は、ゼリーロールの中央の平坦な延長部分で開始する。一実施形態において、ゼリーロールは、複数の電極およびセパレータが上に巻き付けられるゼリーロールの中央におけるマンドレル(図示せず)を含んでよい。
図11Aは、複数のセル(1101a、1101b、1101c、1101d、および1101e)を含むスタックされたセルの断面を示し、各々は、正電極(例えば、1103a、1103b)、正電流コレクタ(例えば、1102)、負電極(例えば、1105a、1105b)、負の電流コレクタ(例えば、1104)およびセパレータ(例えば、1106a、1106b)を電極間に有する。それぞれの電流コレクタは、複数の隣接セルによって共有される。スタックされたセルは、特に、角柱バッテリに適切な、ほぼ任意の形状で作成され得る。電流コレクタタブは、典型的には、スタックから延び、バッテリ端子へと繋がる。図11Bは、複数のセルを含むスタックされたセルの斜視図を示す。
一度電極が、上記のように配置されると、セルは、電解質で充填される。リチウムイオンセルにおける電解質は、液体、固体、またはゲルであってよい。固体電解質を有するリチウムイオンセルは、リチウムポリマーセルと呼ばれる。
典型的な液体電解質は、1または複数の溶媒および1または複数の塩を含み、これらの少なくとも1つは、リチウムを含む。第1の充電サイクル(場合により、形成サイクルと呼ばれる)の間、電解質における有機溶媒は、負電極表面上で部分的に分解し得、SEI層を形成する。界面相は、一般に、電気的に絶縁性であるが、イオン伝導性であり、このようにして複数のリチウムイオンが通過することを可能にする。界面相は、また、後の充電サブサイクルにおいて電解質の分解を防止する。
いくつかのリチウムイオンセルに適切な非水系溶媒のいくつかの例に、以下の環状炭酸塩(例えば、エチレン炭酸塩(EC)、プロピレン炭酸塩(PC)、ブチレン炭酸塩(BC)およびビニルエチレン炭酸塩(VEC))、ビニレン炭酸塩(VC)、ラクトン(例えば、ガンマ‐ブチロラクトン(GBL)、ガンマ‐バレロラクトン(GVL)およびアルファ‐エンジェリカラクトン(AGL))、直鎖炭酸塩(例えば、ジメチル炭酸塩(DMC)、メチルエチル炭酸塩(MEC)、ジエチル炭酸塩(DEC)、メチルプロピル炭酸塩(MPC)、ジプロピル炭酸塩(DPC)、メチルブチル炭酸塩(NBC)およびジブチル炭酸塩(DBC))、エーテル(例えば、テトラヒドロフラン(THF)、2‐メチルテトラヒドロフラン、1,4‐ジオキサン、1,2‐ジメトキシエタン(DME)、1,2‐ジエトキシエタンおよび1,2‐ジブトキシエタン)、亜硝酸塩(例えば、アセトニトリルおよびアジポニトリル)直鎖エステル(例えば、メチルプロピオナート、メチルピバラート、ブチルピバラートおよびオクチルピバラート)、アミド(例えば、ジメチルホルムアミド)、有機リン酸(例えば、トリメチルリン酸およびトリオクチルリン酸)、S=O群(例えば、ジメチルスルホンおよびジビニルスルホン)を含む有機化合物、およびこれらの組み合わせが挙げられる。
非水系液体溶媒が、組み合わせて使用され得る。これらの組み合わせの例に、環状炭酸塩‐直鎖炭酸塩、環状炭酸‐ラクトン、環状炭酸‐ラクトン‐直鎖炭酸塩、環状炭酸塩‐直鎖炭酸塩‐ラクトン、環状炭酸塩‐直鎖炭酸塩‐エーテル、および環状炭酸塩‐直鎖炭酸塩‐直鎖エステルの組み合わせが挙げられる。一実施形態において、環状炭酸塩が、直鎖エステルと組み合わされてもよい。さらに、環状炭酸塩は、ラクトンおよび直鎖エステルと組み合わされてもよい。特定の実施形態において、環状炭酸塩の直鎖エステルに対する比は、体積で、約1:9から10:0の間、好ましくは2:8から7:3の間である。
液体電解質のための塩は、以下の、LiPF、LiBF、LiClO LiAsF、LiN(CFSO、LiN(C2F5SO2)2、LiCF3SO3、LiC(CF3SO2)3、LiPF4(CF3)2、LiPF3(C2F5)3、LiPF3(CF3)3、LiPF3(iso‐C3F7)3、LiPF5(iso-C3F7)、環状アルキル群(例えば、(CF2)2(SO2)2xLiおよび(CF2)3(SO2)2xLi)を有するリチウム塩、およびこれらの組み合わせのうち1または複数を含んでよい。一般的な組み合わせは、LiPF6およびLiBF4、LiPF6およびLiN(CF3SO2)2、LiBF4およびLiN(CF3SO2)2を含む。
一実施形態において、液体非水溶媒(または、複数の溶媒の組み合わせ)における塩の合計濃度は、少なくとも約0.3Mであり、より具体的な実施形態では、塩濃度は、少なくとも約0.7Mである。濃度の上限は、可溶性限度によって動かされてよく、約2.5M以下であってよく、より具体的な実施形態では、約1.5M以下であってよい。
固体電解質は、それ自体がセパレータとして機能するので、典型的には、セパレータなしで使用される。それは、電気的に絶縁性であり、イオン伝導性であり、かつ電気化学的に安定している。固体電解質構成において、上記の液体電解質セルと同じであり得る、塩を含むリチウムが使用されるが、有機溶媒において溶解されるよりもむしろ、固体ポリマー複合材料において維持される。固体ポリマー電解質の例には、電解質の塩の複数のリチウムイオンに付着し、伝導中に間を移動するのに利用可能な複数の孤立電子対を有する複数の原子を含むモノマーから調製されるイオン伝導性ポリマーが挙げられ得て、それらには、ポリフッ化ビニリデン(PVDF)またはポリ塩化ビニリデンまたはこれらの誘導体の共重合体、ポリ(クロロトリフルオロエチレン)、ポリ(エチレン‐クロロトリフルオロ‐エチレン)、または、ポリ(フッ素化エチレン‐プロピレン)、酸化ポリエチレン(PEO)およびオキシメチレンが結合されたPEO、三官能性ウレタンで架橋されたPEO‐PPO‐PEO、ポリ(ビス(メトキシ‐エトキシ‐エトキシド))‐ホスファゼン(MEEP)、二官能基ウレタンで架橋されたトリオール型PEO、ポリ((オリゴ)オキシエチレン)メタクリレート‐コ‐アルカリ金属メタクリレート、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PNMA)、ポリメチルアクリロニトリル(PMAN)、ポリシロキサンおよびこれらのコポリマーおよび誘導体、アクリレートベースのポリマー、その他の同様の無溶媒のポリマー、異なるポリマーを形成すべく凝縮または架橋されたかのいずれかである前述のポリマーの複数の組み合わせ、および、前述のポリマーのうち任意のものの物理的混合物等が、挙げられる。薄型スタック体の強度を向上させるべく、上記のポリマーと組み合わせて使用されてよい他の比較的低伝導率のポリマーには、ポリエステル(PET)、ポリプロピレン(PP)、ポリエチレンナフタレート(PEN)、ポリフッ化ビニリデン(PVDF)、ポリカーボネート(PC)、硫化ポリフェニレン(PPS)、および、ポリテトラフルオロエチレン(PTFE)が挙げられる。
図12は、一実施形態による、巻き付けられた円筒状セルの断面図を示す。ゼリーロールは、らせん状に巻き付けられた正電極1202、負電極1304、および2つのシートのセパレータ1306を含む。ゼリーロールは、セルケース1316内に挿入され、キャップ1318およびガスケット1220は、セルを密封するのに使用される。特定の実施形態では、セルは、後のオペレーション後まで密封されないことに留意すべきである。場合によっては、キャップ1218またはセルケース1216は、安全デバイスを含む。例えば、過剰な圧力が、バッテリにおいて増大する場合、安全通気口または破裂弁が、開放するのに使用されてよい。特定の実施形態において、正極材料の活性化の間に放出されている酸素を放出すべく、一方向気体放出弁が含まれる。また、セルが短絡回路に陥った場合に生じるかもしれないダメージを低減すべく、正極熱係数(PTC)デバイスが、キャップ1218の伝導率経路内に組み込まれてよい。キャップ1218の外面は、正極端子として使用されてよいが、セルケース1216の外面は、負極端子として機能してよい。代替の実施形態において、バッテリの極性が逆にされ、キャップ1218の外面は、負極端子として使用されるが、セルケース1216の外面は、正極端子として機能する。タブ1208および1210は、正電極および負電極と対応する端子との間の接続を確立するのに使用されてよい。適切な絶縁ガスケット1214および1212は、内部の短絡の可能性を防止すべく挿入されてよい。例えば、Kapton(商標)フィルムが、内部の絶縁に使用されてよい。製造中、キャップ1218は、セルを密封すべく、セルケース1216にクリンプされてよい。しかしながら、この操作の前に、電解質(図示せず)が、ゼリーロールの多孔性空間を充填すべく加えられる。
強固なケースは、典型的にはリチウムイオンセルに使用されるが、リチウムポリマーセルが、柔軟なホイルタイプ(ポリマースタック体)のケース内に詰め込まれてよい。様々な材料が、ケースに対して選択され得る。リチウムイオンバッテリについて、Ti‐6‐4、他のTi合金、Al、Al合金、および300シリーズのステンレス鋼が、正の伝導率ケース部分、端部キャップ、および市販の純粋なTi、Ti合金、Cu、Al、Al合金、Ni、Pbに適切であってよく、ステンレス鋼が、負の伝導率ケース部分および端部キャップに適切であってよい。
上記のバッテリの用途に加えて、ナノ構造は、燃料電池(例えば、アノード、カソード、および、電解質)、へテロ接合太陽電池用活性物質、様々な形態の電流コレクタ、および/または、吸収性コーティングにおいても使用されてよい。
本発明は、新規の原理を適用し、そのような専門の構成要素を構築し、必要とされるように使用すべく、関連する情報を当業者らに提供すべく、本明細書において、かなり詳細に説明されている。しかしながら、本発明は、異なる機器、材料、デバイスによって実行され得、様々な修正が、機器および操作手順の両方に関して、本発明自体の範囲から逸脱せずに実現され得ることが、理解されるべきである。

Claims (22)

  1. リチウムバッテリのためのアノードであって、
    a)基板、
    b)前記基板に固着されているナノワイヤテンプレート、
    c)前記ナノワイヤテンプレートを実質的にコーティングする、第1の密度を有する第1のシリコン層、および
    d)前記第1のシリコン層および任意の露出したナノワイヤテンプレートの上の第2のシリコン層であって、前記第1のシリコン層の密度より高い密度を有する、第2のシリコン層、を備え、
    前記第1のシリコン層および前記第2のシリコン層が、アモルファスシリコンであり、
    前記第1のシリコン層は、前記ナノワイヤテンプレートに対して非コンフォーマルであり、
    前記第1のシリコン層は、前記アノードにおけるコーティングされた前記ナノワイヤテンプレートの最大径において、5ミクロンから20ミクロンの間の厚さを有し、
    前記第2のシリコン層は、5から500ナノメートルの間の厚さを有する、
    アノード。
  2. リチウムバッテリのためのアノードであって、
    a)基板、
    b)前記基板に固着されているナノワイヤテンプレート、
    c)前記ナノワイヤテンプレートを実質的にコーティングする、第1の密度を有する第1のシリコン層、および
    d)前記第1のシリコン層および任意の露出したナノワイヤテンプレートの上の第2のシリコン層であって、前記第1のシリコン層の密度より高い密度を有する、第2のシリコン層、を備え、
    前記第1のシリコン層および前記第2のシリコン層が、アモルファスシリコンであり、
    前記第2のシリコン層は、下に存在する表面に対してコンフォーマルであり、
    前記第1のシリコン層は、前記アノードにおけるコーティングされた前記ナノワイヤテンプレートの最大径において、5ミクロンから20ミクロンの間の厚さを有し、
    前記第2のシリコン層は、5から500ナノメートルの間の厚さを有する、
    アノード。
  3. リチウムバッテリのためのアノードであって、
    a)基板、
    b)前記基板に固着されているナノワイヤテンプレート、
    c)前記ナノワイヤテンプレートを実質的にコーティングする、第1の密度を有する第1のシリコン層、および
    d)前記第1のシリコン層および任意の露出したナノワイヤテンプレートの上の第2のシリコン層であって、前記第1のシリコン層の密度より高い密度を有する、第2のシリコン層、を備え、
    前記第1のシリコン層は、前記ナノワイヤテンプレートの端部でより厚く、前記基板の近くの前記ナノワイヤテンプレートの根もとでより薄く、
    前記第1のシリコン層は、前記アノードにおけるコーティングされた前記ナノワイヤテンプレートの最大径において、5ミクロンから20ミクロンの間の厚さを有し、
    前記第2のシリコン層は、5から500ナノメートルの間の厚さを有する、
    アノード。
  4. 前記第1のシリコン層および前記第2のシリコン層が、アモルファスシリコンである、請求項3に記載のアノード。
  5. 前記第1の密度は、2.2g/cm未満である、請求項1から4のいずれか一項に記載のアノード。
  6. 前記第1の密度は、2.1g/cm未満である、請求項1から5のいずれか一項に記載のアノード。
  7. 前記第2のシリコン層は、2.25g/cmより高い密度を有する、請求項1から6のいずれか一項に記載のアノード。
  8. 前記第2のシリコン層は、前記第1のシリコン層の密度よりも少なくとも0.05g/cm高い密度を有する、請求項1から7のいずれか一項に記載のアノード。
  9. 前記第2のシリコン層は、前記第1のシリコン層の密度よりも少なくとも0.15g/cm高い密度を有する、請求項1から8のいずれか一項に記載のアノード。
  10. 前記第2のシリコン層は、下に存在する表面に対してコンフォーマルである、請求項1、3及び請求項1または3に従属する請求項4から9のいずれか一項に記載のアノード。
  11. リチウムバッテリのためのアノードであって、
    a)基板、
    b)前記基板に固着されているナノワイヤテンプレート、
    c)前記ナノワイヤテンプレートを実質的にコーティングする、第1の密度を有する第1のシリコン層、および
    d)前記第1のシリコン層および任意の露出したナノワイヤテンプレートの上の第2のシリコン層であって、前記第1のシリコン層の密度より高い密度を有する、第2のシリコン層、を備え、
    前記第1の密度は、2.2g/cm未満であり、
    前記第1のシリコン層の水素含有量は、少なくとも10%である、
    アノード。
  12. 前記ナノワイヤテンプレートは、複数のシリサイドナノワイヤを有する、請求項1から11のいずれか一項に記載のアノード。
  13. 前記第1のシリコン層は、前記アノードにおけるコーティングされた前記ナノワイヤテンプレートの最大径において、5ミクロンから20ミクロンの間の厚さを有する、請求項11に記載のアノード。
  14. 前記第2のシリコン層は、5から500ナノメートルの間の厚さを有する、請求項11または13に記載のアノード。
  15. 前記第2のシリコン層は、5から100ナノメートルの厚さである、請求項1から14のいずれか一項に記載のアノード。
  16. 請求項1から15のいずれか一項に記載のアノードと、
    リチウム含有カソードと、
    前記アノードおよび前記カソードの両方とイオン連通している電解質と、を備える、
    リチウムバッテリ。
  17. リチウムバッテリのためのアノードを製造する方法であって、
    基板を設ける段階と、
    前記基板から複数のナノワイヤを成長させる段階と、
    PECVD法を用いて前記複数のナノワイヤ上に第1のシリコン層を非コンフォーマルに堆積させる段階であって、前記第1のシリコン層が、前記アノードにおける堆積された前記複数のナノワイヤのそれぞれの最大径において、5ミクロンから20ミクロンの間の厚さを有する、前記第1のシリコン層を堆積させる段階と、
    熱CVD法を用いて、前記第1のシリコン層、前記複数のナノワイヤ、および前記基板上に第2のシリコン層を堆積させる段階であって、前記第2のシリコン層が、5から500ナノメートルの間の厚さを有する、前記第2のシリコン層を堆積させる段階と、を備える、
    方法。
  18. リチウムバッテリのためのアノードを製造する方法であって、
    基板を設ける段階と、
    前記基板から複数のナノワイヤを成長させる段階と、
    PECVD法を用いて前記複数のナノワイヤ上に第1のシリコン層を堆積させる段階であって、前記第1のシリコン層が、前記アノードにおける堆積された前記複数のナノワイヤのそれぞれの最大径において、5ミクロンから20ミクロンの間の厚さを有する、前記第1のシリコン層を堆積させる段階と、
    熱CVD法を用いて、前記第1のシリコン層、前記複数のナノワイヤ、および前記基板上に第2のシリコン層を堆積させる段階であって、前記第2のシリコン層が、5から500ナノメートルの間の厚さを有する、前記第2のシリコン層を堆積させる段階と、を備え、
    前記第2のシリコン層を堆積させる段階において、前記第2のシリコン層は、下に存在する表面に対してコンフォーマルに形成される、
    方法。
  19. リチウムバッテリのためのアノードを製造する方法であって、
    基板を設ける段階と、
    前記基板から複数のナノワイヤを成長させる段階と、
    PECVD法を用いて前記複数のナノワイヤ上に第1のシリコン層を、前記複数のナノワイヤの各端部でより厚く、前記基板の近くの前記複数のナノワイヤの各根もとでより薄くなるように堆積させる段階であって、前記第1のシリコン層が、前記アノードにおける堆積された前記複数のナノワイヤのそれぞれの最大径において、5ミクロンから20ミクロンの間の厚さを有する、前記第1のシリコン層を堆積させる段階と、
    熱CVD法を用いて、前記第1のシリコン層、前記複数のナノワイヤ、および前記基板上に第2のシリコン層を堆積させる段階であって、前記第2のシリコン層が、5から500ナノメートルの間の厚さを有する、前記第2のシリコン層を堆積させる段階と、を備える、
    方法。
  20. 前記PECVD法は、膨張熱プラズマ(ETP)法である、請求項17から19のいずれか一項に記載の方法。
  21. 前記複数のナノワイヤは、複数のシリサイドナノワイヤである、請求項17から20のいずれか一項に記載の方法。
  22. 前記熱CVD法の間のチャンバ圧は、約2Torr未満である、請求項17から21
    のいずれか一項に記載の方法。
JP2016567613A 2014-05-12 2015-05-12 リチウムバッテリのためのアノードおよびその製造方法 Active JP7182758B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021066099A JP7311169B2 (ja) 2014-05-12 2021-04-08 ナノワイヤ上への構造的に制御されたシリコンの堆積

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461992121P 2014-05-12 2014-05-12
US61/992,121 2014-05-12
PCT/US2015/030336 WO2015175509A1 (en) 2014-05-12 2015-05-12 Structurally controlled deposition of silicon onto nanowires

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021066099A Division JP7311169B2 (ja) 2014-05-12 2021-04-08 ナノワイヤ上への構造的に制御されたシリコンの堆積

Publications (2)

Publication Number Publication Date
JP2017521812A JP2017521812A (ja) 2017-08-03
JP7182758B2 true JP7182758B2 (ja) 2022-12-05

Family

ID=54368596

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016567613A Active JP7182758B2 (ja) 2014-05-12 2015-05-12 リチウムバッテリのためのアノードおよびその製造方法
JP2021066099A Active JP7311169B2 (ja) 2014-05-12 2021-04-08 ナノワイヤ上への構造的に制御されたシリコンの堆積

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021066099A Active JP7311169B2 (ja) 2014-05-12 2021-04-08 ナノワイヤ上への構造的に制御されたシリコンの堆積

Country Status (7)

Country Link
US (4) US9923201B2 (ja)
EP (1) EP3143657B1 (ja)
JP (2) JP7182758B2 (ja)
KR (1) KR102535137B1 (ja)
CN (1) CN106663786B (ja)
TW (1) TWI689126B (ja)
WO (1) WO2015175509A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
CN102844917B (zh) 2010-03-03 2015-11-25 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
EP2630684A4 (en) 2010-10-22 2015-12-23 Amprius Inc COMPOSITE STRUCTURES CONTAINING POROUS ACTIVE MATERIALS HIGH CAPACITY CONTRAINTS IN ENVELOPES
EP2727175A4 (en) 2011-07-01 2015-07-01 Amprius Inc ELECTRODE TEMPLATE STRUCTURES WITH IMPROVED ADHESION PROPERTIES
TWI689126B (zh) 2014-05-12 2020-03-21 美商安普雷斯公司 經結構控制之矽沈積至奈米線上
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
US10347434B2 (en) * 2016-05-02 2019-07-09 The Regents Of The University Of California Enhanced cycle lifetime with gel electrolyte for MNO2 nanowire capacitors
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR101997428B1 (ko) * 2017-03-17 2019-07-05 히타치 긴조쿠 가부시키가이샤 이차 전지의 부극 집전체용 박 및 그 제조 방법
WO2019087187A1 (en) * 2017-10-31 2019-05-09 Technology Innovation Momentum Fund (Israel) Limited Partnership Nanostructured composite electrodes
KR20200130335A (ko) 2018-02-26 2020-11-18 그래피닉스 디벨롭먼트, 인크. 리튬 기반 에너지 저장 장치용 애노드
KR20200136995A (ko) * 2018-03-30 2020-12-08 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 쥬니어 유니버시티 고성능 배터리 애노드 물질을 위한 규소 실링
WO2020172564A1 (en) * 2019-02-22 2020-08-27 Amprius, Inc. Compositionally modified silicon coatings for use in a lithium ion battery anode
US11024842B2 (en) 2019-06-27 2021-06-01 Graphenix Development, Inc. Patterned anodes for lithium-based energy storage devices
WO2021030461A1 (en) 2019-08-13 2021-02-18 Graphenix Development, Inc. Anodes for lithium-based energy storage devices, and methods for making same
NL2023642B1 (en) 2019-08-14 2021-02-24 Leydenjar Tech B V Silicon composition material for use as battery anode
US11489154B2 (en) 2019-08-20 2022-11-01 Graphenix Development, Inc. Multilayer anodes for lithium-based energy storage devices
US11508969B2 (en) 2019-08-20 2022-11-22 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices
US11495782B2 (en) * 2019-08-26 2022-11-08 Graphenix Development, Inc. Asymmetric anodes for lithium-based energy storage devices
US10964935B1 (en) 2020-04-28 2021-03-30 Nanostar, Inc. Amorphous silicon-carbon composites and improved first coulombic efficiency
US11955667B2 (en) 2021-11-15 2024-04-09 Beta Air, Llc System and method for a battery assembly
NL2029989B1 (en) 2021-12-01 2023-06-19 Leydenjar Tech B V Composite electrode material, method for its production and use of the material
NL2032368B1 (en) 2022-07-04 2024-01-19 Leydenjar Tech B V High Cycle-life Lithium-ion Cells with Nano-structured Silicon Comprising Anodes
NL2032414B1 (en) 2022-07-07 2024-01-23 Leydenjar Tech B V High Cycle-life Lithium-ion Cells with Nano-structured Silicon Comprising Anodes
CN116111078B (zh) * 2023-04-12 2023-11-10 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120070741A1 (en) 2010-03-03 2012-03-22 Amprius, Inc. High capacity battery electrode structures

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU532635B2 (en) 1979-11-06 1983-10-06 South African Inventions Development Corporation Metal oxide cathode
US4436796A (en) 1981-07-30 1984-03-13 The United States Of America As Represented By The United States Department Of Energy All-solid electrodes with mixed conductor matrix
JPS60224737A (ja) 1984-04-21 1985-11-09 Kobe Steel Ltd 耐孔蝕性に優れたアルミニウム合金複合材
JP2546114B2 (ja) 1992-12-22 1996-10-23 日本電気株式会社 異物質内包カーボンナノチューブとその製造方法
US5426006A (en) 1993-04-16 1995-06-20 Sandia Corporation Structural micro-porous carbon anode for rechargeable lithium-ion batteries
US5855860A (en) 1994-10-27 1999-01-05 Shin-Etsu Chemical Co., Ltd. Method for porifying fine particulate silica
US6025094A (en) 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
JP3581474B2 (ja) 1995-03-17 2004-10-27 キヤノン株式会社 リチウムを利用する二次電池
JPH097638A (ja) 1995-06-22 1997-01-10 Seiko Instr Inc 非水電解質二次電池
EP0958627B1 (en) 1996-05-22 2002-02-27 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US6083644A (en) 1996-11-29 2000-07-04 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
EP0883199B1 (en) 1997-06-03 2003-05-07 Matsushita Electric Industrial Co., Ltd. Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
JP3941235B2 (ja) 1998-05-13 2007-07-04 宇部興産株式会社 非水二次電池
JP2002518280A (ja) 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
JP4352475B2 (ja) 1998-08-20 2009-10-28 ソニー株式会社 固体電解質二次電池
KR100366978B1 (ko) 1998-09-08 2003-01-09 마츠시타 덴끼 산교 가부시키가이샤 비수전해질 이차전지용 음극재료와 그 제조방법
JP3620703B2 (ja) 1998-09-18 2005-02-16 キヤノン株式会社 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
DE10023456A1 (de) 1999-07-29 2001-02-01 Creavis Tech & Innovation Gmbh Meso- und Nanoröhren
GB9919807D0 (en) 1999-08-21 1999-10-27 Aea Technology Plc Anode for rechargeable lithium cell
KR100358805B1 (ko) 2000-03-07 2002-10-25 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
JP2001254103A (ja) 2000-03-13 2001-09-18 Sanei Kasei Kk ナノコンポジット構造を有する金属粒子及び自己組織化によるその製造方法
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
US7056620B2 (en) 2000-09-07 2006-06-06 Front Edge Technology, Inc. Thin film battery and method of manufacture
JP3466576B2 (ja) 2000-11-14 2003-11-10 三井鉱山株式会社 リチウム二次電池負極用複合材料及びリチウム二次電池
US6503660B2 (en) 2000-12-06 2003-01-07 R. Terry K. Baker Lithium ion battery containing an anode comprised of graphitic carbon nanofibers
JP4201509B2 (ja) 2001-03-06 2008-12-24 三洋電機株式会社 リチウム二次電池用電極及びリチウム二次電池
US6656838B2 (en) * 2001-03-16 2003-12-02 Hitachi, Ltd. Process for producing semiconductor and apparatus for production
US7713352B2 (en) 2001-06-29 2010-05-11 University Of Louisville Research Foundation, Inc. Synthesis of fibers of inorganic materials using low-melting metals
JP3897709B2 (ja) 2002-02-07 2007-03-28 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
US20060165988A1 (en) 2002-04-09 2006-07-27 Yet-Ming Chiang Carbon nanoparticles and composite particles and process of manufacture
US20040126659A1 (en) 2002-09-10 2004-07-01 Graetz Jason A. High-capacity nanostructured silicon and lithium alloys thereof
KR20050070053A (ko) 2002-10-15 2005-07-05 폴리플러스 배터리 컴퍼니 활성 금속 애노드를 보호하기 위한 이온 전도성 합성물
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
TWI236778B (en) 2003-01-06 2005-07-21 Hon Hai Prec Ind Co Ltd Lithium ion battery
CN101179126B (zh) 2003-03-26 2011-09-28 佳能株式会社 电极材料、电极结构及具有该电极结构的二次电池
WO2004093223A2 (en) * 2003-04-14 2004-10-28 Massachusetts Institute Of Technology Integrated thin film batteries on silicon integrated circuits
JP2005071655A (ja) 2003-08-28 2005-03-17 Mitsubishi Materials Corp 非水電解液二次電池用負極材料及びその製造方法並びにこれを用いた非水電解液二次電池
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
US7608178B2 (en) 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US20110039690A1 (en) 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP4623283B2 (ja) 2004-03-26 2011-02-02 信越化学工業株式会社 珪素複合体粒子及びその製造方法並びに非水電解質二次電池用負極材
KR100666822B1 (ko) 2004-04-23 2007-01-09 주식회사 엘지화학 개선된 전기화학 특성을 갖는 음극활물질 및 이를 포함하는전기 화학 소자
US20050238810A1 (en) 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050279274A1 (en) 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
CN100338796C (zh) 2004-05-26 2007-09-19 中国科学院金属研究所 一种锂离子电池负极材料的改性方法
US7733441B2 (en) 2004-06-03 2010-06-08 Semiconductor Energy Labortory Co., Ltd. Organic electroluminescent lighting system provided with an insulating layer containing fluorescent material
KR100631844B1 (ko) 2004-09-24 2006-10-09 삼성전기주식회사 탄소섬유웹구조를 갖는 전계방출형 에미터전극 및 그제조방법
US7438759B2 (en) 2004-10-21 2008-10-21 Sharp Laboratories Of America, Inc. Ambient environment nanowire sensor
CN101090766B (zh) 2004-11-03 2010-06-09 维罗西股份有限公司 迷你通道和微通道中的局部沸腾
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
JP2006164137A (ja) 2004-12-10 2006-06-22 Zero:Kk アクセス制御システム及びアクセス制御プログラム
FR2880198B1 (fr) 2004-12-23 2007-07-06 Commissariat Energie Atomique Electrode nanostructuree pour microbatterie
FR2880197B1 (fr) 2004-12-23 2007-02-02 Commissariat Energie Atomique Electrolyte structure pour microbatterie
TWI263702B (en) 2004-12-31 2006-10-11 Ind Tech Res Inst Anode materials of secondary lithium-ion battery
JP4740753B2 (ja) 2005-01-28 2011-08-03 三星エスディアイ株式会社 充放電するリチウム電池、及び充放電するリチウム電池の負極に含まれる負極活物質の製造方法
KR100784996B1 (ko) 2005-01-28 2007-12-11 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
CN101180753A (zh) 2005-03-23 2008-05-14 百欧尼士株式会社 锂二次电池用负极活性物质粒子和负极以及它们的制造方法
JP2006269306A (ja) * 2005-03-25 2006-10-05 Sanyo Electric Co Ltd リチウム二次電池用電極およびその製造方法
US20060216603A1 (en) 2005-03-26 2006-09-28 Enable Ipc Lithium-ion rechargeable battery based on nanostructures
US7402445B2 (en) * 2005-05-16 2008-07-22 Wayne State University Method of forming micro-structures and nano-structures
FR2885913B1 (fr) 2005-05-18 2007-08-10 Centre Nat Rech Scient Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
CN100462136C (zh) 2005-05-20 2009-02-18 鸿富锦精密工业(深圳)有限公司 合成纳米粒子的方法
CN100422112C (zh) 2005-07-08 2008-10-01 中国科学院物理研究所 一种具有球形核壳结构的碳硅复合材料及其制法和用途
JP4692163B2 (ja) 2005-08-30 2011-06-01 日産自動車株式会社 ワーク位置決め支持装置及びワーク位置決め支持方法
CN100431204C (zh) 2005-09-22 2008-11-05 松下电器产业株式会社 负极和使用该负极制备的锂离子二次电池
JP4432871B2 (ja) 2005-10-18 2010-03-17 ソニー株式会社 負極およびその製造方法、並びに電池
KR101295927B1 (ko) 2005-10-21 2013-08-13 파나소닉 주식회사 전지
JP4997739B2 (ja) 2005-10-28 2012-08-08 ソニー株式会社 リチウムイオン二次電池用負極材料およびそれを用いたリチウムイオン二次電池、並びにリチウムイオン二次電池の製造方法
WO2007061945A2 (en) 2005-11-21 2007-05-31 Nanosys, Inc. Nanowire structures comprising carbon
US8652692B2 (en) 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
CN100423245C (zh) 2005-12-07 2008-10-01 中国科学院物理研究所 金属硅化物纳米线及其制作方法
JP5162825B2 (ja) 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
CN100500556C (zh) 2005-12-16 2009-06-17 清华大学 碳纳米管丝及其制作方法
FR2895572B1 (fr) 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
EP1978580B1 (en) 2006-01-25 2010-10-27 Panasonic Corporation Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US7408829B2 (en) 2006-02-13 2008-08-05 International Business Machines Corporation Methods and arrangements for enhancing power management systems in integrated circuits
US20070190422A1 (en) 2006-02-15 2007-08-16 Fmc Corporation Carbon nanotube lithium metal powder battery
US20080008844A1 (en) 2006-06-05 2008-01-10 Martin Bettge Method for growing arrays of aligned nanostructures on surfaces
US20070298168A1 (en) 2006-06-09 2007-12-27 Rensselaer Polytechnic Institute Multifunctional carbon nanotube based brushes
JP5192710B2 (ja) 2006-06-30 2013-05-08 三井金属鉱業株式会社 非水電解液二次電池用負極
JP4833758B2 (ja) 2006-07-21 2011-12-07 Okiセミコンダクタ株式会社 駆動回路
US7722991B2 (en) 2006-08-09 2010-05-25 Toyota Motor Corporation High performance anode material for lithium-ion battery
JP4364298B2 (ja) 2006-08-29 2009-11-11 パナソニック株式会社 集電体、電極および非水電解質二次電池
US8029933B2 (en) 2006-10-13 2011-10-04 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
US8044292B2 (en) 2006-10-13 2011-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Homogeneous thermoelectric nanocomposite using core-shell nanoparticles
US20080110486A1 (en) * 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
WO2008067409A2 (en) 2006-11-28 2008-06-05 Polyplus Battery Company Protected lithium electrodes for electro-transport drug delivery
JP2008171802A (ja) 2006-12-13 2008-07-24 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP4288621B2 (ja) 2006-12-19 2009-07-01 ソニー株式会社 負極及びそれを用いた電池、並びに負極の製造方法
EP2372822A3 (en) 2006-12-27 2011-11-30 Panasonic Corporation Battery, electrode, and current collector used therefor
JP2008192594A (ja) 2007-01-11 2008-08-21 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP5277656B2 (ja) 2007-02-20 2013-08-28 日立化成株式会社 リチウムイオン二次電池用負極材、負極及びリチウムイオン二次電池
US20080206641A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
US7754600B2 (en) 2007-03-01 2010-07-13 Hewlett-Packard Development Company, L.P. Methods of forming nanostructures on metal-silicide crystallites, and resulting structures and devices
JP5196384B2 (ja) 2007-03-15 2013-05-15 矢崎総業株式会社 炭素及び非炭素化合物の組織化されたアセンブリを含むキャパシタ
JP2008269827A (ja) 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 電気化学素子の電極材料およびその製造方法並びにそれを用いた電極極板および電気化学素子
US8828481B2 (en) 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US8273479B2 (en) 2007-04-27 2012-09-25 Panasonic Corporation Negative electrode for lithium secondary cell and lithium secondary cell using the same
KR100868290B1 (ko) 2007-05-04 2008-11-12 한국과학기술연구원 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
JP2008305781A (ja) 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp 電極及びその製造方法、並びに非水電解質二次電池
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
JP2008300255A (ja) 2007-06-01 2008-12-11 Panasonic Corp 電気化学素子用電極とそれを用いた電気化学素子
JP2009021226A (ja) 2007-06-15 2009-01-29 Toshiba Corp 燃料電池用膜電極接合体および燃料電池
US8389147B2 (en) 2008-06-16 2013-03-05 Polyplus Battery Company Hydrogels for aqueous lithium/air battery cells
TW200924265A (en) 2007-07-12 2009-06-01 Sumitomo Chemical Co Electrode for electrochemical energy storage device
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
KR101375328B1 (ko) 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
KR100934940B1 (ko) 2007-08-20 2010-01-06 충남대학교산학협력단 탄소주형체 희생체법을 이용한 리튬코발트산화물계 속빈 구나노 구조체 및 그 제조방법
KR100878718B1 (ko) 2007-08-28 2009-01-14 한국과학기술연구원 리튬이차전지용 실리콘 박막 음극, 이의 제조방법 및 이를포함하는 리튬이차전지
JP2009164104A (ja) 2007-09-06 2009-07-23 Canon Inc 負極用電極材料、その製造方法ならびに該材料を用いた電極構造体及び蓄電デバイス
WO2009033015A1 (en) 2007-09-07 2009-03-12 Inorganic Specialists, Inc. Silicon modified nanofiber paper as an anode material for a lithium secondary battery
CN101388447B (zh) 2007-09-14 2011-08-24 清华大学 锂离子电池负极及其制备方法
JP5186884B2 (ja) * 2007-11-06 2013-04-24 株式会社豊田中央研究所 リチウム2次電池用電極及びリチウム2次電池
CN101453013A (zh) 2007-11-29 2009-06-10 比亚迪股份有限公司 锂离子电池负极及其制备方法和电池
CN101453016A (zh) 2007-11-29 2009-06-10 比亚迪股份有限公司 负极活性材料及其制备方法和负极及锂离子电池
US8535830B2 (en) 2007-12-19 2013-09-17 The University Of Maryland, College Park High-powered electrochemical energy storage devices and methods for their fabrication
US9564629B2 (en) 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
US8435676B2 (en) 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
US20090186267A1 (en) 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
US8283556B2 (en) 2008-01-30 2012-10-09 Hewlett-Packard Development Company, L.P. Nanowire-based device and array with coaxial electrodes
JP4934607B2 (ja) 2008-02-06 2012-05-16 富士重工業株式会社 蓄電デバイス
US8389157B2 (en) 2008-02-22 2013-03-05 Alliance For Sustainable Energy, Llc Oriented nanotube electrodes for lithium ion batteries and supercapacitors
US8481214B2 (en) * 2008-02-25 2013-07-09 Catalyst Power Technologies Electrodes including support filament with collar stop
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
KR101307623B1 (ko) 2008-02-25 2013-09-12 로날드 앤쏘니 로제스키 고용량 전극
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
JP5266839B2 (ja) 2008-03-28 2013-08-21 ソニー株式会社 二次電池用負極、二次電池および電子機器
JP2011523902A (ja) 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス
CN102007625B (zh) 2008-04-17 2014-03-12 易诺维公司 具有均匀的金属-半导体合金层的阳极材料
CN101560694B (zh) 2008-04-18 2011-11-09 中国科学院金属研究所 一种硅化物纳米带/纳米片的可控制备方法
US8968820B2 (en) 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries
US8277974B2 (en) 2008-04-25 2012-10-02 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
JP5333820B2 (ja) 2008-05-23 2013-11-06 ソニー株式会社 二次電池用負極およびそれを備えた二次電池
US20090297774A1 (en) 2008-05-28 2009-12-03 Praveen Chaudhari Methods of growing heterepitaxial single crystal or large grained semiconductor films and devices thereon
US8491718B2 (en) 2008-05-28 2013-07-23 Karin Chaudhari Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
US8936874B2 (en) 2008-06-04 2015-01-20 Nanotek Instruments, Inc. Conductive nanocomposite-based electrodes for lithium batteries
US8216436B2 (en) 2008-08-25 2012-07-10 The Trustees Of Boston College Hetero-nanostructures for solar energy conversions and methods of fabricating same
TW201013947A (en) 2008-09-23 2010-04-01 Tripod Technology Corp Electrochemical device and method of fabricating the same
ES2810301T1 (es) 2008-11-14 2021-03-08 Advanced Silicon Group Tech Llc Dispositivos nanoestructurados
JP4816981B2 (ja) 2008-12-22 2011-11-16 ソニー株式会社 負極および二次電池
US8202568B2 (en) 2008-12-23 2012-06-19 Ipcooler Technology Inc. Method for making a conductive film of carbon nanotubes
US9093693B2 (en) 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
KR101135621B1 (ko) 2009-01-13 2012-04-17 한양대학교 산학협력단 결정성 이산화티탄 분말의 제조 방법, 음극 활물질의 제조 방법, 음극 활물질 및 리튬 이차 전지
US8206569B2 (en) 2009-02-04 2012-06-26 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
WO2010100599A1 (en) 2009-03-04 2010-09-10 Koninklijke Philips Electronics, N.V. Large capacity thin film battery and method for making same
KR101080956B1 (ko) 2009-04-13 2011-11-08 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN101527357B (zh) 2009-04-24 2012-05-16 清华大学 纳米硅无定型碳复合锂离子电池负极材料及其制备方法
JP2010262752A (ja) 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の製造方法
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US20220020979A1 (en) 2009-05-07 2022-01-20 Amprius, Inc. Template electrode structures for depositing active materials
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
WO2010135446A1 (en) 2009-05-19 2010-11-25 Nanosys, Inc. Nanostructured materials for battery applications
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US10366802B2 (en) 2009-06-05 2019-07-30 University of Pittsburgh—of the Commonwealth System of Higher Education Compositions including nano-particles and a nano-structured support matrix and methods of preparation as reversible high capacity anodes in energy storage systems
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
DE102009035745A1 (de) 2009-08-01 2011-02-17 Christian-Albrechts-Universität Zu Kiel Elektrode für Lithium-Ionen Akkumulatoren
CN101989655B (zh) 2009-08-03 2019-09-10 张洪涛 纳米碳化硅作锂离子电池负极材料
JP2011108639A (ja) * 2009-10-22 2011-06-02 Ronald Anthony Rojeski カラーストップを含む電極
US20120219860A1 (en) 2009-10-26 2012-08-30 The Trustees Of Boston College Hetero-nanostructure materials for use in energy-storage devices and methods of fabricating same
US20110104576A1 (en) 2009-10-29 2011-05-05 Uchicago Argonne, Llc Lithium-oxygen electrochemical cells and batteries
JP5563091B2 (ja) 2009-10-30 2014-07-30 ウィリアム マーシュ ライス ユニバーシティ 構造化されたシリコン電池アノード
KR20120128125A (ko) 2009-11-03 2012-11-26 엔비아 시스템즈 인코포레이티드 리튬 이온 전지용 고용량 아노드 물질
KR20120102680A (ko) 2009-11-11 2012-09-18 암프리우스, 인코포레이티드 전극용 중간 층 제조하기
WO2011060023A2 (en) 2009-11-11 2011-05-19 Amprius Inc. Preloading lithium ion cell components with lithium
DE102009056530A1 (de) 2009-12-04 2011-06-09 Christian-Albrechts-Universität Zu Kiel Nanodrahtstruktur mit freiliegenden, regelmäßig angeordneten Nanodrahtenden und Verfahren zur Herstellung einer solchen Struktur
US8753740B2 (en) 2009-12-07 2014-06-17 Nanotek Instruments, Inc. Submicron-scale graphitic fibrils, methods for producing same and compositions containing same
US20110143019A1 (en) 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
US9061902B2 (en) * 2009-12-18 2015-06-23 The Board Of Trustees Of The Leland Stanford Junior University Crystalline-amorphous nanowires for battery electrodes
US9878905B2 (en) 2009-12-31 2018-01-30 Samsung Electronics Co., Ltd. Negative electrode including metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
US20110189510A1 (en) 2010-01-29 2011-08-04 Illuminex Corporation Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
US20110204020A1 (en) 2010-02-19 2011-08-25 Nthdegree Technologies Worldwide Inc. Method of and Printable Compositions for Manufacturing a Multilayer Carbon Nanotube Capacitor
CN102292288B (zh) 2010-02-24 2013-07-10 松下电器产业株式会社 碳纳米管形成用基板、碳纳米管复合体、能量设备、其制造方法及搭载该能量设备的装置
CN102844917B (zh) 2010-03-03 2015-11-25 安普雷斯股份有限公司 用于沉积活性材料的模板电极结构
US20220149379A1 (en) 2010-03-03 2022-05-12 Amprius, Inc. High capacity battery electrode structures
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
WO2011109815A1 (en) 2010-03-05 2011-09-09 A123 Systems, Inc. Design and fabrication of electrodes with gradients
JP2013522859A (ja) 2010-03-22 2013-06-13 アンプリウス、インコーポレイテッド 電気化学的活物質のナノ構造の相互接続
US20110143263A1 (en) 2010-04-29 2011-06-16 Ford Global Technologies, Llc Catalyst Layer Having Thin Film Nanowire Catalyst and Electrode Assembly Employing the Same
WO2011137446A2 (en) * 2010-04-30 2011-11-03 University Of Southern California Fabrication of silicon nanowires
WO2011149958A2 (en) 2010-05-24 2011-12-01 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
CN101986447A (zh) 2010-05-25 2011-03-16 耿世达 一种锂离子电池高能复合负极材料及其制备方法
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
JP5128695B2 (ja) 2010-06-28 2013-01-23 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
JP2012013913A (ja) 2010-06-30 2012-01-19 Suncall Corp 光コネクタ
CA2809091A1 (en) 2010-08-27 2012-03-01 The Research Foundation Of State University Of New York Branched nanostructures for battery electrodes
US20120094192A1 (en) 2010-10-14 2012-04-19 Ut-Battelle, Llc Composite nanowire compositions and methods of synthesis
WO2012054767A2 (en) 2010-10-22 2012-04-26 Amprius Inc. Battery electrode structures for high mass loadings of high capacity active materials
EP2630684A4 (en) 2010-10-22 2015-12-23 Amprius Inc COMPOSITE STRUCTURES CONTAINING POROUS ACTIVE MATERIALS HIGH CAPACITY CONTRAINTS IN ENVELOPES
US20130004657A1 (en) 2011-01-13 2013-01-03 CNano Technology Limited Enhanced Electrode Composition For Li ion Battery
JP5606390B2 (ja) * 2011-05-16 2014-10-15 株式会社東芝 不揮発性抵抗変化素子
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
EP2727175A4 (en) 2011-07-01 2015-07-01 Amprius Inc ELECTRODE TEMPLATE STRUCTURES WITH IMPROVED ADHESION PROPERTIES
KR101890742B1 (ko) 2011-07-19 2018-08-23 삼성전자주식회사 다층금속나노튜브를 포함하는 음극활물질, 이를 포함하는 음극과 리튬전지 및 음극활물질 제조방법
JP6000017B2 (ja) * 2011-08-31 2016-09-28 株式会社半導体エネルギー研究所 蓄電装置及びその作製方法
KR20130059472A (ko) 2011-11-28 2013-06-07 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
CN104145355B (zh) * 2011-12-21 2016-09-28 罗纳德·罗杰斯基 能量存储装置
CN112349879A (zh) 2012-07-03 2021-02-09 触媒能源技术公司 包含支撑丝的混合式能量存储装置
JP2015020921A (ja) 2013-07-17 2015-02-02 古河電気工業株式会社 シリコンナノワイヤ、シリコンナノワイヤ構造体及びその製造方法並びに非水電解質二次電池
TWI689126B (zh) 2014-05-12 2020-03-21 美商安普雷斯公司 經結構控制之矽沈積至奈米線上
KR102553839B1 (ko) 2015-12-24 2023-07-10 삼성전자주식회사 리튬이차전지
WO2020172564A1 (en) 2019-02-22 2020-08-27 Amprius, Inc. Compositionally modified silicon coatings for use in a lithium ion battery anode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120070741A1 (en) 2010-03-03 2012-03-22 Amprius, Inc. High capacity battery electrode structures

Also Published As

Publication number Publication date
US10707484B2 (en) 2020-07-07
US11289701B2 (en) 2022-03-29
CN106663786A (zh) 2017-05-10
JP2017521812A (ja) 2017-08-03
TW201611392A (zh) 2016-03-16
US9923201B2 (en) 2018-03-20
CN106663786B (zh) 2020-06-16
WO2015175509A1 (en) 2015-11-19
JP7311169B2 (ja) 2023-07-19
KR20170003641A (ko) 2017-01-09
US20200274156A1 (en) 2020-08-27
US20190088939A1 (en) 2019-03-21
US20220115650A1 (en) 2022-04-14
JP2021119564A (ja) 2021-08-12
TWI689126B (zh) 2020-03-21
US20150325852A1 (en) 2015-11-12
KR102535137B1 (ko) 2023-05-22
US11855279B2 (en) 2023-12-26
EP3143657A4 (en) 2018-01-24
EP3143657B1 (en) 2019-07-10
EP3143657A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP7311169B2 (ja) ナノワイヤ上への構造的に制御されたシリコンの堆積
US11024841B2 (en) Template electrode structures for depositing active materials
US20180090755A1 (en) High capacity battery electrode structures
US20110287318A1 (en) Multidimensional electrochemically active structures for battery electrodes
KR20140051928A (ko) 향상된 접착 특성을 가진 템플레이트 전극 구조체
WO2012054767A2 (en) Battery electrode structures for high mass loadings of high capacity active materials
US20200274151A1 (en) Compositionally modified silicon coatings for use in a lithium ion battery anode
US20220149379A1 (en) High capacity battery electrode structures
US20220020979A1 (en) Template electrode structures for depositing active materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210408

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210416

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210420

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210625

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210629

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211221

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220310

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220322

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220726

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220830

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221027

R150 Certificate of patent or registration of utility model

Ref document number: 7182758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150