JP6517561B2 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP6517561B2
JP6517561B2 JP2015066363A JP2015066363A JP6517561B2 JP 6517561 B2 JP6517561 B2 JP 6517561B2 JP 2015066363 A JP2015066363 A JP 2015066363A JP 2015066363 A JP2015066363 A JP 2015066363A JP 6517561 B2 JP6517561 B2 JP 6517561B2
Authority
JP
Japan
Prior art keywords
vehicle
parking
unit
command signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015066363A
Other languages
English (en)
Other versions
JP2016185745A (ja
Inventor
今井 正人
正人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP2015066363A priority Critical patent/JP6517561B2/ja
Priority to US15/557,191 priority patent/US20180037262A1/en
Priority to PCT/JP2016/057120 priority patent/WO2016158236A1/ja
Priority to CN201680007415.9A priority patent/CN107614344B/zh
Priority to EP16772120.8A priority patent/EP3275754B1/en
Publication of JP2016185745A publication Critical patent/JP2016185745A/ja
Application granted granted Critical
Publication of JP6517561B2 publication Critical patent/JP6517561B2/ja
Priority to US16/743,086 priority patent/US20200148263A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0055Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/141Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
    • G08G1/143Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces inside the vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Description

本発明は、車両制御装置に関する。
乗員による車両制御を行うことなく、車両を所望の駐車位置に駐車する自動駐車のニーズが高まっている。特許文献1には、助手席の乗員の有無や荷物の搭載状況により車両の最終駐車位置を決定する発明が開示されている。
特開2009−202610号公報
特許文献1に記載されている発明では、最終駐車位置のみが考慮されており、自動駐車を実行中の車両の挙動が考慮されていない。本発明者らは状況に応じた挙動により自動駐車を行うという課題を見出した。
本発明にかかる車両制御装置は、車両の周囲環境を認識する環境認識部と、認識した周囲環境に基づき決定された駐車位置までの走行経路を生成する駐車経路生成部と、駐車指令信号が入力される信号入力部と、入力された駐車指令信号に基づいて、走行経路に沿って駐車位置まで車両を走行させる走行制御部と、を備える。信号入力部に入力された駐車指令信号が第1の駐車指令信号であるときと第2の駐車指令信号であるときとに応じて、駐車位置まで車両が異なる挙動で自動駐車走行するように車両を駆動し、車両の乗員の有無を認識する乗員認識部をさらに備え、前記乗員認識部により乗員がいないと判断されると前記駐車指令信号を前記第1の駐車指令信号として認識し、前記乗員認識部により乗員がいると判断されると前記駐車指令信号を前記第2の駐車指令信号として認識し、前記走行制御部は、前記第1の駐車指令信号が入力されたときは、前記第2の駐車指令信号が入力されたときに比べて、駐車完了までに要する時間が短くなるように前記車両の挙動を制御する。
本発明によれば、状況に応じて車両の挙動を変化させる自動駐車が可能である。
車両の構成を示すブロック図 動作パラメータおよび経路パラメータの通常用とリモート用の一覧を示す表 車両制御装置の最上流の処理を示すフローチャート アイドル処理を示すサブルーチン 駐車空間探索処理を示すサブルーチン 自動駐車処理を示すサブルーチン 制御切換判断処理を示すサブルーチン フェール処理を示すサブルーチン 通常用制御設定における並列駐車の動作例を示す図 リモート用制御設定における並列駐車の動作例を示す図 通常用制御設定における縦列駐車の動作例を示す図 リモート用制御設定における縦列駐車の動作例を示す図 周辺環境認識部の動作例を示す図 駐車経路生成部の動作例を示す図 衝突予測部の動作例を示す図 目標速度制御の一例を示す図 衝突回避の動作例を示す俯瞰図 変形例1におけるリモート用制御設定における並列駐車の動作例を示す図 第2の実施の形態における車両の構成を示すブロック図 第2の実施の形態における制御切換判断処理を示すサブルーチン 第2の実施の形態の変形例における制御切換判断処理を示すサブルーチン 第3の実施の形態における車両の構成を示すブロック図 第4の実施の形態における車両の構成を示すブロック図 第4の実施の形態における再駆動抑制処理を示すフローチャート 第5の実施の形態における自動駐車処理の一部を示すフローチャート
(第1の実施の形態)
以下、図1〜17を参照して、本発明による車両制御装置の第1の実施の形態を説明する。
(構成)
図1は、本発明の実施の形態における車両制御装置100を搭載する車両800の構成を示すブロック図である。車両800は、車両制御装置100と、環境情報取得装置101と、車内実行ボタン102と、探索開始ボタン103と、通信装置104と、走行駆動系800aと、音発生装置109と、表示装置110とを備える。走行駆動系800aは、操舵装置105と、駆動装置106と、制動装置107と、変速装置108とを備える。通信装置104は、リモコン111と無線により通信する。リモコン111は、押しボタンであるリモコン実行ボタン112を備える。
走行駆動系800aは、車両制御装置100からの動作指令だけでなく、運転者による手動の動作指令を受ける。すなわち、車両800は車両制御装置100による自動運転だけでなく、運転者によるマニュアル運転も可能である。
車両制御装置100は、車両800を制御するコンピュータであり、インタフェース9a、9b、9cと不図示のCPU、ROM,およびRAMを備える。以下では、インタフェース9a、9b、9cを特に区別する必要がない場合は、これらをまとめてインタフェース9と呼ぶ。車両制御装置100のCPUは、ROMに記憶されたプログラムをRAMに展開して実行させ、車両制御装置100を周辺環境認識部1、駐車経路生成部2、衝突予測部3、駆動系制御部4、制御切換判断部5、およびHMI制御部6として機能させる。すなわち、周辺環境認識部1、駐車経路生成部2、衝突予測部3、駆動系制御部4、制御切換判断部5、およびHMI制御部6は、ソフトウエアプログラムにより実現される機能を機能ブロックとして概念的に表したものである。
上記それぞれの機能ブロック、すなわち周辺環境認識部1、駐車経路生成部2、衝突予測部3、駆動系制御部4、制御切換判断部5、およびHMI制御部6は、インタフェース9の状態を把握できる。すなわち、インタフェース9a、9b、9cのいずれに信号が入力されたかを判別できる。
車両制御装置100は、走行駆動系800a、環境情報取得装置101、音発生装置109、表示装置110、車内実行ボタン102、探索開始ボタン103、および通信装置104に接続されている。車両制御装置100は、車両800のCAN(不図示)などに接続されており、車両制御装置100には車両800の車速、舵角、ギア位置などの車両情報が入力される。
環境情報取得装置101は、車両800の周囲環境に関する情報を取得するものであり、車両800の前方、後方、右側方、左側方の周囲環境をそれぞれ撮影する4個の車載カメラである。車載カメラにより得られた画像は、アナログデータのまま、もしくはA/D変換して、専用線などを用いて車両制御装置100に出力される。車載カメラは画角の中心ほど空間分解能が高いので、車両800が撮影対象の真横を直進することにより、右側方または左側方を撮影する車載カメラを用いて撮影対象の歪みのない高分解能の映像を取得できる。
探索開始ボタン103は、運転者が操作可能な位置に設けられた操作部材である。運転者により探索開始ボタン103が押されると、探索開始ボタン103が押された旨の信号が車両制御装置100のインタフェース9bへ出力される。
車内実行ボタン102は、運転者が操作可能な位置に設けられた操作部材である。運転者により車内実行ボタン102が押されると、車内実行ボタン102が押された旨の信号が車両制御装置100のインタフェース9aへ出力される。運転者は、車内実行ボタン102を押し続けることにより、車両800に自動駐車を実行させる。
通信装置104は、リモコン111と無線通信を行う。通信装置104は、リモコン111のリモコン実行ボタン112が押されている旨の信号を受信すると、車両制御装置100のインタフェース9cへ出力する。
操舵装置105は、入力される駆動指令に基づき、電動や油圧のアクチュエータなどで舵角を制御することの可能な電動パワーステアリング、油圧パワーステアリング等で構成される。
駆動装置106は、入力される駆動指令に基づき、電動のスロットルなどでエンジントルクを制御することの可能なエンジンシステムや、モータなどで外部からの駆動指令により駆動力を制御することが可能な電動パワートレインシステム等で構成される。
制動装置107は、入力される制動指令に基づき、電動や油圧のアクチュエータなどで制動力を制御することの可能な電動ブレーキや油圧ブレーキ等で構成される。
変速装置108は、入力される変速指令に基づき、電動や油圧のアクチュエータなどで前進や後退を切り替えることが可能なトランスミッション等で構成される。
音発生装置109は、スピーカー等で構成され、運転者に対する警報や音声ガイダンス等の出力に用いられる。
表示装置110は、ナビゲーション装置等のディスプレイ、メーターパネル、警告灯等で構成される。表示装置110には、車両制御装置100の操作画面のほか、車両800が障害物に衝突する危険があることなどを運転者に視覚的に伝える警告画面等が表示される。
リモコン111は、車両800に搭載された車両制御装置100に無線で動作指令を出力する出力装置である。リモコン111は、押しボタンであるリモコン実行ボタン112を備える。リモコン111は、リモコン実行ボタン112が押されると通信装置104と通信を行い、リモコン実行ボタン112が押された旨を通知する。リモコン実行ボタン112が押し続けられている間は、通信装置104に対する通知が継続される。
車両制御装置100を構成する機能ブロックを説明する。
周辺環境認識部1は、環境情報取得装置101から入力された車両800の周囲を撮像した画像データを用いて、車両800周辺の静止立体物、移動体、駐車枠線等の路面ペイント、標識等の物体の形状や位置を検出し、さらに、路面の凹凸等を検出して車両800が走行可能な路面であるか否かの判定機能を備える。静止立体物とは、たとえば、駐車車両、壁、ポール、パイロン、縁石、車止めなどである。移動体とは、たとえば、歩行者、自転車、バイク、車両などである。以下では、静止立体物と移動体の二つをまとめて障害物と呼ぶ。物体の形状や位置は、パターンマッチング手法やその他の公知技術を用いて検出される。物体の位置は、たとえば、車両800の前方を撮影する車載カメラの位置に原点を有する座標系を用いて表現される。
周辺環境認識部1は、検出した物体の形状や位置に関する情報、車両800が走行可能な路面であるか否かの判定結果、および既知である車両800の寸法に基づいて、車両800が駐車可能な領域、すなわち駐車空間を検出する。自動駐車における車両800の最終駐車位置、すなわち目標駐車位置は、この駐車空間の中に設定される。
駐車経路生成部2は、現在の自車位置から目標位置に車両800を移動させるための目標軌跡を生成する。この実施形態の駐車経路生成部2は、周辺環境認識部1が検出した障害物の位置、駐車可能なスペース、および制御切換判断部5が出力する経路パラメータに基づき目標軌跡を生成する。
衝突予測部3は、駐車経路生成部2が生成した目標軌跡に沿って車両800が走行したときに障害物と衝突するか否かを判断する。衝突予測部3は、周辺環境認識部1の認識結果に基づいて、障害物となる移動体の移動経路を推測し、車両800の目標軌跡と推測した移動体の移動経路とが交わるか否かにより車両800が移動体と衝突するか否かを判断する。後述するように、衝突予測部3により衝突すると判断されると車両制御装置100が車両800を減速、または停止させて衝突を回避する。その後、移動体が移動すること等により衝突の恐れがなくなったと衝突予測部3が判断すると、車両制御装置100が車両800を駆動させる。
駆動系制御部4は、走行駆動系800aを制御し、駐車経路生成部2が生成した目標軌跡に沿って車両800を移動させる。駆動系制御部4は、制御切換判断部5が出力する動作パラメータ、すなわち車両800の最高速度、最大加速度、前後進切換え待ち時間、および据え切り角速度を走行駆動系800aの制御に用いる。前後進切換え待ち時間とは、前進から後進、または後進から前進に切り替える際に停止状態で待つ時間である。据え切り角速度とは、車両800を停止させた状態で操舵角を変化させる場合の角速度である。なお、速度と走行中の操舵角の角速度とが定まると、走行軌跡が一義的に決定されてしまうため、本実施の形態では走行中の操舵角の角速度を規定しない。すなわち、駐車経路生成部2が生成する目標軌跡に沿って、制御切換判断部5から出力される動作パラメータの条件を満たすように車両800の挙動を決定すると、結果的に走行中の操舵角の角速度が定まる。
駆動系制御部4は、駐車経路生成部2が出力する目標軌跡、衝突予測部3の出力する衝突予測、および制御切換判断部5が出力する動作パラメータに基づいて目標舵角と目標速度を演算する。駆動系制御部4は、演算した目標舵角を実現するための目標操舵トルクを操舵装置105へ出力する。また、駆動系制御部4は、目標速度を実現するための目標エンジントルクや目標ブレーキ圧を駆動装置106や制動装置107へ出力する。駆動系制御部4は、衝突予測部3で車両800と障害物との衝突が予測された場合、車両800が障害物に衝突しないように目標舵角と目標速度を演算して、その目標舵角や目標速度に基づいて操舵装置105、駆動装置106、および制動装置107へ出力する。駆動系制御部4は、車両800が前後進を切り替える位置に到達したと判断すると、変速指令を変速装置108に出力する。
HMI制御部6は、運転者や乗員に報知するための情報を状況に応じて適宜生成し、音発生装置109および表示装置110に出力する。
インタフェース9aは車内実行ボタン102からの操作信号、インタフェース9bは探索開始ボタン103からの操作信号、インタフェース9cは通信装置104からリモコン実行ボタン112の操作信号を受け取る。インタフェース9はたとえば、所定の電圧が印加されたことで通知を受け取ったと判断する。このように、車両制御装置100は、いずれのインタフェースが通知を受けたかにより、いずれのボタンが押されたかを判別する。以下では、リモコン実行ボタン112の操作信号を「第1の駐車指令信号」とも呼び、車内実行ボタン102の操作信号を「第2の駐車指令信号」とも呼ぶ。
制御切換判断部5は、車内実行ボタン102およびリモコン実行ボタン112のいずれが押されているかを認識し、駐車経路生成部2に出力する経路パラメータおよび駆動系制御部4に出力する動作パラメータを切り替える。すなわち制御切換判断部5は、入力された信号を第1の駐車指令信号および第2の駐車指令信号のいずれかとして認識し、出力する経路パラメータおよび動作パラメータを切り替える。それぞれのパラメータは、通常用制御設定とリモート用制御設定の2種類がある。以下では、通常用制御設定を「通常用」、リモート制御設定を「リモート用」と呼ぶこともある。車内実行ボタン102が押されていると認識する場合は通常用制御設定、リモコン実行ボタン112が押されていると認識する場合はリモート制御設定とする。
後述するように、通常用の動作パラメータおよび経路パラメータは車両800に乗員がいる場合を想定しており、リモート用の動作パラメータおよび経路パラメータは車両800が無人の場合を想定している。そのため、通常用とリモート用では以下の差異がある。
図2は、動作パラメータおよび経路パラメータの通常用とリモート用の一覧を示す表である。図2の例では、動作パラメータは、操舵速度、据え切り、車速、加速度、および前後進切換時間から構成される。動作パラメータは車両制御に使用されるパラメータである。経路パラメータは、目標駐車位置までの経路演算に使用されるパラメータであり、次の3つのものを含む。これ以外の経路パラメータを含んでもよい。
(1)自動駐車走行時に乗車している乗員が感じる違和感を軽減する経路に関するパラメータ。以下、違和感軽減パラメータと呼ぶ。
(2)車両と障害物との距離を、外部からの自動駐車走行指令では車両内部からの指令よりも長くする経路に関するパラメータ。以下、障害物最短距離パラメータと呼ぶ。
(3)周辺環境認識部1による駐車位置の認識に大きな影響を与える車両800の経路関するパラメータ。以下、環境認識パラメータと呼ぶ。
動作パラメータについて説明する。
通常用制御設定では、乗り心地性の観点から、操舵速度を与えるスエアリング操作速度をあまり大きくできない。この実施形態では例えばステアリングの回転速度は180度/秒以下に設定される。リモート用制御設定では、ステアリングのハードウエアの限界まで高速化することが可能となる。この実施形態では、例えばステアリングの回転速度は最大500度/秒に設定される。
据え切り、すなわち停車中の操舵角変更は、一般にはあまり行われないことから通常用制御設定では可能な限り避ける。リモート用制御設定では必要に応じて適宜据え切りを行ってもよい。
車速は、通常用制御設定では、乗り心地性の観点からその上限が制限される。この実施形態では、例えば前進時3km/h以下、後退時2km/h以下に設定される。リモート用制御設定では、障害物を回避可能な速度まで高くでき、例えば前進と後退ともに5km/h以下に設定する。
加速度は、正負に関わらず通常用制御設定では、乗り心地性の観点からその上限が制限される。例えば0.5m/s以下に設定する。リモート用制御設定では、タイヤがスリップしない程度まで加速度を大きくできる。例えばその上限が2.0m/sに設定される。
前後進切換時間は、通常用制御設定では乗り心地が悪化するため停止から発進までの間に時間が必要で、例えば2秒以上に設定される。リモート用制御設定では停止から発進までは最短時間(シフトを切り替える時間)の設定が可能であり、例えば0.5秒以上に設定される。
以上の値が動作パラメータとして選択される。
経路パラメータについて説明する。
違和感軽減パラメータは以下のようにして決定される。通常用制御設定では乗員が車両800の経路に違和感がないことを重視して決定される。リモート用制御設定では、目標経路をユーザの感覚と一致させることには注力しない。たとえば、リモートにて自動駐車する際は、駐車完了に要する時間を重視して直線を多用する目標経路が設定される。このように、通常用制御設定とリモート用制御設定では異なる違和感軽減パラメータが設定される。
障害物最短距離パラメータは以下のようにして決定される。通常用制御設定では乗員が乗車していることを想定しているため、自動駐車の最中であっても即座に運転者による確認が可能である。すなわち、通常用制御設定では、自車両と障害物との距離がある程度確保されていれば十分である。そのため、障害物との最短距離を長くするような目標経路演算は行わない。リモート用制御設定では、運転者が車両800の外部にいることを想定しているため、障害物が車両800の陰になり車両800の衝突個所を確認できない場合が生じる。したがって、リモート用制御設定では、乗員が乗車している場合に比べて、障害物との距離が長くなるような目標経路演算を行う。
このように、通常用制御設定とリモート用制御設定では異なる障害物最短距離パラメータが設定される。
環境認識パラメータは以下のようにして決定される。リモート用制御設定では、障害物を正確に認識した上で障害物との距離を確保するために、認識する駐車位置の信頼性が高まるような経路演算を行うべく環境認識パラメータが設定される。
認識する駐車空間の信頼性が高まるような経路とは、以下のような経路である。たとえば、車両800の環境情報取得装置101は進行方向の前後左右を撮影する4つの車載カメラを備えている。これらの車載カメラの光軸は、車両前後進方向と、この前後進方向に直交する車両左方向と車両右方向を向いている。車載カメラは魚眼レンズを搭載した超広角カメラである。したがって、光軸から離れた周辺領域の解像度が著しく低下する。そこで、撮影画像から精度良く周囲環境を再現し、駐車空間の詳細に把握するためには、車載カメラの光軸が駐車空間に正対するように走行させて撮影し、撮影対象の高解像度画像を得る必要がある。
そのため、駐車空間の撮影に適する車両800の経路は、駐車空間の真横を直進する経路である。すなわち、リモート用制御設定において、環境認識パラメータを用いて経路演算を行うと、目標駐車位置に駐車した車両が発進する際の走行方向と直交する方向に直進する経路を含む経路が設定される。
このような経路を走行する車両が走行しながら撮影した画像は、車両の側方に設置した車載カメラの光軸の方向が目標駐車位置に駐車した車両の前後進方向と一致し、歪みのない高解像度画像が得られる。その結果、駐車空間の正確な位置や形状寸法が算出可能となる。また、細長いアンテナなどの画像からの認識が難しい形状のものであっても、画像が高解像度であるほど検出が容易となる。
(車両制御装置の4つのモード)
車両制御装置100は、4つの動作モードを備える。4つのモードとは、アイドル、駐車空間探索、自動駐車、フェールである。後述するように、モードは、アイドル、駐車空間探索、自動駐車、アイドルの順番に遷移する。ただし、自動駐車からフェールに遷移した場合は、フェールからアイドルに遷移する。以下では各モードを説明する。
(アイドルモード)
アイドルモードにおいて車両制御装置100は、運転者からの指示を待機しており、特段の動作を何ら行っていない状態である。すなわち、アイドルモードでは駆動系制御部4は走行駆動系800aに動作指令を出力せず、運転者がマニュアル運転を行っている。運転者が探索開始ボタン103を押すと、モードが駐車空間探索に遷移される。
(駐車空間探索モード)
駐車空間探索モードにおいて車両制御装置100は、環境情報取得装置101から周囲環境に関する情報を取得し、車両800が駐車可能な領域を検索する。駐車可能な領域とは、車両800よりも大きな空間であり、なおかつ障害物に衝突せずに到達可能な領域である。周辺環境認識部1が駐車可能な領域を検出すると、HMI制御部6が音発生装置109および表示装置110を用いて運転者に報知する。運転者が不図示の入力部を用いて駐車空間を選択すると、モードが自動駐車に遷移される。
駐車空間探索モードでは駆動系制御部4は走行駆動系800aに動作指令を出力せず、運転者がマニュアル運転を行っている。すなわち、運転者がマニュアル運転を行いながら、車両制御装置100が駐車可能な領域を検索する。
(自動駐車モード)
自動駐車モードにおいて車両制御装置100は、ユーザにより車内実行ボタン102またはリモコン実行ボタン112が押されると、目標駐車位置を決定し車両800の自動駐車を行う。ユーザによる車内実行ボタン102またはリモコン実行ボタン112の押下が解除されると、すなわちボタンから指が離されると、車両制御装置100は車両800を停止させる。制御切換判断部5は、ユーザによる車内実行ボタン102またはリモコン実行ボタン112のいずれのボタンが押されたかを認識し、後述するように動作パラメータおよび経路パラメータを切り替える。
車両制御装置100は、車両800が目標駐車位置に到達したと判断すると、モードをアイドルに遷移し、運転者に報知する。車両制御装置100は、車内実行ボタン102またはリモコン実行ボタン112の両方が押されたと判断すると、モードがフェールに遷移される。
(フェールモード)
フェールモードにおいて車両制御装置100は、車両800を停止させる。車両制御装置100は、車両800が停止すると、モードをアイドルに遷移し運転者に通知する。
(フローチャート)
以上説明した4つのモードの遷移、および各モードの動作の詳細を図3〜8に示すフローチャートを用いて説明する。図3〜8に示すフローチャートの各ステップの実行主体は、車両制御装置100のCPUである。
(最上流処理のフローチャート)
図3は、最上流の処理を示すフローチャートである。車両制御装置100が起動されると、モードをアイドルに設定して図3により動作が表されるプログラムを動作させる。プログラムの動作が終了すると、再び図3により動作が表されるプログラムを動作させる。ただし、2回目以降にプログラムを動作させる場合は、モードを設定しない。すなわち、前回プログラムの動作が終了した際のモードを引き継ぐ。
ステップS201では、現在のモードを判断する。アイドルモードであると判断する場合はステップS202に進み、駐車空間探索モードであると判断する場合はステップS203に進む。自動駐車モードであると判断する場合はステップS204に進み、フェールモードであると判断する場合はステップS205に進む。
ステップS202では、図4に示すアイドル処理のサブルーチンを実行し、その実行が終了すると本プログラムを終了させる。ステップS203では、図5に示す駐車空間探索処理のサブルーチンを実行し、その実行が終了すると本プログラムを終了させる。ステップS204では、図6に示す自動駐車処理のサブルーチンを実行し、その実行が終了すると本プログラムを終了させる。ステップS205では、図8に示すフェール処理のサブルーチンを実行し、その実行が終了すると本プログラムを終了させる。
(アイドル処理のサブルーチン)
図4は、図3のステップS202から起動されるアイドル処理のサブルーチンである。
ステップS301では、探索開始ボタン103が押されたか否かを判断する。押されたと判断する場合はステップS302に進み、押されていないと判断する場合は図4に示すサブルーチンを終了して図3に戻る。
ステップS302では、モードを駐車空間探索に変更し、ステップS303に進む。
ステップS303では、モードが駐車空間探索に変更されたことをユーザに通知し、図4に示すサブルーチンを終了して図3に戻る。
(駐車空間探索処理のサブルーチン)
図5は、図3のステップS203から起動される駐車空間探索処理のサブルーチンである。
ステップS401では、環境情報取得装置101から画像データを取り込み、ステップS402に進む。
ステップS402では、ステップS401で取り込んだ画像データを周辺環境認識部1に入力し、車両800周辺の静止立体物、移動体、駐車枠線等の路面ペイント、標識等の物体の形状や位置を検出する。周辺環境認識部1は、検出した物体の形状や位置に関する情報と車両800が走行可能な路面であるか否かの判定結果に基づいて、車両800を駐車可能な空間、すなわち駐車空間を検出する。次にステップS403に進む。
ステップS403では、ステップS402において駐車空間が検出されたか否かを判断し、駐車空間が検出されたと判断する場合はステップS404に進み、駐車空間が検出されなかったと判断する場合は図5に示すサブルーチンを終了し図3に戻る。
ステップS404では、ステップS402において検出した駐車空間に車両800の現在位置から到達可能な軌跡、すなわち走行経路を生成し、ステップS405に進む。
ステップS405では、ステップS404において軌跡が生成できたか否かを判定する。軌跡が生成できたと判断する場合はステップS406に進み、軌跡が生成できなかったと判断する場合は図5に示すサブルーチンを終了し図3に戻る。軌跡が生成できない場合とは、たとえば駐車空間の周囲が他の車両に囲まれており、到達不可能な場合である。
ステップS406では、ユーザに駐車空間が見つかったことを通知し、ステップS407に進む。ステップS407では、ユーザが駐車空間を選択したか否かを判断する。ユーザが駐車空間を選択したと判断する場合にはステップS408に進み、ユーザが駐車空間を選択しなかったと判断する場合は図5に示すサブルーチンを終了し図3に戻る。
ステップS408では、モードを自動駐車中に変更し、ステップS409に進む。
ステップS409では、ステップS404において生成しRAMに保存されている駐車軌跡を削除する。以上で図5に示すサブルーチンを終了し図3に戻る。
(自動駐車処理のサブルーチン)
図6は、図3のステップS204から起動される自動駐車処理のサブルーチンである。
ステップS501では、環境情報取得装置101から画像データを取り込み、ステップS502に進む。
ステップS502では、ステップS501で取り込んだ画像データを周辺環境認識部1に入力し、車両800周辺の静止立体物、移動体、駐車枠線等の路面ペイント、標識等の物体の形状や位置を検出する。次にステップS503に進む。
ステップS503では、車内実行ボタン102とリモコン実行ボタン112の両方のボタンが押されている、またはそれ以外の状態かを判断する。車内実行ボタン102とリモコン実行ボタン112の両方のボタンが押されていると判断する場合はステップS504に進む。それ以外の状態、すなわち車内実行ボタン102とリモコン実行ボタン112のうちいずれか一方が押されている、またはいずれのボタンも押されていないと判断する場合はステップS505に進む。
ステップS504では、モードをフェールに変更して図6に示すサブルーチンを終了し図3に戻る。
ステップS505では、車内実行ボタン102とリモコン実行ボタン112のうちいずれか一方が押されている、またはいずれのボタンも押されていないかを判断する。いずれか一方が押されていると判断する場合はステップS506に進み、いずれのボタンも押されていないと判断する場合はステップS515に進む。
ステップS506では、後に図7を用いて説明する制御切換判断処理を実行し、ステップS507に進む。この制御切換判断処理により、駐車経路生成部2に入力される経路パラメータ、および駆動系制御部4に入力される動作パラメータが車内用とリモート用のいずれかに設定される。
ステップS507では、ステップS506で設定された経路パラメータに基づいて、車両800が現在位置から駐車空間探索モードにおいて運転者が選択した駐車空間に駐車するための軌跡を演算し、RAMに保存する。すでにRAMに軌跡が保存されている場合は、上書きする。このとき、目標駐車位置もあわせて決定される。次にステップS508に進む。
ステップS508では、ステップS507で演算した駐車軌跡に沿って車両800が移動する場合に、車両800が障害物に衝突するか否かを判定する。次にステップS509に進む。
ステップS509では、ステップS507で演算した駐車軌跡、ステップS508で判定した衝突予測結果、およびCANを介して得られる車両800の車速、舵角、ギア位置などの車両情報に基づいて車両800の目標舵角と目標速度を演算する。次にステップS510に進む。
ステップS510では、ステップS509または後述するステップS509aで演算した目標舵角と目標速度を操舵装置105、駆動装置106、制動装置107のそれぞれに出力するための制御信号を演算する。例えば、操舵装置105に出力する制御信号としては、目標操舵角を実現するための目標操舵トルクが挙げられるが、操舵装置105の構成によっては直接目標速舵角を出力することも可能である。駆動装置106と制動装置107に出力する制御信号としては、目標速度を実現するための目標エンジントルクや目標ブレーキ圧等が挙げられるが、駆動装置106と制動装置107の構成によっては直接目標速度を出力することも可能である。さらに、車両800が切り返し位置、すなわち前後進切換の位置に到達し、進行方向を切り替える必要がある場合は変速装置108に指令値を出力する。次にステップS511に進む。
ステップS511では、ステップS510において算出した制御信号を、走行駆動系800aに出力し、ステップS512に進む。
ステップS512では、車両800が目標駐車位置に到達したか否かを判断する。目標駐車位置に到達したと判断する場合はステップS513に進み、目標位置に達していないと判断する場合は図6に示すサブルーチンを終了し図3に戻る。
ステップS513では、モードをアイドルに変更してステップS514に進む。
ステップS514では、モードがアイドルに変更されたことをユーザに通知し、図6に示すサブルーチンを終了して図3に戻る。
ステップS515では、RAMに駐車のための目標軌跡が保存されているか否かを判断する。保存されていると判断する場合はステップS516に進み、保存されていないと判断する場合は図6に示すサブルーチンを終了し図3に戻る。車内実行ボタン102またはリモコン実行ボタン112が押されると(ステップS505:YES)、ステップS507において軌跡が生成されてRAMに保存される。すなわち、本ステップS515ではこれまでに車内実行ボタン102またはリモコン実行ボタン112が押され、車両800が移動を開始したか否かを判断している。
ステップS516では、車両800の目標速度をゼロに設定してステップS509aに進む。
ステップS509aでは、RAMに保存された目標軌跡、ステップS516においてゼロに設定された目標速度、およびCANを介して得られる車両800の車速、舵角、ギア位置などの車両情報に基づいて車両800の目標舵角と目標速度を演算する。ステップS516において目標速度はゼロに設定されているが、現在の車速が速い場合には即座に速度をゼロにすると過大な加速度が生じるため本ステップを設けている。実際は徐々に車速を低減する制御処理が実行されるが、ここでは、その継続した処理は説明を省略している。次にステップS510に進む。
(制御切換判断処理のサブルーチン)
図7は、図6のステップS506から起動される制御切換判断処理のサブルーチンである。
ステップS601では、車内実行ボタン102が押されたか否か、すなわちインタフェース9aに信号が入力されたか否かを判定する。車内実行ボタン102が押されたと判断する場合はステップS602に進む。車内実行ボタン102が押されていない、すなわちリモコン実行ボタン112が押されたと判断する場合はステップS603に進む。
ステップS602では、動作パラメータおよび経路パラメータを通常用に設定し、図7に示すサブルーチンを終了して図6に戻る。
ステップS603では、動作パラメータおよび経路パラメータをリモート用に設定し、図7に示すサブルーチンを終了して図6に戻る。
(フェール処理のサブルーチン)
図8は、モードがフェールの場合に図3のステップS205から起動されるフェール処理のサブルーチンである。
ステップS702では、目標速度をゼロに設定し、ステップS703に進む。
ステップS703では、ステップS702においてゼロに設定された目標速度、およびCANを介して得られる車両800の車速に基づき車両800の目標速度を演算する。次にステップS704に進む。
ステップS704では、ステップS703で演算した目標速度を駆動装置106、制動装置107のそれぞれに出力するための制御信号を演算し、ステップS705に進む。
ステップS705では、車両が停止したか否かを判断し、停止したと判断する場合はステップS706に進む。車両が停止していないと判断する場合は、図8に示すサブルーチンを終了して図3に戻る。
ステップS706では、モードをアイドルに変更してステップS707に進む。
ステップS707では、モードがアイドルに変更されたことをユーザに通知し、図8に示すサブルーチンを終了して図3に戻る。
(自動駐車の動作例)
以下、駐車場での自動駐車シーンを例にとって、車両800を駐車場の駐車枠内に後ろ向きに駐車する場合の車両制御装置100の動作について説明する。
図9〜10は、駐車完了時に複数の車両が横に並ぶ並列駐車の例である。
図11〜12は、駐車完了時に複数の車両が一直線に並ぶ縦列駐車の例である。
いずれの例においても、地点Aは自動駐車が開始されたときの車両800の位置、地点Bは前後進を切り替える位置、地点Cは目標駐車位置である。
図9〜12のいずれの図においても、(a)は自動駐車を行う車両800の周囲を示す俯瞰画像であり、(b)は操舵速度および車速の自動駐車の開始から終了までの時系列変化を示している。(図9a)に例示する俯瞰画像では、車両800の進行方向右側(図示下側)に駐車枠線803で区切られ、車止め804が設けられた3台分の並列駐車用の駐車スペースが存在している。3台分の駐車スペースのうち左側と右側の駐車スペースにはそれぞれ駐車車両801と802が存在する。中央の駐車スペースには、駐車車両が存在せず、車両800を駐車することができる。周辺環境認識部1は、環境情報取得装置101からの画像に対して公知のパターンマッチング手法等を用いて、駐車車両801と802と、駐車枠線803と、車止め804と、を検出して、それらの位置に関する情報を取得する。動作例では、駐車経路生成部2が生成する目標経路を、前進経路と後進経路とから構成されることとする。
図9〜12に示す動作例においては、自動駐車にあたっては、運転者が、車内実行ボタン102またはリモコン実行ボタン112を押し続けるものとし、ボタン操作が中断されると自動駐車動作が終了するものとする。すなわち、自動駐車が完了するまで運転者はそのボタンを押したままとする。
以上の前提において、以下、図9〜12の動作例を説明する。
図9を用いて、運転者が乗車する車両を並列自動駐車させる際の一例を説明する。
運転者は、駐車空間探索モードにおいて地点Cである駐車空間を選択し、その後、車内実行ボタン102を押し続ける。車内実行ボタン102が押されていることから、制御切換判断部5が通常用制御設定を選択し、駐車経路生成部2には通常用経路パラメータが、駆動系制御部4には通常用動作パラメータが出力される。図9(a)に示すように、前進経路1401は緩やかに左にカーブし、後進経路1402も緩やかなカーブを描く。符号Bの地点は車両が停止し、所定時間後に後進を開始する地点である。駐車位置に隣接する車両801、802との最短距離である距離1403については後述する。図9(b)に示すように、制御切換判断部5が通常用制御設定を選択したため、操舵速度および車速は小さく設定され、地点Bにおける停車時間は大きく設定されている。これにより、乗員に対して違和感を与えない制御が可能となる。
図10を用いて、運転者が車外に出て並列駐車を行う一例を説明する。運転者は、駐車空間探索モードにおいて地点Cである駐車空間を選択し、その後、車両800から降車する。そして、車外からリモコン111のリモコン実行ボタン112を押し続ける。リモコン実行ボタン112が押されていることから、制御切換判断部5がリモート用制御設定を選択し、駐車経路生成部2にはリモート用経路パラメータが、駆動系制御部4にはリモート用動作パラメータが出力される。
経路パラメータがリモート用に変更されたため、図10(a)に示すように、環境認識の向上のために前進経路1601が駐車位置である地点Cの横を直進する軌跡となる。後進経路1602は曲率半径が小さい軌跡である。駐車位置に隣接する車両801、および車両801との最短距離である距離1603は、運転者が乗車している場合である図9(a)に示した距離1403よりも長い。すなわち、障害物との最接近距離を広く確保できるため、安心感を高くすることができる。
動作パラメータがリモート用に変更されたため、図10(b)に示すように、操舵速度および車速が通常用制御設定時に比べて大きくなり、地点Bでの停車時間も短くなり、駐車完了までにかかる時間を短くなっている。
図11および12を用いて、縦列駐車を行う例を説明する。図11は、運転者が車内に居り自動駐車を行う場合、図12は運転者が車外に出て自動駐車を行う場合である。地点A〜Cに至る行程は、図9および図10と同様なので説明を省略する。
図11(b)と図12(b)を比較するとわかるように、縦列駐車の場合でもリモコン実行ボタン112が押された場合にはリモート用の動作パラメータが設定されるため、以下の利点がある。すなわち、操舵速度および車速が通常用制御設定時に比べて大きくなり、地点Bでの停車時間も短くなり、駐車完了までにかかる時間が短くなっている。
このように、通常用制御設定とリモート用制御設定を切り替えることで、通常用制御設定時は乗員に違和感を与えることなく、リモート用制御設定時にはより早く駐車を完了することができる。
図11、図12に示す縦列駐車においても舵角速度、車速は、通常用制御設定よりもリモート用制御設定が大きくされている。なお、図11、図12の例では、駐車開始位置から駐車終了位置までの前進経路と後進経路は通常用とリモート用で同じ経路として図示している。車外から自動駐車を指示する場合、駐車位置の探索精度を向上させる目的で前進経路は、縦列する車列方向と一致させるのがよい。車内から自動駐車を指示する場合は、乗員が違和感のないような縦列駐車操作に合致させるべく、前進終了地点Bと駐車開始視点Aを結ぶ線分が縦列方向と傾斜させるようにしてもよい。
本動作例は駐車枠線のある並列駐車車を例にとって説明したが、自宅等のガレージに車両800を駐車する際にも適用可能である。
(駐車位置の検出と障害物回避の動作例)
図13〜17を参照して、周辺環境認識部1による駐車位置の検出、駐車経路生成部2による目標経路の生成、および衝突予測部3による衝突の検出および回避に関する動作例を説明する。
図13〜17に示す動作例においては、一旦車両800の自動駐車動作が開始されると、運転者の操作に基づく自動駐車の中断は生じない。すなわち運転者が、車内実行ボタン102またはリモコン実行ボタン112を押すことにより車両800が自動駐車のための移動を開始すると、自動駐車が完了するまで運転者はそのボタンを押したままとする。
図13は、周辺環境認識部1の動作例を示す図である。
図13(a)は、車両800の周囲環境を示す俯瞰画像である。図13(a)に示す俯瞰画像では、図9に示した例に加えて車両800の進行方向左側(図示上側)には5個のパイロン805が存在しており、車両800の前方左側には車両800に近づく歩行者806が存在している。
周辺環境認識部1は、それぞれのカメラからの画像に対して公知のパターンマッチング手法等を用いて、駐車車両801と802と、駐車枠線803と、車止め804と、パイロン805と、歩行者806とを検出して、それらの位置に関する情報を取得する。たとえば、図13(b)に示すように、周辺環境認識部1は、駐車車両801と802、パイロン805をそれぞれ矩形811と812、矩形815として認識し、それらの角の座標を取得する。また、周辺環境認識部1は、駐車枠線803、車止め804をそれぞれ線分813、線分814として認識し、その両端の座標を取得する。さらに周辺環境認識部1は、歩行者806を点816として認識し、その座標を取得する。
周辺環境認識部1は、複数フレーム分の画像から歩行者806の移動方向を検出して、その移動方向を表すベクトル818を取得する。周辺環境認識部1には、車両800の形状に関する情報が予め設定されている。たとえば、周辺環境認識部1には、車両800を表す矩形810の角の座標が予め設定されている。なお、以降の説明では、車両800を表す矩形810のことを車両810と略記し、駐車車両801と802を表す矩形811と812のことを駐車車両811と812と略記することがある。
周辺環境認識部1は次の条件の領域を駐車可能な領域、すなわち駐車空間として認識する。たとえば、駐車枠線803で挟まれている第1条件、車止め804が検出されている第2条件、車両800よりも大きな領域である第3条件をすべて満足するときに駐車空間817が検出される。図13(b)では、駐車空間817は、矩形の領域として検出される。周辺環境認識部1は、その領域の四角の位置情報を算出する。
図14は、車両800が図13(a)に示す位置で駐車経路生成部2が設定した目標駐車位置911と、その目標駐車位置911までの駐車軌跡901を示す図である。駐車経路生成部2は、目標駐車位置911を図13(b)に示した駐車空間817の内側に設定する。
駐車経路生成部2は、車両810を目標駐車位置911に後ろ向きに駐車するため、前後進切換の位置である切り返し位置910を設定する。駐車経路生成部2は、車両810の駐車開始位置から切り返し位置910まで車両810を前進させる前進経路900と、切り返し位置910から目標駐車位置911まで車両810を後進させる後進経路901とを駐車軌跡として設定する。
図14に示す前進経路900は、車両810を左前方に移動するための旋回区間と、旋回を開始するまで駐車開始位置から直進する直進区間とを有する。駐車経路生成部2は、直進区間の経路を直線で表し、旋回区間の経路をクロソイド曲線と円弧とを組み合わせて近似する。クロソイド曲線は、車両810の速度を一定にし、車両810の舵角を一定の角速度で変化させたときに車両800が描く軌跡を表す。円弧は、車両810の速度を一定にし、車両810の舵角を所定値(車両800が直進する舵角を除く)に固定して運転したときに車両800が描く軌跡を表す。
図14に示す後進経路901は、切り返し位置910から目標駐車位置911までクロソイド曲線と円弧とを組み合わせた曲線で表される。後進経路901の終点は、車両810の後輪が車止め814に接触する直前の位置に設定される。
車両制御装置100は、前進経路900と後進経路901とを演算すると、衝突予測部3の処理を開始する。衝突予測部3は、車両800が前進経路900および後進経路901に沿って移動したときに障害物と衝突するか否かを判定する。衝突予測部3は、周辺環境認識部1が検出した移動体の移動方向、たとえば歩行者806の移動方向に基づいて、歩行者806が通過すると推測される推測経路を演算する。
図15は、衝突予測部3の動作例を示す図である。図15では、衝突予測部3が生成した歩行者806の推測経路1002の一例が示されている。推測経路1002は、歩行者806がベクトル818の示す方向にそのまま直進すると仮定した場合の推測経路である。
衝突予測部3は、車両800が障害物に衝突するおそれがある位置として、前進経路900と推測経路1002との交点1003を算出する。衝突予測部3は、車両800の駐車軌跡と歩行者806の推測経路の交点1003に車両800と歩行者がそれぞれ到達するまでの時間を算出し、両者がそれぞれ交点1003に到達したときの位置関係から車両800と歩行者806とが衝突するか否かを判定する。衝突予測部3は、後進経路901についても同様に推測経路1002との交点を算出して、車両800と歩行者806とがその交点に到達するまでの時間を算出し、車両800と歩行者806とが衝突するか否かを判定する。衝突予測部3は、車両800が障害物に衝突すると判定した交点の位置を予想衝突位置として駆動系制御部4に出力する。
駆動系制御部4は、車両800が障害物と衝突しないことを衝突予測部3が判定した場合、すなわち予想衝突位置が出力されていない場合、駐車経路生成部2が生成した前進経路900と後進経路901とに沿って車両800を誘導する。駆動系制御部4は、車両800が前進経路900および後進経路901に沿って移動するように目標速度と目標舵角とを決定して、その目標舵角を操舵装置105へ出力し、目標速度を駆動装置106および制動装置107に出力する。
図16は、目標速度制御の一例を示す図である。
図16(a)は、前進経路上で車両800が障害物と衝突しないことを衝突予測部3が判定した場合に実施される駆動系制御部4による目標速度制御の一例を示す図である。図16(a)の横軸は、前進経路900に沿った位置を表し、縦軸はその位置での目標速度を表す。横軸の左端は誘導開始位置である。駆動系制御部4は、切り返し位置910の手前の減速開始位置から徐々に目標速度を低下させ、車両800を切り返し位置910で停止させる。
駆動系制御部4は、前進経路上で車両800が障害物と衝突することを衝突予測部3が判定した場合、前進経路900上の衝突位置から余裕距離YLだけ手前で車両800を停止させて障害物との衝突を回避する。
図16(b)は、車両800が障害物と衝突すると衝突予測部3が判定した場合に実施される駆動系制御部4による目標速度制御の一例を示す図である。図16(b)の横軸は、前進経路900に沿った位置を表し、縦軸はその位置での目標速度を表す。図16(b)の横軸の左端は誘導開始位置である。図16(b)では、障害物との予想衝突位置から余裕距離YLだけ手前の目標停止位置で車両800が停止するように車両800の目標速度を低下させる。
図17は、衝突回避の動作例を示す俯瞰図である。
たとえば、図17(a)のように車両800が前進経路900に沿って前方に直進している場合、歩行者806と交点1003で衝突することが予想されると、図17(b)に示すように交点1003から余裕距離YLだけ手前の前進経路900上の位置で車両800が停止するように車両800の目標速度を低下させる。
ここで、余裕距離YLは、予想衝突位置における車両800の進行方向に基づいて変化させて、運転者が慎重に運転する状況ほど大きく設定されることが望ましい。すなわち、運転者が慎重に運転する状況、たとえば後進時は前進時に比べて、予想衝突位置をより手前で停止することで運転者に違和感がない。
この後も衝突予測部3が繰り返し障害物と衝突の有無を判断し、歩行者806を含む障害物との衝突がないと判断すると、車両800は自動駐車を再開する。
上述した実施の形態によれば、次の作用効果が得られる。
(1)車両制御装置100は、車両800の周囲環境を認識する周辺環境認識部1と、認識した周囲環境に基づき決定された目標駐車位置までの走行経路を生成する駐車経路生成部2とを備える。車両制御装置100はさらに、車内実行ボタン102またはリモコン実行ボタン112が押されることにより生成される駐車指令信号が入力される信号入力部、すなわちインタフェース9を備える。車両制御装置100はさらに、入力された駐車指令信号に基づいて、走行経路に沿って目標駐車位置まで車両800を走行させる走行制御部、すなわち駆動系制御部4および制御切換判断部5を備える。
車両制御装置100は、入力された駐車指令信号が第1の駐車指令信号であるときと第2の駐車指令信号であるときとに応じて、目標駐車位置まで車両が異なる挙動で自動駐車走行するように車両を駆動する。
第1の実施の形態では、走行制御部、すなわち駆動系制御部4、および制御切換判断部5は、インタフェース9に入力される信号に基づき、動作パラメータを変化させる。また、駐車経路生成部2、および制御切換判断部5は、インタフェース9に入力される信号に基づき、経路パラメータを変化させる。
車両制御装置100をこのように構成したので、状況に応じた挙動により車両800を自動駐車させることができる。
(2)車両制御装置100は、インタフェース9cを経由して入力されることから、当該車両の外部からリモコン111により入力される駐車指令信号を第1の駐車指令信号として認識する。車両制御装置100は、インタフェース9aを経由して入力されることから、当該車両の内部から入力される駐車指令信号を第2の駐車指令信号として認識する。
そのため、駐車指令信号が車両の内部・外部のいずれかから入力されたかに基づき、車両800の挙動を異ならせることができる。
(3)走行制御部、すなわち駆動系制御部4、および制御切換判断部5は、第1の駐車指令信号として認識される信号が入力されたときは、第2の駐車指令信号として認識される信号が入力されたときに比べて、駐車完了までに要する時間が短くなるように車両800の挙動を制御する。
そのため、リモコン実行ボタン112が押された場合には、迅速に自動駐車を完了させることができる。
(4)走行制御部、すなわち駆動系制御部4、および制御切換判断部5は、信号入力部すなわちインタフェース9に入力された信号に基づき、動作パラメータである、据え切りをする際の操舵速度、速度、加速度、方向切換時の停車時間、のうち少なくとも1つが異なるように車両を制御する。
すなわち、インタフェース9に第1の駐車指令信号が入力されると、制御切換判断部5が動作パラメータを通常用制御設定からリモート用制御設定に変更する。これにより、駆動系制御部4が制御する車両800の挙動を、以下の(a)〜(d)の少なくとも一つに該当するように変化をさせる。(a)据え切りをする際の操舵速度を高速にする、(b)車度を高速にする、(c)加速度を大きくする、(d)方向切換時の停車時間を短くする。これら(a)〜(d)のいずれか1つを変化させるだけで、通常用制御設定に比べて、迅速に自動駐車を完了させることができる。変化させる数が多いほど効果が大きく、(a)〜(d)の全てを変化させる場合に最も効果が大きくなる。
変更されるパラメータの具体的な値の一例は以下のとおりである。操舵速度は、通常用の設定である180度/秒からリモート用の設定である500度/秒に変更される。車速は、通常用の設定である前進時3km/h、後退時2km/hから、リモート用の設定である前進と後退ともに5km/hに変更される。加速度は、通常用の設定である0.5m/sから、リモート用の設定である2.0m/sに変更される。前後進切換時間は、通常用の設定である2秒から、リモート用の設定である0.5秒に変更される。
(5)駐車経路生成部2は、信号入力部、すなわちインタフェース9に入力された駐車指令信号が第1の駐車指令信号であるときと第2の駐車指令信号であるときとに応じて、決定された駐車位置まで異なる走行経路を生成する。
そのため車両制御装置100は、状況に応じた走行経路により車両800を自動駐車させることができる。
(6)駐車経路生成部2は、第1の駐車指令信号として認識される信号が入力されたときは、第2の駐車指令信号として認識される信号が入力されたときに比べて、車両と周囲の障害物との最接近距離が長くなるように車両の軌跡を制御する。
そのため、障害物と車両800を運転者が視認できない場合でも、安心感を高くすることができる。
(7)走行制御部、すなわち駆動系制御部4は、信号入力部すなわちインタフェース9に駐車指令信号が入力されているときに車両800を自動駐車走行するように駆動し、信号入力部に駐車指令信号が入力されていないときに自動駐車走行を中止する。すなわち、駆動系制御部4は、車内実行ボタン102またはリモコン実行ボタン112が押されているときに車両を自動駐車走行するように駆動し、いずれのボタンも押されていないときに自動駐車走行を中止する。
そのため、自動駐車の最中に運転者が押していたボタンから手を離すだけで車両800の駆動を終了させ、迅速に車両800を停止させることができる。
(8)環境情報取得装置101は、少なくとも車両800に固定され当該車両の左右の2方向を撮影する2つの撮像部、すなわち2台の車載カメラを備える。環境認識部、すなわち周辺環境認識部1は、環境情報取得装置101から撮像信号を受信して周囲環境を認識している。駐車経路生成部2は、第1の駐車指令信号が入力されたときは、撮像部が駐車位置を撮影しながら駐車位置の側方を直進する経路を含む走行経路を生成する。
そのため、リモコン実行ボタン112が押された場合には、周辺環境認識部1が駐車空間を精度よく認識できるように、車載カメラが駐車空間に正対した姿勢で撮影を行うことができる。これにより、周囲の障害物との最接近距離を長くするための車両800の走行経路の算出に有用である。
前述のとおり、経路パラメータは、違和感軽減パラメータ、障害物最短距離パラメータ、および環境認識パラメータの3つを含む。通常用制御設定とリモート用制御設定とでは、これら3つのパラメータのうち少なくとも1つのパラメータを変化させることにより、それぞれのパラメータの効果が得られ、変化させる数が多いほどその効果も多くなる。
さらに、通常用制御設定とリモート用制御設定とでは、動作パラメータおよび経路パラメータの両方を変化させ、各パラメータの構成要素の全てを変化させる場合が、最も効果的である。
(変形例1)
上述した実施の形態では、通常用制御設定とリモート用制御設定では、動作パラメータおよび経路パラメータの両方を変化させたが、いずれか1方だけを変化させてもよい。さらに、動作パラメータの一部だけを変化させてもよいし、経路パラメータの一部のみを変化させてもよい。いずれのパラメータを変化させるかを、運転者が選択可能でもよい。
図17を用いてリモート用制御設定において、通常用制御設定と動作パラメータのみを変化させた場合の並列駐車の動作例を示す。図18に示す動作例は、第1の実施の形態において並列駐車の動作例で通常用制御設定を用いた図9に示す動作例と対応する。すなわち、経路パラメータが同一で動作パラメータのみが異なる場合の対比が、図17と図9の動作例である。以下ではこの2つの動作例を比較する。
2つの動作例における経路パラメータは同一なので、図18(a)に示す目標軌跡1501、1502は、図9(a)に示す目標軌跡1401、1402と同一である。しかし、動作パラメータは図18の例ではリモート用、図9の例では通常用なので、図18(b)に示すように、操舵速度および車速が図9(b)に示す通常用に比べて大きくなり、地点Bでの停車時間も短くなり、駐車完了までにかかる時間が短くなっている。
そのため、目標軌跡を変化させずに自動駐車の完了を待っている運転者の待ち時間を短縮することができる。
この変形例1によれば、運転者の嗜好に合わせて、通常用制御設定とリモート用制御設定において異ならせるパラメータを変化させることができる。
(変形例2)
上述した実施の形態では、車内実行ボタン102またはリモコン実行ボタン112が押し続けられている場合のみ車両800は自動駐車のための駆動が可能であった。すなわち、自動駐車制御により駐車位置に移動している最中にボタンから手を離すと、目標速度がゼロに設定されて車両800は停止するように制御されていた(図6のステップS516)。しかし、車内実行ボタン102またはリモコン実行ボタン112を一度押すのみで、駐車位置まで車両800が移動してもよい。
この場合は、車両800が自動駐車制御により移動している最中に、再度、車内実行ボタン102、リモコン実行ボタン112、または探索開始ボタン103が押されると目標速度をゼロに設定してもよい。さらに、通信装置104がリモコン111と定期的に通信を行い、通信が不可能になった時点で目標速度をゼロに設定してもよい。すなわち、車両制御装置100は、少なくとも自動駐車制御が実行されている最中は、リモコン111との通信が可能であることを短い時間周期で確認する。そして、通信が不可能になったことを検出すると、再度リモコン実行ボタン112が押された場合と同様に目標速度をゼロに設定し、車両800を停止させる。
この変形例2によれば、自動駐車のために車内実行ボタン102またはリモコン実行ボタン112を押し続ける必要がなく、運転者の操作を簡略化できる。また、自動駐車の実行中にいずれかのボタンを押すことにより車両800が停止するので、安全面にも配慮されている。
(変形例3)
上述した実施の形態では、環境情報取得装置101は4台の車載カメラから構成されたが、環境情報取得装置101の構成はこれに限定されない。環境情報取得装置101は、ミリ波やレーザーを用いて物体との距離を計測するレーダ、超音波を用いて物体との距離を計測するソナー等から構成されてもよい。
(変形例4)
上述した実施の形態では、探索開始ボタン103および車内実行ボタン102は、物理的なボタンであったが、探索開始ボタン103および車内実行ボタン102の構成はこれに限定されない。表示装置110をタッチパネル式のディスプレイとし、表示装置110に表示されるボタンを探索開始ボタン103および車内実行ボタン102としてもよい。
(変形例5)
上述した実施の形態では、車両制御装置100が有する機能を機能ブロックとして表現した、周辺環境認識部1、駐車経路生成部2、衝突予測部3、駆動系制御部4、制御切換判断部5、よびHMI制御部6は、全てソフトウエアプログラムにより実現されるとした。しかし、これらの一部がハードウエア回路により実現されてもよい。
(変形例6)
上述した実施の形態では、リモコン111は専用のハードウエアであったが、リモコン111の構成はこれに限定されない。携帯電話などの端末にソフトウエアをインストールすることによりリモコン111として機能させてもよい。さらに、リモコン実行ボタン112は端末の備える物理的なボタンであってもよいし、その端末がタッチパネル式のディスプレイを備える場合にはディスプレイに表示される特定の領域をリモコン実行ボタン112としてもよい。
(変形例7)
通常用制御設定とリモート用制御設定とでは、動作パラメータのみを異ならせ、自動駐車モードにおいて目標軌跡の再算出を行わなくてもよい。すなわち、車両制御装置100が自動駐車モードに変更される前の駐車空間探索モードにおいて算出した目標軌跡に沿うように、自動駐車モードにおいて車両800を制御する。この場合においても、車内実行ボタン102とリモコン実行ボタン112のいずれのボタンが押されたかにより、制御切換判断部5が動作パラメータを変更する。
(変形例8)
上述した実施の形態では、制御切換判断部5がインタフェース9cとインタフェース9aのいずれに信号が入力されたかにより、車両外部のリモコン111から信号が入力されたか、それとも車内から信号が入力されたかを判断していた。すなわち、上述した実施の形態では、制御切換判断部5が第1の駐車指令信号と第2の駐車指令信号の認識を行っていた。
しかし、インタフェース9cおよびインタフェース9aがそれぞれ、車両外部のリモコン111から信号が入力された旨の信号、および車内から信号が入力された旨の信号を制御切換判断部5に出力してもよい。すなわち、インタフェース9が第1の駐車指令信号と第2の駐車指令信号の認識を行ってもよい。
(変形例9)
上述した実施の形態では、車両制御装置100のソフトウエアプログラムにより実現される機能を、周辺環境認識部1、駐車経路生成部2、衝突予測部3、駆動系制御部4、制御切換判断部5、およびHMI制御部6の6つの機能ブロックに分けて説明した。しかし、機能の分担はこれに限定されない。車両制御装置100が全体としてこれらの機能を有していればよいし、機能ブロックごとの機能が一部重複していてもよい。
たとえば、制御切換判断部5の機能を駐車経路生成部2、および駆動系制御部4が備え、駐車経路生成部2、および駆動系制御部4が第1の駐車指令信号と第2の駐車指令信号の認識を行い、動作パラメータと軌跡パラメータを切り換えてもよい。
(第2の実施の形態)
図19〜20を参照して、本発明による車両制御装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、リモコン実行ボタンが押されても、車内に乗員が残っている場合には車内実行ボタンが押された場合と同様の処理を行う点で、第1の実施の形態と異なる。
(構成)
図19は、第2の実施の形態における車両800の構成を示すブロック図である。第1の実施の形態における構成に加えて、車両800が車内環境観察装置151をさらに備える点、および車両制御装置100が車内環境認識部7をさらに備える点が主に異なる。
車内環境観察装置151は、それぞれの座席の下に備えられた着座センサとして利用するロードセルであり、受けている荷重に応じた電圧を車内環境認識部7に出力する。なお、車内環境観察装置151はロードセルの代わりにカメラやマイクを備えてもよい。
車内環境認識部7は、車内環境観察装置151から入力された電圧の大きさが所定値以上であるか否かを判断することで、運転者や他の座席の乗員の有無を判断する。車内環境認識部7は、判断結果、すなわち乗員の有無を制御切換判断部5に出力する。
(自動駐車モード)
車両制御装置100が備える4つのモードのうち、自動駐車モードの挙動が第1の実施の形態と異なる。第1の実施の形態では、車内実行ボタン102またはリモコン実行ボタン112のいずれのボタンが押されたかのみを判断し、動作パラメータおよび経路パラメータを切り替えた。しかし、本実施の形態では、リモコン実行ボタン112が押され、なおかつ乗員がいない場合のみリモート用制御設定を行い、リモコン実行ボタン112が押されても乗員がいる場合は通常用制御設定を行う。
すなわち制御切換判断部5は、インタフェース9に入力された信号、および車内環境認識部7の判断結果に基づき、インタフェース9に入力された信号を第1の駐車指令信号、または第2の駐車指令信号として認識する。
具体的な処理をフローチャートを用いて説明する。
図20のフローチャートに示す処理は、第1の実施の形態における図7のフローチャートに示す処理に代わって、図6のステップS506として実行される制御切換判断処理である。以下に説明する各ステップの実行主体は、第1の実施の形態と同様に、車両制御装置100のCPUである。制御切換判断処理は、ステップS601から開始される。
ステップS601では、車内実行ボタン102が押されたか否かを判定する。車内実行ボタン102が押されたと判断する場合はステップS602に進む。車内実行ボタン102が押されていない、すなわちリモコン実行ボタン112が押されたと判断する場合はステップS612に進む。
ステップS602では、動作パラメータおよび経路パラメータを通常用に設定し、図6に示すサブルーチンを終了して図5に戻る。
ステップS612では、車内環境認識部7を用いて車内の乗員の有無を判断する。車内に乗員がいると判断する場合はステップS602に進み、車内に乗員がいない、すなわち無人であると判断する場合はステップS603に進む。
ステップS603では、動作パラメータおよび経路パラメータをリモート用に設定し、図20に示すサブルーチンを終了して図5に戻る。
以上のように構成した第2の実施の形態の車両制御装置では、運転者が車内からリモコン111を操作した場合や、車内に乗員が残っているにもかかわらず車外からリモコン111を操作した場合でも、通常用制御設定による動作パラメータを利用して自動駐車が実行される。したがって、車内の乗員は自動駐車走行の車両の挙動に違和感がない。
(第2の実施の形態の変形例)
上述した第2の実施の形態では、いずれのボタンが押されたか、および車内の乗員の有無、の2点に基づき、通常用制御設定およびリモート用制御設定のいずれを使用するか決定した。しかし、車内の乗員の有無のみに基づいて通常用制御設定およびリモート用制御設定のいずれを使用するか決定してもよい。
すなわち制御切換判断部5は、車内環境認識部7の判断結果のみに基づき、インタフェース9に入力された信号を第1の駐車指令信号、または第2の駐車指令信号として認識してもよい。
図21のフローチャートに示す処理は、第1の実施の形態における図7のフローチャートに示す処理に代わって、図6のステップS506として実行される制御切換判断処理である。以下に説明する各ステップの実行主体は、第1の実施の形態と同様に、車両制御装置100のCPUである。制御切換判断処理は、ステップS612から開始される。
ステップS612では、車内環境認識部7を用いて車内の乗員の有無を判断する。車内に乗員がいると判断する場合はステップS602に進み、車内に乗員がいない、すなわち無人であると判断する場合はステップS603に進む。
ステップS602では、動作パラメータおよび経路パラメータを通常用に設定し、図6に示すサブルーチンを終了して図5に戻る。
ステップS603では、動作パラメータおよび経路パラメータをリモート用に設定し、図20に示すサブルーチンを終了して図5に戻る。
このように、本変形例においては、車内の乗員の有無に基づき自動駐車における車両800の挙動が決定される。換言すると、駆動系制御部4は、車内実行ボタン102が押されたことにより生成される信号と、リモコン実行ボタン112が押されることにより生成される信号とを区別せず、これらを自動駐車における駆動の可否のみを決定する信号として利用する。すなわち、車両制御装置100がいずれの信号を受信しても、車内環境認識部7からの信号による判断結果により決定された挙動で車両800を駆動し、信号の受信が途絶えるか駐車位置に到達すると車両800を停止させる。
この変形例によれば、次の作用効果が得られる。
(1)車両制御装置100は、車両800の乗員の有無を認識する乗員認識部、すなわち車内環境認識部7を備える。車両制御装置100は、車内環境認識部7により乗員がいないと判断されると、駐車指令信号を第1の駐車指令信号として認識する。車両制御装置100は、車内環境認識部7により乗員がいると判断されると、駐車指令信号を第2の駐車指令信号として認識する。
そのため、車両800の乗員の有無に応じて自動駐車を行う際の車両800の挙動を変化させることができる。
(第3の実施の形態)
本発明による車両制御装置の第3の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、リモコン111が車内実行ボタン102と同様の機能を有するボタンを併せて備える点で、第1の実施の形態と異なる。すなわち、第3の実施の形態の車両制御装置は、車外から通常用制御設定による動作パラメータによる自動駐車も指令することができる。
(構成)
第3の本実施の形態では、主に、リモコン111の構成、およびインタフェース9cの構成が第1の実施の形態と異なる。
図22は、第3の実施の形態における車両800の構成を示すブロック図である。
リモコン111は、リモコン実行ボタン112に加えて、車内モードボタン114を備える。リモコン111は、押されたボタンによって異なった信号を送信し、通信装置104もそれに従って異なる信号をインタフェース9cに出力する。たとえば、いずれのボタンが押されたかにより、インタフェース9cに入力される電圧値や電圧が変化する周波数やパターンが異なる。
インタフェース9cは、入力された信号により、いずれのボタンが押されたかを判別する。
車両制御装置100は、インタフェース9cにリモコン111の車内モードボタンに対応する信号が入力されると、車内実行ボタン102が押されたと同様の動作パラメータで自動駐車操作を行う。
上述した第3の実施の形態によれば、次の作用効果が得られる。
(1)車両制御装置100は、当該車両800の内部に設けられ信号入力部、すなわちインタフェース9aに第2の駐車指令信号を出力する車内出力部、すなわち車内実行ボタン102を備える。車両制御装置100は、当該車両800の外部から信号入力部、すなわちインタフェース9cに第1の駐車指令信号、および第2の駐車指令信号のいずれか一方を出力する車外出力部、すなわちリモコン111を備える。
そのため、リモコン111を用いた自動駐車において、運転者が車両800の挙動を自由に選択できる。たとえば、夜間の住宅地で自動駐車を行う場合など静音性を重視する場合に、運転者が車内モードボタン114を押すことで加速度が小さいために音が小さい通常用制御設定による自動駐車が可能となる。
(第3の実施の形態の変形例)
車両制御装置100が通常用制御設定またはリモート用制御設定を選択するモード選択スイッチを備え、押されたボタンが車内実行ボタン102かリモコン実行ボタン112かを問わず、車両800の自動駐車時の挙動がモード選択スイッチの選択によって定まってもよい。すなわち、車内実行ボタン102とリモコン実行ボタン112は共通の信号を出力し、この自動駐車指令信号が入力されたときに、モード選択スイッチで選択されたモードに基づいて車両の挙動が決定される。
このモード選択スイッチは、リモコン111に備えられてもよい。
(第4の実施の形態)
本発明による車両制御装置の第4の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、自動駐車の最中に障害物を検出して車両が停車した後に障害物が検出されなくなっても、再度ボタンが押されないと自動駐車を再開しない点が第1の実施の形態と異なる。
(構成)
本実施の形態では、主に、車両制御装置100が再駆動抑制部を備える点、および駆動系制御部4が再駆動抑制部から後述する信号を受信すると車両を駆動させない点が第1の実施の形態と異なる。
図23は、第4の実施の形態における車両800の構成を示すブロック図である。車両制御装置100は、第1の実施の形態の構成に加えて、再駆動抑制部8をさらに備える。
再駆動抑制部8は、衝突予測部3から衝突するか否かの判定結果を受信し、インタフェース9から駐車指令信号を受信し、後述する処理を行い駆動系制御部4に駆動禁止指令を出力する。再駆動抑制部8は、状態を管理するために衝突再開フラグを車両制御装置100に保存する。衝突再開フラグは、初期状態でOFFである。すなわち、駐車空間探索モードから自動駐車モードに変更された際に、衝突再開フラグがOFFに設定される。
駆動系制御部4は、再駆動抑制部8が駆動禁止指令を出力している間は、走行駆動系800aを駆動させない。再駆動抑制部8が駆動禁止指令を停止すると、第1の実施の形態で説明した自動駐車処理に従って走行駆動系800aを駆動させる。
(再駆動抑制処理)
再駆動抑制部8は、常に以下に説明する再駆動抑制処理を行う。
図24は、再駆動抑制処理を表すフローチャートである。以下に説明する各ステップの実行主体は、車両制御装置100のCPUである。再駆動抑制処理は、車両制御装置100のCPUにより繰り返し実行される。
ステップS1101では、衝突予測部3により車両800が移動体と衝突すると判断されているか否かを判断する。衝突予測部3が衝突すると判断している場合はステップS1102に進み、衝突すると判断していない場合はステップS1103に進む。
ステップS1102では、RAMに保存されている衝突再開フラグをONに変更し、図24に示すフローチャートの実行を終了する。
ステップS1103では、RAMに保存されている衝突再開フラグがONかOFFかを判断する。衝突再開フラグがONと判断する場合はステップS1104に進み、衝突再開フラグがOFFと判断する場合は図24に示すフローチャートの実行を終了する。
ステップS1104では、駐車指令信号が出力されているか否か、すなわち車内実行ボタン102またはリモコン実行ボタン112が押されることにより、インタフェース9がその信号を受信しているか否かを判断する。駐車指令信号が出力されていると判断する場合はステップS1105に進み、出力されていないと判断する場合はステップS1106に進む。
ステップS1105では、駆動系制御部4に駆動禁止指令を出力し、ステップS1104に戻る。
ステップS1106では、RAMに保存されている衝突再開フラグをOFFに変更し、図24に示すフローチャートの実行を終了する。
(動作の説明)
衝突予測部3が衝突すると判断すると衝突再開フラグがONに変更される(ステップS1102)。その後、障害物が移動することにより衝突予測部3が衝突しないと判断し、このとき車内実行ボタン102またはリモコン実行ボタン112が押されていると、駆動禁止指令が出力される(S1101:NO、S1103:ON、S1104:YES、S1105)。その後も車内実行ボタン102またはリモコン実行ボタン112が押され続けると、ステップS1104、S1105のループが継続され、駆動禁止指令の出力も継続する。
その後、車内実行ボタン102またはリモコン実行ボタン112が押されなくなると、衝突再開フラグがOFFに変更される(S1101:NO、S1103:ON、S1104:NO、S1106)。次に車内実行ボタン102またはリモコン実行ボタン112が押されると、衝突再開フラグがOFFなので、駆動禁止指令は出力されない(S1101:NO、S1103:OFF)。
この第4の実施の形態によれば、衝突の恐れがなくなったことを衝突予測部3だけでなく運転者も確認した後に車両800を再度駆動することができるので、より安全な自動駐車が可能になる。
(第5の実施の形態)
本発明による車両制御装置の第5の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態は、リモコンが所定時間ごとにハートビート信号を送信し、車両制御装置は車内実行ボタンが押されてもハートビート信号が受信できない場合には駐車を駆動しない点が第1の実施の形態と異なる。
(構成)
本実施の形態では、主に、リモコン111の動作および車両制御装置100の自動駐車モードにおける動作が異なる。
リモコン111はいわゆるキープアライブ機能を有しており、運転者のリモコン実行ボタン112の押下にかかわらず、所定時間ごとにハートビート信号を送信する。車両制御装置100は、ハートビート信号を受信することにより、リモコン111が通信可能な状態にあることを把握する。
車両制御装置100は、自動駐車モードにおける処理、すなわち図6のステップS505における処理を変更する。
図25は、第5の実施の形態における自動駐車処理の一部を示すフローチャートである。図25では、第1の実施の形態における図6のステップS505が、ステップS505aおよびステップS505bに置き換えられている。以下では、第1の実施の形態から変更される個所のみ説明する。
ステップS505aは、ステップS503において否定判断がされると実行される。
ステップS505aでは、車両制御装置100は、リモコン実行ボタン112が押されているか否かを判断する。押されていると判断する場合はステップS506に進み、押されていないと判断する場合はステップS505bに進む。
ステップS505bでは、車両制御装置100は、車内実行ボタン102が押されており、なおかつハートビート信号が入力されている状態であるか否かを判断する。車内実行ボタン102が押されており、なおかつハートビート信号が入力されていると判断する場合はステップS506に進む。車内実行ボタン102が押されていない、またはハートビート信号が入力されていないと判断する場合はステップS515に進む。
ステップS506以降の処理、およびステップS515以降の処理は第1の実施の形態と同様である。
上述した第5の実施の形態によれば、次の作用効果が得られる。
(1)信号入力部、すなわちインタフェース9は、無線通信を介して第2の駐車指令信号、すなわちリモコン実行ボタン112が押された旨の信号が入力される。信号入力部、すなわちインタフェース9は、無線通信が正常に行われていることを示すハートビート信号が入力される。走行制御部、すなわち駆動系制御部4は、第1の駐車指令信号、すなわち車内実行ボタン102が押されている旨の信号が入力され続けていても、ハートビート信号が入力されていない場合は車両800を駆動しない。
リモコン111がキープアライブ機能を有するため、車両制御装置100は、無線通信に何らかの問題があることを検出できる。すなわち、リモコン実行ボタン112が押されている可能性があるが受信できない状態にあることを検出できる。そのため、リモコン実行ボタン112が押されている可能性を考慮した車両800の制御が可能となる。
(第5の実施の形態の変形例)
上述した第5の実施の形態では、リモコン111は常にハートビート信号を出力していた。しかしリモコン111は、リモコン実行ボタン112が押されことを示す信号を出力している際には、ハートビート信号を出力しなくてもよい。
上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。本発明の趣旨を逸脱しない範囲において、種々の様態で実施することができる。
1 … 周辺環境認識部
2 … 駐車経路生成部
3 … 衝突予測部
4 … 駆動系制御部
5 … 制御切換判断部
7 … 車内環境認識部
9a … インタフェース
9b … インタフェース
9c … インタフェース
100 … 車両制御装置
102 … 車内実行ボタン
103 … 探索開始ボタン
111 … リモコン
112 … リモコン実行ボタン
800 … 車両

Claims (9)

  1. 車両の周囲環境を認識する環境認識部と、
    前記認識した周囲環境に基づき決定された駐車位置までの走行経路を生成する駐車経路
    生成部と、
    駐車指令信号が入力される信号入力部と、
    入力された前記駐車指令信号に基づいて、前記走行経路に沿って前記駐車位置まで前記
    車両を走行させる走行制御部と、を備え、
    前記信号入力部に入力された前記駐車指令信号が第1の駐車指令信号であるときと第2
    の駐車指令信号であるときとに応じて、前記駐車位置まで前記車両が異なる挙動で自動駐
    車走行するように前記車両を駆動し、
    車両の乗員の有無を認識する乗員認識部をさらに備え、
    前記乗員認識部により乗員がいないと判断されると前記駐車指令信号を前記第1の駐車
    指令信号として認識し、前記乗員認識部により乗員がいると判断されると前記駐車指令信
    号を前記第2の駐車指令信号として認識し、
    前記走行制御部は、
    前記第1の駐車指令信号が入力されたときは、前記第2の駐車指令信号が入力されたと
    きに比べて、駐車完了までに要する時間が短くなるように前記車両の挙動を制御する車両
    制御装置。
  2. 車両の周囲環境を認識する環境認識部と、
    前記認識した周囲環境に基づき決定された駐車位置までの走行経路を生成する駐車経路
    生成部と、
    駐車指令信号が入力される信号入力部と、
    入力された前記駐車指令信号に基づいて、前記走行経路に沿って前記駐車位置まで前記
    車両を走行させる走行制御部と、を備え、
    前記信号入力部に入力された前記駐車指令信号が第1の駐車指令信号であるときと第2
    の駐車指令信号であるときとに応じて、前記駐車位置まで前記車両が異なる挙動で自動駐
    車走行するように前記車両を駆動し、
    当該車両の外部から入力される前記駐車指令信号を前記第1の駐車指令信号として認識
    し、当該車両の内部から入力される前記駐車指令信号を前記第2の駐車指令信号として認
    識し、
    前記走行制御部は、
    前記第1の駐車指令信号が入力されたときは、前記第2の駐車指令信号が入力されたと
    きに比べて、駐車完了までに要する時間が短くなるように前記車両の挙動を制御する車両
    制御装置。
  3. 請求項1または請求項2に記載の車両制御装置において、
    前記走行制御部は、前記信号入力部に入力された信号に基づき、操舵速度、速度、加速
    度、方向切換時の停車時間、のうち少なくとも1つが異なるように前記車両を制御する車
    両制御装置。
  4. 請求項1から請求項3までのいずれか1項に記載の車両制御装置において、
    前記駐車経路生成部は、前記信号入力部に入力された前記駐車指令信号が第1の駐車指
    令信号であるときと第2の駐車指令信号であるときとに応じて、前記決定された駐車位置
    まで異なる走行経路を生成する車両制御装置。
  5. 請求項4に記載の車両制御装置において、
    前記駐車経路生成部は、前記第1の駐車指令信号が入力されたときは、前記第2の駐車
    指令信号が入力されたときに比べて、前記車両と周囲の障害物との最接近距離が長くなる
    ように走行経路を生成する車両制御装置。
  6. 請求項1または請求項2に記載の車両制御装置において、
    当該車両の内部に設けられ前記信号入力部に前記第2の駐車指令信号を出力する車内出
    力部と、
    当該車両の外部から前記信号入力部に前記第1の駐車指令信号、および前記第2の駐車
    指令信号のいずれか一方を出力する車外出力部と、
    をさらに備える車両制御装置。
  7. 請求項1または請求項2に記載の車両制御装置において、
    前記走行制御部は、前記信号入力部に前記駐車指令信号が入力されているときに前記車
    両を前記自動駐車走行するように駆動し、前記信号入力部に前記駐車指令信号が入力され
    ていないときに前記自動駐車走行を中止する車両制御装置。
  8. 請求項に記載の車両制御装置において、
    前記環境認識部は、少なくとも前記車両に固定され当該車両の左右の2方向を撮影する
    2つの撮像部から撮像信号を受信して周囲環境を認識しており、
    前記駐車経路生成部は、前記第1の駐車指令信号が入力されたときは、前記撮像部が前
    記駐車位置を撮影しながら前記駐車位置の側方を直進する経路を含む走行経路を生成する
    車両制御装置。
  9. 請求項1または請求項2に記載の車両制御装置において、
    前記信号入力部は、無線通信を介して前記駐車指令信号が入力され、
    前記信号入力部は、前記無線通信が正常に行われていることを示すハートビート信号が
    入力され、
    前記走行制御部は、前記ハートビート信号が入力されていない場合は前記車両を駆動し
    ない車両制御装置。
JP2015066363A 2015-03-27 2015-03-27 車両制御装置 Active JP6517561B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015066363A JP6517561B2 (ja) 2015-03-27 2015-03-27 車両制御装置
US15/557,191 US20180037262A1 (en) 2015-03-27 2016-03-08 Vehicle Control Device
PCT/JP2016/057120 WO2016158236A1 (ja) 2015-03-27 2016-03-08 車両制御装置
CN201680007415.9A CN107614344B (zh) 2015-03-27 2016-03-08 车辆控制装置
EP16772120.8A EP3275754B1 (en) 2015-03-27 2016-03-08 Vehicle control device
US16/743,086 US20200148263A1 (en) 2015-03-27 2020-01-15 Vehicle Control Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066363A JP6517561B2 (ja) 2015-03-27 2015-03-27 車両制御装置

Publications (2)

Publication Number Publication Date
JP2016185745A JP2016185745A (ja) 2016-10-27
JP6517561B2 true JP6517561B2 (ja) 2019-05-22

Family

ID=57004198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066363A Active JP6517561B2 (ja) 2015-03-27 2015-03-27 車両制御装置

Country Status (5)

Country Link
US (2) US20180037262A1 (ja)
EP (1) EP3275754B1 (ja)
JP (1) JP6517561B2 (ja)
CN (1) CN107614344B (ja)
WO (1) WO2016158236A1 (ja)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392009B2 (en) 2015-08-12 2019-08-27 Hyundai Motor Company Automatic parking system and automatic parking method
US11691619B2 (en) 2015-08-12 2023-07-04 Hyundai Motor Company Automatic parking system and automatic parking method
DE102015216881A1 (de) * 2015-09-03 2017-03-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum fahrerlosen Führen eines Kraftfahrzeugs innerhalb eines Parkplatzes
KR101745161B1 (ko) * 2015-10-28 2017-06-08 현대자동차주식회사 목적지 유형에 따른 차량의 제어 방법
US10906530B2 (en) 2015-11-10 2021-02-02 Hyundai Motor Company Automatic parking system and automatic parking method
KR101892026B1 (ko) 2015-11-10 2018-08-27 현대자동차주식회사 차량의 원격 주차 제어 방법 및 장치
US10606257B2 (en) 2015-11-10 2020-03-31 Hyundai Motor Company Automatic parking system and automatic parking method
KR101915163B1 (ko) * 2016-12-30 2019-01-07 현대자동차주식회사 자동 주차 시스템 및 자동 주차 방법
DE102015121113A1 (de) * 2015-12-04 2017-06-08 Valeo Schalter Und Sensoren Gmbh Verfahren zum autonomen Einparken eines Kraftfahrzeugs mit Innenraumsüberwachung, Fahrerassistenzsystem sowie Kraftfahrzeug
RU2707409C1 (ru) * 2016-04-28 2019-11-26 Ниссан Мотор Ко., Лтд. Способ и устройство для помощи при парковке
CA3039438A1 (en) * 2016-10-04 2018-04-12 Nissan Motor Co., Ltd. Parking control method and parking control apparatus
JP6609237B2 (ja) * 2016-11-17 2019-11-20 株式会社デンソー 衝突判定装置、及び衝突判定方法
JP6328217B1 (ja) * 2016-12-01 2018-05-23 三菱電機株式会社 自動駐車装置
JP6831504B2 (ja) * 2016-12-19 2021-02-17 フォルシアクラリオン・エレクトロニクス株式会社 端末、及び端末の制御方法
JP6831505B2 (ja) * 2016-12-19 2021-02-17 フォルシアクラリオン・エレクトロニクス株式会社 端末、端末の制御方法、情報処理装置、及び情報処理装置の制御方法
KR101915167B1 (ko) * 2016-12-30 2018-11-06 현대자동차주식회사 자동 주차 시스템 및 자동 주차 방법
CN106671976A (zh) * 2016-12-30 2017-05-17 东风汽车公司 通过遥控钥匙控制的自动泊车系统及方法
CN110382321B (zh) * 2017-03-17 2022-12-27 日立安斯泰莫株式会社 驾驶辅助装置
CN106981215B (zh) * 2017-03-23 2020-09-11 北京联合大学 一种多传感器组合式的自动泊车车位引导方法
JP2018184139A (ja) * 2017-04-27 2018-11-22 アイシン精機株式会社 駐車支援装置
CA3064523C (en) * 2017-05-25 2023-04-04 Nissan Motor Co., Ltd. Parking control method and parking control apparatus
JPWO2018220707A1 (ja) * 2017-05-30 2019-06-27 三菱電機株式会社 車両制御装置および車両制御方法
JP2018203214A (ja) 2017-06-09 2018-12-27 アイシン精機株式会社 駐車支援装置、駐車支援方法、運転支援装置、および運転支援方法
KR102181196B1 (ko) * 2017-06-23 2020-11-23 닛산 지도우샤 가부시키가이샤 주차 제어 방법 및 주차 제어 장치
EP3644295B1 (en) * 2017-06-23 2021-08-04 Nissan Motor Co., Ltd. Parking control methods and parking control devices
EP4019342A1 (en) * 2017-07-07 2022-06-29 NISSAN MOTOR Co., Ltd. Parking assistance method and parking assistance device
MX2019015353A (es) 2017-07-07 2020-02-07 Nissan Motor Metodo de asistencia al estacionamiento y dispositivo de control de estacionamiento.
CA3071604C (en) * 2017-08-10 2023-09-26 Nissan Motor Co., Ltd. Parking control method and parking control device
RU2731823C1 (ru) * 2017-08-22 2020-09-08 Ниссан Мотор Ко., Лтд. Способ и устройство для генерации целевого пути для автономного транспортного средства
JP7027651B2 (ja) * 2017-10-26 2022-03-02 ダイハツ工業株式会社 駐車支援装置
JP6958252B2 (ja) * 2017-11-07 2021-11-02 トヨタ自動車株式会社 遠隔監視システム及び自律走行車両並びに遠隔監視方法
KR102049863B1 (ko) * 2017-12-26 2020-01-08 엘지전자 주식회사 자율주행 차량 및 그 제어 방법
JP7081149B2 (ja) * 2017-12-28 2022-06-07 日産自動車株式会社 駐車制御方法及び駐車制御装置
JP6969401B2 (ja) * 2018-01-22 2021-11-24 トヨタ自動車株式会社 操舵支援装置
JP7106872B2 (ja) * 2018-01-23 2022-07-27 株式会社デンソー 車両の自動運転制御装置及び自動運転制御方法
KR102077573B1 (ko) * 2018-01-31 2020-02-17 엘지전자 주식회사 자동 주차 시스템 및 차량
JP6568965B2 (ja) * 2018-02-14 2019-08-28 本田技研工業株式会社 車両の制御装置
JP7020161B2 (ja) * 2018-02-15 2022-02-16 株式会社アイシン 駐車支援装置
JP2019142283A (ja) * 2018-02-16 2019-08-29 ジヤトコ株式会社 車両の制御装置及び車両の制御方法
JP6897597B2 (ja) * 2018-02-16 2021-06-30 トヨタ自動車株式会社 駐車支援装置
JP6932662B2 (ja) * 2018-03-01 2021-09-08 日立Astemo株式会社 車両走行制御装置
CN108437982A (zh) * 2018-05-14 2018-08-24 吉利汽车研究院(宁波)有限公司 一种自动泊车装置及方法
JP7117183B2 (ja) * 2018-07-17 2022-08-12 日立Astemo株式会社 車両制御装置
CN109062206A (zh) * 2018-07-31 2018-12-21 佛山市甜慕链客科技有限公司 一种智能停车的方法及自动驾驶车辆
CN108983787B (zh) * 2018-08-09 2021-09-10 北京智行者科技有限公司 道路行驶方法
KR102506876B1 (ko) 2018-08-23 2023-03-08 현대자동차주식회사 원격제어장치, 이를 이용한 원격주차보조 시스템 및 그의 제어 방법
JP7177641B2 (ja) * 2018-09-13 2022-11-24 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN112805196A (zh) 2018-10-03 2021-05-14 三菱电机株式会社 停车辅助装置及停车辅助方法
US11126870B2 (en) * 2018-10-18 2021-09-21 Cartica Ai Ltd. Method and system for obstacle detection
JP2020075669A (ja) * 2018-11-09 2020-05-21 株式会社東海理化電機製作所 車両遠隔操作システム
JP7206103B2 (ja) * 2018-12-10 2023-01-17 日産自動車株式会社 車両走行制御方法及び車両走行制御装置
JP7155978B2 (ja) * 2018-12-11 2022-10-19 日産自動車株式会社 自動駐車制御方法及び自動駐車制御装置
EP3905219B1 (en) * 2018-12-28 2023-05-31 NISSAN MOTOR Co., Ltd. Driving assistance method and driving assistance device
JP7139964B2 (ja) * 2019-01-15 2022-09-21 トヨタ自動車株式会社 車両制御装置及び車両制御方法
JP7157390B2 (ja) * 2019-01-30 2022-10-20 トヨタ自動車株式会社 運転支援装置
JP7210334B2 (ja) * 2019-03-07 2023-01-23 本田技研工業株式会社 車両制御装置、車両制御システム、車両制御方法、およびプログラム
JP2020165692A (ja) * 2019-03-28 2020-10-08 本田技研工業株式会社 制御装置、制御方法およびプログラム
JP7125910B2 (ja) * 2019-03-29 2022-08-25 本田技研工業株式会社 車両管理装置、車両管理方法、およびプログラム
DE102019112413A1 (de) * 2019-05-13 2020-11-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren und vorrichtung zur multi-sensor-datenfusion für automatisierte und autonome fahrzeuge
CN110264778B (zh) * 2019-06-26 2020-12-22 广州小鹏汽车科技有限公司 代客泊车安全控制方法、装置、存储介质及车辆控制终端
DE102019212791A1 (de) * 2019-08-27 2021-03-04 Ford Global Technologies, Llc Verfahren zur Durchführung von automatischem Valet-Parken
CN110706506B (zh) * 2019-09-16 2021-09-14 宁波吉利汽车研究开发有限公司 一种泊车的方法、系统、电子设备及存储介质
JP7338342B2 (ja) * 2019-09-17 2023-09-05 トヨタ自動車株式会社 自動駐車システム
KR20210062123A (ko) * 2019-11-20 2021-05-31 현대자동차주식회사 차량 및 그 제어 방법
CN110696822A (zh) * 2019-11-25 2020-01-17 安徽江淮汽车集团股份有限公司 自动泊车控制方法、装置、设备及存储介质
CN111231943A (zh) * 2020-01-15 2020-06-05 禾多科技(北京)有限公司 自动取/泊车主动监控装置和监控方法
CN111413969B (zh) * 2020-03-18 2023-07-28 东软睿驰汽车技术(沈阳)有限公司 倒车控制方法、装置、电子设备及存储介质
CN112141087A (zh) * 2020-06-24 2020-12-29 上汽通用五菱汽车股份有限公司 自动泊车过程的安全防护方法、装置、设备及存储介质
CN112455432A (zh) * 2020-12-07 2021-03-09 安徽江淮汽车集团股份有限公司 自动泊车安全控制方法、装置、设备及存储介质
CN113085842B (zh) * 2021-04-30 2023-06-06 北京百度网讯科技有限公司 车辆控制方法、装置及车辆

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220426A1 (de) * 2002-05-08 2003-11-20 Valeo Schalter & Sensoren Gmbh Verfahren zum Betreiben eines Parkhilfesystems und Parkhilfesystem
JP4661708B2 (ja) * 2006-07-06 2011-03-30 トヨタ自動車株式会社 車両遠隔操作システム
DE102008019346A1 (de) * 2008-03-18 2009-09-24 Volkswagen Ag Verfahren und Vorrichtung zum automatischen Ein- und Ausparken eines Fahrzeugs
JP2011016401A (ja) * 2009-07-07 2011-01-27 Toyota Industries Corp 駐車支援装置
DE102009041587A1 (de) * 2009-09-15 2011-03-17 Valeo Schalter Und Sensoren Gmbh Fahrerassistenzeinrichtung für ein Kraftfahrzeug und Verfahren zum Unterstützen eines Fahrers beim Überwachen eines autonomen Parkvorgangs eines Kraftfahrzeugs
JP5633376B2 (ja) * 2010-01-27 2014-12-03 株式会社デンソーアイティーラボラトリ 駐車支援システム
DE102010038966A1 (de) * 2010-08-05 2012-02-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Unterstützen eines Einparkvorgangs eines Fahrzeugs
DE102012212900A1 (de) * 2012-07-24 2014-01-30 Robert Bosch Gmbh Vorrichtung und Verfahren zum Unterstützen eines Fahrers bei Parkvorgängen
DE102012015922A1 (de) * 2012-08-10 2014-02-13 Daimler Ag Verfahren zum Durchführen eines Parkvorgangs eines Fahrzeugs mittels eines Fahrerassistenzsystems
US9156476B2 (en) * 2012-10-02 2015-10-13 Trevor O'Neill System and method for remote control of unmanned vehicles
WO2014162753A1 (ja) * 2013-04-04 2014-10-09 トヨタ自動車株式会社 駐車支援装置及び退出支援装置
JP5962604B2 (ja) * 2013-07-11 2016-08-03 トヨタ自動車株式会社 車両制御システム
JP5949840B2 (ja) * 2014-06-19 2016-07-13 トヨタ自動車株式会社 駐車支援装置
JP6067635B2 (ja) * 2014-09-12 2017-01-25 アイシン精機株式会社 駐車支援装置

Also Published As

Publication number Publication date
US20180037262A1 (en) 2018-02-08
EP3275754A4 (en) 2018-11-14
CN107614344B (zh) 2020-11-03
CN107614344A (zh) 2018-01-19
JP2016185745A (ja) 2016-10-27
EP3275754B1 (en) 2021-05-12
EP3275754A1 (en) 2018-01-31
WO2016158236A1 (ja) 2016-10-06
US20200148263A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6517561B2 (ja) 車両制御装置
JP6493551B2 (ja) 駐車支援方法及び駐車支援装置
US9758176B2 (en) Vehicle control apparatus
JP6801787B2 (ja) 駐車支援方法及び駐車支援装置
JP6368574B2 (ja) 車両制御装置
EP3666598B1 (en) Parking control method and parking control device
JP2015516772A (ja) 携帯型通信装置を使用した自動車の遠隔制御操縦
JP4946631B2 (ja) 発進支援装置、表示装置
EP3632750B1 (en) Parking control method and parking control apparatus
US11305756B2 (en) Parking control method and parking control apparatus
WO2020017263A1 (ja) 車両制御装置
CN111479726B (zh) 停车控制方法及停车控制装置
JP2019156144A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021000952A (ja) 駐車支援システム
JP6654118B2 (ja) 自動運転車両
EP3915857B1 (en) A parking assist apparatus and a method of controlling the parking assist apparatus
US9290177B2 (en) Vehicle control apparatus
JP2018013915A (ja) 運転支援装置及び運転支援プログラム
JP7448394B2 (ja) 駐車支援システム
JP6996228B2 (ja) 駐車制御方法及び駐車制御装置
JP7020113B2 (ja) 駐車制御方法及び駐車制御装置
JP7081149B2 (ja) 駐車制御方法及び駐車制御装置
JP6911607B2 (ja) 駐車制御方法及び駐車制御装置
JP2022104040A (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190418

R150 Certificate of patent or registration of utility model

Ref document number: 6517561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150