JP5953234B2 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
JP5953234B2
JP5953234B2 JP2012540850A JP2012540850A JP5953234B2 JP 5953234 B2 JP5953234 B2 JP 5953234B2 JP 2012540850 A JP2012540850 A JP 2012540850A JP 2012540850 A JP2012540850 A JP 2012540850A JP 5953234 B2 JP5953234 B2 JP 5953234B2
Authority
JP
Japan
Prior art keywords
group
weight
polymer
component
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012540850A
Other languages
English (en)
Other versions
JPWO2012057092A1 (ja
Inventor
矢野 理子
理子 矢野
隆博 齋藤
隆博 齋藤
剛史 八尾
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2012057092A1 publication Critical patent/JPWO2012057092A1/ja
Application granted granted Critical
Publication of JP5953234B2 publication Critical patent/JP5953234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Description

本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基(以下、「反応性ケイ素基」ともいう。)を含有する有機重合体を含む硬化性組成物に関する。
さらに詳しくは、本発明は、反応性ケイ素基を含有する有機重合体(A)と、反応性ケイ素基の導入量が少ない有機重合体(B)の組み合わせにおいて、これらの反応性ケイ素基が導入された成分の比率が一定の範囲にある場合、硬化性組成物の作業性が良好で、さらにこの硬化物が低モジュラスかつ高伸びである技術に関する。
分子中に少なくとも1個の反応性ケイ素基を含有する有機重合体は、室温においても湿分などによる反応性ケイ素基の加水分解反応などを伴うシロキサン結合の形成によって架橋し、ゴム状の硬化物が得られるという性質を有することが知られている。
これらの反応性ケイ素基を含有する有機重合体の中で、主鎖骨格がポリオキシアルキレン系重合体、飽和炭化水素系重合体、および、ポリ(メタ)アクリル酸エステル共重合体については、(特許文献1)等で開示されており、既に工業的に生産され、シーリング材、接着剤、コーティング材、塗料などの用途に広く使用されている。
なかでも建築用シーリング材用途では、20年以上にわたり市場でシェアを伸ばしてきた。近年、サイディングボードを用いた戸建て住宅が主流となっており、サイディングボード間の目地にもシーリング材が用いられている。しかし、サイディングボードは多孔質のボードであるため、長期間の曝露中に可塑剤が少しずつボードに吸収されていき、硬化物の伸びが低下していく傾向にあることがわかってきた。長期曝露後にもシーリング材が水密・気密性能を発揮するには、初期の硬化物を低モジュラスかつ高伸びにしておくことで、多少可塑剤が抜けても十分な性能を発揮することが可能である。また、硬化性組成物の体積あたりのコストダウンのために、低比重の中空樹脂を併用することが最近行われている。しかし、中空樹脂を用いることで、硬化性組成物の粘度上昇による作業性の低下や、硬化物の伸び低下という課題も顕在化してきており、改善する技術が求められていた。
反応性ケイ素基を有する有機重合体を含有する硬化性組成物の硬化物が、低モジュラスかつ高伸びという物性を発現するためには、数種類の方法がある。その一つとして可塑剤を増量する方法があるが、硬化物の耐候性が低下するため適さない。また、反応性ケイ素基を有する有機重合体の、1分子中に含まれるケイ素基の数を減らす方法があるが、硬化物表面のべたつき(以下残留タックという)が悪くなるため、好ましくない。1分子中に含まれるケイ素基の数を一定にしたまま、有機重合体の分子量を上げていく方法もあるが、有機重合体の粘度が上昇し、それに伴って硬化性組成物の粘度も上昇して作業性が悪くなるという課題があった。
一方、反応性ケイ素基の含有量の異なる有機重合体を2種類以上併用する技術は、(特許文献2)〜(特許文献9)等で既に公知であるが、これらは単に重量比で混合しているのみであり、各成分の本質を考慮しているわけではなかった。また、これらは分岐構造の有機重合体を使用していたり、反応性ケイ素基がトリアルコキシシリル基であったりして、低モジュラスかつ高伸びを発現するには、改善の余地があった。
特許第2708833号公報 特許第2687038号公報 特開平09−095609号公報 特許第3155035号公報 特許第3575132号公報 特開2005−240049号公報 特開2007−204634号公報 WO2005/073322号公報 特開2005−213446号公報
本発明は、主に建築用シーリング材に使用できる硬化性組成物で、低粘度であるにも関わらず、硬化物が低モジュラスかつ高伸びになる硬化性組成物を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意検討を行った結果、1分子中に1個のみ反応性ケイ素基を含有する有機重合体を最適量用いることが効果的であることを見出した。特に、1分子中に反応性ケイ素基を2個以上有する成分のモル数(x)と、1分子中に反応性ケイ素基を1個のみ有する成分のモル数(y)の比が重要であることを見出し、建築用シーリング材として最適な範囲を発見して、本発明を完成させた。
すなわち、本発明は、
(I).1分子中に平均して1.4個以上の反応性ケイ素基を含有する有機重合体(A)と、1分子中に平均して1個未満の反応性ケイ素基を含有する有機重合体(B)を含有し、(B)成分の数平均分子量が(A)成分の数平均分子量よりも3,000以上低く、かつ、(A)成分と(B)成分に含まれる1分子中に2個以上の反応性ケイ素基を含有する有機重合体のモル数(x)と、(A)成分と(B)成分に含まれる1分子中に1個のみ反応性ケイ素基を含有する有機重合体のモル数(y)の比(y)/(x)が5以下である硬化性組成物、
(II).(B)成分の数平均分子量が、2,000以上であることを特徴とする、(I)に記載の硬化性組成物、
(III).(A)成分が、直鎖構造の有機重合体であることを特徴とする、(I)または(II)に記載の硬化性組成物、
(IV).(A)成分および(B)成分の主鎖が、ポリオキシアルキレン系重合体、ポリ(メタ)アクリル系重合体、炭化水素系重合体のいずれか又は複数であることを特徴とする、(I)〜(III)のいずれかに記載の硬化性組成物、
(V).(A)成分および(B)成分の主鎖が、ポリオキシアルキレン系重合体であることを特徴とする、(I)〜(IV)のいずれかに記載の硬化性組成物、
(VI).(A)成分および(B)成分の主鎖が、ポリオキシプロピレン系重合体であることを特徴とする、(I)〜(V)のいずれかに記載の硬化性組成物、
(VII).(B)成分が、1分子中に水酸基を1個のみ有する開始剤を用いて、複合金属シアン化物錯体触媒存在下でプロピレンオキシドを反応させたポリオキシプロピレン系重合体に反応性ケイ素基を導入して得られることを特徴とする、(I)〜(VI)のいずれかに記載の硬化性組成物、
(VIII).1分子中に水酸基を2個以上有する開始剤と、1分子中に水酸基を1個のみ有する開始剤を併用し、複合金属シアン化物錯体触媒存在下でプロピレンオキシドを反応させたポリオキシプロピレン系重合体に反応性ケイ素基を導入することにより、(A)成分と(B)成分を一括して得ることを特徴とする、(I)〜(VII)のいずれかに記載の硬化性組成物、
(IX).(A)成分と(B)成分の反応性ケイ素基が、いずれもメチルジメトキシシリル基であることを特徴とする、(I)〜(VIII)のいずれかに記載の硬化性組成物、
(X).有機錫系硬化触媒(C)を使用することを特徴とする、(I)〜(IX)のいずれかに記載の硬化性組成物、
(XI).(I)〜(X)のいずれかに記載の硬化性組成物を含有する建築用シーリング材、
(XIII).(I)〜(X)のいずれかに記載の硬化性組成物を含有するサイディングボード用シーリング材、
に関する。
本発明は、反応性ケイ素基の含量と分子量がともに異なる有機重合体を2種類以上併用し、その中に含まれるケイ素基の数が2個以上の成分のモル数と、ケイ素基の数が1個のみの成分のモル数の比を一定の範囲になるよう設計した硬化性組成物である。低粘度で低モジュラス、高伸びとなり、建築用シーリング材として適する硬化性組成物を提供することができる。
以下、本発明について詳しく説明する。
本発明に用いる反応性ケイ素基を有する有機重合体(A)および有機重合体(B)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができるが、得られる組成物の硬化性や接着性に優れることから、水素原子、炭素原子、窒素原子、酸素原子、硫黄原子から選択される1つ以上からなることが好ましい。
具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε−カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε−アミノウンデカン酸の縮重合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;例えばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることからより好ましい。
(A)成分および(B)成分である有機重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、−20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合がある。前記ガラス転移温度はDSC測定による値を示す。
また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、更に接着性にも優れることから特に好ましく、ポリオキシアルキレン系重合体は最も好ましい。ポリオキシアルキレン系重合体の中でも、ポリオキシプロピレン系重合体が特に好ましい。
本発明の有機重合体中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基または加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。反応性ケイ素基としては、一般式(1):
−SiR1 3-aa (1)
(R1は、それぞれ独立に炭素原子数1から20のアルキル基、炭素原子数6から20のアリール基、炭素原子数7から20のアラルキル基、または、−OSi(R’)3(R’は、それぞれ独立に炭素原子数1から20の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立にヒドロキシ基または加水分解性基である。更に、aは1から3の整数である)で表される基があげられる。
加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、および、アルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。
加水分解性基やヒドロキシ基は、1個のケイ素原子に1から3個の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
上記一般式(1)におけるaは、硬化性の点から、2または3であることが好ましく、特に速硬化性を求める場合には3であることが好ましく、貯蔵中の安定性を求める場合には2であることが好ましい。
また上記一般式(1)におけるR1の具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である−OSi(R’)3で示されるトリオルガノシロキシ基、クロロメチル基、メトキシメチル基等があげられる。これらの中ではメチル基が特に好ましい。
反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がより好ましく、ジメトキシメチルシリル基が特に好ましい。また、貯蔵安定性の点からはジメトキシメチルシリル基、トリエトキシシリル基が特に好ましい。また、トリエトキシシリル基およびジエトキシメチルシリル基は、反応性ケイ素基の加水分解反応に伴って生成するアルコールが、エタノールであり、より高い安全性を有することから特に好ましい。
反応性ケイ素基の導入は公知の方法で行えばよい。すなわち、例えば以下の方法が挙げられる。
(I)分子中にヒドロキシ基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有する有機重合体を得る。もしくは、不飽和基含有エポキシ化合物との共重合により不飽和基含有有機重合体を得る。次いで得られた反応生成物に反応性ケイ素基を有するヒドロシランを作用させてヒドロシリル化する。
(II)(I)法と同様にして得られた不飽和基を含有する有機重合体にメルカプト基および反応性ケイ素基を有する化合物を反応させる。
(III)分子中にヒドロキシ基、エポキシ基やイソシアネート基等の官能基を有する有機重合体に、この官能基に対して反応性を示す官能基および反応性ケイ素基を有する化合物を反応させる。
以上の方法のなかで、(I)の方法、または(III)のうち末端にヒドロキシ基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法は、比較的短い反応時間で高い転化率が得られる為に好ましい。更に、(I)の方法で得られた反応性ケイ素基を有する有機重合体は、(III)の方法で得られる有機重合体よりも低粘度で作業性の良い硬化性組成物となること、また、(II)の方法で得られる有機重合体は、メルカプトシランに基づく臭気が強いことから、(I)の方法が特に好ましい。
(I)の方法において用いるヒドロシラン化合物の具体例としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサンのようなアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシランのようなアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランのようなケトキシメートシラン類などがあげられるが、これらに限定されるものではない。これらのうちでは特にハロゲン化シラン類、アルコキシシラン類が好ましく、特にアルコキシシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱いやすいために最も好ましい。アルコキシシラン類の中で、メチルジメトキシシランは、入手し易く、得られる有機重合体を含有する硬化性組成物の硬化性、貯蔵安定性、伸び特性、引張強度が高い為に好ましい。また、トリメトキシシランは、得られる硬化性組成物の硬化性および復元性の点から特に好ましい。
(II)の合成法としては、例えば、メルカプト基および反応性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限定されるものではない。前記メルカプト基および反応性ケイ素基を有する化合物の具体例としては、例えば、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランなどがあげられるが、これらに限定されるものではない。
(III)の合成法のうち末端にヒドロキシ基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法としては、例えば、特開平3−47825号公報に示される方法等が挙げられるが、特に限定されるものではない。前記イソシアネート基および反応性ケイ素基を有する化合物の具体例としては、例えば、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン、イソシアネートメチルジエトキシメチルシランなどがあげられるが、これらに限定されるものではない。
トリメトキシシラン等の一つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのような不安定な化合物が生じ、取り扱いが困難となることがある。しかし、γ−メルカプトプロピルトリメトキシシランやγ−イソシアネートプロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基など3個の加水分解性基が一つのケイ素原子に結合している基を用いる場合には、(II)または(III)の合成法を用いることが好ましい。
一方、一般式(2):
H−(SiR2 2O)mSiR2 2−R3−SiX3 (2)
(Xは前記に同じ。2m+2個のR2は、それぞれ独立に炭化水素基であり、入手性およびコストの点から、炭素原子数1から20の炭化水素基が好ましく、炭素原子数1から8の炭化水素基がより好ましく、炭素原子数1から4の炭化水素基が特に好ましい。R3は2価の有機基であり、入手性およびコストの点から、炭素原子数1から12の2価の炭化水素基が好ましく、炭素原子数2から8の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基が特に好ましい。また、mは0から19の整数であり、入手性およびコストの点から、1が好ましい)で表されるシラン化合物は、不均化反応が進まない。この為、(I)の合成法で、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、一般式(2)で表されるシラン化合物を用いることが好ましい。一般式(2)で示されるシラン化合物の具体例としては、1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサン、1−[2−(トリメトキシシリル)プロピル]−1,1,3,3−テトラメチルジシロキサン、1−[2−(トリメトキシシリル)ヘキシル]−1,1,3,3−テトラメチルジシロキサンが挙げられる。
反応性ケイ素基を有する有機重合体(A)および有機重合体(B)は直鎖状、または分岐を有してもよいが、本発明の効果がよりよく発現するためには、直鎖状であることが望ましい。(A)成分の数平均分子量は、水酸基量から換算した数平均分子量で8,000から50,000程度、より好ましくは9,000から30,000であり、特に好ましくは10,000から25,000である。数平均分子量が8,000未満では、硬化物の伸び特性の点で不都合な傾向があり、50,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。一方、(B)成分の数平均分子量は、上記と同じ測定方法において、2,000から20,000程度、より好ましくは、3,000から18,000程度、特に好ましくは4,000から16,000、さらには5,000から15,000が好ましく、8,000から14,000が最も好ましい範囲である。本発明において、(B)の数平均分子量は、(A)成分の数平均分子量よりも3,000以上低いことが必要である。(B)成分の分子量が、(A)成分よりも大きい場合や、分子量の差が小さい場合は、モジュラスを下げたり粘度を低下させる効果が小さいためである。
本発明では、高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体(A)に含有される反応性ケイ素基は重合体1分子中に平均して1.4〜5個存在することが好ましく、1.6個が最も好ましい。分子中に含まれる反応性ケイ素基の数が平均して1.4未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。一方、反応性ケイ素基の数が平均して5個以上の場合には、硬化物が硬くなり、高伸びが発現しにくくなるためである。
一方、有機重合体(B)に含有される反応性ケイ素基は、重合体1分子中に平均して1個未満であり、好ましくは0.6個以上1個未満、さらに好ましくは0.7個以上である。
有機重合体(A)の主鎖中の分岐数は3以下が好ましく、2以下がさらに好ましく、1以下がさらに望ましいが、分岐がないのが最も好ましい。分岐がないというのは、主鎖が直鎖状であるという意味である。本発明は、低モジュラスかつ高伸びという効果を達成するものであり、この観点から、(A)成分は、直鎖構造であることが好ましい。
本発明において、(B)成分の配合部数はこれ自体の分子量と大きく関与するため、一概には述べることはできない。(B)成分の分子量が大きい場合には、(B)成分の粘度が高く、かつ相対的にモル数が少なくなるため、(B)成分の配合量は多めに使用すべきである。一方、(B)成分の分子量が小さい場合には、(B)成分の粘度が低く、かつ相対的にモル数が多くなるため、(B)成分の配合量は少なめに用いることが適している。これをふまえた上で、(B)成分の配合部数について述べる。(A)成分と(B)成分の総量100重量部のうち、(B)成分は5〜80重量部であることが好ましく、10〜70重量部であることが好ましく、15〜60重量部であることが最も好ましい。(B)成分が5重量部未満の場合は、モジュラスを低下させたり粘度を下げる効果が不十分である。一方、(B)成分が80重量部を超える場合は、硬化物の強度が不十分であったり、硬化に至らないものもあり適さない。
本発明は、(A)成分と(B)成分に含まれる1分子中に2個以上の反応性ケイ素基を含有する有機重合体のモル数(x)と、(A)成分と(B)成分に含まれる1分子中に1個のみ反応性ケイ素基を含有する有機重合体のモル数(y)の比、すなわち(y)/(x)が5以下の硬化性組成物である。この(y)/(x)は、0より大きく5以下の数字であり、5より大きい場合は硬化物の強度が低く良好な弾性体を得ることができない。(y)/(x)は4以下が好ましく、3以下が好ましく、特に2以下が最も好ましい。
1分子中に平均して1個未満の反応性ケイ素基を有する有機重合体(B)の製造方法であるが、両末端に不飽和基を有する直鎖状有機重合体に対して、少量の反応性ケイ素基を有する化合物を反応させる方法は好ましくない。この方法では、直鎖状有機重合体の両末端にケイ素基が導入された重合体と、片末端にのみケイ素基が導入された重合体と、ケイ素基が導入されなかった重合体の3種類が確率的に生じてしまうためである。本発明においては、モジュラス低下かつ高伸びに大きな効果を示す、片末端にのみケイ素基が導入された重合体が重要な成分である。よって、有機重合体(B)は、なるべく片末端にのみケイ素基が導入されるような合成手法を取る必要がある。
具体的には、前記(I)の項で使用する有機重合体として、1分子中に1個のみ水酸基等の活性水素を有する有機重合体を使用することが好ましい。また、(B)成分を実機で製造するにあたり、1分子中に1個のみ活性水素を有する有機重合体を開始剤として使う際に、仕込み量が少なくて十分な攪拌が保障されない場合は、1分子中に活性水素を2個以上有する化合物を併用しても良い。このような場合は、1分子中に平均して2個の反応性ケイ素基を含有する有機重合体が混在するが、平均して1分子中に反応性ケイ素基が1個未満になるように調整されれば特に問題はない。
1分子中に1個のみ活性水素を含有する開始剤として、下記のような化合物が挙げられる。すなわち、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノールなどの一価の1 級、2 級、3 級アルコール。アリルアルコール、メタリルアルコール、プロペニルアルコールなどの1価の不飽和基含有アルコール類。及び、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1 , 3 − プロパンジオール、ネオペンチルグリコール、1 , 4 − ブタンジオール、1 , 5 − ペンタンジオール、1 , 6 − ヘキサンジオール、1 , 4 − シクロヘキサンジオールなどをモノアリルエーテル化した前記のモノアリルエーテル化体やモノビニルエーテル化した前記のモノビニルエーテル化体などの1 価の不飽和基含有アルコール類、及びモノアルキルエーテル化した前記のモノアルキルエーテル化体などの1価の飽和アルコール類、等であるが、これらに限られるものではない。活性水素基の種類としては、反応性や入手性の点から、アルコール類が好ましく、特に炭素数が3〜7のアルコール類が最も好ましい。炭素数1ないし2のアルコールは沸点が低く、液体として安定になりにくいため開始剤として適さない。一方、炭素数が8以上のアルコールの場合は、得られた有機重合体に反応性ケイ素基を導入する場合に反応性が鈍くなる傾向があるためである。アルコールの中では、n−ブタノールが最も好ましい。
また、上記に述べたように低分子量アルコールを用いると、実機で製造するにあたり課題が出る場合がある。そのような場合は、片末端にのみ水酸基を有するポリエーテル系重合体の方が都合が良い。分子量としては、1,000〜5,000程度の重合体が使用でき、例えば三洋化成工業のポリオキシプロピレンモノブチルエーテル(商品名:ニューポール)が好適に使用できる。
このような開始剤を用いて有機重合体を合成すれば、反応性ケイ素基を1分子中に1個有する成分の含有率の高い有機重合体を得ることができる。
反応性ケイ素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、反応性ケイ素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなり、好ましい。
本発明では、反応性ケイ素基を含有する有機重合体を2種以上使用し、それらに含まれる成分のモル比が硬化物の物性に与える影響を規定している。反応性ケイ素基を含有する有機重合体は、詳細にその成分を考えると、1分子中に2個以上の反応性ケイ素基を有する成分と、1分子中に1個のみ反応性ケイ素基を有する成分と、分子中に反応性ケイ素基を有さない成分が混在している。反応性ケイ素基を含有する有機重合体からなる硬化性組成物は、ケイ素基が反応することにより硬化物となって適切な用途に用いられるものであるが、上記の各成分がどのような割合で存在しても良好な硬化物になり得るものではない。1分子中に2個以上の反応性ケイ素基を有する成分は、架橋生成にあたり理想的な構造である。一方、1分子中に1個のみ反応性ケイ素基を有する成分は、架橋成分にぶらさがる構造を取るため、最適な使用量であれば架橋を緩くできる利点もある。しかし、この成分が多すぎると架橋が不十分になってしまい、本来望まれている物性が発現できない。また、この1分子中に1個のみ反応性ケイ素基を有する成分は、重量ではなく、分子の数で影響を受けることを見出した。すなわち、1分子中に1個のみ反応性ケイ素基を有する成分は、同じ重量部数を使用しても、平均分子量が大きいものであれば物性低下に与える影響が小さく、反対に、平均分子量が小さいものであれば影響が大きくなる。ここでいう分子量は、GPC測定でポリスチレン換算により求める平均分子量ではなく、分子の数をより正確に把握できると考えられる、分子鎖末端の数測定によって求める方法を選択する。具体的には、重合後の水酸基末端濃度測定から求められる分子量を用いる。こうして、反応性ケイ素基を有する重合体として、反応性ケイ素基を2個以上有する成分と、1個のみ有する成分のモル比を計算し、所定の割合の場合にのみ良好な硬化物となり得る。
本発明では、2種類の反応性ケイ素基を含有する有機重合体を2種類併用しているが、重合過程における開始剤を2種併用することにより、反応性ケイ素基の導入量の異なる成分が混在した有機重合体を簡単に得ることも可能である。具体的には、ポリプロピレングリコール成分と、分子中に一つだけ水酸基を有する化合物を混合したものを開始剤として使用して重合し、従来の方法で反応性ケイ素基を導入する。開始剤の最適化によって、本発明の(A)成分と(B)成分が混在したものを得ることが可能である。
前記ポリオキシアルキレン系重合体は、本質的に一般式(3):
−R4−O− (3)
(R4は、炭素原子数1から14の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であり、一般式(3)におけるR4は、炭素原子数1から14の、更には2から4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式(3)で示される繰り返し単位の具体例としては、
−CH2O−、−CH2CH2O−、−CH2CH(CH3)O−、−CH2CH(C25)O−、−CH2C(CH32O−、−CH2CH2CH2CH2O−
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーリング材等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61−215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物−ポルフィリン錯体触媒による重合法、特公昭46−27250号、特公昭59−15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10−273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11−060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等があげられるが、特に限定されるものではない。
反応性ケイ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭45−36319号、同46−12154号、特開昭50−156599号、同54−6096号、同55−13767号、同55−13468号、同57−164123号、特公平3−2450号、米国特許3632557、米国特許4345053、米国特許4366307、米国特許4960844等の各公報に提案されているもの、また特開昭61−197631号、同61−215622号、同61−215623号、同61−218632号、特開平3−72527号、特開平3−47825号、特開平8−231707号の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体が例示できるが、特にこれらに限定されるものではない。
上記の反応性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用してもよいし2種以上併用してもよい。
前記飽和炭化水素系重合体は芳香環以外の炭素−炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1−ブテン、イソブチレンなどのような炭素原子数2から6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。
主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、および、湿気遮断性に優れる特徴を有する。
イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50重量%以上含有するものが好ましく、80重量%以上含有するものがより好ましく、90から99重量%含有するものが特に好ましい。
飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J.P.Kennedyら、J.Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500から100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
反応性ケイ素基を有する飽和炭化水素系重合体の製法としては、例えば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開平1−197509号、特許公報第2539445号、特許公報第2873395号、特開平7−53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。
上記の反応性ケイ素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。
前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシ)プロピルトリメトキシシラン、γ−(メタクリロイルオキシ)プロピルジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸系モノマーが挙げられる。
前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸およびその塩等のスチレン系モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。
これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマーおよび(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマーおよびメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましく、更には30%以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2−メトキシエチルやアクリル酸2−エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(重量比で40〜50/20〜30/30〜20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
(メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方法で行えばよい。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重合法を用いることが好ましい。
「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒として(メタ)アクリル酸エステル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸エステル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁などが挙げられる。
反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体の製法としては、例えば、特公平3−14068号公報、特公平4−55444号公報、特開平6−211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9−272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されているが、特にこれらに限定されるものではない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
これらの反応性ケイ素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、反応性ケイ素基を有するポリオキシアルキレン系重合体、反応性ケイ素基を有する飽和炭化水素系重合体、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。
反応性ケイ素基を有するポリオキシアルキレン系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59−122541号、特開昭63−112642号、特開平6−172631号、特開平11−116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、反応性ケイ素基を有し分子鎖が実質的に、下記一般式(4):
−CH2−C(R5)(COOR6)− (4)
(R5は水素原子またはメチル基、R6は炭素原子数1から8のアルキル基を示す)で表される炭素原子数1から8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(5):
−CH2−C(R5)(COOR7)− (5)
(R5は前記に同じ、R7は炭素原子数9以上のアルキル基を示す)で表される炭素原子数9以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、反応性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
前記一般式(4)のR6としては、例えば、メチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基、2−エチルヘキシル基等の炭素原子数1から8、好ましくは1から4、さらに好ましくは1または2のアルキル基があげられる。なお、R6のアルキル基は単独でもよく、2種以上混合していてもよい。
前記一般式(5)のR7としては、例えば、ノニル基、デシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素原子数9以上、通常は10から30、好ましくは10から20の長鎖のアルキル基があげられる。なお、R7のアルキル基はR6の場合と同様、単独でもよく、2種以上混合したものであってもよい。
該(メタ)アクリル酸エステル系重合体の分子鎖は実質的に一般式(4)および一般式(5)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する一般式(4)および一般式(5)の単量体単位の合計が50重量%をこえることを意味する。一般式(4)および一般式(5)の単量体単位の合計は好ましくは70重量%以上である。
また、一般式(4)の単量体単位と一般式(5)の単量体単位の存在比は、重量比で95:5から40:60が好ましく、90:10から60:40がさらに好ましい。
該共重合体に含有されていてもよい一般式(4)および一般式(5)以外の単量体単位としては、例えば、アクリル酸、メタクリル酸等のアクリル酸;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
反応性ケイ素基を有する飽和炭化水素系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体は、特開平1−168764号、特開2000−186176号公報等に提案されているが、特にこれらに限定されるものではない。
更に、反応性ケイ素官能基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法としては、他にも、反応性ケイ素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59−78223号、特開昭59−168014号、特開昭60−228516号、特開昭60−228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。
一方、有機重合体の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。
前記ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。
前記アミドセグメントは一般式(6):
−NR8−C(=O)− (6)
(R8は有機基または水素原子を表す)で表される基である。
前記アミドセグメントとしては、具体的には、イソシアネート基とヒドロキシ基との反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(6)の基に含まれる。
アミドセグメントと反応性ケイ素基を有する有機重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に一般式(7):
W−R9−SiR1 3-aa (7)
(R1、X、aは前記と同じ。R9は2価の有機基であり、より好ましくは炭素原子数1から20の炭化水素基である。Wはヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である)で表されるケイ素化合物のW基を反応させる方法により製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特公昭46−12154号(米国特許3632557号)、特開昭58−109529号(米国特許4374237号)、特開昭62−13430号(米国特許4645816号)、特開平8−53528号(EP0676403)、特開平10−204144号(EP0831108)、特表2003−508561(米国特許6197912号)、特開平6−211879号(米国特許5364955号)、特開平10−53637号(米国特許5756751号)、特開平11−100427号、特開2000−169544号、特開2000−169545号、特開2002−212415号、特許第3313360号、米国特許4067844号、米国特許3711445号、特開2001−323040号等が挙げられる。
また、末端に活性水素含有基を有する有機重合体に一般式(8):
O=C=N−R9−SiR1 3-aa (8)
(R9、R1、X、aは前記に同じ)で示される反応性ケイ素基含有イソシアネート化合物とを反応させることにより製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開平11−279249号(米国特許5990257号)、特開2000−119365号(米国特許6046270号)、特開昭58−29818号(米国特許4345053号)、特開平3−47825号(米国特許5068304号)、特開平11−60724号、特開2002−155145号、特開2002−249538号、WO03/018658、WO03/059981等が挙げられる。
末端に活性水素含有基を有する有機重合体としては、末端にヒドロキシ基を有するオキシアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオール、ポリエステルポリオール、末端にヒドロキシ基を有する飽和炭化水素系重合体(ポリオレフィンポリオール)、ポリチオール化合物、ポリアミン化合物等が挙げられる。これらの中でも、ポリエーテルポリオール、ポリアクリルポリオール、および、ポリオレフィンポリオールは、得られる有機重合体のガラス転移温度が比較的低く、得られる硬化物が耐寒性に優れることから好ましい。特に、ポリエーテルポリオールは、得られる有機重合体の粘度が低く作業性が良好であり、深部硬化性および接着性が良好である為に特に好ましい。また、ポリアクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物の耐候性、耐熱性が良好である為により好ましい。
ポリエーテルポリオールとしては、いかなる製造方法において製造されたものでも使用することが出来るが、全分子平均で分子末端当り少なくとも0.7個のヒドロキシ基を末端に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造したオキシアルキレン重合体や、複合金属シアン化物錯体やセシウムの存在下、少なくとも2つのヒドロキシ基を有するポリヒドロキシ化合物などの開始剤に、アルキレンオキシドを反応させて製造されるオキシアルキレン重合体などが挙げられる。
上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低不飽和度で、Mw/Mnが狭く、より低粘度でかつ、高耐酸性、高耐候性のオキシアルキレン重合体を得ることが可能であるため好ましい。
前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内にヒドロキシ基を有するポリオールを挙げることができる。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001−207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。具体的には、東亞合成(株)製のアルフォンUH−2000等が挙げられる。
前記ポリイソシアネート化合物の具体例としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートなどを挙げることができる。
一般式(7)のケイ素化合物としては特に限定はないが、具体的に例示すると、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、(N−フェニル)−γ−アミノプロピルトリメトキシシラン、N−エチルアミノイソブチルトリメトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン等のアミノ基含有シラン類;γ−ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6−211879号(米国特許5364955号)、特開平10−53637号(米国特許5756751号)、特開平10−204144号(EP0831108)、特開2000−169544号、特開2000−169545号に記載されている様に、各種のα,β−不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(7)のケイ素化合物として用いることができる。
一般式(8)の反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ−トリメトキシシリルプロピルイソシアネート、γ−トリエトキシシリルプロピルイソシアネート、γ−メチルジメトキシシリルプロピルイソシアネート、γ−メチルジエトキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、トリエトキシメチルシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート、ジエトキシメチルシリルメチルイソシアネート等が挙げられる。また、特開2000−119365号(米国特許6046270号)に記載されている様に、一般式(7)のケイ素化合物と、過剰の前記ポリイソシアネート化合物を反応させて得られる化合物もまた、一般式(8)の反応性ケイ素基含有イソシアネート化合物として用いることができる。
上記の方法で得られる有機重合体は、主鎖骨格中に一般式(9):
−NR10−C(=O)− (9)
(R10は水素原子または置換あるいは非置換の有機基を表す)で表される基を有する。この構造は極性が比較的高いため、硬化物の強度や基材への接着性が高くなる傾向にあり望ましい。
本発明では、シラノール縮合触媒として有機錫系硬化触媒(C)を使用する。(C)成分の具体例としては、ジメチル錫ジアセテート、ジメチル錫ビス(アセチルアセトナート)、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2−エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ビス(アセチルアセトナート)等の4価の有機錫化合物;であるが、これらに限定されるものではない。
上記に示した有機錫系以外の、硬化触媒も使用することができる。その具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。また、カルボン酸および/またはカルボン酸金属塩を硬化触媒として使用することもできる。また、WO2008/078654号公報に記載されているようなアミジン化合物も使用できる。アミジン化合物の例として、1−(o−トリル)ビグアニド、1−フェニルグアニジン、1,2−ジメチル−1,4,5,6−テトラヒドロピリミジン、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン等を挙げることができるが、これらに限られるものではない。
上記硬化触媒の使用量は、(A)成分と(B)成分の総量100重量部に対して0.1から20重量部、好ましくは0.2から10重量部、更に好ましくは0.3から5重量部である。0.1重量部未満では適切な硬化性が発現しなくなり、20重量部を越えると硬化が速すぎて、適切な硬化物を形成できず、所望の性能が十分発揮できなくなるためである。
本発明では、可塑剤を使用してもよい。可塑剤の例としては、ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸ジイソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類をあげることができる。
また、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジノルマルヘキシル、フタル酸ビス(2−エチルヘキシル)、フタル酸ジノルマルオクチル、フタル酸ジイソノニル、フタル酸ジノニル、フタル酸ジイソデシル、フタル酸ジイソウンデシル、フタル酸ビスブチルベンジル等のフタル酸エステル類も使用することはできるが、人体や環境への影響を考慮すると、これらの使用量は少ない方が好ましく、使用しないことが望ましい。また、上記のフタル酸エステル類を水添加して得られる、シクロヘキサンジカルボキシレートは、安全性を憂慮せずに使用することができる。この可塑剤は、BASF社からHexamoll DINCHという商品名で販売されており、容易に入手することができる。
また、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持する。更に、該硬化物にアルキド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;分子量500以上、更には1,000以上のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン等が挙げられるが、これらに限定されるものではない。
これらの高分子可塑剤のうちで、(A)成分および(B)成分の重合体と相溶するものが好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/またはメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステルなどアクリル系重合体が更に好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法が更に好ましい。また、特開2001−207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。この可塑剤は、東亞合成株式会社からアルフォンという商品名で販売されている。
高分子可塑剤の数平均分子量は、好ましくは500から15,000であるが、より好ましくは800から10,000であり、更に好ましくは1,000から8,000、特に好ましくは1,000から5,000である。最も好ましくは1,000から3,000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましい。1.70以下がより好ましく、1.60以下がなお好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。
数平均分子量はビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定される。また、分子量分布(Mw/Mn)GPC法(ポリスチレン換算)で測定される。
可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合することも可能である。
可塑剤の使用量は、(A)成分と(B)成分の総量100重量部に対して5から150重量部、好ましくは10から120重量部、更に好ましくは20から100重量部である。5重量部未満では可塑剤としての効果が発現しなくなり、150重量部を越えると硬化物の機械強度が不足する。
また、特開2004−51701号公報または特開2004−66749号公報などに記載の熱膨張性微粒中空体を使用することができる。熱膨張性微粒中空体とは、炭素原子数1から5の炭化水素などの低沸点化合物を高分子外殻材(塩化ビニリデン系共重合体、アクリロニトリル系共重合体、または塩化ビニリデン−アクリロニトリル共重合体)で球状に包み込んだプラスチック球体である。本組成物を用いた接着部分を加熱することによって、熱膨張性微粒中空体の殻内のガス圧が増し、高分子外殻材が軟化することで体積が劇的に膨張し、接着界面を剥離させる役割を果たす。熱膨張性微粒中空体の添加により、不要時には加熱するだけで簡単に材料の破壊を伴わずに剥離でき、且つ有機溶剤を一切用いないで加熱剥離可能な接着性組成物が得られる。
熱膨張性微粒中空体の使用量は、(A)成分と(B)成分の総量100重量部に対して0.01から5重量部、好ましくは0.1から3重量部、更に好ましくは0.2から2重量部である。5重量部を超えると、粘度が上昇して作業性が低下し、また硬化物の伸びが著しく低下する。一方、0.01重量部未満の場合は、微粒中空体を使用することによるヘラ切れ性や比重低減効果が小さくなるためである。
本発明の硬化性組成物には、アミノシランを添加することができる。アミノシランとは、分子中に反応性ケイ素基とアミノ基を有する化合物であり、通常、接着付与剤と称される。これを使用することで、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。他にも物性調整剤、無機充填材の分散性改良剤等として機能し得る化合物である。
アミノシランの反応性ケイ素基の具体的な例としては、既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。アミノシランの具体例としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリイソプロポキシシラン、γ−(2−(2−アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、3−(N−エチルアミノ)−2−メチルプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン、(2−アミノエチル)アミノメチルトリメトキシシラン、N,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン等のケチミン型シラン類を挙げることができる。
これらのうち良好な接着性を確保するためには、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシランが好ましい。アミノシランは1種類のみ使用してもよいし、2種類以上を併用してもよい。γ−(2−アミノエチル)アミノプロピルトリメトキシシランは他のアミノシランに比べて刺激性があることが指摘されており、このアミノシランを減量する代わりに、γ−アミノプロピルトリメトキシシランを併用することで刺激性を緩和させることができる。
アミノシランの配合量は、(A)成分と(B)成分の総量100重量部に対して1〜20重量部程度が好ましく、更に2〜10重量部がより好ましい。アミノシランの配合量が1重量部未満であると十分な接着性が得られない場合がある。一方、配合量が20重量部を越えると、硬化物がもろくなって十分な強度が得られなくなり、また硬化速度が遅くなる場合がある。
本発明の組成物には、アミノシラン以外の接着付与剤を使用することができる。
アミノシラン以外の接着付与剤の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、上記シラン類を部分的に縮合した縮合体も使用できる。さらに、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。本発明に用いるシランカップリング剤は、通常、反応性ケイ素基を有する有機重合体(A)と有機重合体(B)の総量の和100重量部に対して、0.1〜20重量部の範囲で使用される。特に、0.5〜10重量部の範囲で使用するのが好ましい。
本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。
これらのうち、良好な接着性を確保するためには、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシランが好ましい。
接着性付与剤の使用量としては、(A)成分と(B)成分の有機重合体の和100重量部に対し、0.01から20重量部程度が好ましく、0.1から10重量部程度がより好ましく、1から7重量部程度が特に好ましい。接着性付与剤の配合量がこの範囲を下回ると、接着性が十分に得られない場合がある。一方、接着性付与剤の配合量がこの範囲を上回ると実用的な深部硬化性が得られない場合がある。
接着性付与剤として、上記の接着性付与剤以外にも、接着性付与剤として、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。しかしながら、エポキシ樹脂は添加量に応じて触媒活性を低下させる場合があるため、本発明の硬化性組成物には、エポキシ樹脂の添加量は少ないことが好ましい。エポキシ樹脂の使用量としては、(A)成分と(B)成分の総量100重量部に対して、5重量部以下が好ましく、0.5重量部以下がより好ましく、実質的に含有していないことが特に好ましい。
本発明で得られる組成物には酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA−57,MARK LA−62,MARK LA−67,MARK LA−63,MARK LA−68(以上いずれも株式会社ADEKA製);サノールLS−770,サノールLS−765,サノールLS−292,サノールLS−2626,サノールLS−1114,サノールLS−744(以上いずれも三共ライフテック株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4−283259号公報や特開平9−194731号公報にも記載されている。酸化防止剤の使用量は、(A)成分と(B)成分の総量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。
本発明で得られる組成物には光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の使用量は、(A)成分と(B)成分の総量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。光安定剤の具体例は特開平9−194731号公報にも記載されている。
本発明で得られる組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を用いる場合、特開平5−70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA−57,LA−62,LA−67,LA−63(以上いずれも株式会社ADEKA製);サノールLS−765,LS−292,LS−2626,LS−1114,LS−744(以上いずれもBASFジャパン株式会社製)などの光安定剤が例示できる。
光硬化性物性津の使用量は、(A)成分と(B)成分の総量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。
本発明で得られる組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤の使用量は、(A)成分と(B)成分の総量100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
本発明の組成物には充填剤を添加することができる。充填剤としては、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填剤;ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は(A)成分と(B)成分の総量100重量部に対して1から250重量部、好ましくは10から200重量部である。
これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、(A)成分と(B)成分の総量100重量部に対し、1から200重量部の範囲で使用すれば好ましい結果が得られる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、(A)成分と(B)成分の総量100重量部に対して、5から200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。
組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするために、有機バルーン、無機バルーンの添加が好ましい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。作業性(キレなど)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にするためには、5から300μmが好ましい。
本発明の組成物は硬化物の耐薬品性が良好であるなどの理由により、サイディングボード、特に窯業系サイディングボード、など住宅の外壁の目地や外壁タイルの接着剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるようになっている。本発明の組成物に直径が0.1mm以上、好ましくは0.1から5.0mm程度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある外壁と調和し、耐薬品性が優れるためこの硬化物の外観は長期にわたって持続するすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。
鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平9−53063号公報に記載されているように次の通りである。
直径は0.1mm以上、好ましくは0.1から5.0mm程度であり、外壁の材質、模様等に合わせて適当な大きさのものが使用される。0.2mmから5.0mm程度や0.5mmから5.0mm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の1/10から1/5程度の薄さ(0.01から1.00mm程度)とされる。鱗片状または粒状の物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬されるか、使用に際して、施工現場にてシーリング主材内に混合される。
鱗片状または粒状の物質は、シーリング材組成物や接着剤組成物等の組成物100重量部に対して、1から200重量部程度が配合される。配合量は、個々の鱗片状または粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。
鱗片状または粒状の物質としては、ケイ砂、マイカ等の天然物、合成ゴム、合成樹脂、アルミナ等の無機物が使用される。目地部に充填した際の意匠性を高めるために、外壁の材質、模様等に合わせて、適当な色に着色される。
また、同様の目的でバルーン(好ましくは平均粒径が0.1mm以上のもの)を用いれば砂まき調あるいは砂岩調のざらつき感がある表面になり、かつ軽量化を図ることができる。バルーンの好ましい直径、配合量、材料などは特開平10−251618号公報に記載されているように次の通りである。
バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料があげられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。例えば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンを接着性付与剤で表面処理することなどが挙げられる。
砂まき調あるいは砂岩調のざらつき感がある表面を得るには、バルーンは粒径が0.1mm以上であることが好ましい。0.2mmから5.0mm程度や0.5mmから5.0mm程度のものも使用可能である。0.1mm未満のものでは、多量に配合しても組成物の粘度を上昇させるだけで、ざらつき感が発揮されない場合がある。バルーンの配合量は目的とする砂まき調あるいは砂岩調のざらつき感の程度によって容易に定めることができる。通常、粒径が0.1mm以上のものを組成物中の容積濃度で5から25vol%の範囲となる割合で配合することが望ましい。バルーンの容積濃度が5vol%未満であるとざらつき感がなく、また25vol%を超えると、シーリング材や接着剤の粘度が高くなり作業性が悪く、硬化物のモジュラスも高くなり、シーリング材や接着剤の基本性能が損なわれる傾向にある。シーリング材の基本性能とのバランスが特に好ましい容積濃度は8から22vol%である。
バルーンを用いる際には特開2000−154368号公報に記載されているようなスリップ防止剤、特開2001−164237号公報に記載されているような硬化物の表面を凹凸状態に加えて艶消し状態にするためのアミン化合物、特に融点35℃以上の第1級および/または第2級アミンを添加することができる。
バルーンの具体例は特開平2−129262号、特開平4−8788号、特開平4−173867号、特開平5−1225号、特開平7−113073号、特開平9−53063号、特開平10−251618号、特開2000−154368号、特開2001−164237号、WO97/05201号などの各公報に記載されている。
本発明の組成物がシーリング材硬化物粒子を含む場合も硬化物は表面に凹凸を形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ましい直径、配合量、材料などは特開2001−115142号公報に記載されているように次の通りである。直径は0.1mmから1mm、更には0.2から0.5mm程度が好ましい。配合量は硬化性組成物中に5から100重量%、更には20〜50重量%が好ましい。材料は、ウレタン樹脂、シリコーン、変成シリコーン、多硫化ゴム等を挙げることができシーリング材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好ましい。
また、本発明の組成物には、シリケートを用いることができる。このシリケートは、架橋剤として作用し、本発明の(A)成分および(B)成分である有機重合体の復元性、耐久性、および、耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、その使用量は(A)成分および(B)成分の有機重合体の総量100重量部に対して0.1から20重量部、好ましくは0.5から10重量部である。
シリケートの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物があげられる。
テトラアルコキシシランの部分加水分解縮合物は、本発明の復元性、耐久性、および、耐クリープ性の改善効果がテトラアルコキシシランよりも大きい為により好ましい。
前記テトラアルコキシシランの部分加水分解縮合物としては、例えば、通常の方法でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげられる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。
本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5−117521号公報に記載されている化合物をあげることができる。また、ヘキサノール、オクタノール、デカノール等のアルキルアルコールの誘導体であって加水分解によりトリメチルシラノール等のR3SiOHを生成するシリコン化合物を生成する化合物、特開平11−241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトール等のヒドロキシ基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのR3SiOHを生成するシリコン化合物を生成する化合物をあげることができる。
また、特開平7−258534号公報に記載されているようなオキシプロピレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのR3SiOHを生成するシリコン化合物を生成する化合物もあげることができる。更に特開平6−279693号公報に記載されている架橋可能な反応性ケイ素含有基と加水分解によりモノシラノール含有化合物となりうるケイ素含有基を有する重合体を使用することもできる。
物性調整剤は、(A)成分および(B)成分の総量100重量部に対して、0.1から20重量部、好ましくは0.5から10重量部の範囲で使用される。
本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11−349916号公報に記載されているような粒子径10から500μmのゴム粉末や、特開2003−155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は(A)成分および(B)成分の総量100重量部に対して、0.1から20重量部の範囲で使用される。
本発明の組成物においては1分子中にエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環式エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化アマニ油、ビス(2−エチルヘキシル)−4,5−エポキシシクロヘキサン−1,2−ジカーボキシレート(E−PS)、エポキシオクチルステアレ−ト、エポキシブチルステアレ−ト等があげられる。これらのなかではE−PSが特に好ましい。エポキシ化合物は、(A)成分と(B)成分の総量100重量部に対して0.5から50重量部の範囲で使用するのがよい。
本発明の組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(またはブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の単量体または分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM−210,アロニックスM−215,アロニックスM−220,アロニックスM−233,アロニックスM−240,アロニックスM−245;(3官能)のアロニックスM−305,アロニックスM−309,アロニックスM−310,アロニックスM−315,アロニックスM−320,アロニックスM−325,および(多官能)のアロニックスM−400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい。(以上アロニックスはいずれも東亞合成株式会社の製品である。)。
ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁から、第106頁から、第117頁から)に詳細な例示があり、これらを単独または混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。光硬化性物質は、(A)成分と(B)成分の総量100重量部に対して0.1から20重量部、好ましくは0.5から10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。
本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2−ポリブタジエン、1,4−ポリブタジエン、C5からC8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミン化合物等が例示される。酸素硬化性物質の使用量は、(A)成分および(B)成分の総量の和100重量部に対して0.1から20重量部の範囲で使用するのがよく、さらに好ましくは0.5から10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3−160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。
難燃剤は(A)成分および(B)成分100重量部に対して、5から200重量部、好ましくは10から100重量部の範囲で使用される。
本発明の組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善する目的で、溶剤を使用することができる。溶剤としては、特に限定は無く、各種の化合物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、ヘキサン、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤が例示される。これらの溶剤は、単独で使用してもよく、2種以上併用してもよい。
但し、溶剤の配合量が多い場合には、人体への毒性が高くなる場合があり、また、硬化物の体積収縮などが見られる場合がある。従って、溶剤の配合量は、(A)成分および(B)成分の総量100重量部に対して、3重量部以下であることが好ましく、1重量部以下であることがより好ましく、溶剤を実質的に含まないことが最も好ましい。
本発明の硬化性組成物には、硬化性組成物または硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加物の具体例以外の具体例は、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開2001−72854号の各公報などに記載されている。
本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。前記硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法または減圧脱水法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好適である。かかる脱水乾燥法に加えて、n−プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加し、水と反応させて脱水してもよい。また、3−エチル−2−メチル−2−(3−メチルブチル)−1,3−オキサゾリジンなどのオキサゾリジン化合物を配合して水と反応させて脱水してもよい。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。アルコキシシラン化合物やオキサゾリジン化合物、および、イソシアネート化合物の添加により、貯蔵安定性が向上する。
脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、成分(A)と成分(B)の総量100重量部に対して、0.1から20重量部、好ましくは0.5から10重量部の範囲が好ましい。
本発明の硬化性組成物の調製法には特に限定はなく、例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。
本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤として用いることがより好ましい。
また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイディングボード等の外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、としても使用可能である。
つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれに限定されるものではない。
(合成例1)
分子量約3,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約17,000(送液システムとして東ソー製HLC−8120GPCを用い、カラムは東ソー製TSK−GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のポリプロピレンオキシドを得た。なお、この水酸基末端ポリプロピレンオキシドの水酸基量から換算した数平均分子量は、11,000であった。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製のアリル末端ポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基であり、GPCでのポリスチレン換算の数平均分子量が約17,000のポリプロピレンオキシドを得た。
得られたアリル基末端ポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン1.3重量部と90℃で2時間反応させ、末端に平均約1.3個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体(ポリマーA)を得た。
(合成例2)
分子量約15,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約30,000(上記と同じ方法にて測定)のポリプロピレンオキシドを得た。なお、この水酸基末端ポリプロピレンオキシドの水酸基量から換算した数平均分子量は、20,000であった。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製のアリル末端ポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基であり、GPCでのポリスチレン換算の数平均分子量が約30,000のポリプロピレンオキシドを得た。
得られたアリル基末端ポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン0.96重量部と90℃で2時間反応させ、末端に平均約1.6個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体(ポリマーB)を得た。
(合成例3)
分子量約1,200のポリオキシプロピレングリコールモノブチルエーテル(三洋化成工業(株)製、商品名:ニューポールLB−285)を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約4,800(上記と同じ方法にて測定)のポリプロピレンオキシドを得た。なお、この片末端にのみ水酸基を有するポリプロピレンオキシドの構造と水酸基量から換算した数平均分子量は、3,000であった。続いて、この水酸基を有するポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製の片末端にのみアリル基を有するポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、片末端がアリル基であり、GPCでのポリスチレン換算の数平均分子量が約4,800のポリプロピレンオキシドを得た。
得られた片末端にのみアリル基を有するポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン3.0重量部と90℃で2時間反応させ、分子中に平均約0.8個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体(ポリマーC)を得た。
(合成例4)
分子量約1,200のポリオキシプロピレングリコールモノブチルエーテル(三洋化成工業(株)製、商品名:ニューポールLB−285)を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約7,500(上記と同じ方法にて測定)のポリプロピレンオキシドを得た。なお、この片末端にのみ水酸基を有するポリプロピレンオキシドの構造と水酸基量から換算した数平均分子量は、5,000であった。続いて、この水酸基を有するポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製の片末端にのみアリル基を有するポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、片末端がアリル基であり、GPCでのポリスチレン換算の数平均分子量が約7,500のポリプロピレンオキシドを得た。
得られた片末端にのみアリル基を有するポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン2.0重量部と90℃で2時間反応させ、分子中に平均約0.8個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体(ポリマーD)を得た。
(合成例5)
分子量約1,200のポリオキシプロピレングリコールモノブチルエーテル(三洋化成工業(株)製、商品名:ニューポールLB−285)を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約14,600(上記と同じ方法にて測定)のポリプロピレンオキシドを得た。なお、この片末端にのみ水酸基を有するポリプロピレンオキシドの構造と水酸基量から換算した数平均分子量は、10,000であった。続いて、この水酸基を有するポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製の片末端にのみアリル基を有するポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、片末端がアリル基であり、GPCでのポリスチレン換算の数平均分子量が約14,600のポリプロピレンオキシドを得た。
得られた片末端にのみアリル基を有するポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン0.9重量部と90℃で2時間反応させ、分子中に平均約0.8個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体(ポリマーE)を得た。
(合成例6)
数平均分子量約3,000のポリオキシプロピレンジオールとn−ブタノールをそれぞれ重量比で70:1の割合で混合したものを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、GPCで観察すると、分子量の異なる2種のポリマーの存在が観察された。合成例1と同様にポリスチレン換算の分子量を求めたところ、2種のポリマー全体の数平均分子量は約23,000であった。また、それぞれの成分のポリスチレン換算の分子量を求めたところ、高分子量成分の数平均分子量は約25,500、低分子量成分の数平均分子量は約15,000であった。続いて、この水酸基を有するポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製のアリル基を有するポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、GPCでのポリスチレン換算の数平均分子量が約25,500と約15,000のアリル基を有するポリプロピレンオキシドの混合物を得た。
得られたアリル基を有するポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン0.9重量部と90℃で2時間反応させ、分子中に平均約1.4個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体混合物(ポリマーF)を得た。
(合成例7)
数平均分子量約3,000のポリオキシプロピレンジオールと分子量約1,200のポリオキシプロピレングリコールモノブチルエーテル(三洋化成工業(株)製、商品名:ニューポールLB−285)をそれぞれ重量比で19:7の割合で混合したものを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、GPCで観察すると、分子量の異なる2種のポリマーの存在が観察された。合成例1と同様にポリスチレン換算の分子量を求めたところ、2種のポリマー全体の数平均分子量は約18,400であった。また、それぞれの成分のポリスチレン換算の分子量を求めたところ、高分子量成分の数平均分子量は約21,000、低分子量成分の数平均分子量は約10,500であった。続いて、この水酸基を有するポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製のアリル基を有するポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、GPCでのポリスチレン換算の数平均分子量が約21,000と約10,500のアリル基を有するポリプロピレンオキシドの混合物を得た。
得られたアリル基を有するポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン1.2重量部と90℃で2時間反応させ、分子中に平均約1.4個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体混合物(ポリマーG)を得た。
(合成例8)
分子量約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約26,000(上記と同じ方法にて測定)のポリプロピレンオキシドを得た。なお、この水酸基末端ポリプロピレンオキシドの水酸基量から換算した数平均分子量は、19,000であった。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。
得られた未精製のアリル末端ポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基であり、GPCでのポリスチレン換算の数平均分子量が約26,000のポリプロピレンオキシドを得た。
得られたアリル基末端ポリプロピレンオキシド100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、メチルジメトキシシラン1.3重量部と90℃で2時間反応させ、末端に平均約2.4個のメチルジメトキシシリル基を有するポリオキシプロピレン系重合体(ポリマーH)を得た。
(実施例1)
合成例2で得られた、1分子中に平均して1.6個の反応性ケイ素基を含有するポリオキシアルキレン系重合体(ポリマーB)70重量部、合成例3で得られた1分子中に平均して0.8個の反応性ケイ素基を含有するポリオキシアルキレン系重合体(ポリマーC)30重量部、可塑剤としてフタル酸ジイソデシル(ジェイ・プラス(株)製、商品名:DIDP)55重量部、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)120重量部、酸化チタン(石原産業(株)製、商品名:タイペークR−820)20重量部、タレ防止剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部、ベンゾトリアゾール系紫外線吸収剤(BASFジャパン(株)製、商品名:TINUVIN326)1重量部、ヒンダードアミン系光安定剤(三共ライフテック(株)製、商品名:サノールLS770)1重量部、を混合して充分混練りした後、3本ペイントロールに3回通して分散させ、23℃50%RH条件下に一晩置いたものを主剤とした。この主剤の粘度を測定した後、脱水剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A−171)2重量部、接着性付与剤としてγ−(2−アミノエチル)アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:Silquest A−1120)3重量部、硬化触媒としてジブチル錫ビスアセチルアセトナート(日東化成(株)製、商品名:ネオスタンU−220H)2重量部を加えて混練し、硬化性組成物を得た。この硬化性組成物の皮張り時間、3日後と7日後の硬度、ダンベル引張物性、ゲル分率を下記の方法に従って測定した。
(実施例2〜7、比較例1〜9)
実施例1におけるポリマーBとポリマーCの代わりに、表1に示すポリマーを用いること以外は、実施例1と同様にして硬化性組成物を得た。次に、評価方法を示す。
(ポリマー粘度)
上記の実施例および比較例で用いたポリマーのみの粘度を測定した。ポリマーの23℃における粘度を測定するにあたり、2種のポリマーを併用する場合は、よく混合して十分空気が抜けた状態にしてから実施した。東京計器(株)製のE型粘度計を用いて測定した。
(皮張り時間)
23℃、50%RH条件下にて上記硬化性組成物を厚みが約3mmになるようヘラを用いて伸ばし、ミクロスパテュラを用いて経時で硬化性組成物の表面に軽く触れ、組成物がミクロスパテュラについてこなくなるまでの時間を測定した。
(主剤の粘度)
100ml容のディスポーザルカップに泡が入らないように主剤を充填した。BS型粘度計(トキメック社製)とローターNo.7を用いて、23℃50%RH条件下で各組成物の1rpm、2rpm、10rpmでの粘度を測定した。
(ShoreA硬度)
23℃、50%RH条件下にて上記硬化性組成物を厚みが約1cmになるようヘラを用いて伸ばし、表面が平滑な状態にして同条件下で硬化させた。3日後、7日後の硬度を、高分子計器(株)製、アスカーゴム硬度計A型を用いて測定した。
(ダンベル引張物性)
上記硬化性組成物を厚さ3mmのシート状試験体にして23℃、50%RH条件に3日間、さらに50℃乾燥機に4日間入れることで完全に硬化させた。3号ダンベル型に打ち抜いた後、島津(株)製オートグラフを用いて引張速度200mm/分で引張試験を行い、50%モジュラス、100%モジュラス、破断時の強度、破断時の伸び(それぞれ、M50、M100、TB、EBと示す)を測定した。
(ゲル分率)
引張物性を測定する際にダンベル型に打ち抜いた残り部分の硬化物を、約1cm×1cmの正方形を切り取り、重量を測定した後、金網に入れてアセトンに浸し、23℃条件に3日間置いた。ときどき振とうして硬化物中に含まれる可溶分がアセトンに溶解するようにした後、金網ごと取り出して120℃の状態でアセトンを完全に取り除き、硬化物の重量変化を測定した。最終の硬化物の重量を、初期重量で割った値の百分率をゲル分率とした。値が大きいほどしっかり架橋していて望ましいことを示す。
(有機重合体中の各成分の重量割合)
有機重合体中の各成分の重量割合は、測定ではなく机上の計算により算出したものである。比較例1を例に取ると、ポリマーAの1分子中のケイ素基は1.3個であり、このポリマーは直鎖状なので理想上は末端にケイ素基は最大2個入ることから考えると、末端の官能化率は1.3/2=0.65である。両末端ともにケイ素が導入されたポリマーを2官能、片方にのみケイ素が導入されたポリマーを1官能、ケイ素基が全く導入されていないポリマーを0官能とすると、これらが存在する割合は2項分布に従うため、それぞれ42.5%、45.5%、12.3%となる。ポリマーを2種併用した場合も、それぞれのポリマーでの存在比を同様に計算し、おのおのの成分を合算して求めた。表1には、各成分の重量割合を百分率で示した。
(有機重合体中の各成分のモル割合)
上記と同様に、これも机上の計算で算出したものである。2種のポリマーを併用し、しかもそれらの分子量が異なる場合、それらの存在比はポリマーの数すなわちモル単位で考える方が好ましい。よって、上記で得られた各成分の重量を水酸基量から換算した数平均分子量で除した値を求め、各成分のモル割合を百分率で示した。
表1に、実施例と比較例の組成とそれぞれの物性を示す。
Figure 0005953234
比較例1で用いているポリマーAは分子量が比較的小さいため、低粘度であり作業性は良いものの、高伸びを必要とされる建築用シーリング材には適さない。一方、比較例2で用いているポリマーBは高分子量であるため硬化物の伸びは十分高いものの、ポリマーの粘度が46Pa・sと高く、故に配合物の10rpmでの粘度も高く作業性が悪いものであった。
上記の課題を解決するため、ポリマーBと、片末端にのみケイ素基を有するポリマーを併用したところ、比較例4や比較例6に例示されるように、加熱養生を施しても硬化が不十分で、硬化性組成物として全く適さないものがみられた。また、比較例3、比較例5、比較例7のように、硬化したように見えるものの7日後の硬度が1以下であり、硬化物の破断強度が0.2MPa以下と大変低く、これらも実使用に耐えるものではない。一方、実施例1〜実施例5はダンベル引張物性において破断強度が0.5MPa以上を示し、ゲル分率も50%以上であることから、しっかりと硬化していることがわかる。また、2種類のポリマーを混合するのではなく、合成段階でジオールとモノオールの2種の開始剤を使用することでも同じ効果が出ることを実施例6および実施例7で示している。これらの違いとして、ポリマー中に含まれる2官能成分(x)と1官能成分(y)のモル比、すなわち(y)/(x)が関与している。5以下の場合は良好な硬化物と成り得るが、5より大きい場合は硬化が不十分であることがわかる。また、比較例9では、(A)成分が分岐構造である場合に伸びが出ないことを表している。
実施例1〜7は、ポリマー粘度が25Pa・s以下と低粘度であり、それ故、フィラー等の他原料を使用しても良好な作業性を発現する。また、皮張り時間も適切な範囲にあり、硬化物の伸びも、比較例2と同等もしくはそれ以上の高伸びを発現しており、良好なバランスを兼ね備えていることがわかる。
本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤として用いることがより好ましい。

Claims (7)

  1. 1分子中に平均して1.4個以上の反応性ケイ素基を含有する有機重合体(A)と、1分子中に平均して1個未満の反応性ケイ素基を含有する有機重合体(B)を含有し、(B)成分の数平均分子量が(A)成分の数平均分子量よりも3,000以上低く、かつ、(A)成分と(B)成分に含まれる1分子中に2個以上の反応性ケイ素基を含有する有機重合体のモル数(x)と、(A)成分と(B)成分に含まれる1分子中に1個のみ反応性ケイ素基を含有する有機重合体のモル数(y)の比(y)/(x)が5以下である硬化性組成物の製造方法であって、
    1分子中に水酸基を2個以上有する開始剤と、1分子中に水酸基を1個のみ有する開始剤を併用し、複合金属シアン化物錯体触媒存在下でプロピレンオキシドを反応させたポリオキシプロピレン系重合体に反応性ケイ素基を導入し、(A)成分と(B)成分を一括して得る工程を有することを特徴とする硬化性組成物の製造方法。
  2. (B)成分の数平均分子量が、2,000以上であることを特徴とする、請求項1に記載の硬化性組成物の製造方法。
  3. (A)成分が、直鎖構造の有機重合体であることを特徴とする、請求項1または請求項2に記載の硬化性組成物の製造方法。
  4. (A)成分と(B)成分の反応性ケイ素基が、いずれもメチルジメトキシシリル基であることを特徴とする、請求項1〜のいずれかに記載の硬化性組成物の製造方法。
  5. 有機錫系硬化触媒(C)を使用することを特徴とする、請求項1〜のいずれかに記載の硬化性組成物の製造方法。
  6. 請求項1〜のいずれかに記載の硬化性組成物の製造方法であって、硬化性組成物が建築用シーリング材用である製造方法。
  7. 請求項1〜のいずれかに記載の硬化性組成物の製造方法であって、硬化性組成物がサイディングボード用シーリング材用である製造方法。
JP2012540850A 2010-10-27 2011-10-24 硬化性組成物 Active JP5953234B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010241189 2010-10-27
JP2010241189 2010-10-27
PCT/JP2011/074459 WO2012057092A1 (ja) 2010-10-27 2011-10-24 硬化性組成物

Publications (2)

Publication Number Publication Date
JPWO2012057092A1 JPWO2012057092A1 (ja) 2014-05-12
JP5953234B2 true JP5953234B2 (ja) 2016-07-20

Family

ID=45993800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012540850A Active JP5953234B2 (ja) 2010-10-27 2011-10-24 硬化性組成物

Country Status (5)

Country Link
US (1) US8846822B2 (ja)
EP (1) EP2634222B1 (ja)
JP (1) JP5953234B2 (ja)
CN (1) CN103180395B (ja)
WO (1) WO2012057092A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027818B2 (ja) * 2012-08-20 2016-11-16 シャープ化学工業株式会社 光輝性シーリング材
JP6317672B2 (ja) * 2012-09-10 2018-04-25 株式会社カネカ 硬化性組成物
WO2015080067A1 (ja) * 2013-11-29 2015-06-04 株式会社カネカ 硬化性組成物
DE102013224708A1 (de) * 2013-12-03 2015-06-03 Evonik Industries Ag Alkoxysilylhaltige Klebdichtstoffe mit intrinsisch reduzierter Viskosität
JP2017039782A (ja) * 2014-01-09 2017-02-23 株式会社カネカ 硬化性組成物
WO2016060112A1 (ja) * 2014-10-16 2016-04-21 シャープ化学工業株式会社 衛生機器用の防汚用湿気硬化型樹脂組成物およびそれを用いる衛生機器の周囲の汚れ防止方法
CN105694699B (zh) * 2016-01-27 2018-11-27 优美特(北京)环境材料科技股份公司 一种消光型水性聚氨酯乳液及其制备方法
JP6953910B2 (ja) * 2016-12-27 2021-10-27 Agc株式会社 硬化性組成物およびその製造方法、硬化物、ならびにシーリング材
WO2019039537A1 (ja) * 2017-08-24 2019-02-28 綜研化学株式会社 (メタ)アクリル酸アルキルエステル系重合体およびその用途
JP6610690B2 (ja) * 2018-03-07 2019-11-27 Agc株式会社 硬化性組成物、及び硬化物
EP3936569A4 (en) * 2019-03-04 2022-11-30 Kaneka Corporation POLYMER BLEND, COMPOSITION, SEALANT, AND TIRE SEALANT
WO2022163562A1 (ja) * 2021-01-29 2022-08-04 株式会社カネカ ポリオキシアルキレン系重合体の混合物及び硬化性組成物
EP4368671A1 (en) * 2021-07-07 2024-05-15 Agc Inc. Curable composition, cured product, adhesive, and sealing material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995619A (ja) * 1995-09-29 1997-04-08 Asahi Glass Co Ltd 室温硬化性組成物およびその製造法
WO2004092270A1 (ja) * 2003-04-11 2004-10-28 Kaneka Corporation 硬化性組成物
JP2006249251A (ja) * 2005-03-10 2006-09-21 Sekisui Chem Co Ltd 硬化性組成物、シーリング剤及び接着剤
JP2009108246A (ja) * 2007-10-31 2009-05-21 Sunstar Engineering Inc 石目地用シーリング材組成物
JP2009249494A (ja) * 2008-04-07 2009-10-29 Kaneka Corp 硬化性組成物および硬化物
JP2010150381A (ja) * 2008-12-25 2010-07-08 Asahi Glass Co Ltd 硬化性組成物
JP2011178955A (ja) * 2010-03-03 2011-09-15 Asahi Glass Co Ltd 硬化性組成物

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
ES332250A1 (es) 1965-10-15 1967-07-16 The General Tire & Rubber Company Procedimiento para preparar dioles de eter polioxialcohilenico.
DE1745526B2 (de) 1967-03-16 1980-04-10 Union Carbide Corp., New York, N.Y. (V.St.A.) Verfahren zur Herstellung vulkanisierbarer, unter wasserfreien Bedingungen beständiger Polymerisate
US3711445A (en) 1970-10-08 1973-01-16 Du Pont Self-priming polyurethane compositions
JPS5841291B2 (ja) 1974-06-07 1983-09-10 鐘淵化学工業株式会社 一成分型室温硬化性珪素末端重合体の製造法
JPS5273998A (en) 1975-12-16 1977-06-21 Kanegafuchi Chem Ind Co Ltd Room temperature curing compositions
US4067844A (en) 1976-12-22 1978-01-10 Tremco Incorporated Urethane polymers and sealant compositions containing the same
JPS546096A (en) 1977-06-15 1979-01-17 Kanegafuchi Chem Ind Co Ltd Preparation of silyl-terminated polymer
JPS5513468A (en) 1978-07-17 1980-01-30 Toshiba Corp Display unit
JPS5925808B2 (ja) 1978-07-18 1984-06-21 鐘淵化学工業株式会社 シリル末端重合体の製造法
CA1155871A (en) 1980-10-16 1983-10-25 Gencorp Inc. Method for treating polypropylene ether and poly-1,2- butylene ether polyols
US4366307A (en) 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
JPS57164123A (en) 1981-04-02 1982-10-08 Toshiba Silicone Co Ltd Production of silicon-containing polyoxyalkylene
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
US4374237A (en) 1981-12-21 1983-02-15 Union Carbide Corporation Silane-containing isocyanate-terminated polyurethane polymers
JPS5978223A (ja) 1982-10-27 1984-05-07 Kanegafuchi Chem Ind Co Ltd 重合体の製造方法
JPS59122541A (ja) 1982-12-28 1984-07-16 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS59168014A (ja) 1983-03-15 1984-09-21 Kanegafuchi Chem Ind Co Ltd 硬化性弾性組成物
JPS60228516A (ja) 1984-04-26 1985-11-13 Kanegafuchi Chem Ind Co Ltd 新規重合体の製造法
JPS60228517A (ja) 1984-04-26 1985-11-13 Kanegafuchi Chem Ind Co Ltd 新規重合体の製造法
JPS61133201A (ja) 1984-11-30 1986-06-20 Sunstar Giken Kk 室温硬化性弾性組成物
JPS61197631A (ja) 1985-02-28 1986-09-01 Kanegafuchi Chem Ind Co Ltd 分子量分布の狭いポリアルキレンオキシドの製造方法
JPH072838B2 (ja) 1985-03-22 1995-01-18 鐘淵化学工業株式会社 分子末端に不飽和基を含有するポリアルキレンオキシドの製造方法
JPH0613605B2 (ja) 1985-03-25 1994-02-23 鐘淵化学工業株式会社 分子末端に不飽和基を含有する分子量分布の狭いポリアルキレンオキシド
JPH0613604B2 (ja) 1985-03-22 1994-02-23 鐘淵化学工業株式会社 分子末端に不飽和基を含有するポリアルキレンオキシドの製造法
US4645816A (en) 1985-06-28 1987-02-24 Union Carbide Corporation Novel vulcanizable silane-terminated polyurethane polymers
JPS62283123A (ja) 1986-05-30 1987-12-09 Toshiba Silicone Co Ltd 加水分解性シリル基で分子鎖末端が閉塞されたポリエ−テルおよびその製造方法
CA1274647A (en) 1986-06-25 1990-09-25 Takahisa Iwahara Curable isobutylene polymer
JPS636041A (ja) 1986-06-25 1988-01-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH07108928B2 (ja) 1986-06-26 1995-11-22 鐘淵化学工業株式会社 硬化性組成物
JPH0742376B2 (ja) 1986-10-29 1995-05-10 鐘淵化学工業株式会社 硬化性組成物
JP2512468B2 (ja) 1987-04-13 1996-07-03 鐘淵化学工業株式会社 硬化性樹脂組成物
JPS6422904A (en) 1987-07-17 1989-01-25 Kanegafuchi Chemical Ind Isobutylene polymer
JP2539445B2 (ja) 1987-08-04 1996-10-02 鐘淵化学工業株式会社 イソブチレン系重合体
US4808664A (en) 1987-12-11 1989-02-28 Dow Corning Corporation Moisture curable polyisobutylenes
JPH01168764A (ja) 1987-12-24 1989-07-04 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2708833B2 (ja) 1987-12-28 1998-02-04 鐘淵化学工業株式会社 硬化性組成物
CA1338943C (en) 1987-12-28 1997-02-25 Sadao Yukimoto Curable composition of oxyalkylene polymer
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JP2723269B2 (ja) 1988-11-10 1998-03-09 鐘淵化学工業株式会社 硬化性組成物
US5068304A (en) 1988-12-09 1991-11-26 Asahi Glass Company, Ltd. Moisture-curable resin composition
JP2906497B2 (ja) 1988-12-09 1999-06-21 旭硝子株式会社 湿気硬化性樹脂組成物
JP2995568B2 (ja) 1989-05-09 1999-12-27 旭硝子株式会社 ポリアルキレンオキシド誘導体の製造法
JP2583134B2 (ja) 1989-11-16 1997-02-19 鐘淵化学工業株式会社 室温硬化性組成物
JPH0791530B2 (ja) 1990-04-26 1995-10-04 信越化学工業株式会社 ハードディスク装置用カバー・スポンジパッキン組立体
JP2687038B2 (ja) 1990-06-28 1997-12-08 信越化学工業株式会社 室温硬化性組成物
JP2873395B2 (ja) 1990-08-22 1999-03-24 鐘淵化学工業株式会社 反応性ケイ素基を有するイソブチレン系重合体、その製造方法及びその硬化性組成物
JP2990534B2 (ja) 1990-11-07 1999-12-13 宇宙開発事業団 軽量断熱性ゴム組成物
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH051225A (ja) 1991-06-25 1993-01-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2993778B2 (ja) 1991-08-06 1999-12-27 旭硝子株式会社 室温硬化性組成物
JP3155035B2 (ja) 1991-09-04 2001-04-09 旭硝子株式会社 硬化性組成物
JP3074406B2 (ja) 1991-09-12 2000-08-07 鐘淵化学工業株式会社 硬化性組成物
JP3122775B2 (ja) 1991-10-24 2001-01-09 鐘淵化学工業株式会社 硬化性組成物
JP3087138B2 (ja) 1991-10-31 2000-09-11 鐘淵化学工業株式会社 硬化性組成物
DE4237468A1 (de) 1992-11-06 1994-05-11 Bayer Ag Alkoxysilan- und Aminogruppen aufweisende Verbindungen
JPH06172631A (ja) 1992-12-04 1994-06-21 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH06211922A (ja) 1993-01-20 1994-08-02 Nippon Shokubai Co Ltd 硬化性組成物
JPH06279693A (ja) 1993-03-26 1994-10-04 Asahi Glass Co Ltd 新規なポリマーおよびその組成物
JP3315210B2 (ja) 1993-08-18 2002-08-19 鐘淵化学工業株式会社 硬化性組成物
JPH07113073A (ja) 1993-10-18 1995-05-02 Toray Chiokoole Kk 艶消しシーリング組成物
JP3506269B2 (ja) 1994-03-25 2004-03-15 鐘淵化学工業株式会社 硬化性組成物
JP2594024B2 (ja) 1994-04-08 1997-03-26 オーエスアイ・スペシヤルテイーズ・インコーポレーテツド アリールアミノシラン末端キヤツプドウレタンのシーラント
EP0693513B1 (en) 1994-07-18 2001-01-10 Asahi Glass Company Ltd. Process for purifying a polyether
JP3145011B2 (ja) 1995-06-29 2001-03-12 旭硝子株式会社 室温硬化性組成物
JP3091494B2 (ja) 1995-08-01 2000-09-25 横浜ゴム株式会社 接着性組成物とその製造方法
JP3598152B2 (ja) 1995-08-11 2004-12-08 積水ハウス株式会社 シーリング材およびその表面仕上げ方法
JPH0995609A (ja) 1995-09-29 1997-04-08 Asahi Glass Co Ltd 室温硬化性組成物およびその製造方法
JP3640442B2 (ja) 1995-10-25 2005-04-20 旭電化工業株式会社 硬化性樹脂組成物
JP3151145B2 (ja) 1996-01-23 2001-04-03 旭硝子株式会社 硬化性組成物
JP3806475B2 (ja) 1996-02-08 2006-08-09 株式会社カネカ 末端に官能基を有する(メタ)アクリル系重合体の 製造方法
DE19619538A1 (de) 1996-05-15 1997-11-20 Bayer Ag Alkoxysilan- und Hydantoingruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
US6001946A (en) 1996-09-23 1999-12-14 Witco Corporation Curable silane-encapped compositions having improved performances
JP3960650B2 (ja) 1997-03-14 2007-08-15 株式会社Adeka 抗菌性シーリング材組成物
JP3504457B2 (ja) 1997-03-17 2004-03-08 オート化学工業株式会社 ざらつき感が付与されたシーリング材組成物
JP3504103B2 (ja) 1997-03-31 2004-03-08 三井化学株式会社 ポリアルキレンオキシドの製造方法
JP4101366B2 (ja) 1997-07-28 2008-06-18 株式会社カネカ 硬化性組成物
JP4213259B2 (ja) 1997-07-30 2009-01-21 コニシ株式会社 ウレタン系樹脂組成物
JP3703263B2 (ja) 1997-08-19 2005-10-05 三井化学株式会社 ポリオキシアルキレンポリオールの製造方法
JP3703261B2 (ja) 1997-08-19 2005-10-05 三井化学株式会社 ケイ素基含有ポリアルキレンオキサイド重合体の製造方法及び湿気硬化性組成物
US5990257A (en) 1998-01-22 1999-11-23 Witco Corporation Process for producing prepolymers which cure to improved sealants, and products formed thereby
JP3175925B2 (ja) 1998-02-26 2001-06-11 旭硝子株式会社 硬化性組成物
JPH11349916A (ja) 1998-06-05 1999-12-21 Sunstar Eng Inc 高揺変性変成シリコーン系接着剤
US6046270A (en) 1998-10-14 2000-04-04 Bayer Corporation Silane-modified polyurethane resins, a process for their preparation and their use as moisture-curable resins
JP2000154368A (ja) 1998-11-18 2000-06-06 Hitachi Kasei Polymer Co Ltd 建築用変成シリコーン系シーリング材
JP3350011B2 (ja) 1998-12-10 2002-11-25 コニシ株式会社 ウレタン系樹脂の製造方法
JP3030020B1 (ja) 1998-12-10 2000-04-10 コニシ株式会社 ウレタン系樹脂及びその製造方法
JP2000186176A (ja) 1998-12-24 2000-07-04 Sunstar Eng Inc アルコキシシリル基含有硬化性組成物
JP2000234064A (ja) 1999-02-16 2000-08-29 Okura Ind Co Ltd 弾性硬化性樹脂組成物
CA2301313A1 (en) 1999-03-18 2000-09-18 Yuka Kanamori Curable composition
JP2000327902A (ja) 1999-03-18 2000-11-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2000345054A (ja) 1999-03-29 2000-12-12 Kanegafuchi Chem Ind Co Ltd 1液型硬化性樹脂組成物
JP2000313814A (ja) 1999-04-30 2000-11-14 Yokohama Rubber Co Ltd:The 硬化型組成物
JP3934276B2 (ja) 1999-05-10 2007-06-20 株式会社カネカ 硬化性組成物
JP2000327771A (ja) 1999-05-19 2000-11-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
US6197912B1 (en) 1999-08-20 2001-03-06 Ck Witco Corporation Silane endcapped moisture curable compositions
JP2001072854A (ja) 1999-09-01 2001-03-21 Asahi Glass Co Ltd 室温硬化性組成物
JP2001115142A (ja) 1999-10-19 2001-04-24 Yokohama Rubber Co Ltd:The シーリング材組成物
JP2001164237A (ja) 1999-12-09 2001-06-19 Auto Kagaku Kogyo Kk シーリング材組成物
JP4277120B2 (ja) 2000-01-28 2009-06-10 東亞合成株式会社 シーリング材組成物
JP4824153B2 (ja) 2000-05-15 2011-11-30 オート化学工業株式会社 架橋性シリル基含有ウレタン系樹脂混合物
JP3662839B2 (ja) 2000-11-21 2005-06-22 オート化学工業株式会社 硬化性組成物
JP3499828B2 (ja) 2001-01-18 2004-02-23 コニシ株式会社 ウレタン樹脂系硬化性樹脂組成物及びその製造方法
JP3449991B2 (ja) 2001-02-22 2003-09-22 オート化学工業株式会社 硬化性組成物
JP4150220B2 (ja) 2001-07-27 2008-09-17 株式会社カネカ 硬化性組成物
WO2003018658A1 (de) 2001-08-28 2003-03-06 Consortium für elektrochemische Industrie GmbH Einkomponentige alkoxysilanterminierte polymere enthaltende schnell härtende abmischungen
WO2003035755A1 (en) 2001-10-23 2003-05-01 Kaneka Corporation Curable resin composition
JP2003147167A (ja) 2001-11-16 2003-05-21 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
JP2003155389A (ja) 2001-11-22 2003-05-27 Sunstar Eng Inc 加水分解性シリル基含有硬化性組成物
DE10201703A1 (de) 2002-01-17 2003-08-07 Consortium Elektrochem Ind Alkoxysilanterminierte Polymere enthaltende vernetzbare Polymerabmischungen
JP3313360B1 (ja) 2002-02-14 2002-08-12 コニシ株式会社 硬化性樹脂組成物とその製造方法並びにそれを用いた接着方法
US6887964B2 (en) 2002-05-31 2005-05-03 Bayer Materialscience Llc Moisture-curable, polyether urethanes with reactive silane groups and their use as sealants, adhesives and coatings
JP2004051701A (ja) 2002-07-17 2004-02-19 Konishi Co Ltd 加熱剥離型1液湿気硬化型弾性接着剤組成物
JP4076392B2 (ja) 2002-08-09 2008-04-16 松下電工株式会社 加熱剥離可能な積層体
EP1578830B1 (en) 2002-12-20 2012-04-04 Bayer MaterialScience LLC Moisture-curable, polyether urethanes with terminal cyclic urea/reactive silane groups and their use as sealants, adhesives and coatings
JP2004224985A (ja) 2003-01-24 2004-08-12 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP4777604B2 (ja) 2003-02-14 2011-09-21 株式会社カネカ 硬化性組成物
WO2005073322A1 (ja) 2004-01-30 2005-08-11 Kaneka Corporation 硬化性組成物
JP4435591B2 (ja) 2004-01-30 2010-03-17 株式会社カネカ 硬化性組成物
EP1832626B1 (en) 2004-12-28 2012-06-13 Kaneka Corporation Curable composition
JP2005240049A (ja) 2005-05-27 2005-09-08 Asahi Glass Co Ltd 室温硬化性組成物およびその製造方法
JP2007204634A (ja) 2006-02-02 2007-08-16 Asahi Glass Co Ltd 硬化性組成物
JP2008050448A (ja) 2006-08-23 2008-03-06 Kaneka Corp 硬化性組成物
EP2100923B1 (en) 2006-12-25 2013-03-13 Kaneka Corporation Curable composition
WO2009011329A1 (ja) * 2007-07-19 2009-01-22 Kaneka Corporation 硬化性組成物
EP2341106B1 (en) * 2008-09-29 2013-05-29 Kaneka Corporation Curable composition and cured product thereof
JP5251493B2 (ja) 2008-12-25 2013-07-31 旭硝子株式会社 硬化性組成物
JP5479862B2 (ja) 2009-11-26 2014-04-23 株式会社カネカ 硬化性組成物
JP5785954B2 (ja) * 2010-12-13 2015-09-30 株式会社カネカ 反応性可塑剤、およびこれを含む硬化性組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995619A (ja) * 1995-09-29 1997-04-08 Asahi Glass Co Ltd 室温硬化性組成物およびその製造法
WO2004092270A1 (ja) * 2003-04-11 2004-10-28 Kaneka Corporation 硬化性組成物
JP2006249251A (ja) * 2005-03-10 2006-09-21 Sekisui Chem Co Ltd 硬化性組成物、シーリング剤及び接着剤
JP2009108246A (ja) * 2007-10-31 2009-05-21 Sunstar Engineering Inc 石目地用シーリング材組成物
JP2009249494A (ja) * 2008-04-07 2009-10-29 Kaneka Corp 硬化性組成物および硬化物
JP2010150381A (ja) * 2008-12-25 2010-07-08 Asahi Glass Co Ltd 硬化性組成物
JP2011178955A (ja) * 2010-03-03 2011-09-15 Asahi Glass Co Ltd 硬化性組成物

Also Published As

Publication number Publication date
EP2634222A1 (en) 2013-09-04
US20130281632A1 (en) 2013-10-24
CN103180395A (zh) 2013-06-26
EP2634222B1 (en) 2020-02-12
US8846822B2 (en) 2014-09-30
WO2012057092A1 (ja) 2012-05-03
CN103180395B (zh) 2016-03-09
JPWO2012057092A1 (ja) 2014-05-12
EP2634222A4 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5953234B2 (ja) 硬化性組成物
JP5850851B2 (ja) 硬化性組成物
JP5785954B2 (ja) 反応性可塑剤、およびこれを含む硬化性組成物
JP5226218B2 (ja) 硬化性組成物
JP5226217B2 (ja) 硬化性組成物
JP5449508B2 (ja) 硬化性組成物
JP5002262B2 (ja) 硬化性組成物
JP5226315B2 (ja) 硬化性組成物
JP5081448B2 (ja) 硬化性組成物
JP6561062B2 (ja) 硬化性組成物
JP5907708B2 (ja) 硬化性組成物
JPWO2015098998A1 (ja) 硬化性組成物およびその硬化物
JP5340815B2 (ja) 一液型接着剤
JP5210685B2 (ja) 反応性ケイ素基含有有機重合体組成物の製造方法および流動性調整方法および該有機重合体組成物を用いた目地構造体
JP2007131798A (ja) 硬化性組成物
JP2009215331A (ja) SiF基を有する重合体を含有する硬化性組成物
JP2008280434A (ja) 硬化性組成物
JP5639442B2 (ja) 硬化性組成物
JP5564312B2 (ja) 硬化性組成物
JP6383163B2 (ja) 硬化性組成物およびその硬化物
JP2020164607A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系重合体およびこれを含有する硬化性組成物
JP2009120720A (ja) 反応性ケイ素基を有する有機重合体を含む組成物
JP2020164606A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系共重合体およびこれを含有する硬化性組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250