JP6485610B1 - 撥水撥油層付き物品およびその製造方法 - Google Patents

撥水撥油層付き物品およびその製造方法 Download PDF

Info

Publication number
JP6485610B1
JP6485610B1 JP2018562379A JP2018562379A JP6485610B1 JP 6485610 B1 JP6485610 B1 JP 6485610B1 JP 2018562379 A JP2018562379 A JP 2018562379A JP 2018562379 A JP2018562379 A JP 2018562379A JP 6485610 B1 JP6485610 B1 JP 6485610B1
Authority
JP
Japan
Prior art keywords
silicon oxide
water
oxide layer
alkali metal
repellent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018562379A
Other languages
English (en)
Other versions
JPWO2018235778A1 (ja
Inventor
莅霖 周
莅霖 周
久美子 諏訪
久美子 諏訪
健二 石関
健二 石関
平社 英之
英之 平社
小林 大介
大介 小林
道教 末原
道教 末原
未央 徳永
未央 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Application granted granted Critical
Publication of JP6485610B1 publication Critical patent/JP6485610B1/ja
Publication of JPWO2018235778A1 publication Critical patent/JPWO2018235778A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10715Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1643Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/63Adding a layer before coating ceramic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)

Abstract

撥水撥油層の耐摩耗性に優れた撥水撥油層付き物品およびその製造方法の提供。
基材(12)と、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層(16)と、基材(12)と撥水撥油層(16)との間に存在するアルカリ金属原子を含む酸化ケイ素層(14)とを有し、該酸化ケイ素層(14)において、撥水撥油層(16)と接する面からの深さが0.1nm以上0.3nm以下の領域におけるアルカリ金属原子の濃度の平均値が、2.0×1019atoms/cm以上である、撥水撥油層付き物品(10)。

Description

本発明は、撥水撥油層付き物品およびその製造方法に関する。
基材の表面に撥水撥油性、指紋汚れ除去性、潤滑性(指で触った際の滑らかさ)等を付与するために、ポリ(オキシペルフルオロアルキレン)鎖および加水分解性シリル基を有する含フッ素化合物を用いた表面処理によって、基材の表面に含フッ素化合物の加水分解縮合物からなる撥水撥油層を形成することが知られている。
また、撥水撥油層には、耐摩耗性が求められることから、基材と撥水撥油層との間の接着性を改良するために、これらの間に下地層を設けることが行われている。たとえば、基材と撥水撥油層との間に、蒸着によって酸化ケイ素層を設けること(特許文献1、2)、基材と撥水撥油層との間に、Si(NCO)等の加水分解縮合物からなる下地層を設けること(特許文献3)が行われている。
特開2014−218639号公報 特開2012−72272号公報 国際公開第2014/126064号
特許文献1〜3に記載の酸化ケイ素層や下地層では、基材と撥水撥油層との間の接着性が不充分なことがある。撥水撥油層には、耐摩耗性のさらなる向上が求められており、そのために、基材と撥水撥油層との間の接着性のさらなる向上も求められている。
本発明は、撥水撥油層の耐摩耗性に優れた撥水撥油層付き物品およびその製造方法の提供を目的とする。
本発明は、下記[1]〜[17]の構成を有する撥水撥油層付き物品およびその製造方法を提供する。
[1]基材と、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層と、前記基材と前記撥水撥油層との間に存在する、アルカリ金属原子を含む酸化ケイ素層とを有し、
前記酸化ケイ素層において、前記撥水撥油層と接する面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が、2.0×1019atoms/cm以上であることを特徴とする撥水撥油層付き物品。
[2]前記アルカリ金属原子の濃度の平均値が、4.0×1022atoms/cm以下である、[1]の物品。
[3]アルカリ金属原子の少なくとも一部がナトリウム原子である、[1]または[2]の物品。
[4]前記酸化ケイ素層における酸化ケイ素が、ケイ酸の縮合物またはアルコキシシランの加水分解縮合物からなる、[1]〜[3]のいずれかの物品。
[5]前記酸化ケイ素層における酸化ケイ素が、アルカリ金属原子を含む酸化ケイ素の蒸着物からなる、[1]〜[4]のいずれかの物品。
[6]前記含フッ素化合物が、加水分解性シリル基とポリ(オキシペルフルオロアルキレン)鎖とを有する化合物である、[1]〜[5]のいずれかの物品。
[7]酸化ケイ素前駆体とアルカリ金属源とを含む酸化ケイ素形成材料を用いて、基材の表面にアルカリ金属原子を含む酸化ケイ素層を形成し、
次いで、前記酸化ケイ素層の表面に、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層を形成する、撥水撥油層付き物品の製造方法であって、
前記酸化ケイ素層を、前記撥水撥油層と接する面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が、2.0×1019atoms/cm以上である酸化ケイ素層とすることを特徴とする撥水撥油層付き物品の製造方法。
[8]ケイ酸、ケイ酸の部分縮合物、テトラアルコキシシランおよびその部分縮合物からなる群から選ばれる少なくとも1種の酸化ケイ素前駆体とアルカリ金属源と溶媒とを含むコーティング液を用いて、基材表面に前記酸化ケイ素層を形成する、[7]の製造方法。
[9]アルカリ金属原子を含む酸化ケイ素を用いて、基材表面に前記酸化ケイ素層を形成する、[7]の製造方法。
[10]前記アルカリ金属原子を含む酸化ケイ素におけるアルカリ金属原子の含有量がケイ素原子に対して200ppm以上である、[9]の製造方法。
[11]前記酸化ケイ素層を形成する方法が蒸着法である、[9]または[10]の製造方法。
[12]前記領域におけるアルカリ金属原子の濃度の平均値が、4.0×1022atoms/cm以下である、[7]〜[11]のいずれかの製造方法。
[13]アルカリ金属原子の少なくとも一部がナトリウム原子である、[7]〜[12]のいずれかの製造方法。
[14]前記基材の表面をコロナ放電処理、プラズマ処理またはプラズマグラフト重合処理し、次いで、前記処理された基材表面上に前記酸化ケイ素層を形成する、[7]〜[13]のいずれかの製造方法。
[15]アルカリ金属原子を含有する酸化ケイ素からなる蒸着源。
[16]基材と該基材の表面に設けられているアルカリ金属原子含有酸化ケイ素層とを有する酸化ケイ素層付き基材であって、かつ前記酸化ケイ素層の露出面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が2.0×1019atoms/cm以上である酸化ケイ素層付き基材からなる、加水分解性シリル基を有する含フッ素化合物を用いて前記酸化ケイ素層の露出面に撥水撥油層を形成するための酸化ケイ素層付き基材。
[17]基材と該基材表面に設けられているアルカリ金属原子含有酸化ケイ素層とを有する酸化ケイ素層付き基材における、前記酸化ケイ素層の露出面からの深さが0.1〜0.3nmの領域でのアルカリ金属原子の濃度の平均値が2.0×1019atoms/cm以上である前記酸化ケイ素層の露出面に、撥水撥油層を形成するための、加水分解性シリル基を有する含フッ素化合物。
本発明の撥水撥油層付き物品は、撥水撥油層の耐摩耗性に優れる。
本発明の撥水撥油層付き物品の製造方法によれば、撥水撥油層の耐摩耗性に優れた撥水撥油層付き物品を製造できる。
本発明の撥水撥油層付き物品の一例を示す断面図である。 酸化ケイ素層付き基材において、撥水撥油層と接する面からの深さと、該深さにおけるTOF−SIMSによって得られたナトリウム濃度との関係を示すグラフである。 図2の横軸を拡大したグラフである。
本明細書において、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
本明細書における以下の用語の意味は、以下の通りである。
「アルカリ金属」とは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)およびセシウム(Cs)を意味する。
「加水分解性シリル基」とは、加水分解反応することによってシラノール基(Si−OH)を形成し得る基を意味する。たとえば、式(1)中の−SiR13 n1 3−n1である。
「エーテル性酸素原子」とは、炭素−炭素原子間においてエーテル結合(−O−)を形成する酸素原子を意味する。なお、オキシペルフルオロアルキレン基の化学式は、その酸素原子をペルフルオロアルキレン基の右側に記載して表すものとする。
[撥水撥油層付き物品]
本発明の撥水撥油層付き物品は、基材と、撥水撥油層と、基材と撥水撥油層との間に存在する、アルカリ金属原子を含む酸化ケイ素層とを有する。
図1は、本発明の撥水撥油層付き物品の一例を示す断面図である。撥水撥油層付き物品10は、基材12と、基材12の表面に形成された酸化ケイ素層14と、酸化ケイ素層14の表面に形成された撥水撥油層16とを有する。
(基材)
本発明における基材は、撥水撥油性の付与が求められている基材であれば特に限定されない。基材の材料としては、金属、樹脂、ガラス、サファイア、セラミック、石、これらの複合材料が挙げられる。ガラスは化学強化されていてもよい。
基材としては、タッチパネル用基材、ディスプレイ用基材が好適であり、タッチパネル用基材が特に好適である。タッチパネル用基材は、透光性を有する。「透光性を有する」とは、JIS R3106:1998(ISO 9050:1990)に準じた垂直入射型可視光透過率が25%以上であることを意味する。タッチパネル用基材の材料としては、ガラスまたは透明樹脂が好ましい。
基材は、一方の表面または両面をコロナ放電処理、プラズマ処理またはプラズマグラフト重合処理したものであってもよい。該処理をした側の表面は、基材と酸化ケイ素層との接着性がさらに優れ、その結果撥水撥油層の耐摩耗性がさらに優れる点から、基材の酸化ケイ素層と接する側の表面に該処理をすることが好ましい。該処理のうち、撥水撥油層の耐摩耗性がさらに優れる点からは、コロナ放電処理が好ましい。
コロナ処理は、基材の表面改質具合が投入電力に対し比例的に変化する傾向があるため、基材の種類に応じて可能な限り大きな放電量(W・分/m)で実施することが好ましい。
(酸化ケイ素層)
酸化ケイ素層は、酸化ケイ素とアルカリ金属原子とを含有する。製造容易の点からは酸化ケイ素とナトリウムとを含有することが好ましい。酸化ケイ素としては、ケイ酸の縮合物およびアルコキシシランの加水分解縮合物が好ましい。撥水撥油層との接着性がさらに優れ、その結果、撥水撥油層の耐摩耗性がさらに優れる点から、ケイ酸の縮合物がより好ましい。
酸化ケイ素層の厚さは、2〜200nmが好ましく、2〜20nmが特に好ましい。酸化ケイ素層の厚さが前記範囲の下限値以上であれば、酸化ケイ素層による接着性の向上効果が充分に得られやすい。酸化ケイ素層の厚さが前記範囲の上限値以下であれば、酸化ケイ素層自体の耐摩耗性が高くなる。酸化ケイ素層の厚さを測定する方法は特に限定されないが、たとえば、電子顕微鏡(SEM、TEM等)による酸化ケイ素層の断面観察による方法や光干渉膜厚計、分光エリプソメータ、段差計等を用いる方法がある。
酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値は、2.0×1019atoms/cm以上であり、5.0×1019atoms/cm以上が好ましく、1.5×1020atoms/cm以上が特に好ましい。前記アルカリ金属原子濃度の平均値が前記下限値以上であれば、酸化ケイ素層と撥水撥油層との間の接着性に優れ、その結果、撥水撥油層の耐摩耗性に優れる。その理由は不明だが、以下のようなメカニズムが考えられる。すなわち、前記アルカリ金属原子濃度の平均値が高いということは、酸化ケイ素層の表面に、高い反応性を有するSi−OM(ただし、Mはアルカリ金属である。)が多く存在することを意味する。Si−OMは、撥水撥油層を形成するために用いた、加水分解性シリル基を有する含フッ素化合物中の加水分解性シリル基が加水分解反応することによって形成されたシラノール基(Si−OH)との反応性が高い。そのため、Si−OMが多く存在することによって、酸化ケイ素層と撥水撥油層との接合点であるSi−O−Si結合が増加することになる。その結果、撥水撥油層が剥離しにくくなり、撥水撥油層の耐摩耗性に優れる。
本発明におけるアルカリ金属原子の濃度とは、前記領域の含まれるアルカリ金属原子が1種類のみであれば、そのアルカリ金属原子の濃度をいい、前記領域の含まれるアルカリ金属原子が2種類以上であれば、それらアルカリ金属原子の濃度の合計をいう。
したがって、前記領域の含まれるアルカリ金属原子が2種類以上であってかつ各アルカリ金属原子濃度の平均値が前記下限値未満であっても、各アルカリ金属原子濃度の合計の平均値が前記下限値以上であればよい。
具体的には、たとえば、前記領域の含まれるアルカリ金属原子がNaを含み、前記領域におけるNa原子濃度の平均値が2.0×1019atoms/cm以上であれば、Na以外のアルカリ金属原子の有無にかかわらず本発明におけるアルカリ金属原子濃度の要件を満たす。また、前記領域の含まれるアルカリ金属原子がNaとKであり、前記領域におけるNa原子濃度の平均値およびK原子濃度の平均値がいずれも2.0×1019atoms/cm未満であっても、Na原子濃度の平均値およびK原子濃度の平均値の合計が2.0×1019atoms/cm以上であれば、本発明におけるアルカリ金属原子濃度の要件を満たす。
前記アルカリ金属原子濃度の平均値の上限値は、特に限定されないが、酸化ケイ素層においてSi−O−Si結合を充分に形成し、酸化ケイ素層の機械特性を充分に確保する点からは、4.0×1022atoms/cmが好ましく、1.0×1022atoms/cmが特に好ましい。
前記アルカリ金属原子の濃度の平均値は、イオンスパッタリングによるTOF−SIMS(飛行時間型二次イオン質量分析法:Time−of−Flight Secondary Ion Mass Spectrometry)深さ方向分析により、アルカリ金属原子濃度の深さ方向プロファイルを得た後、該プロファイルにおける深さ0.1〜0.3nmの領域におけるアルカリ金属原子濃度の平均値を算出することによって求められる。
イオンスパッタリングによるTOF−SIMS深さ方向分析は、TOF−SIMSによる測定とTOF−SIMS装置に内蔵されたイオン銃を用いたイオンスパッタリングによる表面のエッチングとを交互に繰り返すことによって行われる。
本発明において、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm未満の領域におけるアルカリ金属原子濃度を除外する理由は、アルカリ金属を含む外部物質で酸化ケイ素層の表面が汚染されていた場合、アルカリ金属による汚染が該領域のアルカリ金属原子濃度プロファイルに反映されるため、酸化ケイ素層におけるSi−OMに由来のアルカリ金属原子濃度を正確に測定できないおそれがあるからである。
酸化ケイ素層の表面(撥水撥油層との界面)における走査型プローブ顕微鏡で測定した表面粗さ(Ra)は、0.5nm以上が耐摩耗性の観点から好ましい。粗さの上限は特に無いが、10nm以下が好ましい。
酸化ケイ素層は、特に限定されないが、酸化ケイ素の前駆体とアルカリ金属源と溶媒(水や水溶性有機溶媒等)とを含む溶液からなるコーティング液を用いたウェットコーティング法で基材の表面に形成された層であること、または、アルカリ金属原子を含有する酸化ケイ素を用いたドライコーティング法で基材の表面に形成された層であること、が好ましい。詳細は後述する。
(撥水撥油層)
本発明における撥水撥油層は、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる。
加水分解性シリル基を有する含フッ素化合物中の加水分解性シリル基(たとえば式(1)中のSiR13 n1 3−n1)が加水分解反応することによってシラノール基(Si−OH)が形成され、該シラノール基が分子間で縮合反応してSi−O−Si結合が形成され、または該含フッ素化合物中のシラノール基が酸化ケイ素層の表面のシラノール基(Si−OH)またはOM基(Si−OM)と縮合反応して化学結合(Si−O−Si結合)が形成される。すなわち、本発明における撥水撥油層は、加水分解性シリル基を有する含フッ素化合物を、該化合物の加水分解性シリル基の一部または全部が加水分解反応および縮合反応した状態で含む。
撥水撥油層の厚さは、1〜100nmが好ましく、1〜50nmが特に好ましい。撥水撥油層の厚さが前記範囲の下限値以上であれば、表面処理による効果が充分に得られやすい。撥水撥油層の厚さが前記範囲の上限値以下であれば、利用効率が高い。
本発明においては、薄膜解析用X線回折計で得られた厚さを、撥水撥油層の厚さと定義する。撥水撥油層の厚さは、薄膜解析用X線回折計(RIGAKU社製ATX−G)を用いて、X線反射率法によって反射X線の干渉パターンを得て、該干渉パターンの振動周期から算出できる。
(加水分解性シリル基を有する含フッ素化合物)
加水分解性シリル基を有する含フッ素化合物(以下、単に「含フッ素化合物」とも記す。)は、撥水撥油層を形成し得るものであれば特に限定されない。すなわち含フッ素化合物は、酸化ケイ素層の露出面に、撥水撥油層を形成するためのものである。
含フッ素化合物としては、フルオロアルキル基および加水分解性シリル基を有する含フッ素化合物、フルオロアルキル基の炭素原子間にエーテル性酸素原子を有する基および加水分解性シリル基を有する含フッ素化合物、等が挙げられる。含フッ素化合物としては、撥水撥油性、指紋汚れ除去性、潤滑性等に優れる撥水撥油層を形成できる点から、ペルフルオロアルキル基および加水分解性シリル基を有する含フッ素化合物、またはペルフルオロアルキル基の炭素原子間にエーテル性酸素原子を有する基および加水分解性シリル基を有する含フッ素化合物が好ましい。また、含フッ素化合物としては、撥水撥油性、指紋汚れ除去性、潤滑性等に優れる撥水撥油層を形成できる点から、フルオロアルキル基、加水分解性シリル基およびポリ(オキシフルオロアルキレン)鎖を有する含フッ素化合物(以下、「含フッ素エーテル化合物」とも記す。)も好ましい。
フルオロアルキル基としては、撥水撥油性に優れ、かつ環境への負荷が少ない点から、炭素数1〜20のフルオロアルキル基が好ましく、炭素数1〜10のフルオロアルキル基がより好ましく、炭素数1〜6のフルオロアルキル基がさらに好ましく、炭素数1〜6の直鎖のフルオロアルキル基が特に好ましい。
ペルフルオロアルキル基としては、撥水撥油性に優れ、かつ環境への負荷が少ない点から、炭素数1〜20のペルフルオロアルキル基が好ましく、炭素数1〜10のペルフルオロアルキル基がより好ましく、炭素数1〜6のペルフルオロアルキル基がさらに好ましく、炭素数1〜6の直鎖のペルフルオロアルキル基が特に好ましい。
ペルフルオロアルキル基および加水分解性シリル基を有する含フッ素化合物としては、たとえば、特開2009−139530号公報の段落[0010]、[0022]に記載の式(3)で表される化合物等が挙げられる。
含フッ素エーテル化合物中の加水分解性シリル基は、撥水撥油層の耐摩耗性がさらに優れる点からは、2個以上が好ましく、3個以上が特に好ましい。上限は特に限定されないが、製造容易性の点から15個が好ましく、12個が特に好ましい。
ポリ(オキシフルオロアルキレン)鎖としては、炭素数1〜10のオキシフルオロアルキレン基からなるものが好ましく、炭素数1〜10のオキシペルフルオロアルキレン基からなるものが特に好ましい。撥水撥油層の耐摩耗性および指紋汚れ除去性がさらに優れる点から、炭素数1〜10のオキシペルフルオロアルキレン基の複数からなるものが好ましい。たとえば、炭素数1のオキシペルフルオロアルキレン基の複数と炭素数2のオキシペルフルオロアルキレン基の複数からなるもの、炭素数1のオキシペルフルオロアルキレン基の複数と炭素数3のオキシペルフルオロアルキレン基の複数からなるもの、炭素数2のオキシペルフルオロアルキレン基の複数と炭素数3のオキシペルフルオロアルキレン基の複数からなるもの、炭素数2のオキシペルフルオロアルキレン基の複数と炭素数4のオキシペルフルオロアルキレン基の複数からなるものが挙げられる。複数のオキシペルフルオロアルキレン基の配置は、ブロック、ランダム、交互のいずれであってもよい。オキシペルフルオロアルキレン基の炭素数が2以上の場合には、直鎖のオキシペルフルオロアルキレン基であることが好ましい。
ポリ(オキシペルフルオロアルキレン)鎖としては、炭素数2の直鎖のオキシペルフルオロアルキレン基と炭素数4の直鎖のオキシペルフルオロアルキレン基とが交互に配置されたものが特に好ましい。
(化合物(X))
含フッ素エーテル化合物としては、化合物(X)が挙げられる。
[A−O−(Rf1O)m1−Q−[SiR13 n1 3−n1 ・・・(X)
ただし、Aは、炭素数1〜20のペルフルオロアルキル基であり、Rf1は、炭素数1〜10のフルオロアルキレン基であり、m1は、2〜210の整数であり、(Rf1O)m1は、炭素数の異なる2種以上のRf1Oからなるものであってもよく、aおよびbは、それぞれ独立に1以上の整数であり、Qは(a+b)価の連結基であり、R13は、水素原子または1価の炭化水素基であり、Xは、加水分解性基であり、n1は、0〜2の整数であり、3つの[SiR13 n1 3−n1]は、すべてが同一の基でなくてもよい。
<A基>
としては、撥水撥油層の潤滑性および耐摩耗性がさらに優れる点から、炭素数1〜20のペルフルオロアルキル基が好ましく、炭素数1〜10のペルフルオロアルキル基がより好ましく、炭素数1〜6のペルフルオロアルキル基がさらに好ましく、炭素数1〜3のペルフルオロアルキル基が特に好ましい。
<(Rf1O)m1
f1は、直鎖であることが好ましい。また、Rf1は、ペルフルオロアルキレン基であってもよく、1つ以上の水素原子を含むフルオロアルキレン基であってもよい。
f1としては、上述した好ましいポリ(オキシペルフルオロアルキレン)鎖を構成するオキシペルフルオロアルキレン基と同様なものが好ましい。
m1は、2〜210の整数であり、5〜160の整数が好ましく、10〜110の整数が特に好ましい。m1が前記範囲の下限値以上であれば、撥水撥油層の撥水撥油性に優れる。m1が前記範囲の上限値以下であれば、撥水撥油層の耐摩耗性に優れる。
(Rf1O)m1において、炭素数の異なる2種以上のRf1Oが存在する場合、各R f1Oの結合順序は限定されない。たとえば、2種のRf1Oが存在する場合、2種のR f1Oがランダム、交互、ブロックに配置されてもよい。
<aおよびb>
aは、1〜10の整数が好ましく、1〜4の整数が特に好ましい。
(a+b)は、2〜15の整数が好ましく、2〜12の整数が特に好ましい。
aが1のとき、1〜10の整数が好ましく、1〜5が特に好ましい。
aが2以上の整数のとき、bは1以上の整数が好ましく、1〜10の整数がより好ましく、1〜4の整数が特に好ましい。
<Q基>
Qとしては、(a+b)価のアルカン基、該アルカン基の炭素原子−炭素原子間にエーテル性酸素原子、アミド基等の各種原子または基が挿入された基、これらの基の炭素原子に結合する水素原子の一部がフッ素原子に置換された基等が挙げられる。
<SiR13 n1 3−n1基>
SiR13 n1 3−n1は、加水分解性シリル基である。
は、加水分解性基である。加水分解性基は、加水分解反応によって水酸基となる基である。すなわち、化合物(X)の末端のSi−Xは、加水分解反応によってシラノール基(Si−OH)となる。
としては、アルコキシ基、ハロゲン原子、アシル基、イソシアナート基(−NCO)等が挙げられる。アルコキシ基としては、炭素数1〜4のアルコキシ基が好ましい。
13は、水素原子または1価の炭化水素基である。1価の炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、アリル基等が挙げられる。
13としては、1価の炭化水素基が好ましく、1価の飽和炭化水素基が特に好ましい。1価の飽和炭化水素基の炭素数は、1〜6が好ましく、1〜3がより好ましく、1〜2が特に好ましい。R13の炭素数がこの範囲であると、化合物(X)の製造がしやすい。
n1は、0または1が好ましく、0が特に好ましい。1つの加水分解性シリル基にXが複数存在することによって、基材との接着性がより強固になる。
化合物(X)中の3つのSiR13 n1 3−n1は、すべてが同一の基であってもよく、すべてが同一の基でなくてもよい。化合物(X)の製造のしやすさの点から、すべてが同一の基であることが好ましい。
化合物(X)の具体例としては、たとえば、後述する化合物(1)、国際公開第2013/042732号、国際公開第2013/121984号、国際公開第2013/121985号、国際公開第2013/121986号、国際公開第2014/163004号、国際公開第2015/087902号、国際公開第2017/038830号、国際公開第2017/038832号、国際公開第2017/187775号、特開2014−080473号公報および特開2015−199906号公報に記載の含フッ素エーテル化合物、国際公開第2011/059430号および国際公開第2011/060047号に記載のオルガノシリコン化合物、特許第2874715号公報に記載のケイ素含有有機含フッ素ポリマー、特開2000−327772号公報および特開平11−029585号公報に記載のパーフルオロポリエーテル変性アミノシラン、特表2002−506887号公報に記載のフッ素化シロキサン、特許第4138936号公報に記載のフッ素化変性水素含有重合体、特開2015−199906号公報、特開2016−204656号公報、特開2016−210854号公報および特開2016−222859号公報に記載のフルオロポリエーテル基含有ポリマー変性シラン、国際公開第2012/064649号に記載の含フッ素オルガノシラン化合物、特開2000−144097号公報に記載の有機ケイ素化合物、特表2008−534696号公報に記載の有機シリコーン化合物、特許文献1に記載のパーフルオロ(ポリ)エーテル含有シラン化合物、特許文献2に記載のフルオロオキシアルキレン基含有ポリマー、特許文献3、特開2014−070163号公報および米国特許出願公開第2010/0129672号明細書に記載の化合物等が挙げられる。
化合物(X)の市販品としては、信越化学工業社製のKY−100シリーズ(KY−178、KY−185、KY−195等)、旭硝子社製のAfluid(登録商標)S550、ダイキン工業社製のオプツール(登録商標)DSX、オプツール(登録商標)AES、オプツール(登録商標)UF503、オプツール(登録商標)UD509等が挙げられる。
(化合物(1))
化合物(1)は、化合物(X)の一例である。
−O−(Rf1O)m1−Q−[C(O)N(R)]p1−Q−[SiR n1 3−n1b2 ・・・(1)
ただし、Qは、−R11−C(−R12−)であるかまたはR13であり、Qが−R11−C(−R12−)である場合はb2は3であり、QがR13である場合はb2は1である。
上記化合物(1)において、A、Rf1、m1、R13、Xおよびn1は、前記式(X)と同じであり、Qは、直鎖の炭素数1〜10フルオロアルキレン基であり、Rは、水素原子または炭素数1〜10のアルキル基であり、p1は、0または1であり、R 11は、単結合、アルキレン基、アルキレン基の末端(ただし、C(−R12−)と結合する側の末端。)にエーテル性酸素原子を有する基、炭素数2以上のアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基、または炭素数2以上のアルキレン基の末端(ただし、C(−R12−)と結合する側の末端。)および炭素−炭素原子間にエーテル性酸素原子を有する基であり、R12、R13は、それぞれ独立に、アルキレン基、アルキレン基の末端(ただし、Siと結合する側の末端を除く。)にエーテル性酸素原子を有する基、または炭素数2以上のアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基である。
<Q基>
は、直鎖のペルフルオロアルキレン基であってもよく、1つ以上の水素原子を含む直鎖のフルオロアルキレン基であってもよい。Qが直鎖の化合物(1)によれば、耐摩耗性および潤滑性に優れる撥水撥油層を形成できる。
<[C(O)N(R)]p1基>
pが1の場合にはアミド結合を有するが、Qの[C(O)N(R)]と結合する側の末端の炭素原子に少なくとも1つのフッ素原子が結合していることにより、アミド結合の極性は小さくなり、撥水撥油層の撥水撥油性が低下しにくい。p1が0か1かは、製造のしやすさの点から選択できる。
[C(O)N(R)]p1基中のRとしては、化合物(1)の製造のしやすさの点から、水素原子が好ましい。Rがアルキル基の場合、アルキル基としては、炭素数1〜4のアルキル基が好ましい。
<R11基>
p1が0の場合、R11としては、化合物(1)の製造のしやすさの点から、単結合、−CHO−、−CHOCH−、−CHOCHCHO−および−CHOCH CHOCH−からなる群から選ばれる基(ただし、左側がQに結合する。)が好ましい。
p1が1の場合、R11としては、化合物(1)の製造のしやすさの点から、単結合、−CH−および−CHCH−からなる群から選ばれる基が好ましい。
<R12基、R13基>
12、R13基としては、化合物(1)の製造のしやすさの点から、それぞれ独立に、−CHCH−、−CHCHCH−、−CHOCHCHCH−、−OCHCHCH−からなる群から選ばれる基(ただし、右側がSiに結合する。)が好ましい。
化合物(1)中の3つのR12は、すべてが同一の基であってもよく、すべてが同一の基でなくてもよい。
<−(Rf1O)m1−Q−の好ましい形態>
化合物(1)における−(Rf1O)m1−Q−としては、撥水撥油層の耐摩耗性および指紋汚れ除去性がさらに優れる点から、−Q11−(RF1O)m10−Q12−が好ましい。ただし、Q11は、単結合、1つ以上の水素原子を含む直鎖のフルオロアルキレン基、1つ以上の水素原子を含む直鎖のフルオロアルキレン基の末端(ただし、A−Oと結合する側の末端を除く。)にエーテル性酸素原子を有する基、1つ以上の水素原子を含む炭素数2以上の直鎖のフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基、または1つ以上の水素原子を含む炭素数2以上の直鎖のフルオロアルキレン基の末端(ただし、A−Oと結合する側の末端を除く。)および炭素−炭素原子間にエーテル性酸素原子を有する基であり(ただし、酸素数は10以下である。)、RF1は、直鎖のペルフルオロアルキレン基であり、m10は、2〜200の整数であり、(R F1O)m10は、炭素数の異なる2種以上のRF1Oからなるものであってもよく、Q 12は、直鎖のペルフルオロアルキレン基、1つ以上の水素原子を含む直鎖のフルオロアルキレン基、または1つ以上の水素原子を含む炭素数2以上の直鎖のフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基である。
<Q11基>
11が、1つ以上の水素原子を含む直鎖のフルオロアルキレン基、または1つ以上の水素原子を含む炭素数2以上の直鎖のフルオロアルキレン基の炭素−炭素原子間にエーテル性酸素原子を有する基である場合で、かつQ11の(RF1O)m10と結合する側の末端にエーテル性酸素原子が存在しない場合は、Q11の(RF1O)m10と結合する側の末端の炭素原子には少なくとも1つの水素原子が結合する。
11としては、化合物(11)の製造のしやすさの点から、単結合、または、−CHFCFOCH−、−CFCHFCFOCH−、−CFCFCHFCFOCH−、−CFCFOCHFCFOCH−、−CFCFOCFCFOCHFCFOCH−、−CFCHOCH−、−CFCFOCFCHOCH−からなる群から選ばれる基(ただし、左側がA−Oに結合する。)が好ましい。
<(RF1O)m10
F1の好ましい形態は、上述したRf1の好ましい形態と同様である。
m10の好ましい範囲は、上述したm1の好ましい範囲と同様である。
(RF1O)m10において、炭素数の異なる2種以上のRF1Oが存在する場合、各RF1Oの結合順序は限定されない。
(RF1O)m10としては、たとえば、{(CFO)m11(CFCFO) 12}、(CFCFO)m13、(CFCFCFO)m14、(CFCFO−CFCFCFCFO)m15等が挙げられる。
ただし、m11は1以上の整数であり、m12は1以上の整数であり、m11+m12は2〜200の整数であり、m11個のCFOおよびm12個のCFCFOの結合順序は限定されない。m13およびm14は、2〜200の整数であり、m15は、1〜100の整数である。また、{(CFO)m11(CFCFO)m12}は、(CFO)のm11個および(CFCFO)のm12個を有する、(CFO)と(CFCFO)とのランダムコポリマー鎖を表す。
<Q12基>
p1が0の場合、Q12は、たとえば、(RF1O)m10が、{(CFO)m11(CFCFO)m12}および(CFCFO)m13である場合、炭素数1のペルフルオロアルキレン基であり、(CFCFCFO)m14である場合、炭素数2のペルフルオロアルキレン基であり、(CFCFO−CFCFCFCFO) m15である場合、炭素数3の直鎖のペルフルオロアルキレン基である。
p1が1の場合、Q12としては、下記の基が挙げられる。
(i)ペルフルオロアルキレン基。
(ii)RCHO(ただし、Rは、ペルフルオロアルキレン基である。)を(R F1O)m10と結合する側に有し、1つ以上の水素原子を含むフルオロアルキレン基(炭素−炭素原子間にエーテル性酸素原子を有してもよい。)をC(O)N(R)と結合する側に有する基。
(ii)のQ12としては、化合物(1)の製造のしやすさの点から、下記の基が好ましい。
−RCHO−CFCHFOCFCFCF−、−RCHO−CFCHFCFOCFCF−、−RCHO−CFCHFCFOCFCFCF−、−RCHO−CFCHFOCFCFCFOCFCF−。
12が直鎖の化合物(1)によれば、耐摩耗性および潤滑性に優れる撥水撥油層を形成できる。
<化合物(1)の好ましい形態>
化合物(1)としては、たとえば、下式の化合物が挙げられる。該化合物は、工業的に製造しやすく、取扱いやすく、撥水撥油層の撥水撥油性、耐摩耗性、指紋汚れ除去性、潤滑性、外観がさらに優れる点から好ましい。
Figure 0006485610
Figure 0006485610
PFPE−CHOCHCHCH−Si(OCH
PFPE−CHOCHCHCH−Si(OCHCH
PFPE−CHOCHCHCH−Si(CH)(OCH
PFPE−C(O)NH−CHCHCH−Si(OCH
PFPE−C(O)NH−CHCHCH−Si(OCHCH
PFPE−C(O)NH−CHCHCH−Si(CH)(OCH
ただし、PFPEはポリフルオロポリエーテル鎖、すなわちA−O−Q11−(R O)m10−Q12−である。PFPEの好ましい形態は、上述した好ましいA、Q 11、(RF1O)m10、およびQ12を組み合わせたものとなる。
[撥水撥油層付き物品の製造方法]
本発明の撥水撥油層付き物品の製造方法は、(a)酸化ケイ素前駆体とアルカリ金属源とを含む酸化ケイ素形成材料を用いて、基材の表面にアルカリ金属原子を含む酸化ケイ素層を形成し、次いで、(b)酸化ケイ素層の表面に、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層を形成する、撥水撥油層付き物品の製造方法であって、前記酸化ケイ素層を前記アルカリ金属原子濃度である酸化ケイ素層とする、製造方法である。
酸化ケイ素前駆体としては、ケイ酸、ケイ酸の部分縮合物、アルカリ金属ケイ酸塩、ケイ素原子に結合した加水分解性基を有するシラン化合物、該シラン化合物の部分加水分解縮合物等が挙げられる。ケイ酸やその部分縮合物は脱水縮合させて酸化ケイ素とすることができ、アルカリ金属ケイ酸塩は酸や陽イオン交換樹脂によりケイ酸やその部分縮合物とし、生成したケイ酸やその部分縮合物を脱水縮合させて酸化ケイ素とすることができる。ケイ素原子に結合した加水分解性基を有するシラン化合物における加水分解性基としては、アルコキシ基、塩素原子等が挙げられる。該シラン化合物の加水分解性基を加水分解させて水酸基とし、生成するシラノール化合物を脱水縮合させて酸化ケイ素とすることができる。ケイ素原子に結合した加水分解性基を有するシラン化合物としては、テトラアルコキシシラン、アルキルトリアルコキシシラン等のアルコキシシランやテトラクロロシラン等が挙げられる。
酸化ケイ素前駆体としては、ケイ酸、ケイ酸の部分縮合物、テトラアルコキシシランおよびその部分加水分解縮合物が好ましい。
アルカリ金属源としては、アルカリ金属水酸化物、水溶性アルカリ金属塩等が挙げられる。水溶性アルカリ金属塩としては、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属塩酸塩、アルカリ金属硝酸塩等が挙げられる。アルカリ金属源としては、アルカリ金属水酸化物およびアルカリ金属炭酸塩が好ましい。
さらに、アルカリ金属ケイ酸塩は酸化ケイ素前駆体かつアルカリ金属源として用いることができる。上記の様に、アルカリ金属ケイ酸塩はケイ酸を経て酸化ケイ素とすることができるが、その際に少量のアルカリ金属が生成する酸化ケイ素中に残留することが少なくない。したがって、意図的に残留するアルカリ金属の量を調整して、所定量のアルカリ金属原子を含む酸化ケイ素を得ることができる。
アルカリ金属原子を含む酸化ケイ素層を形成する方法としては、下記の(a1)あるいは(a2)が好ましい。(a1)の方法は前記ウェットコーティングを用いる方法であり、(a2)の方法は前記ドライコーティングを用いる方法である。
(a1):ケイ酸、ケイ酸の部分縮合物、アルコキシシランおよびその部分加水分解縮合物からなる群から選ばれる少なくとも1種の酸化ケイ素前駆体と、アルカリ金属源と、溶媒とを含むコーティング液を用いて、基材表面に酸化ケイ素層を形成する方法。
(a2):アルカリ金属原子を含む酸化ケイ素を用いて、基材表面に前記酸化ケイ素層を形成する方法。
(a1)
酸化ケイ素層形成用のコーティング液としては、酸化ケイ素層を形成しやすい点から、酸化ケイ素前駆体として、ケイ酸およびその部分縮合物からなる群から選ばれる少なくとも1種を含むことが好ましく、特にケイ酸の部分縮合物を含むことが特に好ましい。
ケイ酸やその部分縮合物の製造原料としてアルカリ金属ケイ酸塩を使用することが好ましい。アルカリ金属ケイ酸塩を使用することにより、生成する酸化ケイ素層中に所定濃度のアルカリ金属原子を含ませることができる。また、アルカリ金属水酸化物等のアルカリ金属源を用いて、生成する酸化ケイ素層中のアルカリ金属原子濃度を調整することもできる。
具体的には、アルカリ金属ケイ酸塩水溶液を脱塩処理してケイ酸水溶液を得た後、ケイ酸水溶液に水溶性有機溶媒を加えることによって調製する方法が好ましい。脱塩処理条件を適宜選択することで、ケイ酸水溶液に好ましい量のアルカリ金属原子を含めることができる。脱塩処理の方法としては、たとえば、アルカリ金属ケイ酸塩水溶液と陽イオン交換樹脂とを混合し、撹拌した後、陽イオン交換樹脂を除去する方法が挙げられる。この方法に用いられるアルカリ金属ケイ酸塩としては、ケイ酸ナトリウムが好ましい。
アルカリ金属ケイ酸塩としては、MO・nSiOで表されるケイ酸塩が挙げられ、具体的には、メタケイ酸塩(MSiO)、オルトケイ酸塩(MSiO)、二ケイ酸塩(MSi)、四ケイ酸塩(MSi)等が挙げられる。
例えば、ケイ酸ナトリウムとしては、JIS K1408−1966に規定されたNa O・nSiOが挙げられ、具体的には、メタケイ酸ナトリウム(NaSiO)、オルトケイ酸ナトリウム(NaSiO)、二ケイ酸ナトリウム(NaSi)、四ケイ酸ナトリウム(NaSi)等が挙げられる。
溶媒としては、水および水溶性有機溶媒が好ましい。水溶性有機溶媒としては、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒等が挙げられ、アルコール系有機溶媒が好ましい。アルコール系有機溶媒としては、イソプロピルアルコール、エタノール、n−ブタノール等が挙げられる。
コーティング液の固形分濃度(SiO換算)は、0.001〜10質量%が好ましく、0.1〜3質量%が特に好ましい。
基材の表面にコーティング液をウェットコーティングする方法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
基材の表面にコーティング液をウェットコーティングし、ウェット膜を形成した後、ウェット膜の溶媒を除去し、ケイ酸およびその部分縮合物を縮合させることによって、酸化ケイ素層を形成する。
ウェット膜の溶媒除去における温度、およびケイ酸およびその部分縮合物の縮合における温度は、0〜600℃が好ましく、緻密な酸化ケイ素層を形成できる点から、200〜600℃が特に好ましい。
(a2)
アルカリ金属原子を含む酸化ケイ素を用いてドライコーティングを行う方法としては、プロセスの簡便性に優れる点から、真空蒸着法、CVD法、スパッタリング法等が挙げられる。装置の簡便さの点から、真空蒸着法が特に好ましい。
真空蒸着法において、アルカリ金属原子を含む酸化ケイ素の2種以上を蒸着する場合には、それらを1つの蒸着源としてもよく、別々の蒸着源として共蒸着してもよい。特に、アルカリ金属原子を含む酸化ケイ素からなる1つの蒸着源を用いることが好ましい。例えば、2種以上のアルカリ金属原子を含む酸化ケイ素層を形成する場合は、2種以上のアルカリ金属原子を含む酸化ケイ素からなる1つの蒸着源を用いることが好ましい。
真空蒸着法における蒸着源等のドライコーティング法に使用するアルカリ金属原子含有酸化ケイ素としては、アルカリ金属原子の含有量がSiに対して200ppm以上のアルカリ金属原子含有酸化ケイ素であることが好ましい。アルカリ金属原子の含有量は、Siに対して1,000ppm以上がより好ましく、10,000ppm以上が特に好ましい。アルカリ金属原子の含有量が前記範囲の下限値以上であれば、形成された酸化ケイ素層と撥水撥油層との間の接着性に優れ、その結果、撥水撥油層の耐摩耗性に優れる。なお、アルカリ金属原子の含有量の上限は、Siに対して200,000ppmが好ましく、100,000ppmが特に好ましい。
アルカリ金属原子含有酸化ケイ素の製造方法としては、二酸化ケイ素をアルカリ金属源含有水溶液に添加して撹拌し、水を除去する方法が挙げられる。二酸化ケイ素としては、シリカゲル等の多孔質二酸化ケイ素が好ましい。アルカリ金属源含有水溶液としては、アルカリ金属水酸物水溶液、アルカリ金属炭酸塩水溶液等が挙げられる。また、前記(a1)の酸化ケイ素層形成用のコーティング液から、アルカリ金属原子含有酸化ケイ素を製造することもできる。
また、ケイ酸ナトリウム等のアルカリ金属ケイ酸塩から製造された、アルカリ金属原子を含む多孔質シリカゲル、該多孔質シリカゲルにさらにアルカリ金属源を含む水溶液を含浸し、乾燥や焼成を行って得られるルカリ金属原子を含む多孔質シリカゲル、等をアルカリ金属原子含有酸化ケイ素として用いることもできる。アルカリ金属原子を含む酸化ケイ素は市販品を使用してもよく、M.S.GEL(商品名:AGCエスアイテック社製)等の、ケイ酸ナトリウムから製造された多孔質球状シリカゲルが挙げられる。
アルカリ金属原子含有酸化ケイ素の形状は問わず、粉体、ビーズ、ペレット、カレット等が挙げられる。蒸着源等として使用しやすい点からはビーズ、ペレットおよびカレットが好ましい。ペレットの製造方法は問わないが、たとえば粉体を圧粉成形してペレット状成形体にする方法が挙げられる。ペレット状成形体の大きさは特に限定されないが、小さいとコーティング時に飛び過ぎて好ましくないことから、たとえば直径1cm以上が好ましい。カレットの製造方法としては、カルシウムを添加してガラス化したものをカッターで切断する、粉砕する方法が挙げられる。
(b)
アルカリ金属原子を含む酸化ケイ素層を形成した後、その露出面に、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層を形成する。その方法としては、ドライコーティングまたはウェットコーティングが挙げられる。なお、酸化ケイ素層付き基材における酸化ケイ素層の露出面とは、撥水撥油層が形成される酸化ケイ素層表面をいう。
<ドライコーティング>
ドライコーティング法としては、真空蒸着法、CVD法、スパッタリング法等が挙げられ、加水分解性シリル基を有する含フッ素化合物の分解を抑える点、および装置の簡便さの点から、真空蒸着法が特に好ましい。
真空蒸着の際の温度は、20〜300℃が好ましく、30〜200℃が特に好ましい。
真空蒸着の際の圧力は、1×10−1Pa以下が好ましく、1×10−2Pa以下が特に好ましい。
ドライコーティングにおいては、加水分解性シリル基を有する含フッ素化合物の1種を単独で用いてもよく、加水分解性シリル基を有する含フッ素化合物の2種以上の混合物として用いてもよく、加水分解性シリル基を有する含フッ素化合物と他の成分(ただし、溶媒を除く。)とを含む組成物として用いてもよく、これらに溶媒を加えた溶液または分散液として用いてもよい。
<ウェットコーティング>
ウェットコーティング法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
ウェットコーティングにおいては、撥水撥油層形成用コーティング液を用いる。
撥水撥油層形成用コーティング液は、加水分解性シリル基を有する含フッ素化合物と溶媒とを含む溶液または分散液である。
溶媒としては、有機溶媒が好ましい。有機溶媒は、フッ素系有機溶媒であってもよく、非フッ素系有機溶媒であってもよく、両溶媒を含んでもよい。
フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
非フッ素系有機溶媒としては、水素原子および炭素原子のみからなる化合物と、水素原子、炭素原子および酸素原子のみからなる化合物が好ましく、炭化水素系有機溶媒、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒が挙げられる。
撥水撥油層形成用コーティング液は、加水分解性シリル基を有する含フッ素化合物および溶媒の他に、本発明の効果を損なわない範囲で、その他の成分、不純物(加水分解性シリル基を有する含フッ素化合物の製造工程で生成した副生成物等)を含んでいてもよい。
その他の成分としては、たとえば、加水分解性シリル基の加水分解と縮合反応を促進する酸触媒や塩基性触媒等の公知の添加剤が挙げられる。
撥水撥油層形成用コーティング液の固形分濃度は、0.001〜10質量%が好ましく、0.01〜1質量%が特に好ましい。撥水撥油層形成用コーティング液の固形分濃度は、加熱前の撥水撥油層形成用コーティング液の質量と、120℃の対流式乾燥機にて4時間加熱した後の質量とから算出する値である。
<後処理>
(b)においては、撥水撥油層の耐摩耗性を向上させるために、必要に応じて、加水分解性シリル基を有する含フッ素化合物と酸化ケイ素層との反応を促進するための操作を行ってもよい。該操作としては、加熱、加湿、光照射等が挙げられる。たとえば、水分を有する大気中で撥水撥油層が形成された酸化ケイ素層付き基材を加熱して、加水分解性シリル基のシラノール基への加水分解反応、シラノール基の縮合反応によるシロキサン結合の生成、酸化ケイ素層の表面のシラノール基、OM基と含フッ素化合物のシラノール基との縮合反応等の反応を促進できる。
表面処理後、撥水撥油層中の化合物であって他の化合物や酸化ケイ素層と化学結合していない化合物は、必要に応じて除去してもよい。具体的な方法としては、たとえば、撥水撥油層に溶媒をかけ流す方法、溶媒をしみ込ませた布でふき取る方法等が挙げられる。
以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
例1〜2、4〜8、9〜10、12〜30は実施例であり、例3、11、31は比較例である。
[物性および評価]
(数平均分子量)
含フッ素エーテル化合物の数平均分子量は、H−NMRおよび19F−NMRによって、末端基を基準にしてオキシペルフルオロアルキレン基の数(平均値)を求めることによって算出した。末端基は、たとえば式(1)中のAまたはSiR13 n1 3−n である。
(酸化ケイ素層の厚さ)
酸化ケイ素層の厚さは、分光エリプソメータ(大塚電子社製FE−3000)で測定した。
(TOF−SIMS)
酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値は、飛行時間型二次イオン質量分析(TOF−SIMS)装置を用い、以下の手順に従い求めた。
(I)初めに、ナトリウム濃度定量用の標準試料を準備した。評価対象である酸化ケイ素層と同じ組成である石英ガラス基板を用意し、この基板にナトリウムをイオン注入し、標準試料とした。イオン注入には、中電流イオン注入装置(アルバック社製IMX−3500RS)を用い、エネルギーを110keV、ナトリウム注入量を6.0×1014ions/cmとした。
(II)次に、評価対象の酸化ケイ素層付き基材と(I)で作製した標準試料を同時にTOF−SIMS装置内へ搬送し、順番にイオンスパッタリングによるTOF−SIMS深さ方向分析を行い、スパッタ時間(横軸)と23Naおよび28Siの強度(縦軸)とのプロファイルを取得した。
次いで、得られたプロファイルの横軸のスパッタ時間を、標準試料の深さを用いて、深さに変換した。なお、標準試料の深さは、触針式表面形状測定器(アルバック社製Dektak150)を用いて測定した。
次いで、得られたプロファイルの縦軸の強度を、標準試料から求めたスパッタイオンのスパッタレート(0.0282nm/秒)および標準試料の深さ方向プロファイルから算出したRSF(2.8182×1020。相対感度因子ともいいRelative Sensitivity Factorの略。)を用いて、ナトリウム濃度に変換し、酸化ケイ素層のナトリウム濃度の深さ方向プロファイルを得た(図2および図3)。
今回使用したTOF−SIMSの分析条件は以下の通りである。
TOF−SIMS装置:ION−TOF GmbH社製TOF.SIMS5、
一次イオン種:Bi
一次イオン加速電圧:25keV、
一次イオン電流値:1pA(at 10kHz)、
一次イオンラスターサイズ:100×100μm
一次イオンバンチング:あり、
サイクルタイム:100μs、
ピクセル数:128×128pixels、
スパッタイオン種:C60 ++
スパッタの加速電圧:10keV、
スパッタの電流値:1nA(at 10kHz)、
スパッタイオンのラスターサイズ:400×400μm
1回あたりのスパッタ時間:1.634秒、
真空度:5.0×10−6mbar(測定室内への酸素フローを実施)、
Na二次イオン質量数:23、
Si二次イオン質量数:28、
中和銃:あり。
(III)最後に、(II)で得た酸化ケイ素層のナトリウム濃度の深さ方向プロファイルより、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を算出した。なお、ナトリウム濃度の深さ方向プロファイルにて、0.1nm以上0.3nm以下の領域内にプロットされた点数は4点であった。ナトリウム濃度の平均値は、この4点の平均値として求めた。上述の条件で測定を行うと、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域にプロットが4点存在しうる。
イオンスパッタリングによるTOF−SIMS深さ方向分析の前には、酸化ケイ素層が露出していることが望ましい。すなわち、酸化ケイ素層の表面に撥水撥油層が存在する場合や表面汚染が明らかに進行している場合は、これらを除去することが好ましい。除去方法としては、酸素プラズマ灰化処理、紫外線(UV)オゾン処理等が挙げられる。これらは、撥水撥油層の厚さや表面汚染の度合いによっては、両方実施した方がよい。
本実施例においては、酸素プラズマ灰化処理を実施した後、UVオゾン処理を行った。酸素プラズマ灰化処理では、低温灰化装置(ヤナコ分析工業社製LTA−102型)を用いた。処理条件は、高周波出力:50W、酸素流量:50mL/分、処理時間:60分間であった。UVオゾン処理では、紫外線照射装置(センエンジニアリング社製PL30−200)を用い、紫外線照射装置電源としてUB2001D−20を用いた。処理条件は、紫外線波長:254nm、処理時間:10分間であった。
本実施例は酸化ケイ素層付き基材においてイオンスパッタリングによるTOF−SIMS深さ方向分析を行ったため不要であるが、撥水撥油層付き物品においてイオンスパッタリングによるTOF−SIMS深さ方向分析を行う場合は、X線光電子分光法を用いて、フッ素のピークをモニターすることにより、除去されていることを確かめることが好ましい。
なお、ナトリウム以外のアルカリ金属の濃度も、上記ナトリウム濃度の測定と同様に測定した。
(表面粗さ(Ra))
走査型プローブ顕微鏡(SIIナノテクノロジー社製、型式:SPA400)を用いて、Raを測定した。カンチレバーはSI−DF40(背面AL有)、XYデータ数256点、走査エリアは10μm×10μmで測定した。
(水の接触角)
撥水撥油層の表面に置いた、約2μLの蒸留水の接触角を、接触角測定装置(協和界面科学社製DM−701)を用いて20℃で測定した。撥水撥油層の表面における異なる5箇所で測定を行い、その平均値を算出した。
(スチールウール摩耗試験)
撥水撥油層について、JIS L0849:2013(ISO 105−X12:2001)に準拠して往復式トラバース試験機(ケイエヌテー社製)を用い、スチールウールボンスター(番手:♯0000、寸法:5mm×10mm×10mm)を荷重:9.8N、速度:80rpmで往復させた。所定のスチールウール摩耗回数ごとに、撥水撥油層の水の接触角を測定し、水の接触角が100度以上の場合を○(良好)、100度未満の場合を×(不良)とした。摩耗後の水の接触角の低下が小さいほど摩耗による性能の低下が小さく、耐摩耗性に優れる。
(フェルト摩耗試験)
撥水撥油層について、フェルト摩耗試験機を用い、フェルト(寸法:10mm×10mm×50mm)を荷重:9.8N、速度:80rpmで往復させた。往復1,000回のフェルト摩耗した後に、撥水撥油層の水の接触角を測定した。摩耗後の水の接触角の低下が小さいほど摩耗による性能の低下が小さく、耐摩耗性に優れる。
[原料]
(化合物(X−1))
国際公開第2013/121984号の例6に記載の方法にしたがい、数平均分子量が2,900である化合物(X−1)を得た。
CF−O−(CFCFO−CFCFCFCFO)m15(CFCFO)−CFCFCF−C(O)NHCHCHCH−Si(OCH ・・・(X−1)
単位数m15の平均値:7。
[例1]
5質量%のケイ酸ナトリウム水溶液(昭和化学社製3号ケイ酸ナトリウム溶液)の20gに、陽イオン交換樹脂(三菱化学社製SK1B)の12gを加え、10分間撹拌した。ろ過で陽イオン交換樹脂を除去し、ケイ酸水溶液を得た。イソプロピルアルコールの4.75gにケイ酸水溶液の0.25gを加え、酸化ケイ素層形成用コーティング液1(固形分濃度(SiO換算):0.25質量%)を得た。
酸化ケイ素層形成用コーティング液1について下記測定を行った結果、Siに対してナトリウムを300ppm、リチウムを0ppm、カリウムを0ppm、ルビジウムを0ppm、セシウムを0ppm有する酸化ケイ素粉末が得られることを確認した。
(測定方法)
酸化ケイ素層形成用コーティング液1を150℃で乾燥し、有機溶媒と水とを除去して、酸化ケイ素粉末を得た。酸化ケイ素粉末に含まれるSiに対するナトリウム、リチウム、カリウム、ルビジウムおよびセシウムの含有量をICP発光分光分析(日立ハイテクサイエンス社製SPS5520)で測定した。
ガラス基材(旭硝子社製Dragontrail(登録商標))の一方の表面を、高周波電源(春日電機社製CG102A)を用いて80V、3.5Aの条件下でコロナ放電処理した。
ガラス基材のコロナ放電処理した面に酸化ケイ素層形成用コーティング液1を、スピンコート法によって回転数:3,000rpm、回転時間:20秒間の条件にて塗布し、ウェット膜を形成した。ウェット膜を、焼成温度:550℃、焼成時間:30分間の条件にて焼成し、厚さ約10nmの酸化ケイ素層を有する酸化ケイ素層付きガラス基材を製造した。
TOF−SIMSによって、得られた酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。結果を図2、図3および表1に示す。なお10nmまでの深さのナトリウム濃度はTOF−SIMSを用いて求めた。
真空蒸着装置(アルバック機工社製VTR−350M)内のモリブデン製ボートに蒸着源として化合物(X−1)の0.5gを配置した。真空蒸着装置内に前記酸化ケイ素層付きガラス基材を配置し、真空蒸着装置内を5×10−3Pa以下の圧力になるまで排気した。前記ボートを300℃になるまで加熱し、酸化ケイ素層に化合物(X−1)を真空蒸着させ、厚さ10nmの蒸着膜を形成した。
蒸着膜が形成されたガラス基材を、温度:25℃、湿度:40%の条件で一晩放置し、厚さ10nmの撥水撥油層を形成した。
撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例2]
酸化ケイ素層を形成する際の焼成温度を250℃に変更した以外は、例1と同様にして酸化ケイ素層および撥水撥油層を形成した。
TOF−SIMSによって、得られた酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。結果を図2、図3および表1に示す。
撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例3]
例1と同様にしてガラス基材の一方の表面をコロナ放電処理した。
真空蒸着装置(アルバック機工社製VTR−350M)内のモリブデン製ボートに蒸着源として酸化ケイ素(キャノンオプトロン社製SiO(C)。Siに対するナトリウムの含有量を測定した結果、1ppm未満であった。)を配置した。真空蒸着装置内にガラス基材を配置し、真空蒸着装置内を5×10−3Pa以下の圧力になるまで排気した。前記ボートを1,000℃になるまで加熱し、ガラス基材のコロナ放電処理した面に酸化ケイ素を真空蒸着させ、厚さ10nmの酸化ケイ素層を形成した。
TOF−SIMSによって、得られた酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。結果を図2、図3および表1に示す。
例3の酸化ケイ素層付きガラス基材を用いた以外は、例1と同様にして撥水撥油層を形成した。
撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例4]
5質量%のケイ酸ナトリウム水溶液(昭和化学社製3号ケイ酸ナトリウム溶液)の20gに、陽イオン交換樹脂(三菱化学社製SK1B)の4gを加え、10分間撹拌した。ろ過で陽イオン交換樹脂を除去し、ケイ酸水溶液を得た。イソプロピルアルコールの4gにケイ酸水溶液の1gを加え、酸化ケイ素層形成用コーティング液2(固形分濃度(SiO 換算):1質量%)を得た。酸化ケイ素層形成用コーティング液2について例1と同様に得られる酸化ケイ素粉末中のSiに対するナトリウムの含有量を測定した結果、500ppmであった。また、リチウムの含有量は0ppm、カリウムの含有量は0ppm、ルビジウムの含有量は0ppm、セシウムの含有量は0ppmであった。
酸化ケイ素層形成用コーティング液1を酸化ケイ素層形成用コーティング液2に変更した以外は、例2と同様にして撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例5]
例4で得た酸化ケイ素層形成用コーティング液2を150℃で乾燥し、次いで、静水圧プレス(180MPaで1分間)で成形し、成形体1を得た。成形体1についてナトリウムの含有量をICP発光分光分析(日立ハイテクサイエンス社製SPS5520)で測定したところ、500ppmであった。また、リチウムの含有量は0ppm、カリウムの含有量は0ppm、ルビジウムの含有量は0ppm、セシウムの含有量は0ppmであった。
蒸着源を成形体1に変更した以外は、例3と同様にして酸化ケイ素層および撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例6]
例5と同様に厚さ10nmの酸化ケイ素層を形成した後、さらに焼成温度:250℃、焼成時間:30分間の条件にて焼成した。次いで、例1と同様にして撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例7]
M.S.GEL−D−100−60A(商品名、AGCエスアイテック社製。平均粒子径50〜300μmの球状多孔質シリカゲル。以下、「MSゲル」という。)を静水圧プレス(180MPaで1分間)で成形し、成形体2を得た。成形体1のかわりに成形体2を使用する以外は、例5と同様にして酸化ケイ素層および撥水撥油層を形成した。なお、MSゲルについてSiに対するナトリウムの含有量をICP発光分光分析(日立ハイテクサイエンス社製SPS5520)で測定したところ、23ppmであった。また、リチウムの含有量は0ppm、カリウムの含有量は0ppm、ルビジウムの含有量は0ppm、セシウムの含有量は0ppmであった。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
[例8]
例7と同様に厚さ10nmの酸化ケイ素層を形成した後、さらに焼成温度:250℃、焼成時間:30分間の条件にて焼成した。次いで、例1と同様にして撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表1に示す。
Figure 0006485610
例1〜2および4は、酸化ケイ素層がケイ酸の縮合物を含む層であり、例5〜8は、ナトリウム含有酸化ケイ素の蒸着により形成された層である。また、例1〜2および例4〜8は、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値が2.0×1019atoms/cm以上であったため、撥水撥油層の耐摩耗性に優れていた。
例2と4とを比較すると、初期の水の接触角が例4の方が高い。これは、例4の酸化ケイ素層形成用コーティング液2から形成される酸化ケイ素粉末中のSiに対するナトリウムの含有量が、例2の酸化ケイ素層形成用コーティング液1から形成される酸化ケイ素粉末中のSiに対するナトリウムの含有量よりも多いため、例4の方が酸化ケイ素層の表面極性が高く、その上に蒸着された加水分解性シリル基を有する含フッ素化合物の分子の配向性がより高くなるためと考えられる。
例3は、酸化ケイ素層が酸化ケイ素の蒸着膜であり、また、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値が2.0×1019atoms/cm未満であったため、撥水撥油層の耐摩耗性に劣っていた。
[例9]
ガラス基材のかわりに、コロナ放電処理していないサファイア基材(並木精密宝石社製、φ76.2mm)を用いた以外は例1と同様にして、酸化ケイ素層および撥水撥油層を形成した。
TOF−SIMSによって、得られた酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表2に示す。
[例10]
ガラス基材のかわりに、サファイア基材(並木精密宝石社製、φ76.2mm)の一方の表面を、高周波電源(タンテック社製HV2010)を用いて28kV、1,000W、処理速度1mm/秒の条件下でコロナ放電処理した基材を用いた以外は、例1と同様にして酸化ケイ素層および撥水撥油層を形成した。なお、酸化ケイ素層はサファイア基材のコロナ放電処理した面に真空蒸着した。
TOF−SIMSによって、得られた酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表2に示す。
[例11]
ガラス基材のかわりに、コロナ放電処理していないサファイア基材(並木精密宝石社製、φ76.2mm)を用いた以外は、例3と同様にして酸化ケイ素層および撥水撥油層を形成した。
TOF−SIMSによって、得られた酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表2に示す。
Figure 0006485610
例9〜10は、酸化ケイ素層がケイ酸の縮合物を含む層であり、また、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値が2.0×1019atoms/cm以上であったため、撥水撥油層の耐摩耗性に優れていた。
例11は、酸化ケイ素層が蒸着膜であり、また、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値が2.0×1019atoms/cm未満であったため、撥水撥油層の耐摩耗性に劣っていた。
[例12]
水酸化ナトリウム(純正化学社製)の2.2gを蒸留水24gに溶解して、8.4質量%の水酸化ナトリウム水溶液を得た。この8.4質量%の水酸化ナトリウム水溶液の24gとMSゲルの20gとを混合して、水酸化ナトリウム水溶液をMSゲル中に吸収させた。水酸化ナトリウム水溶液を吸収したMSゲルを25℃で8時間乾燥した後、静水圧プレス(50MPaで2秒間)で成形し、1,000℃で1時間焼成して成形体3(ペレット)を得た。成形体3についてSiに対するナトリウムの含有量をICP発光分光分析(日立ハイテクサイエンス社製SPS5520)で測定した。結果を表3に示す。また、リチウムの含有量は0ppm、カリウムの含有量は0ppm、ルビジウムの含有量は0ppm、セシウムの含有量は0ppmであった。
蒸着源を成形体3に変更した以外は、例3と同様にして酸化ケイ素層および撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表3に示す。
[例13〜31]
成形体の製造条件を表3に示す条件に変更した以外は、例12と同様にして成形体(ペレット)を得た。各成形体についてSiに対するナトリウムの含有量をICP発光分光分析(日立ハイテクサイエンス社製SPS5520)で測定した。結果を表3に示す。また、いずれの成形体も、リチウムの含有量は0ppm、カリウムの含有量は0ppm、ルビジウムの含有量は0ppm、セシウムの含有量は0ppmであった。
蒸着源を各成形体に変更した以外は、例3と同様にして酸化ケイ素層および撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表3に示す。
Figure 0006485610
表中、シリカゲルは、フジシリカゲルA型(商品名、富士シリシア社製)であり、溶融シリカ粉末は、アエロジル200(商品名、日本アエロジル社製)であり、NaOHは、水酸化ナトリウム(純正化学社製)であり、NaCOは、炭酸ナトリウム(純正化学社製)である。
例12〜30は、酸化ケイ素層が蒸着膜であり、また、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値が2.0×1019atoms/cm以上であったため、撥水撥油層の耐摩耗性に優れていた。
例31は、酸化ケイ素層が蒸着膜であり、また、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値が2.0×1019atoms/cm未満であったため、撥水撥油層の耐摩耗性に劣っていた。
[例32〜43]
成形体の製造条件を表4に示す条件に変更した以外は、例12と同様にして成形体(ペレット)を得た。なお、二酸化ケイ素としては、いずれもMSゲルを使用した。各成形体についてSiに対するアルカリの含有量をICP発光分光分析(日立ハイテクサイエンス社製SPS5520)で測定した。結果を表4に示す。
蒸着源を各成形体に変更した以外は、例3と同様にして酸化ケイ素層および撥水撥油層を形成した。
酸化ケイ素層について撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるナトリウム濃度の平均値を求めた。また、撥水撥油層について、初期の水の接触角および耐摩耗性を評価した。結果を表4に示す。
Figure 0006485610
表中、NaOHは水酸化ナトリウム(純正化学社製)であり、NaCOは炭酸ナトリウム(純正化学社製)、LiOHは水酸化リチウム(純正化学社製)であり、LiCOは炭酸リチウム(純正化学社製)、KOHは水酸化カリウム(純正化学社製)であり、KCOは炭酸カリウム(純正化学社製)、RbOHは水酸化ルビジウム(純正化学社製)であり、RbCOは炭酸ルビジウム(純正化学社製)、CsOHは水酸化セシウム(純正化学社製)であり、CsCOは炭酸セシウム(純正化学社製)である。
例32〜43は、酸化ケイ素層が蒸着膜であり、また、酸化ケイ素層において、撥水撥油層と接する面からの深さが0.1nm以上0.3nm以下の領域におけるアルカリ合計濃度の平均値が2.0×1019atoms/cm以上であったため、撥水撥油層の耐摩耗性に優れていた。
本発明の撥水撥油層付き物品は、光学物品、タッチパネル(指で触れる面等)、反射防止フィルム、SiO処理ガラス、強化ガラス、サファイア基板、石英基板、金属金型等として有用である。
なお、2017年06月21日に出願された日本特許出願2017−121642号および2018年01月15日に出願された日本特許出願2018−004491号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
10 撥水撥油層付き物品、12 基材、14 酸化ケイ素層、16 撥水撥油層。

Claims (15)

  1. 基材と、
    加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層と、
    前記基材と前記撥水撥油層との間に存在する、アルカリ金属原子を含む酸化ケイ素層とを有し、
    前記酸化ケイ素層において、前記撥水撥油層と接する面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が、2.0×1019atoms/cm以上であることを特徴とする撥水撥油層付き物品。
  2. 前記アルカリ金属原子の濃度の平均値が、4.0×1022atoms/cm以下である、請求項1に記載の物品。
  3. アルカリ金属原子の少なくとも一部がナトリウム原子である、請求項1または2に記載の物品。
  4. 前記酸化ケイ素層における酸化ケイ素が、ケイ酸の縮合物またはアルコキシシランの加水分解縮合物からなる、請求項1〜3のいずれか一項に記載の物品。
  5. 前記酸化ケイ素層における酸化ケイ素が、アルカリ金属原子を含む酸化ケイ素の蒸着物からなる、請求項1〜4のいずれか一項に記載の物品。
  6. 前記含フッ素化合物が、加水分解性シリル基とポリ(オキシペルフルオロアルキレン)鎖とを有する化合物である、請求項1〜5のいずれか一項に記載の物品。
  7. 酸化ケイ素前駆体とアルカリ金属源とを含む酸化ケイ素形成材料を用いて、基材の表面にアルカリ金属原子を含む酸化ケイ素層を形成し、
    次いで、前記酸化ケイ素層の表面に、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層を形成する、撥水撥油層付き物品の製造方法であって、
    前記酸化ケイ素層を、前記撥水撥油層と接する面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が、2.0×1019atoms/cm以上である酸化ケイ素層とすることを特徴とする撥水撥油層付き物品の製造方法。
  8. ケイ酸、ケイ酸の部分縮合物、テトラアルコキシシランおよびその部分縮合物からなる群から選ばれる少なくとも1種の酸化ケイ素前駆体とアルカリ金属源と溶媒とを含むコーティング液を用いて、基材表面に前記酸化ケイ素層を形成する、請求項7に記載の製造方法。
  9. アルカリ金属原子を含む酸化ケイ素を用いて、基材表面にアルカリ金属原子を含む酸化ケイ素層を形成し、
    次いで、前記酸化ケイ素層の表面に、加水分解性シリル基を有する含フッ素化合物の加水分解縮合物からなる撥水撥油層を形成する、撥水撥油層付き物品の製造方法であって、
    前記酸化ケイ素層を、前記撥水撥油層と接する面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が、2.0×10 19 atoms/cm 以上である酸化ケイ素層とすることを特徴とする撥水撥油層付き物品の製造方法。
  10. 前記アルカリ金属原子を含む酸化ケイ素におけるアルカリ金属原子の含有量がケイ素原子に対して200ppm以上である、請求項9に記載の製造方法。
  11. 前記酸化ケイ素層を形成する方法が蒸着法である、請求項9または10に記載の製造方法。
  12. 前記領域におけるアルカリ金属原子の濃度の平均値が、4.0×1022atoms/cm以下である、請求項7〜11のいずれか一項に記載の製造方法。
  13. アルカリ金属原子の少なくとも一部がナトリウム原子である、請求項7〜12のいずれか一項に記載の製造方法。
  14. 前記基材の表面をコロナ放電処理、プラズマ処理またはプラズマグラフト重合処理し、次いで、前記処理された基材表面上に前記酸化ケイ素層を形成する、請求項7〜13のいずれか一項に記載の製造方法。
  15. 基材と該基材の表面に設けられているアルカリ金属原子含有酸化ケイ素層とを有する酸化ケイ素層付き基材であって、かつ前記酸化ケイ素層の露出面からの深さが0.1〜0.3nmの領域におけるアルカリ金属原子の濃度の平均値が2.0×1019atoms/cm以上である酸化ケイ素層付き基材からなる、加水分解性シリル基を有する含フッ素化合物を用いて前記酸化ケイ素層の露出面に撥水撥油層を形成するための酸化ケイ素層付き基材。
JP2018562379A 2017-06-21 2018-06-18 撥水撥油層付き物品およびその製造方法 Active JP6485610B1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017121642 2017-06-21
JP2017121642 2017-06-21
JP2018004491 2018-01-15
JP2018004491 2018-01-15
PCT/JP2018/023150 WO2018235778A1 (ja) 2017-06-21 2018-06-18 撥水撥油層付き物品およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019024864A Division JP7063288B2 (ja) 2017-06-21 2019-02-14 撥水撥油層付き物品およびその製造方法

Publications (2)

Publication Number Publication Date
JP6485610B1 true JP6485610B1 (ja) 2019-03-20
JPWO2018235778A1 JPWO2018235778A1 (ja) 2019-06-27

Family

ID=64737051

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018562379A Active JP6485610B1 (ja) 2017-06-21 2018-06-18 撥水撥油層付き物品およびその製造方法
JP2019024864A Active JP7063288B2 (ja) 2017-06-21 2019-02-14 撥水撥油層付き物品およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019024864A Active JP7063288B2 (ja) 2017-06-21 2019-02-14 撥水撥油層付き物品およびその製造方法

Country Status (7)

Country Link
US (2) US10786976B2 (ja)
EP (1) EP3643495B1 (ja)
JP (2) JP6485610B1 (ja)
KR (1) KR102577376B1 (ja)
CN (2) CN109803823B (ja)
TW (1) TW201906800A (ja)
WO (1) WO2018235778A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180079034A (ko) * 2016-12-30 2018-07-10 주식회사 동진쎄미켐 발수코팅 조성물 및 이로 코팅된 발수코팅 기재
KR102584013B1 (ko) * 2017-08-31 2023-09-27 에이지씨 가부시키가이샤 함불소 에테르 화합물, 함불소 에테르 조성물, 코팅액, 물품 및 그 제조 방법
KR20210105884A (ko) * 2018-12-26 2021-08-27 에이지씨 가부시키가이샤 발수 발유층 형성 기재, 및 그 제조 방법
WO2020137992A1 (ja) * 2018-12-26 2020-07-02 Agc株式会社 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
EP3970963A4 (en) * 2019-05-14 2023-06-14 Shin-Etsu Chemical Co., Ltd. WATER-REPELLENT AND OIL-REPELLENT ELEMENT AND METHOD OF MAKING A WATER-REPELLENT AND OIL-REPELLENT ELEMENT
JPWO2020241750A1 (ja) * 2019-05-31 2020-12-03
WO2021060537A1 (ja) * 2019-09-27 2021-04-01 Agc株式会社 含フッ素化合物、含フッ素化合物含有組成物、コーティング液、物品、及び物品の製造方法
KR20220080074A (ko) * 2019-10-08 2022-06-14 에이지씨 가부시키가이샤 발수 발유층 형성 물품
EP4052805A4 (en) * 2019-10-31 2023-11-22 Shin-Etsu Chemical Co., Ltd. ALKALINE RESISTANT WATER REPELLENT ELEMENT, METHOD FOR PRODUCING SUCH WATER REPELLENT ELEMENT AND METHOD FOR IMPROVED ALKALINE RESISTANCE AND WEAR RESISTANCE OF A WATER REPELLENT ELEMENT
JP2021105548A (ja) * 2019-12-26 2021-07-26 レノボ・シンガポール・プライベート・リミテッド 情報処理装置
WO2022059620A1 (ja) * 2020-09-16 2022-03-24 Agc株式会社 撥水撥油層付き基材、および撥水撥油層付き基材の製造方法
WO2022209489A1 (ja) * 2021-03-30 2022-10-06 Agc株式会社 積層体及びその製造方法
CN117836388A (zh) * 2021-09-02 2024-04-05 大金工业株式会社 表面处理剂
JP2024025759A (ja) * 2022-08-10 2024-02-26 ダイキン工業株式会社 表面処理層を含む物品
JP2024114679A (ja) * 2023-02-13 2024-08-23 ダイキン工業株式会社 表面処理剤
JP2024114678A (ja) * 2023-02-13 2024-08-23 ダイキン工業株式会社 含フッ素シラン化合物
WO2024200260A1 (de) * 2023-03-24 2024-10-03 Rodenstock Gmbh Beschichteter glaskörper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146927A (ja) * 1996-09-19 1998-06-02 Du Pont Kk フッ素樹脂フィルム積層体およびその製造方法
WO2010104069A1 (ja) * 2009-03-09 2010-09-16 積水化学工業株式会社 太陽電池用裏面保護シート、太陽電池モジュール及びガスバリアフィルム
JP2016033109A (ja) * 2014-07-29 2016-03-10 旭硝子株式会社 被膜付きガラスおよび被膜形成用組成物

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874715B2 (ja) 1995-08-11 1999-03-24 ダイキン工業株式会社 ケイ素含有有機含フッ素ポリマー及びその製造方法
IT1290462B1 (it) 1997-04-08 1998-12-03 Ausimont Spa Polimeri idrogenati modificati
JPH1129585A (ja) 1997-07-04 1999-02-02 Shin Etsu Chem Co Ltd パーフルオロポリエーテル変性アミノシラン及び表面処理剤
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
JP4733798B2 (ja) 1998-01-31 2011-07-27 凸版印刷株式会社 防汚剤、防汚層の形成方法、光学部材、反射防止光学部材、光学機能性部材及び表示装置
CN1177907C (zh) * 1998-06-04 2004-12-01 日本板硝子株式会社 涂敷有疏水薄膜的制品的生产方法、涂敷疏水薄膜的制品以及用于疏水薄膜涂料的液体组合物
JP3601580B2 (ja) 1999-05-20 2004-12-15 信越化学工業株式会社 パーフルオロポリエーテル変性アミノシラン及び表面処理剤並びに該アミノシランの被膜が形成された物品
TW559999B (en) * 2002-05-08 2003-11-01 Nec Corp Semiconductor device having silicon-including metal wiring layer and its manufacturing method
JP2005081292A (ja) 2003-09-10 2005-03-31 Nippon Sheet Glass Co Ltd 微細凹部を有する皮膜付き基体の製造方法、およびそれに用いる液組成物
JP2005301208A (ja) 2004-03-17 2005-10-27 Seiko Epson Corp 防汚性光学物品の製造方法
JP2005324139A (ja) * 2004-05-14 2005-11-24 Asahi Glass Co Ltd 塗膜の形成方法
KR101200926B1 (ko) * 2004-05-26 2012-11-14 쌩-고벵 글래스 프랑스 소수성 코팅의 생산 방법, 상기 방법을 수행하는 디바이스 및 소수성 코팅을 구비한 지지대
DE102004026344B4 (de) 2004-05-26 2008-10-16 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Verfahren zum Herstellen einer hydrophoben Beschichtung, Vorrichtung zum Durchführen des Verfahrens und Substrat mit einer hydrophoben Beschichtung
JP2006083049A (ja) 2004-09-14 2006-03-30 Takeuchi Shinku Himaku Kk 撥水ガラス
US8211544B2 (en) 2005-04-01 2012-07-03 Daikin Industries, Ltd. Surface modifier
JP2007063477A (ja) * 2005-09-01 2007-03-15 Asahi Glass Co Ltd 無機塗料組成物、親水性塗膜及び農業用フィルム
JP2009139530A (ja) 2007-12-05 2009-06-25 Seiko Epson Corp 光学物品の製造方法
CN101736346A (zh) 2008-11-24 2010-06-16 3M创新有限公司 在不锈钢表面形成易清洁层的制品及其制备方法
WO2011059430A1 (en) 2009-11-11 2011-05-19 Essilor International Surface treatment composition, process for producing the same, and surface-treated article
JP5235026B2 (ja) 2010-09-28 2013-07-10 信越化学工業株式会社 フルオロオキシアルキレン基含有ポリマー組成物および該組成物を含む表面処理剤並びに該表面処理剤で表面処理された物品
US20130229378A1 (en) 2010-11-10 2013-09-05 Suresh S. Iyer Optical device surface treatment process and smudge-resistant article produced thereby
CN202008536U (zh) 2011-03-23 2011-10-12 云南汇恒光电技术有限公司 一种憎水防雾镜片
TWI540111B (zh) 2011-03-28 2016-07-01 康寧公司 Cu、CuO與CuO奈米顆粒在玻璃表面與耐久塗層上的抗微生物作用
DE102011076754A1 (de) * 2011-05-31 2012-12-06 Schott Ag Substratelement für die Beschichtung mit einer Easy-to-clean Beschichtung
JP6000017B2 (ja) * 2011-08-31 2016-09-28 株式会社半導体エネルギー研究所 蓄電装置及びその作製方法
TW201319120A (zh) * 2011-09-21 2013-05-16 Asahi Glass Co Ltd 含氟醚化合物、塗佈液、及具表面處理層之基材的製造方法
JP2013091047A (ja) * 2011-10-27 2013-05-16 Asahi Glass Co Ltd 防汚性基板の製造方法
EP2810967A1 (en) * 2012-01-31 2014-12-10 Asahi Glass Company, Limited Fluorine-containing copolymer, method for producing same, and water-/oil-repellant agent composition
TWI579347B (zh) 2012-02-17 2017-04-21 Asahi Glass Co Ltd A fluorine-containing ether compound, a fluorine-containing ether composition and a coating liquid, and a substrate having a surface treatment layer and a method for producing the same (3)
EP2816047B1 (en) 2012-02-17 2019-05-22 AGC Inc. Fluorinated ether compound, fluorinated ether composition and coating liquid, and substrate having surface-treated layer and method for its production
WO2013121985A1 (ja) 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面処理層を有する基材およびその製造方法
JP2014070163A (ja) 2012-09-28 2014-04-21 Fujifilm Corp 表面改質剤、処理基材、化合物の製造方法、及び化合物
JP6127438B2 (ja) 2012-10-15 2017-05-17 旭硝子株式会社 含フッ素エーテル組成物、該組成物から形成された表面層を有する基材およびその製造方法
WO2014069592A1 (ja) 2012-11-05 2014-05-08 ダイキン工業株式会社 パーフルオロ(ポリ)エーテル基含有シラン化合物
JP6008739B2 (ja) 2012-12-27 2016-10-19 日揮触媒化成株式会社 撥水性透明被膜付基材およびその製造方法
CN104995278B (zh) * 2013-02-15 2017-08-01 旭硝子株式会社 拒水膜形成用组合物及其使用
CN105102505B (zh) 2013-04-04 2017-04-05 旭硝子株式会社 含氟醚化合物、含氟醚组合物及涂布液,以及具有表面层的基材及其制造方法
JP6378203B2 (ja) 2013-12-13 2018-08-22 Agc株式会社 含フッ素エーテル組成物、その製造方法、コーティング液、表面処理層を有する基材およびその製造方法
JP6451279B2 (ja) 2014-03-31 2019-01-16 信越化学工業株式会社 フルオロポリエーテル基含有ポリマー変性シラン、表面処理剤及び物品
EP3085749B1 (en) 2015-04-20 2017-06-28 Shin-Etsu Chemical Co., Ltd. Fluoropolyether-containing polymer-modified silane, surface treating agent, and treated article
JP6260579B2 (ja) 2015-05-01 2018-01-17 信越化学工業株式会社 フルオロポリエーテル基含有ポリマー変性シラン、表面処理剤及び物品
JP6390521B2 (ja) 2015-06-03 2018-09-19 信越化学工業株式会社 フルオロポリエーテル基含有ポリマー変性シラン
CN107922608B (zh) 2015-09-01 2020-08-07 Agc株式会社 含氟醚化合物、含氟醚组合物、涂布液和物品
CN111732721B (zh) 2015-09-01 2024-01-02 Agc株式会社 含氟醚化合物、表面处理剂、涂布液和物品
JP2019000983A (ja) 2015-10-28 2019-01-10 Agc株式会社 防汚性物品およびその製造方法
JP2017121642A (ja) 2016-01-06 2017-07-13 株式会社アンド 半田処理装置
JP6711398B2 (ja) 2016-04-25 2020-06-17 Agc株式会社 含フッ素エーテル化合物、コーティング液、物品および新規化合物
JP6289552B2 (ja) 2016-07-04 2018-03-07 株式会社東栄科学産業 磁歪計測装置、磁歪計測方法
CN106746736B (zh) * 2016-12-21 2019-08-20 安徽凯盛基础材料科技有限公司 一种超疏水玻璃涂层及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146927A (ja) * 1996-09-19 1998-06-02 Du Pont Kk フッ素樹脂フィルム積層体およびその製造方法
WO2010104069A1 (ja) * 2009-03-09 2010-09-16 積水化学工業株式会社 太陽電池用裏面保護シート、太陽電池モジュール及びガスバリアフィルム
JP2016033109A (ja) * 2014-07-29 2016-03-10 旭硝子株式会社 被膜付きガラスおよび被膜形成用組成物

Also Published As

Publication number Publication date
US20190217580A1 (en) 2019-07-18
CN111548026B (zh) 2022-04-12
CN111548026A (zh) 2020-08-18
KR102577376B1 (ko) 2023-09-11
KR20200020667A (ko) 2020-02-26
JP2019116097A (ja) 2019-07-18
US10786976B2 (en) 2020-09-29
EP3643495B1 (en) 2023-11-01
EP3643495A1 (en) 2020-04-29
CN109803823B (zh) 2020-05-08
JPWO2018235778A1 (ja) 2019-06-27
TW201906800A (zh) 2019-02-16
US20200376814A1 (en) 2020-12-03
EP3643495A4 (en) 2021-03-03
CN109803823A (zh) 2019-05-24
WO2018235778A1 (ja) 2018-12-27
JP7063288B2 (ja) 2022-05-09

Similar Documents

Publication Publication Date Title
JP6485610B1 (ja) 撥水撥油層付き物品およびその製造方法
JP7439769B2 (ja) 撥水撥油層付き基材、およびその製造方法
US11873415B2 (en) Substrate with water repellent oil repellent layer, vapor deposition material, and method for producing substrate with water repellent oil repellent layer
US20210230735A1 (en) Substrate with water-and-oil repellent layer, vapor deposition material, and method for producing substrate with water-and-oil repellent layer
US20220220318A1 (en) Article with water and oil repellent layer
WO2019203237A1 (ja) 蒸着材料、下地層付き基材、機能層付き物品及びそれらの製造方法
JP7415951B2 (ja) 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
JP7512897B2 (ja) 蒸着材料、下地層付き基材の製造方法、撥水撥油層付き基材の製造方法
WO2019124269A1 (ja) 機能層付き物品および機能層付き物品の製造方法
WO2019230571A1 (ja) 酸化ケイ素含有蒸着材料、これを用いる酸化ケイ素層付き基材の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250