JP6317123B2 - 熱電素子、熱電モジュールおよび熱電素子の製造方法 - Google Patents
熱電素子、熱電モジュールおよび熱電素子の製造方法 Download PDFInfo
- Publication number
- JP6317123B2 JP6317123B2 JP2014023819A JP2014023819A JP6317123B2 JP 6317123 B2 JP6317123 B2 JP 6317123B2 JP 2014023819 A JP2014023819 A JP 2014023819A JP 2014023819 A JP2014023819 A JP 2014023819A JP 6317123 B2 JP6317123 B2 JP 6317123B2
- Authority
- JP
- Japan
- Prior art keywords
- metal layer
- type thermoelectric
- thermoelectric element
- titanium
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 210
- 239000002184 metal Substances 0.000 claims description 210
- 238000006243 chemical reaction Methods 0.000 claims description 142
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 125
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 89
- 239000010936 titanium Substances 0.000 claims description 56
- 229910052719 titanium Inorganic materials 0.000 claims description 54
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 52
- 229910052787 antimony Inorganic materials 0.000 claims description 51
- 229910052742 iron Inorganic materials 0.000 claims description 50
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 29
- 239000000843 powder Substances 0.000 claims description 29
- 239000000126 substance Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 238000005245 sintering Methods 0.000 claims description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 11
- 239000011812 mixed powder Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 27
- 238000009792 diffusion process Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- PRPNWWVBZXJBKY-UHFFFAOYSA-N antimony iron Chemical compound [Fe].[Sb] PRPNWWVBZXJBKY-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- -1 and M (Co Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/853—Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
Description
従来技術として、フィルドスクッテルダイト系の合金からなる熱電変換層を備える熱電素子において、熱電素子と電極との接合部での元素の拡散を抑制するために、熱電素子の両端面にチタン層を設ける技術が存在する(特許文献1参照)。
ここで、前記第1金属層は、チタン単体と比較して鉄単体を多く含むことを特徴とすることができる。
また、前記第1金属層のチタンと鉄との含有量比(重量比)は、チタン:鉄=10:90〜40:60の範囲であることを特徴とすることができる。
さらに、前記熱電変換層は、REx(Fe1-yMy)4Sb12(REは、希土類元素から選ばれた少なくとも一種。Mは、Co、Niからなる群から選ばれた少なくとも1種。0.01≦x≦1、0≦y≦0.3)で表される、フィルドスクッテルダイト構造の合金からなることを特徴とすることができる。
さらにまた、前記第1金属層の線膨張率は、前記熱電変換層の線膨張率と前記第2金属層の線膨張率との間の値であることを特徴とすることができる。
さらに、前記第1金属層は、鉄単体が塊状に存在する部分と、チタン単体が塊状に存在する部分とを含んでいることを特徴とすることができる。
また、本発明を熱電モジュールとして捉えると、本発明の熱電モジュールは、熱電素子と、当該熱電素子に電気的に接続される電極とを備え、前記熱電素子は、アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、チタン単体および鉄単体を含み、前記電極と前記熱電変換層との間において当該熱電変換層に積層される第1金属層と、チタン単体を含み、前記第1金属層と前記電極との間に積層される第2金属層とを備えることを特徴とする。
さらに、本発明を熱電素子の製造方法として捉えると、本発明の熱電素子の製造方法は、ダイス内に、チタン粉末、チタン粉末と鉄粉末とを含む混合粉末、アンチモンと鉄と希土類元素とを含む合金粉末、チタン粉末と鉄粉末とを含む混合粉末およびチタン粉末を、順に積層し、前記ダイス内に積層した粉末を、当該粉末の積層方向に圧力を付加しながらプラズマ焼結することを特徴とする。
ここで、前記チタン粉末は、粒径が10μm以上50μm以下の範囲であることを特徴とすることができる。
また、前記混合粉末は、前記チタン粉末と比較して前記鉄粉末を多く含むことを特徴とすることができる。
さらに、前記鉄粉末は、粒径が前記チタン粉末の粒径と比較して大きいことを特徴とすることができる。
(熱電モジュール)
図1は、本実施の形態が適用される熱電モジュールの一例を示した模式図である。
本実施の形態の熱電モジュール1は、図1に示すように、上下に対向する2枚の絶縁性基板7の間に、複数のp型熱電素子2と、複数のn型熱電素子3とが配置されている。そして、複数のp型熱電素子2および複数のn型熱電素子3は、複数の電極4により交互に直列接続されるとともに、電極4を介してそれぞれの基板7に取り付けられている。また、直列接続される複数のp型熱電素子2および複数のn型熱電素子3のうち、一端に位置するp型熱電素子2および他端に位置するn型熱電素子3には、電極4を介してリード線6が接続されている。
なお、それぞれのp型熱電素子2およびn型熱電素子3の形状は、特に限定されるものではないが、通常、角柱状または円柱状である。図1に示す熱電モジュール1では、それぞれのp型熱電素子2およびn型熱電素子3は、角柱状の形状を有している。また、それぞれのp型熱電素子2およびn型熱電素子3の側面(電極4に接続されない面)は、例えば窒化チタン等からなるコート層により被覆されていてもよい。
本実施の形態の熱電モジュール1では、矢印Xで示すように、高温側熱交換器により熱を加えるとともに、低温側熱交換器により熱を奪うことによって、各熱電素子(p型熱電素子2、n型熱電素子3)の高温側と低温側とに大きな温度差が生じて起電力が発生する。そして、2本のリード線6の間に電気抵抗負荷を与えることで、矢印Yで示すように電流が流れる。
なお、以下の説明では、熱電モジュール1において高温側熱交換器が設けられる側を単に高温側と称し、低温側熱交換器が設けられる側を単に低温側と称する場合がある。
本実施の形態の電極4は、例えば銅や鉄等の高温における機械強度の高い金属により構成される。
さらに、本実施の形態の熱電モジュール1では、p型熱電素子2またはn型熱電素子3と電極4との間に、p型熱電素子2またはn型熱電素子3と電極4との接合性を改善させるための他の層を設けてもよい。
続いて、本実施の形態が適用されるp型熱電素子2について説明する。図2(a)は、本実施の形態が適用されるp型熱電素子2の一例を示した断面模式図であり、図2(b)は、本実施の形態が適用されるp型熱電素子2の他の一例を示した断面模式図である。
本実施の形態のp型熱電変換層21は、例えばREx(Fe1-yMy)4Sb12(REは、希土類元素から選ばれた少なくとも一種。Mは、Co、Niからなる群から選ばれた少なくとも1種。0.01≦x≦1、0≦y≦0.3)で表される、アンチモンを含むフィルドスクッテルダイト型の合金からなる半導体が採用可能である。
ここで、REとしては、Nd、Pr、Ybのうち少なくとも1種を用いることが好ましい。
なお、p型熱電変換層21には、原料に含まれる不可避不純物を含んでいてもよい。p型熱電変換層21の結晶構造については、例えばX線回折等により確認することができる。
xが0.01未満であると、p型熱電変換層21の熱伝導度が増加し、p型熱電変換層21の高温側と低温側との温度差が小さくなるため、熱電変換効率が低下するおそれがある。また、xが1を超えると、結晶格子に入りきらない希土類元素が析出してp型熱電変換層21の電気特性が低下するおそれがある。
また、yが0.3を超えると、p型熱電変換層21のゼーベック係数が低下するおそれがある。
本実施の形態のp側第1金属層22は、鉄とチタンとの混合層により構成され、単体(純金属)の鉄および単体(純金属)のチタンを含んでいる。具体的に説明すると、p側第1金属層22は、鉄単体が塊状に存在する部分と、チタン単体が塊状に存在する部分とを含んでおり、これらが斑に混在している。
なお、p側第1金属層22において、例えば鉄単体とチタン単体との境界部分等に、鉄とチタンとの合金を含んでいてもよい。また、p側第1金属層22は、鉄およびチタン以外の金属等の不純物を含んでいてもよい。
本実施の形態のp側第1金属層22は、例えば、鉄の粉末とチタンの粉末とを焼結することにより形成される。なお、p側第1金属層22の作製方法等については、後述する。
これにより、p型熱電素子2や熱電モジュール1の性能低下および破損が抑制される。
これにより、本実施の形態のp型熱電素子2では、p型熱電変換層21の熱電性能の劣化および電極4の性能低下が抑制される。
そして、単体の鉄の線膨張率(約12×10−6/℃)は、フィルドスクッテルダイト型の合金からなるp型熱電変換層21の線膨張率と近い。また後述するように、本実施の形態のp側第2金属層23は、チタン(線膨張率:約8.4×10−6/℃)により構成されている。
この結果、本実施の形態では、p側第1金属層22が単体の鉄と単体のチタンとの混合層により構成されることで、p側第1金属層22の線膨張率が、p型熱電変換層21と比較して小さく、p側第2金属層23と比較して大きくなっている。
また、例えば熱電モジュール1の使用時等においてp型熱電素子2が高温になり、p型熱電素子2の各層で熱膨張が起こった場合であっても、各層の界面での応力の発生を抑制でき、各層の破断や剥がれの発生を抑制することができる。
また、鉄の含有量をチタンの含有量と比較して多くすることで、p側第1金属層22においてアンチモンをより捕捉しやすくなり、p型熱電変換層21からのアンチモンの拡散をより抑制することが可能になる。
p側第1金属層22における鉄とチタンとの含有量比(重量比)は、特に限定されるものではないが、チタン:鉄=10:90〜40:60の範囲であることが好ましい。
p側第1金属層22の厚さが500μmよりも厚い場合には、p型熱電素子2の厚さが厚くなりやすい。また、高温側熱交換器からp型熱電変換層21への熱の伝導、またはp型熱電変換層21から低温側熱交換器への熱の伝導が抑制され、p型熱電素子2における熱電変換効率が低下するおそれがある。
一方、p側第1金属層22の厚さが20μmよりも薄い場合には、p側第1金属層22による応力緩和やアンチモンの捕捉の効果が不十分になるおそれがある。
本実施の形態のp側第2金属層23は、チタンにより構成される。なお、p側第2金属層23には、チタン以外の金属や、チタンと他の金属との合金等が一部含まれていてもよい。
本実施の形態のp型熱電素子2では、p側第2金属層23を設けることで、p型熱電変換層21からのアンチモンの拡散や、電極等からp型熱電変換層21、p側第1金属層22への元素の拡散を抑制することが可能になっている。
しかし、例えばp型熱電変換層21から拡散するアンチモンの量が多い場合や、p型熱電変換層21から継続してアンチモンが拡散するような場合等には、全てのアンチモンをp側第1金属層22で捕捉することが困難になる場合がある。
この結果、p型熱電素子2のp型熱電変換層21における熱電変換効率の低下や、電極4の性能低下を抑制することができる。
この反応層も、p型熱電変換層21からのアンチモンの拡散を抑制する。
p側第2金属層23の厚さが500μmよりも厚い場合には、p型熱電素子2が厚くなり、熱電モジュール1が大型化しやすい。
また、p側第2金属層23の厚さが20μmよりも薄い場合には、p型熱電素子2と電極4との間での元素の拡散を抑制する効果が不十分になるおそれがある。
続いて、本実施の形態が適用されるn型熱電素子3について説明する。図3(a)は、本実施の形態が適用されるn型熱電素子3の一例を示した断面模式図であり、図3(b)は、本実施の形態が適用されるn型熱電素子3の他の一例を示した断面模式図である。
本実施の形態のn型熱電素子3では、上述したp型熱電素子2と比較して、n型熱電変換層31の熱膨張率が小さいため、n側第2金属層33を設けない場合であっても割れ等が生じにくいからである。さらに、上述したp型熱電素子2のp型熱電変換層21と比較して、n型熱電変換層31はアンチモンが遊離しにくいので、n側第1金属層32のみでもアンチモンの拡散を抑制することができる。
本実施の形態のn型熱電変換層31は、REx(Co1-yMy)4Sb12(REは、希土類元素から選択される少なくとも1種。Mは、Fe、Niからなる群から選ばれた少なくとも1種。0.01≦x≦1、0≦y≦0.3)で表されるフィルドスクッテルダイト型の合金からなる半導体が採用可能である。この合金中には、原料に含まれる不可避不純物を含んでいてもよい。
ここで、REとしては、Nd、Pr、Ybのうち少なくとも1種を用いることが好ましい。
xが0.01未満であると熱伝導度が増加するため、n型熱電素子3の特性が低下するおそれがある。また、xが1を超えると、n型熱電変換層31の電気特性が低下するおそれがある。
さらに、yが0.3を超えると、ゼーベック係数が低下するおそれがある。
n側第1金属層32は、例えば、チタンとコバルトとの混合層またはチタンとアルミニウムとの混合層により構成される。
n側第1金属層32は、上述した構成を有することで、線膨張率が、n型熱電変換層31と比較して小さく、またn側第2金属層33と比較して大きくなる。これにより、熱膨張によりn型熱電変換層31が変形した場合に、n型熱電変換層31とn側第2金属層33との間の応力を緩和することが可能になる。
なお、n側第1金属層32の厚さは、例えば20μm以上200μm以下の範囲とすることができる。
n側第2金属層33は、n型熱電変換層31からのアンチモンの拡散を抑制するために設けられ、p側第2金属層23と同様に、チタンから構成される。なお、n側第2金属層33には、チタン以外の金属や、チタンと他の金属との合金等が含まれていてもよい。
n側第2金属層33の厚さは、例えば20μm以上500μm以下の範囲とすることができる。
続いて、本実施の形態の熱電素子の製造方法について説明する。ここでは、図2(a)に示したp型熱電素子2を製造する場合を例に挙げて説明するが、図2(b)に示したp型熱電素子2や、図3(a)〜(b)に示したn型熱電素子3も同様の方法で製造することができる。
本実施の形態のp型熱電素子2は、焼結用のダイス内に、各層を構成する粉末状の材料を順に入れ、プラズマ焼結を行うことにより製造することができる。
次いで、p型熱電変換層21を構成するRE(希土類元素から選択される少なくとも1種)、鉄、M(Co、Niからなる群から選ばれた少なくとも1種)およびアンチモンを含む合金粉末を、ダイス内に積層されたp側第2金属層23を構成するチタン粉末およびp側第1金属層22を構成する混合粉末上に積層する。
これにより、ダイス内に、p側第2金属層23、p側第1金属層22、p型熱電変換層21、p側第1金属層22およびp側第2金属層23のそれぞれを構成する粉末状の材料が、順に積層された状態となる。
これにより、p側第2金属層23、p側第1金属層22、p型熱電変換層21、p側第1金属層22およびp側第2金属層23が順次積層され一体化した焼結体を得ることができる。
その後、必要に応じて得られた焼結体を所望の大きさに切断することで、図2(a)に示したp型熱電素子2を得ることができる。
これにより、p型熱電素子2の製造工程においても、p型熱電変換層21とp側第1金属層22との界面や、p側第1金属層22とp側第2金属層23との界面で割れや剥がれが生じることを抑制できる。この結果、本構成を採用しない場合と比較して、p型熱電素子2の歩留まりを向上させることができる。
なお、本実施の形態で用いる粉末の粒子径は、例えばレーザ回折・散乱法等の方法によって測定することができる。ここで、本明細書において粉末の「粒子径」とは、レーザ回折・散乱法等によって求められた粉末の粒度分布における個数平均径をいう。
また、チタン粉末の粒子径が過度に小さい場合、扱いが困難であるため、p型熱電素子2の製造工程において作業性が低下しやすい。
本実施の形態では、p側第1金属層22を構成する鉄粉末の粒子径は、p側第1金属層22を構成するチタン粉末の粒子径と比較して大きいことが好ましい。鉄粉末の粒子径を大きくすることで、ダイス内に材料を充填した場合に、鉄粉末の周囲にチタン粉末が存在しやすくなる。これにより、形成されるp側第1金属層22において、単体の鉄およびチタンが塊状に存在しやすくなる。この結果、単体の鉄とチタンとが斑状に存在するp側第1金属層22を得ることができる。
p型熱電変換層21の材料となる合金粉末の粒子径が過度に小さい場合には、焼結時等に酸化反応が起こりやすくなり、p型熱電変換層21について所望の特性を得られなくなるおそれがある。
一方、p型熱電変換層21の材料となる合金粉末の粒子径が過度に大きい場合には、p型熱電変換層21が粗になりやすく、空隙ができやすくなる。この結果、p型熱電変換層21の機械強度が低下し、熱電モジュール1の使用時等に、p型熱電変換層21が破損しやすくなる。
まず、p型熱電変換層21を構成する合金粉末の材料となる、RE(希土類元素から選択される少なくとも1種)、鉄、M(Co、Niからなる群から選ばれた少なくとも1種)およびアンチモンのそれぞれを秤量し混合する。ここで、それぞれの材料の混合比は、後の工程等における損失を考慮し、最終的に得るp型熱電変換層21の化学量論的組成比よりもアンチモンを過剰に配合することが好ましい。
アンチモンは、拡散しやすく、またp型熱電変換層21においてアンチモンが不足した場合、p型熱電変換層21における熱電変換効率の低下等の不具合が生じやすいからである。
なお、p型熱電変換層21の材料となる粉末を調製する方法は、上述した方法に限られず、例えばアトマイズ法等により調整してもよい。また、秤量したRE(希土類元素から選択される少なくとも1種)、鉄、M(Co、Niからなる群から選ばれた少なくとも1種)およびアンチモンの粉末を混合した混合粉末を焼成し、粉砕したものをp型熱電変換層21の材料として用いてもよい。
続いて、上述した方法で作製したp型熱電素子2およびn型熱電素子3を用いて図1に示した熱電モジュール1を作製する方法の一例について説明する。
熱電モジュール1を作製する場合、まず、例えばセラミック等で構成される絶縁性の基板7上に、銅等で構成される複数の電極4を並べて取り付ける。
次いで、p型熱電素子2とn型熱電素子3とが交互に直列的に接続されるように、複数のp型熱電素子2およびn型熱電素子3を、基板7上に取り付けられたそれぞれの電極4に対して接続する。この際、複数のp型熱電素子2およびn型熱電素子3を、複数の電極4が取り付けられた2枚の基板7で挟むようにする。
それぞれのp型熱電素子2は、p側第2金属層23が電極4に接続され、それぞれのn型熱電素子3は、n側第2金属層33が電極4に接続されることになる。また、p型熱電素子2およびn型熱電素子3は、例えば銀ペースト等の金属ペーストを介して電極4に接続される。
そして、それぞれの熱電素子(p型熱電素子2、n型熱電素子3)では、高温側に位置する部分で、熱膨張が起こる。
そして、p型熱電変換層21とp側第1金属層22との界面、およびp側第1金属層22とp側第2金属層23との界面での応力の発生を抑制できる。この結果、p型熱電素子2において、p型熱電変換層21とp側第1金属層22との界面、p側第1金属層22とp側第2金属層23との界面で、破断や割れが生じることを抑制できる。
しかし、上述したようにp側第1金属層22はp型熱電変換層21からのアンチモンの拡散を抑制できる点、および高温側と低温側との向きを誤って熱電モジュール1を使用するおそれ等を考慮すると、p側第1金属層22は、図2(a)に示すように、p型熱電素子2の対向する2面の双方に設けることが好ましい。
そして、p型熱電変換層21から電極4等へアンチモンが拡散した場合、p型熱電変換層21を構成する合金の結晶構造(フィルドスクッテルダイト構造)が崩れやすくなる。この場合、p型熱電変換層21における熱電変換効率が低下しやすい。
これにより、p型熱電素子2においてp型熱電変換層21における熱電変換効率の低下を抑制することができる。さらに、p型熱電変換層21からのアンチモンが電極4に拡散することによる電極4の特性低下を抑制することができる。
(1)p型熱電素子2の作製
直径3cmの黒鉛製のダイス内に、平均粒子径15μmのチタン粉末からなるp側第2金属層23の材料粉末と、平均粒子径15μmのチタン粉末および平均粒子径100μmの鉄粉末をTi:Fe=16:84の比(重量比)で含むp側第1金属層22の材料粉末と、プラセオジム、ネオジム、鉄、ニッケル、アンチモンをそれぞれ1.2%、3.4%、20.3%、3.6%、71.5%の比(原子比)で含み、平均粒子径が100μmのp型熱電変換層21の材料粉末と、上記p側第1金属層22の材料粉末と、上記p側第2金属層23の材料粉末とを、この順序で入れた。
続いて、焼結温度600℃、焼結圧力60MPaの条件で放電プラズマ焼結を行い、アンチモンを含むフィルドスクッテルダイト型の合金からなるp型熱電変換層21の上下両端面に、鉄およびチタンの焼結体からなり鉄およびチタンを単体の状態で含むp側第1金属層22と、チタンの焼結体からなるp側第2金属層23とが積層されたp型熱電素子2を作製した。
なお、p側第1金属層22の厚さは、約200μmであり、p側第2金属層23の厚さは、約100μmであった。
図4に示すように、本実施例では、p型熱電変換層21上に、p側第1金属層22およびp側第2金属層23が順に積層されたp型熱電素子2を得ることができた。そして、p側第1金属層22では、単体の鉄(図4中、Aで示す部分)と単体のチタン(図4中、Bで示す部分)とが斑状に形成されることが確認された。
また、得られたp型熱電素子2では、p型熱電変換層21とp側第1金属層22との界面、およびp側第1金属層22とp側第2金属層23との界面で、割れや剥がれが生じていないことが確認された。
直径3cmの黒鉛製のダイス内に、平均粒子径15μmのチタン粉末からなるn側第2金属層33の材料粉末と、平均粒子径44μmのチタン粉末および平均粒子径5μmのアルミニウム粉末からなるn側第1金属層32の材料粉末と、イッテルビウム、鉄、コバルト、アンチモンをそれぞれ1.8%、1.4%、23.2%、73.6%の比(原子比)で含み、平均粒子径が100μmのn型熱電変換層31の材料粉末と、上記n側第1金属層32の材料粉末と、上記n側第2金属層33の材料粉末とを、この順序で入れた。
続いて、焼結温度700度、焼結圧力60MPaの条件で放電プラズマ焼結を行い、アンチモンを含むフィルドスクッテルダイト型の合金からなるn型熱電変換層31の上下両端面に、アルミニウム及びチタンの焼結体からなりアルミニウムおよびチタンを単体の状態で含むn側第1金属層32と、チタンの焼結体からなるn側第2金属層33とが積層されたn型熱電素子3を作製した。
なお、n側第1金属層32の厚さは、約200μmであり、n側第2金属層33の厚さは、約100μmであった。
得られたp型熱電素子2とn型熱電素子3とを、それぞれ縦3.7mm×横3.7mm×高さ4.0mmに切り出した。そして、切り出した18対のp型熱電素子2およびn型熱電素子3を、厚み0.5mmの銅からなる電極4を介して接合し、縦30mm×横30mm×高さ5mmの熱電モジュール1を作製した。
p側第1金属層22を有しない以外は実施例と同様にしてp型熱電素子2を作製した。そして、実施例と同様にしてn型熱電素子3を作製し、作製したp型熱電素子2およびn型熱電素子3を用いて実施例と同様にして熱電モジュール1を作製した。
実施例および比較例で作製した熱電モジュール1に対して、ヒートサイクル試験を行った。具体的には、熱電モジュール1の高温側に対して、ヒータ加熱により室温から500℃まで1時間で昇温し、500℃から室温まで1時間で降温するというヒートサイクルを加えた。一方、熱電モジュール1の低温側は水冷し、熱電モジュール1の高温側と低温側とで温度差を生じさせた。
また、図6は、熱電モジュール1の高温側と低温側との温度差が最大に達したときの電気抵抗のサイクル毎の変化率を示した図である。図6に示すように、比較例の熱電モジュール1では、1200サイクル後の電気抵抗が約15%も増加しているのに対し、実施例の熱電モジュール1では、約1.3%しか増加していなかった。
以上のように、実施例の熱電モジュール1ではヒートサイクルによる劣化が抑制され、初期の性能を長期間維持できることが確認された。
Claims (11)
- アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、
チタン単体および鉄単体を含み、前記熱電変換層に積層される第1金属層と、
チタン単体を含み、前記第1金属層に積層される第2金属層と
を備える熱電素子。 - 前記第1金属層は、チタン単体と比較して鉄単体を多く含むことを特徴とする請求項1に記載の熱電素子。
- 前記第1金属層のチタンと鉄との含有量比(重量比)は、チタン:鉄=10:90〜40:60の範囲であることを特徴とする請求項2に記載の熱電素子。
- 前記熱電変換層は、REx(Fe1-yMy)4Sb12(REは、希土類元素から選ばれた少なくとも一種。Mは、Co、Niからなる群から選ばれた少なくとも1種。0.01≦x≦1、0≦y≦0.3)で表される、フィルドスクッテルダイト構造の合金からなることを特徴とする請求項1乃至3の何れか1項に記載の熱電素子。
- 前記第1金属層の線膨張率は、前記熱電変換層の線膨張率と前記第2金属層の線膨張率との間の値であることを特徴とする請求項1乃至4の何れか1項に記載の熱電素子。
- 前記第1金属層は、鉄単体が塊状に存在する部分と、チタン単体が塊状に存在する部分とを含んでいることを特徴とする請求項1乃至5の何れか1項に記載の熱電素子。
- 熱電素子と、当該熱電素子に電気的に接続される電極とを備え、
前記熱電素子は、
アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、
チタン単体および鉄単体を含み、前記電極と前記熱電変換層との間において当該熱電変換層に積層される第1金属層と、
チタン単体を含み、前記第1金属層と前記電極との間に積層される第2金属層と
を備えることを特徴とする熱電モジュール。 - ダイス内に、チタン粉末、チタン粉末と鉄粉末とを含む混合粉末、アンチモンと鉄と希土類元素とを含む合金粉末、チタン粉末と鉄粉末とを含む混合粉末およびチタン粉末を、順に積層し、
前記ダイス内に積層した粉末を、当該粉末の積層方向に圧力を付加しながらプラズマ焼結することを特徴とする熱電素子の製造方法。 - 前記チタン粉末は、粒径が10μm以上50μm以下の範囲であることを特徴とする請求項8に記載の熱電素子の製造方法。
- 前記混合粉末は、前記チタン粉末と比較して前記鉄粉末を多く含むことを特徴とする請求項8または9に記載の熱電素子の製造方法。
- 前記鉄粉末は、粒径が前記チタン粉末の粒径と比較して大きいことを特徴とする請求項8乃至10の何れか1項に記載の熱電素子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014023819A JP6317123B2 (ja) | 2014-02-10 | 2014-02-10 | 熱電素子、熱電モジュールおよび熱電素子の製造方法 |
CN201510018510.6A CN104835904B (zh) | 2014-02-10 | 2015-01-14 | 热电元件、热电模块以及热电元件的制造方法 |
DE102015201022.8A DE102015201022B4 (de) | 2014-02-10 | 2015-01-22 | Thermoelektrisches Element und thermoelektrisches Modul auf Grundlage von gefülltem Skutterudit |
US14/608,743 US9960335B2 (en) | 2014-02-10 | 2015-01-29 | Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014023819A JP6317123B2 (ja) | 2014-02-10 | 2014-02-10 | 熱電素子、熱電モジュールおよび熱電素子の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015153779A JP2015153779A (ja) | 2015-08-24 |
JP2015153779A5 JP2015153779A5 (ja) | 2017-01-26 |
JP6317123B2 true JP6317123B2 (ja) | 2018-04-25 |
Family
ID=53677023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014023819A Active JP6317123B2 (ja) | 2014-02-10 | 2014-02-10 | 熱電素子、熱電モジュールおよび熱電素子の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9960335B2 (ja) |
JP (1) | JP6317123B2 (ja) |
CN (1) | CN104835904B (ja) |
DE (1) | DE102015201022B4 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018129349A (ja) * | 2017-02-06 | 2018-08-16 | 昭和電工株式会社 | 熱電素子、熱電モジュールおよび熱電素子の製造方法 |
JP2018157002A (ja) * | 2017-03-16 | 2018-10-04 | 古河機械金属株式会社 | 熱電変換材料 |
CN107475546B (zh) * | 2017-07-18 | 2019-09-13 | 中国科学院上海硅酸盐研究所 | 一种激光快速制备Half-Heusler材料的方法 |
CN113437207B (zh) * | 2021-06-29 | 2022-12-13 | 哈尔滨工业大学(深圳) | 一种n型PbTe基热电器件接头及其制备方法 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5323487B2 (ja) | 1972-04-20 | 1978-07-14 | ||
JPH1074986A (ja) * | 1996-06-27 | 1998-03-17 | Natl Aerospace Lab | 熱電変換素子、π型熱電変換素子対および熱電変換モジュールの各製造方法 |
JP3447915B2 (ja) * | 1997-04-28 | 2003-09-16 | シャープ株式会社 | 熱電素子及びそれを用いた熱電素子モジュール |
US6121125A (en) * | 1998-11-04 | 2000-09-19 | United Microelectronics Corp. | Method of forming polycide gate |
EP1257688A4 (en) * | 2000-02-25 | 2005-04-06 | Lattice Energy Llc | ELECTRICAL CELLS, COMPONENTS AND METHOD |
JP2002212607A (ja) * | 2001-01-19 | 2002-07-31 | Sanyo Special Steel Co Ltd | 高融点合金の製造方法 |
JP2003092435A (ja) * | 2001-09-17 | 2003-03-28 | Komatsu Ltd | 熱電モジュール及びその製造方法 |
JP2003309294A (ja) * | 2002-02-12 | 2003-10-31 | Komatsu Ltd | 熱電モジュール |
JP4209183B2 (ja) * | 2002-12-12 | 2009-01-14 | 三菱電機株式会社 | 真空バルブ用接点材料 |
JP4918672B2 (ja) * | 2003-06-30 | 2012-04-18 | 独立行政法人産業技術総合研究所 | 熱電変換セグメント素子及びその製造方法。 |
JP4920199B2 (ja) * | 2004-04-21 | 2012-04-18 | 昭和電工株式会社 | 希土類含有合金、その製造方法及び熱電変換材料 |
EP2662466A3 (en) | 2004-04-21 | 2014-08-06 | Showa Denko K.K. | Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy |
JP2006049736A (ja) * | 2004-08-09 | 2006-02-16 | Komatsu Ltd | 熱電モジュール |
JP2006131950A (ja) * | 2004-11-05 | 2006-05-25 | Hitachi Powdered Metals Co Ltd | Fe−Ti焼結部材及びその製造方法 |
JP2006203186A (ja) | 2004-12-24 | 2006-08-03 | Showa Denko Kk | 熱電半導体合金の製造方法および熱電変換モジュールならびに熱電発電装置 |
JP2006319210A (ja) * | 2005-05-13 | 2006-11-24 | Toyota Motor Corp | 熱電変換素子の製造方法 |
JP2008546177A (ja) * | 2005-05-16 | 2008-12-18 | Ii−Vi インコーポレイテッド | 高性能のCdxZn1−xTe(0≦x≦1)のX線及びγ線の放射線検出器およびその製造方法 |
GB0724752D0 (en) * | 2007-12-19 | 2008-01-30 | Bari Mazhar A | Method for producing a thermoelectric material |
WO2009093455A1 (ja) * | 2008-01-23 | 2009-07-30 | Furukawa Co., Ltd. | 熱電変換材料および熱電変換モジュール |
JP5386239B2 (ja) * | 2009-05-19 | 2014-01-15 | 古河機械金属株式会社 | 熱電変換モジュール |
KR20130028035A (ko) * | 2009-10-05 | 2013-03-18 | 더 보드 오브 리젠츠 오브 더 유니버시티 오브 오클라호마 | 박막 열전 모듈 제조를 위한 방법 |
JP5514523B2 (ja) * | 2009-11-27 | 2014-06-04 | 昭和電工株式会社 | 熱電素子およびその製造方法、ならびに熱電モジュール |
JP5463204B2 (ja) * | 2010-05-25 | 2014-04-09 | 昭和電工株式会社 | 熱電素子およびその製造方法、ならびに熱電モジュール |
JP5671258B2 (ja) * | 2010-05-26 | 2015-02-18 | 古河機械金属株式会社 | 熱電変換モジュール |
WO2011159804A2 (en) | 2010-06-15 | 2011-12-22 | California Institute Of Technology | Electrical contacts for skutterudite thermoelectric materials |
JP5935258B2 (ja) * | 2011-08-02 | 2016-06-15 | 国立研究開発法人理化学研究所 | 熱膨張制御金属複合材料およびその製造方法 |
JP5758734B2 (ja) * | 2011-08-05 | 2015-08-05 | 古河機械金属株式会社 | 熱電変換材料の製造方法 |
DE102011052565B4 (de) | 2011-08-10 | 2019-04-18 | Vacuumschmelze Gmbh & Co. Kg | Thermoelektrisches Modul und Verfahren zur Herstellung eines thermoelektrischen Moduls |
WO2013076765A1 (ja) * | 2011-11-22 | 2013-05-30 | 古河機械金属株式会社 | 熱電変換モジュール |
JP5979883B2 (ja) | 2012-01-16 | 2016-08-31 | 株式会社Kelk | 熱電素子およびこれを備えた熱電モジュール |
JP5919013B2 (ja) * | 2012-02-09 | 2016-05-18 | 古河機械金属株式会社 | 熱電変換装置 |
-
2014
- 2014-02-10 JP JP2014023819A patent/JP6317123B2/ja active Active
-
2015
- 2015-01-14 CN CN201510018510.6A patent/CN104835904B/zh not_active Expired - Fee Related
- 2015-01-22 DE DE102015201022.8A patent/DE102015201022B4/de not_active Expired - Fee Related
- 2015-01-29 US US14/608,743 patent/US9960335B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US9960335B2 (en) | 2018-05-01 |
DE102015201022A1 (de) | 2015-08-13 |
CN104835904A (zh) | 2015-08-12 |
CN104835904B (zh) | 2017-11-10 |
DE102015201022B4 (de) | 2019-02-28 |
JP2015153779A (ja) | 2015-08-24 |
US20150228880A1 (en) | 2015-08-13 |
DE102015201022A8 (de) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5386239B2 (ja) | 熱電変換モジュール | |
JP7437805B2 (ja) | 熱電変換素子の製造方法、熱電変換素子、及び熱電変換モジュール | |
JP6182889B2 (ja) | 熱電変換モジュールおよび熱電変換モジュールの製造方法 | |
JP6317123B2 (ja) | 熱電素子、熱電モジュールおよび熱電素子の製造方法 | |
WO2013076765A1 (ja) | 熱電変換モジュール | |
JP4850083B2 (ja) | 熱電変換モジュール及びそれを用いた発電装置及び冷却装置 | |
KR20140045188A (ko) | 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법 | |
JP6433245B2 (ja) | 熱電素子および熱電モジュール | |
JP5463204B2 (ja) | 熱電素子およびその製造方法、ならびに熱電モジュール | |
JP2013197265A (ja) | 熱電変換モジュール | |
JP4584034B2 (ja) | 熱電モジュール | |
JP5689719B2 (ja) | BiTe系多結晶熱電材料およびそれを用いた熱電モジュール | |
KR102198207B1 (ko) | 침입형 도핑재 첨가에 의한 복합결정구조가 형성된 Te계 열전소재 | |
JP2006086512A (ja) | フィルドスクッテルダイト系合金を用いた熱電変換システム。 | |
JP6382093B2 (ja) | 熱電変換素子および熱電変換モジュール | |
JP7087519B2 (ja) | 熱電素子、熱電変換モジュールおよび熱電素子の製造方法 | |
JP5514523B2 (ja) | 熱電素子およびその製造方法、ならびに熱電モジュール | |
KR20200054539A (ko) | 열전소재의 확산방지층 및 이의 제조방법 | |
JP6549442B2 (ja) | 熱電素子、熱電モジュールおよび熱電素子の製造方法 | |
US20180248100A1 (en) | Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element | |
JP2004235367A (ja) | 熱電モジュール | |
US20240147859A1 (en) | Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion device | |
JP2019145661A (ja) | 熱電変換材料、熱電変換素子、及び、熱電変換モジュール | |
JP2021158355A (ja) | 熱電変換素子の製造方法、及び、それを用いた熱電変換モジュールの製造方法 | |
WO2019177147A1 (ja) | 熱電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170815 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180329 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6317123 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |