WO2019203237A1 - 蒸着材料、下地層付き基材、機能層付き物品及びそれらの製造方法 - Google Patents
蒸着材料、下地層付き基材、機能層付き物品及びそれらの製造方法 Download PDFInfo
- Publication number
- WO2019203237A1 WO2019203237A1 PCT/JP2019/016343 JP2019016343W WO2019203237A1 WO 2019203237 A1 WO2019203237 A1 WO 2019203237A1 JP 2019016343 W JP2019016343 W JP 2019016343W WO 2019203237 A1 WO2019203237 A1 WO 2019203237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal element
- underlayer
- vapor deposition
- layer
- functional layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
- C09D201/02—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09D201/04—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
Definitions
- the present invention relates to a vapor deposition material, a substrate with a base layer and a manufacturing method thereof, and an article with a functional layer and a manufacturing method thereof.
- Various functional layers may be provided on the surface of the substrate.
- poly (oxyperfluoroalkylene) chains and hydrolyzable silyl groups are added to the surface of the substrate in order to impart water / oil repellency, fingerprint stain removal, lubricity (smoothness when touched with a finger), etc.
- a water- and oil-repellent layer made of a condensate of a fluorine-containing compound is formed on the surface of a substrate by a surface treatment using the fluorine-containing compound having the same.
- a base layer may be provided between them.
- Paragraph [0204] of Patent Document 1 and Paragraph [0076] of Patent Document 2 describe that a base layer made of silicon oxide is provided between a base material and a water / oil repellent layer.
- the underlayer made of silicon oxide is formed on the surface of the substrate by a vapor deposition method using a vapor deposition material made of silicon oxide, for example.
- a vapor deposition material made of silicon oxide for example.
- the organic substance or the like reacts rapidly when the vapor deposition material is heated.
- the vapor deposition material is scattered without being vaporized, and a defect such as a circular protrusion shape due to the scattered vapor deposition material may occur in the vapor deposition film, that is, the underlayer. If the underlying layer has a defect, the adhesion between the underlying layer and the functional layer is lowered, and as a result, the wear resistance of the functional layer is lowered.
- the present invention provides a deposition material that can stably form an underlayer on the surface of a substrate by a vapor deposition method, in which defects are less likely to occur in the underlayer, a substrate with an underlayer with few defects in the underlayer, and a method for producing the same, and
- An object of the present invention is to provide an article with a functional layer excellent in adhesiveness between the underlayer and the functional layer and a method for producing the same.
- the present invention achieves the above-mentioned object and has the following aspects.
- Metal element I At least one selected from the group consisting of iron, nickel and chromium.
- Metal element II one or both of aluminum and zirconium.
- the total content of the following metal element I is 50 to 1100 mass ppm
- the total content of the metal element II is The vapor deposition material of [1], which is 10 to 2500 ppm by mass.
- the underlayer includes silicon oxide, and one or both of the following metal element I and the following metal element II,
- the silicon oxide content in the underlayer is 80% by mass or more
- the underlayer contains the following metal element I
- the total content of the following metal element I in the underlayer is 10 to 1100 ppm by mass
- the base material with the underlayer wherein the total content of the following metal element II in the underlayer is 10 to 2500 ppm by mass.
- Metal element I At least one selected from the group consisting of iron, nickel and chromium.
- Metal element II one or both of aluminum and zirconium.
- the total content of the following metal element I is 50 to 1100 mass ppm
- the total content of the metal element II is [8]
- the underlayer further contains the following metal element III: [8] or [9], wherein the total content of the following metal elements III in the underlayer is 0.05 to 15% by mass.
- Metal element III At least one selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
- An article with a functional layer comprising the base material with a base layer of any one of [8] to [10] and a functional layer formed on the surface of the base layer.
- the silicon oxide and one or both of the metal element I and the metal element II are formed on the surface of the base material by a vapor deposition method using the vapor deposition material of any one of [1] to [7]. The manufacturing method of the base material with a base layer which forms the base layer containing this.
- a base material with a base layer is obtained by the method for producing a base material with a base layer according to [13] or [14], and a functional layer is formed on the surface of the base layer of the base material with the base layer.
- Article manufacturing method [16] The method for producing an article with a functional layer according to [15], wherein the functional layer is a water / oil repellent layer containing a condensate of a fluorine-containing compound having a reactive silyl group.
- the substrate is glass or a transparent resin.
- the base layer can be stably formed on the surface of the base material by the vapor deposition method, and defects are hardly generated in the base layer.
- the base material with a base layer of the present invention has few defects in the base layer.
- a substrate with an underlayer having few defects in the underlayer can be produced.
- the article with a functional layer of the present invention is excellent in adhesion between the base layer and the functional layer. According to the method for producing an article with a functional layer of the present invention, it is possible to produce an article having excellent adhesion between the base layer and the functional layer.
- Compound represented by Formula 1-1 is referred to as Compound 1-1.
- the compounds represented by other formulas will be described accordingly.
- the “group represented by the formula g1” is referred to as a group g1.
- Groups represented by other formulas are also described in the same manner.
- the “reactive silyl group” means a group (hydrolyzable silyl group) and a silanol group that can form a silanol group (Si—OH) by a hydrolysis reaction. For example, —Si (R 3 ) 3-c (L) c of the formula g1.
- the “content of metal element” in the vapor deposition material is a value obtained by dissolving the vapor deposition material in an acid and quantifying the dissolved material by high frequency inductively coupled plasma (ICP) emission spectroscopy.
- the “metal element content” in the underlayer is a value quantified by double-focusing dynamic secondary ion mass spectrometry (double-focusing dynamic SIMS) in a region having a depth of 3 nm to 5 nm from the surface of the underlayer.
- double-focusing dynamic SIMS double-focusing dynamic SIMS
- ⁇ indicating a numerical range means that numerical values described before and after that are included as a lower limit value and an upper limit value.
- the dimensional ratios in FIGS. 1 and 2 are different from actual ones for convenience of explanation.
- the vapor deposition material of the present invention contains silicon oxide and one or both of metal element I and metal element II.
- the vapor deposition material of the present invention may further contain a metal element III.
- the vapor deposition material of this invention may further contain elements other than oxygen, the metal element I, the metal element II, and the metal element III as needed.
- the metal element I is at least one selected from the group consisting of iron, nickel and chromium, and iron is particularly preferable.
- the metal element I may be contained in the vapor deposition material in the form of an oxide or may be contained in the form of an ion, and is usually contained in the form of an oxide.
- the metal element II is one or both of aluminum and zirconium, and aluminum is particularly preferable.
- the metal element II may be contained in the vapor deposition material in the form of an oxide or may be contained in the form of an ion, and is usually contained in the form of an oxide.
- the metal element III is at least one selected from the group consisting of lithium, sodium, potassium, rubidium and cesium. Of these, lithium, sodium or potassium is preferable.
- the metal element III may be included in the vapor deposition material in an oxide state or may be included in an ionic state, and is usually included in an oxide state.
- the content of silicon oxide in the vapor deposition material is 80% by mass or more, preferably 85% by mass or more, and particularly preferably 90% by mass or more. If the silicon oxide content is at least the lower limit of the above range, Si—O—Si bonds are sufficiently formed in the underlayer, and the mechanical properties of the underlayer are sufficiently ensured. As a result, the wear resistance of the functional layer is excellent.
- the upper limit of the content of silicon oxide is the total content of metal element I (amount in terms of oxide in the case of oxide), the total content of metal element II (in the case of oxide, the amount in terms of oxide) ), And the total content of metal element III (in the case of oxide, the amount converted to oxide) is the remainder obtained by removing the total from the mass of the vapor deposition material.
- the total content of the metal element I in the vapor deposition material is 10 to 1100 mass ppm, preferably 50 to 1100 mass ppm, more preferably 50 to 500 mass ppm, ⁇ 250 ppm by mass is particularly preferred.
- the total content of the metal elements I is equal to or more than the lower limit of the above range, the underlayer can be stably formed on the surface of the base material by the vapor deposition method, and defects due to scattering of the vapor deposition material are unlikely to occur in the underlayer. As a result, the adhesion between the base layer and the functional layer is excellent, and the wear resistance of the functional layer is excellent.
- the base layer can be stably formed on the surface of the substrate by the vapor deposition method, and the defects considered to be due to the composite of silicon oxide and metal element I are unlikely to occur in the base layer.
- the total content of the metal element II in the vapor deposition material is 10 to 2500 mass ppm, preferably 15 to 2000 mass ppm, and particularly preferably 20 to 1000 mass ppm. If the total content of the metal elements II is not less than the lower limit of the above range, the underlayer can be stably formed on the surface of the base material by the vapor deposition method, and defects due to the scattering of the vapor deposition material are unlikely to occur in the underlayer. As a result, the adhesion between the base layer and the functional layer is excellent, and the wear resistance of the functional layer is excellent.
- the underlayer can be stably formed on the surface of the base material by the vapor deposition method, and defects that are considered to be due to the composite of silicon oxide and metal element II hardly occur in the underlayer.
- the total content of the metal element III in the vapor deposition material is preferably 0.05 to 15% by mass, more preferably 0.1 to 13% by mass, and 1.0 to 10% by mass is particularly preferred. If the total content of the metal elements III is equal to or more than the lower limit of the above range, the adhesion between the base material and the underlayer and the adhesion between the underlayer and the functional layer are further improved. As a result, the wear resistance of the functional layer is further improved. If the total content of the metal elements III is not more than the upper limit of the above range, the Si—O—Si bond is sufficiently formed in the underlayer, and the mechanical properties of the underlayer are sufficiently ensured. As a result, the wear resistance of the functional layer is further improved.
- Examples of the form of the vapor deposition material include powders, molten granules, sintered bodies, crushed bodies, and the like. From the viewpoint of being suitable for the electron gun method described later, molten granules or sintered bodies are preferable.
- the molten granule is obtained by putting powder into a high-temperature electric furnace and melting it, and then cooling and solidifying it.
- the sintered body is obtained by forming a powder into a formed body and then firing the formed body.
- a powder of silicon oxide is added to a powder containing one or both of an oxide powder of metal element I and an oxide powder of metal element II, and further containing an oxide powder of metal element III as necessary.
- a silicon oxide powder is added to an aqueous solution containing one or both of metal element I ions and metal element II ions, and further containing metal element III ions as necessary, and the water is added.
- a method of removing and obtaining powder of vapor deposition material is mentioned, for example.
- a method of obtaining a powder of a vapor deposition material by drying and hydrolyzing a liquid further containing ions A method in which a powder of vapor deposition material is put into a high-temperature electric furnace and melted, and then cooled and solidified to obtain a molten granule of the vapor deposition material.
- aqueous solution containing ions of each metal element examples include water-soluble compounds of each metal element (nitrate, hydroxide, carbonate, sulfate, chloride, acetate, etc.) dissolved in water.
- Commercially available products may be used as the silicon oxide powder.
- S. GEL manufactured by AGC S-Itech
- the like can be mentioned.
- the underlayer is formed on the surface of the substrate by vapor deposition using the vapor deposition material of the present invention.
- defects are less likely to occur in the underlayer. This is considered because one or both of the metal element I and the metal element II promotes the removal of organic substances and the like existing on the surface of the vapor deposition material and the grain boundary.
- the vapor deposition material is heated, if the organic matter (residual carbon) existing on the surface of the vapor deposition material or at the grain boundary reacts rapidly, the vapor deposition material will scatter without vaporization, disturbing the film formation environment, and the vapor deposition film.
- oxides of metal element I and metal element II function as a catalyst for oxidizing or reducing organic substances
- No. 16 Heavy oxide by iron oxide catalyst using water vapor as hydrogen / oxygen source “Lightening reaction of oil”, Proceedings of the 49th Coal Science Conference, Japan Energy Society, 2012, p.32-33
- “Application of iron oxide combustion catalyst to diesel exhaust gas treatment technology” Tokushima University graduate School of Sociotechnoscience Research Report, No. 52, 2008, p.28-32
- “Application of Zirconium Oxide to Catalysts” Journal of Petroleum Institute, Vol.36, No.4, 1993, p.
- Either one or both of the metal element I and the metal element II contained in the vapor deposition material of the present invention is an organic compound or an organic compound that easily vaporizes organic substances present on the surface of the vapor deposition material or grain boundaries when the vapor deposition material is heated. It is thought that it is changed to carbon dioxide.
- the reason why the optimum content in the vapor deposition material differs depending on the metal element I or metal element II is that the catalytic activity differs depending on the metal element I or metal element II.
- the base material with a base layer of the present invention has a base material and a base layer formed on the surface of the base material.
- FIG. 1 is a schematic cross-sectional view showing an example of a substrate with a base layer of the present invention.
- the base material with base layer 10 includes a base material 12 and a base layer 14 formed on the surface of the base material 12.
- base material examples include glass, resin, sapphire, metal, ceramic, stone, and composite materials thereof.
- the glass may be chemically strengthened.
- the base material for touch panel and the base material for display are suitable as the base material, and the base material for touch panel is particularly suitable.
- the base material for touch panels has translucency. “Having translucency” means that a normal incidence visible light transmittance in accordance with JIS R3106: 1998 (ISO 9050: 1990) is 25% or more.
- a material of the base material for touch panels glass or transparent resin is preferable.
- the base material may have been subjected to surface treatment such as corona discharge treatment, plasma treatment, plasma graft polymerization treatment on one surface or both surfaces.
- surface treatment such as corona discharge treatment, plasma treatment, plasma graft polymerization treatment on one surface or both surfaces.
- the surface treated surface is further improved in adhesion between the base material and the base layer, and as a result, the wear resistance of the functional layer is further improved. It is preferable.
- a corona discharge treatment or a plasma treatment is preferable because the wear resistance of the functional layer is further improved.
- the underlayer includes silicon oxide and one or both of metal element I and metal element II.
- the underlayer may further contain a metal element III.
- the underlayer may further contain elements other than oxygen, metal element I, metal element II, and metal element III as necessary.
- the metal element I is at least one selected from the group consisting of iron, nickel and chromium.
- the metal element I may be contained in an oxide state or an ionic state in the underlayer, and is usually contained in an oxide state.
- the metal element II is one or both of aluminum and zirconium.
- the metal element II may be contained in an oxide state or an ionic state in the underlayer, and is usually contained in an oxide state.
- the metal element III is at least one selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
- the metal element III may be contained in the oxide state in the underlayer, or may be contained in the ionic state, and is usually contained in the oxide state.
- the content of silicon oxide in the underlayer is 80% by mass or more, preferably 85% by mass or more, and particularly preferably 90% by mass or more. If the silicon oxide content is at least the lower limit of the above range, Si—O—Si bonds are sufficiently formed in the underlayer, and the mechanical properties of the underlayer are sufficiently ensured. As a result, the wear resistance of the functional layer is excellent.
- the upper limit of the content of silicon oxide is the total content of metal element I (amount in terms of oxide in the case of oxide), the total content of metal element II (in the case of oxide, the amount in terms of oxide) ), And the total content of metal element III (in the case of oxide, the amount converted to oxide) is the remainder obtained by removing from the mass of the underlayer.
- the total content of the metal element I in the underlayer is 10 to 1100 ppm by mass, preferably 50 to 1100 ppm by mass, more preferably 50 to 500 ppm by mass, ⁇ 250 ppm by mass is particularly preferred.
- the underlayer can be stably formed on the surface of the base material by the vapor deposition method, and defects due to scattering of the vapor deposition material are unlikely to occur in the underlayer. As a result, the adhesion between the base layer and the functional layer is excellent, and the wear resistance of the functional layer is excellent.
- the base layer can be stably formed on the surface of the substrate by the vapor deposition method, and the defects considered to be due to the composite of silicon oxide and metal element I are unlikely to occur in the base layer.
- the total content of the metal element II in the underlayer is from 10 to 2500 mass ppm, preferably from 15 to 2000 mass ppm, particularly preferably from 20 to 1000 mass ppm. If the total content of the metal elements II is not less than the lower limit of the above range, the underlayer can be stably formed on the surface of the base material by the vapor deposition method, and defects due to the scattering of the vapor deposition material are unlikely to occur in the underlayer. As a result, the adhesion between the base layer and the functional layer is excellent, and the wear resistance of the functional layer is excellent.
- the underlayer can be stably formed on the surface of the base material by the vapor deposition method, and defects that are considered to be due to the composite of silicon oxide and metal element II hardly occur in the underlayer.
- the total content of the metal element III in the underlayer is preferably 0.05 to 15% by mass, more preferably 0.1 to 13% by mass, and 1.0 to 10% by mass is particularly preferred. If the total content of the metal elements III is equal to or more than the lower limit of the above range, the adhesion between the base material and the underlayer and the adhesion between the underlayer and the functional layer are further improved. As a result, the wear resistance of the functional layer is further improved. If the total content of the metal elements III is not more than the upper limit of the above range, the Si—O—Si bond is sufficiently formed in the underlayer, and the mechanical properties of the underlayer are sufficiently ensured. As a result, the wear resistance of the functional layer is further improved.
- the thickness of the underlayer is preferably 2 to 200 nm, particularly preferably 2 to 20 nm. If the thickness of the underlayer is equal to or greater than the lower limit of the above range, the effect of improving adhesiveness due to the underlayer can be sufficiently obtained. When the thickness of the underlayer is not more than the upper limit of the above range, the wear resistance of the underlayer itself is increased. Examples of the method for measuring the thickness of the underlayer include a method by cross-sectional observation of the underlayer using an electron microscope (SEM, TEM, etc.), a method using a light interference film thickness meter, a spectroscopic ellipsometer, a step meter, and the like.
- the vapor deposition method is a vacuum vapor deposition method.
- the vacuum vapor deposition method is a method in which a vapor deposition material is evaporated in a vacuum chamber and attached to the surface of a substrate.
- the temperature at the time of vapor deposition (for example, when using a vacuum vapor deposition apparatus, the temperature of the boat on which the vapor deposition material is placed) is preferably 100 to 3000 ° C., particularly preferably 500 to 3000 ° C.
- Pressure during vapor deposition (for example, when using a vacuum vapor deposition apparatus, the absolute pressure in the tank in which the vapor deposition material is placed is preferably 1 Pa or less, and particularly preferably 0.1 Pa or less.
- one vapor deposition material may be used, or two or more vapor deposition materials containing different elements may be used.
- the evaporation material can be evaporated by a resistance heating method in which the evaporation material is melted and evaporated on a resistance heating boat made of a refractory metal.
- the evaporation material is irradiated with an electron beam, and the evaporation material is directly heated to melt the surface.
- evaporating electron gun method evaporating electron gun method.
- the evaporation material can be evaporated locally because it can be heated locally, and high-melting point substances can be evaporated.Because it is at a low temperature where no electron beam is applied, there is no risk of reaction with the container or mixing of impurities.
- the gun method is preferred.
- a molten granular material or a sintered body is preferable because it is difficult to be scattered even if an air flow is generated.
- the molten granule or sintered body has the advantage that it is easy to fill the vapor deposition apparatus and take out the vapor deposition residue after completion of vapor deposition, it is easy for organic substances to adhere to the surface and grain boundaries, and the surface area is large. Defects are likely to occur in the vapor-deposited film, that is, the underlayer, due to film formation defects caused by the above. In the present invention, this problem can be solved by using a vapor deposition material containing one or both of the metal element I and the metal element II.
- the article with a functional layer of the present invention has a base material with a base layer and a functional layer formed on the surface of the base layer of the base material with the base layer.
- FIG. 2 is a schematic cross-sectional view showing an example of an article with a functional layer of the present invention.
- the article 20 with a functional layer has the base material 10 with a base layer, and the functional layer 22 formed in the surface of the base layer 14 of the base material 10 with a base layer.
- the base material with base layer 10 includes a base material 12 and a base layer 14 formed on the surface of the base material 12.
- the functional layer examples include a water / oil repellent layer, an antireflection layer, an antiglare layer, an infrared absorption layer, a protective layer, an ultraviolet absorption layer, an antifogging layer, and a hydrophilic layer.
- a water- and oil-repellent layer is preferable because the effect of improving the adhesiveness between the base material and the functional layer due to the intervening underlayer is easily exhibited.
- the water / oil repellent layer is composed of a condensate of a fluorine-containing compound having a reactive silyl group.
- a hydrolyzable silyl group in a fluorine-containing compound having a hydrolyzable silyl group undergoes a hydrolysis reaction to form a silanol group (Si—OH), and the silanol group undergoes a condensation reaction between molecules to form Si—O—Si. Bonds are formed, or silanol groups in the fluorine-containing compound undergo a condensation reaction with silanol groups or Si—OM groups (where M is an alkali metal) on the surface of the underlayer to form Si—O—Si bonds. Is formed. That is, the water / oil repellent layer contains the fluorine-containing compound having a reactive silyl group in a state where a part or all of the reactive silyl group of the fluorine-containing compound is condensed.
- the thickness of the water / oil repellent layer is preferably from 1 to 100 nm, particularly preferably from 1 to 50 nm. When the thickness of the water / oil repellent layer is not less than the lower limit of the above range, the effect of the water / oil repellent layer can be sufficiently obtained. If the thickness of the water / oil repellent layer is not more than the upper limit of the above range, the utilization efficiency is high.
- the thickness of the water / oil repellent layer is a thickness obtained by an X-ray diffractometer for thin film analysis. The thickness of the water / oil repellent layer can be calculated from the vibration period of the interference pattern by obtaining an interference pattern of reflected X-rays by an X-ray reflectivity method using an X-ray diffractometer for thin film analysis.
- the fluorine-containing compound having a reactive silyl group (hereinafter also simply referred to as “fluorine-containing compound”) is not particularly limited as long as it can form a water / oil repellent layer.
- fluorine-containing compound a fluorine-containing compound having a reactive silyl group and a polyfluoropolyether chain (hereinafter referred to as “the water- and oil-repellent layer, water-repellent and oil-repellent layer having excellent water and oil repellency, fingerprint stain removability, and lubricity”). Also referred to as “fluorinated ether compound”).
- fluorine-containing ether compound examples include compound 1-1 and compound 1-2.
- G 1 is a monovalent polyfluoropolyether chain.
- G 2 is a divalent polyfluoropolyether chain.
- Q 1 is an s + t-valent organic group.
- Q 2 is an s + 1 valent organic group.
- Two Q 2 'in the formula 1-2 may be the same or different.
- s is an integer of 1 or more.
- Two s in Formula 1-2 may be the same or different.
- two or more Xs may be the same or different.
- t is an integer of 1 or more.
- two or more G 1 may be the same or different.
- X is a group g1. -Si (R 3 ) 3-c (L) c formula g1
- R 3 is an alkyl group
- L is a hydrolyzable group or OH
- two or more Ls may be the same or different
- c is 2 or 3.
- G 1 is preferably a group g2-1.
- G 2 is preferably a group g2-2.
- A is a polyfluoroalkyl group having 1 to 20 carbon atoms (however, it has CF 3 — at its terminal).
- A is preferably a perfluoroalkyl group.
- the number of carbon atoms of A is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3.
- R f1 is a fluoroalkylene group.
- R f1 is preferably a perfluoroalkylene group.
- R f1 preferably has 1 to 6 carbon atoms.
- R f2 is a fluoroalkylene group (provided that at least one fluorine atom is bonded to the terminal carbon atom on the Q 1 or Q 2 side and the terminal carbon atom on the O (R f1 O) m side).
- R f2 preferably has 1 to 20 carbon atoms.
- m is an integer of 2 to 500. (R f1 O) m may be composed of two or more R f1 Os having different
- the Q 11 , Q 12 , Q 13 or Q 14 side is connected to G 1 or G 2 , and the Q 21 side is connected to X.
- Q 11 is an alkylene group.
- Q 12 is a single bond, —C (O) NH— or an alkylene group.
- Q 13 is a single bond, —C (O) — or an alkylene group.
- Q 14 is a single bond or an alkylene group.
- Q 15 is a single bond or an alkylene group.
- the alkylene group in Q 11 to Q 15 has —C (O) NH—, —C (O) —, —NH— or —O— between the carbon-carbon atoms of the alkylene group having 2 or more carbon atoms. Alternatively, it may have —C (O) NH—, —C (O) — or —O— at the terminal of the alkylene group to which N or Si is not connected.
- Q 21 is an alkylene group.
- the alkylene group in Q 21 may have —C (O) NH—, —C (O) —, or —O— between the carbon-carbon atoms of the alkylene group having 2 or more carbon atoms, and N or Si -C at the end of the alkylene group does not connect the side (O) NH -, - C (O) -, - O -, - CF 2 - or -CF 2 C (O) NH- may have.
- Q 1 or which Q 2 has a Q 21 2 or more two or more Q 21 may be different even in the same.
- Z is a group having a carbon atom or nitrogen atom to which Q 14 is directly bonded and an e + 1 valent ring structure having a carbon atom or nitrogen atom to which Q 21 is directly bonded.
- R 4 is a hydrogen atom, an alkyl group, a hydroxyl group, a fluorine atom, or —CF 3 .
- R 5 is an alkyl group.
- d is 2 or 3.
- e is an integer of 1 or more.
- n is 2 or 3.
- d1 is an integer of 0 to 2
- d2 is an integer of 1 to 3, and d1 + d2 is 2 or 3.
- [—Q 15 —Si (R 5 ) 3-n (—Q 21 —) n ] of 2 or more may be the same or different.
- h is 1 or 2.
- two [—Q 15 —Si (R 5 ) 3-n (—Q 21 —) n ] may be the same or different.
- e1 is an integer of 0 or more, and e2 is an integer of 1 or more. If e2 is 2 or more, 2 or more [-Q 15 -Si (R 5) 3-n (-Q 21 -) n] may be different even in the same.
- fluorine-containing ether compound examples include those described in the following documents.
- Perfluoropolyether-modified aminosilane described in Japanese Patent Application Laid-Open No. 11-029585 Silicon-containing organic fluorine-containing polymer described in Japanese Patent No. 28747715, Organosilicon compounds described in Japanese Unexamined Patent Publication No. 2000-144097, Perfluoropolyether-modified aminosilane described in Japanese Unexamined Patent Publication No. 2000-327772, Fluorinated siloxanes described in Japan Special Table 2002-50687, An organosilicone compound described in JP-T-2008-534696, Fluorinated modified hydrogen-containing polymer described in Japanese Patent No.
- fluorine-containing ether compounds include KY-100 series (KY-178, KY-185, KY-195, etc.) manufactured by Shin-Etsu Chemical Co., Ltd., Afluid (registered trademark) S550 manufactured by AGC, and Daikin Industries, Ltd.
- OPTOOL registered trademark
- DSX OPTOOL
- AES OPTOOL
- UF503 OPTOOL
- UD509 UD509
- the method for producing an article with a functional layer according to the present invention is a method of obtaining a base material with a ground layer by the method for producing a base material with a ground layer according to the present invention and forming a functional layer on the surface of the ground layer of the base material with the ground layer. It is.
- the functional layer As a method for forming the functional layer on the surface of the underlayer, a known method corresponding to the type of the functional layer may be mentioned.
- the functional layer is a water / oil repellent layer
- examples of the method for forming the water / oil repellent layer on the surface of the underlayer include a dry coating method or a wet coating method using a fluorine-containing compound.
- Examples of the dry coating method include a vacuum deposition method, a CVD method, a sputtering method, and the like, and the vacuum deposition method is preferable from the viewpoint of suppressing decomposition of the fluorine-containing compound and the simplicity of the apparatus.
- the temperature at the time of vacuum vapor deposition (for example, when using a vacuum vapor deposition apparatus, the temperature of the boat on which the vapor deposition material is placed) is preferably 20 to 1000 ° C., particularly preferably 30 to 700 ° C.
- the pressure (absolute pressure) during vacuum deposition is preferably 1 ⁇ 10 ⁇ 1 Pa or less, particularly preferably 1 ⁇ 10 ⁇ 2 Pa or less.
- one type of fluorine-containing compound may be used alone, or may be used as a mixture of two or more types of fluorine-containing compounds, and the fluorine-containing compound and other components (excluding the liquid medium). ), Or a solution or dispersion obtained by adding a liquid medium to these.
- a pellet-like material obtained by impregnating a fluorine-containing compound into a metal porous body such as iron or steel may be used.
- a pellet-like substance obtained by impregnating a metal porous body such as iron or steel with a solution or dispersion containing a fluorine-containing compound and drying the liquid medium may be used.
- Wet coating methods include spin coating, wipe coating, spray coating, squeegee coating, dip coating, die coating, ink jet, flow coating, roll coating, casting, Langmuir-Blodgett, and gravure. Examples thereof include a coating method.
- a solution or dispersion containing a fluorine-containing compound and a liquid medium is used.
- a liquid medium an organic solvent is preferable.
- the organic solvent may be a fluorinated organic solvent, a non-fluorinated organic solvent, or may include both solvents.
- the fluorinated organic solvent include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkylamines, and fluoroalcohols.
- non-fluorine-based organic solvent a compound consisting only of a hydrogen atom and a carbon atom, or a compound consisting only of a hydrogen atom, a carbon atom and an oxygen atom is preferable, a hydrocarbon-based organic solvent, an alcohol-based organic solvent, a ketone-based organic solvent, Examples include ether organic solvents and ester organic solvents.
- the solution or dispersion may contain other components and impurities (byproducts generated in the production process of the fluorine-containing compound).
- other components include known additives such as an acid catalyst and a basic catalyst that promote the hydrolysis and condensation reaction of a reactive silyl group.
- the solid content concentration of the solution or dispersion is preferably 0.001 to 10% by mass, particularly preferably 0.01 to 1% by mass.
- the solid content concentration of the solution or dispersion is calculated from the mass of the solution or dispersion before heating and the mass after heating for 4 hours in a convection dryer at 120 ° C.
- Examples 1 to 35 are examples, and examples 36 to 46 are comparative examples.
- Nitric acid 5mL was added to 0.5g of vapor deposition material, and it heated at 120 degreeC for 2 hours. After cooling, 5 mL of nitric acid and 5 mL of perchloric acid were added and heated at 180 ° C. for 6 hours. After cooling, 5 mL (liter) of nitric acid, 5 mL of perchloric acid and 2.5 mL of hydrofluoric acid were added and heated at 180 ° C. for 1 hour. After allowing to cool, 5 mL of 5 mol / L nitric acid and 1 mL of 5 mol / L hydrochloric acid were added and heated at 100 ° C. for 1 hour.
- the underlayer was observed with an optical microscope by enlarging an area with a diameter of 1 mm 50 times, and the number of defects (circular protrusion shape) that could be visually confirmed was counted.
- the five defects randomly selected from the underlayer were counted for defects in the area of 1 mm in diameter, and the total was defined as the number of defects.
- Step wool wear test With respect to the water / oil repellent layer, a steel wool bonster (counter: # 0000, shape: 10 mm ⁇ 10 mm) using a reciprocating traverse tester (manufactured by KT Corporation) in accordance with JIS L0849: 2013 (ISO 105-X12: 2001). Square, thickness: 5 mm) was reciprocated at a load of 9.8 N and a speed of 80 rpm.
- the water contact angle of the water / oil repellent layer was measured every predetermined number of wears of steel wool, and the number of times when the water contact angle was less than 100 degrees was defined as wear resistance. The greater the number of wear resistances, the smaller the decrease in water and oil repellency due to wear, and the better the wear resistance.
- Example 1 An aqueous solution in which 1.3 mg of iron nitrate heptahydrate (manufactured by Junsei Chemical Co., Ltd.) is dissolved in 10 g of distilled water, and a powder of silicon oxide (manufactured by AGC S-Itech Co., Ltd., MS GEL-D-100-60A) ) 20 g. The mixture was molded by an isostatic press (50 MPa for 2 seconds). The molded body was fired at 1000 ° C. for 1 hour to obtain a sintered body. Table 1 shows the content of sodium in the sintered body and the types and contents of the metal elements I and II.
- One surface of a glass substrate (manufactured by AGC, Dragontrail (registered trademark)) was subjected to corona discharge treatment under conditions of 80 V and 3.5 A using a high-frequency power source (CG102A, manufactured by Kasuga Electric Co., Ltd.).
- CG102A high-frequency power source
- 0.5 g of the sintered body was placed in a molybdenum boat of a vacuum evaporation apparatus (VTR-350M manufactured by ULVAC Kiko Co., Ltd.).
- a glass substrate subjected to corona discharge treatment was placed in a vacuum deposition apparatus, and the inside of the vacuum deposition apparatus was evacuated to a pressure of 5 ⁇ 10 ⁇ 3 Pa or less.
- Table 1 shows the contents of the metal elements I and II in the underlayer, the change in the deposition rate when the underlayer is formed by vacuum deposition, and the number of defects in the underlayer.
- Examples 2 to 35, 37 to 46 A sintered body was obtained in the same manner as in Example 1 except that the types and contents of metal element I, metal element II, and metal element III were changed as shown in Table 1.
- An aqueous nickel nitrate solution was used as the nickel raw material.
- As the chromium raw material an aqueous solution of chromium nitrate was used.
- As an aluminum raw material an aqueous solution of aluminum nitrate was used.
- zirconium raw material an aqueous solution of zirconium oxynitrate was used.
- As a sodium raw material an aqueous solution of sodium hydroxide was used. Table 1 shows the content of sodium in the sintered body and the types and contents of the metal elements I and II.
- a base layer was formed on the surface of the glass substrate in the same manner as in Example 1 except that the sintered body was changed.
- Table 1 shows the contents of the metal element I and the metal element II in the underlayer, the film formation rate change when the underlayer is formed by vacuum deposition, and the number of defects of the underlayer. Further, in the same manner as in Example 1, a water / oil repellent layer was formed on the surface of the underlayer. Table 1 shows the wear resistance of the water / oil repellent layer.
- Example 36 20 g of silicon oxide powder (MS GEL-D-100-60A, manufactured by AGC S-Tech Co., Ltd.) was molded by an isostatic press (50 MPa for 2 seconds). The molded body was fired at 1000 ° C. for 1 hour to obtain a sintered body. Table 1 shows the content of sodium in the sintered body and the types and contents of the metal elements I and II.
- a base layer was formed on the surface of the glass substrate in the same manner as in Example 1 except that the sintered body was changed.
- Table 1 shows the contents of the metal elements I and II in the underlayer, the change in the deposition rate when the underlayer is formed by vacuum deposition, and the number of defects in the underlayer. Further, in the same manner as in Example 1, a water / oil repellent layer was formed on the surface of the underlayer. Table 1 shows the wear resistance of the water / oil repellent layer.
- Example 36 since the metal element I and the metal element II were not included, the underlayer could not be stably formed, and defects due to scattering of the vapor deposition material were found in the underlayer, and the wear resistance was also poor.
- Examples 37 to 41 since the contents of the metal element I and the metal element II are small, the underlayer cannot be stably formed, and defects due to scattering of the vapor deposition material are observed in the underlayer, and the wear resistance is also improved. It was inferior.
- Examples 42 to 46 since the contents of metal element I and metal element II were too large, the underlayer could not be stably formed, and a composite of silicon oxide and metal element I or a composite of silicon oxide and metal element II The defect considered to be due to the thing was seen in the underlayer, and the wear resistance was also inferior.
- the article with a functional layer of the present invention is useful as an optical article, a touch panel, an antireflection film, SiO 2 treated glass, tempered glass, a sapphire substrate, a quartz substrate, a metal mold, and the like. It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-80018 filed on April 18, 2018 are cited herein as disclosure of the specification of the present invention. Incorporate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
Abstract
蒸着法によって基材の表面に下地層を安定して形成でき、下地層中に欠点が生じにくい蒸着材料、下地層中に欠点が少ない下地層付き基材及びその製造方法、ならびに下地層と機能層との接着性に優れる機能層付き物品及びその製造方法の提供。 酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方とを含み、前記酸化ケイ素の含有量が、80質量%以上であり、下記金属元素Iを含む場合、下記金属元素Iの合計の含有量が10~1100質量ppmであり、下記金属元素IIを含む場合、下記金属元素IIの合計の含有量が10~2500質量ppmである、蒸着材料を用いる。 金属元素I :鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。 金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。
Description
本発明は、蒸着材料、下地層付き基材及びその製造方法、ならびに機能層付き物品及びその製造方法に関する。
基材の表面に各種機能層を設けることがある。例えば、基材の表面に撥水撥油性、指紋汚れ除去性、潤滑性(指で触った際の滑らかさ)等を付与するために、ポリ(オキシペルフルオロアルキレン)鎖及び加水分解性シリル基を有する含フッ素化合物を用いた表面処理によって、基材の表面に含フッ素化合物の縮合物からなる撥水撥油層を形成することが知られている。
また、基材と機能層との間の接着性等を改善するために、これらの間に下地層を設けることがある。特許文献1の段落[0204]、特許文献2の段落[0076]には、基材と撥水撥油層との間に酸化ケイ素からなる下地層を設けることが記載されている。
酸化ケイ素からなる下地層は、例えば、酸化ケイ素からなる蒸着材料を用いた蒸着法によって基材の表面に形成される。この際、蒸着材料の表面に有機物等が付着していると、蒸着材料を加熱した際に有機物等が急激に反応する。有機物等の急激な反応に伴って、蒸着材料が気化せずに飛散し、蒸着膜すなわち下地層中に、飛散した蒸着材料による円形の突起形状などの欠点が生じることがある。下地層に欠点があると、下地層と機能層との接着性が低下し、その結果、機能層の耐摩耗性が低下する。
本発明は、蒸着法によって基材の表面に下地層を安定して形成でき、下地層中に欠点が生じにくい蒸着材料、下地層中に欠点が少ない下地層付き基材及びその製造方法、ならびに下地層と機能層との接着性に優れる機能層付き物品及びその製造方法の提供を目的とする。
本発明は、上記目的を達成するものであり、下記の態様を有するものである。
[1]酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方とを含み、前記酸化ケイ素の含有量が、80質量%以上であり、下記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、10~1100質量ppmであり、下記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、蒸着材料。
金属元素I:鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。
金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。
[2]前記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、50~1100質量ppmであり、また、前記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、[1]の蒸着材料。
[1]酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方とを含み、前記酸化ケイ素の含有量が、80質量%以上であり、下記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、10~1100質量ppmであり、下記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、蒸着材料。
金属元素I:鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。
金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。
[2]前記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、50~1100質量ppmであり、また、前記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、[1]の蒸着材料。
[3]前記金属元素Iが、鉄である、[1]または[2]の蒸着材料。
[4]前記金属元素IIが、アルミニウムである、[1]~[3]のいずれかの蒸着材料。
[5]下記金属元素IIIをさらに含み、下記金属元素IIIの合計の含有量が、0.05~15質量%である、[1]~[4]のいずれか一項に記載の蒸着材料。
金属元素III:リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種。
[6]前記金属元素IIIが、リチウム、ナトリウム、又はカリウムである、[5]の蒸着材料。
[7]溶融粒状体又は焼結体の形態を有する[1]~[6]のいずれかの蒸着材料。
[4]前記金属元素IIが、アルミニウムである、[1]~[3]のいずれかの蒸着材料。
[5]下記金属元素IIIをさらに含み、下記金属元素IIIの合計の含有量が、0.05~15質量%である、[1]~[4]のいずれか一項に記載の蒸着材料。
金属元素III:リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種。
[6]前記金属元素IIIが、リチウム、ナトリウム、又はカリウムである、[5]の蒸着材料。
[7]溶融粒状体又は焼結体の形態を有する[1]~[6]のいずれかの蒸着材料。
[8]基材と、前記基材の表面に形成された下地層と、を有し、
前記下地層が、酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方と、を含み、
前記下地層中の前記酸化ケイ素の含有量が、80質量%以上であり、
前記下地層が下記金属元素Iを含む場合、前記下地層中の下記金属元素Iの合計の含有量が、10~1100質量ppmであり、
前記下地層が下記金属元素IIを含む場合、前記下地層中の下記金属元素IIの合計の含有量が、10~2500質量ppmである、下地層付き基材。
金属元素I:鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。
金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。
[9]前記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、50~1100質量ppmであり、また、前記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、[8]の下地層付き基材。
[10]前記下地層が、下記金属元素IIIをさらに含み、
前記下地層中の下記金属元素IIIの合計の含有量が、0.05~15質量%である、[8]又は[9]の下地層付き基材。
金属元素III:リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種。
前記下地層が、酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方と、を含み、
前記下地層中の前記酸化ケイ素の含有量が、80質量%以上であり、
前記下地層が下記金属元素Iを含む場合、前記下地層中の下記金属元素Iの合計の含有量が、10~1100質量ppmであり、
前記下地層が下記金属元素IIを含む場合、前記下地層中の下記金属元素IIの合計の含有量が、10~2500質量ppmである、下地層付き基材。
金属元素I:鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。
金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。
[9]前記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、50~1100質量ppmであり、また、前記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、[8]の下地層付き基材。
[10]前記下地層が、下記金属元素IIIをさらに含み、
前記下地層中の下記金属元素IIIの合計の含有量が、0.05~15質量%である、[8]又は[9]の下地層付き基材。
金属元素III:リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種。
[11][8]~[10]のいずれかの下地層付き基材と、前記下地層の表面に形成された機能層とを有する、機能層付き物品。
[12]前記機能層が、反応性シリル基を有する含フッ素化合物の縮合物を含む撥水撥油層である、[11]の機能層付き物品。
[13][1]~[7]のいずれかの蒸着材料を用いた蒸着法によって、基材の表面に、前記酸化ケイ素と、前記金属元素I及び前記金属元素IIのいずれか一方又は両方とを含む下地層を形成する、下地層付き基材の製造方法。
[14]前記蒸着法が、蒸着時における温度が100~3000℃であり、圧力が1Pa以下で行う真空蒸着法である、[13]の下地層付き基材の製造方法。
[12]前記機能層が、反応性シリル基を有する含フッ素化合物の縮合物を含む撥水撥油層である、[11]の機能層付き物品。
[13][1]~[7]のいずれかの蒸着材料を用いた蒸着法によって、基材の表面に、前記酸化ケイ素と、前記金属元素I及び前記金属元素IIのいずれか一方又は両方とを含む下地層を形成する、下地層付き基材の製造方法。
[14]前記蒸着法が、蒸着時における温度が100~3000℃であり、圧力が1Pa以下で行う真空蒸着法である、[13]の下地層付き基材の製造方法。
[15][13]又は[14]の下地層付き基材の製造方法によって下地層付き基材を得て、前記下地層付き基材の下地層の表面に機能層を形成する、機能層付き物品の製造方法。
[16]前記機能層が、反応性シリル基を有する含フッ素化合物の縮合物を含む撥水撥油層である、[15]の機能層付き物品の製造方法。
[17]前記基材が、ガラス又は透明樹脂である、[15]又は[16]の機能層付き物品の製造方法。
[16]前記機能層が、反応性シリル基を有する含フッ素化合物の縮合物を含む撥水撥油層である、[15]の機能層付き物品の製造方法。
[17]前記基材が、ガラス又は透明樹脂である、[15]又は[16]の機能層付き物品の製造方法。
本発明の蒸着材料によれば、蒸着法によって基材の表面に下地層を安定して形成でき、下地層中に欠点が生じにくい。
本発明の下地層付き基材は、下地層中に欠点が少ない。
本発明の下地層付き基材の製造方法によれば、下地層中に欠点が少ない下地層付き基材を製造できる。
本発明の機能層付き物品は、下地層と機能層との接着性に優れる。
本発明の機能層付き物品の製造方法によれば、下地層と機能層との接着性に優れる物品を製造できる。
本発明の下地層付き基材は、下地層中に欠点が少ない。
本発明の下地層付き基材の製造方法によれば、下地層中に欠点が少ない下地層付き基材を製造できる。
本発明の機能層付き物品は、下地層と機能層との接着性に優れる。
本発明の機能層付き物品の製造方法によれば、下地層と機能層との接着性に優れる物品を製造できる。
本明細書における用語の意味及び記載の仕方は下記のとおりである。
「式1-1で表される化合物」を化合物1-1と記す。他の式で表される化合物もこれに準じて記す。また、「式g1で表される基」を基g1と記す。他の式で表される基もこれに準じて記す。
「反応性シリル基」とは、加水分解反応することによってシラノール基(Si-OH)を形成し得る基(加水分解性シリル基)及びシラノール基を意味する。例えば、式g1の-Si(R3)3-c(L)cである。
蒸着材料中の「金属元素の含有量」は、蒸着材料を酸に溶解し、溶解物について高周波誘導結合プラズマ(ICP)発光分光分析によって定量した値である。
下地層中の「金属元素の含有量」は、下地層の表面から深さ3nm~5nmの領域について二重収束ダイナミック二次イオン質量分析(二重収束ダイナミックSIMS)によって定量した値である。
数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
図1~図2における寸法比は、説明の便宜上、実際のものとは異なったものである。
「式1-1で表される化合物」を化合物1-1と記す。他の式で表される化合物もこれに準じて記す。また、「式g1で表される基」を基g1と記す。他の式で表される基もこれに準じて記す。
「反応性シリル基」とは、加水分解反応することによってシラノール基(Si-OH)を形成し得る基(加水分解性シリル基)及びシラノール基を意味する。例えば、式g1の-Si(R3)3-c(L)cである。
蒸着材料中の「金属元素の含有量」は、蒸着材料を酸に溶解し、溶解物について高周波誘導結合プラズマ(ICP)発光分光分析によって定量した値である。
下地層中の「金属元素の含有量」は、下地層の表面から深さ3nm~5nmの領域について二重収束ダイナミック二次イオン質量分析(二重収束ダイナミックSIMS)によって定量した値である。
数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
図1~図2における寸法比は、説明の便宜上、実際のものとは異なったものである。
[蒸着材料]
本発明の蒸着材料は、酸化ケイ素と、金属元素I及び金属元素IIのいずれか一方又は両方とを含む。
本発明の蒸着材料は、金属元素IIIをさらに含んでいてもよい。
本発明の蒸着材料は、必要に応じて酸素、金属元素I、金属元素II及び金属元素III以外の元素をさらに含んでいてもよい。
本発明の蒸着材料は、酸化ケイ素と、金属元素I及び金属元素IIのいずれか一方又は両方とを含む。
本発明の蒸着材料は、金属元素IIIをさらに含んでいてもよい。
本発明の蒸着材料は、必要に応じて酸素、金属元素I、金属元素II及び金属元素III以外の元素をさらに含んでいてもよい。
金属元素Iは、鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種であり、なかでも、鉄が好ましい。金属元素Iは、蒸着材料中に酸化物の状態で含まれていてもよく、イオンの状態で含まれていてもよく、通常は酸化物の状態で含まれる。
金属元素IIは、アルミニウム及びジルコニウムのいずれか一方又は両方であり、なかでも、アルミニウムが好ましい。金属元素IIは、蒸着材料中に酸化物の状態で含まれていてもよく、イオンの状態で含まれていてもよく、通常は酸化物の状態で含まれる。
金属元素IIIは、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種である。なかでも、リチウム、ナトリウム又はカリウムが好ましい。金属元素IIIは、蒸着材料中に酸化物の状態で含まれていてもよく、イオンの状態で含まれていてもよく、通常は酸化物の状態で含まれる。
蒸着材料中の酸化ケイ素の含有量は、80質量%以上であり、85質量%以上が好ましく、90質量%以上が特に好ましい。酸化ケイ素の含有量が前記範囲の下限値以上であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性に優れる。酸化ケイ素の含有量の上限値は、金属元素Iの合計の含有量(酸化物の場合は酸化物換算した量)、金属元素IIの合計の含有量(酸化物の場合は酸化物換算した量)、及び金属元素IIIの合計の含有量(酸化物の場合は酸化物換算した量)の合計を蒸着材料の質量から除いた残部である。
蒸着材料が金属元素Iを含む場合、蒸着材料中の金属元素Iの合計の含有量は、10~1100質量ppmであり、50~1100質量ppmが好ましく、50~500質量ppmがより好ましく、50~250質量ppmが特に好ましい。金属元素Iの合計の含有量が前記範囲の下限値以上であれば、蒸着法によって基材の表面に下地層を安定して形成でき、蒸着材料の飛散による欠点が下地層中に生じにくい。その結果、下地層と機能層との接着性に優れ、機能層の耐摩耗性に優れる。金属元素Iの合計の含有量が前記範囲の上限値以下であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性に優れる。また、蒸着法によって基材の表面に下地層を安定して形成でき、酸化ケイ素と金属元素Iの複合物によると考えられる欠点が下地層中に生じにくい。
蒸着材料が金属元素IIを含む場合、蒸着材料中の金属元素IIの合計の含有量は、10~2500質量ppmであり、15~2000質量ppmが好ましく、20~1000質量ppmが特に好ましい。金属元素IIの合計の含有量が前記範囲の下限値以上であれば、蒸着法によって基材の表面に下地層を安定して形成でき、蒸着材料の飛散による欠点が下地層中に生じにくい。その結果、下地層と機能層との接着性に優れ、機能層の耐摩耗性に優れる。金属元素IIの合計の含有量が前記範囲の上限値以下であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性に優れる。また、蒸着法によって基材の表面に下地層を安定して形成でき、酸化ケイ素と金属元素IIの複合物によると考えられる欠点が下地層中に生じにくい。
蒸着材料が金属元素IIIをさらに含む場合、蒸着材料中の金属元素IIIの合計の含有量は、0.05~15質量%が好ましく、0.1~13質量%がより好ましく、1.0~10質量%が特に好ましい。金属元素IIIの合計の含有量が前記範囲の下限値以上であれば、基材と下地層との接着性及び下地層と機能層との接着性がさらに優れる。その結果、機能層の耐摩耗性がさらに優れる。金属元素IIIの合計の含有量が前記範囲の上限値以下であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性がさらに優れる。
蒸着材料の形態としては、粉体、溶融粒状体、焼結体、破砕体等が挙げられ、後述する電子銃法に適している点から、溶融粒状体又は焼結体が好ましい。
溶融粒状体は、粉体を高温電気炉に投入して溶融させた後、冷却固化させて得られたものである。焼結体は、粉体を成形して成形体とした後、成形体を焼成して得られたものである。
溶融粒状体は、粉体を高温電気炉に投入して溶融させた後、冷却固化させて得られたものである。焼結体は、粉体を成形して成形体とした後、成形体を焼成して得られたものである。
蒸着材料の製造方法としては、例えば、下記の方法が挙げられる。
・金属元素Iの酸化物粉体及び金属元素IIの酸化物粉体のいずれか一方又は両方を含み、必要に応じて金属元素IIIの酸化物粉体をさらに含む粉体に、酸化ケイ素の粉体を添加して撹拌し、蒸着材料の粉体を得る方法。
・金属元素Iのイオン及び金属元素IIのイオンのいずれか一方又は両方を含み、必要に応じて金属元素IIIのイオンをさらに含む水溶液に、酸化ケイ素の粉体を添加して撹拌し、水を除去して蒸着材料の粉体を得る方法。
・ケイ酸及びその部分加水分解縮合物のいずれか一方又は両方と、金属元素Iのイオン及び金属元素IIのイオンのいずれか一方又は両方と、水とを含み、必要に応じて金属元素IIIのイオンをさらに含む液を、乾燥、加水分解させて蒸着材料の粉体を得る方法。
・蒸着材料の粉体を高温電気炉に投入して溶融させた後、冷却固化させて蒸着材料の溶融粒状体を得る方法。
・蒸着材料の粉体をプレス成形して成形体とした後、成形体を焼成して蒸着材料の焼結体を得る方法。
・蒸着材料の粉体を造粒して造粒体とした後、造粒体を焼成して蒸着材料の焼結体を得る方法。
・金属元素Iの酸化物粉体及び金属元素IIの酸化物粉体のいずれか一方又は両方を含み、必要に応じて金属元素IIIの酸化物粉体をさらに含む粉体に、酸化ケイ素の粉体を添加して撹拌し、蒸着材料の粉体を得る方法。
・金属元素Iのイオン及び金属元素IIのイオンのいずれか一方又は両方を含み、必要に応じて金属元素IIIのイオンをさらに含む水溶液に、酸化ケイ素の粉体を添加して撹拌し、水を除去して蒸着材料の粉体を得る方法。
・ケイ酸及びその部分加水分解縮合物のいずれか一方又は両方と、金属元素Iのイオン及び金属元素IIのイオンのいずれか一方又は両方と、水とを含み、必要に応じて金属元素IIIのイオンをさらに含む液を、乾燥、加水分解させて蒸着材料の粉体を得る方法。
・蒸着材料の粉体を高温電気炉に投入して溶融させた後、冷却固化させて蒸着材料の溶融粒状体を得る方法。
・蒸着材料の粉体をプレス成形して成形体とした後、成形体を焼成して蒸着材料の焼結体を得る方法。
・蒸着材料の粉体を造粒して造粒体とした後、造粒体を焼成して蒸着材料の焼結体を得る方法。
各金属元素のイオンを含む水溶液としては、各金属元素の水溶性の化合物(硝酸塩、水酸化物、炭酸塩、硫酸塩、塩化物、酢酸塩等)を水に溶解させたものが挙げられる。
酸化ケイ素の粉体としては、市販品を用いてもよく、M.S.GEL(AGCエスアイテック社製)等が挙げられる。
酸化ケイ素の粉体としては、市販品を用いてもよく、M.S.GEL(AGCエスアイテック社製)等が挙げられる。
以上説明した本発明の蒸着材料にあっては、金属元素I及び金属元素IIのいずれか一方又は両方を特定量含むため、本発明の蒸着材料を用いて蒸着法によって基材の表面に下地層を形成する際に下地層中に欠点が生じにくい。これは、金属元素I及び金属元素IIのいずれか一方又は両方が、蒸着材料の表面や粒界に存在する有機物等の除去を促進しているためだと考えられる。
蒸着材料を加熱した際に、蒸着材料の表面や粒界に存在する有機物等(残留炭素分)が急激に反応すると、蒸着材料は気化することなく飛散して成膜環境を乱し、蒸着膜すなわち下地層中に欠点を発生させる。金属元素Iや金属元素IIの酸化物等は、有機物を酸化又は還元する触媒として機能することが知られている(「No.16水蒸気を水素・酸素源として利用した酸化鉄系触媒による重質油の軽質化反応」,第49回石炭科学会議発表論文集,一般社団法人日本エネルギー学会,2012年,p.32-33;「酸化鉄系燃焼触媒のディーゼル排気ガス処理技術への応用」,徳島大学大学院ソシオテクノサイエンス研究部研究報告,第52号,2008年,p.28-32;「酸化ジルコニウムの触媒への応用」,石油学会誌,第36巻,第4号,1993年,p.250-267;「固体酸触媒」,有機合成化学協会誌,第36巻,第6号,1978年,p.501-506)。本発明の蒸着材料に含まれる金属元素I及び金属元素IIのいずれか一方又は両方は、蒸着材料を加熱した際に、蒸着材料の表面や粒界に存在する有機物等を気化しやすい有機化合物や二酸化炭素に変化させていると考えられる。金属元素I又は金属元素IIによって蒸着材料中の最適含有量が異なっているのは、触媒活性が金属元素I又は金属元素IIによって異なるためである。
蒸着材料を加熱した際に、蒸着材料の表面や粒界に存在する有機物等(残留炭素分)が急激に反応すると、蒸着材料は気化することなく飛散して成膜環境を乱し、蒸着膜すなわち下地層中に欠点を発生させる。金属元素Iや金属元素IIの酸化物等は、有機物を酸化又は還元する触媒として機能することが知られている(「No.16水蒸気を水素・酸素源として利用した酸化鉄系触媒による重質油の軽質化反応」,第49回石炭科学会議発表論文集,一般社団法人日本エネルギー学会,2012年,p.32-33;「酸化鉄系燃焼触媒のディーゼル排気ガス処理技術への応用」,徳島大学大学院ソシオテクノサイエンス研究部研究報告,第52号,2008年,p.28-32;「酸化ジルコニウムの触媒への応用」,石油学会誌,第36巻,第4号,1993年,p.250-267;「固体酸触媒」,有機合成化学協会誌,第36巻,第6号,1978年,p.501-506)。本発明の蒸着材料に含まれる金属元素I及び金属元素IIのいずれか一方又は両方は、蒸着材料を加熱した際に、蒸着材料の表面や粒界に存在する有機物等を気化しやすい有機化合物や二酸化炭素に変化させていると考えられる。金属元素I又は金属元素IIによって蒸着材料中の最適含有量が異なっているのは、触媒活性が金属元素I又は金属元素IIによって異なるためである。
[下地層付き基材]
本発明の下地層付き基材は、基材と、基材の表面に形成された下地層とを有する。
図1は、本発明の下地層付き基材の一例を示す模式断面図である。下地層付き基材10は、基材12と、基材12の表面に形成された下地層14とを有する。
本発明の下地層付き基材は、基材と、基材の表面に形成された下地層とを有する。
図1は、本発明の下地層付き基材の一例を示す模式断面図である。下地層付き基材10は、基材12と、基材12の表面に形成された下地層14とを有する。
(基材)
基材の材料としては、ガラス、樹脂、サファイア、金属、セラミック、石、これらの複合材料が挙げられる。ガラスは化学強化されていてもよい。
後述する機能層が撥水撥油層である場合、基材としては、タッチパネル用基材、ディスプレイ用基材が好適であり、タッチパネル用基材が特に好適である。タッチパネル用基材は、透光性を有する。「透光性を有する」とは、JIS R3106:1998(ISO 9050:1990)に準じた垂直入射型可視光透過率が25%以上であることを意味する。タッチパネル用基材の材料としては、ガラス又は透明樹脂が好ましい。
基材の材料としては、ガラス、樹脂、サファイア、金属、セラミック、石、これらの複合材料が挙げられる。ガラスは化学強化されていてもよい。
後述する機能層が撥水撥油層である場合、基材としては、タッチパネル用基材、ディスプレイ用基材が好適であり、タッチパネル用基材が特に好適である。タッチパネル用基材は、透光性を有する。「透光性を有する」とは、JIS R3106:1998(ISO 9050:1990)に準じた垂直入射型可視光透過率が25%以上であることを意味する。タッチパネル用基材の材料としては、ガラス又は透明樹脂が好ましい。
基材は、一方の表面又は両面に、コロナ放電処理、プラズマ処理、プラズマグラフト重合処理等の表面処理を施したものであってもよい。表面処理を施した表面は、基材と下地層の接着性がさらに優れ、その結果、機能層の耐摩耗性がさらに優れる点から、基材の下地層と接する側の表面に表面処理を施すことが好ましい。表面処理としては、機能層の耐摩耗性がさらに優れる点から、コロナ放電処理又はプラズマ処理が好ましい。
(下地層)
下地層は、酸化ケイ素と、金属元素I及び金属元素IIのいずれか一方又は両方とを含む。下地層は、金属元素IIIをさらに含んでいてもよい。
下地層は、必要に応じて酸素、金属元素I、金属元素II及び金属元素III以外の元素をさらに含んでいてもよい。
下地層は、酸化ケイ素と、金属元素I及び金属元素IIのいずれか一方又は両方とを含む。下地層は、金属元素IIIをさらに含んでいてもよい。
下地層は、必要に応じて酸素、金属元素I、金属元素II及び金属元素III以外の元素をさらに含んでいてもよい。
金属元素Iは、鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種である。金属元素Iは、下地層中に酸化物の状態で含まれていてもよく、イオンの状態で含まれていてもよく、通常は酸化物の状態で含まれる。
金属元素IIは、アルミニウム及びジルコニウムのいずれか一方又は両方である。金属元素IIは、下地層中に酸化物の状態で含まれていてもよく、イオンの状態で含まれていてもよく、通常は酸化物の状態で含まれる。
金属元素IIIは、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種である。金属元素IIIは、下地層中に酸化物の状態で含まれていてもよく、イオンの状態で含まれていてもよく、通常は酸化物の状態で含まれる。
下地層中の酸化ケイ素の含有量は、80質量%以上であり、85質量%以上が好ましく、90質量%以上が特に好ましい。酸化ケイ素の含有量が前記範囲の下限値以上であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性に優れる。酸化ケイ素の含有量の上限値は、金属元素Iの合計の含有量(酸化物の場合は酸化物換算した量)、金属元素IIの合計の含有量(酸化物の場合は酸化物換算した量)、及び金属元素IIIの合計の含有量(酸化物の場合は酸化物換算した量)の合計を下地層の質量から除いた残部である。
下地層が金属元素Iを含む場合、下地層中の金属元素Iの合計の含有量は、10~1100質量ppmであり、50~1100質量ppmが好ましく、50~500質量ppmがより好ましく、50~250質量ppmが特に好ましい。金属元素Iの合計の含有量が前記範囲の下限値以上であれば、蒸着法によって基材の表面に下地層を安定して形成でき、蒸着材料の飛散による欠点が下地層中に生じにくい。その結果、下地層と機能層との接着性に優れ、機能層の耐摩耗性に優れる。金属元素Iの合計の含有量が前記範囲の上限値以下であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性に優れる。また、蒸着法によって基材の表面に下地層を安定して形成でき、酸化ケイ素と金属元素Iの複合物によると考えられる欠点が下地層中に生じにくい。
下地層が金属元素IIを含む場合、下地層中の金属元素IIの合計の含有量は、10~2500質量ppmであり、15~2000質量ppmが好ましく、20~1000質量ppmが特に好ましい。金属元素IIの合計の含有量が前記範囲の下限値以上であれば、蒸着法によって基材の表面に下地層を安定して形成でき、蒸着材料の飛散による欠点が下地層中に生じにくい。その結果、下地層と機能層との接着性に優れ、機能層の耐摩耗性に優れる。金属元素IIの合計の含有量が前記範囲の上限値以下であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性に優れる。また、蒸着法によって基材の表面に下地層を安定して形成でき、酸化ケイ素と金属元素IIの複合物によると考えられる欠点が下地層中に生じにくい。
下地層が金属元素IIIをさらに含む場合、下地層中の金属元素IIIの合計の含有量は、0.05~15質量%が好ましく、0.1~13質量%がより好ましく、1.0~10質量%が特に好ましい。金属元素IIIの合計の含有量が前記範囲の下限値以上であれば、基材と下地層との接着性及び下地層と機能層との接着性がさらに優れる。その結果、機能層の耐摩耗性がさらに優れる。金属元素IIIの合計の含有量が前記範囲の上限値以下であれば、下地層においてSi-O-Si結合が充分に形成され、下地層の機械特性が充分に確保される。その結果、機能層の耐摩耗性がさらに優れる。
下地層の厚さは、2~200nmが好ましく、2~20nmが特に好ましい。下地層の厚さが前記範囲の下限値以上であれば、下地層による接着性の向上効果が充分に得られやすい。下地層の厚さが前記範囲の上限値以下であれば、下地層自体の耐摩耗性が高くなる。下地層の厚さを測定する方法としては、電子顕微鏡(SEM、TEM等)による下地層の断面観察による方法や、光干渉膜厚計、分光エリプソメータ、段差計等を用いる方法が挙げられる。
[下地層付き基材の製造方法]
本発明の下地層付き基材の製造方法は、本発明の蒸着材料を用いた蒸着法によって、基材の表面に、酸化ケイ素と、金属元素I及び金属元素IIのいずれか一方又は両方とを含む下地層を形成する方法である。
本発明の下地層付き基材の製造方法は、本発明の蒸着材料を用いた蒸着法によって、基材の表面に、酸化ケイ素と、金属元素I及び金属元素IIのいずれか一方又は両方とを含む下地層を形成する方法である。
蒸着法としては、真空蒸着法が挙げられる。真空蒸着法は、蒸着材料を真空槽内で蒸発させ、基材の表面に付着させる方法である。
蒸着時の温度(例えば、真空蒸着装置を用いる際には、蒸着材料を設置するボートの温度)は、100~3000℃が好ましく、500~3000℃が特に好ましい。
蒸着時の圧力(例えば、真空蒸着装置を用いる際には、蒸着材料を設置する槽内の絶対圧は、1Pa以下が好ましく、0.1Pa以下が特に好ましい。
蒸着材料を用いて下地層を形成する場合、1つの蒸着材料を用いてもよいし、異なる元素を含む2つ以上の蒸着材料を用いてもよい。
蒸着時の温度(例えば、真空蒸着装置を用いる際には、蒸着材料を設置するボートの温度)は、100~3000℃が好ましく、500~3000℃が特に好ましい。
蒸着時の圧力(例えば、真空蒸着装置を用いる際には、蒸着材料を設置する槽内の絶対圧は、1Pa以下が好ましく、0.1Pa以下が特に好ましい。
蒸着材料を用いて下地層を形成する場合、1つの蒸着材料を用いてもよいし、異なる元素を含む2つ以上の蒸着材料を用いてもよい。
蒸着材料の蒸発方法としては、高融点金属製の抵抗加熱用ボート上で蒸着材料を溶融し、蒸発させる抵抗加熱法、電子ビームを蒸着材料に照射し、蒸着材料を直接加熱して表面を溶融し、蒸発させる電子銃法等が挙げられる。蒸着材料の蒸発方法としては、局所的に加熱できるため高融点物質も蒸発できる点、電子ビームが当たっていないところは低温であるため容器との反応や不純物の混入のおそれがない点から、電子銃法が好ましい。電子銃法に用いる蒸着材料としては、気流が生じても飛散しにくい点から、溶融粒状体又は焼結体が好ましい。溶融粒状体又は焼結体は、蒸着装置への充填や蒸着終了後の蒸着残りの取り出しが容易である利点があるものの、表面や粒界に有機物等が付着しやすく、表面積が大きいために有機物等に起因する成膜不良によって蒸着膜すなわち下地層中に欠点が発生しやすい。本発明においては、金属元素I及び金属元素IIのいずれか一方又は両方を含む蒸着材料を用いることによって、この問題を解決できる。
[機能層付き物品]
本発明の機能層付き物品は、下地層付き基材と、下地層付き基材の下地層の表面に形成された機能層とを有する。
図2は、本発明の機能層付き物品の一例を示す模式断面図である。
機能層付き物品20は、下地層付き基材10と、下地層付き基材10の下地層14の表面に形成された機能層22とを有する。下地層付き基材10は、基材12と、基材12の表面に形成された下地層14とを有する。
本発明の機能層付き物品は、下地層付き基材と、下地層付き基材の下地層の表面に形成された機能層とを有する。
図2は、本発明の機能層付き物品の一例を示す模式断面図である。
機能層付き物品20は、下地層付き基材10と、下地層付き基材10の下地層14の表面に形成された機能層22とを有する。下地層付き基材10は、基材12と、基材12の表面に形成された下地層14とを有する。
(機能層)
機能層としては、撥水撥油層、反射防止層、防眩層、赤外線吸収層、保護層、紫外線吸収層、防曇層、親水層等が挙げられる。機能層としては、下地層が介在することによる、基材と機能層との間の接着性の改善効果が発揮されやすい点から、撥水撥油層が好ましい。
機能層としては、撥水撥油層、反射防止層、防眩層、赤外線吸収層、保護層、紫外線吸収層、防曇層、親水層等が挙げられる。機能層としては、下地層が介在することによる、基材と機能層との間の接着性の改善効果が発揮されやすい点から、撥水撥油層が好ましい。
(撥水撥油層)
撥水撥油層は、反応性シリル基を有する含フッ素化合物の縮合物からなる。加水分解性シリル基を有する含フッ素化合物中の加水分解性シリル基が加水分解反応することによってシラノール基(Si-OH)が形成され、シラノール基が分子間で縮合反応してSi-O-Si結合が形成されるか、又は含フッ素化合物中のシラノール基が下地層の表面のシラノール基又はSi-OM基(ただし、Mはアルカリ金属である。)と縮合反応してSi-O-Si結合が形成される。すなわち、撥水撥油層は、反応性シリル基を有する含フッ素化合物を、含フッ素化合物の反応性シリル基の一部又は全部が縮合反応した状態で含む。
撥水撥油層は、反応性シリル基を有する含フッ素化合物の縮合物からなる。加水分解性シリル基を有する含フッ素化合物中の加水分解性シリル基が加水分解反応することによってシラノール基(Si-OH)が形成され、シラノール基が分子間で縮合反応してSi-O-Si結合が形成されるか、又は含フッ素化合物中のシラノール基が下地層の表面のシラノール基又はSi-OM基(ただし、Mはアルカリ金属である。)と縮合反応してSi-O-Si結合が形成される。すなわち、撥水撥油層は、反応性シリル基を有する含フッ素化合物を、含フッ素化合物の反応性シリル基の一部又は全部が縮合反応した状態で含む。
撥水撥油層の厚さは、1~100nmが好ましく、1~50nmが特に好ましい。撥水撥油層の厚さが前記範囲の下限値以上であれば、撥水撥油層による効果が充分に得られる。撥水撥油層の厚さが前記範囲の上限値以下であれば、利用効率が高い。
撥水撥油層の厚さは、薄膜解析用X線回折計で得られた厚さである。撥水撥油層の厚さは、薄膜解析用X線回折計を用いて、X線反射率法によって反射X線の干渉パターンを得て、干渉パターンの振動周期から算出できる。
撥水撥油層の厚さは、薄膜解析用X線回折計で得られた厚さである。撥水撥油層の厚さは、薄膜解析用X線回折計を用いて、X線反射率法によって反射X線の干渉パターンを得て、干渉パターンの振動周期から算出できる。
反応性シリル基を有する含フッ素化合物(以下、単に「含フッ素化合物」とも記す。)は、撥水撥油層を形成し得るものであれば特に限定されない。
含フッ素化合物としては、撥水撥油性、指紋汚れ除去性、潤滑性等に優れる撥水撥油層を形成できる点から、反応性シリル基及びポリフルオロポリエーテル鎖を有する含フッ素化合物(以下、「含フッ素エーテル化合物」とも記す。)が好ましい。
含フッ素化合物としては、撥水撥油性、指紋汚れ除去性、潤滑性等に優れる撥水撥油層を形成できる点から、反応性シリル基及びポリフルオロポリエーテル鎖を有する含フッ素化合物(以下、「含フッ素エーテル化合物」とも記す。)が好ましい。
含フッ素エーテル化合物としては、化合物1-1又は化合物1-2が挙げられる。
(G1-)tQ1(-X)s 式1-1
(X-)sQ2-G2-Q2(-X)s 式1-2
(G1-)tQ1(-X)s 式1-1
(X-)sQ2-G2-Q2(-X)s 式1-2
G1は、1価のポリフルオロポリエーテル鎖である。
G2は、2価のポリフルオロポリエーテル鎖である。
Q1は、s+t価の有機基である。
Q2は、s+1価の有機基である。式1-2における2つのQ2は同一であっても異なっていてもよい。
sは、1以上の整数である。式1-2における2つのsは同一であっても異なっていてもよい。sが2以上の場合、2以上のXは同一であっても異なっていてもよい。
tは、1以上の整数である。tが2以上の場合、2以上のG1は同一であっても異なっていてもよい。
G2は、2価のポリフルオロポリエーテル鎖である。
Q1は、s+t価の有機基である。
Q2は、s+1価の有機基である。式1-2における2つのQ2は同一であっても異なっていてもよい。
sは、1以上の整数である。式1-2における2つのsは同一であっても異なっていてもよい。sが2以上の場合、2以上のXは同一であっても異なっていてもよい。
tは、1以上の整数である。tが2以上の場合、2以上のG1は同一であっても異なっていてもよい。
Xは、基g1である。
-Si(R3)3-c(L)c 式g1
ただし、R3は、アルキル基であり、Lは、加水分解性基又はOHであり、2以上のLは同一であっても異なっていてもよく、cは、2又は3である。
-Si(R3)3-c(L)c 式g1
ただし、R3は、アルキル基であり、Lは、加水分解性基又はOHであり、2以上のLは同一であっても異なっていてもよく、cは、2又は3である。
G1としては、基g2-1が好ましい。G2としては、基g2-2が好ましい。
A-O-(Rf1O)m-Rf2- 式g2-1
-Rf2-O-(Rf1O)m-Rf2- 式g2-2
A-O-(Rf1O)m-Rf2- 式g2-1
-Rf2-O-(Rf1O)m-Rf2- 式g2-2
Aは、炭素数1~20のポリフルオロアルキル基(ただし、末端にCF3-を有する。)である。Aとしては、ペルフルオロアルキル基が好ましい。Aの炭素数は、1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。
Rf1は、フルオロアルキレン基である。Rf1としては、ペルフルオロアルキレン基が好ましい。Rf1の炭素数は、1~6が好ましい。
Rf2は、フルオロアルキレン基(ただし、Q1又はQ2側の末端の炭素原子及びO(Rf1O)m側の末端の炭素原子には少なくとも1個のフッ素原子が結合する。)である。Rf2の炭素数は、1~20が好ましい。
mは、2~500の整数である。(Rf1O)mは炭素数の異なる2種以上のRf1Oからなるものであってもよい。
Rf1は、フルオロアルキレン基である。Rf1としては、ペルフルオロアルキレン基が好ましい。Rf1の炭素数は、1~6が好ましい。
Rf2は、フルオロアルキレン基(ただし、Q1又はQ2側の末端の炭素原子及びO(Rf1O)m側の末端の炭素原子には少なくとも1個のフッ素原子が結合する。)である。Rf2の炭素数は、1~20が好ましい。
mは、2~500の整数である。(Rf1O)mは炭素数の異なる2種以上のRf1Oからなるものであってもよい。
Q1及びQ2としては、基g3-1(t=1、s=1のときのQ1、s=1のときのQ2)、基g3-2(t=1、s=dのときのQ1、s=dのときのQ2)、基g3-3(t=1、s=2のときのQ1、s=2のときのQ2)、基g3-4(t=1、s=eのときのQ1、s=eのときのQ2)、基g3-5(t=1、s=nのときのQ1、s=nのときのQ2)、基g3-6(t=1、s=d1+n×d2のときのQ1、s=d1+n×d2のときのQ2)、基g3-7(t=1、s=(2-h)+n×hのときのQ1、s=(2-h)+n×hのときのQ2)又は基g3-8基(t=1、s=e1+n×e2のときのQ1、s=e1+n×e2のときのQ2)が好ましい。
-Q11- 式g3-1
-Q12-C(R4)3-d(-Q21-)d 式g3-2
-Q13-N(-Q21-)2 式g3-3
-Q14-Z(-Q21-)e 式g3-4
-Q11-Si(R5)3-n(-Q21-)n 式g3-5
-Q12-C(R4)3-d1-d2(-Q21-)d1[-Q15-Si(R5)3-n(-Q21-)n]d2 式g3-6
-Q13-N(-Q21-)2-h[-Q15-Si(R5)3-n(-Q21-)n]h 式g3-7
-Q12-Z(-Q21-)e1[-Q15-Si(R5)3-n(-Q21-)n]e2 式g3-8
-Q11- 式g3-1
-Q12-C(R4)3-d(-Q21-)d 式g3-2
-Q13-N(-Q21-)2 式g3-3
-Q14-Z(-Q21-)e 式g3-4
-Q11-Si(R5)3-n(-Q21-)n 式g3-5
-Q12-C(R4)3-d1-d2(-Q21-)d1[-Q15-Si(R5)3-n(-Q21-)n]d2 式g3-6
-Q13-N(-Q21-)2-h[-Q15-Si(R5)3-n(-Q21-)n]h 式g3-7
-Q12-Z(-Q21-)e1[-Q15-Si(R5)3-n(-Q21-)n]e2 式g3-8
ただし、式g3-2~式g3-8においては、Q11、Q12、Q13又はQ14側がG1又はG2に接続し、Q21側がXに接続する。
Q11は、アルキレン基である。
Q12は、単結合、-C(O)NH-又はアルキレン基である。
Q13は、単結合、-C(O)-又はアルキレン基である。
Q14は、単結合又はアルキレン基である。
Q15は、単結合又はアルキレン基である。
Q11~Q15におけるアルキレン基は、炭素数2以上のアルキレン基の炭素-炭素原子間に-C(O)NH-、-C(O)-、-NH-又は-O-を有してもよく、N又はSiの接続しない側のアルキレン基の末端に-C(O)NH-、-C(O)-又は-O-を有してもよい。
Q21は、アルキレン基である。Q21におけるアルキレン基は、炭素数2以上のアルキレン基の炭素-炭素原子間に-C(O)NH-、-C(O)-又は-O-を有してもよく、N又はSiの接続しない側のアルキレン基の末端に-C(O)NH-、-C(O)-、-O-、-CF2-又は-CF2C(O)NH-を有してもよい。Q1又はQ2がQ21を2以上有する場合、2以上のQ21は同一であっても異なっていてもよい。
Zは、Q14が直接結合する炭素原子又は窒素原子を有しかつQ21が直接結合する炭素原子又は窒素原子を有するe+1価の環構造を有する基である。
R4は、水素原子、アルキル基、水酸基、フッ素原子又は-CF3である。
R5は、アルキル基である。
dは、2又は3である。
eは、1以上の整数である。
nは、2又は3である。
d1は、0~2の整数であり、d2は、1~3の整数であり、d1+d2は、2又は3である。d2が2以上の場合、2以上の[-Q15-Si(R5)3-n(-Q21-)n]は同一であっても異なっていてもよい。
hは、1又は2である。hが2の場合、2個の[-Q15-Si(R5)3-n(-Q21-)n]は同一であっても異なっていてもよい。
e1は、0以上の整数であり、e2は、1以上の整数である。e2が2以上の場合、2以上の[-Q15-Si(R5)3-n(-Q21-)n]は同一であっても異なっていてもよい。
Q11は、アルキレン基である。
Q12は、単結合、-C(O)NH-又はアルキレン基である。
Q13は、単結合、-C(O)-又はアルキレン基である。
Q14は、単結合又はアルキレン基である。
Q15は、単結合又はアルキレン基である。
Q11~Q15におけるアルキレン基は、炭素数2以上のアルキレン基の炭素-炭素原子間に-C(O)NH-、-C(O)-、-NH-又は-O-を有してもよく、N又はSiの接続しない側のアルキレン基の末端に-C(O)NH-、-C(O)-又は-O-を有してもよい。
Q21は、アルキレン基である。Q21におけるアルキレン基は、炭素数2以上のアルキレン基の炭素-炭素原子間に-C(O)NH-、-C(O)-又は-O-を有してもよく、N又はSiの接続しない側のアルキレン基の末端に-C(O)NH-、-C(O)-、-O-、-CF2-又は-CF2C(O)NH-を有してもよい。Q1又はQ2がQ21を2以上有する場合、2以上のQ21は同一であっても異なっていてもよい。
Zは、Q14が直接結合する炭素原子又は窒素原子を有しかつQ21が直接結合する炭素原子又は窒素原子を有するe+1価の環構造を有する基である。
R4は、水素原子、アルキル基、水酸基、フッ素原子又は-CF3である。
R5は、アルキル基である。
dは、2又は3である。
eは、1以上の整数である。
nは、2又は3である。
d1は、0~2の整数であり、d2は、1~3の整数であり、d1+d2は、2又は3である。d2が2以上の場合、2以上の[-Q15-Si(R5)3-n(-Q21-)n]は同一であっても異なっていてもよい。
hは、1又は2である。hが2の場合、2個の[-Q15-Si(R5)3-n(-Q21-)n]は同一であっても異なっていてもよい。
e1は、0以上の整数であり、e2は、1以上の整数である。e2が2以上の場合、2以上の[-Q15-Si(R5)3-n(-Q21-)n]は同一であっても異なっていてもよい。
含フッ素エーテル化合物の具体例としては、例えば、下記の文献に記載のものが挙げられる。
日本特開平11-029585号公報に記載のパーフルオロポリエーテル変性アミノシラン、
日本特許第2874715号公報に記載のケイ素含有有機含フッ素ポリマー、
日本特開2000-144097号公報に記載の有機ケイ素化合物、
日本特開2000-327772号公報に記載のパーフルオロポリエーテル変性アミノシラン、
日本特表2002-506887号公報に記載のフッ素化シロキサン、
日本特表2008-534696号公報に記載の有機シリコーン化合物、
日本特許第4138936号公報に記載のフッ素化変性水素含有重合体、
米国特許出願公開第2010/0129672号明細書、国際公開第2014/126064号、日本特開2014-070163号公報に記載の化合物、
国際公開第2011/060047号、国際公開第2011/059430号に記載のオルガノシリコン化合物、
国際公開第2012/064649号に記載の含フッ素オルガノシラン化合物、
日本特開2012-72272号公報に記載のフルオロオキシアルキレン基含有ポリマー、
国際公開第2013/042732号、国際公開第2013/121984号、国際公開第2013/121985号、国際公開第2013/121986号、国際公開第2014/163004号、日本特開2014-080473号公報、国際公開第2015/087902号、国際公開第2017/038830号、国際公開第2017/038832号、国際公開第2017/187775号に記載の含フッ素エーテル化合物、
日本特開2014-218639号公報、国際公開第2017/022437号、国際公開第2018/079743号、国際公開第2018/143433号に記載のパーフルオロ(ポリ)エーテル含有シラン化合物、
日本特開2015-199906号公報、日本特開2016-204656号公報、日本特開2016-210854号公報、日本特開2016-222859号公報に記載のフルオロポリエーテル基含有ポリマー変性シラン
国際公開第2018/216630号、国際公開第2019/039226号、国際公開第2019/039341号、国際公開第2019/039186号、国際公開第2019/044479号、日本特開2019-44158号公報、特願2017-251611に記載の含フッ素エーテル化合物。
日本特開平11-029585号公報に記載のパーフルオロポリエーテル変性アミノシラン、
日本特許第2874715号公報に記載のケイ素含有有機含フッ素ポリマー、
日本特開2000-144097号公報に記載の有機ケイ素化合物、
日本特開2000-327772号公報に記載のパーフルオロポリエーテル変性アミノシラン、
日本特表2002-506887号公報に記載のフッ素化シロキサン、
日本特表2008-534696号公報に記載の有機シリコーン化合物、
日本特許第4138936号公報に記載のフッ素化変性水素含有重合体、
米国特許出願公開第2010/0129672号明細書、国際公開第2014/126064号、日本特開2014-070163号公報に記載の化合物、
国際公開第2011/060047号、国際公開第2011/059430号に記載のオルガノシリコン化合物、
国際公開第2012/064649号に記載の含フッ素オルガノシラン化合物、
日本特開2012-72272号公報に記載のフルオロオキシアルキレン基含有ポリマー、
国際公開第2013/042732号、国際公開第2013/121984号、国際公開第2013/121985号、国際公開第2013/121986号、国際公開第2014/163004号、日本特開2014-080473号公報、国際公開第2015/087902号、国際公開第2017/038830号、国際公開第2017/038832号、国際公開第2017/187775号に記載の含フッ素エーテル化合物、
日本特開2014-218639号公報、国際公開第2017/022437号、国際公開第2018/079743号、国際公開第2018/143433号に記載のパーフルオロ(ポリ)エーテル含有シラン化合物、
日本特開2015-199906号公報、日本特開2016-204656号公報、日本特開2016-210854号公報、日本特開2016-222859号公報に記載のフルオロポリエーテル基含有ポリマー変性シラン
国際公開第2018/216630号、国際公開第2019/039226号、国際公開第2019/039341号、国際公開第2019/039186号、国際公開第2019/044479号、日本特開2019-44158号公報、特願2017-251611に記載の含フッ素エーテル化合物。
含フッ素エーテル化合物の市販品としては、信越化学工業社製のKY-100シリーズ(KY-178、KY-185、KY-195等)、AGC社製のAfluid(登録商標)S550、ダイキン工業社製のオプツール(登録商標)DSX、オプツール(登録商標)AES、オプツール(登録商標)UF503、オプツール(登録商標)UD509等が挙げられる。
[機能層付き物品の製造方法]
本発明の機能層付き物品の製造方法は、本発明の下地層付き基材の製造方法によって下地層付き基材を得て、下地層付き基材の下地層の表面に機能層を形成する方法である。
本発明の機能層付き物品の製造方法は、本発明の下地層付き基材の製造方法によって下地層付き基材を得て、下地層付き基材の下地層の表面に機能層を形成する方法である。
下地層の表面に機能層を形成する方法としては、機能層の種類に応じた公知の方法が挙げられる。
機能層が撥水撥油層である場合、下地層の表面に撥水撥油層を形成する方法としては、含フッ素化合物を用いたドライコーティング法又はウェットコーティング法が挙げられる。
機能層が撥水撥油層である場合、下地層の表面に撥水撥油層を形成する方法としては、含フッ素化合物を用いたドライコーティング法又はウェットコーティング法が挙げられる。
ドライコーティング法としては、真空蒸着法、CVD法、スパッタリング法等が挙げられ、含フッ素化合物の分解を抑える点、及び装置の簡便さの点から、真空蒸着法が好ましい。真空蒸着の際の温度(例えば、真空蒸着装置を用いる際には、蒸着材料を設置するボートの温度)は、20~1000℃が好ましく、30~700℃が特に好ましい。真空蒸着の際の圧力(絶対圧)は、1×10-1Pa以下が好ましく、1×10-2Pa以下が特に好ましい。
ドライコーティング法においては、含フッ素化合物の1種を単独で用いてもよく、含フッ素化合物の2種以上の混合物として用いてもよく、含フッ素化合物と他の成分(ただし、液状媒体を除く。)とを含む組成物として用いてもよく、これらに液状媒体を加えた溶液又は分散液として用いてもよい。真空蒸着時には、鉄、鋼等の金属多孔体に含フッ素化合物を含浸させたペレット状物質を用いてもよい。含フッ素化合物を含む溶液又は分散液を鉄、鋼等の金属多孔体に含浸させ、液状媒体を乾燥させたペレット状物質を用いてもよい。
ウェットコーティング法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
ウェットコーティング法においては、含フッ素化合物と液状媒体とを含む溶液又は分散液を用いる。
液状媒体としては、有機溶媒が好ましい。有機溶媒は、フッ素系有機溶媒であってもよく、非フッ素系有機溶媒であってもよく、両溶媒を含んでもよい。
フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
非フッ素系有機溶媒としては、水素原子及び炭素原子のみからなる化合物、又は水素原子、炭素原子及び酸素原子のみからなる化合物が好ましく、炭化水素系有機溶媒、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒が挙げられる。
液状媒体としては、有機溶媒が好ましい。有機溶媒は、フッ素系有機溶媒であってもよく、非フッ素系有機溶媒であってもよく、両溶媒を含んでもよい。
フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
非フッ素系有機溶媒としては、水素原子及び炭素原子のみからなる化合物、又は水素原子、炭素原子及び酸素原子のみからなる化合物が好ましく、炭化水素系有機溶媒、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒が挙げられる。
溶液又は分散液は、含フッ素化合物及び液状媒体の他に、その他の成分、不純物(含フッ素化合物の製造工程で生成した副生成物等)を含んでいてもよい。
その他の成分としては、例えば、反応性シリル基の加水分解及び縮合反応を促進する酸触媒、塩基性触媒等の公知の添加剤が挙げられる。
その他の成分としては、例えば、反応性シリル基の加水分解及び縮合反応を促進する酸触媒、塩基性触媒等の公知の添加剤が挙げられる。
溶液又は分散液の固形分濃度は、0.001~10質量%が好ましく、0.01~1質量%が特に好ましい。溶液又は分散液の固形分濃度は、加熱前の溶液又は分散液の質量と、120℃の対流式乾燥機にて4時間加熱した後の質量とから算出する。
以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。なお、例1~35は実施例であり、例36~46は比較例である。
[物性及び評価]
(下地層の厚さ)
下地層の厚さは、分光エリプソメータ(大塚電子社製、FE-3000)で測定した。
(下地層の厚さ)
下地層の厚さは、分光エリプソメータ(大塚電子社製、FE-3000)で測定した。
(蒸着材料の組成)
蒸着材料の0.5gに硝酸5mLを加え、120℃で2時間加熱した。放冷後、硝酸5mLと過塩素酸5mLを添加して180℃で6時間加熱した。放冷後、硝酸5mL(リットル)、過塩素酸5mL、及びフッ酸2.5mLを添加して180℃で1時間加熱した。放冷後、5mol/Lの硝酸5mLと5mol/Lの塩酸1mLを添加して100℃で1時間加熱した。さらに超純水30mLを添加して1時間加熱、沸騰させることで試料溶液を作製した。試料溶液についてICP発光分光分析装置(日立ハイテクサイエンス社製、SPS5520)を用いて金属元素I、金属元素II及び金属元素IIIの含有量を定量した。
蒸着材料の0.5gに硝酸5mLを加え、120℃で2時間加熱した。放冷後、硝酸5mLと過塩素酸5mLを添加して180℃で6時間加熱した。放冷後、硝酸5mL(リットル)、過塩素酸5mL、及びフッ酸2.5mLを添加して180℃で1時間加熱した。放冷後、5mol/Lの硝酸5mLと5mol/Lの塩酸1mLを添加して100℃で1時間加熱した。さらに超純水30mLを添加して1時間加熱、沸騰させることで試料溶液を作製した。試料溶液についてICP発光分光分析装置(日立ハイテクサイエンス社製、SPS5520)を用いて金属元素I、金属元素II及び金属元素IIIの含有量を定量した。
(下地層の組成)
下地層の表面から深さ3~5nmの領域について二重収束ダイナミックSIMS装置(アルバック・ファイ社製、ADEPT1010)を用い、一次イオン:Cs+、加速電圧:5kV、ビーム電流:300nA、ラスターサイズ:300×300μm2、中和銃:有、一次イオン入射角:試料面の法線に対して60度で金属元素I及び金属元素IIの含有量を定量した。
下地層の表面から深さ3~5nmの領域について二重収束ダイナミックSIMS装置(アルバック・ファイ社製、ADEPT1010)を用い、一次イオン:Cs+、加速電圧:5kV、ビーム電流:300nA、ラスターサイズ:300×300μm2、中和銃:有、一次イオン入射角:試料面の法線に対して60度で金属元素I及び金属元素IIの含有量を定量した。
(成膜速度変化)
基材の表面に蒸着材料を蒸着させている間、1秒ごとに基材の表面における蒸着材料(下地層)の厚さを測定し、1秒ごとの成膜速度を求めた。1秒ごとの成膜速度のうち、平均成膜速度から最も離れた成膜速度について、下式から成膜速度変化を求めた。
成膜速度変化(%)=
(|平均成膜速度-平均成膜速度から最も離れた成膜速度|)/平均成膜速度×100
基材の表面に蒸着材料を蒸着させている間、1秒ごとに基材の表面における蒸着材料(下地層)の厚さを測定し、1秒ごとの成膜速度を求めた。1秒ごとの成膜速度のうち、平均成膜速度から最も離れた成膜速度について、下式から成膜速度変化を求めた。
成膜速度変化(%)=
(|平均成膜速度-平均成膜速度から最も離れた成膜速度|)/平均成膜速度×100
(下地層の欠点数)
下地層を光学顕微鏡で直径1mmの領域を50倍に拡大して観察し、目視で確認できる欠点(円形の突起形状)の数を数えた。下地層から無作為に選ばれた5箇所について直径1mmの領域における欠点を数え、その合計を欠点数とした。
下地層を光学顕微鏡で直径1mmの領域を50倍に拡大して観察し、目視で確認できる欠点(円形の突起形状)の数を数えた。下地層から無作為に選ばれた5箇所について直径1mmの領域における欠点を数え、その合計を欠点数とした。
(撥水撥油膜の水接触角)
撥水撥油層の表面に置いた、約2μLの蒸留水の接触角を、接触角測定装置(協和界面科学社製、DM-701)を用いて20℃で測定した。撥水撥油層の表面から無作為に選ばれた5箇所で測定を行い、平均値を算出し、水接触角とした。
撥水撥油層の表面に置いた、約2μLの蒸留水の接触角を、接触角測定装置(協和界面科学社製、DM-701)を用いて20℃で測定した。撥水撥油層の表面から無作為に選ばれた5箇所で測定を行い、平均値を算出し、水接触角とした。
(スチールウール摩耗試験)
撥水撥油層について、JIS L0849:2013(ISO 105-X12:2001)に準拠して往復式トラバース試験機(ケイエヌテー社製)を用い、スチールウールボンスター(番手:♯0000、形状:10mm×10mmの正方形、厚み:5mm)を荷重:9.8N、速度:80rpmで往復させた。所定のスチールウール摩耗回数ごとに、撥水撥油層の水接触角を測定し、水接触角が100度未満になったときの回数を耐摩耗性とした。耐摩耗性の回数が大きいほど摩耗による撥水撥油性の低下が小さく、耐摩耗性に優れる。
撥水撥油層について、JIS L0849:2013(ISO 105-X12:2001)に準拠して往復式トラバース試験機(ケイエヌテー社製)を用い、スチールウールボンスター(番手:♯0000、形状:10mm×10mmの正方形、厚み:5mm)を荷重:9.8N、速度:80rpmで往復させた。所定のスチールウール摩耗回数ごとに、撥水撥油層の水接触角を測定し、水接触角が100度未満になったときの回数を耐摩耗性とした。耐摩耗性の回数が大きいほど摩耗による撥水撥油性の低下が小さく、耐摩耗性に優れる。
[原料]
(化合物1-1a)
国際公開第2013/121984号の例6に記載の方法にしたがい、数平均分子量が2,900である化合物1-1aを得た。
CF3-O-(CF2CF2O-CF2CF2CF2CF2O)m1(CF2CF2O)-CF2CF2CF2-C(O)NHCH2CH2CH2-Si(OCH3)3 式1-1a
単位数m1の平均値:7。
(化合物1-1a)
国際公開第2013/121984号の例6に記載の方法にしたがい、数平均分子量が2,900である化合物1-1aを得た。
CF3-O-(CF2CF2O-CF2CF2CF2CF2O)m1(CF2CF2O)-CF2CF2CF2-C(O)NHCH2CH2CH2-Si(OCH3)3 式1-1a
単位数m1の平均値:7。
[例1]
硝酸鉄七水和物(純正化学社製)の1.3mgを蒸留水の10gに溶解した水溶液と、酸化ケイ素の粉体(AGCエスアイテック社製、M.S.GEL-D-100-60A)の20gとを混合した。混合物を静水圧プレス(50MPaで2秒間)で成形した。成形体を1000℃で1時間焼成して焼結体を得た。焼結体中のナトリウムの含有量、金属元素I、IIの種類及び含有量を表1に示す。
硝酸鉄七水和物(純正化学社製)の1.3mgを蒸留水の10gに溶解した水溶液と、酸化ケイ素の粉体(AGCエスアイテック社製、M.S.GEL-D-100-60A)の20gとを混合した。混合物を静水圧プレス(50MPaで2秒間)で成形した。成形体を1000℃で1時間焼成して焼結体を得た。焼結体中のナトリウムの含有量、金属元素I、IIの種類及び含有量を表1に示す。
ガラス基材(AGC社製、Dragontrail(登録商標))の一方の表面を、高周波電源(春日電機社製、CG102A)を用いて80V、3.5Aの条件下でコロナ放電処理した。
真空蒸着装置(アルバック機工社製、VTR-350M)のモリブデン製ボートに焼結体の0.5gを配置した。真空蒸着装置内にコロナ放電処理済みのガラス基材を配置し、真空蒸着装置内を5×10-3Pa以下の圧力になるまで排気した。ボートを電子銃で加熱し、ガラス基材の表面に焼結体を真空蒸着させ、厚さ10nmの下地層を形成した。下地層中の金属元素I、IIの含有量、真空蒸着によって下地層を形成した際の成膜速度変化、ならびに下地層の欠点数を表1に示す。
真空蒸着装置(アルバック機工社製、VTR-350M)のモリブデン製ボートに焼結体の0.5gを配置した。真空蒸着装置内にコロナ放電処理済みのガラス基材を配置し、真空蒸着装置内を5×10-3Pa以下の圧力になるまで排気した。ボートを電子銃で加熱し、ガラス基材の表面に焼結体を真空蒸着させ、厚さ10nmの下地層を形成した。下地層中の金属元素I、IIの含有量、真空蒸着によって下地層を形成した際の成膜速度変化、ならびに下地層の欠点数を表1に示す。
引き続き、真空蒸着装置の別のボートに配置した化合物1-1aを抵抗加熱によって加熱し、下地層の表面に含フッ素エーテル化合物を真空蒸着させ、撥水撥油層を形成した。撥水撥油層の耐摩耗性を表1に示す。
[例2~35、37~46]
金属元素I、金属元素II及び金属元素IIIの種類及び含有量を表1に示すように変更した以外は、例1と同様にして焼結体を得た。ニッケルの原料としては、硝酸ニッケルの水溶液を用いた。クロムの原料としては、硝酸クロムの水溶液を用いた。アルミニウムの原料としては、硝酸アルミニウムの水溶液を用いた。ジルコニウムの原料としては、オキシ硝酸ジルコニウムの水溶液を用いた。ナトリウムの原料としては、水酸化ナトリウムの水溶液を用いた。焼結体中のナトリウムの含有量、金属元素I、IIの種類及び含有量を表1に示す。
金属元素I、金属元素II及び金属元素IIIの種類及び含有量を表1に示すように変更した以外は、例1と同様にして焼結体を得た。ニッケルの原料としては、硝酸ニッケルの水溶液を用いた。クロムの原料としては、硝酸クロムの水溶液を用いた。アルミニウムの原料としては、硝酸アルミニウムの水溶液を用いた。ジルコニウムの原料としては、オキシ硝酸ジルコニウムの水溶液を用いた。ナトリウムの原料としては、水酸化ナトリウムの水溶液を用いた。焼結体中のナトリウムの含有量、金属元素I、IIの種類及び含有量を表1に示す。
焼結体を変更した以外は、例1と同様にしてガラス基材の表面に下地層を形成した。下地層中の金属元素Iの含有量及び金属元素IIの含有量、真空蒸着によって下地層を形成した際の成膜速度変化、ならびに下地層の欠点数を表1に示す。
また、例1と同様にして下地層の表面に撥水撥油層を形成した。撥水撥油層の耐摩耗性を表1に示す。
また、例1と同様にして下地層の表面に撥水撥油層を形成した。撥水撥油層の耐摩耗性を表1に示す。
[例36]
酸化ケイ素の粉体(AGCエスアイテック社製、M.S.GEL-D-100-60A)の20gを静水圧プレス(50MPaで2秒間)で成形した。成形体を1000℃で1時間焼成して焼結体を得た。焼結体中のナトリウムの含有量、金属元素I、IIの種類及び含有量を表1に示す。
酸化ケイ素の粉体(AGCエスアイテック社製、M.S.GEL-D-100-60A)の20gを静水圧プレス(50MPaで2秒間)で成形した。成形体を1000℃で1時間焼成して焼結体を得た。焼結体中のナトリウムの含有量、金属元素I、IIの種類及び含有量を表1に示す。
焼結体を変更した以外は、例1と同様にしてガラス基材の表面に下地層を形成した。下地層中の金属元素I、IIの含有量、真空蒸着によって下地層を形成した際の成膜速度変化、ならびに下地層の欠点数を表1に示す。
また、例1と同様にして下地層の表面に撥水撥油層を形成した。撥水撥油層の耐摩耗性を表1に示す。
また、例1と同様にして下地層の表面に撥水撥油層を形成した。撥水撥油層の耐摩耗性を表1に示す。
表中、ナトリウムの含有量における「0質量%」は、装置の検出限界未満であることを示す。また、金属元素I、IIの含有量における「0質量ppm」は、装置の検出限界未満であることを示す。また、表中の各例において、表中に示されていない金属元素I、IIの含有量及びナトリウム以外の金属元素IIIの含有量は、装置の検出限界未満である。
例36は、金属元素I及び金属元素IIを含まないため、下地層を安定して成膜できず、蒸着材料の飛散による欠点が下地層中に見られ、耐摩耗性にも劣っていた。
例37~41は、金属元素I及び金属元素IIの含有量が少ないため、下地層を安定して成膜できず、蒸着材料の飛散による欠点が下地層中に見られ、耐摩耗性にも劣っていた。
例42~46は、金属元素I及び金属元素IIの含有量が多すぎたため、下地層を安定して成膜できず、酸化ケイ素と金属元素Iの複合物又は酸化ケイ素と金属元素IIの複合物によると考えられる欠点が下地層中に見られ、耐摩耗性にも劣っていた。
例36は、金属元素I及び金属元素IIを含まないため、下地層を安定して成膜できず、蒸着材料の飛散による欠点が下地層中に見られ、耐摩耗性にも劣っていた。
例37~41は、金属元素I及び金属元素IIの含有量が少ないため、下地層を安定して成膜できず、蒸着材料の飛散による欠点が下地層中に見られ、耐摩耗性にも劣っていた。
例42~46は、金属元素I及び金属元素IIの含有量が多すぎたため、下地層を安定して成膜できず、酸化ケイ素と金属元素Iの複合物又は酸化ケイ素と金属元素IIの複合物によると考えられる欠点が下地層中に見られ、耐摩耗性にも劣っていた。
本発明の機能層付き物品は、光学物品、タッチパネル、反射防止フィルム、SiO2処理ガラス、強化ガラス、サファイア基板、石英基板、金属金型等として有用である。
なお、2018年4月18日に出願された日本特許出願2018-80018号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
なお、2018年4月18日に出願された日本特許出願2018-80018号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
10:下地層付き基材、 12:基材、 14:下地層、
20:機能層付き物品、 22:機能層。
20:機能層付き物品、 22:機能層。
Claims (15)
- 酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方と、を含み、
前記酸化ケイ素の含有量が、80質量%以上であり、
下記金属元素Iを含む場合、下記金属元素Iの合計の含有量が、10~1100質量ppmであり、
下記金属元素IIを含む場合、下記金属元素IIの合計の含有量が、10~2500質量ppmである、蒸着材料。
金属元素I:鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。
金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。 - 前記金属元素Iが、鉄である、請求項1に記載の蒸着材料。
- 前記金属元素IIが、アルミニウムである、請求項1又は2に記載の蒸着材料。
- 下記金属元素IIIをさらに含み、
下記金属元素IIIの合計の含有量が、0.05~15質量%である、請求項1~3のいずれか一項に記載の蒸着材料。
金属元素III:リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種。 - 前記金属元素IIIが、リチウム、ナトリウム、又はカリウムである、請求項4に記載の蒸着材料。
- 溶融粒状体又は焼結体の形態を有する、請求項1~5のいずれか一項に記載の蒸着材料。
- 基材と、
前記基材の表面に形成された下地層と、を有し、
前記下地層が、酸化ケイ素と、下記金属元素I及び下記金属元素IIのいずれか一方又は両方と、を含み、
前記下地層中の前記酸化ケイ素の含有量が、80質量%以上であり、
前記下地層が下記金属元素Iを含む場合、前記下地層中の下記金属元素Iの合計の含有量が、10~1100質量ppmであり、
前記下地層が下記金属元素IIを含む場合、前記下地層中の下記金属元素IIの合計の含有量が、10~2500質量ppmである、下地層付き基材。
金属元素I:鉄、ニッケル及びクロムからなる群から選ばれる少なくとも1種。
金属元素II:アルミニウム及びジルコニウムのいずれか一方又は両方。 - 前記下地層が、下記金属元素IIIをさらに含み、
前記下地層中の下記金属元素IIIの合計の含有量が、0.05~15質量%である、請求項7に記載の下地層付き基材。
金属元素III:リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選ばれる少なくとも1種。 - 請求項7又は8に記載の下地層付き基材と、
前記下地層の表面に形成された機能層とを有する、機能層付き物品。 - 前記機能層が、反応性シリル基を有する含フッ素化合物の縮合物を含む撥水撥油層である、請求項9に記載の機能層付き物品。
- 請求項1~6のいずれか一項に記載の蒸着材料を用いた蒸着法によって、基材の表面に、前記酸化ケイ素と、前記金属元素I及び前記金属元素IIのいずれか一方又は両方とを含む下地層を形成する、下地層付き基材の製造方法。
- 前記蒸着法が、蒸着時における温度が100~3000℃であり、圧力が1Pa以下で行う真空蒸着法である、請求項11に記載の下地層付き基材の製造方法。
- 請求項11又は12に記載の下地層付き基材の製造方法によって下地層付き基材を得て、前記下地層付き基材の下地層の表面に機能層を形成する、機能層付き物品の製造方法。
- 前記機能層が、反応性シリル基を有する含フッ素化合物の縮合物を含む撥水撥油層である、請求項13に記載の機能層付き物品の製造方法。
- 前記基材が、ガラス又は透明樹脂である、請求項13又は14に記載の機能層付き物品の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-080018 | 2018-04-18 | ||
JP2018080018A JP2021121687A (ja) | 2018-04-18 | 2018-04-18 | 蒸着材料、下地層付き基材及びその製造方法、ならびに機能層付き物品及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203237A1 true WO2019203237A1 (ja) | 2019-10-24 |
Family
ID=68239093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016343 WO2019203237A1 (ja) | 2018-04-18 | 2019-04-16 | 蒸着材料、下地層付き基材、機能層付き物品及びそれらの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021121687A (ja) |
WO (1) | WO2019203237A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100760A1 (ja) * | 2018-11-13 | 2020-05-22 | Agc株式会社 | 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法 |
WO2020100759A1 (ja) * | 2018-11-13 | 2020-05-22 | Agc株式会社 | 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0776767A (ja) * | 1993-09-09 | 1995-03-20 | Mitsubishi Heavy Ind Ltd | 酸化シリコン皮膜の形成方法 |
JP2004076120A (ja) * | 2002-08-21 | 2004-03-11 | Shin Etsu Chem Co Ltd | フィルム蒸着用酸化珪素及びその製造方法 |
JP2004170962A (ja) * | 2002-11-06 | 2004-06-17 | Pentax Corp | 反射防止眼鏡レンズ及びその製造方法 |
JP2012054586A (ja) * | 2000-05-08 | 2012-03-15 | Denki Kagaku Kogyo Kk | 低比誘電率SiOx膜の製造方法 |
-
2018
- 2018-04-18 JP JP2018080018A patent/JP2021121687A/ja active Pending
-
2019
- 2019-04-16 WO PCT/JP2019/016343 patent/WO2019203237A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0776767A (ja) * | 1993-09-09 | 1995-03-20 | Mitsubishi Heavy Ind Ltd | 酸化シリコン皮膜の形成方法 |
JP2012054586A (ja) * | 2000-05-08 | 2012-03-15 | Denki Kagaku Kogyo Kk | 低比誘電率SiOx膜の製造方法 |
JP2004076120A (ja) * | 2002-08-21 | 2004-03-11 | Shin Etsu Chem Co Ltd | フィルム蒸着用酸化珪素及びその製造方法 |
JP2004170962A (ja) * | 2002-11-06 | 2004-06-17 | Pentax Corp | 反射防止眼鏡レンズ及びその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100760A1 (ja) * | 2018-11-13 | 2020-05-22 | Agc株式会社 | 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法 |
WO2020100759A1 (ja) * | 2018-11-13 | 2020-05-22 | Agc株式会社 | 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法 |
JPWO2020100759A1 (ja) * | 2018-11-13 | 2021-09-27 | Agc株式会社 | 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法 |
JP7468355B2 (ja) | 2018-11-13 | 2024-04-16 | Agc株式会社 | 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021121687A (ja) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102577376B1 (ko) | 발수발유층 부착 물품 및 그 제조 방법 | |
WO2019203237A1 (ja) | 蒸着材料、下地層付き基材、機能層付き物品及びそれらの製造方法 | |
US11873415B2 (en) | Substrate with water repellent oil repellent layer, vapor deposition material, and method for producing substrate with water repellent oil repellent layer | |
US20210230735A1 (en) | Substrate with water-and-oil repellent layer, vapor deposition material, and method for producing substrate with water-and-oil repellent layer | |
JP7512897B2 (ja) | 蒸着材料、下地層付き基材の製造方法、撥水撥油層付き基材の製造方法 | |
WO2020137993A1 (ja) | 蒸着材料、下地層付き基材の製造方法、撥水撥油層付き基材の製造方法 | |
CN113227440B (zh) | 蒸镀材料和使用了其的带基底层的基材、带拒水拒油层的基材的制造方法 | |
CN113260463B (zh) | 带拒水拒油层的基材、蒸镀材料和带拒水拒油层的基材的制造方法 | |
WO2019230571A1 (ja) | 酸化ケイ素含有蒸着材料、これを用いる酸化ケイ素層付き基材の製造方法 | |
WO2019124269A1 (ja) | 機能層付き物品および機能層付き物品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19788097 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19788097 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |