JP5880863B2 - 車両用熱管理システム - Google Patents

車両用熱管理システム Download PDF

Info

Publication number
JP5880863B2
JP5880863B2 JP2012278552A JP2012278552A JP5880863B2 JP 5880863 B2 JP5880863 B2 JP 5880863B2 JP 2012278552 A JP2012278552 A JP 2012278552A JP 2012278552 A JP2012278552 A JP 2012278552A JP 5880863 B2 JP5880863 B2 JP 5880863B2
Authority
JP
Japan
Prior art keywords
cooling water
temperature
cooler
switching valve
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012278552A
Other languages
English (en)
Other versions
JP2013230805A (ja
Inventor
竹内 雅之
雅之 竹内
梯 伸治
伸治 梯
山中 隆
隆 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012278552A priority Critical patent/JP5880863B2/ja
Priority to CN201380008012.2A priority patent/CN104093587B/zh
Priority to DE112013000833.5T priority patent/DE112013000833T5/de
Priority to US14/376,316 priority patent/US9643469B2/en
Priority to PCT/JP2013/000504 priority patent/WO2013114874A1/ja
Publication of JP2013230805A publication Critical patent/JP2013230805A/ja
Application granted granted Critical
Publication of JP5880863B2 publication Critical patent/JP5880863B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、車両に用いられる熱管理システムに関する。
従来、特許文献1には、電気自動車のモータジェネレータ、インバータ、バッテリおよび車室を冷却する熱制御装置が記載されている。
この従来技術の熱制御装置は、モータジェネレータおよびインバータを冷却する冷却水を循環させる冷却回路と、バッテリおよび車室の冷却に用いられる冷却水を循環させる第1循環回路と、室外熱交換器を通過して外気との間で熱交換が行われる冷却水を循環させる第2循環回路とを備えている。
さらに熱制御装置は、冷却回路と第1循環回路との断接を行う第1バルブ、冷却回路を第1循環回路及び第2循環回路のいずれかに接続する第2バルブ、及び冷却回路と第2循環回路との断接を行う第3バルブを備え、それら各バルブの制御を通じて冷却回路の接続先を第1循環回路と第2循環回路との間で切り換えるようにしている。
第2循環回路を循環する冷却水と第1循環回路を循環する冷却水との間では、熱移動装置による熱の移動を行うことが可能となっている。この熱移動装置は、第1循環回路の冷却水と第2循環回路の冷却水との間で、低温の冷却水から高温の冷却水への熱の移動を行う。
そして、第1循環回路の冷却水の熱を熱移動装置によって第2循環回路の冷却水へ移動させ、第2循環回路の冷却水の熱を室外熱交換器で外気に放熱することによって、バッテリおよび車室を冷却することができる。
また、冷却回路を第1〜第3バルブで第1循環回路または第2循環回路に接続して、冷却回路の冷却水の熱を第2循環回路の室外熱交換器で外気に放熱することによって、モータジェネレータおよびインバータを冷却することができる。
特開2011−121551号公報
上記従来技術によると、モータジェネレータ、インバータ、バッテリおよび車室といった複数個の温度調整対象機器を冷却する冷却システムにおいて、室外熱交換器が1つだけで済むという利点があるものの、全体の回路構成が複雑になるという問題がある。この問題は、温度調整対象機器の個数が多くなるほど顕著になる。
例えば、モータジェネレータ、インバータ、バッテリの他にも冷却を必要とする温度調整対象機器としてEGRクーラ、吸気冷却器などがあり、それらの温度調整対象機器は、要求される冷却温度が互いに異なる。
そのため、各温度調整対象機器を適切に冷却すべく各温度調整対象機器に循環する冷却水を切り替え可能にしようとすると、温度調整対象機器の個数に応じて循環回路の個数が増え、それに伴って各循環回路と冷却回路との断接を行うバルブの個数も増えるので、各循環回路と冷却回路とを接続する流路の構成が非常に複雑になってしまう。
本発明は上記点に鑑みて、複数個の温度調整対象機器に循環する熱媒体を切り替えることのできる車両用熱管理システムの構成を簡素化することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、
熱媒体を吸入して吐出する第1ポンプ(11)および第2ポンプ(12)と、
第1ポンプ(11)から吐出された熱媒体と外気とを熱交換させる熱交換器(13)と、
熱媒体が流通する流路を有し、熱媒体によって温度調整される複数個の温度調整対象機器(15、16、17、18、50、65)と、
第1ポンプ(11)の熱媒体吐出側および第2ポンプ(12)の熱媒体吐出側が互いに並列に接続され且つ複数個の温度調整対象機器の熱媒体入口側が互いに並列に接続され、複数個の温度調整対象機器のそれぞれについて第1ポンプ(11)から吐出された熱媒体が流入する場合と第2ポンプ(12)から吐出された熱媒体が流入する場合とを切り替える第1切替弁(19)と、
第1ポンプ(11)の熱媒体吸入側および第2ポンプ(12)の熱媒体吸入側が互いに並列に接続され且つ複数個の温度調整対象機器の熱媒体出口側が互いに並列に接続され、複数個の温度調整対象機器のそれぞれについて第1ポンプ(11)へ熱媒体が流出する場合と第2ポンプ(12)へ熱媒体が流出する場合とを切り替える第2切替弁(20)と、
複数個の温度調整対象機器のそれぞれについて、第1ポンプ(11)との間で熱媒体が循環する場合と、第2ポンプ(12)との間で熱媒体が循環する場合とが切り替わるように第1切替弁(19)および第2切替弁(20)の作動を制御する制御手段(40)とを備えることを特徴とする。
これにより、熱媒体の流れを切り替える第1、第2切替弁(20)の間に複数個の温度調整対象機器(15、16、17、18、50、65)を並列に接続するという簡素な構成によって、複数個の温度調整対象機器に循環する熱媒体を切り替えることができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における車両用熱管理システムの全体構成図である。 図1の車両用熱管理システムにおける第1モードを説明する図である。 図1の車両用熱管理システムにおける第2モードを説明する図である。 図1の車両用熱管理システムにおける第3モードを説明する図である。 第1実施形態の第1切替弁および第2切替弁を示す斜視図である。 図5の第1切替弁の分解斜視図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の第1状態を示す断面図である。 図5の第1切替弁の第2状態を示す断面図である。 図5の第1切替弁の第3状態を示す断面図である。 図1の車両用熱管理システムの電気制御部を示すブロック図である。 第2実施形態における車両用熱管理システムの全体構成図である。 図16の車両用熱管理システムにおける第1モードを説明する図である。 図16の車両用熱管理システムにおける第2モードを説明する図である。 図16の車両用熱管理システムにおける第3モードを説明する図である。 図16の車両用熱管理システムにおける第4モードを説明する図である。 図16の車両用熱管理システムにおける第5モードを説明する図である。 第2実施形態の冷却水冷却器および凝縮器を示す斜視図である。 第2実施形態の制御装置が実行する制御処理を示すフローチャートである。 第3実施形態における車両用熱管理システムの全体構成図である。 図24の車両用熱管理システムにおける第1モードを説明する図である。 図24の車両用熱管理システムにおける第2モードを説明する図である。 図24の車両用熱管理システムにおける第3モードを説明する図である。 第3実施形態の冷却水冷却器、凝縮器および過冷却器を示す斜視図である。 第4実施形態における車両用熱管理システムの全体構成図である。 図29の車両用熱管理システムにおける第1モードを説明する図である。 図29の車両用熱管理システムにおける第2モードを説明する図である。 図29の車両用熱管理システムにおける第3モードを説明する図である。 第5実施形態における車両用熱管理システムの全体構成図である。 図33の車両用熱管理システムにおける第1モードを説明する図である。 図34の車両用熱管理システムにおける第2モードを説明する図である。 第6実施形態における車両用熱管理システムの全体構成図である。 第7実施形態の冷却水冷却器、凝縮器および過冷却器を示す斜視図である。 第8実施形態の冷却水冷却器、凝縮器および膨張弁を示す斜視図である。 第9実施形態の車両用熱管理システムにおける第1モードを説明する図である。 第9実施形態の車両用熱管理システムにおける第2モードを説明する図である。 第9実施形態の車両用熱管理システムにおける第3モードを説明する図である。 第9実施形態の車両用熱管理システムにおける第4モードを説明する図である。 第9実施形態の車両用熱管理システムの電気制御部を示すブロック図である。 第9実施形態の制御装置が実行する制御処理を示すフローチャートである。 第10実施形態における車両用熱管理システムの全体構成図である。 第11実施形態における車両用熱管理システムの全体構成図である。 第12実施形態における車両用熱管理システムの全体構成図である。 第12実施形態の制御装置が実行する制御処理を示すフローチャートである。 第12実施形態の車両用熱管理システムにおける第1冷却モードを説明する図である。 第12実施形態の車両用熱管理システムにおける第2冷却モードを説明する図である。 第12実施形態の車両用熱管理システムにおける第1加熱モードを説明する図である。 第12実施形態の車両用熱管理システムにおける第2加熱モードを説明する図である。 第12実施形態の車両用熱管理システムにおける電池均温運転モードを説明する図である。 第13実施形態における車両用熱管理システムの全体構成図である。 第13実施形態の制御装置が実行する制御処理を示すフローチャートである。 第13実施形態の車両用熱管理システムにおける第1冷却モードを説明する図である。 第13実施形態の車両用熱管理システムにおける第2冷却モードを説明する図である。 第14実施形態における車両用熱管理システムの全体構成図である。 第15実施形態における車両用熱管理システムの全体構成図である。 第16実施形態における電池冷却器の断面図である。 第16実施形態の制御装置が実行する制御処理を示すフローチャートである。 第17実施形態における電池冷却器の断面図である。 第17実施形態の制御装置が実行する制御処理を示すフローチャートである。
(第1実施形態)
以下、第1実施形態を図1〜図15に基づいて説明する。図1に示す車両用熱管理システム10は、車両が備える各種機器(冷却または加熱を要する機器)や車室内を適切な温度に冷却するために用いられる。
本実施形態では、冷却システム10を、エンジン(内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、冷却システムを構成する電動式構成機器をはじめとする各種車載機器に供給される。
図1に示すように、冷却システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17、クーラコア18、第1切替弁19および第2切替弁20を備えている。
第1ポンプ11および第2ポンプ12は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。冷却水としては、少なくともエチレングリコールまたはジメチルポリシロキサンを含む液体が好ましい。
ラジエータ13は、冷却水と外気とを熱交換することによって冷却水の熱を外気に放熱させる放熱用の熱交換器(放熱器)である。ラジエータ13の冷却水出口側は、第1ポンプ11の冷却水吸入側に接続されている。室外送風機21は、ラジエータ13へ外気を送風する電動送風機である。ラジエータ13および室外送風機21は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。
冷却水冷却器14は、冷凍サイクル22の低圧冷媒と冷却水とを熱交換させることによって冷却水を冷却する冷却手段である。冷却水冷却器14の冷却水入口側は、第2ポンプ12の冷却水吐出側に接続されている。
冷却水冷却器14は、冷凍サイクル22の蒸発器を構成している。冷凍サイクル22は、圧縮機23、凝縮器24、膨張弁25、および蒸発器としての冷却水冷却器14を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル22では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
圧縮機23は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル22の冷媒を吸入して圧縮して吐出する。凝縮器24は、圧縮機23から吐出された高圧冷媒と外気とを熱交換させることによって高圧冷媒を凝縮させる高圧側熱交換器である。
膨張弁25は、凝縮器24で凝縮された液相冷媒を減圧膨張させる減圧手段である。冷却水冷却器14は、膨張弁25で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発させる低圧側熱交換器である。冷却水冷却器14で蒸発した気相冷媒は圧縮機23に吸入されて圧縮される。
ラジエータ13では外気によって冷却水を冷却するのに対し、冷却水冷却器14では冷凍サイクル22の低圧冷媒によって冷却水を冷却する。このため、冷却水冷却器14で冷却された冷却水の温度は、ラジエータ13で冷却された冷却水の温度に比べて低くなる。
具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却することはできないのに対し、冷却水冷却器14では冷却水を外気の温度よりも低温まで冷却することができる。
そこで以下では、ラジエータ13で外気によって冷却された冷却水を中温冷却水と言い、冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された冷却水を低温冷却水と言う。
冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18は、中温冷却水および低温冷却水のいずれかによって温度調整される温度調整対象機器である。
電池冷却器15は、冷却水の流路を有しており、電池の熱を冷却水に与えることによって電池を冷却する。電池は、出力低下、充電効率低下および劣化防止等の理由から10〜40℃程度の温度に維持されるのが好ましい。
インバータ冷却器16は、冷却水の流路を有しており、インバータの熱を冷却水に与えることによってインバータを冷却する。インバータは、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。インバータは、劣化防止等の理由から65℃以下の温度に維持されるのが好ましい。
排気ガス冷却器17は、冷却水の流路を有しており、エンジンの排気ガスの熱を冷却水に与えることによって排気ガスを冷却する。排気ガス冷却器17で冷却された排気ガスは、エンジンの吸気側に戻される。エンジンの吸気側に戻される排気ガスは、エンジンの損失低減、ノッキングの防止、およびNOX発生の抑制等の理由から40〜100℃の温度に維持されるのが好ましい。
クーラコア18は、冷却水と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器(空気冷却器)である。室内送風機26は、クーラコア18へ外気を送風する電動送風機である。クーラコア18および室内送風機26は、室内空調ユニットのケーシング27の内部に配置されている。
第1切替弁19および第2切替弁20は、冷却水の流れを切り替える流れ切替手段である。第1切替弁19および第2切替弁は、基本構造は互いに同一であり、冷却水の入口と冷却水の出口とが互いに逆になっている点が相違している。
第1切替弁19は、冷却水の入口として2つの入口19a、19bを有し、冷却水の出口として4つの出口19c、19d、19e、19fを有している。
入口19aには、第1ポンプ11の冷却水吐出側が接続されている。入口19bには、冷却水冷却器14の冷却水出口側が接続されている。
出口19cには、クーラコア18の冷却水入口側が接続されている。出口19dには、排気ガス冷却器17の冷却水入口側が接続されている。出口19eには、電池冷却器15の冷却水入口側が接続されている。出口19fには、インバータ冷却器16の冷却水入口側が接続されている。
第2切替弁20は、冷却水の入口として入口20a、20b、20c、20dを有し、冷却水の出口として出口20e、20fを有している。
入口20aには、クーラコア18の冷却水出口側が接続されている。入口20bには、排気ガス冷却器17の冷却水出口側が接続されている。入口20cには、電池冷却器15の冷却水出口側が接続されている。入口20dには、インバータ冷却器16の冷却水出口側が接続されている。
出口20eには、ラジエータ13の冷却水入口側が接続されている。出口20fには、第2ポンプ12の冷却水吸入側が接続されている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を3種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20dと出口20e、20fとの連通状態を3種類の状態に切り替え可能な構造になっている。
図2は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
第1状態では、第1切替弁19は、入口19aを出口19d、19e、19fと連通させ、入口19bを出口19cと連通させる。これにより、第1切替弁19は、図2の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19e、19fから流出させ、図2の実線矢印に示すように入口19bから流入した冷却水を出口19cから流出させる。
第1状態では、第2切替弁20は、入口20b、20c、20dを出口20eと連通させ、入口20aを出口20fと連通させる。これにより、第2切替弁20は、図2の一点鎖線矢印に示すように入口20b、20c、20dから流入した冷却水を出口20eから流出させ、図2の実線矢印に示すように入口20aから流入した冷却水を出口20fから流出させる。
図3は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
第2状態では、第1切替弁19は、入口19aを出口19d、19fと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図3の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19fから流出させ、図3の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
第2状態では、第2切替弁20は、入口20a、20cを出口20fと連通させ、入口20b、20dを出口20eと連通させる。これにより、第2切替弁20は、図3の一点鎖線矢印に示すように入口20b、20dから流入した冷却水を出口20eから流出させ、図3の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
図4は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
第3状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させる。これにより、第1切替弁19は、図4の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図4の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させる。
第3状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、図4の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図3の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させる。
図5に示すように、第1切替弁19および第2切替弁20はそれぞれ、弁体の回転軸191、201を備えている。これら回転軸191、201には、切替弁用電動モータ30の出力軸30aの回転力が歯車31、32、33、34を介して伝達される。これにより、共通の切替弁用電動モータ30によって、第1切替弁19の弁体と第2切替弁20の弁体とが連動して回転駆動される。
なお、第1切替弁19用の切替弁用電動モータと第2切替弁20用の切替弁用電動モータとを個別に設け、2つの切替弁用電動モータの作動を連動制御することによって、、第1切替弁19の弁体と第2切替弁20の弁体とを連動して回転駆動するようにしてもよい。
第1切替弁19および第2切替弁の基本構造は互いに同一であるので、以下では第1切替弁19の具体的構造を説明し、第2切替弁20の具体的構造については説明を省略する。
第1切替弁19は、外殻をなすケース192を備えている。ケース192は、弁体の回転軸191の長手方向(図5では上下方向)に延びる略円筒状に形成されている。ケース192の一端面(図5では上端面)には、弁体の回転軸191が貫通している。
ケース192の円筒面は、一端側(図5では上端側)から他端側(図5では他端側)に向かって外径および内径が4段階に縮小している。具体的には、ケース192の円筒面には、一端側から他端側に向かって順に、外径および内径が最も大きい第1円筒部192aと、外径および内径がその次に大きい第2円筒部192bと、外径および内径がその次に大きい第3円筒部192cと、外径および内径が最も小さい第4円筒部192dとが形成されている。
第1円筒部192aには出口19cが形成されている。第2円筒部192bには出口19dが形成されている。第3円筒部192cには出口19eが形成されている。第4円筒部192dには出口19fが形成されている。
図6に示すように、ケース192の他端面(図6では下端面)には、冷却水の入口19aおよび冷却水の入口19bが形成されている。
ケース192の内部空間には、内筒部材193が挿入されている。内筒部材193は、内径および外径が一定の円筒状に形成され、ケース192と同軸状に配置されている。内筒部材193のうちケース192他端側の端部(図6では下端部)は、ケース192の他端面に密着して固定されている。
内筒部材193の内部には仕切板193aが設けられている。仕切板193aは、内筒部材193の軸方向全域にわたって形成されており、内筒部材193の内部空間を半円筒状の2つの空間193b、193cに仕切っている。
2つの空間193b、193cのうち第1空間193bはケース192の入口19aと連通し、第2空間193cはケース192の入口19bと連通している。
内筒部材193の円筒面には、第1空間193bに連通する4つの開口部193d、193e、193f、193gと、第2空間193cに連通する4つの開口部193h、193i、193j、193kとが形成されている。
内筒部材193をケース192の内部に挿入した状態では、内筒部材193の開口部193d、193hは内筒部材193の第1円筒部192aに対向し、開口部193e、193iは内筒部材193の第2円筒部192bに対向し、開口部193f、193jは、内筒部材193の第3円筒部192cに対向し、開口部193g、193kは内筒部材193の第4円筒部192dに対向している。
ケース192と内筒部材193との間には、内筒部材193の8つの開口部193d〜193kを開閉する弁体194が挿入されている。弁体194は、略円筒状に形成され、ケース192および内筒部材193と同軸状に配置されている。
弁体194の一端面(図6では上端面)の中心部には回転軸191が固定されている。弁体194は、ケース192および内筒部材193に対して回転軸191を中心に回転可能になっている。
弁体194の内径は、内筒部材193の外径と同様に一定となっている。弁体194の外径は、ケース192の内径と同様に、一端側から他端側に向かって4段階に縮小している。
これにより、弁体194の外周面には、一端側から他端側に向かって順に、外径が最も大きい第1円筒部194aと、外径がその次に大きい第2円筒部194bと、外径がその次に大きい第3円筒部194cと、外径が最も小さい第4円筒部194dとが形成されている。
弁体194をケース192と内筒部材193との間に挿入した状態では、弁体194の第1円筒部194aはケース192の第1円筒部192aと対向し、弁体194の第2円筒部194bはケース192の第2円筒部192bと対向し、弁体194の第3円筒部194cはケース192の第3円筒部194cと対向し、弁体194の第4円筒部194dはケース192の第4円筒部194dと対向している。
弁体194の第1円筒部194aには、複数個の孔194eが形成されている。弁体194の第2円筒部194bには、複数個の孔194fが形成されている。弁体194の第3円筒部194cには、複数個の孔194gが形成されている。弁体194の第4円筒部194dには、複数個の孔194hが形成されている。
図7は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。
弁体194の第1円筒部194aの孔194eは、第1円筒部194aの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193d、193hと重なり合う。
内筒部材193の開口部193d、193hの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第1円筒部194aに密着しており、内筒部材193の開口部193d、193h相互間を液密にシールする役割を果たす。
弁体194の第1円筒部194aとケース192の第1円筒部192aとの間には第1環状空間196aが形成されている。第1環状空間196aは出口19cと連通している。
図8は、第1切替弁19を弁体194の第2円筒部194bの部分で軸方向と垂直に切断した断面図である。
弁体194の第2円筒部194bの孔194fは、第2円筒部194bの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193e、193iと重なり合う。
内筒部材193の開口部193e、193iの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第2円筒部194bに密着しており、内筒部材193の開口部193e、193i相互間を液密にシールする役割を果たす。
弁体194の第2円筒部194bとケース192の第2円筒部192bとの間には第2環状空間196bが形成されている。第2環状空間196bは出口19dと連通している。
図9は、第1切替弁19を弁体194の第3円筒部194cの部分で軸方向と垂直に切断した断面図である。
弁体194の第3円筒部194cの孔194gは、第3円筒部194cの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193f、193jと重なり合う。
内筒部材193の開口部193f、193jの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第3円筒部194cに密着しており、内筒部材193の開口部193f、193j相互間を液密にシールする役割を果たす。
弁体194の第3円筒部194cとケース192の第3円筒部192cとの間には第3環状空間196cが形成されている。第3環状空間196cは出口19eと連通している。
図10は、第1切替弁19を弁体194の第4円筒部194dの部分で軸方向と垂直に切断した断面図である。
弁体194の第4円筒部194dの孔194hは、第3円筒部194cの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193g、193kと重なり合う。
内筒部材193の開口部193g、193kの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第4円筒部194dに密着しており、内筒部材193の開口部193g、193k相互間を液密にシールする役割を果たす。
弁体194の第4円筒部194dとケース192の第4円筒部192dとの間には第4環状空間196dが形成されている。第4環状空間196dは出口19fと連通している。
図11に示すように、第1環状空間196aと第2環状空間196bとの間はパッキン197によって液密にシールされている。パッキン197は、弁体194の段差面とケース192の段差面との間に全周にわたって挟み込まれるように環状に形成されている。
図示を省略しているが、第2環状空間196bと第3環状空間196cとの間、および第3環状空間196cと第4環状空間196dとの間も同様に、環状のパッキン197によって液密にシールされている。
第1切替弁19の第1状態を図12に基づいて説明する。図12は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。図12では、説明を容易にするために、弁体194に3つずつ形成された孔194e、194f、194g、194hのうち1つの孔194e、194f、194g、194hのみ図示し、他の2つの孔194e、194f、194g、194hについては図示を省略している。
第1状態では、弁体194が図12に示す位置に回転操作され、弁体194の第1円筒部194aの孔194eが内筒部材193の第2空間193c側の開口部193hに重なり合い、内筒部材193の第1空間193b側の開口部193dは弁体194の第1円筒部194aによって閉塞される。
これにより、図12の実線矢印に示すように、内筒部材193の第2空間193cは、内筒部材193の開口部193h、弁体194の孔194eおよび第1環状空間196aを介して出口19cと連通する。一方、内筒部材193の第1空間193bは出口19cと連通しない。
したがって、第1状態では、出口19cは、入口19bと連通し、入口19aとは連通しない。
図示を省略しているが、第1状態では、弁体194の第2円筒部194bの孔194fが内筒部材193の第1空間193b側の開口部193eと重なり合い、内筒部材193の第2空間193c側の開口部193iが弁体194の第2円筒部194bによって閉塞される。
これにより、図12の破線矢印に示すように、内筒部材193の第1空間193bは出口19dと連通し、内筒部材193の第2空間193cは出口19dと連通しない。したがって、出口19dは、入口19aと連通し、入口19bとは連通しない。
図示を省略しているが、第1状態では、弁体194の第3円筒部194cの孔194gが内筒部材193の第1空間193b側の開口部193fと重なり合い、内筒部材193の第2空間193c側の開口部193jが弁体194の第3円筒部194cによって閉塞される。
これにより、図12の破線矢印に示すように、内筒部材193の第1空間193bは出口19eと連通し、内筒部材193の第2空間193cは出口19eと連通しない。したがって、出口19eは、入口19aと連通し、入口19bとは連通しない。
図示を省略しているが、第1状態では、弁体194の第4円筒部194dの孔194hが内筒部材193の第1空間193b側の開口部193gと重なり合い、内筒部材193の第2空間193c側の開口部193kが弁体194の第4円筒部194dによって閉塞される。
これにより、図12の破線矢印に示すように、内筒部材193の第1空間193bは出口19fと連通し、内筒部材193の第2空間193cは出口19fと連通しない。したがって、出口19fは、入口19aと連通し、入口19bとは連通しない。
第1切替弁19の第2状態を図13に基づいて説明する。図13は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。図13では、説明を容易にするために、弁体194に3つずつ形成された孔194e、194f、194g、194hのうち1つの孔194e、194f、194g、194hのみ図示し、他の2つの孔194e、194f、194g、194hについては図示を省略している。
第2状態では、弁体194が図13に示す位置に回転操作され、弁体194の第1円筒部194aの孔194eが内筒部材193の第2空間193c側の開口部193hに重なり合い、内筒部材193の第1空間193b側の開口部193dは弁体194の第1円筒部194aによって閉塞される。
これにより、図13の実線矢印に示すように、内筒部材193の第2空間193cは出口19cと連通し、内筒部材193の第1空間193bは出口19cと連通しない。したがって、出口19cは、入口19bと連通し、入口19aとは連通しない。
図示を省略しているが、第2状態では、弁体194の第2円筒部194bの孔194fが内筒部材193の第1空間193b側の開口部193eと重なり合い、内筒部材193の第2空間193c側の開口部193iが弁体194の第2円筒部194bによって閉塞される。
これにより、図13の破線矢印に示すように、内筒部材193の第1空間193bは出口19dと連通し、内筒部材193の第2空間193cは出口19dと連通しない。したがって、出口19dは、入口19aと連通し、入口19bとは連通しない。
図示を省略しているが、第2状態では、弁体194の第3円筒部194cの孔194gが内筒部材193の第2空間193c側の開口部193jと重なり合い、内筒部材193の第1空間193b側の開口部193fが弁体194の第3円筒部194cによって閉塞される。
これにより、図13の破線矢印に示すように、内筒部材193の第2空間193cは出口19eと連通し、内筒部材193の第1空間193bは出口19eと連通しない。したがって、出口19eは、入口19bと連通し、入口19aとは連通しない。
図示を省略しているが、第2状態では、弁体194の第4円筒部194dの孔194hが内筒部材193の第1空間193b側の開口部193gと重なり合い、内筒部材193の第2空間193c側の開口部193kが弁体194の第4円筒部194dによって閉塞される。
これにより、図13の破線矢印に示すように、内筒部材193の第1空間193bは出口19fと連通し、内筒部材193の第2空間193cは出口19fと連通しない。したがって、出口19fは、入口19aと連通し、入口19bとは連通しない。
第1切替弁19の第3状態を図14に基づいて説明する。図14は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。図14では、説明を容易にするために、弁体194に3つずつ形成された孔194e、194f、194g、194hのうち1つの孔194e、194f、194g、194hのみ図示し、他の2つの孔194e、194f、194g、194hについては図示を省略している。
第3状態では、弁体194が図14に示す位置に回転操作され、弁体194の第1円筒部194aの孔194eが内筒部材193の第2空間193c側の開口部193hに重なり合い、内筒部材193の第1空間193b側の開口部193dは弁体194の第1円筒部194aによって閉塞される。
これにより、図14の実線矢印に示すように、内筒部材193の第2空間193cは出口19cと連通し、内筒部材193の第1空間193bは出口19cと連通しない。したがって、出口19cは、入口19bと連通し、入口19aとは連通しない。
図示を省略しているが、第3状態では、弁体194の第2円筒部194bの孔194fが内筒部材193の第1空間193b側の開口部193eと重なり合い、内筒部材193の第2空間193c側の開口部193iが弁体194の第2円筒部194bによって閉塞される。
これにより、図14の破線矢印に示すように、内筒部材193の第1空間193bは出口19dと連通し、内筒部材193の第2空間193cは出口19dと連通しない。したがって、出口19dは、入口19aと連通し、入口19bとは連通しない。
図示を省略しているが、第3状態では、弁体194の第3円筒部194cの孔194gが内筒部材193の第2空間193c側の開口部193jと重なり合い、内筒部材193の第1空間193b側の開口部193fが弁体194の第3円筒部194cによって閉塞される。
これにより、図14の破線矢印に示すように、内筒部材193の第2空間193cは出口19eと連通し、内筒部材193の第1空間193bは出口19eと連通しない。したがって、出口19eは、入口19bと連通し、入口19aとは連通しない。
図示を省略しているが、第3状態では、弁体194の第4円筒部194dの孔194hが内筒部材193の第2空間193c側の開口部193kと重なり合い、内筒部材193の第1空間193b側の開口部193gが弁体194の第4円筒部194dによって閉塞される。
これにより、図14の破線矢印に示すように、内筒部材193の第2空間193cは出口19fと連通し、内筒部材193の第1空間193bは出口19fと連通しない。したがって、出口19fは、入口19bと連通し、入口19aとは連通しない。
次に、冷却システム10の電気制御部を図15に基づいて説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された第1ポンプ11、第2ポンプ12、圧縮機23、切替弁用電動モータ30等の作動を制御する制御手段である。
制御装置40は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
本実施形態では、特に切替弁用電動モータ30の作動を制御する構成(ハードウェアおよびソフトウェア)を切替弁制御手段40aとする。もちろん、切替弁制御手段40aを制御装置40に対して別体で構成してもよい。
制御装置40の入力側には、内気センサ41、外気センサ42、水温センサ43等のセンサ群の検出信号が入力される。
内気センサ41は、内気温(車室内温度)を検出する検出手段(内気温度検出手段)である。外気センサ42は、外気温を検出する検出手段(外気温度検出手段)である。水温センサ43は、ラジエータ13を通過した直後の冷却水の温度を検出する検出手段(熱媒体温度検出手段)である。
さらに、制御装置40の入力側には、エアコンスイッチ44からの操作信号が入力される。エアコンスイッチ44は、エアコンのオン・オフ(換言すれば冷房のオン・オフ)を切り替えるスイッチであり、車室内の計器盤付近に配置されている。
次に、上記構成における作動を説明する。制御装置40は、外気センサ42で検出された外気温が15℃以下である場合、図2に示す第1モードを実施し、外気センサ42で検出された外気温が15℃超40℃未満である場合、図3に示す第2モードを実施し、外気センサ42で検出された外気温が40℃以上である場合、図4に示す第3モードを実施する。
第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図2に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19d、19e、19fと連通し、入口19bが出口19cと連通する。第2切替弁20では、入口20b、20c、20dが出口20eと連通し、入口20aが出口20fと連通する。
したがって、第1ポンプ11、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14およびクーラコア18によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図2の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で電池冷却器15、インバータ冷却器16および排気ガス冷却器17に分岐し、電池冷却器15、インバータ冷却器16および排気ガス冷却器17を並列に流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図2の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19を経てクーラコア18を流れ、第2切替弁20を経て第2ポンプ12に吸入される。
このように、第1モードでは、ラジエータ13で冷却された中温冷却水が電池冷却器15、インバータ冷却器16および排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れる。
このため、中温冷却水によって電池、インバータおよび排気ガスが冷却され、低温冷却水によって車室内への送風空気が冷却される。
例えば、外気温が15℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は25℃程度になるので、中温冷却水によって電池、インバータおよび排気ガスを十分に冷却することができる。
冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気を十分に冷却することができる。
第1モードでは、電池、インバータおよび排気ガスを外気によって冷却するので、電池、インバータおよび排気ガスを冷凍サイクル22の低圧冷媒で冷却する場合に比べて省エネルギー化を図ることができる。
第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図3に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19d、19fと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20dが出口20eと連通し、入口20a、20cが出口20fと連通する。
したがって、第1ポンプ11、インバータ冷却器16、排気ガス冷却器17およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図3の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16および排気ガス冷却器17に分岐し、インバータ冷却器16および排気ガス冷却器17を並列に流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図3の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19でクーラコア18および電池冷却器15に分岐し、クーラコア18および電池冷却器15を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
すなわち、第2モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16および排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18および電池冷却器15を流れる。
このため、中温冷却水によってインバータおよび排気ガスが冷却され、低温冷却水によって車室内への送風空気および電池が冷却される。
例えば、外気温が25℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は40℃程度になるので、中温冷却水によってインバータおよび排気ガスを十分に冷却することができる。
冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気および電池を十分に冷却することができる。
このように、第2モードでは、電池を冷凍サイクル22の低圧冷媒で冷却するので、外気温が高いために外気では電池を十分に冷却できない場合であっても電池を十分に冷却することができる。
第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図4に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通する。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20dが出口20fと連通する。
したがって、第1ポンプ11、排気ガス冷却器17およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図4の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て排気ガス冷却器17を流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
一方、図4の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19でクーラコア18、電池冷却器15およびインバータ冷却器16に分岐し、クーラコア18、電池冷却器15およびインバータ冷却器16を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
したがって、第3モードでは、ラジエータ13で冷却された中温冷却水が排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18、電池冷却器15およびインバータ冷却器16を流れる。
このため、ラジエータ13で冷却された冷却水によって排気ガスが冷却され、冷却水冷却器14で冷却された冷却水によって車室内への送風空気、電池およびインバータが冷却される。
例えば、外気温が40℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は50℃程度になるので、中温冷却水によって排気ガスを十分に冷却することができる。
冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気、電池およびインバータを十分に冷却することができる。
このように、第3モードでは、電池およびインバータを冷凍サイクル22の低圧冷媒で冷却するので、外気温が非常に高いために外気では電池およびインバータを十分に冷却できない場合であっても電池およびインバータを十分に冷却することができる。
本実施形態によると、第1、第2切替弁19、20の間に複数個の温度調整対象機器15、16、17、18を並列に接続するといった簡素な構成によって、複数個の温度調整対象機器15、16、17、18に循環する冷却水を切り替えることができる。
具体的には、ラジエータ13で熱交換された冷却水の温度に関連する温度として外気温を検出し、外気温に応じて第1切替弁19および第2切替弁20の作動を制御して第1〜第3モードを実施するので、ラジエータ13で熱交換された冷却水の温度に応じて、複数個の温度調整対象機器15、16、17、18に循環する冷却水を切り替えることができる。
より具体的には、外気温が所定温度(本例では15℃)よりも低い場合、第1モードを実施して複数個の温度調整対象機器15、16、17、18のうち一部の温度調整対象機器18について第2ポンプ12との間で冷却水を循環させ且つ複数個の温度調整対象機器15、16、17、18のうち残余の温度調整対象機器15、16、17について第1ポンプ11との間で冷却水を循環させ、外気温が所定温度(本例では15℃)よりも高い場合、外気温が高くなるにつれて第2モードから第3モードへ切り替えて、第2ポンプ12との間で冷却水が循環する温度調整対象機器の個数を増加させる。
これにより、ラジエータ13で熱交換された冷却水の温度に応じて冷却水冷却器14の冷却負荷(すなわち冷凍サイクル22の冷却負荷)を変化させることができるので、省エネルギー化を図ることができる。
さらに具体的には、複数個の温度調整対象機器15、16、17、18は要求される冷却温度が互いに異なっており、外気温が所定温度(本例では15℃)よりも高い場合、外気温が高くなるにつれて第2モードから第3モードへ切り替えて、要求される冷却温度の低い温度調整対象機器から順番に第2ポンプ12との間で冷却水を循環させていく。
これにより、各温度調整対象機器15、16、17、18について、要求される冷却温度に応じて、低温冷却水が循環する場合と高温冷却水が循環する場合とに切り替えることができるので、省エネルギー化を図りつつ複数個の温度調整対象機器15、16、17、18を適切に冷却することができる。
(第2実施形態)
上記第1実施形態では、第1切替弁19の出口19dと第2切替弁20の入口20bとの間に排気ガス冷却器17が接続されているが、本第2実施形態では、図16に示すように、第1切替弁19の出口19dと第2切替弁20の入口20bとの間に凝縮器50(温度調整対象機器)およびヒータコア51が接続されている。
凝縮器50は、圧縮機23から吐出された高圧冷媒と冷却水とを熱交換させることによって高圧冷媒を凝縮させ、冷却水を加熱する高圧側熱交換器である。凝縮器50の冷却水入口側は第1切替弁19の出口19dに接続されている。
ヒータコア51は、クーラコア18通過後の送風空気と冷却水とを熱交換させて送風空気を加熱する加熱用熱交換器である。ヒータコア51は、室内空調ユニットのケーシング27の内部においてクーラコア18の空気流れ下流側に配置されている。
ヒータコア51の冷却水入口側は凝縮器50の冷却水出口側に接続されている。ヒータコア51の冷却水出口側は第2切替弁20の入口20bに接続されている。
上記第1実施形態では、冷却水冷却器14は、第2ポンプ12の吐出側と第1切替弁19の入口19bとの間に接続されているが、本実施形態では、冷却水冷却器14は、第1切替弁19とクーラコア18との間に接続されている。具体的には、冷却水冷却器14の冷却水入口側は、第1切替弁19の出口19cに接続され、冷却水冷却器14の冷却水出口側は、クーラコア18の冷却水入口側に接続されている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を5種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20c、20dと出口20e、20fとの連通状態を5種類の状態に切り替え可能な構造になっている。
図17は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
第1状態では、第1切替弁19は、入口19aを出口19d、19e、19fと連通させ、入口19bを出口19cと連通させる。これにより、第1切替弁19は、図17の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19e、19fから流出させ、図17の実線矢印に示すように入口19bから流入した冷却水を出口19cから流出させる。
第1状態では、第2切替弁20は、入口20b、20c、20dを出口20eと連通させ、入口20aを出口20fと連通させる。これにより、第2切替弁20は、図17の一点鎖線矢印に示すように入口20b、20c、20dから流入した冷却水を出口20eから流出させ、図17の実線矢印に示すように入口20aから流入した冷却水を出口20fから流出させる。
図18は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
第2状態では、第1切替弁19は、入口19aを出口19d、19fと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図18の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19fから流出させ、図18の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
第2状態では、第2切替弁20は、入口20b、20dを出口20eと連通させ、入口20a、20cを出口20fと連通させる。これにより、第2切替弁20は、図18の一点鎖線矢印に示すように入口20b、20dから流入した冷却水を出口20eから流出させ、図18の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
図19は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
第3状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させる。これにより、第1切替弁19は、図19の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図19の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させる。
第3状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、図19の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図19の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させる。
図20は、第1切替弁19および第2切替弁20が第4状態に切り替えられたときの冷却システム10の作動(第4モード)を示している。
第4状態では、第1切替弁19は、入口19aを出口19c、19e、19fと連通させ、入口19bを出口19dと連通させる。これにより、第1切替弁19は、図20の実線矢印に示すように入口19aから流入した冷却水を出口19c、19e、19fから流出させ、図20の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19dから流出させる。
第4状態では、第2切替弁20は、入口20bを出口20fと連通させ、入口20a、20c、20dを出口20eと連通させる。これにより、第2切替弁20は、図20の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20eから流出させ、図20の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20fから流出させる。
図21は、第1切替弁19および第2切替弁20が第5状態に切り替えられたときの冷却システム10の作動(第5モード)を示している。
第5状態では、第1切替弁19は、入口19aを出口19cと連通させ、入口19bを出口19d、19e、19fと連通させる。これにより、第1切替弁19は、図21の破線矢印に示すように入口19aから流入した冷却水を出口19cから流出させ、図21の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19d、19e、19fから流出させる。
第5状態では、第2切替弁20は、入口20aを出口20eと連通させ、入口20b、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、図21の破線矢印に示すように入口20aから流入した冷却水を出口20eから流出させ、図21の一点鎖線矢印に示すように入口20b、20c、20dから流入した冷却水を出口20fから流出させる。
本実施形態における冷却水冷却器14および凝縮器50の具体的構造を図22に基づいて説明する。冷却水冷却器14および凝縮器50は、タンクアンドチューブ型の1つの熱交換器52で構成されている。熱交換器52の略半分が冷却水冷却器14を構成し、熱交換器52の残余の部分が凝縮器50を構成している。
熱交換器52は、熱交換コア部52a、タンク部52b、52cおよび仕切部52dを有している。熱交換コア部52aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。
タンク部52b、52cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。タンク部52b、52cの内部空間は、仕切部材(図示せず)によって、冷却水が流れる空間と冷媒が流れる空間とに仕切られている。
仕切部52dは、タンク部52b、52cの内部をチューブ積層方向(図22の左右方向)に2つの空間に仕切る。熱交換器52のうち仕切部52dよりもチューブ積層方向一方側(図22の右方側)の部位が冷却水冷却器14を構成し、熱交換器52のうち仕切部52dよりもチューブ積層方向他方側(図22の左方側)の部位が凝縮器50を構成している。
熱交換コア部52a、タンク部52b、52cおよび仕切部52dを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
一方のタンク部52bのうち冷却水冷却器14を構成している部位には、冷却水の入口52eと冷媒の出口52fとが形成されている。他方のタンク部52cのうち冷却水冷却器14を構成している部位には、冷却水の出口52gと冷媒の入口52hとが形成されている。
これにより、冷却水冷却器14では、冷却水が入口52eからタンク部52bに流入し、タンク部52bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部52cで集合されて出口52gから流出する。
冷却水冷却器14では、冷媒が入口52hからタンク部52cに流入し、タンク部52cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部52bで集合されて出口52fから流出する。
一方のタンク部52bのうち凝縮器50を構成している部位には、冷却水の入口52hと冷媒の出口52iとが形成されている。他方のタンク部52cのうち凝縮器50を構成している部位には、冷却水の出口52jと冷媒の入口52kとが形成されている。
これにより、凝縮器50では、冷却水が入口52hからタンク部52bに流入し、タンク部52bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部52cで集合されて出口52jから流出する。
凝縮器50では、冷媒が入口52kからタンク部52cに流入し、タンク部52cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部52bで集合されて出口52iから流出する。
熱交換器52として、タンクアンドチューブ型の熱交換器に限定されることなく、他の形式の熱交換器を採用することができる。例えば、多数枚の板状部材を積層して接合してなる積層型熱交換器を採用してもよい。
本実施形態の制御装置40が実行する制御処理を図23に基づいて説明する。制御装置40は、図23のフローチャートにしたがってコンピュータプログラムを実行する。
まずステップS100では、エアコンスイッチ44がオンされているか否かを判定する。エアコンスイッチ44がオンされていると判定した場合、冷房が必要であるとしてステップS110へ進み、水温センサ43で検出された冷却水の温度が40度未満であるか否かを判定する。
水温センサ43で検出された冷却水の温度が40度未満であると判定した場合、ラジエータ13で外気によって冷却された冷却水(中温冷却水)の温度が低くなっているとしてステップS120へ進み、図17に示す第1モードを実施する。
第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図17に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19d、19e、19fと連通し、入口19bが出口19cと連通する。第2切替弁20では、入口20b、20c、20dが出口20eと連通し、入口20aが出口20fと連通する。
したがって、第1ポンプ11、電池冷却器15、インバータ冷却器16、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14およびクーラコア18によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図17の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で電池冷却器15、インバータ冷却器16および凝縮器50に分岐し、電池冷却器15、インバータ冷却器16および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図17の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14およびクーラコア18を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
このように、第1モードでは、ラジエータ13で冷却された中温冷却水が電池冷却器15、インバータ冷却器16、凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れる。
このため、電池冷却器15およびインバータ冷却器16では、中温冷却水によって電池およびインバータが冷却され、凝縮器50では、中温冷却水が冷凍サイクル22の高圧冷媒と熱交換することによって加熱され、クーラコア18では、低温冷却水と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。
凝縮器50で加熱された中温冷却水は、ヒータコア51を流れる際に、クーラコア18通過後の送風空気と熱交換する。これにより、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。すなわち、クーラコア18によって冷却・除湿された送風空気をヒータコア51にて加熱して、所望温度の空調風を作り出すことができる。
例えば、外気温が15℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は25℃程度になるので、中温冷却水によって電池およびインバータを十分に冷却することができる。
冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気を十分に冷却することができる。
第1モードでは、電池およびインバータを外気によって冷却するので、電池およびインバータを冷凍サイクル22の低圧冷媒で冷却する場合に比べて省エネルギー化を図ることができる。
一方、ステップS110にて、水温センサ43で検出された冷却水の温度が40度未満でないと判定した場合、中温冷却水の温度が高くなっているとしてステップS130へ進み、水温センサ43で検出された冷却水の温度が40度以上50度未満であるか否かを判定する。
水温センサ43で検出された冷却水の温度が40度以上50度未満であると判定した場合、ステップS140へ進み、図18に示す第2モードを実施する。
第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図18に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19d、19fと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20dが出口20eと連通し、入口20a、20cが出口20fと連通する。
したがって、第1ポンプ11、インバータ冷却器16、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図18の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16および凝縮器50に分岐し、インバータ冷却器16および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図18の実線矢印に示すように、第2ポンプ12から吐出された冷却水は第1切替弁19で冷却水冷却器14および電池冷却器15に分岐し、冷却水冷却器14および電池冷却器15を並列に流れ、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第2モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16、凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18および電池冷却器15を流れる。
このため、インバータを中温冷却水によって冷却でき、電池を低温冷却水によって冷却できるとともに、第1モードと同様にクーラコア18によって冷却・除湿された送風空気をヒータコア51で加熱して所望温度の空調風を作り出すことができる。
例えば、外気温が30℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は40℃程度になるので、中温冷却水によってインバータを十分に冷却することができる。
冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気および電池を十分に冷却することができる。
第2モードでは、電池を冷凍サイクル22の低圧冷媒で冷却するので、外気温が高いために外気では電池を十分に冷却できない場合であっても電池を十分に冷却することができる。
ステップS130にて、水温センサ43で検出された冷却水の温度が40度以上50度未満でないと判定した場合、中温冷却水の温度が非常に高くなっているとしてステップS150へ進み、図19に示す第3モードを実施する。
第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図19に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通する。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20dが出口20fと連通する。
したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図19の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
一方、図19の実線矢印に示すように、第2ポンプ12から吐出された冷却水は第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
したがって、第3モードでは、ラジエータ13で冷却された中温冷却水が凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18、電池冷却器15およびインバータ冷却器16を流れる。
このため、電池およびインバータを低温冷却水によって冷却できるとともに、第1、第2モードと同様にクーラコア18によって冷却・除湿された送風空気をヒータコア51で加熱して所望温度の空調風を作り出すことができる。
例えば、外気温が40℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は50℃程度になる。冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気、電池およびインバータを十分に冷却することができる。
第3モードでは、電池およびインバータを冷凍サイクル22の低圧冷媒で冷却するので、外気温が非常に高いために外気では電池およびインバータを十分に冷却できない場合であっても電池およびインバータを十分に冷却することができる。
ステップS100にて、エアコンスイッチ44がオンされていないと判定した場合、冷房が必要ないとしてステップS160へ進み、外気センサ42で検出された外気温が15度以下であるか否かを判定する。
外気センサ42で検出された外気温が15度以下であると判定した場合、高い暖房能力が必要であるとしてステップS170へ進み、図20に示す第4モードを実施する。
第4モードでは、制御装置40は、第1切替弁19および第2切替弁20が図20に示す第4状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19c、19e、19fと連通し、入口19bが出口19dと連通する。第2切替弁20では、入口20a、20c、20dが出口20eと連通し、入口20bが出口20fと連通する。
したがって、第1ポンプ11、冷却水冷却器14、クーラコア18、電池冷却器15、インバータ冷却器16およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、凝縮器50およびヒータコア51によって第2冷却水回路(中温冷却水回路)が構成される。
すなわち、図20の実線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図20の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
したがって、第4モードでは、冷却水冷却器14で冷却された低温冷却水がクーラコア18、電池冷却器15およびインバータ冷却器16を流れるので、車室内への送風空気、電池およびインバータを低温冷却水で冷却することができる。
また、第4モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際にクーラコア18通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
例えば、外気温が10℃の場合、凝縮器50で加熱された中温冷却水は50℃程度になるので、クーラコア18通過後の送風空気を中温冷却水によって十分に加熱することができる。
冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって電池およびインバータを十分に冷却することができる。
ちなみに、第4モードでは、クーラコア18で冷却・除湿された送風空気がヒータコア51で加熱されるので、除湿暖房を実現できる。
続くステップS180では、内気センサ41で検出された内気温が25度以上であるか否かを判定する。内気センサ41で検出された内気温が25度以上でないと判定した場合、高い暖房能力が必要であるとしてステップS180に戻る。これにより、内気温が25度以上に上昇するまで第4モードが実施される。
内気センサ41で検出された内気温が25度以上であると判定した場合、高い暖房能力が必要ないとしてステップS190へ進み、図21に示す第5モードを実施する。
第5モードでは、制御装置40は、第1切替弁19および第2切替弁20が図21に示す第5状態になるように切替弁用電動モータ30を制御する。
これにより、第1切替弁19では、入口19aが出口19cと連通し、入口19bが出口19d、19e、19fと連通する。第2切替弁20では、入口20aが出口20eと連通し、入口20b、20c、20dが出口20fと連通する。
したがって、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、電池冷却器15、インバータ冷却器16、凝縮器50およびヒータコア51によって第2冷却水回路(中温冷却水回路)が構成される。
このとき、第2ポンプ12を作動させ、第1ポンプ11および圧縮機23を停止させる。したがって、図21の破線矢印に示す第1冷却水回路では冷却水が循環しない。
一方、図21の一点鎖線矢印に示すように、第2冷却水回路では、第2ポンプ12から吐出された冷却水は第1切替弁19で電池冷却器15、インバータ冷却器16および凝縮器50に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は、第2切替弁20で集合して第2ポンプ12に吸入される。
したがって、第5モードでは、電池冷却器15で電池から吸熱した冷却水、およびインバータ冷却器16でインバータから吸熱した冷却水がヒータコア51を流れるので、電池およびインバータの廃熱によって車室内への送風空気を加熱することができる。
例えば、外気温が10℃の場合、電池冷却器15およびインバータ冷却器16で加熱された冷却水は30℃程度になるので、車室内への送風空気を25度以上に加熱して内気温を25度以上に維持することができる。
本実施形態によると、外気温が所定温度(本例では15℃)よりも低い場合、第4モードまたは第5モードを実施して暖房を行うことができる。
第4モードでは、冷却水冷却器14について第1ポンプ11との間で冷却水を循環させ、凝縮器50について第2ポンプ12との間で冷却水熱媒体を循環させる。
これにより、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、冷却水冷却器14において冷凍サイクル22の冷媒がラジエータ13を流れる冷却水を介して外気から吸熱することができる。したがって、冷凍サイクル22の冷却水冷却器14(低圧側熱交換器)から凝縮器50(高圧側熱交換器)へ外気の熱を汲み上げることができる。
そして、冷凍サイクル22が汲み上げた外気の熱によって、ヒータコア51で車室内への送風空気を加熱することができるので、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
第5モードでは、電池冷却器15およびヒータコア51について第2ポンプ12との間で冷却水を循環させ、第1ポンプ11を停止させる。これにより、電池冷却器15で冷却水が電池から吸熱し、電池から吸熱した冷却水がヒータコア51で車室内への送風空気を加熱するので、電池の廃熱を回収して車室内の暖房に利用することができる。
(第3実施形態)
上記第2実施形態では、冷凍サイクル22の低圧冷媒を冷却水冷却器14で蒸発させ、車室内への送風空気をクーラコア18で冷却しているが、本第3実施形態では、図24に示すように、冷凍サイクル22の低圧冷媒を冷却水冷却器14および蒸発器55で蒸発させ、車室内への送風空気を冷凍サイクル22の蒸発器55で冷却している。
蒸発器55は、冷却水冷却器14に対して冷媒が並列に流れる。具体的には、冷凍サイクル22は、圧縮機23の冷媒吐出側と膨張弁25の冷媒入口側との間に冷媒流れの分岐部56を有し、冷却水冷却器14の冷媒出口側と圧縮機23の冷媒吸入側との間に冷媒流れの集合部57を有し、分岐部56と集合部57との間に膨張弁58および蒸発器55が接続されている。
膨張弁58は、分岐部56で分岐された液相冷媒を減圧膨張させる減圧手段である。蒸発器55は、膨張弁25で減圧膨張された低圧冷媒と車室内への送風空気とを熱交換させることによって低圧冷媒を蒸発させ送風空気を冷却する。
分岐部56と膨張弁25との間には電磁弁59(開閉弁)が接続されている。電磁弁59が開弁状態の場合、膨張弁25および冷却水冷却器14に圧縮機23から吐出された冷媒が流れる。電磁弁59が閉弁状態の場合、膨張弁25および冷却水冷却器14への冷媒流れが遮断される。電磁弁59の作動は、制御装置40によって制御される。
冷凍サイクル22は過冷却器60を有している。過冷却器60は、凝縮器50で凝縮された液相冷媒と冷却水とを熱交換することによって液相冷媒を更に冷却して冷媒の過冷却度を高める熱交換器である。
過冷却器60の冷却水入口側は、第1切替弁19の出口19eに接続されている。過冷却器60の冷却水出口側は、電池冷却器15の冷却水入口側に接続されている。
本実施形態では、電池冷却器15および電池は、断熱材からなる断熱容器に収納されている。これにより、電池に蓄えられた冷熱が外に逃げることを抑制して電池を保冷できるようにしている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を2種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20dと出口20e、20fとの連通状態を2種類の状態に切り替え可能な構造になっている。
図25は、第1切替弁19および第2切替弁20が第1状態に切り替えられ且つ電磁弁59が開弁状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。図26は、第1切替弁19および第2切替弁20が第1状態に切り替えられ且つ電磁弁59が閉弁状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
第1状態および第2状態では、第1切替弁19は、入口19aを出口19d、19fと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図25、図26の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19fから流出させ、図25、図26の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
第1状態および第2状態では、第2切替弁20は、入口20b、20dを出口20eと連通させ、入口20a、20cを出口20fと連通させる。これにより、第2切替弁20は、図25、図26の一点鎖線矢印に示すように入口20b、20dから流入した冷却水を出口20eから流出させ、図25、図26の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
図27は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
第3状態では、第1切替弁19は、入口19aを出口19c、19fと連通させ、入口19bを出口19dと連通させ、出口19eを閉じる。これにより、第1切替弁19は、図27の実線矢印に示すように入口19aから流入した冷却水を出口19c、19fから流出させ、図27の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19dから流出させ、出口19eから冷却水を流出させない。
第3状態では、第2切替弁20は、入口20a、20dを出口20eと連通させ、入口20bを出口20fと連通させ、入口20cを閉じる。これにより、第2切替弁20は、図27の実線矢印に示すように入口20a、20dから流入した冷却水を出口20eから流出させ、図27の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20fから流出させ、入口20cから冷却水を流入させない。
本実施形態における冷却水冷却器14、凝縮器50および過冷却器60の具体的構造を図28に基づいて説明する。
冷却水冷却器14、凝縮器50および過冷却器60は、タンクアンドチューブ型の1つの熱交換器61で構成されている。具体的には、冷却水冷却器14と凝縮器50との間に過冷却器60が配置されている。
熱交換器61は、熱交換コア部61a、タンク部61b、61cおよび2つの仕切部61d、61dを有している。熱交換コア部61aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。
タンク部61b、61cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。タンク部61b、61cの内部空間は、仕切部材(図示せず)によって、冷却水が流れる空間と冷媒が流れる空間とに仕切られている。
2つの仕切部61d、61dは、タンク部61b、61cの内部をチューブ積層方向(図28の左右方向)に3つの空間に仕切る。熱交換器52のうち仕切部61dよりもチューブ積層方向一方側(図28の右方側)の部位が冷却水冷却器14を構成し、熱交換器52のうち仕切部61dよりもチューブ積層方向他方側(図28の左方側)の部位が凝縮器50を構成し、仕切部61d、61d同士の間の部位が過冷却器60を構成している。
熱交換コア部61a、タンク部61b、61cおよび仕切部61dを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
一方のタンク部61bのうち冷却水冷却器14を構成している部位には、冷却水の入口61eと冷媒の出口61fとが形成されている。他方のタンク部61cのうち冷却水冷却器14を構成している部位には、冷却水の出口61gと冷媒の入口61hとが形成されている。
これにより、冷却水冷却器14では、冷却水が入口61eからタンク部61bに流入し、タンク部61bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61cで集合されて出口61gから流出する。
冷却水冷却器14では、冷媒が入口61hからタンク部61cに流入し、タンク部61cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部61bで集合されて出口61fから流出する。
一方のタンク部61bのうち凝縮器50を構成している部位には、冷却水の入口61iが形成されている。仕切部61dのうちタンク部61bの内部空間を凝縮器50のタンク空間と過冷却器60のタンク空間とに仕切る部位には、冷媒が流通する孔61jが形成されている。他方のタンク部61cのうち凝縮器50を構成している部位には、冷却水の出口61kと冷媒の入口61lとが形成されている。
これにより、凝縮器50では、冷却水が入口61iからタンク部61bに流入し、タンク部61bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61cで集合されて出口61kから流出する。
凝縮器50では、冷媒が入口61lからタンク部61cに流入し、タンク部61cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部61bで集合されて仕切部61dの孔61jを通じて過冷却器60へ流出する。
一方のタンク部61bのうち過冷却器60を構成している部位には、冷却水の出口61mが形成されている。他方のタンク部61cのうち過冷却器60を構成している部位には、冷却水の入口61nと冷媒の出口61oとが形成されている。
これにより、過冷却器60では、冷却水が入口61nからタンク部61cに流入し、タンク部61cにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61bで集合されて出口61mから流出する。
過冷却器60では、冷媒が仕切部61dの孔61jを通じてタンク部61bに流入し、タンク部61bにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部61cで集合されて出口61oから流出する。
次に、上記構成における作動を説明する。電池が外部電源によって充電されている場合、制御装置40は図25に示す第1モードを実施する。
第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図25に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
これにより、第1切替弁19では、入口19aが出口19d、19fと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20dが出口20eと連通し、入口20a、20cが出口20fと連通する。
したがって、第1ポンプ11、インバータ冷却器16、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、過冷却器60および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図25の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16および凝縮器50に分岐し、インバータ冷却器16および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図25の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14および過冷却器60に分岐し、冷却水冷却器14および過冷却器60を並列に流れ、過冷却器60を流れた冷却水は電池冷却器15を直列に流れ、電池冷却器15を流れた冷却水および冷却水冷却器14を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第1モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16、凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水が過冷却器60および電池冷却器15を流れる。
このため、中温冷却水によってインバータおよび凝縮器50の高圧冷媒が冷却され、低温冷却水によって過冷却器60の液相冷媒および電池が冷却される。これにより、電池に冷熱が蓄えられる。
電池が外部電源によって充電されている場合、冷凍サイクル22の圧縮機23は、外部電源から供給される電力によって駆動されるようになっている。したがって、第1モードでは、外部電源から供給される電力を用いて電池に蓄冷することができる。
第1モードでは、蒸発器55にて冷凍サイクル22の低圧冷媒と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。また、第1モードでは、凝縮器50にて冷凍サイクル22の高圧冷媒と中温冷却水とが熱交換することによって中温冷却水が加熱され、ヒータコア51にて中温冷却水と車室内への送風空気が熱交換することによって車室内への送風空気が加熱される。
したがって、所望温度の空調風を作り出して車室内を空調することができる。例えば、乗員が乗車する前に電池の充電が実施される場合には、乗員が乗車する前に車室内空調を実施するプレ空調を行うことができる。
電池が外部電源によって充電されておらず、かつ車室内を冷房する必要がある場合、制御装置40は図26に示す第2モードを実施する。
第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図26に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を閉弁状態に切り替える。すなわち、第2モードは、第1切替弁19および第2切替弁20の状態は第1モードと同じであり、電磁弁59を閉弁状態にする点が第1モードと異なっている。
これにより、冷却水冷却器14に冷凍サイクル22の低圧冷媒が流れなくなるので、冷却水冷却器14で冷却水が冷却されなくなるが、電池冷却器15では第1モード時に電池に蓄えられた冷熱によって冷却水が冷却される。
そして、電池冷却器15で冷却された低温冷却水が過冷却器60を流れるので、低温冷却水によって過冷却器60の液相冷媒(高圧冷媒)が冷却される。
したがって、第2モードでは、電池に蓄えられた冷熱を利用して冷凍サイクル22の高圧冷媒を過冷却することができるので、冷凍サイクル22の効率を向上させて省エネルギー化を図ることができる。
ちなみに、第2モードにおいて電磁弁59を開弁状態にして、冷却水冷却器14で低温冷却水を冷却するようにしてもよい。
電池が所定温度(例えば40℃)以下になっていて電池を冷却する必要がなく且つ車室内を暖房する必要がある場合、制御装置40は図27に示す第3モードを実施する。
第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図27に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
これにより、第1切替弁19では、入口19aが出口19c、19fと連通し、入口19bが出口19dと連通し、出口19eが閉じられる。第2切替弁20では、入口20a、20dが出口20eと連通し、入口20bが出口20fと連通し、入口20cが閉じられる。
したがって、第1ポンプ11、冷却水冷却器14、インバータ冷却器16およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、凝縮器50およびヒータコア51によって第2冷却水回路(中温冷却水回路)が構成される。
すなわち、図27の実線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で冷却水冷却器14およびインバータ冷却器16に分岐し、冷却水冷却器14およびインバータ冷却器16を並列に流れ、冷却水冷却器14を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図27の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
したがって、第3モードでは、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16を流れるので、インバータを低温冷却水で冷却することができる。
この場合、電池は所定温度(例えば40℃)以下になっていて電池を冷却する必要がないので、電池冷却器15への冷却水循環は停止されている。
第3モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際に蒸発器55通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、蒸発器55通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
なお、ヒータコア51で加熱される送風空気は、蒸発器55で冷凍サイクル22の低圧冷媒によって冷却・除湿された乾いた冷風である。したがって、第3モードでは除湿暖房を行うことができる。
ちなみに、第3モード時に電池の温度が上昇してきた場合、電池冷却器15へ中温冷却水または低温冷却水を循環させて電池を冷却するようにしてもよい。
本実施形態によると、外部電源から供給された電力を電池に充電している場合、電磁弁59を開けて冷却水冷却器14に冷凍サイクルの低圧冷媒を流すので、冷却水冷却器14で冷却された冷却水が電池冷却器15を流れて電池が冷却される。このため、冷凍サイクル22が作り出した冷熱を電池に蓄えることができる。
そして、外部電源から供給された電力を電池に充電した後の場合、電池冷却器15を流れた冷却水が過冷却器60を流れるので、過冷却器60を流れる冷媒を電池に蓄えられた冷熱によって冷却することができ、ひいては冷凍サイクル22の効率を向上できる。このとき、電磁弁59を閉じて冷却水冷却器14に冷凍サイクルの低圧冷媒を流さないようにするので、冷凍サイクル22の冷却負荷を低減することができる。
したがって、例えば車両走行中のように外部電源を利用することができない場合に、電池に蓄えられた冷熱を温度調整対象機器の冷却に利用して消費電力を低減することができる。
本実施形態では、過冷却器60と電池冷却器15とが互いに直列に接続されているので、過冷却器60と電池冷却器15とが互いに並列に接続されている場合に比べて、過冷却器60を流れて加熱された冷却水を電池冷却器15に蓄えられた冷熱によって効率的に冷却することができる。
(第4実施形態)
本第4実施形態では、図29に示すように、上記第3実施形態に対して吸気冷却器65(温度調整対象機器)を追加している。吸気冷却器65は、エンジン用過給器で圧縮されて高温になった吸気と冷却水とを熱交換して吸気を冷却する熱交換器である。吸気は30℃程度まで冷却されるのが好ましい。
吸気冷却器65の冷却水入口側は、第1切替弁19の出口19gに接続されている。吸気冷却器65の冷却水出口側は、第2切替弁20の入口20gに接続されている。
本実施形態では、過冷却器60は、冷却水冷却器14の冷却水出口側と第2切替弁20の入口20aとの間に接続されている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を3種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を3種類の状態に切り替え可能な構造になっている。
図30は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
第1状態では、第1切替弁19は、入口19aを出口19d、19f、19gと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図30の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19f、19gから流出させ、図30の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
第1状態では、第2切替弁20は、入口20b、20d、20gを出口20eと連通させ、入口20a、20cを出口20fと連通させる。これにより、第2切替弁20は、図30の一点鎖線矢印に示すように入口20b、20d、20gから流入した冷却水を出口20eから流出させ、図30の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
図31は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
第2状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19f、19gと連通させる。これにより、第1切替弁19は、図31の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図31の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19f、19gから流出させる。
第2状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20d、20gを出口20fと連通させる。これにより、第2切替弁20は、図31の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図31の実線矢印に示すように入口20a、20c、20d、20gから流入した冷却水を出口20fから流出させる。
図32は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
第3状態では、第1切替弁19は、入口19aを出口19c、19fと連通させ、入口19bを出口19d、19e、19gと連通させる。これにより、第1切替弁19は、図32の実線矢印に示すように入口19aから流入した冷却水を出口19c、19fから流出させ、図32の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19d、19e、19gから流出させる。
第3状態では、第2切替弁20は、入口20a、20dを出口20eと連通させ、入口20b、20c、20gを出口20fと連通させる。これにより、第2切替弁20は、図32の実線矢印に示すように入口20a、20dから流入した冷却水を出口20eから流出させ、図32の一点鎖線矢印に示すように入口20b、20c、20gから流入した冷却水を出口20fから流出させる。
次に、上記構成における作動を説明する。制御装置40は、外気センサ42で検出された外気温が15℃超40℃未満である場合、図30に示す第1モードを実施する。
第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図30に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
これにより、第1切替弁19では、入口19aが出口19d、19f、19gと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20d、20gが出口20eと連通し、入口20a、20cが出口20fと連通する。
したがって、第1ポンプ11、インバータ冷却器16、凝縮器50、ヒータコア51、吸気冷却器65およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、過冷却器60および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図30の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16、凝縮器50および吸気冷却器65に分岐し、インバータ冷却器16、凝縮器50および吸気冷却器65を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、インバータ冷却器16を流れた冷却水および吸気冷却器65を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図30の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14および電池冷却器15に分岐し、冷却水冷却器14および電池冷却器15を並列に流れ、冷却水冷却器14を流れた冷却水は過冷却器60を直列に流れ、過冷却器60を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第1モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16、凝縮器50、ヒータコア51および吸気冷却器65を流れ、冷却水冷却器14で冷却された低温冷却水が過冷却器60および電池冷却器15を流れる。
このため、中温冷却水によってインバータ、吸気および凝縮器50の高圧冷媒が冷却され、低温冷却水によって過冷却器60の液相冷媒および電池が冷却される。
第1モードでは、蒸発器55にて冷凍サイクル22の低圧冷媒と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。また、第1モードでは、凝縮器50にて冷凍サイクル22の高圧冷媒と中温冷却水とが熱交換することによって中温冷却水が加熱され、ヒータコア51にて中温冷却水と車室内への送風空気が熱交換することによって車室内への送風空気が加熱される。したがって、所望温度の空調風を作り出して車室内を空調することができる。
制御装置40は、外気センサ42で検出された外気温が40℃以上である場合、図31に示す第2モードを実施する。
第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図31に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19f、19gと連通する。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20d、20gが出口20fと連通する。
したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、過冷却器60、電池冷却器15、インバータ冷却器16および吸気冷却器65によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図31の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第1ポンプ11に吸入される。
一方、図31の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、電池冷却器15、インバータ冷却器16および吸気冷却器65に分岐し、冷却水冷却器14を流れた冷却水は過冷却器60を直列に流れ、過冷却器60を流れた冷却水、電池冷却器15を流れた冷却水、インバータ冷却器16を流れた冷却水および吸気冷却器65を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第2モードでは、ラジエータ13で冷却された中温冷却水が凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水が過冷却器60、電池冷却器15、インバータ冷却器16および吸気冷却器65を流れる。
このため、中温冷却水によって凝縮器50の高圧冷媒が冷却され、低温冷却水によって過冷却器60の液相冷媒、電池、インバータおよび吸気が冷却される。
第2モードでは、蒸発器55にて冷凍サイクル22の低圧冷媒と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。また、第2モードでは、凝縮器50にて冷凍サイクル22の高圧冷媒と中温冷却水とが熱交換することによって中温冷却水が加熱され、ヒータコア51にて中温冷却水と車室内への送風空気が熱交換することによって車室内への送風空気が加熱される。したがって、所望温度の空調風を作り出して車室内を空調することができる。
ちなみに、第1モードを実施している場合であっても、発進時等の急加速時に第2モードと同様に吸気冷却器65に低温冷却水が流れるようにして吸気を低温冷却水によって冷却するようにすれば、急加速時に過給圧が上がって吸気温度が上昇しても吸気を十分に冷却して燃費を向上することができる。
制御装置40は、外気センサ42で検出された外気温が0℃以下である場合、図32に示す第3モードを実施する。
第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図32に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
これにより、第1切替弁19では、入口19aが出口19c、19fと連通し、入口19bが出口19d、19e、19gと連通する。第2切替弁20では、入口20a、20dが出口20eと連通し、入口20b、20c、20gが出口20fと連通する。
したがって、第1ポンプ11、冷却水冷却器14、過冷却器60およびインバータ冷却器16およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、電池冷却器15、凝縮器50、ヒータコア51および吸気冷却器65によって第2冷却水回路(中温冷却水回路)が構成される。
すなわち、図32の実線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で冷却水冷却器14およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水は過冷却器60を直列に流れ、過冷却器60を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第1ポンプ11に吸入される。
一方、図32の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で電池冷却器15、凝縮器50および吸気冷却器65に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、電池冷却器15を流れた冷却水および吸気冷却器65を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
第3モードでは、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16を流れるので、インバータを低温冷却水で冷却することができる。
第3モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際に蒸発器55通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、蒸発器55通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
なお、ヒータコア51で加熱される送風空気は、蒸発器55で冷却・除湿された乾いた冷風である。したがって、第3モードでは除湿暖房を行うことができる。
第3モードでは、凝縮器50で加熱された中温冷却水が電池冷却器15および吸気冷却器65を流れるので、電池を加熱して電池出力を向上させることができるとともに、吸気を加熱して燃料の霧化を促進し、ひいては燃費を向上させることができる。特にエンジンが冷えていて燃料が霧化しにくい冷間始動時において、燃料の霧化を促進することによって燃焼効率を向上できる。
(第5実施形態)
上記第2実施形態では、ラジエータ13が第2切替弁20の出口20eと第1ポンプ11の吸入側との間に接続されているが、本第5実施形態では、図33に示すように、ラジエータ13が第1切替弁19の出口19gと第2切替弁20の入口20gとの間に接続されている。
ラジエータ13の冷却水入口側は、第1切替弁19の出口19gに接続されている。ラジエータ13の冷却水出口側は、第2切替弁20の入口20gに接続されている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を2種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を2種類の状態に切り替え可能な構造になっている。
図34は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
第1状態では、第1切替弁19は、入口19aを出口19d、19eと連通させ、入口19bを出口19c、19f、19gと連通させる。これにより、第1切替弁19は、図34の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19eから流出させ、図34の実線矢印に示すように入口19bから流入した冷却水を出口19c、19f、19gから流出させる。
第1状態では、第2切替弁20は、入口20b、20cを出口20eと連通させ、入口20a、20d、20gを出口20fと連通させる。これにより、第2切替弁20は、図34の一点鎖線矢印に示すように入口20b、20cから流入した冷却水を出口20eから流出させ、図30の実線矢印に示すように入口20a、20d、20gから流入した冷却水を出口20fから流出させる。
図35は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
第2状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させ、出口19gを閉じる。これにより、第1切替弁19は、図35の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図35の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させ、出口19gから冷却水を流出させない。
第2状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させ、入口20gを閉じる。これにより、第2切替弁20は、図35の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図35の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させ、入口20gから冷却水を流入させない。
外気温が非常に低温(例えば0℃)になっている冬季において電池が外部電源によって充電されている場合、制御装置40は図34に示す第1モードを実施する。
第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図34に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19d、19eと連通し、入口19bが出口19c、19f、19gと連通する。第2切替弁20では、入口20b、20cが出口20eと連通し、入口20a、20d、20gが出口20fと連通する。
したがって、第1ポンプ11、電池冷却器15、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、インバータ冷却器16およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図34の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で電池冷却器15および凝縮器50に分岐し、電池冷却器15および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第1ポンプ11に吸入される。
一方、図34の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、インバータ冷却器16およびラジエータ13に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、インバータ冷却器16を流れた冷却水およびラジエータ13を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
第1モードでは、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16およびクーラコア18を流れるので、低温冷却水によってインバータおよび車室内への送風空気を冷却できる。
第1モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際にクーラコア18通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
なお、ヒータコア51で加熱される送風空気は、クーラコア18で冷却・除湿された乾いた冷風である。したがって、第1モードでは除湿暖房を行うことができる。
例えば、乗員が乗車する前に電池の充電が実施される場合には、乗員が乗車する前に車室内空調を実施するプレ空調を行うことができる。
さらに、第1モードでは、凝縮器50で加熱された中温冷却水が電池冷却器15を流れるので、電池を加熱して電池に温熱を蓄えることができる。本例では、第1モードでは電池を40℃程度まで加熱する。
外部電源による電池の充電が完了して走行を開始した場合、制御装置40は図35に示す第2モードを実施する。
第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図35に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通し、出口19gが閉じられる。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20dが出口20fと連通し、入口20gが閉じられる。
したがって、第1ポンプ11、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成され、ラジエータ13への冷却水循環が停止される。
すなわち、図35の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第1ポンプ11に吸入される。
一方、図35の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
第2モードでは、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れるので、電池冷却器15で低温冷却水が電池から吸熱する。そして、電池冷却器15にて電池から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して電池から吸熱する。
冷却水冷却器14にて電池から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際にクーラコア18通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。このため、第2モードでは、電池から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
なお、ヒータコア51で加熱される送風空気は、クーラコア18で冷却・除湿された乾いた冷風である。したがって、第2モードでは除湿暖房を行うことができる。
本例では、第1モードで電池を40℃程度まで加熱しているので、第2モードでは40℃の電池から熱を奪うヒートポンプにすることができる。このため、冷凍サイクル22の低圧冷媒が外気(例えば0℃)から吸熱するよりも高温で運転することができるので、ヒートポンプの運転効率を高くできる。
第2モードでは、ラジエータ13に冷却水が循環せずラジエータ13が外気から吸熱しないので、ラジエータ13の着霜を防止できる。
(第6実施形態)
上記各実施形態では、温度調整対象機器として冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17、クーラコア18、凝縮器50および吸気冷却器65が設けられている例を示したが、本第6実施形態では、図36に示すように、温度調整対象機器として吸気冷却器65、燃料冷却器66および車載電子機器冷却器67が設けられている。
燃料冷却器66は、エンジンに供給される燃料と冷却水とを熱交換することによって燃料を冷却する熱交換器である。車載電子機器冷却器67は、車載電子機器と冷却水とを熱交換することによって車載電子機器を冷却する熱交換器である。このように、温度調整対象機器として種々の機器を用いることができる。
また、本実施形態のように、凝縮器50は、第1ポンプ11の吐出側と第1切替弁19の入口19aとの間に接続されていてもよい。
(第7実施形態)
上記第3実施形態では、熱交換器61のタンク部61cのうち冷却水冷却器14および過冷却器60を構成している部位に冷却水の出口61gおよび冷却水の入口61nが形成されているが、本第7実施形態では、図37に示すように、冷却水の出口61gおよび冷却水の入口61nが廃止され、仕切部61dのうちタンク部61bの内部空間を冷却水冷却器14のタンク空間と過冷却器60のタンク空間とに仕切る部位に、冷媒が流通する孔61pが形成されている。
これにより、冷却水冷却器14では、冷却水が入口61eからタンク部61bに流入し、タンク部61bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61cで集合されて仕切部61dの孔61pから過冷却器60へ流出する。
過冷却器60では、冷却水が仕切部61dの孔61pを通じてタンク部61cに流入し、タンク部61cにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61bで集合されて出口61mから流出する。
本実施形態によると、上記第3実施形態の熱交換器61に対して冷却水の出口61gおよび冷却水の入口61nを廃止できるので、冷却水配管の接続構造を簡素化できる。
(第8実施形態)
上記第7実施形態では、冷却水冷却器14、凝縮器50および過冷却器60が1つの熱交換器61で構成されているが、本第8実施形態では、図38に示すように、冷却水冷却器14、凝縮器50および膨張弁25が一体化されている。
冷却水冷却器14は、タンクアンドチューブ型の熱交換器で構成されており、熱交換コア部14a、タンク部14b、14cを有している。熱交換コア部14aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。タンク部14b、14cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。
熱交換コア部14aおよびタンク部14b、14cを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
凝縮器50は、タンクアンドチューブ型の熱交換器で構成されており、熱交換コア部50a、タンク部50b、50cを有している。熱交換コア部50aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。タンク部50b、50cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。
熱交換コア部50aおよびタンク部50b、50cを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
冷却水冷却器14および凝縮器24はチューブ積層方向(図38では左右方向)に並んで配置されている。膨張弁25は、冷却水冷却器14と凝縮器24との間に挟まれて固定されている。
膨張弁25は、冷却水冷却器14流出冷媒の過熱度が予め定めた所定範囲となるように弁開度が機械的機構によって調整される温度式膨張弁であり、冷却水冷却器14出口側冷媒の過熱度を検知する感温部25aを有している。
冷却水冷却器14の一方のタンク部14cには、冷却水の入口14eと冷媒の出口14fとが形成されている。冷媒の出口14fは、膨張弁25の感温部25aの冷媒入口と重なり合っている。
冷却水冷却器14の他方のタンク部14bには、冷却水の出口14gと冷媒の入口14hとが形成されている。冷媒の入口14hは、膨張弁25の冷媒出口と重なり合っている。
これにより、冷却水冷却器14では、冷却水が入口14eからタンク部14cに流入し、タンク部14cにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部14bで集合されて出口14gから流出する。
冷却水冷却器14では、膨張弁25で減圧された冷媒が入口14hからタンク部14bに流入し、タンク部14bにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部14cで集合されて出口14fから膨張弁25の感温部25aへ流出する。膨張弁25の感温部25aには、冷媒の出口25bが形成されている。
凝縮器50の一方のタンク部50bには、冷却水の入口50eと冷媒の出口50fとが形成されている。冷媒の出口50bは、膨張弁25の冷媒入口と重なり合っている。凝縮器50の他方のタンク部50cには、冷却水の出口50gと冷媒の入口50hとが形成されている。
これにより、凝縮器50では、冷却水が入口50eからタンク部50bに流入し、タンク部50bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部50cで集合されて出口50gから流出する。
凝縮器50では、冷媒が入口50hからタンク部50cに流入し、タンク部50cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部50bで集合されて出口50fから膨張弁25へ流出する。出口50fから膨張弁25へ流出した冷媒は、膨張弁25で減圧されて冷却水冷却器14に流入する。
本実施形態によると、冷却水冷却器14と膨張弁25との間、および凝縮器50と膨張弁25との間の冷媒配管が不要であるので、冷媒配管の接続構造を簡素化できる。
(第9実施形態)
上記第1実施形態では、外気センサ42で検出された外気温に応じて運転モードを切り替えるようになっているが、本第9実施形態では、インバーターの温度および電池の温度に応じて運転モードを切り替えるようになっている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を4種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20dと出口20e、20fとの連通状態を4種類の状態に切り替え可能な構造になっている。
図39は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
第1状態では、第1切替弁19は、入口19aを閉じ、入口19bを出口19c、19d、19e、19fと連通させる。これにより、第1切替弁19は、入口19aから冷却水を流入させず、図39の実線矢印に示すように入口19bから流入した冷却水を出口19c、19d、19e、19fから流出させる。
第1状態では、第2切替弁20は、出口20eを閉じ、入口20a、20b、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、出口20eから冷却水を流出させず、図39の実線矢印に示すように入口20a、20b、20c、20dから流入した冷却水を出口20fから流出させる。
図40は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
第2状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させる。これにより、第1切替弁19は、図40の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図40の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させる。
第2状態では、第2切替弁20は、入口20a、20c、20dを出口20fと連通させ、入口20bを出口20eと連通させる。これにより、第2切替弁20は、図40の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図40の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させる。
図41は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
第3状態では、第1切替弁19は、入口19aを出口19d、19eと連通させ、入口19bを出口19c、19fと連通させる。これにより、第1切替弁19は、図41の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19eから流出させ、図41の実線矢印に示すように入口19bから流入した冷却水を出口19c、19fから流出させる。
第3状態では、第2切替弁20は、入口20a、20dを出口20fと連通させ、入口20b、20cを出口20eと連通させる。これにより、第2切替弁20は、図41の一点鎖線矢印に示すように入口20b、20cから流入した冷却水を出口20eから流出させ、図41の実線矢印に示すように入口20a、20dから流入した冷却水を出口20fから流出させる。
図42は、第1切替弁19および第2切替弁20が第4状態に切り替えられたときの冷却システム10の作動(第4モード)を示している。
第4状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19e、19fと連通させ、出口19cを閉じる。これにより、第1切替弁19は、図42の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図42の実線矢印に示すように入口19bから流入した冷却水を出口19e、19fから流出させ、出口19cから冷却水を流出させない。
第4状態では、第2切替弁20は、入口20c、20dを出口20fと連通させ、入口20bを出口20eと連通させ、入口20aを閉じる。これにより、第2切替弁20は、図42の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図42の実線矢印に示すように入口20c、20dから流入した冷却水を出口20fから流出させ、入口20aから冷却水を流入させない。
次に、冷却システム10の電気制御部を図43に基づいて説明する。冷却システム10の電気制御部は、上記第1実施形態の構成に加えて、制御装置40の入力側にインバータ温度センサ45および電池温度センサ46の検出信号が入力される。
インバータ温度センサ45は、インバータの温度を検出するインバータ温度検出手段である。例えば、インバータ温度センサ45は、インバータ冷却器16を流出した冷却水の温度を検出するようにすればよい。電池温度センサ46は、電池の温度を検出する電池温度検出手段である。例えば、電池温度センサ46は、電池冷却器15を流出した冷却水の温度を検出するようにすればよい。
本実施形態の制御装置40が実行する制御処理を図44に基づいて説明する。制御装置40は、図44のフローチャートにしたがって、コンピュータプログラムを実行する。
まず、ステップS200では、インバータ温度センサ45によって検出されたインバータの温度Tinvが60℃を超えているか否かを判定する。
インバータの温度Tinvが60℃を超えていないと判定した場合、インバータの冷却優先度が高くないとしてステップS210へ進み、図39に示す第1モードを実施する。
第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図39に示す第1状態になるように切替弁用電動モータ30を制御するとともに第2ポンプ12および圧縮機23を作動させ、第1ポンプ11を停止させる。
これにより、第1切替弁19では、入口19aが閉じられ、入口19bが出口19c、19d、19e、19fと連通する。第2切替弁20では、入口20a、20b、20c、20dが出口20fと連通し、出口20eが閉じられる。
したがって、第2ポンプ12、冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18によって低温冷却水回路が構成され、中温冷却水回路は構成されない。
すなわち、図39の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19で電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18に分岐し、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
一方、図39の破線矢印に示すように、第1ポンプ11からは冷却水が吐出されず、ラジエータ13に冷却水が流れない。
このように、第1モードでは、冷却水冷却器14で冷却された低温冷却水が電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18を流れる。このため、低温冷却水によって電池、インバータ、排気ガスおよび車室内への送風空気が冷却される。
ステップS200にてインバータの温度Tinvが60℃を超えていると判定した場合、インバータの冷却優先度が高いとしてステップS220へ進み、インバータの温度Tinvが70℃未満であるか否かを判定する。
インバータの温度Tinvが70℃以上であると判定した場合、インバータが異常高温になっているとしてステップS230へ進み、警告灯を点灯する。これにより、インバータが異常高温になっていることを乗員に報知することができる。
一方、インバータの温度Tinvが70℃未満であると判定した場合、インバータが異常高温になっていないとしてステップS240へ進み、警告灯を消灯する。これにより、インバータが異常高温になっていないことを乗員に報知することができる。
ステップS230、S240に続くステップS250では、排気ガス冷却器17に中温冷却水回路の冷却水(中温冷却水)が循環しているか否かを判定する。具体的には、第1切替弁19および第2切替弁20の作動状態によって、排気ガス冷却器17に中温冷却水回路の冷却水(中温冷却水)が循環しているか否かを判定する。
排気ガス冷却器17に中温冷却水が循環していないと判定した場合、排気ガスの冷却能力を下げるべくステップS260へ進み、図40に示す第2モードを実施する。
第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図40に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通する。第2切替弁20では、入口20a、20c、20dが出口20fと連通し、入口20bが出口20eと連通する。
したがって、第1ポンプ11、排気ガス冷却器17およびラジエータ13によって中温冷却水回路が構成され、第2ポンプ12、冷却水冷却器14、電池冷却器15、インバータ冷却器16およびクーラコア18によって低温冷却水回路が構成される。
すなわち、図40の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水はは第1切替弁19を経て排気ガス冷却器17を流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
一方、図40の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19で電池冷却器15、インバータ冷却器16およびクーラコア18に分岐し、電池冷却器15、インバータ冷却器16およびクーラコア18を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第2モードでは、ラジエータ13で冷却された中温冷却水が排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水が電池冷却器15、インバータ冷却器16およびクーラコア18を流れる。このため、中温冷却水によって排気ガスが冷却され、低温冷却水によって電池、インバータおよび車室内への送風空気が冷却される。
このため、排気ガスも低温冷却水によって冷却される第1モードに比べてインバータの冷却能力を向上させることができる。
ステップS250にて排気ガス冷却器17に中温冷却水が循環していると判定した場合、ステップS270へ進み、電池温度センサ46によって検出された電池の温度Tbattが50℃を超えているか否かを判定する。
電池の温度Tbattが50℃を超えていないと判定した場合、電池の冷却優先度が高くないとしてステップS280へ進み、図41に示す第3モードを実施する。
第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図41に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19d、19eと連通し、入口19bが出口19c、19fと連通する。第2切替弁20では、入口20a、20dが出口20fと連通し、入口20b、20cが出口20eと連通する。
したがって、第1ポンプ11、電池冷却器15、排気ガス冷却器17およびラジエータ13によって中温冷却水回路が構成され、第2ポンプ12、冷却水冷却器14、インバータ冷却器16およびクーラコア18によって低温冷却水回路が構成される。
すなわち、図41の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水はは第1切替弁19で電池冷却器15および排気ガス冷却器17に分岐し、電池冷却器15および排気ガス冷却器17を並列に流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
一方、図41の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19でインバータ冷却器16およびクーラコア18に分岐し、インバータ冷却器16およびクーラコア18を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第2モードでは、ラジエータ13で冷却された中温冷却水が電池冷却器15および排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16およびクーラコア18を流れる。このため、中温冷却水によって電池および排気ガスが冷却され、低温冷却水によってインバータおよび車室内への送風空気が冷却される。
このため、電池も低温冷却水によって冷却される第2モードに比べてインバータの冷却能力を向上させることができる。
ステップS270にて電池の温度Tbattが50℃を超えていると判定した場合、電池の冷却優先度が高いとしてステップS290へ進み、図42に示す第4モードを実施する。
第4モードでは、制御装置40は、第1切替弁19および第2切替弁20が図42に示す第4状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19e、19fと連通し、出口19cが閉じられる。第2切替弁20では、入口20aが閉じられ、入口20bが出口20eと連通し、入口20c、20dが出口20fと連通する。
したがって、第1ポンプ11、排気ガス冷却器17およびラジエータ13によって中温冷却水回路が構成され、第2ポンプ12、冷却水冷却器14、電池冷却器15およびインバータ冷却器16によって低温冷却水回路が構成される。
すなわち、図42の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水はは第1切替弁19を経て排気ガス冷却器17を流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
一方、図41の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19で電池冷却器15およびインバータ冷却器16に分岐し、電池冷却器15およびインバータ冷却器16を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。一方、図41の破線矢印に示すように、クーラコア18には冷却水が循環しない。
このように、第2モードでは、ラジエータ13で冷却された中温冷却水が排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水が電池冷却器15およびインバータ冷却器16を流れ、クーラコア18への冷却水の循環が停止される。このため、中温冷却水によって電池および排気ガスが冷却され、低温冷却水によってインバータが冷却され、車室内への送風空気の冷却(すなわち冷房)が停止される。
このため、車室内への送風空気も低温冷却水によって冷却される第2モードに比べて電池およびインバータの冷却能力を向上させることができる。
本実施形態によると、インバータの温度Tinvが所定温度(本例では60℃)よりも高い場合、第3モードを実施して、インバータ冷却器16について第2ポンプ12との間で冷却水を循環させ、前記電池冷却器15について第1ポンプ11との間で冷却水を循環させる。このため、インバータの温度が高い場合に、熱容量の小さいインバータを、熱容量の大きい電池よりも優先的に冷却することができる。このため、電池の温度上昇を抑制しつつインバータを効果的に冷却することができる。
(第10実施形態)
本第10実施形態では、図45に示すように、上記第1実施形態の構成に加えて、冷却水を貯留する冷却水タンク70を備えている。
冷却水タンク70には、第1冷却水出入口70aおよび第2冷却水出入口70bが形成されている。第1冷却水出入口70aは、第2切替弁20の出口20eとラジエータ13の冷却水入口側との間に設けられた第1分岐部71に接続されている。第2冷却水出入口70bは、第2切替弁20の出口20fと第2ポンプ12の吸入側との間に設けられた第2分岐部72に接続されている。
これにより、第1冷却水回路(第1ポンプ11側の冷却水回路)のうち第1ポンプ11の吸入側の冷却水流路と、第2冷却水回路(第2ポンプ12側の冷却水回路)のうち第2ポンプ12の吸入側の冷却水流路とが冷却水タンク70を介して連通している。
本実施形態によると、第1冷却水回路と第2冷却水回路とが連通しているので、第1冷却水回路と第2冷却水回路との間で内圧を均圧化できる。そのため、第1切替弁19および第2切替弁20のそれぞれにおいて、切替弁内部の弁体に作用する圧力差を低減できるので、切替弁内部での冷却水漏れを防止できる。
ここで、例えば第1冷却水回路と第2冷却水回路とがポンプの吐出側とポンプの吸入側で連通している場合、ポンプの吸入側で連通する方の冷却水回路の内圧が異常に上昇してしまう。この点、本実施形態では、第1冷却水回路と第2冷却水回路とが互いにポンプの吸入側で連通しているので、冷却水回路の内圧が異常に上昇することを防止でき、ひいては部品の耐圧設計が容易になる。
(第11実施形態)
上記第10実施形態では、第1冷却水回路と第2冷却水回路とが互いにポンプの吸入側で連通されているが、本第11実施形態では、図46に示すように、第1冷却水回路と第2冷却水回路とが互いにポンプの吐出側で連通されている。
具体的には、第1冷却水回路の第1分岐部71は、第1ポンプ11の吐出側と第1切替弁19の入口19aとの間に設けられており、第2冷却水回路の第2分岐部72は、第2ポンプ12の吐出側と第1切替弁19の入口19bとの間に設けられている。
また、上記第10実施形態では、冷却水タンク70に、第1冷却水回路との接続用の第1冷却水出入口70aと、第2冷却水回路との接続用の第2冷却水出入口70bが形成されているが、本第11実施形態では、冷却水タンク70に、第1冷却水回路および第2冷却水回路の両方に接続される1つの冷却水出入口70cが形成されている。
これに伴って、冷却水タンク70の冷却水出入口70cに接続される冷却水配管は、冷却水タンク70側から第1分岐部71および第2分岐部72に向かって1本から2本に分岐する形状になっている。
本実施形態においても、上記第10実施形態と同様の作用効果を得ることができる。
(第12実施形態)
本第12実施形態では、図47に示すように、上記第2実施形態に対して、循環流路80、第3ポンプ81、三方弁82および入口水温センサ83を追加している。
循環流路80は、第1切替弁19および第2切替弁20を介することなく冷却水が循環する流路であり、その一端部が電池冷却器15の冷却水出口側に接続され、その他端部が電池冷却器15の冷却水入口側に接続されている。
循環流路80は、電池冷却器用流路84(非循環流路)と並列に設けられている。なお、電池冷却器用流路84は、電池冷却器15が配置された流路であって、その一端が第1切替弁19の出口19eに接続され、その他端が第2切替弁20の入口20cに接続されている。
図47の例では、循環流路80および電池冷却器用流路84のうち電池冷却器15の近傍部位が一体化されて1つの流路を構成している。したがって、電池冷却器15と第2切替弁20との間にて循環流路80と電池冷却器用流路84とが分岐し、電池冷却器15と第1切替弁19との間にて循環流路80と電池冷却器用流路84とが合流している。
第3ポンプ81は、冷却水(熱媒体)を吸入して吐出する電動ポンプであり、循環流路80に配置されている。図47の例では、第3ポンプ81は、循環流路80のうち電池冷却器用流路84から分岐された部位(電池冷却器用流路84とは別の流路を形成している部位)に配置されている。
三方弁82は、循環流路80と電池冷却器用流路84とを切替開閉する循環切替弁であり、循環流路80と電池冷却器用流路84との分岐部に配置されている。
三方弁82が循環流路80を開けて電池冷却器用流路84を閉じると、電池冷却器15から流出した冷却水は循環流路80を循環して電池冷却器15に流入する。一方、三方弁82が電池冷却器用流路84を開けて循環流路80を閉じると、電池冷却器15から流出した冷却水は電池冷却器用流路84を流れて第2切替弁20に流入する。
入口水温センサ83は、電池冷却器15の冷却水入口側に配置され、電池冷却器15に流入する冷却水の温度(流入熱媒体温度)を検出する流入温度検出手段である。
第3ポンプ81および三方弁82の作動は制御装置40によって制御される。入口水温センサ83の検出信号は制御装置40に入力される。
本実施形態の制御装置40が実行する制御処理を図48に基づいて説明する。制御装置40は、図48のフローチャートにしたがってコンピュータプログラムを実行する。
まずステップS300では、電池冷却要求の有無を判定する。具体的には、電池の温度が第1所定温度(例えば35℃)以上の場合、電池冷却要求有りと判定し、電池の温度が第1所定温度未満の場合、電池冷却要求無しと判定する。
電池冷却要求有りと判定した場合、ステップS310へ進み、電池の温度が冷却目標温度(例えば40℃)を上回っているか否かを判定する。電池の温度が冷却目標温度を上回っていると判定した場合、ステップS320へ進み、電池の温度が冷却目標温度を上回っていないと判定した場合、ステップS300へ戻る。
ステップS320では、図49に示す第1冷却モード(非循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
第1冷却モードでは、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させ、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させる。
また、第1冷却モードでは、三方弁82が電池冷却器用流路84を開けて循環流路80を閉じ、第3ポンプ81が停止する。
これにより、図49の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図49の実線矢印に示す第2冷却水回路(低温冷却水回路)とが構成される。
したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図49の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20およびラジエータ13を経て第1ポンプ11に吸入される。
一方、図49の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14、電池冷却器15およびインバータ冷却器16を並列に流れ、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
このように、第1冷却モードでは、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れる。このため、冷却水冷却器14で冷却された低温冷却水によって電池が冷却される。
続くステップS330では、入口水温センサ83が検出した冷却水温度(以下、電池冷却器入口水温と言う。)が第1冷却判定温度Tc1(例えば10℃)を下回っているか否かを判定する。第1冷却判定温度Tc1は、電池の使用温度範囲(例えば10〜40℃)の下限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。
電池冷却器入口水温が第1冷却判定温度Tc1を下回っていると判定した場合、ステップS340へ進み、電池冷却器入口水温が第1冷却判定温度Tc1を下回っていないと判定した場合、ステップS310へ戻る。
ステップS340では、図50に示す第2冷却モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
第2冷却モードでは、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19fと連通させ、出口19eを閉じ、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20dを出口20fと連通させ、入口20cを閉じる。
また、第2冷却モードでは、三方弁82が循環流路80を開けて電池冷却器用流路84を閉じ、第3ポンプ81が作動する。
これにより、図50の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図50の実線矢印に示す第2冷却水回路(低温冷却水回路)と、図50の二点鎖線矢印に示す内部循環回路とが構成される。
したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成され、第3ポンプ81および電池冷却器15によって内部循環回路が構成される。
すなわち、図50の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20およびラジエータ13を経て第1ポンプ11に吸入される。
一方、図50の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14およびインバータ冷却器16に分岐し、冷却水冷却器14およびインバータ冷却器16を並列に流れ、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
さらに、図50の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、電池冷却器15を流れて第3ポンプ81に吸入される。
このように、第2冷却モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れる。このため、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れない。
続くステップS350では、電池冷却器入口水温が第2冷却判定温度Tc2(例えば12℃)を上回っているか否かを判定する。第2冷却判定温度Tc2は、第1冷却判定温度Tc1よりも高い温度であり、予め制御装置40に記憶されている。
電池冷却器入口水温が第2冷却判定温度Tc2を上回っていると判定した場合、ステップS310へ戻り、電池冷却器入口水温が第2冷却判定温度Tc2を上回っていないと判定した場合、ステップS350へ戻る。
一方、ステップS300にて電池冷却要求無しと判定した場合、ステップS360へ進み、電池加熱要求の有無を判定する。具体的には、電池の温度が第2所定温度(例えば15℃)未満の場合、電池加熱要求有りと判定し、電池の温度が第2所定温度以上の場合、電池加熱要求無しと判定する。
電池加熱要求有りと判定した場合、ステップS370へ進み、電池の温度が加熱目標温度(例えば10℃)を下回っているか否かを判定する。電池の温度が加熱目標温度を下回っていると判定した場合、ステップS380へ進み、電池の温度が加熱目標温度を下回っていないと判定した場合、ステップS300へ戻る。
ステップS380では、図51に示す第1加熱モード(非循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
第1加熱モードでは、第1切替弁19は、入口19aを出口19cと連通させ、入口19bを出口19d、19eと連通させ、第2切替弁20は、入口20aを出口20eと連通させ、入口20b、20cを出口20fと連通させる。
また、第1加熱モードでは、三方弁82が電池冷却器用流路84を開けて循環流路80を閉じ、第3ポンプ81が停止する。
これにより、図51の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図51の実線矢印に示す第2冷却水回路(低温冷却水回路)とが構成される。
したがって、第2ポンプ12、電池冷却器15、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図51の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で電池冷却器15および凝縮器50に分岐し、電池冷却器15および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、電池冷却器15を流れた冷却水およびヒータコア51を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
一方、図51の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14およびクーラコア18を直列に流れ、第2切替弁20およびラジエータ13を経て第1ポンプ11に吸入される。
このように、第1加熱モードでは、凝縮器50で加熱された中温冷却水が電池冷却器15を流れる。このため、凝縮器50で加熱された中温冷却水によって電池が加熱される。
続くステップS390では、電池冷却器入口水温が第1加熱判定温度Tw1(例えば40℃)を上回っているか否かを判定する。第1加熱判定温度Tw1は、電池の使用温度範囲(例えば10〜40℃)の上限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。
電池冷却器入口水温が第1加熱判定温度Tw1を上回っていると判定した場合、ステップS400へ進み、電池冷却器入口水温が第1加熱判定温度Tw1を上回っていないと判定した場合、ステップS370へ戻る。
ステップS400では、図52に示す第2加熱モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
第2加熱モードでは、第1切替弁19は、入口19aを出口19cと連通させ、入口19bを出口19dと連通させ、出口19eを閉じ、第2切替弁20は、入口20aを出口20eと連通させ、入口20bを出口20fと連通させ、入口20cを閉じる。
また、第2加熱モードでは、三方弁82が循環流路80を開けて電池冷却器用流路84を閉じ、第3ポンプ81が作動する。
これにより、図52の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図52の実線矢印に示す第2冷却水回路(低温冷却水回路)と、図52の二点鎖線矢印に示す内部循環回路とが構成される。
したがって、第2ポンプ12、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図52の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
一方、図52の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14およびクーラコア18を直列に流れ、第2切替弁20を経て第1ポンプ11に吸入される。
さらに、図52の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、電池冷却器15を流れて第3ポンプ81に吸入される。
このように、第2加熱モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れる。このため、凝縮器50で加熱された中温冷却水が電池冷却器15を流れない。
続くステップS410では、電池冷却器入口水温が第2加熱判定温度Tw2(例えば38℃)を下回っているか否かを判定する。第2加熱判定温度Tw2は、第1加熱判定温度Tw1よりも高い温度であり、予め制御装置40に記憶されている。
電池冷却器入口水温が第2加熱判定温度Tw2を下回っていると判定した場合、ステップS370へ戻り、電池冷却器入口水温が第1冷却判定温度Tc1を下回っていないと判定した場合、ステップS410へ戻る。
一方、ステップS360にて電池加熱要求無しと判定した場合、ステップS420へ進み、電池を構成する複数個の電池セル間の温度差、すなわち最も温度が高いセルと最も温度が低いセルの温度差が所定値(例えば5℃)を上回っているか否かを判定する。
複数個の電池セル間の温度差が所定値を上回っていると判定した場合、ステップS430へ進み、図53に示す電池均温運転モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
電池均温運転モードでは、第1切替弁19は出口19eを閉じ、第2切替弁20は入口20cを閉じる。また、電池均温運転モードでは、三方弁82が循環流路80を開けて電池冷却器用流路84を閉じ、第3ポンプ81が作動する。
これにより、図53の二点鎖線矢印に示す内部循環回路が構成される。したがって、図53の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、電池冷却器15を流れて第3ポンプ81に吸入される。
このように、電池均温運転モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れる。このため、冷却水冷却器14で冷却された低温冷却水および凝縮器50で加熱された中温冷却水が電池冷却器15を流れない。
ステップS420にて電池セル間の温度差が所定値を上回っていないと判定した場合、ステップS300へ戻る。
本実施形態によると、電池冷却要求が有る場合、電池冷却器入口水温が第1冷却判定温度Tc1を下回ると第1冷却モードから第2冷却モードに切り替えるので、冷房性能を確保しつつ、電池の作動を最適化できる。以下、その理由を説明する。
電池冷却器15に流入する冷却水の温度は10〜40℃であることが好ましい。これは、電池が最適に作動する温度範囲は10℃〜40℃とされるからである。すなわち、電池の温度が40℃を上回ると急速に電池の劣化が促進し、電池寿命低下、あるいは破損を招く。一方、電池の温度が10℃を下回ると電池の化学反応が抑制され電池の入出力が低下し、車両の加速性が低下したり、電池の回生・充電の効率が低下したりする。
また、電池の出力や内部抵抗は温度依存性を持つため、電池温度が急激に変化すると、電池入出力特性も急激に変化して電池の制御性が悪化する。また、電池温度が急激に変化すると、電池内部の温度ばらつきが大きくなって電池寿命が低下してしまう。
一方、冷房性能を確保しようとすると、クーラコア18に流入する冷却水の温度は0〜10℃であることが好ましい。
このように、電池冷却器15とクーラコア18とでは、流入する冷却水の適正温度範囲が異なっている。
この点、第2冷却モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れ、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れないので、内部循環回路を循環する冷却水は電池の熱によって加熱されて温度が徐々に上昇する。
このため、冷却水冷却器14で冷却された低温冷却水の温度が第1冷却判定温度Tc1を下回っていても、電池冷却器15を流れる冷却水の温度を第1冷却判定温度Tc1以上にすることができるので、電池の温度が使用温度範囲を下回って電池の入出力が低下したり、電池の充電効率が低下したりすることを防止できる。
一方、クーラコア18には、冷却水冷却器14で冷却された低温冷却水が流入するので、第1冷却判定温度Tc1以下の低温冷却水をクーラコア18に流入させて冷房性能を確保することができる。
しかも、第2冷却モードにおいて、内部循環回路を循環する冷却水の温度が徐々に上昇して第2冷却判定温度Tc2を上回ると第1冷却モードに切り替えるので、冷却水冷却器14で冷却された低温冷却水が電池冷却器15に導入される。このため、電池冷却器15を流れる冷却水の温度が第2冷却判定温度Tc2をさらに上回って上昇し続けることを防止できる。
同様に、暖房性能を確保しようとすると、ヒータコア51に流入する冷却水の温度は50〜60℃であることが好ましいので、電池冷却器15とヒータコア51とでは、流入する冷却水の適正温度範囲が異なっている。
この点に鑑みて、本実施形態では、電池加熱要求が有る場合、電池冷却器入口水温が第1加熱判定温度Tw1を上回ると第1加熱モードから第2加熱モードに切り替えるので、暖房性能を確保しつつ、電池の作動を最適化できる。
すなわち、第2加熱モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れ、凝縮器50で加熱された中温冷却水が電池冷却器15を流れないので、内部循環回路を循環する冷却水は電池によって冷却されて温度が徐々に低下する。
このため、凝縮器50で加熱された中温冷却水の温度が第1加熱判定温度Tw1を上回っていても、電池冷却器15を流れる冷却水の温度を第1加熱判定温度Tw1以上にすることができるので、電池の温度が使用温度範囲を上回って電池の劣化が急速に進んで電池寿命が低下したり、電池が破損しやすくなることを防止できる。
一方、ヒータコア51には、凝縮器50で加熱された中温冷却水が流入するので、第1加熱判定温度Tw1以上の中温冷却水をヒータコア51に流入させて暖房性能を確保することができる。
しかも、第2加熱モードにおいて、内部循環回路を循環する冷却水の温度が徐々に低下して第2加熱判定温度Tw2を下回ると第1加熱モードに切り替えるので、凝縮器50で加熱された中温冷却水が電池冷却器15に導入される。このため、電池冷却器15を流れる冷却水の温度が第2加熱判定温度Tw2をさらに下回って低下し続けることを防止できる。
さらに、本実施形態では、電池冷却要求および電池加熱要求のいずれもが無い場合、電池を構成する複数個の電池セル間の温度差が所定値(例えば5℃)を上回ると電池均温運転モードを実行するので、電池冷却器15に冷却水を循環させて電池を構成する複数個の電池セル間の温度差を低減することができる。以下、その理由を説明する。
一般的に電池は車両の床下やラゲージ下に搭載されるが、特に電池自動車などでは電池の体積が大きいために分散して搭載されることもあり、電池セル周囲温度に分布が生じ、各電池セルの温度も大きくばらつくことがある。
電池セル間に温度差があると、各セルの内部抵抗がばらつくため、各セルの発熱量、出力、劣化速度等にもばらつきが生じ、電池パックの出力低下、寿命低下等の問題が生じる。
この点に鑑みて、本実施形態では、電池冷却要求および電池加熱要求のいずれもが無い場合であっても、複数個の電池セル間の温度差が所定値(例えば5℃)を上回ると電池均温運転モードを実行して電池冷却器15に冷却水を循環させるので、複数個の電池セル間の温度差を低減することができる。
この電池均温運転モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れ、冷却水冷却器14で冷却された低温冷却水および凝縮器50で加熱された中温冷却水が電池冷却器15を流れない。
このため、空調が不要な場合、すなわち冷却水冷却器14で冷却水を冷却したり凝縮器50で冷却水を加熱したりする必要がない場合であっても電池冷却器15に冷却水を循環させることができる。
また、空調が不要な場合、第1冷却水回路および第2冷却水回路に冷却水を循環させることなく電池冷却器15に冷却水を循環させることができるので、第1冷却水回路または第2冷却水回路の冷却水を電池冷却器15に循環させる場合に比べて通水抵抗を小さくでき、ひいてはポンプ消費電力を低減できる。
(第13実施形態)
上記第12実施形態では、循環流路80が電池冷却器15に対して設けられているが、本第13実施形態では、図54に示すように、循環流路80がクーラコア18に対して設けられている。
循環流路80は、クーラコア用流路85と並列に設けられている。なお、クーラコア用流路85は、クーラコア18が配置された流路であって、その一端が第1切替弁19の出口19cに接続され、その他端が第2切替弁20の入口20aに接続されている。
循環流路80の一端部はクーラコア18の冷却水出口側に接続され、循環流路80の他端部はクーラコア18の冷却水入口側に接続されている。
図54の例では、循環流路80およびクーラコア用流路85のうちクーラコア18の近傍部位が一体化されて1つの流路を構成している。したがって、クーラコア18と第2切替弁20との間にて循環流路80とクーラコア用流路85とが分岐し、クーラコア18と第1切替弁19との間にて循環流路80とクーラコア用流路85とが合流している。
三方弁82は、循環流路80とクーラコア用流路85との分岐部に配置され、循環流路80とクーラコア用流路85とを切替開閉する。
すなわち、三方弁82が循環流路80を開けてクーラコア用流路85を閉じると、クーラコア18から流出した冷却水は循環流路80を循環してクーラコア18に流入する。一方、三方弁82がクーラコア用流路85を開けて循環流路80を閉じると、クーラコア18から流出した冷却水はクーラコア18を流れて第2切替弁20に流入する。
入口水温センサ83は、クーラコア18の冷却水入口側に配置されており、クーラコア18に流入する冷却水の温度(流入熱媒体温度)を検出する。
上記第12実施形態では、冷却水冷却器14とクーラコア18とが同一の流路に直列に配置されていたが、本実施形態では、冷却水冷却器14とクーラコア18とが別々の流路に並列に配置されている。
すなわち、冷却水冷却器14の冷却水入口側は、第1切替弁19の出口19gに接続されている。冷却水冷却器14の冷却水出口側は、第2切替弁20の入口20gに接続されている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を切り替え可能な構造になっている。
上記実施形態では説明を省略しているが、図54に示すように、室内空調ユニットのケーシング27の内部においてクーラコア18とヒータコア51との間には、エアミックスドア86が配置されている。エアミックスドア86は、クーラコア18通過後の送風空気のうちヒータコア51を通過する風量とヒータコア51を迂回する風量との風量割合を調整することによって、車室内へ送風される空調風の温度を調整する温度調整手段である。
本実施形態の制御装置40が実行する制御処理を図55に基づいて説明する。制御装置40は、図55のフローチャートにしたがってコンピュータプログラムを実行する。
まずステップS500では、冷房要求の有無を判定する。具体的には、エアコンスイッチ44がオンされている場合、冷房要求有りと判定し、エアコンスイッチ44がオフされている場合、冷房要求無しと判定する。
冷房要求有りと判定した場合、ステップS510へ進み、図56に示す第1冷房モード(非循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
第1冷房モードでは、第1切替弁19は、入口19aを出口19c、19gと連通させ、入口19bを出口19d、19eと連通させ、第2切替弁20は、入口20a、20gを出口20eと連通させ、入口20b、20cを出口20fと連通させる。
また、第1冷却モードでは、三方弁82がクーラコア用流路85を開けて循環流路80を閉じ、第3ポンプ81が停止する。
これにより、図56の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図56の実線矢印に示す第2冷却水回路(低温冷却水回路)とが構成される。
したがって、第2ポンプ12、凝縮器50、ヒータコア51および電池冷却器15によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図56の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で凝縮器50および電池冷却器15に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
一方、図56の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19で冷却水冷却器14およびクーラコア18に分岐し、冷却水冷却器14およびクーラコア18を並列に流れ、冷却水冷却器14を流れた冷却水およびクーラコア18を流れた冷却水は第2切替弁20で集合してラジエータ13を経て第1ポンプ11に吸入される。
このように、第1冷却モードでは、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れる。このため、冷却水冷却器14で冷却された低温冷却水によって車室内への送風空気が冷却される。
続くステップS520では、入口水温センサ83が検出した冷却水温度(以下、クーラコア入口水温と言う。)が第1冷却判定温度Tf1(本例では1℃)を下回っているか否かを判定する。第1冷却判定温度Tf1は、クーラコア18の表面に着霜(フロスト)が発生しない温度範囲の下限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。なお、クーラコア入口水温の代わりに、クーラコア18の表面温度(フィン温度)を用いてもよい。
クーラコア入口水温が第1冷却判定温度Tf1を下回っていると判定した場合、ステップS530へ進み、クーラコア入口水温が第1冷却判定温度Tf1を下回っていないと判定した場合、ステップS500へ戻る。
ステップS530では、図57に示す第2冷房モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
第2冷房モードでは、第1切替弁19は、入口19aを出口19gと連通させ、入口19bを出口19d、19eと連通させ、出口19cを閉じ、第2切替弁20は、入口20gを出口20eと連通させ、入口20b、20cを出口20fと連通させ、入口20aを閉じる。
また、第2冷却モードでは、三方弁82が循環流路80を開けてクーラコア用流路85を閉じ、第3ポンプ81が作動する。
これにより、図57の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図57の実線矢印に示す第2冷却水回路(低温冷却水回路)と、図57の二点鎖線矢印に示す内部循環回路とが構成される。
したがって、第2ポンプ12、凝縮器50、ヒータコア51および電池冷却器15によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成され、第3ポンプ81およびクーラコア18によって内部循環回路が構成される。
すなわち、図57の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で凝縮器50および電池冷却器15に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で合流して第2ポンプ12に吸入される。
一方、図57の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14を流れ、冷却水冷却器14を流れた冷却水は第2切替弁20およびラジエータ13を経て第2ポンプ12に吸入される。
さらに、図57の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、クーラコア18を流れて第3ポンプ81に吸入される。
このように、第2冷房モードでは、内部循環回路を循環する冷却水がクーラコア18を流れる。このため、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れない。
続くステップS540では、クーラコア入口水温が第2冷却判定温度Tf2(第2冷却判定温度)を上回っているか否かを判定する。第2冷却判定温度Tf2は、第1冷却判定温度Tf1よりも高い温度(例えば3℃)であり、予め制御装置40に記憶されている。
クーラコア入口水温が第2冷却判定温度Tf2を上回っていると判定した場合、ステップS500へ戻り、クーラコア入口水温が第2冷却判定温度Tf2を上回っていないと判定した場合、ステップS540へ戻る。
本実施形態によると、冷房要求が有る場合、クーラコア入口水温が第1冷却判定温度Tf1を下回ると第1冷房モードから第2冷房モードに切り替えるので、クーラコア18の表面に着霜(フロスト)が発生することを抑制できる。以下、その理由を説明する。
クーラコア18の表面温度が0℃を下回ると、クーラコア18の表面に付着した凝縮水が凍結して着霜(フロスト)が発生し、その結果、クーラコア18の通風路が塞がれて車室内への送風量が低下し、空調性能が低下してしまう。そのため、クーラコア18に流入する冷却水の温度の適正温度範囲は0℃以上である。
この点、本実施形態では、冷房要求が有る場合、第1冷房モードにおいて、クーラコア入口水温が第1冷却判定温度Tf1を下回ると第2冷房モードに切り替えるので、内部循環回路を循環する冷却水がクーラコア18を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れなくなる。
このとき、内部循環回路を循環する冷却水は車室内への送風空気によって加熱されて温度が徐々に上昇する。このため、冷却水冷却器14で冷却された低温冷却水の温度が第1冷却判定温度Tf1を下回っていても、クーラコア18を流れる冷却水の温度を第1冷却判定温度Tf1以上にすることができるので、クーラコア18の表面に着霜(フロスト)が発生することを抑制できる。
(第14実施形態)
上記第12実施形態では、第3ポンプ81が循環流路80のうち電池冷却器用流路84から分岐された部位に配置されているが、本第14実施形態では、図58に示すように、第3ポンプ81が、循環流路80のうち電池冷却器用流路84と一体化された部位(電池冷却器15の近傍部位)に配置されている。
本実施形態においても、上記第12実施形態と同様の作用効果を奏することができる。さらに、本実施形態によると、第3ポンプ81が常時運転されるようにすれば、非循環モード(第1冷却モード等)と循環モード(第2冷却モード等)との切り替え時に電池冷却器15への冷却水の供給が途絶えないようにすることができる。
(第15実施形態)
本第15実施形態では、図59に示すように、上記第12実施形態に対して、冷却水冷却器14、凝縮器50およびラジエータ13の配置を変更している。
冷却水冷却器14は、第2ポンプ12と第1切替弁19との間に配置されている。すなわち、冷却水冷却器14の冷却水入口側は第2ポンプ12の冷却水吐出側に接続され、冷却水冷却器14の冷却水出口側は第1切替弁19の入口19bに接続されている。
凝縮器50は、第1ポンプ11と第1切替弁19との間に配置されている。すなわち、凝縮器50の冷却水入口側は第1ポンプ11の冷却水吐出側に接続され、凝縮器50の冷却水出口側は第1切替弁19の入口19aに接続されている。
ラジエータ13は、第1切替弁19と第2切替弁20との間に配置されている。すなわち、ラジエータ13の冷却水入口側は第1切替弁19の出口19gに接続され、ラジエータ13の冷却水出口側は第2切替弁20の入口20gに接続されている。
第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を切り替え可能な構造になっている。
本実施形態においても、上記第12実施形態と同様の作用効果を奏することができる。
(第16実施形態)
上記第12実施形態では、電池冷却器15に対して第1切替弁19および第2切替弁20を介することなく冷却水を循環させることによって、空調性能(冷房性能および暖房性能)を確保しつつ電池の作動を最適化するようになっているが、本第16実施形態では、図60に示すように、電池冷却器15がヒートパイプ式熱交換器で構成されていることによって、空調性能を確保しつつ電池の作動を最適化するようになっている。
図60中の上下の矢印は、車両搭載状態における上下方向(重力方向)を示している。電池冷却器15は、冷媒(作動流体)が凝縮または蒸発する第1気液相変化部151および第2気液相変化部152を有している。
第1気液相変化部151は、容器151aと冷却水配管151bとを有している。容器151aには、冷媒が気液2相状態で封入されている。冷却水配管151bの入口側は第1切替弁19の出口に接続され、冷却水配管151bの出口側は第2切替弁20の入口に接続され、冷却水配管151bの中間部は容器151aの内部に配置されている。
容器151aの内部に封入された冷媒は、冷却水配管151bを流れる冷却水と熱交換することによって凝縮または蒸発する。
第2気液相変化部152は、冷媒が流通する冷媒配管152aを有している。冷媒配管152aの一端側は第1気液相変化部151の容器151aの下部、すなわち液相状態の冷媒が存在している部位に接続されている。冷媒配管152aの他端側は第1気液相変化部151の容器151aの上部、すなわち気相状態の冷媒が存在している部位に接続されている。
第2気液相変化部152では、冷媒配管152aを流れる冷媒が電池90によって加熱または冷却されて蒸発または凝縮する。
電池90は複数個の電池セルで構成されている。電池90には、電池セルの温度を検出する電池温度センサ91が取り付けられている。電池温度センサ91の検出信号は制御装置40に入力される。
第1気液相変化部151に流入する冷却水の温度が低い場合、第1気液相変化部151において気相冷媒が冷却水によって冷却されて凝縮する。このとき、第2気液相変化部152において液相冷媒が電池90によって加熱されて蒸発すると、第1気液相変化部151と第2気液相変化部152との間で図60の矢印に示すように冷媒が循環して電池90が冷却される。
これとは逆に、第1気液相変化部151(電池冷却器15)に流入する冷却水の温度が高い場合、第1気液相変化部151において液相冷媒が冷却水によって加熱されて蒸発する。このとき、第2気液相変化部152において気相冷媒が電池90によって冷却されて凝縮すると、第1気液相変化部151と第2気液相変化部152との間で図60の矢印とは逆方向に冷媒が循環して電池90が加熱される。
本実施形態の制御装置40が実行する制御処理を図61に基づいて説明する。制御装置40は、図61のフローチャートにしたがってコンピュータプログラムを実行する。
まずステップS600では、電池冷却要求の有無を判定する。具体的には、電池の温度が第1所定温度(例えば35℃)以上の場合、電池冷却要求有りと判定し、電池の温度が第1所定温度未満の場合、電池冷却要求無しと判定する。
電池冷却要求有りと判定した場合、ステップS610へ進み、電池の温度が冷却目標温度(例えば40℃)を上回っているか否かを判定する。電池の温度が冷却目標温度を上回っていると判定した場合、ステップS620へ進み、電池の温度が冷却目標温度を上回っていないと判定した場合、ステップS600へ戻る。
ステップS620では、電池冷却器15に低温冷却水(冷却水冷却器14で冷却された冷却水)が供給されるように第1切替弁19および第2切替弁20の作動を制御する。これにより電池90が冷却される。
続くステップS630では、電池温度センサ91で検出された電池セルの温度が第1冷却判定温度Tc1(例えば15℃)を下回っているか否かを判定する。第1冷却判定温度Tc1は、電池の使用温度範囲(例えば15〜35℃)の下限温度である。
電池冷却器入口水温が第1冷却判定温度Tc1を下回っていると判定した場合、ステップS640へ進み、電池冷却器入口水温が第1冷却判定温度Tc1を下回っていないと判定した場合、ステップS610へ戻る。
ステップS640では、電池冷却器15への低温冷却水の供給が停止されるように第1切替弁19および第2切替弁20の作動を制御する。
続くステップS650では、電池冷却器入口水温が第2冷却判定温度Tc2(例えば17℃)を上回っているか否かを判定する。第2冷却判定温度Tc2は、第1冷却判定温度Tc1よりも高い温度である。
電池冷却器入口水温が第2冷却判定温度Tc2を上回っていると判定した場合、ステップS610へ戻り、電池冷却器入口水温が第2冷却判定温度Tc2を上回っていないと判定した場合、ステップS650へ戻る。
一方、ステップS600にて電池冷却要求無しと判定した場合、ステップS660へ進み、電池加熱要求の有無を判定する。具体的には、電池の温度が第2所定温度(例えば15℃)未満の場合、電池加熱要求有りと判定し、電池の温度が第2所定温度以上の場合、電池加熱要求無しと判定する。
電池加熱要求有りと判定した場合、ステップS670へ進み、電池加熱要求無しと判定した場合、ステップS600へ戻る。
ステップS670では、電池の温度が加熱目標温度(例えば10℃)を下回っているか否かを判定する。電池の温度が加熱目標温度を下回っていると判定した場合、ステップS680へ進み、電池の温度が加熱目標温度を下回っていないと判定した場合、ステップS600へ戻る。
ステップS680では、電池冷却器15に高温冷却水(凝縮器50で加熱された冷却水)が供給されるように第1切替弁19および第2切替弁20の作動を制御する。これにより電池90が加熱される。
続くステップS690では、電池温度センサ91で検出された電池セルの温度が第1加熱判定温度Tw1(例えば35℃)を上回っているか否かを判定する。第1加熱判定温度Tw1は、電池の使用温度範囲(例えば15〜35℃)の上限温度である。
電池冷却器入口水温が第1加熱判定温度Tw1を上回っていると判定した場合、ステップS700へ進み、電池冷却器入口水温が第1加熱判定温度Tw1を上回っていないと判定した場合、ステップS670へ戻る。
ステップS700では、電池冷却器15への高温冷却水の供給が停止されるように第1切替弁19および第2切替弁20の作動を制御する。
続くステップS710では、電池冷却器入口水温が第2加熱判定温度Tw2(例えば33℃)を下回っているか否かを判定する。第2加熱判定温度Tw2は、第1加熱判定温度Tw1よりも低い温度である。
電池冷却器入口水温が第2加熱判定温度Tw2を下回っていると判定した場合、ステップS670へ戻り、電池冷却器入口水温が第2加熱判定温度Tw2を下回っていないと判定した場合、ステップS710へ戻る。
本実施形態によると、電池冷却要求が有る場合、電池セル温度が第1冷却判定温度Tc1を下回ると電池冷却器15への低温冷却水の供給を停止するので、電池の温度が使用温度範囲を下回って電池の入出力が低下したり、電池の充電効率が低下することを防止できる。
電池冷却器15への低温冷却水の供給を停止した状態において、電池セル温度が徐々に上昇して第2冷却判定温度Tc2を上回ると電池冷却器15に低温冷却水を供給するので、電池セル温度が第2冷却判定温度Tc2をさらに上回って上昇し続けることを防止できる。
同様に、電池加熱要求が有る場合、電池セル温度が第1加熱判定温度Tw1を上回ると電池冷却器15への高温冷却水の供給を停止するので、電池の温度が使用温度範囲を上回って電池の劣化が急速に進んで電池寿命が低下したり、電池が破損しやすくなることを防止できる。
電池冷却器15への高温冷却水の供給を停止した状態において、電池セル温度が徐々に低下して第2加熱判定温度Tw2を下回ると電池冷却器15に高温冷却水を供給するので、電池セル温度が第2加熱判定温度Tw2をさらに下回って低下し続けることを防止できる。
さらに、本実施形態では、電池冷却器15がヒートパイプ式熱交換器で構成されているので、電池冷却器15への冷却水の供給を停止しても、冷媒の作用によって、電池90を構成する複数個の電池セル間の温度差を低減することができる。
(第17実施形態)
上記第16実施形態では、電池冷却器15がヒートパイプ式熱交換器で構成されているが、本第17実施形態では、図62に示すように、クーラコア18がヒートパイプ式熱交換器で構成されている。
図62中の上下の矢印は、車両搭載状態における上下方向(重力方向)を示している。クーラコア18は、冷媒が凝縮または蒸発する第1気液相変化部181および第2気液相変化部182を有している。第1気液相変化部181は、上側タンク181aおよび冷却水配管181bを有している。第2気液相変化部182は、チューブ182a、フィン182bおよび下側タンク182cを有している。
チューブ182aは、冷媒が流れる冷媒流路を形成しており、その長手方向が上下方向を向くように多数本、互いに並列に配置されている。チューブ182a同士の間には、車室内への送風空気が流れる空気通路が形成されている。
フィン182bは、車室内への送風空気とチューブ182aとの伝熱面積を増大させて車室内への送風空気と冷媒との熱交換を促進する伝熱促進部材であり、チューブ182aの外面に接合されている。
上側タンク181aおよび下側タンク182cは、複数本のチューブ182aに対する冷媒の分配または集合を行うタンクであり、上側タンク181aは多数本のチューブ182aの上方側に配置され、下側タンク182cは多数本のチューブ182aの下方側に配置されている。
冷却水配管181bは上側タンク181aの内部に配置されている。冷却水配管181bの入口側は第1切替弁19の出口に接続され、冷却水配管181bの出口側は第2切替弁20の入口に接続されている。
クーラコア18の内部には、冷媒が気液2相状態で封入されている。具体的には、チューブ182aおよび下側タンク182cには冷媒が液相状態で封入され、上側タンク181aには冷媒が気相状態で封入されている。
フィン182bには、フィン182bの温度、すなわちクーラコア18の表面温度を検出するクーラコア温度センサ95が取り付けられている。クーラコア温度センサ95の検出信号は制御装置40に入力される。
冷却水配管181bに流入する冷却水の温度が低い場合、上側タンク181aにおいて気相冷媒が、冷却水配管181bを流れる冷却水によって冷却されて凝縮する。このとき、チューブ182aにおいて液相冷媒が車室内への送風空気によって加熱されて蒸発すると、上側タンク181aとチューブ182aとの間で冷媒が循環して車室内への送風空気が冷却される。
本実施形態の制御装置40が実行する制御処理を図63に基づいて説明する。制御装置40は、図63のフローチャートにしたがってコンピュータプログラムを実行する。
まずステップS700では、冷房要求の有無を判定する。具体的には、エアコンスイッチ44がオンされている場合、冷房要求有りと判定し、エアコンスイッチ44がオフされている場合、冷房要求無しと判定する。
冷房要求有りと判定した場合、ステップS710へ進み、冷房要求無しと判定した場合、ステップS700へ戻る。
ステップS710では、クーラコア18に低温冷却水(冷却水冷却器14で冷却された冷却水)が供給されるように第1切替弁19および第2切替弁20の作動を制御する。これにより、クーラコア18において車室内への送風空気が冷却される。
続くステップS720では、クーラコア温度センサ95で検出したクーラコア温度が第1冷却判定温度Tf1(例えば1℃)を下回っているか否かを判定する。第1冷却判定温度Tf1は、クーラコア18の表面に着霜(フロスト)が発生しない温度範囲の下限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。
クーラコア温度が第1冷却判定温度Tf1を下回っていると判定した場合、ステップS730へ進み、クーラコア温度が第1冷却判定温度Tf1を下回っていないと判定した場合、ステップS700へ戻る。
ステップS730では、クーラコア18への低温冷却水の供給が停止されるように第1切替弁19および第2切替弁20の作動を制御する。
続くステップS740では、クーラコア温度が第2冷却判定温度Tf2(例えば3℃)を上回っているか否かを判定する。第2冷却判定温度Tf2は、第1冷却判定温度Tf1よりも高い温度(例えば3℃)であり、予め制御装置40に記憶されている。
クーラコア温度が第2冷却判定温度Tf2を上回っていると判定した場合、ステップS700へ戻り、クーラコア温度が第2冷却判定温度Tf2を上回っていないと判定した場合、ステップS740へ戻る。
本実施形態によると、冷房要求が有る場合、クーラコア温度が第1冷却判定温度Tf1を下回るとクーラコア18への低温冷却水の供給を停止するので、クーラコア18の表面に着霜(フロスト)が発生することを抑制できる。
クーラコア18への低温冷却水の供給を停止した状態において、クーラコア温度が徐々に上昇して第2冷却判定温度Tf2を上回るとクーラコア18に低温冷却水を供給するので、クーラコア温度が第2冷却判定温度Tf2をさらに上回って上昇し続けることを防止できる。
(他の実施形態)
本発明は上記実施形態に限定されることなく、以下のように種々変形可能である。
(1)温度調整対象機器として種々の機器を用いることができる。例えば、乗員が着座するシートに内蔵されて冷却水によりシートを冷却・加熱する熱交換器を温度調整対象機器として用いてもよい。温度調整対象機器の個数は、複数個(2個以上)であるならば何個でもよい。
(2)上記第1実施形態は、第1切替弁19および第2切替弁20の弁体の孔の配置パターンの一例を示したものであり、第1切替弁19および第2切替弁20の弁体の孔の配置パターンを種々変更することができる。
第1切替弁19および第2切替弁20の弁体の孔の配置パターンを変更することによって冷却水入口と冷却水出口との連通状態を様々に変更できるので、運転モードの追加等の仕様変更に容易に対応することができる。
(3)上記第1実施形態では、外気センサ42で検出された外気温に基づいて第1〜第3モードを切り替えたが、水温センサ43で検出された冷却水温度に基づいて第1〜第3モードを切り替えるようにしてもよい。
(4)上記第3実施形態では、第2モードにおいて、電池に蓄えられた冷熱を利用して冷凍サイクル22の高圧冷媒を過冷却しているが、電池に蓄えられた冷熱を車室内空気やインバータなどの冷却に利用するようにしてもよい。
(5)上記実施形態では、冷却水を外気の温度よりも低温まで冷却する冷却手段として、冷凍サイクル22の低圧冷媒で冷却水を冷却する冷却水冷却器14を用いているが、ペルチェ素子を冷却手段として用いてもよい。
(6)上記各実施形態において、電池冷却器15に冷却水を間欠的に循環させることによって電池に対する冷却能力を制御するようにしてもよい。
(7)上記各実施形態において、エンジンの負荷に応じて、排気ガス冷却器17に中温冷却水が循環する場合と低温冷却水が循環する場合とに切り替えるようにしてもよい。例えば市街地走行時等、エンジンの負荷が小さい場合に低温冷却水循環に切り替えれば、排気ガスを冷凍サイクル22で冷却してエンジン吸気側に戻す排気ガス密度を高めることができるので、燃費を向上させることができる。
(8)上記各実施形態では、温度調整対象機器を冷却または加熱するための熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
(9)上記各実施形態の冷凍サイクル22では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
また、上記各実施形態の冷凍サイクル22は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
(10)上記各実施形態では、本発明の車両用熱管理システムをハイブリッド自動車に適用した例を示したが、エンジンを備えず走行用電動モータから車両走行用の駆動力を得る電気自動車に本発明を適用してもよい。
(11)上記第12〜15実施形態では、三方弁82によって循環流路80と電池冷却器用流路84とを切替開閉するようになっているが、三方弁82を廃止して循環流路80に逆止弁を設けてもよい。
この場合、第1切替弁19および第2切替弁20が電池冷却器用流路84を閉じることによって循環モード(第2冷却モード、第2加熱モード、電池均温運転モード、第2冷房モード)に切り替えることができる。また、第1切替弁19が電池冷却器用流路84を第1冷却水回路および第2冷却水回路のうち一方の冷却水回路に接続し、第2切替弁20が電池冷却器用流路84を第1冷却水回路および第2冷却水回路のうち他方の冷却水回路に接続することによっても循環モードに切り替えることができる。
(12)上記第12〜15実施形態では、電池冷却器15またはクーラコア18に対して内部循環回路を形成する例を示したが、これに限定されるものではなく、他の温度調整対象機器に対して内部循環回路を形成するようにしてもよい。
例えば、インバータ冷却器16に対して内部循環回路を形成するようにしてもよい。これによると、インバータの冷却能力を調整することができるので、インバータの発熱量が小さい走行条件の場合に低温冷却水がそのままインバータ冷却器16に導入されて冷却能力が過剰になってしまうことを防止できる。
(13)上記第16実施形態では、電池90の温度に応じて電池冷却器15への冷却水の供給を断続するが、電池90の温度に応じて電池冷却器15に供給される冷却水の流量を調整するようにしてもよい。
同様に、上記第17実施形態では、クーラコア18の温度に応じてクーラコア18への冷却水の供給を断続するが、クーラコア18の温度に応じてクーラコア18に供給される冷却水の流量を調整するようにしてもよい。
冷却水の流量調整は、第1切替弁19および第2切替弁20のうち少なくとも一方の作動を制御することによって行うことができる。
(14)上記第17実施形態のクーラコア18において、上側タンク181aにおいて凝縮した冷媒を下側タンク182cに直接戻す冷媒配管を設けてもよい。
11 第1ポンプ
12 第2ポンプ
13 ラジエータ(熱交換器)
14 冷却水冷却器(冷却手段、低圧側熱交換器)
15 電池冷却器(温度調整対象機器)
16 インバータ冷却器(温度調整対象機器)
17 排気ガス冷却器(温度調整対象機器)
18 クーラコア(温度調整対象機器)
19 第1切替弁
20 第2切替弁
40 制御装置(制御手段)
42 外気センサ(検出手段)
43 水温センサ(検出手段)
50 凝縮器(温度調整対象機器、高圧側熱交換器)
51 ヒータコア(加熱用熱交換器)
59 電磁弁(開閉弁)
60 過冷却器
65 吸気冷却器(温度調整対象機器)

Claims (22)

  1. 熱媒体を吸入して吐出する第1ポンプ(11)および第2ポンプ(12)と、
    前記熱媒体と外気とを熱交換させる熱交換器(13)と、
    前記熱媒体が流通する流路を有し、前記熱媒体によって温度調整される複数個の温度調整対象機器(15、16、17、18、50、65)と、
    前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が互いに並列に接続され且つ前記複数個の温度調整対象機器の熱媒体入口側が互いに並列に接続され、前記複数個の温度調整対象機器のそれぞれについて前記第1ポンプ(11)から吐出された熱媒体が流入する場合と前記第2ポンプ(12)から吐出された前記熱媒体が流入する場合とを切り替える第1切替弁(19)と、
    前記第1ポンプ(11)の熱媒体吸入側および前記第2ポンプ(12)の熱媒体吸入側が互いに並列に接続され且つ前記複数個の温度調整対象機器の熱媒体出口側が互いに並列に接続され、前記複数個の温度調整対象機器のそれぞれについて前記第1ポンプ(11)へ前記熱媒体が流出する場合と前記第2ポンプ(12)へ熱媒体が流出する場合とを切り替える第2切替弁(20)と、
    前記複数個の温度調整対象機器のそれぞれについて、前記第1ポンプ(11)との間で前記熱媒体が循環する場合と、前記第2ポンプ(12)との間で前記熱媒体が循環する場合とが切り替わるように前記第1切替弁(19)および前記第2切替弁(20)の作動を制御する制御手段(40)とを備えることを特徴とする車両用熱管理システム。
  2. さらに、前記熱交換器(13)で熱交換された前記熱媒体の温度に関連する温度を検出する検出手段(42、43)を備え、
    前記制御手段(40)は、前記検出手段(42、43)で検出された温度に応じて前記第1切替弁(19)および前記第2切替弁(20)の作動を制御することを特徴とする請求項1に記載の車両用熱管理システム。
  3. さらに、前記第2ポンプ(12)から吐出された前記熱媒体を前記外気の温度よりも低い温度まで冷却する冷却手段(14)を備え、
    前記熱交換器(13)は、前記第1ポンプ(11)から吐出された前記熱媒体と外気とを熱交換させるようになっており、
    前記制御手段(40)は、前記検出手段(42、43)で検出された温度が所定温度よりも低い場合、前記複数個の温度調整対象機器のうち一部の温度調整対象機器(18)について前記第2ポンプ(12)との間で前記熱媒体が循環し且つ前記複数個の温度調整対象機器のうち残余の温度調整対象機器(15、16、17)について前記第1ポンプ(11)との間で前記熱媒体が循環し、前記検出手段(42、43)で検出された温度が前記所定温度よりも高い場合、前記検出手段(42、43)で検出された温度が高くなるにつれて、前記第2ポンプ(12)との間で前記熱媒体が循環する前記温度調整対象機器の個数が増加するように、前記第1切替弁(19)および前記第2切替弁(20)の作動を制御することを特徴とする請求項2に記載の車両用熱管理システム。
  4. 前記残余の温度調整対象機器(15、16、17)は、要求される冷却温度が互いに異なっており、
    前記制御手段(40)は、
    前記検出手段(42、43)で検出された温度が所定温度よりも高い場合、前記検出手段(42、43)で検出された温度が高くなるにつれて、前記残余の温度調整対象機器(15、16、17)のうち前記冷却温度の低い度調整対象機器から順番に前記第2ポンプ(12)との間で前記熱媒体が循環していくように、前記第1切替弁(19)および前記第2切替弁(20)を制御することを特徴とする請求項3に記載の車両用熱管理システム。
  5. さらに、冷凍サイクル(22)の低圧冷媒と前記熱媒体とを熱交換する低圧側熱交換器(14)を備え、
    前記低圧側熱交換器(14)の熱媒体入口側は前記第1切替弁(19)に接続され、
    前記低圧側熱交換器(14)の熱媒体出口側は前記第2切替弁(20)に接続され、
    前記第1切替弁(19)は、前記低圧側熱交換器(14)について前記第1ポンプ(11)から吐出された熱媒体が流入する場合と前記第2ポンプ(12)から吐出された前記熱媒体が流入する場合とを切り替え、
    前記第2切替弁(20)は、前記低圧側熱交換器(14)について前記第1ポンプ(11)へ前記熱媒体が流出する場合と前記第2ポンプ(12)へ熱媒体が流出する場合とを切り替え、
    前記複数個の温度調整対象機器のうち1つの温度調整対象機器(50)は、前記冷凍サイクル(22)の高圧冷媒と前記熱媒体とを熱交換する高圧側熱交換器であり、
    前記熱交換器(13)は、前記第1ポンプ(11)から吐出された前記熱媒体と外気とを熱交換させるようになっており、
    前記制御手段(40)は、前記検出手段(42、43)で検出された温度が所定温度よりも低い場合、前記低圧側熱交換器(14)について前記第1ポンプ(11)との間で前記熱媒体が循環し、前記高圧側熱交換器(50)について前記第2ポンプ(12)との間で前記熱媒体が循環するように、前記第1切替弁(19)および前記第2切替弁(20)を制御することを特徴とする請求項2に記載の車両用熱管理システム。
  6. さらに、前記高圧側熱交換器(50)で熱交換された前記熱媒体によって車室内への送風空気を加熱する加熱用熱交換器(51)を備えることを特徴とする請求項5に記載の車両用熱管理システム。
  7. 外部電源から供給された電力を電池に充電可能な車両に適用される車両用熱管理システムであって、
    前記高圧側熱交換器(50)で熱交換された前記冷媒を前記熱媒体によって冷却する過冷却器(60)と、
    前記低圧側熱交換器(14)に流入する冷媒が流れる冷媒流路を開閉する開閉弁(59)とを備え、
    前記複数個の温度調整対象機器のうち1つの温度調整対象機器(15)は、前記電池を前記熱媒体によって冷却する電池冷却器であり、
    記制御手段(40)は、
    前記外部電源から供給された電力を電池に充電している場合、前記過冷却器(60)、前記低圧側熱交換器(14)および前記電池冷却器(15)について前記第2ポンプ(12)との間で前記熱媒体が循環するように前記第1切替弁(19)および前記第2切替弁(20)を制御し且つ前記開閉弁(59)を開け、
    前記外部電源から供給された電力を電池に充電した後の場合、前記過冷却器(60)、前記低圧側熱交換器(14)および前記電池冷却器(15)について前記第2ポンプ(12)との間で前記熱媒体が循環するように前記第1切替弁(19)および前記第2切替弁(20)を制御し且つ前記開閉弁(59)を閉じることを特徴とする請求項5または6に記載の車両用熱管理システム。
  8. 前記過冷却器(60)の熱媒体入口側は、前記第1切替弁(19)に接続され、
    前記過冷却器(60)の熱媒体出口側は、前記電池冷却器(15)の熱媒体入口側に接続されていることを特徴とする請求項7に記載の車両用熱管理システム。
  9. 前記第1切替弁(19)は、前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が1対1で個別に接続される2つの入口(19a、19b)と、前記複数個の温度調整対象機器の熱媒体入口側が1対1で個別に接続される複数個の出口(19c、19d、19e、19f、19g)との間で前記熱媒体の流れを切り替えるように構成され、
    前記第2切替弁(20)は、前記複数個の温度調整対象機器の熱媒体出口側が1対1で個別に接続される複数個の入口(20a、20b、20c、20d、20g)と、前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が1対1で個別に接続される2つの出口(20e、20f)との間で前記熱媒体の流れを切り替えるように構成されていることを特徴とする請求項1ないしのいずれか1つに記載の車両用熱管理システム。
  10. 前記第1切替弁(19)および前記第2切替弁(20)を介することなく前記熱媒体が循環する循環流路(80)に配置され、前記熱媒体を吸入して吐出する第3ポンプ(81)を備え、
    前記複数個の温度調整対象機器のうち少なくとも1つの温度調整対象機器(15、18)には、前記第1切替弁(19)から前記少なくとも1つの温度調整対象機器(15、18)を経て前記第2切替弁(20)に至る非循環流路(84)を流れる前記熱媒体、および前記循環流路(80)を流れる前記熱媒体の両方が流通可能になっており、
    前記非循環流路(84)を流れる前記熱媒体が前記少なくとも1つの温度調整対象機器(15、18)を流通する非循環モードと、前記循環流路(80)を循環する前記熱媒体が前記少なくとも1つの温度調整対象機器(15、18)を流通する循環モードとを切り替え可能になっていることを特徴とする請求項1ないし4のいずれか1つに記載の車両用熱管理システム。
  11. 前記非循環流路(84)に対する前記熱媒体の流れが切り替わるように前記第1切替弁(19)および前記第2切替弁(20)が作動することによって、前記循環モードと前記非循環モードとを切り替えることを特徴とする請求項10に記載の車両用熱管理システム。
  12. 前記非循環流路(84)と前記循環流路(80)とを切替開閉する循環切替弁(82)を備えることを特徴とする請求項10または11に記載の車両用熱管理システム。
  13. 前記少なくとも1つの温度調整対象機器(15、18)に流入する前記熱媒体の温度である流入熱媒体温度に応じて前記循環モードと前記非循環モードとを切り替えることを特徴とする請求項10ないし12のいずれか1つに記載の車両用熱管理システム。
  14. 前記少なくとも1つの温度調整対象機器(15、18)の冷却時において、前記流入熱媒体温度が第1冷却判定温度(Tc1、Tf1)以下となった場合、前記循環モードに切り替え、前記流入熱媒体温度が、前記第1冷却判定温度(Tc1、Tf1)よりも高い温度である第2冷却判定温度(Tc2、Tf2)以上となった場合、前記非循環モードに切り替えることを特徴とする請求項13に記載の車両用熱管理システム。
  15. 前記少なくとも1つの温度調整対象機器(15)の加熱時において、前記流入熱媒体温度が第1加熱判定温度(Tw1)以上となった場合、前記循環モードに切り替え、前記流入熱媒体温度が、前記第1加熱判定温度(Tw1)よりも低い温度である第2加熱判定温度(Tw2)以下となった場合、前記非循環モードに切り替えることを特徴とする請求項13または14に記載の車両用熱管理システム。
  16. 前記少なくとも1つの温度調整対象機器は、電池を前記熱媒体によって冷却する電池冷却器(15)であり、
    前記第1冷却判定温度(Tc1)は、前記電池の使用温度範囲の下限温度に基づいて決定された温度であることを特徴とする請求項14に記載の車両用熱管理システム。
  17. 前記少なくとも1つの温度調整対象機器は、前記熱媒体によって車室内への送風空気を冷却する空気冷却器(18)であり、
    前記第1冷却判定温度(Tf1)は、前記空気冷却器(18)に着霜が発生しない温度範囲の下限温度に基づいて決定された温度であることを特徴とする請求項1に記載の車両用熱管理システム。
  18. 前記少なくとも1つの温度調整対象機器は、電池を前記熱媒体によって加熱する機器(15)であり、
    前記第1加熱判定温度(Tw1)は、前記電池の使用温度範囲の上限温度に基づいて決定された温度であることを特徴とする請求項15に記載の車両用熱管理システム。
  19. 前記少なくとも1つの温度調整対象機器(15、18)は、前記作動流体と前記熱媒体とを熱交換することによって前記作動流体を凝縮または蒸発させる第1気液相変化部(151、181)と、前記作動流体が吸熱または放熱することによって前記作動流体を蒸発または凝縮させる第2気液相変化部(152、182)とを有するヒートパイプ式熱交換器で構成されていることを特徴とする請求項1ないし4のいずれか1つに記載の車両用熱管理システム。
  20. 前記制御手段(40)が前記第1切替弁(19)、前記第2切替弁(20)、前記第1ポンプ(11)および前記第2ポンプ(12)のうち少なくとも1つの作動を制御することによって、前記少なくとも1つの温度調整対象機器(15、18)に流入する前記熱媒
    体の流量が調整されるようになっていることを特徴とする請求項19に記載の車両用熱管理システム。
  21. 前記少なくとも1つの温度調整対象機器は、電池(90)から吸熱した前記作動流体を冷却して凝縮させる電池冷却器(15)であることを特徴とする請求項19または20に記載の車両用熱管理システム。
  22. 前記少なくとも1つの温度調整対象機器は、車室内への送風空気から吸熱した前記作動流体を冷却して凝縮させる空気冷却器(18)であることを特徴とする請求項19または20に記載の車両用熱管理システム。
JP2012278552A 2012-02-02 2012-12-20 車両用熱管理システム Expired - Fee Related JP5880863B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012278552A JP5880863B2 (ja) 2012-02-02 2012-12-20 車両用熱管理システム
CN201380008012.2A CN104093587B (zh) 2012-02-02 2013-01-30 车辆热管理系统
DE112013000833.5T DE112013000833T5 (de) 2012-02-02 2013-01-30 Fahrzeugwärmemanagementsystem
US14/376,316 US9643469B2 (en) 2012-02-02 2013-01-30 Vehicle thermal management system
PCT/JP2013/000504 WO2013114874A1 (ja) 2012-02-02 2013-01-30 車両用熱管理システム

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012020905 2012-02-02
JP2012020905 2012-02-02
JP2012084444 2012-04-03
JP2012084444 2012-04-03
JP2012278552A JP5880863B2 (ja) 2012-02-02 2012-12-20 車両用熱管理システム

Publications (2)

Publication Number Publication Date
JP2013230805A JP2013230805A (ja) 2013-11-14
JP5880863B2 true JP5880863B2 (ja) 2016-03-09

Family

ID=48904919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278552A Expired - Fee Related JP5880863B2 (ja) 2012-02-02 2012-12-20 車両用熱管理システム

Country Status (5)

Country Link
US (1) US9643469B2 (ja)
JP (1) JP5880863B2 (ja)
CN (1) CN104093587B (ja)
DE (1) DE112013000833T5 (ja)
WO (1) WO2013114874A1 (ja)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910517B2 (ja) 2012-02-02 2016-04-27 株式会社デンソー 熱交換器
JP6135256B2 (ja) * 2012-05-23 2017-05-31 株式会社デンソー 車両用熱管理システム
JP6060797B2 (ja) 2012-05-24 2017-01-18 株式会社デンソー 車両用熱管理システム
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
DE102013105747B4 (de) * 2012-07-18 2022-06-09 Hanon Systems Vorrichtungen zur Wärmeverteilung in einem Kraftfahrzeug
JP6155907B2 (ja) * 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
JP5962556B2 (ja) 2013-03-19 2016-08-03 株式会社デンソー 車両用熱管理システム
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6112039B2 (ja) 2013-04-08 2017-04-12 株式会社デンソー 車両用熱管理システム
JP6065779B2 (ja) 2013-07-31 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6233009B2 (ja) * 2013-12-26 2017-11-22 株式会社デンソー 車両用空調装置
JP6252186B2 (ja) * 2014-01-15 2017-12-27 株式会社デンソー 車両用熱管理システム
JP6303615B2 (ja) * 2014-03-05 2018-04-04 株式会社デンソー 車両用熱管理システム
DE102014206770A1 (de) * 2014-04-08 2015-10-08 MAHLE Behr GmbH & Co. KG Batteriekühleinrichtung und zugehöriges Betriebsverfahren
EP3171097B1 (en) 2014-07-18 2019-11-06 Mitsubishi Electric Corporation Air conditioner
WO2016009749A1 (ja) 2014-07-18 2016-01-21 三菱電機株式会社 熱媒体流路切替装置およびこれを備えた空気調和装置
US10330208B2 (en) 2014-08-22 2019-06-25 Mitsubishi Electric Corporation Compound valve
JP6287793B2 (ja) 2014-12-10 2018-03-07 株式会社デンソー 車両用空調装置
DE102014226346A1 (de) * 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Wärmesystem für ein Elektro- oder Hybridfahrzeug
KR101646441B1 (ko) * 2015-01-29 2016-08-05 현대자동차주식회사 차량의 aaf 및 ets 통합 제어방법 및 제어장치
KR101679971B1 (ko) * 2015-05-14 2016-11-25 현대자동차주식회사 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
US9827846B2 (en) * 2015-06-10 2017-11-28 Ford Global Technologies, Llc Traction battery cooling system
JP6380455B2 (ja) * 2015-07-14 2018-08-29 株式会社デンソー 冷凍サイクル装置
US10562371B2 (en) 2015-08-28 2020-02-18 Denso Corporation Air conditioning system
FR3041484A3 (fr) * 2015-09-22 2017-03-24 Renault Sas Dispositif de conditionnement thermique d'une batterie d'un vehicule electrique ou hybride durant une recharge rapide
CN105398327B (zh) * 2015-12-19 2018-11-16 重庆小康工业集团股份有限公司 电动汽车冷却控制系统
JP2019502597A (ja) * 2016-01-07 2019-01-31 ボルグワーナー スウェーデン エービー 電気駆動システム用熱管理
WO2017158991A1 (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 電動車両の高電圧機器冷却システム
US10718256B2 (en) * 2016-05-03 2020-07-21 GM Global Technology Operations LLC Powertrain thermal management system and method
JP6471133B2 (ja) * 2016-10-25 2019-02-13 本田技研工業株式会社 車両用電源装置
JP6624107B2 (ja) 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
CN107230812B (zh) * 2017-05-31 2020-08-07 重庆长安汽车股份有限公司 一种混合动力汽车动力电池的冷却控制系统及方法
US11565568B2 (en) 2017-06-06 2023-01-31 Carrier Corporation Transport refrigeration system
JP2019002350A (ja) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 冷却システム
JP6867258B2 (ja) * 2017-09-08 2021-04-28 本田技研工業株式会社 車両用熱交換システム、車両用熱交換方法、およびプログラム
DE102017215984B4 (de) * 2017-09-11 2023-11-09 Vitesco Technologies GmbH Steuermodul zur Klimatisierung einer Batterie
EP3774421B1 (en) * 2018-03-28 2021-11-24 Volvo Truck Corporation Thermoregulation system for an electrically driven vehicle, and vehicle comprising such a system
CN110323512B (zh) * 2018-03-29 2024-01-30 上海加冷松芝汽车空调股份有限公司 具有分时冷却及加热功能的层叠式组合换热器
CN108544901B (zh) * 2018-04-23 2020-11-06 杭州富阳春江汽车空调厂 一种热能综合利用的新能源汽车
CN108482067B (zh) * 2018-05-21 2019-11-29 上海思致汽车工程技术有限公司 一种节能型多回路电动汽车热管理系统
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
CN108944504B (zh) * 2018-06-28 2023-10-31 赵磊 一种基于热泵原理的电动汽车整车热管理系统
KR102530943B1 (ko) * 2018-07-25 2023-05-11 현대자동차주식회사 차량의 열관리 시스템
JP7268976B2 (ja) * 2018-08-10 2023-05-08 サンデン株式会社 車両用空気調和装置
CN109130952B (zh) * 2018-08-31 2021-03-23 长沙理工大学 一种电动汽车调控系统
EP3623183B1 (en) 2018-09-11 2020-12-02 C.R.F. Società Consortile per Azioni A system for thermal management of the components of a hybrid vehicle
JP2020046102A (ja) * 2018-09-18 2020-03-26 シャープ株式会社 空気調和機
CN109435658B (zh) * 2018-09-20 2021-05-11 中汽动力(沈阳)有限公司 车辆的热管理系统及其控制方法和车辆
NL2022033B1 (en) * 2018-11-20 2020-06-03 Johannes Verbakel Albert Base unit and system for liquid circulation and heating and for vacuumizing
KR102600059B1 (ko) * 2018-12-03 2023-11-07 현대자동차 주식회사 차량용 열 관리 시스템
KR20200067008A (ko) * 2018-12-03 2020-06-11 현대자동차주식회사 6웨이 밸브 및 이를 포함한 차량용 열관리시스템
JP2020102377A (ja) * 2018-12-21 2020-07-02 本田技研工業株式会社 温度調整回路及びその制御方法
CN109878325A (zh) * 2018-12-29 2019-06-14 北京新能源汽车技术创新中心有限公司 电动车冷却系统、电动车及电动车冷却系统控制方法
CN111376692B (zh) * 2018-12-29 2022-06-07 宇通客车股份有限公司 一种车辆、多支路温度调节液冷电源系统及其控制方法
JP7031789B2 (ja) 2019-04-16 2022-03-08 株式会社デンソー 流路切替弁および流体循環回路
KR102647199B1 (ko) * 2019-04-22 2024-03-14 현대자동차주식회사 친환경 차량의 배터리 관리 시스템 및 방법
KR20200125791A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 전기차용 열관리시스템
JP7290070B2 (ja) * 2019-06-07 2023-06-13 株式会社デンソー 流体循環システム
KR102215293B1 (ko) * 2019-07-25 2021-02-15 현대위아(주) 통합 열관리용 밸브조립체 및 이를 포함한 통합 열관리 모듈
KR102239253B1 (ko) * 2019-08-01 2021-04-12 현대위아(주) 통합 열관리용 밸브조립체 및 이를 포함한 통합 열관리 모듈
JP7111082B2 (ja) * 2019-09-30 2022-08-02 トヨタ自動車株式会社 冷却システム
IT201900018701A1 (it) * 2019-10-14 2021-04-14 Ind Saleri Italo Spa Assieme di gestione termica di un veicolo
IT201900018704A1 (it) * 2019-10-14 2021-04-14 Ind Saleri Italo Spa Dispositivo di comando fluidico di un veicolo
IT201900018710A1 (it) * 2019-10-14 2021-04-14 Ind Saleri Italo Spa Assieme di gestione termica di un veicolo
KR20220033184A (ko) * 2020-09-09 2022-03-16 현대자동차주식회사 다유로 냉각수 밸브
US20220134839A1 (en) * 2020-10-29 2022-05-05 Rivian Ip Holdings, Llc Integrated thermal management system for a vehicle
CN112477549B (zh) * 2020-11-23 2022-03-18 艾泰斯热系统研发(上海)有限公司 一种多负载热泵系统的冷却液冷热源切换装置
US11592221B2 (en) 2020-12-22 2023-02-28 Deere & Company Two-phase cooling system
CN113561852B (zh) * 2021-08-31 2023-07-11 岚图汽车科技有限公司 一种节能增程式phev热管理系统
KR102588667B1 (ko) * 2021-09-27 2023-10-16 명화공업주식회사 칠러
CN114161923B (zh) * 2021-12-03 2023-10-20 华人运通(江苏)技术有限公司 一种电动汽车的热管理系统
DE102022109110A1 (de) 2022-04-13 2023-10-19 Bayerische Motoren Werke Aktiengesellschaft Temperiereinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451141B2 (ja) 1994-11-14 2003-09-29 本田技研工業株式会社 バッテリ温度調節装置
US5904052A (en) * 1996-09-02 1999-05-18 Denso Corporation Brine type air conditioning apparatus
FR2766261B1 (fr) 1997-07-18 1999-09-24 Valeo Thermique Moteur Sa Dispositif de climatisation de vehicule avec boucle de refrigerant resserree
US6357541B1 (en) * 1999-06-07 2002-03-19 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicle
DE10123830A1 (de) * 2001-05-16 2002-11-28 Bosch Gmbh Robert Klimaanlage
FR2844571B1 (fr) 2002-09-18 2008-02-29 Valeo Thermique Moteur Sa Vanne de commande pour un circuit de fluide et circuit comportant cette vanne
JP2004257728A (ja) 2003-02-25 2004-09-16 Linde Ag プレート式熱交換器
CN100488661C (zh) 2003-02-25 2009-05-20 林德股份公司 板式热交换器
US7185449B2 (en) * 2004-03-16 2007-03-06 Kime James A System for controlling the hydraulic actuated components of a truck
JP2006321269A (ja) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd 車両用熱源分配システム
FR2890606B1 (fr) 2005-09-13 2008-11-07 Renault Sas Procede de commande d'un groupe motopropulseur de vehicule comprenant deux circuits de refroidissement
JP4823936B2 (ja) * 2006-04-19 2011-11-24 株式会社デンソー 廃熱利用装置およびその制御方法
JP2009202794A (ja) * 2008-02-28 2009-09-10 Toyota Motor Corp ヒートマネージメントシステム
JP2010119282A (ja) * 2008-10-17 2010-05-27 Denso Corp 熱マネージメントシステム
CN201386123Y (zh) * 2009-03-10 2010-01-20 常州市双强机械制造有限公司 无缝环件制造热处理系统
JP5556058B2 (ja) * 2009-05-20 2014-07-23 日産自動車株式会社 バッテリ温度制御装置
JP2011098628A (ja) 2009-11-05 2011-05-19 Toyota Motor Corp ハイブリッド車両の冷却システム
JP5396246B2 (ja) * 2009-11-18 2014-01-22 株式会社日立製作所 車両用空調装置
JP2011121551A (ja) * 2009-12-14 2011-06-23 Toyota Motor Corp 車両の熱制御装置
US8997503B2 (en) * 2010-01-15 2015-04-07 Mitsubishi Heavy Industries, Ltd. Vehicle air-conditioning system and operation control method therefor
JP2011157035A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp ハイブリッド車両の冷却装置
JP5611353B2 (ja) * 2010-07-29 2014-10-22 三菱電機株式会社 ヒートポンプ
CN202006709U (zh) * 2011-01-30 2011-10-12 比亚迪股份有限公司 一种电动车的供热系统
JP5320419B2 (ja) * 2011-02-04 2013-10-23 株式会社日本自動車部品総合研究所 冷却装置
CN103354891A (zh) * 2011-02-07 2013-10-16 三菱电机株式会社 空气调节装置
US8899062B2 (en) 2011-02-17 2014-12-02 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
JP5755490B2 (ja) * 2011-04-18 2015-07-29 トヨタ自動車株式会社 冷却装置
JP5644648B2 (ja) * 2011-04-18 2014-12-24 株式会社デンソー 電池温度調整装置
JP5910517B2 (ja) 2012-02-02 2016-04-27 株式会社デンソー 熱交換器
JP6060797B2 (ja) * 2012-05-24 2017-01-18 株式会社デンソー 車両用熱管理システム
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
JP5983187B2 (ja) * 2012-08-28 2016-08-31 株式会社デンソー 車両用熱管理システム
JP6155907B2 (ja) * 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
US10035404B2 (en) * 2012-10-15 2018-07-31 Ford Global Technologies, Llc Thermostatically-controlled multi-mode coolant loops
JP5962556B2 (ja) * 2013-03-19 2016-08-03 株式会社デンソー 車両用熱管理システム
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6197657B2 (ja) * 2014-01-14 2017-09-20 株式会社デンソー 車両用熱管理システム
JP6252186B2 (ja) * 2014-01-15 2017-12-27 株式会社デンソー 車両用熱管理システム

Also Published As

Publication number Publication date
US9643469B2 (en) 2017-05-09
WO2013114874A1 (ja) 2013-08-08
JP2013230805A (ja) 2013-11-14
CN104093587A (zh) 2014-10-08
CN104093587B (zh) 2017-07-14
US20140374081A1 (en) 2014-12-25
DE112013000833T5 (de) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5880863B2 (ja) 車両用熱管理システム
JP5910517B2 (ja) 熱交換器
JP5962556B2 (ja) 車両用熱管理システム
JP6015184B2 (ja) 車両用熱管理システム
JP6065779B2 (ja) 車両用熱管理システム
JP5949522B2 (ja) 温調装置
JP6303615B2 (ja) 車両用熱管理システム
JP5626194B2 (ja) 熱交換システム
JP4451312B2 (ja) 特に自動車用の空調装置
WO2014034061A1 (ja) 車両用熱管理システム
WO2018047533A1 (ja) 機器温調装置
JP2021027045A (ja) 温度調整装置
JP2014218211A (ja) 車両用熱管理システム
WO2018047538A1 (ja) 機器温調システム
WO2020004219A1 (ja) 機器温調装置
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
WO2020213535A1 (ja) 車両用サーモサイフォン式冷却装置
CN110126584B (zh) 电动汽车空调系统及其除霜方法、运行方法、控制系统
JP2009121390A (ja) ランキンサイクルシステム
JP2020139686A (ja) 冷凍サイクル装置
JP2011189824A (ja) 車両用空調システム
WO2018070182A1 (ja) 機器温調装置
JP5842755B2 (ja) 車両用熱管理システム
WO2021025128A1 (ja) 温度調整装置
JP2023132720A (ja) 複合型熱交換器、熱交換システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R151 Written notification of patent or utility model registration

Ref document number: 5880863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees