JP5910801B1 - エピタキシャルウエハおよびその製造方法 - Google Patents

エピタキシャルウエハおよびその製造方法 Download PDF

Info

Publication number
JP5910801B1
JP5910801B1 JP2015560462A JP2015560462A JP5910801B1 JP 5910801 B1 JP5910801 B1 JP 5910801B1 JP 2015560462 A JP2015560462 A JP 2015560462A JP 2015560462 A JP2015560462 A JP 2015560462A JP 5910801 B1 JP5910801 B1 JP 5910801B1
Authority
JP
Japan
Prior art keywords
film
main surface
silicon carbide
groove
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015560462A
Other languages
English (en)
Other versions
JPWO2016017502A1 (ja
Inventor
太郎 西口
太郎 西口
潤 玄番
潤 玄番
洋典 伊東
洋典 伊東
智亮 畑山
智亮 畑山
土井 秀之
秀之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Application granted granted Critical
Publication of JP5910801B1 publication Critical patent/JP5910801B1/ja
Publication of JPWO2016017502A1 publication Critical patent/JPWO2016017502A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

エピタキシャルウエハ(100)は、第1の主面(101)を有する炭化珪素膜(120)を備えている。第1の主面(101)には、溝部(20)が形成されている。溝部(20)は、第1の主面(101)に沿って一方向に延びている。また溝部(20)は、一方向における幅が一方向に垂直な方向における幅の2倍以上である。また溝部(20)は、第1の主面(101)からの最大深さが10nm以下である。

Description

本開示は、エピタキシャルウエハおよびその製造方法に関する。
特開2014−17439号公報(特許文献1)には、エピタキシャルウエハの製造に用いられる半導体製造装置が開示されている。
特開2014−17439号公報
本開示のエピタキシャルウエハは、第1の主面を有する炭化珪素膜を備えている。炭化珪素膜の第1の主面には、溝部が形成されている。溝部は、第1の主面に沿って一方向に延びている。また溝部は、一方向における幅が、該一方向に垂直な方向における幅の2倍以上である。また溝部は、第1の主面からの最大深さが10nm以下である。
本開示のエピタキシャルウエハの製造方法は、第2の主面を有する炭化珪素基板を準備する工程と、該第2の主面上に、炭化珪素膜をエピタキシャル成長させる工程と、を備える。炭化珪素膜をエピタキシャル成長させる工程は、第2の主面上に、C/Si比が1未満の原料ガスを用いて、第1の膜をエピタキシャル成長させる工程と、C/Si比が1未満の原料ガスと、水素ガスとを含む混合ガスを用いて、該第1の膜の表面を再構成する工程と、再構成された該第1の膜の該表面に、C/Si比が1以上の原料ガスを用いて、第2の膜をエピタキシャル成長させる工程とを含む。
本開示のエピタキシャルウエハの一部を示す概略断面図である。 本開示のエピタキシャルウエハの一部を示す概略平面図である。 本開示のエピタキシャルウエハの一部を示す概略平面図である。 本開示のエピタキシャルウエハの製造方法を概略的に示すフローチャートである。 エピタキシャル成長装置の構成を示す概略図である。 図5中の線分VI−VIに沿った断面を示す概略図である。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
〔1〕本開示のエピタキシャルウエハ100は、第1の主面101を有する炭化珪素膜120を備える。第1の主面101には、第1の主面101に沿って一方向に延びるとともに、該一方向における幅が該一方向に垂直な方向における幅の2倍以上であり、かつ、第1の主面101からの最大深さが10nm以下である溝部20が形成されている。
以下、溝部20の一方向における幅を「第2の幅82」、溝部20の一方向に垂直な方向における幅を「第3の幅83」、溝部20の第1の主面101からの最大深さを「第2の深さ72」とも記す。
炭化珪素基板上において炭化珪素膜をエピタキシャル成長させる場合、当該炭化珪素膜の表面には、微小なピット部が形成される場合がある。このピット部は、炭化珪素基板から炭化珪素膜に引き継がれた貫通転位に起因して形成されるものであり、数十nm程度の深さを有する窪みである。本発明者は、このピット部が、炭化珪素膜の表面に形成される酸化膜の膜厚のばらつきを増加させること、膜厚のばらつきが炭化珪素半導体装置の長期信頼性低下の一つの要因になっていることを見出した。
本発明者は、特定のエピタキシャル成長条件において、ピット部の形成を抑制できることを見出した。当該成長条件によると、ピット部が低減される一方、ピット部に比べて浅くかつ一方向に延びる溝部が多数形成される。しかしこの溝部は上記ピット部に比べて浅いため、酸化膜の膜厚に与える影響が上記ピット部に比べて小さいものである。
上記エピタキシャルウエハ100では、炭化珪素膜120の第1の主面101において、第3の幅83に対する第2の幅82の比が2以上になるように一方向に延在し、かつ第2の深さ72が10nm以下である溝部20が形成されている。すなわち、上記エピタキシャルウエハ100は、炭化珪素膜120のエピタキシャル成長の条件等が制御されることにより、数十nmの深さを有する上記ピット部に比べて、上記溝部20がより多数形成されたものになっている。したがって、上記エピタキシャルウエハ100によれば、上記ピット部が多数形成された従来のエピタキシャルウエハに比べて、酸化膜の膜厚のばらつきを少なくすることができる。
上記「溝部」の形状は、所定の欠陥検査装置を用いて第1の主面101を観察することにより特定することができる。これにより、溝部20の第2の幅82および第3の幅83を測定することができる。上記欠陥検査装置としては、たとえばレーザーテック株式会社製のWASAVIシリーズ「SICA 6X」を用いることができる(対物レンズ:×10)。また上記「溝部」の深さは、AFM(Atomic Force Microscope)を用いて測定することができる。
〔2〕上記エピタキシャルウエハ100において、溝部20は、第1の溝部21と、第1の溝部21に接続された第2の溝部22とを含んでいてもよい。第1の溝部21は、上記一方向において溝部20の一方の端部に形成されていてもよい。第2の溝部22は、第1の溝部21から上記一方向に沿って延びて上記一方の端部と反対側の他方の端部に至り、かつ第1の主面101からの深さである第1の深さ71が、第1の溝部21の最大深さである第2の深さ72よりも小さくてもよい。
上記のような構造を有する溝部20が形成されたエピタキシャルウエハ100においては、酸化膜の膜厚のばらつきを増加させるピット部の形成が抑制されている。したがって、上記エピタキシャルウエハ100によれば、酸化膜の膜厚のばらつきを少なくすることができる。
〔3〕上記エピタキシャルウエハ100は、(0001)面に対して±4°以下のオフ角を有する第2の主面102を有する炭化珪素基板110をさらに備えていてもよい。炭化珪素膜120は、第2の主面102上に形成された炭化珪素単結晶膜であり、溝部20は、炭化珪素膜120内に存在する貫通転位40から上記オフ角のオフ方向に沿うステップフロー成長方向に沿って延びるように形成されていてもよい。
上記のように、溝部20は、上記ステップフロー成長方向に沿って延びるように形成されていてもよい。このような溝部20が形成された上記エピタキシャルウエハ100においては、炭化珪素半導体装置の長期信頼性を低下させる微小ピットの形成が抑制されている。したがって、上記エピタキシャルウエハ100によれば、酸化膜の膜厚のばらつきを少なくすることができる。
〔4〕上記エピタキシャルウエハ100において、上記オフ方向は、<11−20>方向に対して±5°以下の範囲内にあってもよい。このように、第2の主面102は所定のオフ方向において(0001)面に対して傾斜していてもよい。
〔5〕上記エピタキシャルウエハ100において、上記オフ方向は、<01−10>方向に対して±5°以下の範囲内にあってもよい。このように、第2の主面102は所定のオフ方向において(0001)面に対して傾斜していてもよい。
〔6〕本開示のエピタキシャルウエハの製造方法は、第2の主面102を有する炭化珪素基板110を準備する工程(S10)と、第2の主面上に、炭化珪素膜をエピタキシャル成長させる工程(S20)と、を備える。炭化珪素膜をエピタキシャル成長させる工程は、第2の主面102上に、C/Si比が1未満の原料ガスを用いて、第1の膜121をエピタキシャル成長させる工程と、C/Si比が1未満の原料ガスと、水素ガスとを含む混合ガスを用いて、第1の膜121の表面を再構成する工程と、再構成された第1の膜121の該表面に、C/Si比が1以上の原料ガスを用いて、第2の膜122をエピタキシャル成長させる工程とを含む。
上記〔6〕において、「C/Si比」とは、原料ガス中の珪素(Si)原子数に対する炭素(C)原子数の比を示す。「表面を再構成する」とは、水素ガスによるエッチング、および原料ガスによるエピタキシャル成長により、第1の膜の表面性状を変化させることを示す。再構成する工程を経ることにより、第1の膜の厚さは、減少することもあるし、増加することもあるし、あるいは実質的に変化しないこともある。
表面を再構成する工程では、通常のエピタキシャル成長と比べて、水素ガス流量に対する原料ガス流量の比率を低下させ、水素ガスによるエッチングと、原料ガスによるエピタキシャル成長とが拮抗した状態とするとよい。たとえば成膜速度が0±0.5μm/h程度となるように、水素ガス流量および原料ガス流量を調整することが考えられる。
前述の貫通転位には、貫通らせん転位、貫通刃状転位およびこれらの転位が混合した混合転位が含まれる。各転位をバーガースベクトルbで表現すると、貫通らせん転位(b=<0001>)、貫通刃状転位(b=1/3<11−20>)、混合転位(b=<0001>+1/3<11−20>)となる。酸化膜の膜厚のばらつきに影響を及ぼすピット部は、貫通らせん転位、貫通刃状転位および混合転位に起因して形成されると考えられる。転位周辺の歪が比較的大きい、貫通らせん転位および混合転位に起因して形成されるピット部は、深さが深い。
上記〔6〕では、第1の膜の表面を再構成することにより、貫通らせん転位および混合転位に起因して形成されるピット部を浅くする効果が期待できる。その上で、原料ガスのC/Si比を1未満の値から1以上の値に変更し、第2の膜を成長させる。これにより、貫通らせん転位および混合転位に起因するピット部を浅くする効果が大きくなると考えられる。
[本開示の実施形態の詳細]
次に本開示の一実施形態(以下「本実施形態」とも記す)の具体例を、図面を参照しつつ説明する。なお以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。また負の指数については、結晶学上、”−”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
<エピタキシャルウエハの構造>
まず、本実施形態に係るエピタキシャルウエハの構成について、図1〜図3を参照しつつ説明する。図1は、本実施形態に係るエピタキシャルウエハの断面構造を部分的に示している。図2および図3は、本実施形態に係るエピタキシャルウエハの平面構造を部分的に示している。図1は、図2および図3中に示した線分I−Iに沿った断面構造を示している。
図1に示すように、本実施形態に係るエピタキシャルウエハ100は、炭化珪素基板110と、炭化珪素膜120とを有する。炭化珪素基板110は、たとえば炭化珪素単結晶からなる。この炭化珪素単結晶は、たとえば六方晶の結晶構造を有しており、かつポリタイプが4H型である。炭化珪素基板110は、たとえば窒素(N)などのn型不純物を含むことにより、導電型がn型となっている。炭化珪素基板110の直径は、たとえば100mm以上(4インチ以上)であり、好ましくは150mm以上(6インチ以上)である。
炭化珪素基板110は、第2の主面102と、第2の主面102と反対側の第3の主面103とを有している。第2の主面102は、図1に示すように、炭化珪素膜120が形成される主面である。第2の主面102は、(0001)面(以下、「シリコン(Si)面」とも称する)に対して±4°以下のオフ角を有している。このオフ角のオフ方向は、たとえば<11−20>方向に対して±5°以下の範囲内にあってもよいし、<01−10>方向に対して±5°以下の範囲内にあってもよい。
炭化珪素膜120は、CVD法などの気相成長法により第2の主面102上に形成された炭化珪素単結晶膜である。より具体的には、炭化珪素膜120は、シラン(SiH4)およびプロパン(C38)を原料ガスとし、窒素(N2)あるいはアンモニア(NH3)をドーパントガスとして用いたCVD法によって形成されたエピタキシャル成長膜である。また炭化珪素膜120には、上記窒素あるいはアンモニアが熱分解して生成した窒素(N)原子が取り込まれており、これにより炭化珪素膜120の導電型はn型となっている。炭化珪素膜120のn型不純物濃度は、炭化珪素基板110のn型不純物濃度よりも低くなっている。なお、上記のように第2の主面102は(0001)面に対してオフしているため、炭化珪素膜120はステップフロー成長により形成されている。そのため、炭化珪素膜120は炭化珪素基板110と同様に4H型の炭化珪素からなり、異種ポリタイプの混在が抑制されたものとなっている。炭化珪素膜120の厚さは、たとえば10μm以上50μm以下程度である。
炭化珪素膜120の表面すなわち第1の主面101には、溝部20が形成されている。溝部20は、図2に示すように第1の主面101の平面視において、第1の主面101に沿って一方向に延びている。より具体的には、溝部20は、第1の主面101の(0001)面に対するオフ角のオフ方向に沿ったステップフロー成長方向に沿って延びている。つまり、溝部20は、<11−20>方向に対して±5°以下の範囲内にある方向、または<01−10>方向に対して±5°以下の範囲内にある方向に沿って延びている。
なお図1〜図3は、「ステップフロー成長方向」が各図中のX軸方向と一致するように描かれている。図1〜図3において、X軸方向、Y軸方向およびZ軸方向は互いに直交する。図2および図3に示されるY軸方向は、ステップフロー成長方向に垂直な方向を示す。図1に示されるZ軸方向は、炭化珪素膜の厚さ方向を示す。
溝部20の上記一方向における幅(第2の幅82)は、上記一方向に垂直な方向における幅(第3の幅83)の2倍以上であり、好ましくは5倍以上である。第2の幅82は15μm以上50μm以下であり、好ましくは25μm以上35μm以下である。また第3の幅83は1μm以上5μm以下であり、好ましくは2μm以上3μm以下である。
図1に示すように、溝部20は、炭化珪素膜120内に存在する貫通転位40からステップフロー成長方向に沿って延びるように形成されている。より具体的には、溝部20は、貫通転位40上に形成された第1の溝部21と、第1の溝部21に接続され、かつ第1の溝部21からステップフロー成長方向に沿って延びるように形成された第2の溝部22とを含んでいる。
第1の溝部21は、ステップフロー成長方向において溝部20の一方の端部(図1中の左端部)に形成されている。また第1の溝部21は、第1の主面101からの最大深さ(第2の深さ)が10nm以下である。第2の深さ72は、図1に示すように溝部20全体における最大深さである。また第1の溝部21の幅(第1の幅81)は、好ましくは1μm以下であり、より好ましくは0.5μm以下である。
第2の溝部22は、図1に示すように、第1の溝部21との接続部を起点として、上記一方の端部と反対側の他方の端部(図1中の右端部)にまで至るように形成されている。また第2の溝部22は、第1の主面101からの深さ(第1の深さ71)が第1の溝部21の最大深さ(第2の深さ72)よりも小さくなるように形成されている。より具体的には、第2の溝部22は、第2の深さ72よりも浅い深さを維持しながらステップフロー成長方向に沿って延びている。第1の深さ71は、好ましくは3nm以下であり、より好ましくは2nm以下であり、さらに好ましくは1nm以下である。また第2の溝部22の幅(第4の幅84)は、たとえば20μm以上であり、好ましくは25μm以上である。
<エピタキシャルウエハの製造方法>
次に本実施形態に係るエピタキシャルウエハの製造方法について説明する。図4に示すように、当該製造方法は、炭化珪素基板を準備する工程(S10)と、炭化珪素膜をエピタキシャル成長させる工程(S20)と、を備える。
まず工程(S10)として、炭化珪素基板を準備する工程が実施される。この工程(S10)では、たとえば昇華再結晶法を用いて結晶成長させた4H型の炭化珪素インゴット(図示しない)を所定の厚みにスライスすることにより、第2の主面102および第3の主面103を有する炭化珪素基板110(図1)が準備される。
次に、工程(S20)として、炭化珪素膜を成長させる工程が実施される。この工程(S20)では、図1に示すように、CVD法により炭化珪素基板110の第2の主面102上において、炭化珪素膜120をエピタキシャル成長させる。まず、この工程(S20)で用いられるエピタキシャル成長装置1の構成について説明する。図5は、エピタキシャル成長装置1の側面図である。図6は、図5中の線分VI−VIに沿ったエピタキシャル成長装置1の断面図である。
図5および図6に示すように、エピタキシャル成長装置1は、発熱体6と、断熱材5と、石英管4と、誘導加熱コイル3とを主に有している。発熱体6は、たとえばカーボン材料からなる。発熱体6は、図6に示すように、曲面部7および平坦部8を含む半円筒状の中空構造を有している。発熱体6は二つ設けられており、平坦部8同士が互いに対向するように配置されている。この平坦部8により囲まれた空間が、炭化珪素基板110の処理を行うための空間であるチャネル2となっている。
断熱材5は、チャネル2をエピタキシャル成長装置1の外部から断熱するための部材である。断熱材5は、発熱体6の外周部を取り囲むように配置されている。石英管4は、断熱材5の外周部を取り囲むように配置されている。誘導加熱コイル3は、石英管4の外周部において巻回されている。
次に、上記エピタキシャル成長装置1を用いた結晶成長プロセスについて説明する。まず、上記工程(S10)において準備された炭化珪素基板110が、エピタキシャル成長装置1のチャネル2内に配置される。より具体的には、一方の発熱体6上に設けられたサセプタ(図示しない)上に、炭化珪素基板110が載置される。
1.第1の膜をエピタキシャル成長させる工程(S21)
次に第1の膜をエピタキシャル成長させる工程が実行される。この工程では、C/Si比が1未満の原料ガスを用いて、炭化珪素基板110の第2の主面102上に第1の膜121(図1を参照)をエピタキシャル成長させる。先ず、チャネル2内をガス置換した後、キャリアガスを流しながら、チャネル2内を所定の圧力、たとえば60mbar〜100mbar(6kPa〜10kPa)に調整する。キャリアガスは、たとえば水素(H2)ガス、アルゴン(Ar)ガス、ヘリウム(He)ガス等でよい。キャリアガス流量は、たとえば50slm〜200slm程度でよい。ここで流量の単位「slm(Standard Liter per Minute)」は、標準状態(0℃、101.3kPa)における「L/min」を示している。
次に誘導加熱コイルに所定の交流電流を供給することにより、発熱体6を誘導加熱する。これにより、チャネル2および炭化珪素基板110が載置されるサセプタが所定の反応温度にまで加熱される。このときサセプタは、たとえば1500℃〜1750℃程度まで加熱される。
次いで原料ガスを供給する。原料ガスは、Si源ガスとC源ガスとを含む。Si源ガスとしては、たとえばシラン(SiH4)ガス、ジシラン(Si26)ガス、ジクロロシラン(SiH2Cl2)ガス、トリクロロシラン(SiHCl3)ガス、四塩化珪素(SiCl4)ガス等が挙げられる。すなわちSi源ガスは、シランガス、ジシランガス、ジクロロシランガス、トリクロロシランガスおよび四塩化珪素ガスからなる群より選択される少なくとも1種でもよい。
C源ガスとしては、たとえば、メタン(CH4)ガス、エタン(C26)ガス、プロパン(C38)ガス、アセチレン(C22)ガス等が挙げられる。すなわちC源ガスは、メタンガス、エタンガス、プロパンガスおよびアセチレンガスからなる群より選択される少なくとも1種でもよい。
原料ガスは、ドーパントガスを含んでいてもよい。ドーパントガスとしては、たとえば、窒素ガス、アンモニアガス等が挙げられる。
第1の膜をエピタキシャル成長させる工程における原料ガスは、たとえばシランガスとプロパンガスとの混合ガスでもよい。第1の膜をエピタキシャル成長させる工程では、原料ガスのC/Si比が1未満に調整される。C/Si比は、1未満である限り、たとえば0.5以上でもよいし、0.6以上でもよいし、0.7以上でもよい。またC/Si比は、たとえば0.95以下でもよいし、0.9以下でもよいし、0.8以下でもよい。シランガス流量およびプロパンガス流量は、たとえば10〜100sccm程度の範囲で、所望のC/Si比となるように適宜調整すればよい。ここで流量の単位「sccm(Standard Cubic Centimeter per Minute)」は、標準状態(0℃、101.3kPa)における「mL/min」を示している。
第1の膜をエピタキシャル成長させる工程における成膜速度は、たとえば3μm/h以上30μm/h以下程度でもよい。第1の膜の厚さは、たとえば0.1μm以上150μm以下である。第1の膜の厚さは、0.2μm以上でもよいし、1μm以上でもよいし、10μm以上でもよいし、15μm以上でもよい。また第1の膜の厚さは、100μm以下でもよいし、75μm以下でもよいし、50μm以下でもよい。
2.第1の膜の表面を再構成する工程(S22)
次いで、第1の膜の表面を再構成する工程が実行される。表面を再構成する工程は、第1の膜をエピタキシャル成長させる工程と連続して実行されてもよい。あるいは、第1の膜をエピタキシャル成長させる工程と、表面を再構成する工程との間に、所定の休止時間を挟んでもよい。表面を再構成する工程では、サセプタ温度を10〜30℃程度上昇させてもよい。
表面を再構成する工程では、C/Si比が1未満の原料ガスと、水素ガスとを含む混合ガスが用いられる。原料ガスのC/Si比は、第1の膜をエピタキシャル成長させる工程におけるC/Si比より低くてもよい。C/Si比は、1未満である限り、0.5以上でもよいし、0.6以上でもよいし、0.7以上でもよい。またC/Si比は、たとえば0.95以下でもよいし、0.9以下でもよいし、0.8以下でもよい。
表面を再構成する工程では、第1の膜をエピタキシャル成長させる工程および後述の第2の膜をエピタキシャル成長させる工程における原料ガスと異なる原料ガスを用いてもよい。こうした態様により、ピット部を浅くする効果が大きくなることが期待される。たとえば第1の膜をエピタキシャル成長させる工程および後述の第2の膜をエピタキシャル成長させる工程では、シランガスおよびプロパンガスを用い、表面を再構成する工程では、ジクロロシランおよびアセチレンを用いる等の態様が考えられる。
表面を再構成する工程では、第1の膜をエピタキシャル成長させる工程および後述の第2の膜をエピタキシャル成長させる工程に比し、水素ガス流量に対する原料ガス流量の比率を低下させてもよい。これにより、ピット部を浅くする効果が大きくなることが期待される。
混合ガスにおける水素ガス流量は、たとえば100slm以上150slm以下程度でよい。水素ガス流量は、たとえば120slm程度でもよい。混合ガスにおけるSi源ガス流量は、たとえば1sccm以上5sccm以下でもよい。Si源ガス流量の下限は、2sccmでもよい。Si源ガス流量の上限は、4sccmでもよい。混合ガスにおけるC源ガス流量は、たとえば0.3sccm以上1.6sccm以下でもよい。C源ガス流量の下限は、0.5sccmでもよいし、0.7sccmでもよい。C源ガス流量の上限は、1.4sccmでもよいし、1.2sccmでもよい。
表面を再構成する工程では、水素ガスによるエッチングと、原料ガスによるエピタキシャル成長とが拮抗した状態となるように、各種条件を調整することが望ましい。たとえば成膜速度が0±0.5μm/h程度となるように、水素ガス流量および原料ガス流量を調整することが考えられる。成膜速度は、0±0.4μm/h程度に調整してもよいし、0±0.3μm/h程度に調整してもよいし、0±0.2μm/h程度に調整してもよいし、0±0.1μm/h程度に調整してもよい。これにより、ピット部を浅くする効果が大きくなることが期待される。
表面を再構成する工程における処理時間は、たとえば30分以上10時間以下程度である。処理時間は、8時間以下でもよいし、6時間以下でもよいし、4時間以下でもよいし、2時間以下でもよい。
3.第2の膜をエピタキシャル成長させる工程(S23)
第1の膜の表面を再構成した後、該表面に第2の膜をエピタキシャル成長させる工程が実行される。第2の膜122(図1を参照)は、C/Si比が1以上の原料ガスを用いて形成される。C/Si比は、1以上である限り、たとえば1.05以上でもよいし、1.1以上でもよいし、1.2以上でもよいし、1.3以上でもよいし、1.4以上でもよい。またC/Si比は、2.0以下でもよいし、1.8以下でもよいし、1.6以下でもよい。
第2の膜をエピタキシャル成長させる工程における原料ガスは、第1の膜をエピタキシャル成長させる工程で用いた原料ガスと同じでもよいし、異なっていてもよい。原料ガスは、たとえばシランガスおよびプロパンガスでもよい。シランガス流量およびプロパンガス流量は、たとえば10〜100sccm程度の範囲で、所望のC/Si比となるように適宜調整すればよい。キャリアガス流量は、たとえば50slm〜200slm程度でよい。
第2の膜をエピタキシャル成長させる工程における成膜速度は、たとえば5μm/h以上100μm/h以下程度でもよい。第2の膜の厚さは、たとえば1μm以上150μm以下である。第2の膜の厚さは、5μm以上でもよいし、10μm以上でもよいし、15μm以上でもよい。また第2の膜の厚さは、100μm以下でもよいし、75μm以下でもよいし、50μm以下でもよい。
第2の膜122の厚さは、第1の膜121の厚さと同じであってもよいし、異なっていてもよい。第2の膜122は、第1の膜121より薄くてもよい。たとえば、第1の膜121の厚さに対する第2の膜122の厚さの比は、0.01以上0.9以下程度でもよい。ここで同厚さの比は、第2の膜の厚さを、表面を再構成する工程を経た第1の膜の厚さで除した値を示している。同厚さの比は、0.8以下でもよいし、0.7以下でもよいし、0.6以下でもよいし、0.5以下でもよいし、0.4以下でもよいし、0.3以下でもよいし、0.2以下でもよいし、0.1以下でもよい。これにより、ピット部を浅くする効果が大きくなることが期待される。
以上より、図1に示すように、第1の膜121と第2の膜122とを含む、炭化珪素膜120が形成される。炭化珪素膜120において、第1の膜と第2の膜とは、渾然一体となり区別できない場合もある。
以上、工程(S10)〜工程(S23)を順次実行することにより、炭化珪素膜120の表面に溝部20が形成されたエピタキシャルウエハ100を製造することができる。
[評価]
1.サンプル作製
直径が150mmの炭化珪素基板110を準備した。炭化珪素基板110において第2の主面102は、オフ方向が<11−20>方向であり、(0001)面に対して4°のオフ角を有する。
サンプル1は、本開示の製造方法で形成された炭化珪素膜を有する。サンプル2は、本開示の製造方法から、第1の膜の表面を再構成する工程(S22)を削除した製造方法で形成された炭化珪素膜を有する。サンプル1およびサンプル2において、炭化珪素膜の膜厚は15μmである。
2.溝部の形状の評価
各サンプルにおいて、第1の主面101に形成された溝部の形状を欠陥検査装置およびAFMを用いて評価した。結果を表1に示す。ここでは欠陥の位置検査装置にレーザーテック株式会社製のWASAVIシリーズ「SICA 6X」(対物レンズ:×10)を用いた。
AFMとしては、たとえばVeeco社製の「Dimension300」を用いることができる。また上記AFMのカンチレバー(探針)としては、たとえばBruker社製の型式「NCHV−10V」を用いることができる。AFMの測定条件としては、測定モードをタッピングモードとし、タッピングモードでの測定領域を20μm四方、かつ測定深さを1.0μmとする。そしてタッピングモードでのサンプリングは、上記測定領域内での走査速度を1周期当たり5秒とし、1走査ライン当たりのデータ数を512ポイントとし、かつ走査ライン数を512として行う。またカンチレバーの変位制御は、15.50nmに設定する。
Figure 0005910801
表1に示すようにサンプル1では、第1の主面101に沿ってステップフロー成長方向(すなわち「一方向」)に延びるとともに、ステップフロー成長方向における幅である第2の幅82が、ステップフロー成長方向に垂直な方向における幅である第3の幅83の2倍以上である溝部20が検出された。
さらにサンプル1において溝部20の形状を詳細に調査したところ、溝部20内の一方の端部に最大深さを示す部分が含まれていることが分かった。最大深さを示す部分の深さは3nmであった。当該部分から他方の端部に延びる部分の深さは1nm以下であった。すなわちサンプル1における溝部20は、第1の溝部21と、第1の溝部21に接続された第2の溝部22とを含み、第1の溝部21は、ステップフロー成長方向において溝部20の一方の端部に形成され、第2の溝部22は、第1の溝部21からステップフロー成長方向に沿って延びて一方の端部と反対側の他方の端部に至り、かつ第1の主面101からの深さである第1の深さ71が、第1の溝部の最大深さである第2の深さ72よりも小さいものであった。
他方、サンプル2では、第2の幅82および第3の幅83がほぼ同じであり、かつ最大深さである第2の深さ72が10nmを超える溝部、すなわちピット部30が多数検出された。表1中、サンプル2における溝部の最大深さは、便宜上、第1の溝部の最大深さの欄に示している。
3.酸化膜の膜厚のばらつきの評価
サンプル1および2を、酸素を含む雰囲気中で加熱することにより、炭化珪素膜120の第1の主面101に酸化膜を形成した。さらに透過型電子顕微鏡によって酸化膜を観察し、酸化膜の膜厚のばらつきを測定した。結果を表2に示す。
Figure 0005910801
表2中「膜厚のばらつき」の欄には、溝部付近の最大膜厚と溝部がない部分の膜厚との差(A)、ならびに溝部付近の最小膜厚と溝部がない部分の膜厚との差(B)を「A/B」と記している。ここではAおよびBが共に小さい値であるほど、膜厚のばらつきが小さいことを示している。表2に示すとおり、サンプル1は、サンプル2よりも膜厚のばらつきが小さく良好であった。
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 エピタキシャル成長装置、2 チャネル、3 誘導加熱コイル、4 石英管、5 断熱材、6 発熱体、7 曲面部、8 平坦部、100 エピタキシャルウエハ、101 第1の主面、102 第2の主面、103 第3の主面、110 炭化珪素基板、120 炭化珪素膜、121 第1の膜、122 第2の膜、20 溝部、21 第1の溝部、22 第2の溝部、30 ピット部、40 貫通転位、71 第1の深さ、72 第2の深さ、81 第1の幅、82 第2の幅、83 第3の幅、84 第4の幅。

Claims (3)

  1. 第1の主面を有する炭化珪素膜と、
    第2の主面を有する炭化珪素基板と、を備え、
    前記炭化珪素膜は、前記第2の主面上に形成されており、
    前記第2の主面は、(0001)面に対して±4°以下のオフ角を有しており、
    前記オフ角のオフ方向は、<11−20>方向に対して±5°以下の範囲内か、または<01−10>方向に対して±5°以下の範囲内にあり、
    前記第1の主面には、前記第1の主面に沿って前記オフ方向に延びるとともに、前記オフ方向における幅が前記オフ方向に垂直な方向における幅の2倍以上であり、かつ、前記第1の主面からの最大深さが10nm以下である溝部が形成されている、エピタキシャルウエハ。
  2. 前記溝部は、第1の溝部と、前記第1の溝部に接続された第2の溝部とを含み、
    前記第1の溝部は、前記オフ方向において前記溝部の一方の端部に形成され、
    前記第2の溝部は、前記第1の溝部から前記オフ方向に沿って延びて前記一方の端部と反対側の他方の端部に至り、かつ、前記第1の主面からの深さが前記第1の溝部の最大深さよりも小さい、請求項1に記載のエピタキシャルウエハ。
  3. 第2の主面を有する炭化珪素基板を準備する工程と、
    前記第2の主面上に、炭化珪素膜をエピタキシャル成長させる工程と、を備え、
    前記炭化珪素膜をエピタキシャル成長させる工程は、
    前記第2の主面上に、C/Si比が1未満の原料ガスを用いて、第1の膜をエピタキシャル成長させる工程と、
    C/Si比が1未満の原料ガスと、水素ガスとを含む混合ガスを用いて、前記第1の膜の表面を再構成する工程と、
    再構成された前記第1の膜の前記表面に、C/Si比が1以上の原料ガスを用いて、第2の膜をエピタキシャル成長させる工程と、を含み、
    前記再構成する工程においては、前記水素ガスによるエッチングと、前記原料ガスによるエピタキシャル成長とが拮抗した状態である、エピタキシャルウエハの製造方法。
JP2015560462A 2014-08-01 2015-07-22 エピタキシャルウエハおよびその製造方法 Active JP5910801B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014157717 2014-08-01
JP2014157717 2014-08-01
PCT/JP2015/070844 WO2016017502A1 (ja) 2014-08-01 2015-07-22 エピタキシャルウエハおよびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016051194A Division JP6485392B2 (ja) 2014-08-01 2016-03-15 エピタキシャルウエハ

Publications (2)

Publication Number Publication Date
JP5910801B1 true JP5910801B1 (ja) 2016-04-27
JPWO2016017502A1 JPWO2016017502A1 (ja) 2017-04-27

Family

ID=55217403

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015560462A Active JP5910801B1 (ja) 2014-08-01 2015-07-22 エピタキシャルウエハおよびその製造方法
JP2016051194A Active JP6485392B2 (ja) 2014-08-01 2016-03-15 エピタキシャルウエハ
JP2019019996A Active JP6677328B2 (ja) 2014-08-01 2019-02-06 エピタキシャルウエハ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016051194A Active JP6485392B2 (ja) 2014-08-01 2016-03-15 エピタキシャルウエハ
JP2019019996A Active JP6677328B2 (ja) 2014-08-01 2019-02-06 エピタキシャルウエハ

Country Status (5)

Country Link
US (2) US9957641B2 (ja)
JP (3) JP5910801B1 (ja)
CN (2) CN106574397B (ja)
DE (1) DE112015003559T5 (ja)
WO (1) WO2016017502A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910801B1 (ja) 2014-08-01 2016-04-27 住友電気工業株式会社 エピタキシャルウエハおよびその製造方法
US9728628B2 (en) * 2014-08-29 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
WO2017090285A1 (ja) 2015-11-24 2017-06-01 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP6672962B2 (ja) * 2016-03-31 2020-03-25 住友電気工業株式会社 炭化珪素半導体基板および半導体装置の製造方法
JP6945858B2 (ja) * 2018-04-26 2021-10-06 国立研究開発法人産業技術総合研究所 炭化珪素エピタキシャルウェハ及び炭化珪素半導体装置
JP2022020995A (ja) * 2020-07-21 2022-02-02 三菱電機株式会社 炭化珪素エピタキシャルウエハの製造方法
EP3943644A1 (en) * 2020-07-21 2022-01-26 SiCrystal GmbH Sic crystals with an optimal orientation of lattice planes for fissure reduction and method of producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525402A (ja) * 2004-03-01 2007-09-06 クリー インコーポレイテッド 炭化珪素エピキタシーにおけるニンジン状欠陥の低減
JP2008159740A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd SiC単結晶の製造方法及びSiC単結晶の製造装置
JP2009218575A (ja) * 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
JP2009256138A (ja) * 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2014093526A (ja) * 2012-10-31 2014-05-19 Lg Innotek Co Ltd エピタキシャルウエハ

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2250392A (en) 1991-06-12 1993-01-12 Case Western Reserve University Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers
CN1802752A (zh) 2003-11-25 2006-07-12 松下电器产业株式会社 半导体元件
JP2005183943A (ja) 2003-11-25 2005-07-07 Matsushita Electric Ind Co Ltd 半導体素子
JP2005166930A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd SiC−MISFET及びその製造方法
JP4459723B2 (ja) * 2004-06-08 2010-04-28 株式会社デンソー 炭化珪素単結晶、炭化珪素基板およびその製造方法
JP4293165B2 (ja) * 2005-06-23 2009-07-08 住友電気工業株式会社 炭化ケイ素基板の表面再構成方法
CN101263606B (zh) 2005-09-12 2010-12-15 日产自动车株式会社 半导体装置及其制造方法
JP2008071896A (ja) * 2006-09-13 2008-03-27 Nippon Steel Corp 金属−絶縁膜−炭化珪素半導体構造
JPWO2008062729A1 (ja) 2006-11-21 2010-03-04 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2008205296A (ja) 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd 炭化珪素半導体素子及びその製造方法
JP5307381B2 (ja) 2007-11-12 2013-10-02 Hoya株式会社 半導体素子ならびに半導体素子製造法
JP4959763B2 (ja) 2009-08-28 2012-06-27 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
JP4887418B2 (ja) 2009-12-14 2012-02-29 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
JP4850960B2 (ja) 2010-04-07 2012-01-11 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法
US8852342B2 (en) 2010-08-30 2014-10-07 International Business Machines Corporation Formation of a vicinal semiconductor-carbon alloy surface and a graphene layer thereupon
JP2012064873A (ja) 2010-09-17 2012-03-29 Rohm Co Ltd 半導体装置およびその製造方法
US8569842B2 (en) 2011-01-07 2013-10-29 Infineon Technologies Austria Ag Semiconductor device arrangement with a first semiconductor device and with a plurality of second semiconductor devices
US8664665B2 (en) 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
JP5699878B2 (ja) * 2011-09-14 2015-04-15 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
US8853776B2 (en) 2011-09-21 2014-10-07 Infineon Technologies Austria Ag Power transistor with controllable reverse diode
JP5811829B2 (ja) 2011-12-22 2015-11-11 住友電気工業株式会社 半導体装置の製造方法
JP2014017439A (ja) 2012-07-11 2014-01-30 Sumitomo Electric Ind Ltd 半導体製造装置および半導体製造方法
US20140054609A1 (en) 2012-08-26 2014-02-27 Cree, Inc. Large high-quality epitaxial wafers
JP2014063949A (ja) 2012-09-24 2014-04-10 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
JP5939127B2 (ja) 2012-10-22 2016-06-22 住友電気工業株式会社 炭化珪素半導体装置
WO2014068813A1 (ja) 2012-10-30 2014-05-08 パナソニック株式会社 半導体装置
JP5384714B2 (ja) 2012-10-31 2014-01-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
JP5954140B2 (ja) 2012-11-29 2016-07-20 住友電気工業株式会社 炭化珪素半導体装置
JP2014138048A (ja) 2013-01-16 2014-07-28 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
JP2014146748A (ja) 2013-01-30 2014-08-14 Toshiba Corp 半導体装置及びその製造方法並びに半導体基板
JP6123408B2 (ja) 2013-03-26 2017-05-10 三菱電機株式会社 単結晶4H−SiC基板及びその製造方法
JP6244762B2 (ja) 2013-09-12 2017-12-13 住友電気工業株式会社 炭化珪素半導体装置
JP6183200B2 (ja) 2013-12-16 2017-08-23 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP5910801B1 (ja) 2014-08-01 2016-04-27 住友電気工業株式会社 エピタキシャルウエハおよびその製造方法
US9728628B2 (en) 2014-08-29 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
WO2016075957A1 (ja) 2014-11-12 2016-05-19 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法および炭化珪素エピタキシャル基板
JP2016127177A (ja) 2015-01-06 2016-07-11 住友電気工業株式会社 炭化珪素基板、炭化珪素半導体装置および炭化珪素基板の製造方法
JP2016166112A (ja) 2015-03-10 2016-09-15 株式会社東芝 半導体基板及び半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525402A (ja) * 2004-03-01 2007-09-06 クリー インコーポレイテッド 炭化珪素エピキタシーにおけるニンジン状欠陥の低減
JP2008159740A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd SiC単結晶の製造方法及びSiC単結晶の製造装置
JP2009218575A (ja) * 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
JP2009256138A (ja) * 2008-04-17 2009-11-05 Nippon Steel Corp エピタキシャル炭化珪素単結晶基板及びその製造方法
JP2014093526A (ja) * 2012-10-31 2014-05-19 Lg Innotek Co Ltd エピタキシャルウエハ

Also Published As

Publication number Publication date
JP2019073440A (ja) 2019-05-16
US20180209064A1 (en) 2018-07-26
CN110747507B (zh) 2021-03-19
JP6677328B2 (ja) 2020-04-08
CN106574397A (zh) 2017-04-19
WO2016017502A1 (ja) 2016-02-04
CN106574397B (zh) 2019-10-22
JP2016138040A (ja) 2016-08-04
US9957641B2 (en) 2018-05-01
US20160326668A1 (en) 2016-11-10
US10612160B2 (en) 2020-04-07
CN110747507A (zh) 2020-02-04
JP6485392B2 (ja) 2019-03-20
JPWO2016017502A1 (ja) 2017-04-27
DE112015003559T5 (de) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6677328B2 (ja) エピタキシャルウエハ
WO2016051975A1 (ja) 炭化珪素エピタキシャル基板
JP7188467B2 (ja) 炭化珪素エピタキシャル基板
JP5152435B2 (ja) エピタキシャル炭化珪素単結晶基板の製造方法
JP5910802B1 (ja) 炭化珪素半導体装置およびその製造方法
CN104078331B (zh) 单晶4H‑SiC衬底及其制造方法
JP6183010B2 (ja) 炭化珪素単結晶基板およびその製造方法
TW201529914A (zh) 碳化矽磊晶基板及碳化矽磊晶基板之製造方法
JP2021138597A (ja) ウエハ、エピタキシャルウエハ及びその製造方法
JP2017019679A (ja) 炭化珪素エピタキシャル基板
JP2018108916A (ja) 炭化珪素エピタキシャル基板の製造方法
JP6468112B2 (ja) 炭化珪素半導体装置
JP2014232799A (ja) 炭化珪素半導体基板の製造方法
JP2015042602A (ja) 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250