JP6233009B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP6233009B2
JP6233009B2 JP2013268580A JP2013268580A JP6233009B2 JP 6233009 B2 JP6233009 B2 JP 6233009B2 JP 2013268580 A JP2013268580 A JP 2013268580A JP 2013268580 A JP2013268580 A JP 2013268580A JP 6233009 B2 JP6233009 B2 JP 6233009B2
Authority
JP
Japan
Prior art keywords
temperature
heat
air
cooling water
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013268580A
Other languages
English (en)
Other versions
JP2015123829A5 (ja
JP2015123829A (ja
Inventor
憲彦 榎本
憲彦 榎本
梯 伸治
伸治 梯
加藤 吉毅
吉毅 加藤
桑山 和利
和利 桑山
牧原 正径
正径 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013268580A priority Critical patent/JP6233009B2/ja
Priority to CN201480071010.2A priority patent/CN105848937B/zh
Priority to DE112014006077.1T priority patent/DE112014006077T5/de
Priority to PCT/JP2014/005957 priority patent/WO2015097988A1/ja
Priority to US15/107,149 priority patent/US10457117B2/en
Publication of JP2015123829A publication Critical patent/JP2015123829A/ja
Publication of JP2015123829A5 publication Critical patent/JP2015123829A5/ja
Application granted granted Critical
Publication of JP6233009B2 publication Critical patent/JP6233009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit

Description

本発明は、車両に用いられる空調装置に関する。
従来、特許文献1には、室内へ送風する送風空気を蒸発器で冷却するとともに凝縮器で加熱する車両用空調装置が記載されている。
蒸発器は、冷凍サイクルの低圧側冷媒と送風空気とを熱交換させて、低圧側冷媒を蒸発させるとともに送風空気を冷却する熱交換器である。凝縮器は、冷凍サイクルの高圧側冷媒と送風空気とを熱交換させて冷媒を凝縮させるとともに送風空気を加熱する熱交換器である。
この従来技術では、車室内への吹出空気の温度を制御するために、冷凍サイクルの制御を行うようになっている。
特開2012−225637号公報
上記従来技術では、車室内への送風空気を蒸発器および凝縮器で冷凍サイクルの冷媒と熱交換させるので、蒸発器または凝縮器で冷媒が漏れると車室内にも冷媒が漏れてしまう。
また、従来は、冷媒の凝縮および蒸発のいずれかを担う室外熱交換器が車両最前部に配置されているため、車体の重要機関(フレーム、駆動機構、原動機など)にダメージを与えないような軽度の衝突時においても室外熱交換器が破壊されてしまうことがある。そのため、冷媒の再充填を伴う修理費が高額になったり、温暖化係数の高い冷媒が大気に放出されて環境破壊を招くという懸念がある。
そこで、本出願人は、蒸発器および凝縮器で冷凍サイクルの冷媒と冷却水と熱交換させ、蒸発器で冷却された冷却水を空気冷却用熱交換器で車室内への送風空気と顕熱交換させて送風空気を冷却し、凝縮器で加熱された冷却水を空気加熱用熱交換器で車室内への送風空気と顕熱交換させて送風空気を加熱する車両用空調装置(以下、検討例と言う。)を検討している。
この検討例によると、蒸発器および凝縮器で車室内への送風空気を熱交換させないので、蒸発器または凝縮器で冷媒が漏れても車室内に冷媒が漏れることを防止できる。また、車両最前部に配置していた室外熱交換器は、冷却水を介した熱交換器に置き換えられるため、軽衝突時でも冷媒が放出されることがなく、ひいては修理代を抑制できるとともに環境破壊を防止できる。
しかしながら、この検討例では、上記従来技術と比較してシステム構成が顕著に異なっているので、上記従来技術と同様に冷凍サイクルの制御を行っても、車室内へ吹き出される空気の温度を適切に制御できない。
また、この検討例では、空気冷却用熱交換器の表面温度を適切に制御する必要がある。すなわち、空気冷却用熱交換器の表面温度が氷点を下回ると、空気冷却用熱交換器の表面に付着した凝縮水が凍結して着霜(フロスト)が発生し、その結果、空気冷却用熱交換器の空気通路が塞がれて車室内への送風量が低下し、空調性能が低下してしまう。一方、空気冷却用熱交換器が所定温度を上回ると、空気冷却用熱交換器の表面に付着した凝縮水が蒸発して送風空気の湿度が上昇して窓曇りを招いたり、凝縮水に溶け込んだカビや微粒子等も蒸気に混ざることによって臭いが発生したりして乗員の快適性が低下してしまう。
本発明は上記点に鑑みて、車室内への送風空気を熱交換させる車両用空調装置において、車室内への送風空気を熱交換する熱交換器の温度を適切に制御可能にすることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、
熱媒体を吸入して吐出するポンプ(11、12)と、
ポンプ(11、12)によって循環される熱媒体と車室内への送風空気とを顕熱交換させて送風空気の温度を調整する第1熱媒体空気熱交換器(16、17)と、
熱媒体が流通する流路を有し、ポンプ(11、12)によって循環される熱媒体との間で熱授受が行われる第1熱授受機器(13、81)と、
ポンプ(11、12)によって循環される熱媒体の温度を調整する熱媒体温度調整手段(14、15)と、
第1熱媒体空気熱交換器(16、17)で温度調整された送風空気の温度(TC、TH)に関連する温度が第1目標温度(TCO、THO)に近づくように、第1熱授受機器(13、81)における熱媒体との熱授受量、または第1熱媒体空気熱交換器(16、17)の熱交換能力を調整する熱交換器用調整手段(60a、60b、60c、60f、60g、60k)と
冷凍サイクル(21)の冷媒を吸入して吐出する圧縮機(22)と、
圧縮機(22)から吐出される冷媒の流量を調整する冷媒流量調整手段(60d)とを備え、
熱媒体温度調整手段(14、15)は、ポンプ(11、12)によって循環される熱媒体と冷媒とを熱交換させて熱媒体を加熱または冷却するようになっており、
熱交換器用調整手段(60a、60b)は、第1熱媒体空気熱交換器(17)および第1熱授受機器(13、81)のうち少なくとも一方の機器における熱媒体の流量を調整するようになっており、
熱交換器用調整手段(60a、60b)および冷媒流量調整手段(60d)は、
第1熱媒体空気熱交換器(16、17)で顕熱交換された送風空気の温度(TC、TH)に関連する温度が第1目標温度(TCO、THO)に近づくように、冷媒の流量および熱媒体の流量のうち一方の流量を調整し、
第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が第2目標温度(TCO2、THO2)に近づくように、冷媒の流量および熱媒体の流量のうち他方の流量を調整することを特徴とする。
これによると、第1熱媒体空気熱交換器(16、17)の温度を適切に制御できる。
上記発明において、第1熱媒体空気熱交換器(16、17)で温度調整された送風空気の温度(TC、TH)に関連する温度とは、第1熱媒体空気熱交換器(16、17)で温度調整された送風空気の温度自体や、第1熱媒体空気熱交換器(16、17)の表面温度に関連する温度、第1熱媒体空気熱交換器(16、17)を流れる熱媒体の温度に関連する温度等のことである。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における車両用熱管理システムの全体構成図である。 第1実施形態における第1切替弁の断面図である。 第1実施形態における第1切替弁の断面図である。 第1実施形態における第2切替弁の断面図である。 第1実施形態における第2切替弁の断面図である。 第1実施形態におけるクーラコアの模式的な斜視図である。 第1実施形態の車両用熱管理システムにおける電気制御部を示すブロック図である。 第1実施形態の車両用熱管理システムにおける制御装置が実行する制御処理を示すフローチャートである。 第1実施形態の車両用熱管理システムにおける冷房モードの制御処理を示すフローチャートである。 第1実施形態の車両用熱管理システムにおける冷房モードの冷却水流れを示す図である。 第1実施形態の車両用熱管理システムにおけるフロスト抑制モードの制御処理を示すフローチャートである。 第1実施形態の車両用熱管理システムにおけるフロスト抑制モードの冷却水流れを示す図である。 第1実施形態の車両用熱管理システムにおける放熱モードの制御処理を示すフローチャートである。 第1実施形態の車両用熱管理システムにおける放熱モードの冷却水流れを示す図である。 第1実施形態の車両用熱管理システムにおける吸熱モードの制御処理を示すフローチャートである。 第1実施形態の車両用熱管理システムにおける吸熱モードの冷却水流れを示す図である。 第2実施形態における車両用熱管理システムの全体構成図である。 第3実施形態における車両用熱管理システムの全体構成図である。 第4実施形態における車両用熱管理システムの全体構成図である。 第5実施形態における車両用熱管理システムの全体構成図である。 第6実施形態における室内空調ユニットの要部断面図である。 第7実施形態における室内空調ユニットの要部断面図である。 第8実施形態における車両用熱管理システムの全体構成図である。 第8実施形態における車両用熱管理システムの外気吸熱ヒートポンプモードを示す概略構成図である。 第8実施形態における車両用熱管理システムのエンジン吸熱ヒートポンプモードを示す概略構成図である。 第8実施形態における車両用熱管理システムのアシストヒートポンプモード等を示す概略構成図である。 第8実施形態における車両用熱管理システムのエンジン廃熱直接利用モードを示す概略構成図である。 第8実施形態における車両用熱管理システムの熱マス利用冷房モードを示す概略構成図である。 第8実施形態における車両用熱管理システムの外気吸熱ヒートポンプモードの例を示す全体構成図である。 第8実施形態における車両用熱管理システムのエンジン吸熱ヒートポンプモードの例を示す全体構成図である。 第8実施形態における車両用熱管理システムのエンジン加熱ヒートポンプモードの例を示す全体構成図である。 第9実施形態における車両用熱管理システムの概略構成図である。 第9実施形態における車両用熱管理システムのエンジン吸熱ヒートポンプモードを示す概略構成図である。 第9実施形態における車両用熱管理システムのエンジン加熱ヒートポンプモードを示す概略構成図である。 第9実施形態における車両用熱管理システムのエンジン廃熱直接利用モードを示す概略構成図である。 第10実施形態の第1実施例における車両用熱管理システムの全体構成図である。 第10実施形態の第2実施例における車両用熱管理システムの全体構成図である。 第11実施形態における車両用熱管理システムの概略構成図である。 他の実施形態における車両用熱管理システムの全体構成図である。
以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1に示す車両用熱管理システム10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。本実施形態では、熱管理システム10を、エンジン(内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、熱管理システム10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
図1に示すように、熱管理システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、冷却水冷却器14、冷却水加熱器15、クーラコア16、ヒータコア17、第1切替弁18および第2切替弁19を備えている。
第1ポンプ11および第2ポンプ12は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。
ラジエータ13、冷却水冷却器14、冷却水加熱器15、クーラコア16およびヒータコア17は、冷却水が流通する冷却水流通機器(熱媒体流通機器)である。
ラジエータ13は、冷却水と車室外空気(以下、外気と言う。)とを熱交換(顕熱交換)させる冷却水外気熱交換器(熱媒体外気熱交換器)である。ラジエータ13に外気温以上の温度の冷却水を流すことにより、冷却水から外気に放熱させることが可能である。ラジエータ13に外気温以下の冷却水を流すことにより、外気から冷却水に吸熱させることが可能である。換言すれば、ラジエータ13は、冷却水から外気に放熱させる放熱器としての機能、および外気から冷却水に吸熱させる吸熱器としての機能を発揮できる。
ラジエータ13は、冷却水が流通する流路を有し、冷却水冷却器14や冷却水加熱器15で温度調整された冷却水との間で熱授受が行われる熱授受機器である。
室外送風機20は、ラジエータ13へ外気を送風する電動送風機(外気送風機)である。ラジエータ13および室外送風機20は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。
冷却水冷却器14および冷却水加熱器15は、冷却水を熱交換させて冷却水の温度を調整する冷却水温度調整用熱交換器(熱媒体温度調整用熱交換器)である。冷却水冷却器14は、冷却水を冷却する冷却水冷却用熱交換器(熱媒体冷却用熱交換器)である。冷却水加熱器15は、冷却水を加熱する冷却水加熱用熱交換器(熱媒体加熱用熱交換器)である。
冷却水冷却器14は、冷凍サイクル21の低圧側冷媒と冷却水とを熱交換させることによって冷却水から低圧側冷媒に吸熱させる低圧側熱交換器(熱媒体用吸熱器)である。冷却水冷却器14は、冷凍サイクル21の蒸発器を構成している。
冷凍サイクル21は、圧縮機22、冷却水加熱器15、レシーバ23、膨張弁24、および冷却水冷却器14を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル21では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
圧縮機22は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル21の冷媒を吸入して圧縮して吐出する。冷却水加熱器15は、圧縮機22から吐出された高圧側冷媒と冷却水とを熱交換させることによって高圧側冷媒を凝縮(潜熱変化)させる凝縮器である。
レシーバ23は、冷却水加熱器15から流出した気液2相冷媒を気相冷媒と液相冷媒とに分離して、分離された液相冷媒を膨張弁24側に流出させる気液分離器である。膨張弁24は、レシーバ23から流出した液相冷媒を減圧膨張させる減圧手段である。
冷却水冷却器14は、膨張弁24で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発(潜熱変化)させる蒸発器である。冷却水冷却器14で蒸発した気相冷媒は圧縮機22に吸入されて圧縮される。
ラジエータ13では外気によって冷却水を冷却するのに対し、冷却水冷却器14では冷凍サイクル21の低圧冷媒によって冷却水を冷却する。このため、冷却水冷却器14で冷却された冷却水の温度を、ラジエータ13で冷却された冷却水の温度に比べて低くできる。具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却できないのに対し、冷却水冷却器14では冷却水を外気の温度よりも低温まで冷却できる。
クーラコア16およびヒータコア17は、冷却水冷却器14および冷却水加熱器15で温度調整された冷却水と車室内への送風空気とを熱交換させて送風空気の温度を調整する熱媒体空気熱交換器である。
クーラコア16は、冷却水と車室内への送風空気とを熱交換(顕熱交換)させて車室内への送風空気を冷却する空気冷却用熱交換器である。ヒータコア17は、車室内への送風空気と冷却水とを熱交換(顕熱交換)させて車室内への送風空気を加熱する空気加熱用熱交換器である。
第1ポンプ11は、第1ポンプ用流路31に配置されている。第1ポンプ用流路31において第1ポンプ11の吐出側には、冷却水冷却器14が配置されている。
第2ポンプ12は、第2ポンプ用流路32に配置されている。第2ポンプ用流路32において第2ポンプ12の吐出側には、冷却水加熱器15が配置されている。
ラジエータ13は、ラジエータ用流路33に配置されている。クーラコア16は、クーラコア用流路36に配置されている。ヒータコア17は、ヒータコア用流路37に配置されている。
第1ポンプ用流路31、第2ポンプ用流路32およびラジエータ用流路33は、第1切替弁18および第2切替弁19に接続されている。第1切替弁18および第2切替弁19は、冷却水の流れを切り替える切替手段である。
第1切替弁18は、冷却水の入口として第1入口18aおよび第2入口18bを有し、冷却水の出口として第1出口18cを有している。第2切替弁19は、冷却水の出口として第1出口19aおよび第2出口19bを有し、冷却水の入口として第1入口19cを有している。
第1切替弁18の第1入口18aには、第1ポンプ用流路31の一端が接続されている。換言すれば、第1切替弁18の第1入口18aには、冷却水冷却器14の冷却水出口側が接続されている。
第1切替弁18の第2入口18bには、第2ポンプ用流路32の一端が接続されている。換言すれば、第1切替弁18の第2入口18bには、冷却水加熱器15の冷却水出口側が接続されている。
第1切替弁18の第1出口18cには、ラジエータ用流路33の一端が接続されている。換言すれば、第1切替弁18の第1出口18cにはラジエータ13の冷却水入口側が接続されている。
第2切替弁19の第1出口19aには、第1ポンプ用流路31の他端が接続されている。換言すれば、第2切替弁19の第1出口19aには、第1ポンプ11の冷却水吸入側が接続されている。
第2切替弁19の第2出口19bには、第2ポンプ用流路32の他端が接続されている。換言すれば、第2切替弁19の第2出口19bには、第2ポンプ12の冷却水吸入側が接続されている。
第2切替弁19の第1入口19cには、ラジエータ用流路33の他端が接続されている。換言すれば、第2切替弁19の第1入口19cにはラジエータ13の冷却水出口側が接続されている。
第1切替弁18および第2切替弁19は、各入口と各出口との連通状態を任意または選択的に切り替え可能な構造になっている。
具体的には、第1切替弁18は、ラジエータ13について、第1ポンプ11から吐出された冷却水が流入する状態と、第2ポンプ12から吐出された冷却水が流入する状態と、第1ポンプ11から吐出された冷却水および第2ポンプ12から吐出された冷却水が流入しない状態とを切り替える。
第2切替弁19は、ラジエータ13について、第1ポンプ11へ冷却水が流出する状態と、第2ポンプ12へ冷却水が流出する状態と、第1ポンプ11および第2ポンプ12へ冷却水が流出しない状態とを切り替える。
第1切替弁18および第2切替弁19は、弁開度を調整可能になっている。これにより、ラジエータ13を流れる冷却水の流量を調整できる。
第1切替弁18および第2切替弁19は、第1ポンプ11から吐出された冷却水と、第2ポンプ12から吐出された冷却水とを任意の流量割合で混合してラジエータ13に流入させることが可能になっている。
クーラコア用流路36の一端は、第1ポンプ用流路31のうち第1ポンプ11の冷却水吸入側の部位に接続されている。クーラコア用流路36の他端は、第1ポンプ用流路31のうち冷却水冷却器14の冷却水出口側の部位に接続されている。
クーラコア用流路36には開閉弁38が配置されている。開閉弁38はクーラコア用流路36を開閉する流路開閉手段である。
ヒータコア用流路37の一端は、第2ポンプ用流路32のうち第2ポンプ12の冷却水吸入側の部位に接続されている。クーラコア用流路36の他端は、第2ポンプ用流路32のうち冷却水加熱器15の冷却水出口側の部位に接続されている。
クーラコア16およびヒータコア17は、車両用空調装置の室内空調ユニット50のケース51に収容されている。
ケース51は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケース51内の空気流れ最上流側には、内外気切替箱52が配置されている。内外気切替箱52は、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気導入手段である。
内外気切替箱52には、ケース51内に内気を導入させる内気吸込口52aおよび外気を導入させる外気吸込口52bが形成されている。内外気切替箱52の内部には、内外気切替ドア53が配置されている。
内外気切替ドア53は、ケース51内に導入される内気の風量と外気の風量との風量割合を変化させる風量割合変更手段である。具体的には、内外気切替ドア53は、内気吸込口52aおよび外気吸込口52bの開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる。内外気切替ドア53は、電動アクチュエータ(図示せず)によって駆動される。
内外気切替箱52の空気流れ下流側には、室内送風機54(ブロワ)が配置されている。室内送風機54は、内外気切替箱52を介して吸入した空気(内気および外気)を車室内へ向けて送風する送風手段である。室内送風機54は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機である。
ケース51内において室内送風機54の空気流れ下流側には、クーラコア16およびヒータコア17が配置されている。
ケース51の内部においてクーラコア16の空気流れ下流側部位には、ヒータコアバイパス通路51aが形成されている。ヒータコアバイパス通路51aは、クーラコア16を通過した空気を、ヒータコア17を通過させずに流す空気通路である。
ケース51の内部においてクーラコア16とヒータコア17との間には、エアミックスドア55が配置されている。
エアミックスドア55は、ヒータコア17へ流入させる空気と、ヒータコアバイパス通路51aへ流入させる空気との風量割合を連続的に変化させる風量割合調整手段である。エアミックスドア55は、回動可能な板状ドアや、スライド可能なドア等であり、電動アクチュエータ(図示せず)によって駆動される。
ヒータコア17を通過する空気とヒータコアバイパス通路51aを通過する空気との風量割合によって、車室内へ吹き出される吹出空気の温度が変化する。したがって、エアミックスドア55は、車室内へ吹き出される吹出空気の温度を調整する温度調整手段である。
ケース51の空気流れ最下流部には、空調対象空間である車室内へ送風空気を吹き出す吹出口51bが配置されている。この吹出口51bとしては、具体的には、デフロスタ吹出口、フェイス吹出口およびフット吹出口が設けられている。
デフロスタ吹出口は、車両前面窓ガラスの内側の面に向けて空調風を吹き出す。フェイス吹出口は、乗員の上半身に向けて空調風を吹き出す。フット吹出口は、乗員の足元に向けて空調風を吹き出す。
吹出口51bの空気流れ上流側には、吹出口モードドア(図示せず)が配置されている。吹出口モードドアは、吹出口モードを切り替える吹出口モード切替手段である。吹出口モードドアは、電動アクチュエータ(図示せず)によって駆動される。
吹出口モードドアによって切り替えられる吹出口モードとしては、例えば、フェイスモード、バイレベルモード、フットモードおよびフットデフロスタモードがある。
フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。
フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。フットデフロスタモードは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す吹出口モードである。
第1切替弁18および第2切替弁19の詳細を図2〜図7に基づいて説明する。第1切替弁18および第2切替弁19は、基本構造は互いに同一であり、冷却水の入口と流体の出口とが互いに逆になっている点が相違している。
図2に示すように、第1切替弁18は、第1入口18a、第2入口18bおよび第1出口18cが形成された本体部181を有している。本体部181の内部には、第1入口18aおよび第2入口18bと第1出口18cとを連通させる連通流路181aが形成されている。
連通流路181aには、第1入口18aおよび第2入口18bと第1出口18cとの連通状態を切り替えるドア式の弁体182が配置されている。
弁体182が図2に示す位置に回転操作された場合、第1入口18aと第1出口18cが連通し、第2入口18bと第1出口18cとの連通が遮断される。したがって、第1入口18aから流入した冷却水は第1出口18cから流出し、第2入口18bから流入した冷却水は第1出口18cから流出しない。
弁体182が第2入口18b側を閉じた状態で第1出口18c側の開度を調整することによって、第1入口18aから第1出口18cへと流れる冷却水の流量を調整できる。
弁体182が図3に示す位置に回転操作された場合、第1入口18aと第1出口18cとの連通が遮断され、第2入口18bと第1出口18cとが連通する。したがって、第1入口18aから流入した冷却水は第1出口18cから流出せず、第2入口18bから流入した冷却水は第1出口18cから流出する。
弁体182が第1入口18a側を閉じた状態で側の開度を調整することによって、第2入口18bから第1出口18cへと流れる冷却水の流量を調整できる。
図4に示すように、第2切替弁19は、第1出口19a、第2出口19bおよび第1入口19cが形成された本体部191を有している。本体部191の内部には、第1出口19aおよび第2出口19bと第1入口19cとを連通させる連通流路191aが形成されている。
連通流路191aには、第1出口19aおよび第2出口19bと第1入口19cとの連通状態を切り替えるドア式の弁体192が配置されている。
弁体192が図4に示す位置に回転操作された場合、第1出口19aと第1入口19cとが連通し、第2出口19bと第1入口19cとの連通が遮断される。したがって、第1入口19cから流入した冷却水は第1出口19aから流出し、第2出口74bから流出しない。
弁体192が第2出口19b側を閉じた状態で第1入口19c側の開度を調整することによって、第1入口19cから第1出口19aへと流れる冷却水の流量を調整できる。
弁体192が図5に示す位置に回転操作された場合、第1出口19aと第1入口19cとの連通が遮断され、第2出口19bと第1入口19cとが連通する。したがって、第1入口19cから流入した冷却水は第1出口19aから流出せず、第2出口74bから流出する。
弁体192が第1出口19a側を閉じた状態で第1入口19c側の開度を調整することによって、第1入口19cから第2出口19bへと流れる冷却水の流量を調整できる。
第1切替弁18の弁体182および第2切替弁19の弁体192は、別個の電動モータによって独立して回転駆動される。第1切替弁18の弁体182および第2切替弁19の弁体192は、共通の電動モータによって連動して回転駆動されるようになっていてもよい。
クーラコア16の詳細を図6に基づいて説明する。クーラコア16は、第1熱交換コア部161a、第2熱交換コア部162a、第1上側タンク部161b、第1下側タンク部161c、第2上側タンク部162bおよび第2下側タンク部162cを備えている。
第1熱交換コア部161a、第1上側タンク部161bおよび第1下側タンク部161cはクーラコア16のうち空気流れF1の上流側領域を構成し、第2熱交換コア部162a、第2上側タンク部162bおよび第2下側タンク部162cはクーラコア16のうち空気流れF1の下流側領域を構成している。
第1上側タンク部161bは、第1熱交換コア部161aの上方側に位置している。第1下側タンク部161cは、第1熱交換コア部161aの下方側に位置している。第2上側タンク部162bは、第2熱交換コア部162aの上方側に位置している。第2下側タンク部162cは、第2熱交換コア部162aの下方側に位置している。
第1熱交換コア部161aおよび第2熱交換コア部162aは、それぞれ上下方向に延びる複数のチューブ163を備える。チューブ163の内部には、冷却水が流れる冷却水通路が形成されている。複数のチューブ163同士の間に形成される空間は、空気が流れる空気通路を構成している。複数のチューブ163同士の間には、フィン164が配置されている。フィン164はチューブ163に接合されている。
熱交換コア部161a、162aは、チューブ163とフィン164との積層構造からなる。チューブ163とフィン164は、熱交換コア部161a、162aの左右方向に交互に積層配置される。フィン164を廃止した構成を採用してもよい。
図6では、図示の都合上、チューブ163とフィン164の積層構造の一部のみ図示しているが、第1熱交換コア部161aおよび第2熱交換コア部162aの全域にチューブ163とフィン164の積層構造が構成され、この積層構造の空隙部を室内送風機54の送風空気が通過するようになっている。
チューブ163は、断面形状が空気流れ方向に沿って扁平な扁平チューブよりなる。フィン164は薄板材を波状に曲げ成形したコルゲートフィンであり、チューブ163の平坦な外面側に接合され空気側伝熱面積を拡大する。
第1熱交換コア部161aのチューブ163と第2熱交換コア部162aのチューブ163は互いに独立した冷却水通路を構成している。第1上側タンク部161bおよび第2上側タンク部162bは互いに独立した冷却水通路空間を構成している。第1下側タンク部161cおよび第2下側タンク部162は互いに連通した冷却水通路空間を構成している。
第1上側タンク部161bには、冷却水の出口165が形成されている。第2上側タンク部162bには、冷却水の入口166が形成されている。
これにより、第2上側タンク部162bは、第2熱交換コア部162aの複数のチューブ163へ冷媒流れを分配する役割を果たし、第2下側タンク部162は、第2熱交換コア部162aの複数のチューブ163からの冷媒流れを集合する役割を果たし、第1下側タンク部161cは、第1熱交換コア部161aの複数のチューブ163へ冷媒流れを分配する役割を果たし、第1上側タンク部161bは、第1熱交換コア部161aの複数のチューブ163からの冷媒流れを集合する役割を果たす。
チューブ163、フィン164、第1上側タンク部161b、第1下側タンク部161c、第2上側タンク部162bおよび第2下側タンク部162c等のクーラコア構成部品の具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適であり、このアルミニウム材にて各部品を成形することによりクーラコア16の全体構成を一体ろう付けにて組み付けることができる。
クーラコア16全体の冷却水流路を具体的に説明すると、図6の矢印W1のように冷却水入口166から第2上側タンク部162b内に流入した冷却水は、矢印W2のように第2熱交換コア部162aの複数のチューブ163を下降して第2下側タンク部162内に流入する。
第2下側タンク部162の冷却水は矢印W3のように第1下側タンク部161cへと移動する。第1下側タンク部161cの冷却水は矢印W4のように第1熱交換コア部161aの複数のチューブ163を上昇して第1上側タンク部161bに流入し、冷却水出口165から流出する。
次に、熱管理システム10の電気制御部を図7に基づいて説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する制御手段である。
制御装置60によって制御される制御対象機器は、第1ポンプ11、第2ポンプ12、第1切替弁18、第2切替弁19、室外送風機20、圧縮機22、室内送風機54、ケース51の内部に配置された各種ドア(内外気切替ドア53、エアミックスドア55、吹出口モードドア等)を駆動する電動アクチュエータ等である。
制御装置60は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
本実施形態では、第1ポンプ11および第2ポンプ12の作動を制御する構成(ハードウェアおよびソフトウェア)をポンプ制御手段60aとする。ポンプ制御手段60aは、冷却水の流量を制御する流量制御手段(熱媒体流量調整手段)である。ポンプ制御手段60aを制御装置60に対して別体で構成してもよい。ポンプ制御手段60aは、ラジエータ13を流れる冷却水の流量を調整するラジエータ用調整手段(熱交換器用調整手段)である。
本実施形態では、第1切替弁18および第2切替弁19の作動を制御する構成(ハードウェアおよびソフトウェア)を切替弁制御手段60bとする。切替弁制御手段60bを制御装置60に対して別体で構成してもよい。切替弁制御手段60bは、ラジエータ13を流れる冷却水の流量を調整するラジエータ用調整手段(熱交換器用調整手段)である。切替弁制御手段60bは、各冷却水流通機器を流れる冷却水の流量を調整する流量調整手段(熱媒体流量調整手段)である。
本実施形態では、室外送風機20の作動を制御する構成(ハードウェアおよびソフトウェア)を室外送風機制御手段60c(外気送風機制御手段)とする。室外送風機制御手段60cを制御装置60に対して別体で構成してもよい。室外送風機制御手段60cは、ラジエータ13を流れる送風空気の流量を制御するラジエータ用調整手段(熱交換器用調整手段、熱媒体外気熱交換器用調整手段)である。
本実施形態では、圧縮機22の作動を制御する構成(ハードウェアおよびソフトウェア)を圧縮機制御手段60dとする。圧縮機制御手段60dを制御装置60に対して別体で構成してもよい。圧縮機制御手段60dは、圧縮機22から吐出される冷媒の流量を制御する冷媒流量調整手段である。
本実施形態では、開閉弁38の作動を制御する構成(ハードウェアおよびソフトウェア)を開閉弁制御手段60eとする。開閉弁制御手段60eを制御装置60に対して別体で構成してもよい。開閉弁38および開閉弁制御手段60eは、クーラコア16を流れる冷却水の流量を調整するクーラコア用調整手段(熱交換器用調整手段、空気冷却熱交換器用調整手段)である。
本実施形態では、室内送風機54の作動を制御する構成(ハードウェアおよびソフトウェア)を室内送風機制御手段60fとする。室内送風機制御手段60fを制御装置60に対して別体で構成してもよい。室内送風機制御手段60fは、クーラコア16を流れる送風空気の流量を制御するクーラコア用調整手段(熱交換器用調整手段)である。室内送風機54および室内送風機制御手段60fは、車室内へ吹き出される送風空気の風量を制御する風量制御手段である。
本実施形態では、ケース51の内部に配置された各種ドア(内外気切替ドア53、エアミックスドア55、吹出口モードドア等)の作動を制御する構成(ハードウェアおよびソフトウェア)を空調切替制御手段60gとする。空調切替制御手段60gを制御装置60に対して別体で構成してもよい。
エアミックスドア55および空調切替制御手段60gは、クーラコア16で冷却された送風空気のうちヒータコア17を流れる送風空気とヒータコア17を迂回して流れる送風空気との風量割合を調整する風量割合調整手段である。
内外気切替ドア53および空調切替制御手段60gは、車室内へ吹き出される送風空気のうち内気と外気との割合を調整する内外気割合調整手段である。
制御装置60の入力側には、内気センサ61、外気センサ62、日射センサ63、第1水温センサ64、第2水温センサ65、クーラコア温度センサ66、冷媒温度センサ67等のセンサ群の検出信号が入力される。
内気センサ61は、内気の温度(車室内温度)を検出する検出手段(内気温度検出手段)である。外気センサ62は、外気の温度(車室外温度)を検出する検出手段(外気温度検出手段)である。日射センサ63は、車室内の日射量を検出する検出手段(日射量検出手段)である。
第1水温センサ64は、第1ポンプ用流路31を流れる冷却水の温度(例えば第1ポンプ11に吸入される冷却水の温度)を検出する検出手段(第1熱媒体温度検出手段)である。
第2水温センサ65は、第2ポンプ用流路32を流れる冷却水の温度(例えば第2ポンプ12に吸入される冷却水の温度)を検出する検出手段(第2熱媒体温度検出手段)である。
クーラコア温度センサ66は、クーラコア16の表面温度を検出する検出手段(クーラコア温度検出手段)である。クーラコア温度センサ66は、例えば、クーラコア16の熱交換フィンの温度を検出するフィンサーミスタ66a(図1)や、クーラコア16を流れる冷却水の温度を検出する水温センサ66b(図1)等である。
冷媒温度センサ67は、冷凍サイクル21の冷媒温度(例えば圧縮機22から吐出される冷媒の温度)を検出する検出手段(冷媒温度検出手段)である。
制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル69に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル69に設けられた各種空調操作スイッチとしては、エアコンスイッチ、オートスイッチ、室内送風機52の風量設定スイッチ、車室内温度設定スイッチ等が設けられている。
エアコンスイッチは、空調(冷房または暖房)の作動・停止(オン・オフ)を切り替えるスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定手段である。
次に、上記構成における作動を説明する。制御装置60が第1ポンプ11、第2ポンプ12、第1切替弁18、第2切替弁19、圧縮機22、内外気切替ドア53、エアミックスドア55、吹出口モードドア等の作動を制御することによって、種々の作動モードに切り替えられる。
制御装置60は、図8のフローチャートに示す制御処理を実行する。ステップS100では、目標吹出空気温度TAOがクーラコア流入空気温度TIを下回っているか否かを判定する。
目標吹出空気温度TAOは、以下の数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C …F1
数式F1において、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気センサ61によって検出された車室内温度(内気温)である。Tamは外気センサ62によって検出された外気温である。Tsは日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインである。Cは補正用の定数である。
目標吹出空気温度TAOは、車室内を所望の温度に保つために車両用空調装置が生じさせる必要のある熱量に相当するもので、車両用空調装置に要求される空調熱負荷(冷房負荷および暖房負荷)として捉えることができる。すなわち、車両用空調装置に要求される冷房負荷が高い場合、目標吹出空気温度TAOは低温域になり、車両用空調装置に要求される暖房負荷が高い場合、目標吹出空気温度TAOは高温域になる。
クーラコア流入空気温度TIは、クーラコア16に流入する送風空気の温度であり、以下の数式F2により算出される。
TI=Tr×0.01A+Tam×0.01(1−0.01A) …F2
数式F2において、Aは、内外気切替箱52を通じてケース51内に導入される内気および外気のうち内気の風量割合(内気率)を百分率で表したものである。クーラコア流入空気温度TIを、専用の温度センサで直接検出してもよい。
ステップS100において目標吹出空気温度TAOがクーラコア流入空気温度TIを下回っていると判定された場合、ステップS110へ進み、冷房モードに移行する。冷房モードにおける制御処理を図9に示す。
ステップS111では、第1切替弁18および第2切替弁19を操作して、冷却水の流れが、図10に示す冷房モードの流れになるように切り替える。具体的には、第2ポンプ12によって吸入・吐出された冷却水がラジエータ13を循環する状態に切り替える。
さらに、ステップS111では、開閉弁38を開けて、第1ポンプ11によって吸入・吐出された冷却水がクーラコア16を循環する状態に切り替える。
これにより、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気が冷却され、冷却水加熱器15で加熱された冷却水がヒータコア17およびラジエータ13を流れるので、ヒータコア17で車室内への送風空気が加熱されるとともに、ラジエータ13で冷却水から外気に放熱される。
ステップS112では、クーラコア16の表面温度TCが目標表面温度TCO(第1目標温度)に近づくように、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御する。具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、圧縮機22の回転数を増加させることによってクーラコア16の表面温度TCを低下させ、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、圧縮機22の回転数を減少させることによってクーラコア16の表面温度TCを上昇させる。
ステップS112において、クーラコア16の表面温度TCの代わりに、クーラコア16の表面温度TCに関連する種々の温度(例えば、クーラコア16から流出した送風空気の温度や、クーラコア16を流れる冷却水の温度等)を用いてもよい。
ステップS113では、吹出空気温度TAVが目標吹出空気温度TAO(第2目標温度)を上回っているか否かを判定する。吹出空気温度TAVは、室内空調ユニット50から車室内に吹き出される空気の温度であり、以下の数式F3により算出される。
TAV=TC×0.01(1−SW)+TH×0.01SW …F3
数式F3において、TCはクーラコア16の表面温度であり、THはヒータコア17の表面温度であり、SWは、クーラコア16から流出した送風空気のうちヒータコア17に流入する空気の風量割合(エアミックスドア開度)を百分率で表したものである。
吹出空気温度TAVを、専用の温度センサで直接検出してもよい。ステップS113において、吹出空気温度TAVの代わりに、吹出空気温度TAVに関連する種々の温度(例えば、ヒータコア17に流入する冷却水の温度)を用いてもよい。
ステップS113において吹出空気温度TAVが目標吹出空気温度TAOを上回っていると判定された場合、ステップS114へ進み、エアミックスドア開度が減少するようにエアミックスドア55の作動を制御する。
ステップS113において吹出空気温度TAVが目標吹出空気温度TAOを上回っていないと判定された場合、ステップS115へ進み、エアミックスドア開度が増加するようにエアミックスドア55の作動を制御する。
これにより、冷房モードでは、吹出空気温度TAVが目標吹出空気温度TAOに近づくように制御されて、車室内が冷房される。
図8に示すステップS100において目標吹出空気温度TAOがクーラコア流入空気温度TIを下回っていないと判定された場合、ステップS120へ進み、クーラコア16の表面温度TCがフロスト限界温度TCF(所定温度)を下回っているか否かを判定する。フロスト限界温度TCFは、クーラコア16にフロスト(着霜)が発生する限界の温度(例えば0℃)である。クーラコア16の表面温度TCの代わりに、クーラコア16から流出した送風空気の温度を用いてもよい。
クーラコア16の表面温度TCがフロスト限界温度TCFを下回っていると判定した場合、ステップS130へ進み、フロスト抑制モードに移行する。フロスト抑制モードにおける制御処理を図11に示す。
ステップS131では、第1切替弁18および第2切替弁19を操作して、冷却水の流れが、図12に示すフロスト抑制モードの流れになるように切り替える。具体的には、ラジエータ13を冷却水冷却器14側に接続させる。換言すれば、第1ポンプ11によって吸入・吐出された冷却水がラジエータ13を循環する状態に切り替える。このとき、第1切替弁18および第2切替弁19は、ラジエータ用流路33を全開(最大開度)にして、ラジエータ13を循環する冷却水の流量を最大流量にする。
これにより、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、ラジエータ13で外気から冷却水に吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
すなわち、フロスト抑制モードでは、冷凍サイクル21の冷媒は、ラジエータ13にて外気から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。
ステップS132では、エアミックスドア55を、最大暖房状態(MAX HOT)の位置に操作する。エアミックスドア55の最大暖房状態の位置とは、ヒータコアバイパス通路51aを全閉する位置のことである。エアミックスドア55の最大暖房状態の位置に操作されると、クーラコア16から流出した送風空気の全量がヒータコア17を流れて加熱される。
車両使用時の環境変動(外気温度の急変動や、主に車速の変動によるラジエータ13を流れる風量等の変動)による冷凍サイクル変動(高圧冷媒温度変動、低圧冷媒温度変動)が、圧縮機22の冷媒流量制御で制御しきれない場合は、一時的に、エアミックスドア55の開度制御によって吹出空気温度を制御することもある。圧縮機22の冷媒流量制御と比較して、エアミックスドア55の開度制御の方が応答性が良いためである。
ステップS133では、吹出空気温度TAVが目標吹出空気温度TAO(第2目標温度)に近づくように、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御する。具体的には、吹出空気温度TAVが目標吹出空気温度TAOを上回っている場合、圧縮機22の回転数を減少させることによって吹出空気温度TAVを低下させ、吹出空気温度TAVが目標吹出空気温度TAOを下回っている場合、圧縮機22の回転数を増加させることによって吹出空気温度TAVを上昇させる。
ステップS133において、吹出空気温度TAVの代わりに、吹出空気温度TAVに関連する種々の温度(例えば、ヒータコア17に流入する冷却水の温度)を用いてもよい。
ステップS134では、クーラコア16の表面温度TCが目標表面温度TCO(第1目標温度)に近づくように、開閉弁38を間欠的に開閉させてクーラコア16を流れる冷却水の流量(クーラコア通水量)を制御する。クーラコア16の目標表面温度TCOは、0〜10℃の範囲で設定されている。
具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、開閉弁38を開けることによって、冷却水冷却器14で冷却された冷却水をクーラコア16に流してクーラコア16の表面温度TCを低下させ、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、開閉弁38を閉じることによって、クーラコア16への冷却水の流れを遮断してクーラコア16の表面温度TCを上昇させる。
これにより、クーラコア16の表面温度TCが目標表面温度TCOに近づくように、クーラコア16を流れる冷却水の時間平均流量が調整されて、クーラコア16の表面に付着した凝縮水が凍結したり、クーラコア16の表面に付着した凝縮水が蒸発して窓曇りや臭いが発生したりすることが抑制される。
ステップS134において、クーラコア16の表面温度TCの代わりに、クーラコア16の表面温度TCに関連する種々の温度(例えば、クーラコア16から流出した送風空気の温度)を用いてもよい。
ステップS134において、開閉弁38を間欠的に開閉させる代わりに、開閉弁38の開度を中間開度に制御することによって、クーラコア16を流れる冷却水の流量を調整するようにしてもよい。第1ポンプ11の冷却水吐出能力(具体的には第1ポンプ11の回転数)を制御することによって、クーラコア16を流れる冷却水の流量を調整するようにしてもよい。
フロスト抑制モードでは、クーラコア16で冷却除湿された送風空気がヒータコア17で加熱されて車室内に吹き出されるので、車室内を除湿暖房できる。
図8に示すステップS140では、第1切替弁18および第2切替弁19を操作して、ラジエータ13への冷却水の流れを遮断する(通水OFF)とともに、開閉弁38を開けて、第1ポンプ11によって吸入・吐出された冷却水がクーラコア16を循環する(通水ON)状態に切り替える。
これにより、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気から冷却水に吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
すなわち、冷凍サイクル21の冷媒は、クーラコア16にて車室内への送風空気から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、車室内への送風空気の熱を汲み上げるヒートポンプ運転を実現できる。
ステップS140において、第1切替弁18および第2切替弁19を操作して、ラジエータ13を流れる冷却水の流量が所定量未満になるようにしてもよい。
ステップS150では、エアミックスドア55を、最大暖房状態(MAX HOT)の位置に操作する。
ステップS160では、クーラコア16の表面温度TCが目標表面温度TCOに近づくように、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御する。具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、圧縮機22の回転数を増加させることによってクーラコア16の表面温度TCを低下させ、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、圧縮機22の回転数を減少させることによってクーラコア16の表面温度TCを上昇させる。
ステップS160において、クーラコア16の表面温度TCの代わりに、クーラコア16の表面温度TCに関連する種々の温度(例えば、クーラコア16から流出した送風空気の温度)を用いてもよい。
ステップS170では、吹出空気温度TAVが目標吹出空気温度TAOを上回っているか否かを判定する。ステップS170において、吹出空気温度TAVの代わりに、吹出空気温度TAVに関連する種々の温度(例えば、ヒータコア17に流入する冷却水の温度)を用いてもよい。
吹出空気温度TAVが目標吹出空気温度TAOを上回っていると判定した場合、ステップS180へ進み、放熱モードへ移行する。放熱モードにおける制御処理を図13に示す。
ステップS181では、第1切替弁18および第2切替弁19を操作して、冷却水の流れが、図14に示す放熱モードの流れになるように切り替える。具体的には、ラジエータ13を冷却水加熱器15側に接続する。換言すれば、第2ポンプ12によって吸入・吐出された冷却水がラジエータ13を循環する状態に切り替える。このとき、第1切替弁18および第2切替弁19は、ラジエータ用流路33を最小開度に絞って、ラジエータ13を循環する冷却水の流量を最小流量にする。
さらに、ステップS181では、開閉弁38を開けて、第1ポンプ11によって吸入・吐出された冷却水がクーラコア16を循環する状態(クーラコア通水ON)に切り替える。
これにより、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気から冷却水に吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱され、冷却水加熱器15で加熱された冷却水がラジエータ13を最小流量で流れるので、ラジエータ13で冷却水から外気に最小熱量で放熱される。
すなわち、冷凍サイクル21の冷媒は、クーラコア16にて車室内への送風空気から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、車室内への送風空気の熱を汲み上げるヒートポンプ運転を実現できる。
ステップS182では、エアミックスドア55を、最大暖房状態(MAX HOT)の位置に操作する。エアミックスドア55の最大暖房状態の位置とは、ヒータコアバイパス通路51aを全閉する位置のことである。エアミックスドア55の最大暖房状態の位置に操作されると、クーラコア16から流出した送風空気の全量がヒータコア17を流れて加熱される。
車両使用時の環境変動(外気温度の急変動や、主に車速の変動によるラジエータ13を流れる風量等の変動)による冷凍サイクル変動(高圧冷媒温度変動、低圧冷媒温度変動)が、圧縮機22の冷媒流量制御で制御しきれない場合は、一時的に、エアミックスドア55の開度制御によって吹出空気温度を制御することもある。圧縮機22の冷媒流量制御と比較して、エアミックスドア55の開度制御の方が応答性が良いためである。
ステップS183では、クーラコア16の表面温度TCが目標表面温度TCOに近づくように、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御する。具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、圧縮機22の回転数を増加させることによってクーラコア16の表面温度TCを低下させ、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、圧縮機22の回転数を減少させることによってクーラコア16の表面温度TCを上昇させる。
ステップS183において、クーラコア16の表面温度TCの代わりに、クーラコア16の表面温度TCに関連する種々の温度(例えば、クーラコア16から流出した送風空気の温度)を用いてもよい。
ステップS184では、吹出空気温度TAVが目標吹出空気温度TAOに近づくように、ラジエータ13を循環する冷却水の流量(ラジエータ通水量)を制御する。
具体的には、吹出空気温度TAVが目標吹出空気温度TAOを上回っている場合、ラジエータ用流路33の開度が所定量増加するように第1切替弁18および第2切替弁19を操作することによって、ラジエータ13を循環する冷却水の流量を増加させて吹出空気温度TAVを低下させ、吹出空気温度TAVが目標吹出空気温度TAOを下回っている場合、ラジエータ用流路33の開度が所定量減少するように第1切替弁18および第2切替弁19を操作することによって、ラジエータ13を循環する冷却水の流量を減少させて吹出空気温度TAVを上昇させる。
これにより、吹出空気温度TAVが目標吹出空気温度TAOに近づくように、ラジエータ13を循環する冷却水の流量が調整されて、車室内が暖房される。
ステップS184において、吹出空気温度TAVの代わりに、吹出空気温度TAVに関連する種々の温度(例えば、ヒータコア17に流入する冷却水の温度)を用いてもよい。
ステップS184において、第1切替弁18および第2切替弁19がラジエータ用流路33の開度を所定量ずつ増減させる代わりに、第1切替弁18および第2切替弁19がラジエータ用流路33を間欠的に開閉させることによって、ラジエータ13を循環する冷却水の時間平均流量を調整するようにしてもよい。第1ポンプ12の冷却水吐出能力(具体的には第2ポンプ12の回転数)を制御することによって、ラジエータ13を循環する冷却水の流量を調整するようにしてもよい。
ステップS184において、ラジエータ13を循環する冷却水の流量を調整する代わりに、ラジエータ13を流れる外気の流量を調整してもよい。具体的には、室外送風機20の作動を制御することによって、ラジエータ13を流れる外気の流量を調整してもよい。
放熱モードでは、クーラコア16で冷却除湿された送風空気がヒータコア17で加熱されて車室内に吹き出されるので、車室内を除湿暖房できる。
放熱モードでは、クーラコア16で車室内への送風空気から冷却水に吸熱した熱のうち車室内の暖房に対して余剰な熱がラジエータ13で外気に放熱されるので、車室内が過剰に暖房されるのを抑制できる。
ステップS170において吹出空気温度TAVが目標吹出空気温度TAOを上回っていないと判定した場合、ステップS190へ進み、吸熱モードへ移行する。吸熱モードにおける制御処理を図15に示す。
ステップS191では、第1切替弁18および第2切替弁19を操作して、冷却水の流れが、図16に示す吸熱モードの流れになるように切り替える。具体的には、ラジエータ13を冷却水冷却器14側に接続する。換言すれば、第1ポンプ11によって吸入・吐出された冷却水がラジエータ13を循環する状態に切り替える。このとき、第1切替弁18および第2切替弁19は、ラジエータ用流路33を最小開度に絞って、ラジエータ13を循環する冷却水の流量を最小流量にする。
さらに、ステップS191では、開閉弁38を開けて、第1ポンプ11によって吸入・吐出された冷却水がクーラコア16を循環する状態(クーラコア通水ON)に切り替える。
これにより、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気から冷却水に吸熱され、冷却水冷却器14で冷却された冷却水がラジエータ13を最小流量で流れるので、ラジエータ13で外気から冷却水に最小熱量で吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
すなわち、冷凍サイクル21の冷媒は、クーラコア16にて車室内への送風空気から吸熱するとともにラジエータ13で外気から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、車室内への送風空気および外気の熱を汲み上げるヒートポンプ運転を実現できる。
ステップS192では、エアミックスドア55を、最大暖房状態(MAX HOT)の位置に操作する。エアミックスドア55の最大暖房状態の位置とは、ヒータコアバイパス通路51aを全閉する位置のことである。エアミックスドア55の最大暖房状態の位置に操作されると、クーラコア16から流出した送風空気の全量がヒータコア17を流れて加熱される。
車両使用時の環境変動(外気温度の急変動や、主に車速の変動によるラジエータ13を流れる風量等の変動)による冷凍サイクル変動(高圧冷媒温度変動、低圧冷媒温度変動)が、圧縮機22の冷媒流量制御で制御しきれない場合は、一時的に、エアミックスドア55の開度制御によって吹出空気温度を制御することもある。圧縮機22の冷媒流量制御と比較して、エアミックスドア55の開度制御の方が応答性が良いためである。
ステップS193では、吹出空気温度TAVが目標吹出空気温度TAOに近づくように、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御する。具体的には、吹出空気温度TAVが目標吹出空気温度TAOを上回っている場合、圧縮機22の回転数を減少させることによって吹出空気温度TAVを低下させ、吹出空気温度TAVが目標吹出空気温度TAOを下回っている場合、圧縮機22の回転数を増加させることによって吹出空気温度TAVを上昇させる。
ステップS193において、吹出空気温度TAVの代わりに、吹出空気温度TAVに関連する種々の温度(例えば、ヒータコア17に流入する冷却水の温度)を用いてもよい。
ステップS194では、クーラコア16の表面温度TCが目標表面温度TCOに近づくように、ラジエータ13を循環する冷却水の流量(ラジエータ通水量)を制御する。
具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、ラジエータ用流路33の開度が所定量減少するように第1切替弁18および第2切替弁19を操作することによって、ラジエータ13を循環する冷却水の流量を減少させてクーラコア16の表面温度TCを低下させ、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、ラジエータ用流路33の開度が所定量増加するように第1切替弁18および第2切替弁19を操作することによって、ラジエータ13を循環する冷却水の流量を増加させてクーラコア16の表面温度TCを上昇させる。
これにより、クーラコア16の表面温度TCが目標表面温度TCOに近づくように、ラジエータ13を循環する冷却水の流量が調整されて、クーラコア16の表面に付着した凝縮水の凍結および蒸発が抑制される。
ステップS194において、クーラコア16の表面温度TCの代わりに、クーラコア16の表面温度TCに関連する種々の温度(例えば、クーラコア16から流出した送風空気の温度)を用いてもよい。
ステップS194において、第1切替弁18および第2切替弁19がラジエータ用流路33の開度を所定量ずつ増減させる代わりに、第1切替弁18および第2切替弁19がラジエータ用流路33を間欠的に開閉させることによって、ラジエータ13を循環する冷却水の時間平均流量を調整するようにしてもよい。第1ポンプ11の冷却水吐出能力(具体的には第1ポンプ11の回転数)を制御することによって、ラジエータ13を循環する冷却水の流量を調整するようにしてもよい。
ステップS194において、ラジエータ13を循環する冷却水の流量を調整する代わりに、ラジエータ13を流れる外気の流量を調整してもよい。具体的には、室外送風機20の作動を制御することによって、ラジエータ13を流れる外気の流量を調整してもよい。
吸熱モードでは、クーラコア16で冷却除湿された送風空気がヒータコア17で加熱されて車室内に吹き出されるので、車室内を除湿暖房できる。
吸熱モードでは、クーラコア16で冷却除湿された送風空気をヒータコア17で加熱するための熱源として、クーラコア16で車室内への送風空気から冷却水に吸熱した熱、ラジエータ13で外気から冷却水に吸熱した熱の両方を用いることができるので、放熱モードに比べて高い暖房能力で車室内を暖房できる。
吸熱モードでは、ラジエータ13を循環する冷却水の流量を調整し、クーラコア16を流れる冷却水の流量を調整しないので、フロスト抑制モードのようにクーラコア16を流れる冷却水の流量を調整する場合と比較して、クーラコア16を流れる冷却水の流量を増加させることができる。このため、フロスト抑制モードと比較してクーラコア16の冷却能力(除湿能力)を高くすることができる。
本実施形態では、吸熱モードおよび放熱モードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整する。これにより、吸熱モードおよび放熱モードにおいて、クーラコア16の温度を適切に制御できる。
制御装置60は、ヒータコア17で加熱された送風空気の温度に関連する温度TH、TAVが第1目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整してもよい。
すなわち、制御装置60は、熱媒体空気熱交換器16、17で温度調整された送風空気の温度に関連する温度TC、TH、TAVが第1目標温度TCO、THO、TAOに近づくように、熱授受機器13を流れる熱媒体の流量を調整すればよい。
本実施形態では、吸熱モードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し、吹出空気温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これにより、吸熱モードにおいて、クーラコア16の表面温度および車室内吹出空気温度を適切に制御できる。
クーラコア16で冷却された送風空気の温度に関連する温度とは、クーラコア16で冷却された送風空気の温度自体や、クーラコア16の表面温度TCに関連する温度、クーラコア16を流れる冷却水の温度に関連する温度等のことである。
吹出空気温度TAVに関連する温度とは、クーラコア16およびヒータコア17のうち少なくとも一方の熱交換器で温度調整されて車室内へ吹き出される送風空気の温度に関連する温度のことであり、具体的には、ヒータコア17を流れる送風空気とヒータコア17を迂回して流れる送風空気とが混合された混合空気の温度TAVや、ヒータコア17で加熱された送風空気の温度TH、ヒータコア17に流入する熱媒体の温度、ヒータコア17を迂回して流れた送風空気の温度等のことである。
第1目標温度TCOは、クーラコア16にフロストが発生せず、かつクーラコア16の表面に付着した凝縮水が蒸発しない温度範囲内の温度に設定されるのが好ましい。本実施形態では、第1目標温度TCOとして、クーラコア16の目標表面温度TCOを用いている。
第2目標温度TAOは、車室内を所望の温度に保つために車両用空調装置が生じさせる必要のある吹出空気温度に設定されるのが好ましい。本実施形態では、第2目標温度TAOとして、目標吹出空気温度TAOを用いている。
本実施形態では、放熱モードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第2目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整し、吹出空気温度TAVに関連する温度が第1目標温度TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整する。
これにより、放熱モードにおいて、クーラコア16の表面温度および車室内吹出空気温度を適切に制御できる。
本実施形態では、フロスト抑制モードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、クーラコア16を流れる冷却水の流量を調整する。これにより、フロスト抑制モードにおいて、クーラコア16の温度を適切に制御できる。
制御装置60は、ヒータコア17で加熱された送風空気の温度に関連する温度TH、TAVが第1目標温度THO、TAOに近づくように、ヒータコア17を流れる冷却水の流量を調整してもよい。
すなわち、制御装置60は、熱媒体空気熱交換器16、17で温度調整された送風空気の温度に関連する温度TC、TH、TAVが第1目標温度TCO、THO、TAOに近づくように、熱授受機器13を流れる熱媒体の流量を調整すればよい。
本実施形態では、フロスト抑制モードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、クーラコア16を流れる冷却水の流量を調整し、圧縮機制御手段60dは、吹出空気温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これにより、フロスト抑制モードにおいて、クーラコア16の表面温度および車室内吹出空気温度を適切に制御できる。
本実施形態では、冷房モードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整し、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、クーラコア16で冷却された送風空気のうちヒータコア17を流れる送風空気とヒータコア17を迂回して流れる送風空気との風量割合を調整する。
これにより、冷房モードにおいて、クーラコア16の表面温度および車室内吹出空気温度を適切に制御できる。
さらに、冷房モードにおいて、制御装置60が、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整するようにしてもよい。
これによると、ラジエータ13における冷却水から外気への放熱能力を制御することができるので、ヒータコア17からの吹出空気温度を安定化させて、吹出空気温度TAVの制御性を高めることができる。また、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を絞ることによって、車両使用時の環境変動(外気温度の急変動や、主に車速の変動によるラジエータ13を流れる風量等の変動)に対して吹出空気温度の変動を少なくできる。
本実施形態では、放熱モードにおいて、ラジエータ13を流れる冷却水または外気の流量が所定量未満と判断され、かつ吹出空気温度TAVが第2目標温度TAOを下回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、冷却水冷却器14で冷却された冷却水が流れる状態に切り替え、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これにより、放熱モードにおいて暖房用熱量が不足した場合、吸熱モードに切り替えて暖房用熱量を確保することができる。
放熱モードにおいて、ラジエータ13を流れる冷却水または外気の流量が所定量未満と判断され、かつ吹出空気温度TAVに関連する温度が第2目標温度TAOを下回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、凝縮器15で加熱された冷却水が流れない状態に切り替えた後、吸熱モードに切り替えてもよい。
本実施形態では、吸熱モードにおいて、ラジエータ13を流れる冷却水または外気の流量が所定量未満と判断され、かつ吹出空気温度TAVが第2目標温度TAOを上回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、凝縮器15で加熱された冷却水が流れる状態に切り替え、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整し、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整する。
これにより、吸熱モードにおいて暖房用熱量が過剰になった場合、放熱モードに切り替えてラジエータ13で外気に放熱させることができる。
吸熱モードにおいて、ラジエータ13を流れる冷却水または外気の流量が所定量未満と判断され、かつ吹出空気温度TAVに関連する温度が第2目標温度TAOを上回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、冷却水冷却器14で冷却された冷却水が流れない状態に切り替えた後、放熱モードに切り替えてもよい。
本実施形態では、放熱モードにおいて、目標吹出空気温度TAOがクーラコア16に流入する送風空気の温度TIを下回ると判断される場合、制御装置60は、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、クーラコア16で冷却された送風空気のうちヒータコア17を流れる送風空気とヒータコア17を迂回して流れる送風空気との風量割合を調整する。
これにより、放熱モードにおいて冷房が必要になった場合、冷房モードに切り替えて冷房を適切に行うことができる。
放熱モードにおいて、目標吹出空気温度TAOが、クーラコア16に流入する送風空気の温度TIを下回ると判断される場合、第1ポンプ11、第2ポンプ12、第1切替弁18および第2切替弁19は、冷却水加熱器15で加熱されてラジエータ13を流れる冷却水の時間流量が増加するように作動してもよい。
本実施形態では、吸熱モードにおいて、クーラコア16で冷却された送風空気の温度に関連する温度TCが所定温度TCFを下回ると判断される場合、制御装置60は、クーラコア16の表面温度TCに関連する温度が第1目標温度TCOに近づくように、クーラコア16を流れる冷却水の流量および温度のうち少なくとも一方を調整する。
これにより、吸熱モードにおいてクーラコア16にフロスト(着霜)が発生する可能性が高くなった場合、フロスト抑制モードに切り替えて、クーラコア16にフロストが発生することを抑制できる。
本実施形態では、フロスト抑制モードにおいて、クーラコア16で冷却された送風空気の温度に関連する温度TCが所定温度TCFを上回ると判断される場合、制御装置60は、クーラコア16の表面温度TCに関連する温度が第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整する。
これにより、フロスト抑制モードにおいてクーラコア16にフロスト(着霜)が発生する可能性が低くなった場合、吸熱モードに切り替えて暖房を適切に行うことができる。
本実施形態では、冷房モードにおいて、目標吹出空気温度TAOが、クーラコア16に流入する送風空気の温度TIを上回ると判断される場合、制御装置60は、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整する。
これにより、冷房モードにおいて暖房が必要になった場合、放熱モードに切り替えて暖房を適切に行うことができる。
冷房モードにおいて、目標吹出空気温度TAOが、クーラコア16に流入する送風空気の温度TIを下回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、凝縮器15で加熱された冷却水が流れない状態に切り替えた後、放熱モードに切り替えてもよい。
本実施形態では、吸熱モードおよび放熱モードにおいて、制御装置60は、ラジエータ13に冷却水が間欠的に流れるように作動する。これにより、ラジエータ13を流れる冷却水の時間平均流量を調整できる。
本実施形態では、フロスト抑制モードにおいて、制御装置60は、クーラコア16に冷却水が間欠的に流れるように作動する。これにより、クーラコア16を流れる冷却水の時間平均流量を調整できる。
吸熱モードおよび放熱モードにおいて、第1切替弁18、第2切替弁19および切替弁制御手段60bは、ラジエータ用流路33の開度を調整するように作動してもよい。これにより、ラジエータ13を流れる冷却水の流量を調整できる。
フロスト抑制モードにおいて、制御装置60は、クーラコア用流路36の開度を調整するように作動してもよい。これにより、クーラコア16を流れる冷却水の流量を調整できる。
吸熱モードおよび放熱モードにおいて、制御装置60は、第1ポンプ11または第2ポンプ12から吐出される冷却水の流量を調整してもよい。これにより、ラジエータ13を流れる冷却水の流量を調整できる。
フロスト抑制モードにおいて、ポンプ制御手段60aは、第1ポンプ11または第2ポンプ12から吐出される冷却水の流量を調整してもよい。これにより、クーラコア16を流れる冷却水の流量を調整できる。
吸熱モードおよび放熱モードにおいて、制御装置60は、外気送風機20によって送風される外気の流量を調整してもよい。これにより、ラジエータ13を流れる外気の流量を調整できる。
本実施形態では、クーラコア16には、冷却水が重力方向下方側から重力方向上方側に向かって流れる流路163が少なくとも1つ形成されている。これにより、クーラコア16にフロスト(着霜)が発生することを抑制できる。
本実施形態では、クーラコア16は、冷却水が空気流れ方向下流側から上流側に向かって流れるように冷却水の流路163が構成されている。これにより、クーラコア16にフロスト(着霜)が発生することを抑制できる。
(第2実施形態)
上記第1実施形態では、フロスト抑制モードにおいて、クーラコア16を流れる冷却水の流量を制御するが、本実施形態では、フロスト抑制モードにおいて、クーラコア16を流れる冷却水の温度を制御する。
図17に示すように、クーラコア流路36に電気ヒータ70が配置されている。電気ヒータ70は、電力を供給されることによって発熱する発熱体である。電気ヒータ70の発熱によって、クーラコア流路36を流れる冷却水が加熱される。電気ヒータ70の作動は制御装置60によって制御される。
本実施形態では、制御装置60のうち電気ヒータ70の作動を制御する構成(ハードウェアおよびソフトウェア)を電気ヒータ制御手段60hとする。電気ヒータ制御手段60hを制御装置60に対して別体で構成してもよい。電気ヒータ70および電気ヒータ制御手段60hは、クーラコア16を流れる冷却水の温度を調整するクーラコア用調整手段(熱交換器用調整手段、空気冷却熱交換器用調整手段)である。
フロスト抑制モードにおいて、電気ヒータ70で冷却水を加熱することによって、クーラコア16を流れる冷却水の温度を上昇させることができる。
本実施形態では、フロスト抑制モードにおいて、制御装置60は、クーラコア16の表面温度TCに関連する温度が第1目標温度TCOに近づくように、クーラコア16を流れる冷却水の温度を調整し、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これにより、フロスト抑制モードにおいて、クーラコア16の表面温度および車室内吹出空気温度を適切に制御できる。
(第3実施形態)
上記第2実施形態では、電気ヒータ70で冷却水を加熱することによって、クーラコア16を流れる冷却水の温度を上昇させるが、本実施形態では、図18に示すように、冷却水冷却器14で冷却された冷却水に冷却水加熱器15で加熱された冷却水を混合させることによって、クーラコア16を流れる冷却水の温度を上昇させる。
本実施形態では、第1連通流路71、第2連通流路72、第1連通開閉弁73および第2連通開閉弁74が追加されている。
第1連通流路71は、クーラコア用流路36のうちクーラコア16の冷却水入口側の部位と、ヒータコア用流路37のうちクーラコア16の冷却水入口側の部位とを連通する流路である。
第2連通流路72は、クーラコア用流路36のうちクーラコア16の冷却水出口側の部位と、ヒータコア用流路37のうちクーラコア16の冷却水出口側の部位とを連通する流路である。
第1連通開閉弁73は、第1連通流路71を開閉する電磁弁である。第1連通開閉弁73の作動は制御装置60によって制御される。第2連通開閉弁74は、第2連通流路72を開閉する電磁弁である。第2連通開閉弁74の作動は制御装置60によって制御される。
本実施形態では、制御装置60のうち第1連通開閉弁73および第2連通開閉弁74の作動を制御する構成(ハードウェアおよびソフトウェア)を連通制御手段60iとする。連通制御手段60iを制御装置60に対して別体で構成してもよい。第1連通開閉弁73、第2連通開閉弁74および連通制御手段60iは、クーラコア16を流れる冷却水の温度を調整するクーラコア用調整手段(熱交換器用調整手段、空気冷却熱交換器用調整手段)である。
第1連通開閉弁73が第1連通流路71を開け、第2連通開閉弁74が第2連通流路72を開けることによって、冷却水冷却器14で冷却された冷却水に冷却水加熱器15で加熱された冷却水が混合し、ひいてはクーラコア16を流れる冷却水の温度が上昇する。
第1連通開閉弁73および第2連通開閉弁74のうち少なくとも一方の開度を調整することによって、冷却水冷却器14で冷却された冷却水と冷却水加熱器15で加熱された冷却水との混合比率が調整され、ひいてはクーラコア16を流れる冷却水の温度が調整される。
第1切替弁18および第2切替弁19を操作して、冷却水加熱器15で加熱された冷却水を混合させることによって、クーラコア16を流れる冷却水の温度を上昇させてもよい。
本実施形態では、フロスト抑制モードにおいて、制御装置60は、クーラコア16の表面温度TCに関連する温度が第1目標温度TCOに近づくように、クーラコア16を流れる冷却水の温度を調整し、吹出空気温度TAVに関連する温度が第2目標温度TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これにより、上記第2実施形態と同様の作用効果を得ることができる。
(第4実施形態)
上記第2実施形態では、クーラコア用流路36の一端は、第1ポンプ用流路31のうち第1ポンプ11の冷却水吸入側の部位に接続されており、ヒータコア用流路37の一端は、第2ポンプ用流路32のうち第2ポンプ12の冷却水吸入側の部位に接続されているが、本実施形態では、図19に示すように、クーラコア用流路36の一端は、第1切替弁18の第3入口18dに接続されており、ヒータコア用流路37の一端は、第2切替弁19の第3出口19dに接続されている。
第1切替弁18は、クーラコア用流路36を流れる冷却水の流量を調整可能になっている。第2切替弁19は、ヒータコア用流路37を流れる冷却水の流量を調整可能になっている。
第1切替弁18の第2出口18eには、機器用流路80の一端が接続されている。第2切替弁19の第2入口19eには、機器用流路80の他端が接続されている。
機器用流路80には、機器81が配置されている。機器81は、冷却水が流通する流路を有し、冷却水との間で熱授受が行われる熱授受機器(温度調整対象機器)である。機器81の例としては、インバータ、電池、電池温調用熱交換器、走行用電動モータ、エンジン機器、蓄冷熱体、換気熱回収熱交換器、冷却水冷却水熱交換器などが挙げられる。
インバータは、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。
電池温調用熱交換器は、電池への送風経路に配置され、送風空気と冷却水とを熱交換する熱交換器(空気熱媒体熱交換器)である。
エンジン機器としては、ターボチャージャ、インタークーラ、EGRクーラ、CVTウォーマ、CVTクーラ、排気熱回収器などが挙げられる。
ターボチャージャは、エンジンの吸入空気(吸気)を過給する過給機である。インタークーラは、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器(吸気熱媒体熱交換器)である。
EGRクーラは、エンジンの吸気側に戻されるエンジン排気ガス(排気)と冷却水とを熱交換して排気を冷却する排気冷却水熱交換器(排気熱媒体熱交換器)である。
CVTウォーマは、CVT(無段変速機)を潤滑する潤滑油(CVTオイル)と冷却水とを熱交換してCVTオイルを加熱する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。
CVTクーラは、CVTオイルと冷却水とを熱交換してCVTオイルを冷却する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。
排気熱回収器は、排気と冷却水とを熱交換して冷却水に排気の熱を吸熱させる排気冷却水熱交換器(排気熱媒体熱交換器)である。
蓄冷熱体は、冷却水が持つ温熱または冷熱を蓄えるものである。蓄冷熱体の例としては、化学蓄熱材、保温タンク、潜熱型蓄熱体(パラフィンや水和物系の物質)などが挙げられる。
換気熱回収熱交換器は、換気で外に捨てられる熱(冷熱または温熱)を回収する熱交換器である。例えば、換気熱回収熱交換器が、換気で外に捨てられる熱(冷熱または温熱)を回収することによって、冷暖房に必要な動力を低減することができる。
冷却水冷却水熱交換器は、冷却水と冷却水とを熱交換する熱交換器である。例えば、冷却水冷却水熱交換器が、車両用熱管理システム10の冷却水(第1ポンプ11または第2ポンプ12によって循環される冷却水)と、エンジン冷却回路(エンジン冷却用の冷却水が循環する回路)の冷却水とを熱交換することによって、車両用熱管理システム10とエンジン冷却回路との間で熱をやり取りすることができる。
本実施形態によると、第1切替弁18および第2切替弁19によって、クーラコア16を流れる冷却水の流量、およびヒータコア17を流れる冷却水の流量を調整できる。
第1切替弁18および第2切替弁19によって、冷却水冷却器14で冷却された冷却水が機器81を流れる状態と、冷却水加熱器15で加熱された冷却水が機器81を流れる状態とを切り替えることができる。したがって、機器81を所望の温度に調整できる。
本実施形態では、上記第2実施形態と同様に、クーラコア流路36に電気ヒータ70が配置されているので、電気ヒータ70で冷却水を加熱することによって、クーラコア16を流れる冷却水の温度を上昇させることができる。
(第5実施形態)
図20に示すように、室内空調ユニット50のケース51内に、クーラコア16の代わりに、第2蒸発器82が配置されていてもよい。第2蒸発器82は、冷凍サイクル21の低圧側冷媒と車室内への送風空気とを熱交換させて車室内への送風空気を冷却する空気冷却用熱交換器である。
冷凍サイクル21は、第2膨張弁83および圧力調整弁84を有している。第2膨張弁83は、レシーバ23から流出した液相冷媒を減圧膨張させる減圧手段である。圧力調整弁84は、第2蒸発器82における冷媒蒸発圧力を調整する圧力調整手段である。
第2蒸発器82、第2膨張弁83および圧力調整弁84は、冷凍サイクル21の冷媒流れにおいて、膨張弁24および冷却水冷却器14と並列に配置されている。第2蒸発器82、第2膨張弁83および圧力調整弁84は、冷凍サイクル21の冷媒流れにおいて、第2膨張弁83、第2蒸発器82、第2膨張弁83の順番に配置されている。
(第6実施形態)
上記実施形態では、室内空調ユニット50のケース51内において、クーラコア16およびヒータコア17が空気流れにおいて直列に配置されているが、本実施形態では、図21に示すように、クーラコア16およびヒータコア17が空気流れにおいて並列に配置されている。
ケース51には、クーラコア16側の空気通路とヒータコア17側の空気通路とを仕切る仕切壁51cが形成されている。エアミックスドア55は、室内送風機54の空気流れ下流側、かつクーラコア16およびヒータコア17の空気流れ上流側に配置されている。
本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
(第7実施形態)
上記実施形態では、クーラコア16およびヒータコア17が共通の室内空調ユニット50に収容されているが、本実施形態では、図22に示すように、クーラコア16がクーラユニット50Aに収容され、ヒータコア17がヒータユニット50Bに収容されている。
クーラユニット50Aのケース51A内には、室内送風機54Aおよびクーラコア16が配置されている。ヒータユニット50Bのケース51B内には、室内送風機54Bおよびヒータコア17が配置されている。
本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
(第8実施形態)
本実施形態は、上述の熱授受機器81として、電池温調用熱交換器81A、インバータ81Bおよび冷却水冷却水熱交換器81Cを備えている。電池温調用熱交換器81A、インバータ81Bおよび冷却水冷却水熱交換器81Cは、冷却水が流通する流路を有し、冷却水との間で熱授受が行われる熱授受機器(温度調整対象機器)である。
電池温調用熱交換器81Aは、電池への送風経路に配置され、送風空気と冷却水とを熱交換する熱交換器(空気熱媒体熱交換器)である。電池温調用熱交換器81Aは、電池熱交換用流路80Aに配置されている。
電池熱交換用流路80Aの一端は、第1切替弁18の電池熱交換用出口18fに接続されている。電池熱交換用流路80Aの他端は、第2切替弁19の電池熱交換用入口19fに接続されている。
インバータ81Bは、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。インバータ81Bは、インバータ用流路80Bに配置されている。
インバータ用流路80Bの一端は、第1切替弁18のインバータ用出口18gに接続されている。インバータ用流路80Bの他端は、第2切替弁19のインバータ用入口19gに接続されている。
冷却水冷却水熱交換器81Cは、車両用熱管理システム10の冷却水(第1ポンプ11または第2ポンプ12によって循環される冷却水)と、エンジン冷却回路90の冷却水(エンジン用熱媒体)とを熱交換する熱交換器(熱媒体熱媒体熱交換器)である。冷却水冷却水熱交換器81Cは、冷却水冷却水熱交換器用流路80Cに配置されている。
冷却水冷却水熱交換器用流路80Cの一端は、第1切替弁18の冷却水冷却水熱交換器用出口18hに接続されている。冷却水冷却水熱交換器用流路80Cの他端は、第2切替弁19の冷却水冷却水熱交換器用入口19hに接続されている。
本実施形態では、クーラコア用流路36の一端は、第1切替弁18のクーラコア用出口18iに接続されている。クーラコア用流路36の他端は、第2切替弁19のクーラコア用入口19iに接続されている。
ヒータコア用流路37の一端は、第1切替弁18のヒータコア用出口18jに接続されている。ヒータコア用流路36の他端は、第2切替弁19のヒータコア用入口19jに接続されている。
第1切替弁18は、その出口側に接続された機器13、16、17、81A、81B、81Cのそれぞれについて、第1ポンプ11から吐出された冷却水が流入する状態と、第2ポンプ12から吐出された冷却水が流入する状態と、第1ポンプ11から吐出された冷却水および第2ポンプ12から吐出された冷却水が流入しない状態とを切り替える。
第2切替弁19は、その入口側に接続された機器13、16、17、81A、81B、81Cのそれぞれについて、第1ポンプ11へ冷却水が流出する状態と、第2ポンプ12へ冷却水が流出する状態と、第1ポンプ11および第2ポンプ12へ冷却水が流出しない状態とを切り替える。
第1切替弁18および第2切替弁19は、弁開度を調整可能になっている。これにより、各機器13、16、17、81A、81B、81Cを流れる冷却水の流量を調整できる。
第1切替弁18および第2切替弁19は、第1ポンプ11から吐出された冷却水と、第2ポンプ12から吐出された冷却水とを任意の流量割合で混合して各機器13、16、17、81A、81B、81Cに流入させることが可能になっている。
エンジン冷却回路90は、エンジン91を冷却するための冷却水循環回路である。エンジン冷却回路90は、冷却水が循環する循環流路92を有している。循環流路92には、エンジン91、第3ポンプ93、エンジン用ラジエータ94および冷却水冷却水熱交換器81Cが配置されている。
第3ポンプ93は、冷却水を吸入して吐出する電動ポンプである。第3ポンプ93は、エンジン91から出力される動力によって駆動される機械式ポンプであってもよい。
エンジン用ラジエータ94は、冷却水と外気とを熱交換することによって冷却水の熱を外気に放熱させる放熱用の熱交換器(空気熱媒体熱交換器)である。
循環流路92には、ラジエータバイパス流路95が接続されている。ラジエータバイパス流路95は、冷却水がエンジン用ラジエータ94をバイパスして流れる流路である。
ラジエータバイパス流路95と循環流路92との接続部にはサーモスタット96が配置されている。サーモスタット96は、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される冷却水温度応動弁である。
具体的には、サーモスタット96は、冷却水の温度が所定温度を上回っている場合(例えば80℃以上)、ラジエータバイパス流路95を閉じ、冷却水の温度が所定温度を下回っている場合(例えば80℃未満)、ラジエータバイパス流路95を開ける。
循環流路92には、エンジン補機用流路97が接続されている。エンジン補機用流路97は、冷却水が冷却水冷却水熱交換器81Cと並列に流れる流路である。エンジン補機用流路97にはエンジン補機98が配置されている。エンジン補機98は、オイル熱交換器、EGRクーラ、スロットルクーラ、ターボクーラ、エンジン補助モータ等である。オイル熱交換器は、エンジンオイルまたはトランスミッションオイルと冷却水とを熱交換してオイルの温度を調整する熱交換器である。
EGRクーラは、エンジンの排気ガスの一部を吸気側に還流させてスロットルバルブで発生するポンピングロスを低減させるEGR(排気ガス再循環)装置を構成する熱交換器であって、還流ガスと冷却水とを熱交換させて還流ガスの温度を調整する熱交換器である。
スロットルクーラは、スロットルバルブを冷却するためにスロットル内部に設けたウォータジャケットである。
ターボクーラはターボチャージャで発生する熱と冷却水とを熱交換させてターボチャージャを冷却するための冷却器である。
エンジン補助モータは、エンジン停止中でもエンジンベルトを回せるようにするための大型モータであり、エンジンベルトで駆動される圧縮機やウォータポンプなどをエンジンの駆動力が無い状態でも作動させたり、エンジンの始動時に利用される。
エンジン用ラジエータ94には第1リザーブタンク99が接続されている。第1リザーブタンク99は、冷却水を貯留する大気開放式の容器(熱媒体貯留手段)である。したがって、第1リザーブタンク99に蓄えている冷却水の液面における圧力は大気圧になる。第1リザーブタンク99は、第1リザーブタンク99に蓄えている冷却水の液面における圧力が所定圧力(大気圧とは異なる圧力)になるように構成されていてもよい。
第1リザーブタンク99に余剰冷却水を貯留しておくことによって、各流路を循環する冷却水の液量の低下を抑制することができる。第1リザーブタンク99は、冷却水中に混入した気泡を気液分離する機能を有している。
ラジエータ用流路33には第2リザーブタンク100が接続されている。第2リザーブタンク100の構造および機能は第1リザーブタンク99と同様である。
車両用空調装置の室内空調ユニット50のケース51の内部においてヒータコア17の空気流れ下流側部位には、補助ヒータ101が配置されている。補助ヒータ101は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱して空気を加熱するPTCヒータ(電気ヒータ)である。
補助ヒータ101の作動(発熱量)は、制御装置60によって制御される。本実施形態では、制御装置60のうち補助ヒータ101の作動を制御する構成(ハードウェアおよびソフトウェア)を補助ヒータ制御手段60j(電気ヒータ制御手段)とする。
冷凍サイクル21は、内部熱交換器102を備える。内部熱交換器102は、冷却水加熱器15から流出した冷媒と、冷却水冷却器14から流出した冷媒とを熱交換させる熱交換器である。
冷凍サイクル21の膨張弁24は、冷却水冷却器14出口側冷媒の温度および圧力に基づいて冷却水冷却器14出口側冷媒の過熱度を検出する感温部24aを有し、冷却水冷却器14出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調整する温度式膨張弁である。
感温部24aをサーミスタで構成し、冷却水冷却器14出口側冷媒の過熱度が予め定めた所定範囲となるように電気的機構によって絞り通路面積を調整する電気式膨張弁を用いてもよい。
制御装置60の入力側には、内気センサ61、内気湿度センサ110、外気センサ62、第1水温センサ64、第2水温センサ65、ラジエータ水温センサ111、電池温度センサ112、インバータ温度センサ113、エンジン水温センサ114、クーラコア温度センサ66、冷媒温度センサ67A、67B、冷媒圧力センサ115A、115B等のセンサ群の検出信号が入力される。
内気湿度センサ110は、内気の湿度を検出する検出手段(内気湿度検出手段)である。ラジエータ水温センサ111は、ラジエータ用流路33を流れる冷却水の温度(例えばラジエータ13から流出した冷却水の温度)を検出する検出手段(機器側熱媒体温度検出手段)である。
電池温度センサ112は、電池熱交換用流路80Aを流れる冷却水の温度(例えば電池温調用熱交換器81Aに流入する冷却水の温度)を検出する検出手段(機器側熱媒体温度検出手段)である。
インバータ温度センサ113は、インバータ用流路80Bを流れる冷却水の温度(例えばインバータ81Bから流出した冷却水の温度)を検出する検出手段(機器側熱媒体温度検出手段)である。
エンジン水温センサ114は、エンジン冷却回路90を循環する冷却水の温度(例えばエンジン91の内部を流れる冷却水の温度)を検出する検出手段(機器側熱媒体温度検出手段)である。
冷媒温度センサ67A、67Bは、圧縮機22から吐出された冷媒の温度を検出する吐出側冷媒温度センサ67A、および圧縮機22に吸入される冷媒の温度を検出する吸入側冷媒温度センサ67Bである。
冷媒圧力センサ115A、115Bは、圧縮機22から吐出された冷媒の圧力を検出する吐出側冷媒圧力センサ115A、および圧縮機22に吸入される冷媒の圧力を検出する吸入側冷媒温度センサ115Bである。
次に、上記構成における作動を説明する。制御装置60は、第1切替弁18および第2切替弁19を操作して、冷却水流れのモードを、図24〜図28に示す各種モードに切り替える。図24〜図28では、理解を容易にするために、車両用熱管理システム10を簡略化して図示している。
図24に示す外気吸熱ヒートポンプモードでは、ラジエータ13を冷却水冷却器14に接続し、ヒータコア17を冷却水加熱器15に接続し、冷却水冷却水熱交換器81Cを冷却水冷却器14および冷却水加熱器15のいずれにも接続しない。
これにより、冷却水冷却器14で冷却されて外気温度よりも低温になった冷却水がラジエータ13を流れるので、ラジエータ13で外気から冷却水に吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
すなわち、外気吸熱ヒートポンプモードでは、冷凍サイクル21の冷媒は、ラジエータ13にて外気から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。
図25に示すエンジン吸熱ヒートポンプモードでは、冷却水冷却水熱交換器81Cを冷却水冷却器14に接続し、ヒータコア17を冷却水加熱器15に接続し、ラジエータ13を冷却水冷却器14および冷却水加熱器15のいずれにも接続しない。
これにより、冷却水冷却水熱交換器81Cで加熱された冷却水が冷却水冷却器14を流れるので、冷却水冷却器14で冷却水が冷媒に吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
すなわち、エンジン吸熱ヒートポンプモードでは、冷凍サイクル21の冷媒は、冷却水冷却水熱交換器81Cで加熱された冷却水から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、エンジン91の熱を汲み上げるヒートポンプ運転を実現できる。
エンジン吸熱ヒートポンプモードにおいて、他の発熱機器(電池温調用熱交換器81A、インバータ81B)を冷却水冷却器14に接続すれば、他の発熱機器の81A、81Bの熱を汲み上げることができる。したがって、エンジン吸熱ヒートポンプモードを機器吸熱ヒートポンプモードと表現できる。
図26に示すアシストヒートポンプモード、エンジン加熱ヒートポンプモード、機器加熱モード、および熱マス利用暖房モードでは、冷却水冷却水熱交換器81Cおよびヒータコア17を冷却水加熱器15に接続し、ラジエータ13を冷却水冷却器14に接続する。
これにより、冷却水冷却水熱交換器81Cで加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
さらに、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、ラジエータ13で外気から冷却水に吸熱され、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
すなわち、外気吸熱ヒートポンプモードでは、冷凍サイクル21の冷媒は、ラジエータ13にて外気から吸熱して、冷却水加熱器15にて冷却水に放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。
したがって、エンジン91の廃熱が暖房熱源として不足する場合、ヒートポンプ運転で暖房熱源を補うことができる(アシストヒートポンプモード)。
また、エンジン91暖機時は、冷却水加熱器15で加熱された冷却水が冷却水冷却水熱交換器81Cを流れるので、エンジン91の暖機時は、冷却水加熱器15で加熱された冷却水でエンジン91を加熱できる(エンジン加熱ヒートポンプモード)。
エンジン加熱ヒートポンプモードにおいて、他の加熱対象機器(電池温調用熱交換器81A、インバータ81B)を冷却水加熱器15に接続すれば、冷却水加熱器15で加熱された冷却水で他の加熱対象機器を加熱できる。したがって、エンジン加熱ヒートポンプモードを機器加熱ヒートポンプモードと表現できる。
また、エンジン91の熱で、冷却水加熱器15に接続された他の加熱対象機器を加熱できる(機器加熱モード)。
また、冷却水加熱器15で加熱された冷却水が冷却水冷却水熱交換器81Cを流れるので、エンジン91の熱マス(熱容量)を利用して冷却水温度の変動を抑えることができる(熱マス利用暖房モード)。
図27に示すエンジン廃熱直接利用モードでは、冷却水冷却水熱交換器81Cおよびヒータコア17を互いに接続し、冷却水冷却器14および冷却水加熱器15のいずれにも接続しない。
図示を省略しているが、冷却水冷却水熱交換器81Cとヒータコア17との間の冷却水流路には、冷却水を吸入して吐出する冷却水ポンプが配置されている。これにより、冷却水冷却水熱交換器81Cで加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
ヒータコア17を流れる冷却水の温度が、車室内の暖房に必要な温度を超えている場合、冷却水冷却水熱交換器81Cをヒータコア17およびラジエータ13に接続すれば、エンジン91の余剰熱を外気に放熱できる。
エンジン廃熱直接利用モードにおいて、他の発熱機器(電池温調用熱交換器81A、インバータ81B)をヒータコア17に接続すれば、他の発熱機器の81A、81Bで加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気を加熱できる。したがって、エンジン廃熱直接利用モードを機器廃熱直接利用モードと表現できる。
図28に示す熱マス利用冷房モードでは、冷却水冷却水熱交換器81Cおよびラジエータ13を冷却水加熱器15に接続し、クーラコア16を冷却水冷却器14に接続する。
これにより、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気が冷却され、冷却水加熱器15で加熱された冷却水がラジエータ13を流れるので、ラジエータ13で冷却水から外気に放熱される。
また、冷却水加熱器15で加熱された冷却水がエンジン91を流れるので、エンジン91の熱マス(熱容量)を利用して冷却水温度の変動を抑えることや、水温上昇を抑制して冷媒の高圧上昇を抑止することができるので、高効率な冷房を実現できる。
図示を省略しているが、制御装置60は、第1切替弁18および第2切替弁19を操作して、冷却水流れのモードを除霜モードおよびエンジン独立モードにも切り替える。
除霜モードでは、冷却水冷却水熱交換器81Cおよびラジエータ13を互いに接続する。これにより、冷却水冷却水熱交換器81Cで加熱された冷却水がラジエータ13を流れるので、エンジン91の廃熱を利用してラジエータ13を除霜できる。
エンジン独立モードでは、冷却水冷却水熱交換器81Cを冷却水冷却器14および冷却水加熱器15のいずれにも接続しない。これにより、エンジン91の廃熱が冷却水冷却器14および冷却水加熱器15に伝熱されなくなる。
例えば、エンジン独立モードは冷房運転時、エンジン水温センサ114が検出した温度、すなわちエンジン冷却回路90を循環する冷却水の温度が予め設定された基準温度を超えている場合に実行される。これにより、エンジン91の廃熱の影響で冷房性能が低下することを防止できる。
外気吸熱ヒートポンプモードの具体例を図29に示す。図29の太実線矢印および太一点鎖線矢印は、外気吸熱ヒートポンプモードにおける冷却水の流れを示している。
例えば、図29に示す外気吸熱ヒートポンプモードは、暖房運転時、エンジン水温センサ114が検出した温度、すなわちエンジン冷却回路90を循環する冷却水の温度が予め設定された第1基準温度(例えば40℃)未満である場合に実行される。
これにより、エンジン91が作動している場合にはエンジン91の暖機を促進できる。一方、エンジン91が停止している場合には、エンジン91を作動させることなく暖房用熱源を確保できるので、燃費を向上できる。
エンジン吸熱ヒートポンプモードの具体例を図30に示す。図30の太実線矢印および太一点鎖線矢印は、エンジン吸熱ヒートポンプモードにおける冷却水の流れを示している。
例えば、図30に示すエンジン吸熱ヒートポンプモードは、暖房運転時、エンジン水温センサ114が検出した温度、すなわちエンジン冷却回路90を循環する冷却水の温度が予め設定された第1基準温度(例えば40℃)以上である場合に実行される。
これによると、冷却水冷却器14を循環する冷却水の温度を上昇させることができるので、冷凍サイクル21の低圧側冷媒圧力を上昇させることができ、ひいては冷凍サイクル21の効率(COP)が高い暖房(以下、高COP暖房と言う。)を実現できる。
図30に示すエンジン吸熱ヒートポンプモードにおいて除湿暖房を行う場合は、エンジン91からの受熱量を制御して、冷却水冷却器14を循環する冷却水の温度を0℃程度に保つのが好ましい。
図30に示すエンジン吸熱ヒートポンプモードにおいて、第1水温センサ64が検出した温度、すなわち冷却水冷却器14を循環する冷却水の温度が外気温度よりも高い場合、ラジエータ13への冷却水の流通を遮断する。これにより、ラジエータ13で冷却水から外気に放熱されることを防止できる。
図30に示すエンジン吸熱ヒートポンプモードでは、クーラコア16を冷却水冷却器14に接続し、インバータ81Bを冷却水加熱器15に接続し、電池温調用熱交換器81Aを冷却水冷却器14および冷却水加熱器15のいずれにも接続しないが、電池温調用熱交換器81Aの要求温度および冷却水の温度に応じて、電池温調用熱交換器81Aを冷却水冷却器14および冷却水加熱器15のうち少なくとも一方に接続してもよい。
図30に示すエンジン吸熱ヒートポンプモードでは、第1切替弁18および第2切替弁19は、冷却水冷却水熱交換器81Cから流出した冷却水の温度が約10℃になるように、冷却水冷却水熱交換器81Cに流通する冷却水の流量を制御する。
エンジン加熱ヒートポンプモードの具体例を図31に示す。図31の太実線矢印および太一点鎖線矢印は、エンジン加熱ヒートポンプモードにおける冷却水の流れを示している。
例えば、図31に示すエンジン加熱ヒートポンプモードは、冷房運転時、エンジン水温センサ114が検出した温度、すなわちエンジン冷却回路90を循環する冷却水の温度が予め設定された基準温度(例えば40℃)未満である場合に実行される。
これにより、冷房廃熱でエンジン91を暖機できるので、燃費を向上できる。また、冷却水加熱器15で加熱された冷却水がエンジン91を流れるので、エンジン91の熱マスを利用して冷却水温度の変動を抑えることができる。
図27に示すエンジン廃熱直接利用モードは、例えば、暖房運転時、エンジン水温センサ114が検出した温度、すなわちエンジン冷却回路90を循環する冷却水の温度が予め設定された第2基準温度(暖房要求を満たせる温度。例えば55℃)を超えている場合に実行される。
これにより、冷却水冷却水熱交換器81Cで加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気が加熱される。
上述の各冷却水流れモードにおいて、ラジエータ13に対する冷却水の流通を遮断している状態から、冷却水冷却器14側および冷却水加熱器15側のいずれかにラジエータ13を接続してラジエータ13に対する冷却水の流通を開始する場合、次の(1)、(2)の制御のうち少なくとも一方の制御を実施して車室内吹出空気温度の変動を抑制するのが好ましい。
(1)ラジエータ13に対する冷却水の流通を断続する弁をゆっくりと開いて冷却水の流通をゆっくりと開始する。これにより、車室内吹出空気温度が急激に変動することを抑制できる。
(2)車室内吹出空気温度が変動することを予め予測してエアミックスドア55の開度および室内送風機54の風量を調整した後、ラジエータ13に冷却水を流通させる。これにより、車室内吹出空気温度が変動することを抑制できる。ラジエータ13に冷却水を流通させた後の変動に対しては、エアミックスドア55の開度および室内送風機54の風量の制御によって抑制する。
次に、クーラコア吹出温度TCおよびヒータコア吹出温度THの制御方法を説明する。クーラコア吹出温度TCは、クーラコア16で冷却された送風空気の温度である。ヒータコア吹出温度THは、ヒータコア17で加熱された送風空気の温度である。
クーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づける制御方法として、第1TC制御、第2TC制御、第3TC制御および第4TC制御のいずれかが用いられる。ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づける制御方法として、第1TH制御、第2TH制御、第3TH制御および第4TH制御のいずれかが用いられる。
(第1TC制御)
第1TC制御では、ラジエータ13および機器81A〜81Cのうち任意の機器をクーラコア16と接続し、接続された機器とクーラコア16との熱授受量を制御することによって、クーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づける。
例えば、接続された機器に対する冷却水流量や風量を調整したり、接続された機器の発熱量を制御することによって、クーラコア16との熱授受量を制御する。例えば、接続された機器がインバータ81Bである場合、インバータ81Bを非効率作動させることによって発熱量を制御する。
クーラコア16に接続される機器は、ラジエータ13および機器81A〜81Cのみならず、水加熱PTCヒータや走行用モータジェネレータ等の機器であってもよい。水加熱PTCヒータに対する通電を制御することによって発熱量を制御できる。走行用モータジェネレータを非効率駆動することによって発熱量を制御できる。
本実施形態では、制御装置60のうち、クーラコア16に接続された機器(インバータ81B、水加熱PTCヒータ、走行用モータジェネレータ等)の発熱量を制御する構成(ハードウェアおよびソフトウェア)を発熱量制御手段60kとする。
例えば、第1TC制御は、クーラコア16とラジエータ13とを連通させて外気冷気を利用した車室内除湿空調を行っている作動状態において、水温が0℃以下になった場合に実施される。
クーラコア16を流通する冷却水の温度が0℃以上の目標値になるように接続機器とクーラコア16との熱授受量を制御することによって、クーラコア16のフロスト(着霜)を抑制できる。
(第2TC制御)
第2TC制御では、クーラコア16の熱交換能力を制御することによって、クーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づける。例えば、クーラコア16に対する冷却水流量や風量を調整したり、クーラコア16に送風される空気における内気と外気との割合を調整することによって、クーラコア16の熱交換能力を制御する。
例えば、第2TC制御は、クーラコア16とラジエータ13とを連通させて外気冷気を利用した車室内除湿空調を行っている作動状態において、水温が0℃以下になった場合に実施される。
クーラコア16に対して冷却水の流通を断続(オン・オフ)することによって、クーラコア16のフロスト(着霜)を抑制できる。
(第3TC制御)
第3TC制御は、圧縮機22が作動していることが前提となる制御方法である。第3TC制御では、ラジエータ13および機器81A〜81Cのうち任意の機器をヒータコア17と接続し、接続された機器とヒータコア17との熱授受量を制御することによって、クーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づける。
例えば、接続された機器に対する冷却水流量や風量を調整したり、接続された機器の発熱量を制御することによって、ヒータコア17との熱授受量を制御する。
ヒータコア17に接続される機器は、ラジエータ13および機器81A〜81Cのみならず、水加熱PTCヒータや走行用モータジェネレータ等の機器であってもよい。水加熱PTCヒータに対する通電を制御することによって発熱量を制御できる。走行用モータジェネレータを非効率駆動することによって発熱量を制御できる。
例えば、第3TC制御は、圧縮機22の回転数制御に一定の制限が存在する場合において、冷房を行いたい場合に実施される。圧縮機22の回転数制御に一定の制限が存在する場合とは、例えば、圧縮機22の許容回転数が設定されている場合や、圧縮機22がベルト駆動式圧縮機である場合等である。
第3TC制御によると、圧縮機22の回転数に依存せずにクーラコア吹出温度TCを制御できる。
(第4TC制御)
第4TC制御では、冷媒流量を制御することによって、クーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づける。例えば、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御したり、膨張弁24の絞り通路面積を調整することによって、冷媒流量を制御する。
(第1TH制御)
第1TH制御では、ラジエータ13および機器81A〜81Cのうち任意の機器をヒータコア17と接続し、接続された機器とヒータコア17との熱授受量を制御することによって、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づける。
例えば、接続された機器に対する冷却水流量や風量を調整したり、接続された機器の発熱量を制御することによって、ヒータコア17との熱授受量を制御する。
例えば、第1TH制御は、ヒータコア17と冷却水加熱器15とが接続されている状態において実施される。冷却水加熱器15を流通する冷却水の温度が所定値を超えないように接続機器との熱授受量を制御することによって、冷凍サイクル21の冷媒圧力が過度に上昇して安全対策リリーフ弁が開弁してしまうことを抑制できる。
(第2TH制御)
第2TH制御では、ヒータコア17の熱交換能力を制御することによって、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づける。例えば、ヒータコア17に対する冷却水流量や風量を調整したり、ヒータコア17に送風される空気における内気と外気との割合を調整することによって、ヒータコア17の熱交換能力を制御する。
例えば、第2TH制御は、エンジン91の廃熱を利用した車室内暖房空調時に実施される。ヒータコア17における平均冷却水温度が目標温度に近づくように、ヒータコア17を流通する冷却水流量を制御する。
これによると、エアミックスドア55を用いることなく車室内吹出空気温度TAVを制御できる。そのため、エアミックスドア55を廃止することが可能になるので、室内空調ユニット50を小型化することが可能になる。
例えば、第2TH制御は、エンジン吸熱ヒートポンプモード時に実施される。エンジン吸熱ヒートポンプモードでは、ヒータコア17における冷却水温度が目標温度になるように、圧縮機22の回転数制御によって冷却水加熱器15の放熱量が制御される。
この場合、冷凍サイクル21の低圧側冷媒の温度が高くなる(例えば40℃)ため、圧縮機22を最低作動回転数(例えば1500回転程度)で作動させてもヒータコア17における冷却水温度が目標温度を超えてしまうことがある。
そこで、ヒータコア17における冷却水流量を制御して、ヒータコア17における冷却水温度を目標温度にする。冷却水温度が高くなるほど効率が下がり、やがては最低回転数で能力が釣り合う。
これにより、エンジン吸熱ヒートポンプモードで高COP暖房を実施できる。また、圧縮機22の最低作動回転数で能力過剰となる場合でも作動させることが可能になる。
(第3TH制御)
第3TH制御は、圧縮機22が作動していることが前提となる制御方法である。第3TH制御では、ラジエータ13および機器81A〜81Cのうち任意の機器をクーラコア16と連通させ、接続された機器とクーラコア16との熱授受量を制御することによって、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づける。
例えば、接続された機器に対する冷却水流量や風量を調整したり、接続された機器の発熱量を制御することによって、クーラコア16との熱授受量を制御する。
例えば、第3TH制御は、圧縮機22の回転数制御に一定の制限が存在する場合において、冷房を行いたい場合に実施される。
第3TH制御によると、圧縮機22の回転数に依存せずにヒータコア吹出温度THを制御できる。
(第4TH制御)
第4TH制御では、冷媒流量を制御することによって、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づける。例えば、圧縮機22の冷媒吐出能力(具体的には、圧縮機22の回転数)を制御したり、膨張弁24の絞り通路面積を調整することによって、冷媒流量を制御する。
第1〜第4TC制御および第1〜第4TH制御は互いに組み合わせることが可能である。具体的には、第1〜第4TC制御のいずれかと第1〜第4TH制御のいずれかとを組み合わせることが可能である。
(第1TC制御と第1TH制御との組み合わせ)
例えば、第1TC制御と第1TH制御との組み合わせは、クーラコア吹出目標温度TCOが、クーラコア16に接続された機器の温度よりも上回っていることが推定または判断される場合に実施される。
例えば、第1TC制御と第1TH制御との組み合わせは、ヒータコア17に接続された機器における冷却水温度が所定温度(例えば55℃)を越えている場合に実施される。ヒータコア17に接続された機器における冷却水温度が所定温度(例えば55℃)を越えている場合、ヒータコア吹出温度THが過剰になってしまうため、ヒータコア17に接続された機器からの受熱量を制御することによって、ヒータコア17における冷却水温度が所定温度(例えば55℃)を越えることを抑制し、ひいてはヒータコア吹出温度THが過剰になることを抑制する。
例えば、第1TC制御と第1TH制御との組み合わせは、省電力除湿暖房モード時に実施される。省電力除湿暖房モードは、外気冷熱を利用した除湿をしつつ、エンジン91の廃熱や種々の機器の廃熱を利用して除湿空気を再加熱する作動モードである。
例えば、第1TC制御と第1TH制御との組み合わせは、エンジン吸熱ヒートポンプモード時に実施される。エンジン吸熱ヒートポンプモードにおける加熱源は冷却水加熱器15である。エンジン吸熱ヒートポンプモードにおける加熱源として、電気ヒータやインバータ81B等を併用してもよい。
ヒータコア17に接続される機器は、エンジン91であってもよい。具体的には、エンジン91に第2の冷却水取出口を設けてヒータコア17と連通させてもよい。エンジン水温が所定温度以上(例えば55℃以上)の場合、エンジン91の廃熱を冷凍サイクル21で吸熱利用しつつヒータコア17で直接利用できる。
(第1TC制御と第2TH制御との組み合わせ)
例えば、第1TC制御と第2TH制御との組み合わせは、クーラコア吹出目標温度TCOが、クーラコア16に接続された機器の温度よりも上回っていることが推定または判断される場合に実施される。
例えば、第1TC制御と第2TH制御との組み合わせは、ヒータコア17に接続された機器における冷却水温度が所定温度(例えば55℃)を越える場合に実施される。ヒータコア17に対して冷却水の流通を断続(オン・オフ)することによって、ヒータコア吹出温度THが過剰になることを抑制できる。
例えば、第1TC制御と第2TH制御との組み合わせは、省電力除湿暖房モード時や、省電力除湿暖房・冷房モード時に実施される。省電力除湿暖房・冷房モードは、蓄冷体の冷熱を利用した冷却・除湿をしつつ、エンジン91の廃熱や種々の機器の廃熱を利用して冷却空気・除湿空気を再加熱する作動モードである。
(第2TC制御と第1TH制御との組み合わせ)
例えば、第2TC制御と第1TH制御との組み合わせは、クーラコア16に接続された機器における冷却水温度が0℃を下回る場合に実施される。クーラコア16に対して冷却水の流通を断続(オン・オフ)することによって、クーラコア16のフロスト(着霜)を抑制できる。
例えば、第2TC制御と第1TH制御との組み合わせは、ヒータコア17に接続された機器における冷却水の温度が所定温度(例えば55℃)を越える場合に実施される。ヒータコア17に接続された機器からの受熱量を制御することによって、ヒータコア吹出温度THが過剰になることを抑制できる。
例えば、第2TC制御と第1TH制御との組み合わせは、省電力除湿暖房モード時や、省電力除湿暖房・冷房モード時に実施される。
例えば、第2TC制御と第1TH制御との組み合わせは、エンジン吸熱ヒートポンプモード時、かつエンジン91における冷却水温度がクーラコア吹出目標温度TCOよりも低い場合に実施される。
ヒータコア17に接続される機器は、エンジン91であってもよい。具体的には、エンジン91に第2の冷却水取出口を設けてヒータコア17と連通させてもよい。エンジン水温が所定温度以上(例えば55℃以上)の場合、エンジン91の廃熱を冷凍サイクル21で吸熱利用しつつ、ヒータコア17で直接利用できる。
(第2TC制御と第2TH制御との組み合わせ)
例えば、第2TC制御と第2TH制御との組み合わせは、クーラコア16に接続された機器における冷却水温度が0℃を下回る場合に実施される。クーラコア16に対して冷却水の流通を断続(オン・オフ)することによって、クーラコア16のフロスト(着霜)を抑制できる。
例えば、第2TC制御と第2TH制御との組み合わせは、ヒータコア17に接続された機器における冷却水温度が所定温度(例えば55℃)を越える場合に実施される。ヒータコア17に対して冷却水の流通を断続(オン・オフ)することによって、ヒータコア吹出温度THが過剰になることを抑制できる。
例えば、第2TC制御と第2TH制御との組み合わせは、省電力除湿暖房モード時や、省電力除湿暖房・冷房モード時に実施される。
(第1TC制御と第4TH制御との組み合わせ)
例えば、第1TC制御と第4TH制御との組み合わせは、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づけるために、クーラコア16に接続された機器の廃熱を冷凍サイクル21で汲み上げる必要がある場合に実施される。
例えば、第1TC制御と第4TH制御との組み合わせは、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えていない場合に実施される。
例えば、第1TC制御と第4TH制御との組み合わせは、ヒータコア吹出温度THとヒータコア吹出目標温度THOとの偏差が所定量を超えた場合に実施される。圧縮機22の回転数は、ヒータコア吹出温度THがヒータコア吹出目標温度THOに近づくように制御されるため、温度変動に対してヒータコア吹出温度THの追従性を高めることができる。
(第2TC制御と第4TH制御との組み合わせ)
例えば、第2TC制御と第4TH制御との組み合わせは、クーラコア16に接続された機器における冷却水温度が0℃を下回る場合に実施される。クーラコア16に対して冷却水の流通を断続(オン・オフ)することによって、クーラコア16のフロスト(着霜)を抑制できる。
(第3TC制御と第4TH制御との組み合わせ)
例えば、第3TC制御と第4TH制御との組み合わせは、ヒータコア吹出温度THとヒータコア吹出目標温度THOとの偏差が所定量を超えた場合に実施される。圧縮機22の回転数は、ヒータコア吹出温度THがヒータコア吹出目標温度THOに近づくように制御されるため、温度変動に対してヒータコア吹出温度THの追従性を高めることができる。
例えば、第3TC制御と第4TH制御との組み合わせは、上記第1実施形態のステップS180で放熱モードに切り替えられた場合に実施される。これにより、暖房用熱量が過剰になった場合、ラジエータ13で外気に放熱させることができるとともに、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。
例えば、第3TC制御と第4TH制御との組み合わせは、クーラコア吹出温度TCとクーラコア吹出目標温度TCOとの偏差が所定量を超えていない場合に実施される。
(第4TC制御と第1TH制御との組み合わせ)
例えば、第4TC制御と第1TH制御との組み合わせは、クーラコア吹出温度TCとクーラコア吹出目標温度TCOとの偏差が所定量を超えた場合に実施される。圧縮機22の回転数は、クーラコア吹出温度TCがクーラコア吹出目標温度TCOに近づくように制御されるため、温度変動に対してクーラコア吹出温度TCの追従性を高めることができる。
そのため、クーラコア16の温度が低い側に変動することを抑制できるので、クーラコア16にフロストが発生して風量が低下したり凍結臭が発生することを抑制できる。また、クーラコア16の温度が高い側に変動することを抑制できるので、クーラコア16の凝縮水が蒸発して突発的な窓曇りや異臭が発生することを抑制できる。
例えば、第4TC制御と第1TH制御との組み合わせは、ヒータコア吹出温度THとヒータコア吹出目標温度THOとの偏差が所定量を超えていない場合に実施される。
(第4TC制御と第2TH制御との組み合わせ)
例えば、第2TC制御と第2TH制御との組み合わせは、ヒータコア17に接続された機器における冷却水温度が所定温度(例えば55℃)を越える場合に実施される。ヒータコア17に対して冷却水の流通を断続(オン・オフ)することによって、ヒータコア吹出温度THが過剰になることを抑制できる。
(第4TC制御と第3TH制御との組み合わせ)
例えば、第4TC制御と第3TH制御との組み合わせは、クーラコア吹出温度TCとクーラコア吹出目標温度TCOとの偏差が所定量を超えた場合に実施される。圧縮機22の回転数は、クーラコア吹出温度TCがクーラコア吹出目標温度TCOに近づくように制御されるため、温度変動に対してクーラコア吹出温度TCの追従性を高めることができる。
例えば、第4TC制御と第3TH制御との組み合わせは、上記第1実施形態のステップS190で吸熱モードに切り替えられた場合に実施される。これにより、暖房用熱量が不足する場合、ラジエータ13で外気から吸熱して暖房用熱量を確保することができるとともに、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。
例えば、第4TC制御と第3TH制御との組み合わせは、ヒータコア吹出温度THとヒータコア吹出目標温度THOとの偏差が所定量を超えていない場合に実施される。
(第2TC制御と第3TH制御との組み合わせ、第3TC制御と第2TH制御との組み合わせ、および第3TC制御と第3TH制御との組み合わせ)
第2TC制御と第3TH制御との組み合わせ、第3TC制御と第2TH制御との組み合わせ、および第3TC制御と第3TH制御との組み合わせは、圧縮機22の回転数が、クーラコア吹出温度TCおよびヒータコア吹出温度THのいずれにも関係なく制御される場合に実施される。
圧縮機22の回転数が、クーラコア吹出温度TCおよびヒータコア吹出温度THのいずれにも関係なく制御される場合の例を挙げる。
圧縮機22が電動圧縮機の場合、例えば、次の(1)〜(11)の場合がある。
(1)振動騒音の要求を満たすために、圧縮機22の最高回転数に上限が設けられている場合。主にアイドルストップ中の冷暖房時。
(2)圧縮機22の吐出圧が所定値(例えば2.6〜3MPa)を超えないように圧縮機22の回転数を制限する場合。
(3)圧縮機22のOリングを保護する目的で、圧縮機22の吐出温度が所定値(例えば120℃)を超えないように圧縮機22の回転数を制限する場合。
(4)圧縮機22のOリングの硬度が増加してOリングの割れやシール性が低下することを防止する目的で、圧縮機22の吸入温度が所定値(例えば−30℃)を下回らないように圧縮機22の回転数を制限する場合。
(5)圧縮機22の軸および軸受けの保護や、モータドライバ仕様などのために設けられている最高許容回転数に到達した場合。
(6)効率の良い回転数を維持するために、一定回転数で制御する場合。
(7)ウォームアップやクールダウン時、設定した時間で最高回転数に到達するように徐々に回転数を上げていく場合。
(8)加速時や、他の電気機器に電力を集中させたい場合に、圧縮機22の回転数を低下させる場合。他の電気機器に電力を集中させたい場合とは、例えば走行用モータでエンジン91を始動させる場合や、低温時などで走行用電池に出力制限が掛かっている場合において走行を優先させる場合等である。
(9)制御ハンチング抑止の為、所定時間一定回転数を維持する場合。
(10)モータドライバを簡素化する目的で、所定回転数でしか作動できない圧縮機22を使用している場合。
(11)他の加熱または冷却したい機器の要求を加味して、空調要求能力に加えて、所定量能力を増強させるように作動する場合。
圧縮機22がベルト駆動式圧縮機であり、且つ固定容量型圧縮機である場合、圧縮機22の回転数はエンジン91の回転数に依存し、そもそも圧縮機22のオン・オフしか制御できないので、圧縮機22の回転数はクーラコア吹出温度TCおよびヒータコア吹出温度THのいずれにも関係なく制御されることとなる。
制御装置60は、上述の第1〜第4TC制御および第1〜第4TH制御を種々の条件に応じて切り替える。
さらに、制御装置60は、第1〜第4TC制御および第1〜第4TH制御に加えて、吹出空気温度TAVを目標吹出空気温度TAOに近づける制御を行う。例えば、室内送風機54の風量やエアミックスドア55の作動を制御することによって、吹出空気温度TAVを目標吹出空気温度TAOに近づける。
例えば、接続機器の温度や環境温度の変動等によって急な温度変動が発生した場合、エアミックスドア55が素早く作動することによって吹出温度変動を抑える。すなわち、冷却水および冷媒の熱マス(熱容量)による制御遅れをカバーする。
除湿暖房時でもエアミックスドア55はヒータコアバイパス通路51aを全閉せずに若干開けておけば、吹出空気温度TAVが目標吹出空気温度TAOを下回るような変動が発生したときに備えることができる。
吹出空気温度TAVが目標吹出空気温度TAOを下回る変動が発生した場合、補助ヒータ101によって吹出空気温度TAVを上昇させることもできる。
吹出空気温度TAVが目標吹出空気温度TAOを超えるような場合は、ヒータコアバイパス通路51aの風量が増加するようにエアミックスドア55を作動させる。
次に、第1〜第4TC制御および第1〜第4TH制御を、上述のエンジン吸熱ヒートポンプモードに適用した場合における具体的作動例を説明する。
(第1TC制御と第1TH制御との組み合わせ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とインバータ81B等とを接続することによって、エンジン吸熱ヒートポンプモードで除湿を行う場合、クーラコア吹出温度TCが0℃になるように第1TC制御を実施し、ヒータコア吹出温度THが所定温度(例えば55℃)になるように第1TH制御を実施する。第1TH制御では、圧縮機22の回転数を制御してもよい。
(第1TC制御と第2TH制御との組み合わせ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とを接続していることによって、冷却水加熱器15で加熱された冷却水の温度が過剰に上昇している場合、ヒータコア17における冷却水流量を絞るように第2TH制御を実施することによって、ヒータコア吹出温度THがヒータコア吹出目標温度THOを超えることを抑制できる。
(第1TC制御と第4TH制御との組み合わせ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とを接続することによって、エンジン吸熱ヒートポンプモードで除湿を行う場合、クーラコア吹出温度TCが0℃になるように第1TC制御を実施し、ヒータコア吹出温度THが所定温度(例えば55℃)になるように第4TH制御(例えば圧縮機22の回転数制御)を実施する。
(第2TC制御と第1TH制御との組み合わせ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とインバータ81B等とを接続することによって、エンジン吸熱ヒートポンプモードで除湿を行う場合、エンジン91における冷却水温度がクーラコア吹出目標温度TCO(例えば10℃)を下回っていればクーラコア16における冷却水流量を絞るように第2TC制御を実施することによってクーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づけることができる。
また、ヒータコア吹出温度THが所定温度(例えば55℃)になるように第1TH制御を実施する。第1TH制御では、圧縮機22の回転数を制御してもよい。
(第2TC制御と第2TH制御との組み合わせ)
ヒータコア17における冷却水温度が所定温度以上(例えば55℃以上)であり、かつエンジン91における冷却水温度がクーラコア吹出目標温度TCO(例えば10℃)を下回っている場合、第2TC制御を実施することによってクーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づけることができ、かつヒータコア吹出温度THをヒータコア吹出目標温度THOに近づけることができる。すなわち、クーラコア16での冷却除湿のために圧縮機22を回転させる必要がない。
(第2TC制御と第4TH制御との組み合わせ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とインバータ81B等とを接続することによって、エンジン吸熱ヒートポンプモードで除湿を行う場合、クーラコア16における冷却水流量を絞るように第2TC制御を実施することによってクーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づけるとともに、ヒータコア吹出温度THが所定温度(例えば55℃)になるように第1TH制御を実施する。
(第3TC制御と第3TH制御との組み合わせ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とインバータ81B等とを接続することによって、エンジン吸熱ヒートポンプモードで除湿を行う場合であって、圧縮機22の回転数がクーラコア吹出温度TCおよびヒータコア吹出温度THのいずれにも関係なく制御される場合、クーラコア16における冷却水温度が0℃になるように第3TC制御を実施するとともに、ヒータコア吹出温度THが所定温度(例えば55℃)になるように第3TH制御を実施する。
(第2TH制御のみ)
クーラコア16と冷却水冷却水熱交換器81Cと冷却水冷却器14とを接続し、ヒータコア17と冷却水加熱器15とを接続することによって、エンジン吸熱ヒートポンプモードで除湿を行う場合、ヒータコア吹出温度THが所定温度(例えば55℃)になるように第2TH制御を実施し、第1〜第4TC制御を実施しない。
なお、第1〜第4TH制御では、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づけるが、吹出空気温度TAVを目標吹出空気温度TAOに近づけるようにしてもよい。
本実施形態では、熱授受機器13、81が、冷却水加熱器15で加熱された冷却水との間で熱授受を行う場合、制御装置60は、ヒータコア17で加熱された送風空気のTHに関連する温度が第2目標温度THOに近づくように、熱授受機器13、81を流れる冷却水の流量を調整し(第1TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
これにより、クーラコア16で送風空気から回収した熱量で熱授受機器13、81を加熱できるとともに、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。
本実施形態では、ラジエータ13において、冷却水加熱器15で加熱された冷却水の熱を外気に放熱させる場合、制御装置60は、クーラコア16で冷却された送風空気の温度に関連する温度TCが第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TC制御)、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TH制御)。
これにより、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。特に、ヒータコア17の温度を冷媒流量で制御するので、ヒータコア17の温度追従性を高めることができる。
本実施形態では、ラジエータ13において、冷却水冷却器14で冷却された冷却水に外気の熱を吸熱させる場合、制御装置60は、ヒータコア17で加熱された送風空気の温度に関連する温度TH、TAVが第2目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
これにより、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。特に、クーラコア16の温度を冷媒流量で制御するので、クーラコア16の温度の追従性を高めることができる。
本実施形態では、ラジエータ13を流れる冷却水または外気の流量が所定量未満と判断され、かつ吹出空気温度TAVが第2目標温度TAOを下回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、冷却水冷却器14で冷却された冷却水が流れる状態(吸熱モード)に切り替え、制御装置60は、ヒータコア17で加熱された送風空気の温度に関連する温度TH、TAVが第2目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
これにより、暖房用熱量が不足する場合、ラジエータ13で外気から吸熱して暖房用熱量を確保することができるとともに、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。
本実施形態では、ラジエータ13を流れる冷却水または外気の流量が所定量未満と判断され、かつ吹出空気温度TAVが第2目標温度TAOを上回ると判断される場合、第1切替弁18および第2切替弁19は、ラジエータ13に、冷却水加熱器15で加熱された冷却水が流れる状態(放熱モード)に切り替え、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TC制御)、ヒータコア17で加熱された送風空気の温度に関連する温度TH、TAVが第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TH制御)。
これにより、暖房用熱量が過剰になった場合、ラジエータ13で外気に放熱させることができるとともに、クーラコア16の温度およびヒータコア17の温度を適切に制御できる。
本実施形態では、ラジエータ13に、冷却水加熱器15で加熱された冷却水が流れるようになっている場合において、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えていない場合、または超えていないと推定もしくは判断される場合、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TC制御)、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TH制御)。
一方、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えた場合、制御装置60は、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第1TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
これによると、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えた場合、または超えていると推定もしくは判断される場合、クーラコア16の温度を冷媒流量で制御するので、クーラコア16の温度の追従性を高めることができる。
そのため、クーラコア16の温度が低い側に変動することを抑制できるので、クーラコア16にフロストが発生して風量が低下したり凍結臭が発生することを抑制できる。また、クーラコア16の温度が高い側に変動することを抑制できるので、クーラコア16の凝縮水が蒸発して突発的な窓曇りや異臭が発生することを抑制できる。
本実施形態では、ラジエータ13に、冷却水加熱器15で加熱された冷却水が流れるようになっている場合において、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度と第2目標温度THO、TAOとの偏差が所定量を超えていない場合、または超えていないと推定もしくは判断される場合、制御装置60は、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第1TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
一方、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度と第2目標温度THO、TAOとの偏差が所定量を超えた場合、または超えていると推定もしくは判断される場合、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TC制御)、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TH制御)。
これによると、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度と第2目標温度THO、TAOとの偏差が所定量を超えた場合、ヒータコア17の温度を冷媒流量で制御するので、ヒータコア17の温度の追従性を高めることができる。
そのため、車室内に吹き出される送風空気の温度の変動を早期に抑えることができるので、空調快適性を向上できる。
本実施形態では、ラジエータ13に、冷却水冷却器14で冷却された冷却水が流れるようになっている場合において、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えていない場合、または超えていないと推定もしくは判断される場合、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第1TC制御)、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TH制御)。
一方、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えた場合、または超えていると推定もしくは判断される場合、制御装置60は、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
これによると、クーラコア16で冷却された送風空気の温度TCに関連する温度と第1目標温度TCOとの偏差が所定量を超えた場合、クーラコア16の温度を冷媒流量で制御するので、クーラコア16の温度の追従性を高めることができる。
そのため、クーラコア16の温度が低い側に変動することを抑制できるので、クーラコア16にフロストが発生して風量が低下したり凍結臭が発生することを抑制できる。また、クーラコア16の温度が高い側に変動することを抑制できるので、クーラコア16の凝縮水が蒸発して突発的な窓曇りや異臭が発生することを抑制できる。
本実施形態では、ラジエータ13に、冷却水冷却器14で冷却された冷却水が流れるようになっている場合において、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度と第2目標温度THO、TAOとの偏差が所定量を超えていない場合、制御装置60は、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第3TH制御)、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TC制御)。
一方、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度と第2目標温度THO、TAOとの偏差が所定量を超えた場合、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、ラジエータ13を流れる冷却水および外気のうち少なくとも一方の流量を調整し(第1TC制御)、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、圧縮機22から吐出される冷媒の流量を調整する(第4TH制御)。
これによると、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度と第2目標温度THO、TAOとの偏差が所定量を超えた場合、ヒータコア17の温度を冷媒流量で制御するので、ヒータコア17の温度の追従性を高めることができる。
そのため、車室内に吹き出される送風空気の温度の変動を早期に抑えることができるので、空調快適性を向上できる。
本実施形態では、制御装置60は、吹出空気温度TAVに関連する温度が第3目標温度TAOに近づくように、クーラコア16で冷却された送風空気のうちヒータコア17を流れる送風空気とヒータコア17を迂回して流れる送風空気との風量割合を調整する。これにより、吹出空気温度TAVを適切に制御できる。
本実施形態では、制御装置60は、吹出空気温度TAVに関連する温度が第3目標温度TAOに近づくように、送風空気の風量を調整する。これにより、吹出空気温度TAVを適切に制御できる。
本実施形態では、制御装置60は、吹出空気温度TAVに関連する温度が第3目標温度TAOに近づくように、送風空気における内気と外気との割合を調整する。これにより、吹出空気温度TAVを適切に制御できる。
本実施形態では、制御装置60は、吹出空気温度TAVに関連する温度が第3目標温度TAOに近づくように、電気ヒータ101の発熱量を調整する。これにより、吹出空気温度TAVを適切に制御できる。
本実施形態では、冷却水冷却水熱交換器81Cは、冷却水冷却器14で冷却された冷却水と、エンジン91を流通したエンジン用冷却水とを熱交換させる。このため、エンジン91の熱を汲み上げるヒートポンプ運転(エンジン吸熱ヒートポンプモード)を実現できる。
本実施形態では、冷却水冷却水熱交換器用流路80Cに冷却水冷却水熱交換器81Cが配置されているが、冷却水冷却水熱交換器81Cの代わりに、エンジン91自体が冷却水冷却水熱交換器用流路80Cに配置されていて、エンジン91の冷却水流路に、冷却水冷却器14や冷却水加熱器15で温度調整された冷却水が流通するようになっていてもよい。
本実施形態では、第1切替弁18および第2切替弁19は、冷却水冷却器14で冷却された冷却水がラジエータ13に流れる状態と、冷却水冷却器14で冷却された冷却水が熱授受機器13、81に流れる状態とを切り替える。
これにより、外気吸熱ヒートポンプモードとエンジン吸熱ヒートポンプモード(機器吸熱ヒートポンプモード)とを切り替えることができる。エンジン稼働状況に応じて、高COP暖房が実施できる場合には、エンジン吸熱ヒートポンプモードに切り替えることによって、暖房消費燃料の削減が可能になる。
本実施形態では、第1切替弁18および第2切替弁19は、熱授受機器13、81で加熱された冷却水が冷却水冷却器14に流れる状態と、熱授受機器13、81で加熱された冷却水がヒータコア17に流れる状態とを切り替える。
これにより、エンジン廃熱直接利用モード(機器廃熱直接利用モード)とエンジン吸熱ヒートポンプモード(機器吸熱ヒートポンプモード)とを切り替えることができる。
エンジン稼働状況に応じて、圧縮機22を作動させなくてよい場合には、エンジン廃熱直接利用モードに切り替えてエンジン91の廃熱で加熱された冷却水を直接ヒータコア17に流すことによって、暖房消費燃料の削減が可能になる。
本実施形態では、第1切替弁18および第2切替弁19は、冷却水加熱器15で加熱された冷却水がヒータコア17に流れる状態と、熱授受機器13、81で加熱された冷却水がヒータコア17に流れる状態とを切り替える。
これにより、エンジン廃熱直接利用モード(機器廃熱直接利用モード)と外気吸熱ヒートポンプモードとを切り替えることができる。
以下では、ラジエータ13および機器81(81A、81B、81C)のうち第1ポンプ11によって循環される冷却水との間で熱授受が行われる熱授受機器を第1熱授受機器と言い、第2ポンプ12によって循環される冷却水との間で熱授受が行われる熱授受機器を第2熱授受機器と言う。
本実施形態では、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、第1熱授受機器13、81における冷却水との熱授受量、またはクーラコア16の熱交換能力を調整し(第1TC制御、第2TC制御)、且つヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、第2熱授受機器13、81における冷却水との熱授受量、またはヒータコア17の熱交換能力を調整する(第1TH制御、第2TH制御)。
これにより、クーラコア16の温度およびヒータコア17の温度の両方を適切に制御できる。
本実施形態では、クーラコア16は、冷凍サイクル21の冷却水冷却器14で冷却された冷却水で送風空気を冷却し、ヒータコア17は、冷凍サイクル21の冷却水加熱器15で加熱された冷却水で送風空気を加熱する冷却水流れモードを有している。
この冷却水流れモードにおいて、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、クーラコア16の熱交換能力、または第2熱授受機器13、81における冷却水との熱授受量を調整し(第2TC制御、第3TC制御)、且つヒータコア17で熱交換された送風空気の温度TH、TAVに関連する温度が第2目標温度THO、TAOに近づくように、ヒータコア17の熱交換能力、または第1熱授受機器13、81における冷却水との熱授受量を調整する(第2TH制御、第3TH制御)。
これにより、クーラコア16の温度およびヒータコア17の温度の両方を適切に制御できる。
例えば、制御装置60は、第1熱授受機器13、81における冷却水の流量を調整することによって、第1熱授受機器13、81における冷却水との熱授受量を調整する(第1TC制御、第3TH制御)。
例えば、制御装置60は、第1熱授受機器13、81の発熱量を調整することによって、第1熱授受機器13、81における冷却水との熱授受量を調整する(第1TC制御、第3TH制御)。
例えば、制御装置60は、クーラコア16における冷却水の流量を調整することによって、クーラコア16の熱交換能力を調整する(第2TC制御)。
例えば、制御装置60は、クーラコア16における送風空気の風量を調整することによって、クーラコア16の熱交換能力を調整する(第2TC制御)。
例えば、制御装置60は、第2熱授受機器13、81における冷却水の流量を調整することによって、第2熱授受機器13、81における冷却水との熱授受量を調整する(第3TC制御、第1TH制御)。
例えば、制御装置60は、第2熱授受機器13、81の発熱量を調整することによって、第2熱授受機器13、81における冷却水との熱授受量を調整する(第3TC制御、第1TH制御)。
例えば、制御装置60は、ヒータコア17における冷却水の流量を調整することによって、ヒータコア17の熱交換能力を調整する(第2TH制御)。
例えば、制御装置60は、ヒータコア17における送風空気の風量を調整することによって、ヒータコア17の熱交換能力を調整する(第2TH制御)。
本実施形態では、第1TC制御、第2TC制御または第3TC制御を実施し且つ第1TH制御、第2TH制御または第3TH制御を実施している場合、制御装置60は、圧縮機22の回転数を所定範囲内に制御する。これにより、圧縮機22の制御ハンチングを防止しつつ、クーラコア16の温度およびヒータコア17の温度の両方を適切に制御できる。
本実施形態では、クーラコア吹出温度TCに関連する温度、ヒータコア吹出温度THに関連する温度、ならびに吹出空気温度TAVに関連する温度のうちいずれか1つの温度(以下、参照温度と言う。)が第4目標温度TCO、THO、TAOに近づくように、制御装置60が圧縮機22から吐出される冷媒の流量を調整している場合、または調整を開始する場合、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度、ヒータコア17で加熱された送風空気の温度TH、TAVに関連する温度、および吹出空気温度TAVに関連する温度のうち前記参照温度以外の温度を第5目標温度TCO、THO、TAOに近づけるように、第1TC制御、第2TC制御、第3TC制御、第1TH制御、第2TH制御または第3TH制御を実施する。
これにより、クーラコア吹出温度TC、ヒータコア吹出温度THおよび吹出空気温度TAVのうちいずれか1つの温度を冷媒流量で制御して温度追従性を高めることができるので、空調快適性を向上できる。
本実施形態では、第1切替弁18および第2切替弁19は、第1熱授受機器13、81および第2熱授受機器13、81のうち少なくとも一方の熱授受機器について、冷却水冷却用熱交換器14で冷却された冷却水が流れる状態と、冷却水加熱用熱交換器15で加熱された冷却水が流れる状態とを切り替える。
これにより、少なくとも一方の熱授受機器から吸熱する作動モードと、少なくとも一方の熱授受機器に廃熱を伝熱するモードとを切り替えることができる。
本実施形態における第1熱授受機器は、例えば、冷却水冷却用熱交換器14で冷却された冷却水と、エンジン91を流通したエンジン用冷却水とを熱交換させる冷却水冷却水熱交換器81Cである。
これによると、エンジン91の廃熱を吸熱するヒートポンプ運転時に、クーラコア16の温度を適切に制御できる。また、低外気温時であっても冷却水冷却器14における冷却水温度を適度に上昇させることができるので、高COP暖房を実現できる。
本実施形態における第1熱授受機器は、例えば、冷却水冷却用熱交換器14で冷却された冷却水温度調整用熱交換器14、15で温度調整された冷却水が流通する流路を有するエンジン91であってもよい。
本実施形態では、第1切替弁18および第2切替弁19は、冷却水冷却用熱交換器14で冷却された冷却水がラジエータ13および第1熱授受機器81のうち一方に流れて他方に流れない状態と、他方に流れて一方に流れない状態とを切り替える。
これにより、第1熱授受機器81が冷却水を加熱している場合、外気吸熱ヒートポンプモードと機器吸熱ヒートポンプモード(エンジン吸熱ヒートポンプモード)とを切り替えることができる。
本実施形態では、第1切替弁18および第2切替弁19は、第1熱授受機器81を流れた冷却水が、ヒータコア17および冷却水冷却用熱交換器14のうち一方に流れて他方に流れない状態と、他方に流れて一方に流れない状態とを切り替える。
これにより、第1熱授受機器81が冷却水を加熱している場合、エンジン廃熱直接利用モード(機器廃熱直接利用モード)とエンジン吸熱ヒートポンプモード(機器吸熱ヒートポンプモード)とを切り替えることができる。
本実施形態では、第1切替弁18および第2切替弁19は、第1熱授受機器81および第2熱授受機器81のうち一方の熱授受機器81とヒータコア17との間で冷却水が循環する状態と、冷却水冷却用熱交換器14で冷却された冷却水がラジエータ13に流れる状態とを切り替える。
これにより、エンジン廃熱直接利用モード(機器廃熱直接利用モード)と外気吸熱ヒートポンプモードとを切り替えることができる。
以下では、第1ポンプ11および第2ポンプ12のうち一方のポンプによって循環される冷却水との間で熱授受が行われる熱授受機器18、31を第1熱授受機器と言い、他方のポンプによって循環される冷却水との間で熱授受が行われる熱授受機器18、31を第2熱授受機器と言う。また、クーラコア16およびヒータコア17のうち一方のポンプによって循環される冷却水と送風空気とを熱交換させる熱交換器を第1冷却水空気熱交換器(第1熱媒体空気熱交換器)と言い、他方のポンプによって循環される冷却水と送風空気とを熱交換させる熱交換器を第2冷却水空気熱交換器(第2熱媒体空気熱交換器)と言う。
本実施形態では、制御装置60は、第1冷却水空気熱交換器16、17で温度調整された送風空気の温度TC、THに関連する温度が第1目標温度TCO、THOに近づくように、第1熱授受機器13、81における冷却水との熱授受量、または第1冷却水空気熱交換器16、17の熱交換能力を調整する(第1TC制御、第2TC制御、第1TH制御、第2TH制御)。
これにより、第1冷却水空気熱交換器16、17の温度を適切に制御できる。
例えば、制御装置60は、第1熱授受機器13、81における冷却水の流量を調整することによって、第1熱授受機器13、81における冷却水との熱授受量を調整する(第1TC制御、第1TH制御)。
これによると、エアミックスドア55を用いることなく車室内吹出空気温度TAVを制御できる。そのため、エアミックスドア55を廃止することが可能になるので、室内空調ユニット50を小型化することが可能になる。
例えば、制御装置60は、第1熱授受機器13、81の発熱量を調整することによって、第1熱授受機器13、81における冷却水との熱授受量を調整する(第1TC制御、第1TH制御)。
例えば、制御装置60は、第1冷却水空気熱交換器16、17における冷却水の流量を調整することによって、第1冷却水空気熱交換器16、17の熱交換能力を調整する(第2TC制御、第2TH制御)。
例えば、制御装置60は、第1冷却水空気熱交換器16、17における送風空気の風量を調整することによって、第1冷却水空気熱交換器16、17の熱交換能力を調整する(第2TC制御、第2TH制御)。
具体的には、第1冷却水空気熱交換器がクーラコア16である場合、制御装置60は、第1冷却水空気熱交換器16で冷却された送風空気の温度TCに関連する温度を第1目標温度TCOに近づける(第1TC制御、第2TC制御)。
これにより、クーラコア16の温度を適切に制御できる。
具体的には、第1冷却水空気熱交換器がヒータコア17である場合、制御装置60は、第1冷却水空気熱交換器17で加熱された送風空気の温度TH、TAVに関連する温度を第1目標温度THO、TAOに近づける(第1TH制御、第2TH制御)。
これにより、ヒータコア17の温度を適切に制御できる。
本実施形態では、冷凍サイクル21の冷却水冷却器14で冷却された冷却水、および冷凍サイクル21の冷却水加熱器15で加熱された冷却水のうち一方の冷却水が第1冷却水空気熱交換器16、17および第1熱授受機器18、31を流れ、他方の冷却水が第2冷却水空気熱交換器16、17および第2熱授受機器18、31を流れる冷却水流れモードを有している。
この冷却水流れモードにおいて、制御装置60は、第1冷却水空気熱交換器16、17で温度調整された送風空気の温度TC、THに関連する温度が第1目標温度TCO、THOに近づくように、第2熱授受機器13、81における冷却水との熱授受量を調整する(第3TC制御、第3TH制御)。
これによると、圧縮機22が第1冷却水空気熱交換器16、17の温度と無関係に作動している場合であっても、第1冷却水空気熱交換器16、17の温度を適切に制御できる。
本実施形態では、第1TC制御、第2TC制御、第3TC制御、第1TH制御、第2TH制御または第3TH制御を実施している場合、制御装置60は、冷凍サイクル21の圧縮機22の回転数を所定範囲内に制御する。
これにより、圧縮機22の制御ハンチングを防止しつつ、第1冷却水空気熱交換器16、17の温度を適切に制御できる。
本実施形態では、制御装置60は、第1制御モードと第2制御モードとを切り替えるようになっている。第1制御モードは、第4TC制御と第1〜第3TH制御との組み合わせ、または第4TH制御と第1〜第3TC制御との組み合わせである。第2制御モードは、第1〜第3TC制御と第1〜第3TH制御との組み合わせである。
これによると、第1制御モードでは、第1冷却水空気熱交換器16、17の温度または第2冷却水空気熱交換器16、17の温度を冷媒流量で制御して温度追従性を高めることができるので、空調快適性を向上できる。
第2制御モードでは、圧縮機22が第1冷却水空気熱交換器16、17の温度および第2冷却水空気熱交換器16、17の温度と無関係に作動している場合であっても、第1冷却水空気熱交換器16、17の温度および第2冷却水空気熱交換器16、17の温度を適切に制御できる。
本実施形態では、第1切替弁18および第2切替弁19は、第1熱授受機器13、81および第2熱授受機器13、81のうち少なくとも一方の熱授受機器について、冷却水冷却器14で冷却された冷却水が流れる状態と、冷却水加熱器15で加熱された冷却水が流れる状態とを切り替える。
これによると、冷却水が第1熱授受機器13、81から吸熱する状態と、冷却水が第1熱授受機器13、81に放熱する状態とを切り替えることができる。そのため、第1熱授受機器13、81の廃熱を利用して車室内を暖房する作動モード(機器吸熱ヒートポンプモード)と、他の廃熱(例えば冷房廃熱)を利用して第1熱授受機器13、81を加熱する作動モード(機器加熱ヒートポンプモード)とを切り替えることができる。
例えば、第1熱授受機器は、冷却水冷却用熱交換器14で冷却された冷却水と外気とを顕熱交換させる冷却水外気熱交換器13であり、第2熱授受機器は、冷却水加熱用熱交換器15で加熱された冷却水と、エンジン91を循環するエンジン用冷却水とを熱交換させる冷却水冷却水熱交換器81Cである。
これによると、外気から吸熱してエンジン91を加熱できるので、エンジン暖機性能を向上して燃費を改善できる。
例えば、第1熱授受機器は、冷却水冷却用熱交換器14で冷却された冷却水と外気とを顕熱交換させる冷却水外気熱交換器13であり、第2熱授受機器は、冷却水加熱用熱交換器15で加熱された冷却水が流通する流路を有するエンジン91である。
これによると、外気から吸熱してエンジン91を加熱できるので、エンジン暖機性能を向上して燃費を改善できる。
本実施形態では、第1冷却水空気熱交換器16は、冷却水冷却用熱交換器14で冷却された冷却水と送風空気とを顕熱交換させて送風空気を冷却するようになっていて、第1熱授受機器13、81および第2熱授受機器13、81のうち少なくとも一方の熱授受機器は、冷却水加熱用熱交換器15で加熱された冷却水との間で熱授受が行われるようになっている場合、制御装置60は、第1冷却水空気熱交換器16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これによると、冷房廃熱(車室内への送風空気から吸熱した熱と圧縮機22の電気機器廃熱や機械損失などを加えた熱)で第2熱授受機器13、81を加熱できるとともに、第1冷却水空気熱交換器16の温度を冷媒流量で制御して温度追従性を高めることができるので、空調快適性を向上できる。
本実施形態では、第1冷却水空気熱交換器17は、冷却水加熱用熱交換器15で加熱された冷却水と送風空気とを顕熱交換させて送風空気を加熱するようになっていて、第1熱授受機器13、81および第2熱授受機器13、81のうち少なくとも一方の熱授受機器は、冷却水冷却用熱交換器14で冷却された冷却水との間で熱授受が行われるようになっている場合、制御装置60は、第1冷却水空気熱交換器17で加熱された送風空気の温度THに関連する温度が第1目標温度THOに近づくように、圧縮機22から吐出される冷媒の流量を調整する。
これにより、少なくとも一方の熱授受機器の熱を吸熱して車室内暖房に利用できるとともに、第1冷却水空気熱交換器17の温度を冷媒流量で制御して温度追従性を高めることができるので、空調快適性を向上できる。
本実施形態では、第1冷却水空気熱交換器17は、冷却水加熱用熱交換器15で加熱された冷却水と送風空気とを顕熱交換させて送風空気を加熱するようになっていて、第1熱授受機器13は、冷却水と外気とを顕熱交換させる冷却水外気熱交換器であり、第2熱授受機器81は、冷却水を加熱する機器である場合、第1切替弁18および第2切替弁19は、冷却水冷却用熱交換器14で冷却された冷却水が第1熱授受機器13を流れる状態と、冷却水冷却用熱交換器14で冷却された冷却水が第2熱授受機器81を流れる状態とを切り替える。
これにより、外気から吸熱して車室内を暖房する外気吸熱ヒートポンプモードと、第2熱授受機器81から吸熱して車室内を暖房する機器吸熱ヒートポンプモードとを切り替えることができる。
本実施形態では、第1熱授受機器81は、冷却水を加熱する機器である場合、第1切替弁18および第2切替弁19は、第1熱授受機器81と第1冷却水空気熱交換器17との間で冷却水が循環する状態と、冷却水冷却用熱交換器14で冷却された冷却水が第1熱授受機器13を流れる状態とを切り替える。
これにより、第1熱授受機器81で加熱された冷却水を直接第1冷却水空気熱交換器17に流して車室内を暖房する機器廃熱直接利用モードと、第1熱授受機器81の廃熱を汲み上げるヒートポンプ運転によって車室内を暖房する機器吸熱ヒートポンプモードとを切り替えることができる。
本実施形態では、第1熱授受機器13は、冷却水と外気とを顕熱交換させる冷却水外気熱交換器であり、第2熱授受機器81は、冷却水を加熱する機器である場合、第1切替弁18および第2切替弁19は、冷却水冷却用熱交換器14で冷却された冷却水が第1熱授受機器13を流れる状態と、第2熱授受機器81と第1冷却水空気熱交換器17との間で冷却水が循環する状態とを切り替える。
これにより、外気の熱を汲み上げるヒートポンプ運転によって車室内を暖房する外気吸熱ヒートポンプモードと、第2熱授受機器81で加熱された冷却水を直接第1冷却水空気熱交換器17に流して車室内を暖房する機器廃熱直接利用モードとを切り替えることができる。
例えば、第1熱授受機器81は、車両後席の乗員に向けて吹き出される送風空気と冷却水とを顕熱交換させる後席用熱交換器である。
これにより、車両後席の乗員に向けて吹き出される送風空気を1つの後席用熱交換器81で冷却・加熱できるので、冷却用の熱交換器と加熱用の熱交換器とを別個に設ける場合と比較して構成を簡素化できる。また、エアミックスドアを用いることなく温度調整可能である。
例えば、第1熱授受機器81は、車両に搭載された電池と冷却水とを顕熱交換させて電池の温度を調整する電池温調用熱交換器である。
これにより、電池を1つの電池温調用熱交換器81で冷却・加熱できるので、冷却用の熱授受機器と加熱用の熱授受機器とを別個に設ける場合と比較して構成を簡素化できる。
本実施形態では、図24〜図28に示す冷却水流れモードの切替条件の一例を示したが、各冷却水流れモードを以下の条件で切り替えてもよい。
(エンジン水温条件)
エンジン水温が所定温度(例えば40℃)未満の場合、エンジン加熱ヒートポンプモードに切り替えるようにしてもよい。冷却水加熱器15の出口側における冷却水温度がエンジン水温よりも高い場合、エンジン加熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン水温が所定温度以上の場合、機器加熱モードに切り替えるようにしてもよい。例えば、エンジン水温が0℃以上の場合、機器加熱モードに切り替えて電池を暖機するようにしてもよい。例えば、エンジン水温が冷却水加熱器15側の冷却水回路における冷却水温度以上である場合、機器加熱モードに切り替えて冷却水加熱器15を予加熱するようにしてもよい。
エンジン水温が所定温度(例えば外気温+α℃)未満の場合、熱マス利用冷房モードに切り替えるようにしてもよい。
外気吸熱ヒートポンプモードにおいて、エンジン水温の単位時間当たりの増加量が所定量を超えた場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン吸熱ヒートポンプモードにおいて、エンジン水温の単位時間当たりの低下量が所定量を超えた場合、外気吸熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン廃熱直接利用モードにおいて、エンジン水温の単位時間当たりの低下量が所定量を超えた場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
(エンジン廃熱量条件)
エンジン91から冷却水に与えられる熱量(以下、エンジン廃熱量と言う。)が所定量(ヒートポンプ暖房に必要な吸熱量)未満である場合、外気吸熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン廃熱量が所定量(ヒートポンプ暖房に必要な吸熱量)以上である場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン廃熱量が所定量(ヒートポンプ暖房に必要な吸熱量)以上である場合、機器加熱モードに切り替えるようにしてもよい。
エンジン廃熱量が所定量(ヒートポンプ暖房に必要な吸熱量)未満である場合、熱マス利用冷房モードに切り替えるようにしてもよい。
ヒートポンプ暖房に必要な吸熱量を算出する手法の例を挙げる。例えば、ヒートポンプ暖房に必要な吸熱量を暖房要求熱量から推定することができる。具体的には、室温設定値(乗員による手動設定または自動設定)、車室内温度、車速、外気温度などから暖房要求熱量を算出し、さらに車速(ラジエータ13における風速に関連する物理量)、外気温、着霜量推定値、および圧縮機22の能力に基づいて、ヒートポンプ暖房に必要な吸熱量を算出できる。
着霜量推定値を、外気温や暖房運転時間、ラジエータ13における冷却水温度、空気湿度などに基づいて推定できる。着霜量推定値を、着霜判定マップに基づいて算出してもよい。圧縮機22の能力値を、吸入冷媒温度、吐出冷媒温度および回転数に基づいて推定できる。圧縮機22の能力値をマップに基づいて算出してもよい。
ヒートポンプ暖房に必要な吸熱量を、外気温、車速、水温、暖房要求、および現在の暖房能力との関係で表されたマップに基づいて算出してもよい。
エンジン廃熱量の代わりに機器81の発熱量に応じて各モードを切り替えるようにしてもよい。
エンジン廃熱量および機器81の発熱量を検知する手法の例を以下に挙げる。エンジン廃熱量および機器81の発熱量を、1つまたは2つの冷却水温度センサの検出値に基づいて推定できる。水温センサは、例えば、エンジン91における冷却水温度センサや、冷却水加熱器15における冷却水温度センサである。
エンジン廃熱量および機器81の発熱量を、冷却水温度の変化量の傾きに基づいて推定できる。例えば、エンジン91における冷却水温度の変化量の傾きが、負の傾きで所定量を超える場合、エンジン廃熱量がヒートポンプ暖房に必要な吸熱量を下回ると推定できる。
エンジン廃熱量および機器81の発熱量を走行負荷から推定できる。例えば、車両走行負荷から、エンジン廃熱量や機器81の発熱量を推定できる。
エンジン廃熱量を、エンジン91の燃料消費量および燃焼に関するセンサ情報値に基づいて推定できる。機器81が電気機器である場合、機器81の発熱量を機器81の通電量から推定できる。例えば、電力変換効率や、抵抗値、電力−動力変換効率などに基づいて機器81の発熱量を推定できる。
(エンジン作動状態条件)
エンジン91の暖機時、外気吸熱ヒートポンプモードに切り替えるようにしてもよい。エンジン91の暖機終了判定後、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン停止中でEV走行モードである場合、外気吸熱ヒートポンプモードに切り替えるようにしてもよい。EV走行モードとは、主に走行用電動モータの駆動力によって走行する走行モードである。
プラグインハイブリッド車両は、車両走行開始前の車両停車時に外部電源から電池(車載バッテリ)に充電しておくことによって、走行開始時のように電池の蓄電残量SOCが予め定めた走行用基準残量以上になっているときには、主に走行用電動モータの駆動力によって走行するEV走行モードとなる。一方、車両走行中に電池の蓄電残量SOCが走行用基準残量よりも低くなっているときには、主にエンジン91の駆動力によって走行するHV走行モードとなる。
より詳細には、EV走行モードは、主に走行用電動モータが出力する駆動力によって車両を走行させる走行モードであるが、車両走行負荷が高負荷となった際にはエンジン91を作動させて走行用電動モータを補助する。つまり、走行用電動モータから出力される走行用の駆動力(モータ側駆動力)がエンジン91から出力される走行用の駆動力(エンジン側駆動力)よりも大きくなる走行モードである。
一方、HV走行モードは、主にエンジン91が出力する駆動力によって車両を走行させる走行モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジン91を補助する。つまり、エンジン側駆動力がモータ側駆動力よりも大きくなる走行モードである。
本実施形態のプラグインハイブリッド車両では、このようにEV走行モードとHV走行モードとを切り替えることによって、車両走行用の駆動力をエンジン91のみから得る通常の車両に対してエンジン91の燃料消費量を抑制して、車両燃費を向上させている。EV走行モードとHV走行モードとの切り替えは、駆動力制御装置(図示せず)によって制御される。
アイドルストップ状態である場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。アイドルストップ状態とは、信号待ちなどの停車時にエンジン91が一時的に停止している状態のことである。
エンジン91の時間平均回転数が所定量を超える場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
停車時(エンジン91停止時)のプレ暖房時、エンジン廃熱直接利用モードに切り替えるようにしてもよい。プレ暖房とは、エンジン91の始動前に車室内を暖房することである。
エンジン91の時間平均回転数が所定量を超える場合、エンジン廃熱直接利用モードに切り替えるようにしてもよい。
エンジン91の暖機時、エンジン加熱ヒートポンプモードに切り替えるようにしてもよい。エンジン91の停止中(EV走行モード、アイドルストップ、充電中など)、エンジン加熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン91の作動中、機器加熱モードに切り替え、エンジン91の停止中(停車時)、エンジン廃熱直接利用モードに切り替えるようにしてもよい。
エンジン91のオーバーヒート時、エンジン廃熱直接利用モードに切り替えるようにしてもよい。
(電池蓄電残量条件)
電池の蓄電残量SOCが所定量を上回っている場合(EV走行が主の場合)、外気吸熱ヒートポンプモード、エンジン加熱ヒートポンプモードまたは熱マス利用冷房モードに切り替えるようにしてもよい。
電池の蓄電残量SOCが所定量を下回っている場合(エンジン走行が主の場合)、エンジン吸熱ヒートポンプモード、エンジン廃熱直接利用モードまたは機器加熱モードに切り替えるようにしてもよい。
(外気温条件)
外気温度が所定温度未満(例えば−20℃などの極低温域や、ヒートポンプ作動保証外の温度)の場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
外気温度が所定温度未満で、暖房要求が所定未満の場合、エンジン加熱ヒートポンプモードに切り替えるようにしてもよい。
(低温側水温条件)
外気吸熱ヒートポンプモードにおいて、冷却水冷却器14側の冷却水回路における冷却水温度(以下、低温側水温と言う。)が所定温度未満(−25℃未満、着霜やラジエータ能力不足判定)の場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
エンジン吸熱ヒートポンプモードにおいて、低温側水温が所定温度未満(外気温度未満)エンジン故障を疑う)の場合、外気吸熱ヒートポンプモードまたはエンジン廃熱直接利用モードに切り替えるようにしてもよい。
(その他の条件)
ラジエータ13が着霜していると推定または判定される場合、エンジン吸熱ヒートポンプモードに切り替えるようにしてもよい。
冷凍サイクル21の構成機器、または冷却水加熱器15側の冷却水回路のコンポーネントが故障した時、エンジン廃熱直接利用モードに切り替えるようにしてもよい。
整備モード時の切替信号(マニュアル切替信号)に応じて、外気吸熱ヒートポンプモード、エンジン吸熱ヒートポンプモード、およびエンジン廃熱直接利用モードを切り替えるようにしてもよい。
エンジン91始動後、所定時間、エンジン加熱ヒートポンプモードを実行するようにしてもよい。エンジン91始動後、エンジン水温が所定温度に達するまで、エンジン加熱ヒートポンプモードを実行するようにしてもよい。
ウォームアップ作動前の一定時間、機器加熱モードを実行するようにしてもよい。冷凍サイクル機器の故障時で、機器加熱要求がある場合、機器加熱モードに切り替えるようにしてもよい。ラジエータ13の冷却水系統の故障時、熱マス利用冷房モードに切り替えるようにしてもよい。
(第9実施形態)
上記第8実施形態では、エンジン冷却回路90が冷却水冷却水熱交換器81Cを介して車両用熱管理システム10と連携されているが、本実施形態では、図32に示すように、エンジン冷却回路90が流路切替弁120を介して車両用熱管理システム10と連携されている。
エンジン冷却回路90の循環流路92には、ヒータコア17および流路切替弁120が配置されている。流路切替弁120は、4つの冷却水出入口120a、120b、120c、120dを有する四方弁で構成されている。
流路切替弁120は、循環流路92のうちヒータコア17の冷却水出口側かつ第3ポンプ93の冷却水吸入側に配置されている。すなわち、流路切替弁120の第1冷却水出入口120aおよび第2冷却水出入口120bに循環流路92が接続されている。
第1ポンプ用流路31の上流側部位31aは、エンジン冷却回路90のエンジン補機用流路97と循環流路92との合流部J1に接続されており、第1ポンプ用流路31の下流側部位31bは、流路切替弁120の第3冷却水出入口120cに接続されている。
第2ポンプ用流路32の上流側部位32aは、循環流路92のうちエンジン91の冷却水出口側かつヒータコア17の冷却水入口側に接続されており、第2ポンプ用流路32の下流側部位32bは、接続流路切替弁120の第4冷却水出入口120dに接続されている。
図33に示すように、エンジン吸熱ヒートポンプモードでは、流路切替弁120は、第2冷却水出入口120bに接続された循環流路92と第1ポンプ用流路31の下流側部位31bとを連通させ、第1冷却水出入口120aに接続された循環流路92と第2ポンプ用流路32の下流側部位31bとを連通させる。これにより、図33の太一点鎖線矢印および太実線矢印に示すように冷却水が流れる。
図34に示すように、エンジン加熱ヒートポンプモードでは、流路切替弁120は、循環流路92同士と第2ポンプ用流路32の下流側部位31bとを連通させ、第1ポンプ用流路31の下流側部位31bを閉じる。
これにより、図33の太実線矢印に示すように冷却水が流れる。さらに、流路切替弁120は、循環流路92側と第2ポンプ用流路32側とに分配される冷却水の流量割合を調整する。
図35に示すように、エンジン廃熱直接利用モードでは、流路切替弁120は、循環流路92同士を連通させ、第1ポンプ用流路31の下流側部位31bおよび第2ポンプ用流路32の下流側部位32bを閉じる。これにより、図35の太実線矢印に示すように冷却水が流れる。
本実施形態においても、上記第8実施形態と同様の作用効果を奏することができる。
(第10実施形態)
本実施形態では、第1切替弁18および第2切替弁の変形例を示す。図36に示す第1実施例では、第1切替弁18は、第1ポンプ側弁体185、第2ポンプ側弁体186、クーラコア側流弁体187およびヒータコア側弁体188を有している。
第1ポンプ側弁体185は、インバータ81B、冷却水冷却水熱交換器81Cおよびラジエータ13のそれぞれについて、第1ポンプ11から吐出された冷却水が流入する状態と流入しない状態とを切り替えるとともに、冷却水流量を調整する。
第2ポンプ側弁体186は、インバータ81B、冷却水冷却水熱交換器81Cおよびラジエータ13のそれぞれについて、第2ポンプ12から吐出された冷却水が流入する状態と流入しない状態とを切り替えるとともに、冷却水流量を調整する。
クーラコア側弁体187は、クーラコア16に流入する冷却水の流量を調整する。ヒータコア側流弁体188は、ヒータコア17に流入する冷却水の流量を調整する。
第1実施例では、第2切替弁19は、第1ポンプ側弁体195および第2ポンプ側弁体196を有している。
第1ポンプ側弁体195は、インバータ81Bから流出した冷却水、冷却水冷却水熱交換器81Cから流出した冷却水、およびラジエータ13から流出した冷却水が第1ポンプ11側に流出する状態と流出しない状態とを切り替えるとともに、冷却水流量を調整する。
第2ポンプ側弁体196は、インバータ81Bから流出した冷却水、冷却水冷却水熱交換器81Cから流出した冷却水、およびラジエータ13から流出した冷却水が第2ポンプ12側に流出する状態と流出しない状態とを切り替えとともに、冷却水流量を調整するる。
本実施例においても、上記実施形態と同様の作用効果を奏することができる。
図37に示す第2実施例では、第1切替弁18は、インバータ用切替弁131、冷却水冷却水熱交換器用切替弁132、ラジエータ用切替弁133およびクーラコア用切替弁134で構成されている。
インバータ用切替弁131は、第1ポンプ側弁体131aおよび第2ポンプ側弁体131bを有している。第1ポンプ側弁体131aは、第1ポンプ11からインバータ81Bへの冷却水流れを断続するとともに、冷却水流量を調整する。第2ポンプ側弁体131bは、第2ポンプ12からインバータ81Bへの冷却水流れを断続するとともに、冷却水流量を調整する。
冷却水冷却水熱交換器用切替弁132は、第1ポンプ側弁体132aおよび第2ポンプ側弁体132bを有している。第1ポンプ側弁体132aは、第1ポンプ11から冷却水冷却水熱交換器81Cへの冷却水流れを断続するとともに、冷却水流量を調整する。第2ポンプ側弁体132bは、第2ポンプ12から冷却水冷却水熱交換器81Cへの冷却水流れを断続するとともに、冷却水流量を調整する。
ラジエータ用切替弁133は、第1ポンプ側弁体133aおよび第2ポンプ側弁体133bを有している。第1ポンプ側弁体133aは、第1ポンプ11からラジエータ13への冷却水流れを断続するとともに、冷却水流量を調整する。第2ポンプ側弁体133bは、第2ポンプ12からラジエータ13への冷却水流れを断続するとともに、冷却水流量を調整する。
クーラコア用切替弁134は、第2ポンプ12からクーラコア16への冷却水流れを断続するとともに、冷却水流量を調整する。
第2実施例では、第2切替弁19は、インバータ用切替弁141、冷却水冷却水熱交換器用切替弁142、ラジエータ用切替弁143およびヒータコア用切替弁144で構成されている。
インバータ用切替弁141は、第1ポンプ側弁体141aおよび第2ポンプ側弁体141bを有している。第1ポンプ側弁体141aは、インバータ81Bから第1ポンプ11への冷却水流れを断続するとともに、冷却水流量を調整する。第2ポンプ側弁体141bは、インバータ81Bから第2ポンプ12への冷却水流れを断続するとともに、冷却水流量を調整する。
冷却水冷却水熱交換器用切替弁142は、第1ポンプ側弁体142aおよび第2ポンプ側弁体142bを有している。第1ポンプ側弁体142aは、冷却水冷却水熱交換器81Cから第1ポンプ11への冷却水流れを断続するとともに、冷却水流量を調整する。第2ポンプ側弁体142bは、冷却水冷却水熱交換器81Cから第2ポンプ12への冷却水流れを断続するとともに、冷却水流量を調整する。
ラジエータ用切替弁143は、第1ポンプ側弁体143aおよび第2ポンプ側弁体143bを有している。第1ポンプ側弁体143aは、ラジエータ13から第1ポンプ11への冷却水流れを断続するとともに、冷却水流量を調整する。第2ポンプ側弁体143bは、ラジエータ13から第2ポンプ12への冷却水流れを断続するとともに、冷却水流量を調整する。
ヒータコア用切替弁144は、ヒータコア17から第2ポンプ12への冷却水流れを断続するとともに、冷却水流量を調整する。
本実施例においても、上記実施形態と同様の作用効果を奏することができる。
(第11実施形態)
本実施形態では、熱授受機器81がクーラコア16およびヒータコア17のうち一方の熱交換器と接続されている場合における熱授受機器81の温度および一方の熱交換器の温度の制御方法を説明する。
図38では、熱授受機器81がクーラコア16と接続されている場合の車両用熱管理システム10の構成を簡略化して示している。図38の括弧内には、熱授受機器81がヒータコア17と接続されている場合の構成に対応する符号を示している。
熱授受機器81は、例えば、冷却水と車室内への送風空気とを熱交換(顕熱交換)させて送風空気の温度を調整する冷却水空気熱交換器(熱媒体空気熱交換器)である。より具体的には、熱授受機器81は、例えば、車両後席の乗員に向けて吹き出される送風空気と冷却水とを熱交換(顕熱交換)させる後席用熱交換器である。
熱授受機器81は、例えば、車両に搭載された電池と冷却水とを顕熱交換させて電池の温度を調整する電池温調用熱交換器であってもよい。
まず、熱授受機器81がクーラコア16および冷却水冷却器14と接続されている場合における熱授受機器81の温度およびクーラコア16の温度の制御方法を説明する。
制御装置60は、クーラコア吹出温度TCをクーラコア吹出目標温度TCOに近づけるとともに、熱授受機器81の温度TC2を熱授受機器目標温度TCO2に近づける。熱授受機器81が冷却水空気熱交換器である場合、熱授受機器81の温度TC2は、熱授受機器81で熱交換された送風空気の温度である。
クーラコア16の目標温度TCOと熱授受機器81の目標温度TCO2とが異なる場合、目標温度の低い側の機器の温度を冷媒の流量で制御し、目標温度の高い側の機器の温度を冷却水の流量で制御する。
これによると、冷媒流量での制御は、冷却水流量での制御よりも応答性が高いので、目標温度の低い側の機器の温度を優先的に制御できる。
クーラコア16の目標温度TCOと熱授受機器81の目標温度TCO2とが同じである場合、クーラコア温度TCとクーラコア目標温度TCOとの偏差ΔT1、熱授受機器温度TC2と熱授受機器目標温度TCO2との偏差ΔT2、および各偏差ΔT1、ΔT2の絶対値(以下、偏差量と言う。)に基づいて、冷媒流量で制御する機器と、冷却水流量で制御する機器とを決定する。
各偏差ΔT1、ΔT2は次の数式F4、F5で求められる。
ΔT1=TC−TCO …F4
ΔT2=TC2−TCO2 …F5
本実施形態では、偏差ΔT1、ΔT2および偏差量に基づいて、以下の制御方法(1)〜(16)を選択する。
(1)偏差ΔT1および偏差ΔT2がともに正の値である場合、偏差量(偏差の絶対値)が大きい側の機器の温度を冷媒流量で制御し、両方の機器における冷却水流量を所定量以上にする。
(2)偏差ΔT1が正の値であり、偏差ΔT2が負の値である場合、偏差ΔT1側の機器の温度を冷媒流量で制御し、偏差ΔT2側の機器の温度を冷却水の流量で制御する。
(3)偏差ΔT1が負の値であり、偏差ΔT2が正の値である場合、偏差ΔT2側の機器の温度を冷媒流量で制御し、偏差ΔT1側の機器の温度を冷却水の流量で制御する。
(4)偏差ΔT1および偏差ΔT2がともに負の値である場合、偏差量が大きい側の機器の温度を冷媒流量で制御し、偏差量が小さい側の機器の温度を冷却水の流量で制御する。
(5)偏差ΔT1が正の値であり、偏差ΔT2が正の値から負の値に跨いだ場合、偏差ΔT1側の機器の温度を冷媒流量で制御し、偏差ΔT2側の機器における冷却水の流量を絞り始める。
(6)偏差ΔT1が正の値であり、偏差ΔT2が負の値から正の値に跨いだ場合、偏差量が大きい側の機器の温度を冷媒流量で制御し、偏差量が小さい側の機器の温度を冷却水の流量で制御する。
(7)偏差ΔT1が正の値から負の値に跨ぎ、偏差ΔT2が正の値である場合、偏差ΔT2側の機器の温度を冷媒流量で制御し、偏差ΔT1側の機器における冷却水の流量を絞り始める。
(8)偏差ΔT1および偏差ΔT2がともに正の値から負の値に跨いだ場合、偏差量が大きい側の機器の温度を冷媒流量で制御し、偏差量が小さい側の機器の温度を冷却水の流量で制御する。
(9)偏差ΔT1が正の値から負の値に跨ぎ、偏差ΔT2が負の値から正の値に跨いだ場合、偏差ΔT2側の機器における冷却水の流量が所定量以上であれば偏差ΔT2側の機器の温度を冷媒流量で制御し且つ偏差ΔT1側の機器の温度を冷却水の流量で制御し、偏差ΔT2側の機器の流量が所定量未満であれば偏差ΔT1側の機器の温度を冷媒流量で制御し且つ偏差ΔT2側の機器の温度を冷却水の流量で制御する。
(10)偏差ΔT1が正の値から負の値に跨ぎ、偏差ΔT2が負の値である場合、偏差ΔT2側の機器における冷却水の流量が所定量以上であれば偏差量が大きい側の機器の温度を冷媒流量で制御し且つ偏差量が小さい側の機器を冷却水の流量で制御し、偏差ΔT2側の機器の流量が所定量未満であれば偏差ΔT1側の機器の温度を冷媒流量で制御し且つ偏差ΔT2側の機器の温度を冷却水の流量で制御する。
(11)偏差ΔT1が負の値から正の値に跨ぎ、偏差ΔT2が正の値である場合、偏差ΔT1側の機器における冷却水の流量が所定量以上であれば偏差量が大きい側の機器の温度を冷媒流量で制御し且つ両方の機器における冷却水流量を所定量以上にし、偏差ΔT1側の機器の流量が所定量未満であれば偏差ΔT2側の機器の温度を冷媒流量で制御し且つ偏差ΔT1側の機器の温度を冷却水の流量で制御する。
(12)偏差ΔT1が負の値から正の値に跨ぎ、偏差ΔT2が正の値から負の値に跨いだ場合、偏差ΔT1側の機器における冷却水の流量が所定量以上であれば偏差ΔT1側の機器の温度を冷媒流量で制御し且つ偏差ΔT2側の機器の温度を冷却水の流量で制御し、偏差ΔT1側の機器の流量が所定量未満であれば偏差ΔT2側の機器の温度を冷媒流量で制御し且つ偏差ΔT1側の機器の温度を冷却水の流量で制御する。
(13)偏差ΔT1および偏差ΔT2がともに負の値から正の値に跨いだ場合、偏差量が大きい側の機器の温度を冷媒流量で制御し、偏差量が小さい側の機器の温度を冷却水の流量で制御する。
(14)偏差ΔT1が負の値から正の値に跨ぎ、偏差ΔT2が負の値である場合、偏差ΔT1側の機器における冷却水の流量が所定量以上であれば偏差ΔT1側の機器の温度を冷媒流量で制御し且つ偏差ΔT2側の機器の温度を冷却水の流量で制御し、偏差ΔT1側の機器の流量が所定量未満であれば偏差ΔT2側の機器の温度を冷媒流量で制御し且つ偏差ΔT1側の機器の温度を冷却水の流量で制御する。
(15)偏差ΔT1が負の値であり、偏差ΔT2が正の値から負の値に跨いだ場合、偏差ΔT1側の機器における冷却水の流量が所定量以上であれば偏差量が大きい側の機器の温度を冷媒流量で制御し且つ偏差量が小さい側の機器の温度を冷却水の流量で制御し、偏差ΔT1側の機器の流量が所定量未満であれば偏差ΔT2側の機器の温度を冷媒流量で制御し且つ偏差ΔT1側の機器の温度を冷却水の流量で制御する。
(16)偏差ΔT1が負の値であり、偏差ΔT2が負の値から正の値に跨いだ場合、偏差ΔT2側の機器における冷却水の流量が所定量以上であれば偏差ΔT2側の機器の温度を冷媒流量で制御し且つ偏差ΔT1側の機器の温度を冷却水の流量で制御し、偏差ΔT2側の機器の流量が所定量未満であれば偏差ΔT1側の機器の温度を冷媒流量で制御し且つ偏差ΔT2側の機器の温度を冷却水の流量で制御する。
なお、クーラコア16の目標温度TCOと熱授受機器81の目標温度TCO2が同じである場合、クーラコア16および熱授受機器81のいずれか一方(任意または予め設定)の機器の温度を冷媒流量で制御し、他方の機器の温度を冷却水の流量で制御するようにしてもよい。
クーラコア16の目標温度TCOと熱授受機器81の目標温度TCO2とが同じである場合、クーラコア16および熱授受機器81のうち熱負荷が高い側の機器の温度を冷媒流量で制御し、熱負荷が低い側の機器の温度を冷却水の流量で制御するようにしてもよい。
次に、熱授受機器81がヒータコア17および冷却水加熱器15と接続されている場合における熱授受機器81の温度およびヒータコア17の温度の制御方法を説明する。
制御装置60は、ヒータコア吹出温度THをヒータコア吹出目標温度THOに近づけるとともに、熱授受機器81の温度TH2を機器目標温度THO2に近づける。熱授受機器81が冷却水空気熱交換器である場合、熱授受機器81の温度TH2は、熱授受機器81で熱交換された送風空気の温度である。
ヒータコア17の目標温度THOと熱授受機器81の目標温度THO2とが異なる場合、目標温度の高い側の機器の温度を冷媒の流量で制御し、目標温度の低い側の機器の温度を冷却水の流量で制御する。
これによると、冷媒流量での制御は、冷却水流量での制御よりも応答性が高いので、目標温度の高い側の機器の温度を優先的に制御できる。
ヒータコア17の目標温度THOと熱授受機器81の目標温度THO2とが同じである場合、ヒータコア温度THとヒータコア目標温度THOとの偏差ΔT1、熱授受機器温度TH2と熱授受機器目標温度THO2との偏差ΔT2、および各偏差ΔT1、ΔT2の絶対値(以下、偏差量と言う。)に基づいて、冷媒流量で制御する機器と、冷却水流量で制御する機器とを決定する。
各偏差ΔT1、ΔT2は次の数式F6、F7で求められる。
ΔT1=THO−TH …F6
ΔT2=THO2−TH2 …F7
本実施形態では、偏差ΔT1、ΔT2および偏差量に基づいて、上述の制御方法(1)〜(16)を選択する。
なお、ヒータコア17の目標温度THOと熱授受機器81の目標温度THO2が同じである場合、ヒータコア17および熱授受機器81のいずれか一方(任意または予め設定)の機器の温度を冷媒流量で制御し、他方の機器の温度を冷却水の流量で制御するようにしてもよい。
ヒータコア17の目標温度THOと熱授受機器81の目標温度THO2とが同じである場合、ヒータコア17および熱授受機器81のうち熱負荷が高い側の機器の温度を冷媒流量で制御し、熱負荷が低い側の機器の温度を冷却水の流量で制御するようにしてもよい。
以下では、クーラコア16またはヒータコア17を第1冷却水空気熱交換器と言い、第1冷却水空気熱交換器16、17と接続されている熱授受機器13、81を第1熱授受機器と言う。
本実施形態では、制御装置60は、第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度TC、THに関連する温度が第1目標温度TCO、THOに近づくように冷媒の流量を調整し、第1熱授受機器13、81の温度TC2、TH2に関連する温度が第2目標温度TCO2、THO2に近づくように冷却水の流量を調整する。
これにより、第1冷却水空気熱交換器16、17および第1熱授受機器13、81が同一の冷却水回路に配置されていても、第1冷却水空気熱交換器16、17の温度および第1熱授受機器13、81の温度の両方を適切に制御できる。
例えば、第1冷却水空気熱交換器が、送風空気を加熱するヒータコア17である場合において、第1目標温度THOが第2目標温度THO2よりも高い場合、制御装置60は、ヒータコア17で加熱された送風空気の温度THに関連する温度が第1目標温度THOに近づくように冷媒の流量を調整し、第1熱授受機器13、81の温度TH2に関連する温度が第2目標温度THO2に近づくように冷却水の流量を調整する。
一方、第2目標温度THO2が第1目標温度THOよりも高い場合、制御装置60は、第1熱授受機器13、81の温度TH2に関連する温度が第2目標温度THO2に近づくように冷媒の流量を調整し、ヒータコア17で加熱された送風空気の温度THに関連する温度が第1目標温度THOに近づくように冷却水の流量を調整する。
これにより、ヒータコア17および第1熱授受機器13、81のうち温度追従性の要求が高い方の機器を冷媒流量で制御できる。
例えば、第1冷却水空気熱交換器が、送風空気を冷却するクーラタコア17である場合において、第1目標温度TCOが第2目標温度TCO2よりも低い場合、制御装置60は、クーラコア16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように冷媒の流量を調整し、第1熱授受機器13、81の温度TC2に関連する温度が第2目標温度TCO2に近づくように冷却水の流量を調整する。
一方、第2目標温度THO2が第1目標温度THOよりも低い場合、制御装置60は、第1熱授受機器13、81の温度TC2に関連する温度が第2目標温度TCO2に近づくように冷媒の流量を調整し、冷却水空気熱交換器16で冷却された送風空気の温度TCに関連する温度が第1目標温度TCOに近づくように冷却水の流量を調整する。
これにより、クーラコア16および第1熱授受機器13、81のうち温度追従性の要求が高い方の機器を冷媒流量で制御できる。
例えば、制御装置60は、第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度TC、THに関連する温度が第1目標温度TCO、THOに近づくように冷媒の流量を調整し、第1熱授受機器13、81の温度TC2、TH2に関連する温度が第2目標温度TCO2、THO2に近づくように冷却水の流量を調整する。
これにより、第1冷却水空気熱交換器16、17の温度を、第1熱授受機器13、81の温度よりも優先的に制御できる。
例えば、制御装置60は、第1偏差ΔT1の正負および第2偏差ΔT2の正負に応じて、第1制御モードと第2制御モードとを切り替える。
第1制御モードは、第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度TC、THに関連する温度が第1目標温度TCO、THOに近づくように冷媒の流量を調整し、且つ第1熱授受機器13、81の温度TC2、TH2に関連する温度が第2目標温度TCO2、THO2に近づくように冷却水の流量を調整する制御モードである。
第2制御モードは、第1熱授受機器13、81の温度TC2、TH2に関連する温度が第2目標温度TCO2、THO2に近づくように冷媒の流量を調整し、且つ第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度TC、THに関連する温度が第1目標温度TCO、THOに近づくように冷却水の流量を調整する制御モードである。
第1冷却水空気熱交換器16、17で送風空気が冷却されている場合においては、第1偏差ΔT1は、第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度TCに関連する温度から第1目標温度TCOを減じた偏差である。
第1冷却水空気熱交換器16、17で送風空気が加熱されている場合においては、第1偏差ΔT1は、第1目標温度THOから第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度THに関連する温度を減じた偏差である。
第1熱授受機器13、81において冷却水が受熱している場合においては、第2偏差ΔT2は、第1熱授受機器13、81の温度TC2に関連する温度から第2目標温度TCO2を減じた偏差である。
第1熱授受機器13、81において冷却水が放熱している場合においては、第2偏差ΔT2は、第2目標温度THO2から第1熱授受機器13、81の温度TH2に関連する温度を減じた偏差である。
これにより、第1冷却水空気熱交換器16、17および第1熱授受機器13、81のうち温度追従性の要求が高い方の機器を冷媒流量で制御できる。
具体的には、第1偏差ΔT1の正負と第2偏差ΔT2の正負とが互いに同じ場合、第1偏差ΔT1および第2偏差ΔT2がともに正の値から負の値に変化した場合、第1偏差ΔT1および第2偏差ΔT2がともに負の値から正の値に変化した場合、または第1偏差ΔT1が正の値であり且つ第2偏差ΔT2が負の値から正の値に変化した場合、第1偏差ΔT1の絶対値が第2偏差ΔT2の絶対値よりも大きければ第1制御モードを実施し、第2偏差ΔT2の絶対値が第1偏差ΔT1の絶対値よりも大きければ第2制御モードを実施する。
具体的には、第1偏差ΔT1が正の値であり且つ第2偏差ΔT2が負の値である場合、第1制御モードを実施し、第1偏差ΔT1が負の値であり且つ第2偏差ΔT2が正の値である場合、第2制御モードを実施する。
具体的には、第1偏差ΔT1が正の値であり且つ第2偏差ΔT2が正の値から負の値に変化した場合、第1制御モードを実施し、第1偏差ΔT1が正の値から負の値に変化し且つ第2偏差ΔT2が正の値である場合、第2制御モードを実施する。
具体的には、第1偏差ΔT1が負の値から正の値に変化し且つ第2偏差ΔT2が正の値である場合であって、第1冷却水空気熱交換器16、17における冷却水の流量が第1所定量以上である場合、第1偏差ΔT1の絶対値が第2偏差ΔT2の絶対値よりも大きければ第1制御モードを実施し、第2偏差ΔT2の絶対値が第1偏差ΔT1の絶対値よりも大きければ第2制御モードを実施する。
一方、第1偏差ΔT1が負の値から正の値に変化し且つ第2偏差ΔT2が正の値である場合であって、第1冷却水空気熱交換器16、17における冷却水の流量が第1所定量未満である場合、第2制御モードを実施する。
具体的には、第1偏差ΔT1が負の値から正の値に変化し且つ第2偏差ΔT2が正の値から負の値に変化した場合、または第1偏差ΔT1が負の値から正の値に変化し且つ第2偏差ΔT2が負の値である場合であって、第1冷却水空気熱交換器16、17における冷却水の流量が第2所定量以上である場合、第1制御モードを実施する。
一方、第1偏差ΔT1が負の値から正の値に変化し且つ第2偏差ΔT2が正の値から負の値に変化した場合、または第1偏差ΔT1が負の値から正の値に変化し且つ第2偏差ΔT2が負の値である場合であって、第1冷却水空気熱交換器16、17における冷却水の流量が第2所定量未満である場合、第2制御モードを実施する。
具体的には、第1偏差ΔT1が正の値から負の値に変化し且つ第2偏差ΔT2が負の値から正の値に変化した場合、または第1偏差ΔT1が負の値であり且つ第2偏差ΔT2が負の値から正の値に変化した場合であって、第1熱授受機器13、81における冷却水の流量が第3所定量以上である場合、第2制御モードを実施する。
一方、第1偏差ΔT1が正の値から負の値に変化し且つ第2偏差ΔT2が負の値から正の値に変化した場合、または第1偏差ΔT1が負の値であり且つ第2偏差ΔT2が負の値から正の値に変化した場合であって、第1熱授受機器13、81における冷却水の流量が第3所定量未満である場合、第1制御モードを実施する。
具体的には、第1偏差ΔT1が負の値であり且つ第2偏差ΔT2が正の値から負の値に変化した場合であって、第1冷却水空気熱交換器16、17における冷却水の流量が第4所定量以上である場合、第1偏差ΔT1の絶対値が第2偏差ΔT2の絶対値よりも大きければ第1制御モードを実施し、第2偏差ΔT2の絶対値が第1偏差ΔT1の絶対値よりも大きければ第2制御モードを実施する。
一方、第1偏差ΔT1が負の値であり且つ第2偏差ΔT2が正の値から負の値に変化した場合であって、第1冷却水空気熱交換器16、17における冷却水の流量が第4所定量未満である場合、第2制御モードを実施する。
具体的には、第1偏差ΔT1が正の値から負の値に変化し且つ第2偏差ΔT2が負の値である場合であって、第1熱授受機器13、81における冷却水の流量が第5所定量以上である場合、第1偏差ΔT1の絶対値が第2偏差ΔT2の絶対値よりも大きければ第1制御モードを実施し、第2偏差ΔT2の絶対値が第1偏差ΔT1の絶対値よりも大きければ第2制御モードを実施する。
一方、第1偏差ΔT1が正の値から負の値に変化し且つ第2偏差ΔT2が負の値である場合であって、第1熱授受機器13、81における冷却水の流量が第5所定量未満である場合、第1制御モードを実施する。
例えば、制御装置60は、第1冷却水空気熱交換器16、17における冷却水と送風空気との熱交換量または熱交換要求量、および第1熱授受機器13、81における冷却水との熱授受量または熱授受要求量に応じて、第1制御モードと第2制御モードとを切り替える。
具体的には、第1冷却水空気熱交換器16、17における冷却水と送風空気との熱交換量または熱交換要求量が第1熱授受機器13、81における冷却水との熱授受量または熱授受要求量よりも高い場合または高いと推定される場合、制御装置60は、第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度TC、THに関連する温度が第1目標温度TC、THOに近づくように冷媒の流量を調整し、第1熱授受機器13、81の温度TC2、TH2に関連する温度が第2目標温度TCO2、THO2に近づくように冷却水の流量を調整する。
一方、第1熱授受機器13、81における冷却水との熱授受量または熱授受要求量が第1冷却水空気熱交換器16、17における冷却水と送風空気との熱交換量または熱交換要求量よりも高い場合または高いと推定される場合、制御装置60は、第1熱授受機器13、81の温度TC2、TH2に関連する温度が第2目標温度TCO2、THO2に近づくように冷媒の流量を調整し、第1冷却水空気熱交換器16、17で顕熱交換された送風空気の温度THに関連する温度が第1目標温度THOに近づくように冷却水の流量を調整する。
これにより、第1冷却水空気熱交換器16、17および第1熱授受機器13、81のうち熱負荷が高い方または高いと推定される方の機器の温度を冷媒流量で制御して温度追従性を向上できる。
(他の実施形態)
上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
(1)上記実施形態では、室外送風機20の作動を制御することによって、ラジエータ13を流れる外気の風量を調整するが、ラジエータシャッター(図示せず)の作動を制御することによって、ラジエータ13を流れる外気の風量を調整するようにしてもよい。ラジエータシャッターは、外気が流れる通路を開閉する外気通路開閉手段である。
(2)上記各実施形態では、温度調整対象機器を温度調整するための熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。
すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。
このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。
これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。
また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。
蓄冷熱量を増加させることにより、圧縮機22を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理システムの省動力化が可能になる。
ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。
ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。
(3)上記各実施形態の冷凍サイクル21では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
また、上記各実施形態の冷凍サイクル21は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
(4)上記各実施形態では、熱管理システム10および車両用空調装置をハイブリッド自動車に適用した例を示したが、エンジンを備えず走行用電動モータから車両走行用の駆動力を得る電気自動車等に熱管理システム10および車両用空調装置を適用してもよい。
(5)図39に示すように、上記実施形態における冷却水冷却器14およびクーラコア16の代わりに蒸発器151が設けられていてもよい。蒸発器151は、冷凍サイクル21の低圧側冷媒と車室内への送風空気とを熱交換させて車室内への送風空気を冷却する空気冷却用熱交換器である。
11 第1ポンプ(ポンプ)
12 第2ポンプ(ポンプ)
13 ラジエータ(第1熱授受機器、第2熱授受機器)
14 冷却水冷却器(熱媒体温度調整手段、熱媒体冷却用熱交換器)
15 冷却水加熱器(熱媒体温度調整手段、熱媒体加熱用熱交換器)
16 クーラコア(第1熱媒体空気熱交換器)
17 ヒータコア(第1熱媒体空気熱交換器)
60a ポンプ制御手段(熱交換器用調整手段)
60b ラジエータ用調整手段(熱交換器用調整手段)
60c 室外送風機制御手段(熱交換器用調整手段)
60d 圧縮機調整手段(冷媒流量調整手段)
60f 室内送風機制御手段(熱交換器用調整手段)
60g 空調切替制御手段(熱交換器用調整手段)
60k 発熱量制御手段(熱交換器用調整手段)
81 機器(第1熱授受機器、第2熱授受機器)

Claims (22)

  1. 熱媒体を吸入して吐出するポンプ(11、12)と、
    前記ポンプ(11、12)によって循環される熱媒体と車室内への送風空気とを顕熱交換させて前記送風空気の温度を調整する第1熱媒体空気熱交換器(16、17)と、
    前記熱媒体が流通する流路を有し、前記ポンプ(11、12)によって循環される前記熱媒体との間で熱授受が行われる第1熱授受機器(13、81)と、
    前記ポンプ(11、12)によって循環される前記熱媒体の温度を調整する熱媒体温度調整手段(14、15)と、
    前記第1熱媒体空気熱交換器(16、17)で温度調整された前記送風空気の温度(TC、TH)に関連する温度が第1目標温度(TCO、THO)に近づくように、前記第1熱授受機器(13、81)における前記熱媒体との熱授受量、または前記第1熱媒体空気熱交換器(16、17)の熱交換能力を調整する熱交換器用調整手段(60a、60b、60c、60f、60g、60k)と
    冷凍サイクル(21)の冷媒を吸入して吐出する圧縮機(22)と、
    前記圧縮機(22)から吐出される前記冷媒の流量を調整する冷媒流量調整手段(60d)とを備え、
    前記熱媒体温度調整手段(14、15)は、前記ポンプ(11、12)によって循環される前記熱媒体と前記冷媒とを熱交換させて前記熱媒体を加熱または冷却するようになっており、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱媒体空気熱交換器(17)および第1熱授受機器(13、81)のうち少なくとも一方の機器における前記熱媒体の流量を調整するようになっており、
    前記熱交換器用調整手段(60a、60b)および前記冷媒流量調整手段(60d)は、
    前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TC、TH)に関連する温度が前記第1目標温度(TCO、THO)に近づくように、前記冷媒の流量および前記熱媒体の流量のうち一方の流量を調整し、
    前記第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が第2目標温度(TCO2、THO2)に近づくように、前記冷媒の流量および前記熱媒体の流量のうち他方の流量を調整することを特徴とする車両用空調装置。
  2. 前記熱交換器用調整手段(60a、60b)は、前記第1熱授受機器(13、81)における前記熱媒体の流量を調整することによって、前記第1熱授受機器(13、81)における前記熱媒体との熱授受量を調整することを特徴とする請求項1に記載の車両用空調装置。
  3. 前記第1熱授受機器(81)は発熱する機器であり、
    前記熱交換器用調整手段(60k)は、前記第1熱授受機器(81)の発熱量を調整することによって、前記第1熱授受機器(81)における前記熱媒体との熱授受量を調整することを特徴とする請求項1に記載の車両用空調装置。
  4. 前記熱交換器用調整手段(60a、60b)は、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量を調整することによって、前記第1熱媒体空気熱交換器(16、17)の熱交換能力を調整することを特徴とする請求項1に記載の車両用空調装置。
  5. 前記熱交換器用調整手段(60f)は、前記第1熱媒体空気熱交換器(16、17)における前記送風空気の風量を調整することによって、前記第1熱媒体空気熱交換器(16、17)の熱交換能力を調整することを特徴とする請求項1に記載の車両用空調装置。
  6. 前記熱媒体温度調整手段(15)は、前記圧縮機(22)から吐出された前記冷媒と前記熱媒体とを熱交換させて前記熱媒体を加熱するようになっており、
    前記第1熱媒体空気熱交換器(17)は、前記熱媒体温度調整手段(15)で加熱された前記熱媒体と前記送風空気とを顕熱交換させて前記送風空気を加熱するようになっており、
    前記第1目標温度(THO)が前記第2目標温度(THO2)よりも高い場合、
    前記冷媒流量調整手段(60d)は、前記第1熱媒体空気熱交換器(17)で加熱された前記送風空気の温度(TH)に関連する温度が前記第1目標温度(THO)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱授受機器(13、81)の温度(TH2)に関連する温度が第2目標温度(THO2)に近づくように前記熱媒体の流量を調整し、
    前記第2目標温度(THO2)が前記第1目標温度(THO)よりも高い場合、
    前記冷媒流量調整手段(60d)は、前記第1熱授受機器(13、81)の温度(TH2)に関連する温度が前記第2目標温度(THO2)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱媒体空気熱交換器(17)で加熱された前記送風空気の温度(TH)に関連する温度が前記第1目標温度(THO)に近づくように前記熱媒体の流量を調整することを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
  7. 前記熱媒体温度調整手段(14)は、前記減圧手段(24)で減圧膨張された前記冷媒と前記熱媒体とを熱交換させて前記熱媒体を冷却するようになっており、
    前記熱媒体空気熱交換器(16)は、前記熱媒体温度調整手段(14)で冷却された前記熱媒体と前記送風空気とを顕熱交換させて前記送風空気を冷却するようになっており、
    前記第1目標温度(TCO)が前記第2目標温度(TCO2)よりも低い場合、
    前記冷媒流量調整手段(60d)は、前記熱媒体空気熱交換器(16)で冷却された前記送風空気の温度(TC)に関連する温度が前記第1目標温度(TCO)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱授受機器(13、81)の温度(TC2)に関連する温度が前記第2目標温度(TCO2)に近づくように前記熱媒体の流量を調整し、
    前記第2目標温度(THO2)が前記第1目標温度(THO)よりも低い場合、
    前記冷媒流量調整手段(60d)は、前記第1熱授受機器(13、81)の温度(TC2)に関連する温度が前記第2目標温度(TCO2)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記熱媒体空気熱交換器(16)で冷却された前記送風空気の温度(TC)に関連する温度が前記第1目標温度(TCO)に近づくように前記熱媒体の流量を調整することを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
  8. 前記冷媒流量調整手段(60d)は、前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TC、TH)に関連する温度が前記第1目標温度(TCO、THO)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が前記第2目標温度(TCO2、THO2)に近づくように前記熱媒体の流量を調整することを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
  9. 前記冷媒流量調整手段(60d)は、前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TC、TH)に関連する温度が前記第1目標温度(TCO、THO)に近づくように前記冷媒の流量を調整し、且つ前記熱交換器用調整手段(60a、60b)は、前記第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が前記第2目標温度(TCO2、THO2)に近づくように前記熱媒体の流量を調整する第1制御モードと、
    前記冷媒流量調整手段(60d)は、前記第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が前記第2目標温度(TCO2、THO2)に近づくように前記冷媒の流量を調整し、且つ前記熱交換器用調整手段(60a、60b)は、前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TC、TH)に関連する温度が前記第1目標温度(TCO、THO)に近づくように前記熱媒体の流量を調整する第2制御モードとを有しており、
    前記第1熱媒体空気熱交換器(16、17)で前記送風空気が冷却されている場合においては前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TC)に関連する温度から前記第1目標温度(TCO)を減じた偏差、前記第1熱媒体空気熱交換器(16、17)で前記送風空気が加熱されている場合においては前記第1目標温度(THO)から前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TH)に関連する温度を減じた偏差を第1偏差(ΔT1)とし、
    前記第1熱授受機器(13、81)において前記熱媒体が受熱している場合においては前記第1熱授受機器(13、81)の温度(TC2)に関連する温度から前記第2目標温度(TCO2)を減じた偏差、前記第1熱授受機器(13、81)において前記熱媒体が放熱している場合においては前記第2目標温度(THO2)から前記第1熱授受機器(13、81)の温度(TH2)に関連する温度を減じた偏差を第2偏差(ΔT2)としたとき、
    前記冷媒流量調整手段(60d)および前記熱交換器用調整手段(60a、60b)は、前記第1偏差(ΔT1)の正負および前記第2偏差(ΔT2)の正負に応じて、前記第1制御モードと前記第2制御モードとを切り替えることを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
  10. 前記第1偏差(ΔT1)の正負と前記第2偏差(ΔT2)の正負とが互いに同じ場合、前記第1偏差(ΔT1)および前記第2偏差(ΔT2)がともに正の値から負の値に変化した場合、前記第1偏差(ΔT1)および前記第2偏差(ΔT2)がともに負の値から正の値に変化した場合、または前記第1偏差(ΔT1)が正の値であり且つ前記第2偏差(ΔT2)が負の値から正の値に変化した場合、
    前記第1偏差(ΔT1)の絶対値が前記第2偏差(ΔT2)の絶対値よりも大きければ前記第1制御モードを実施し、前記第2偏差(ΔT2)の絶対値が前記第1偏差(ΔT1)の絶対値よりも大きければ前記第2制御モードを実施することを特徴とする請求項に記載の車両用空調装置。
  11. 前記第1偏差(ΔT1)が正の値であり且つ前記第2偏差(ΔT2)が負の値である場合、前記第1制御モードを実施し、
    前記第1偏差(ΔT1)が負の値であり且つ前記第2偏差(ΔT2)が正の値である場合、前記第2制御モードを実施することを特徴とする請求項9または10に記載の車両用空調装置。
  12. 前記第1偏差(ΔT1)が正の値であり且つ前記第2偏差(ΔT2)が正の値から負の値に変化した場合、前記第1制御モードを実施し、
    前記第1偏差(ΔT1)が正の値から負の値に変化し且つ前記第2偏差(ΔT2)が正の値である場合、前記第2制御モードを実施することを特徴とする請求項9ないし11のいずれか1つに記載の車両用空調装置。
  13. 前記第1偏差(ΔT1)が負の値から正の値に変化し且つ前記第2偏差(ΔT2)が正の値である場合であって、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量が第1所定量以上である場合、
    前記第1偏差(ΔT1)の絶対値が前記第2偏差(ΔT2)の絶対値よりも大きければ前記第1制御モードを実施し、前記第2偏差(ΔT2)の絶対値が前記第1偏差(ΔT1)の絶対値よりも大きければ前記第2制御モードを実施し、
    前記第1偏差(ΔT1)が負の値から正の値に変化し且つ前記第2偏差(ΔT2)が正の値である場合であって、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量が前記第1所定量未満である場合、前記第2制御モードを実施することを特徴とする請求項9ないし12のいずれか1つに記載の車両用空調装置。
  14. 前記第1偏差(ΔT1)が負の値から正の値に変化し且つ前記第2偏差(ΔT2)が正の値から負の値に変化した場合、または前記第1偏差(ΔT1)が負の値から正の値に変化し且つ前記第2偏差(ΔT2)が負の値である場合であって、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量が第2所定量以上である場合、前記第1制御モードを実施し、
    前記第1偏差(ΔT1)が負の値から正の値に変化し且つ前記第2偏差(ΔT2)が正の値から負の値に変化した場合、または前記第1偏差(ΔT1)が負の値から正の値に変化し且つ前記第2偏差(ΔT2)が負の値である場合であって、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量が前記第2所定量未満である場合、前記第2制御モードを実施することを特徴とする請求項9ないし13のいずれか1つに記載の車両用空調装置。
  15. 前記第1偏差(ΔT1)が正の値から負の値に変化し且つ前記第2偏差(ΔT2)が負の値から正の値に変化した場合、または前記第1偏差(ΔT1)が負の値であり且つ前記第2偏差(ΔT2)が負の値から正の値に変化した場合であって、前記第1熱授受機器(13、81)における前記熱媒体の流量が第3所定量以上である場合、前記第2制御モードを実施し、
    前記第1偏差(ΔT1)が正の値から負の値に変化し且つ前記第2偏差(ΔT2)が負の値から正の値に変化した場合、または前記第1偏差(ΔT1)が負の値であり且つ前記第2偏差(ΔT2)が負の値から正の値に変化した場合であって、前記第1熱授受機器(13、81)における前記熱媒体の流量が前記第3所定量未満である場合、前記第1制御モードを実施することを特徴とする請求項9ないし14のいずれか1つに記載の車両用空調装置。
  16. 前記第1偏差(ΔT1)が負の値であり且つ前記第2偏差(ΔT2)が正の値から負の値に変化した場合であって、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量が第4所定量以上である場合、
    前記第1偏差(ΔT1)の絶対値が前記第2偏差(ΔT2)の絶対値よりも大きければ前記第1制御モードを実施し、前記第2偏差(ΔT2)の絶対値が前記第1偏差(ΔT1)の絶対値よりも大きければ前記第2制御モードを実施し、
    前記第1偏差(ΔT1)が負の値であり且つ前記第2偏差(ΔT2)が正の値から負の値に変化した場合であって、前記第1熱媒体空気熱交換器(16、17)における前記熱媒体の流量が前記第4所定量未満である場合、前記第2制御モードを実施することを特徴とする請求項9ないし15のいずれか1つに記載の車両用空調装置。
  17. 前記第1偏差(ΔT1)が正の値から負の値に変化し且つ前記第2偏差(ΔT2)が負の値である場合であって、前記第1熱授受機器(13、81)における前記熱媒体の流量が前記第5所定量以上である場合、
    前記第1偏差(ΔT1)の絶対値が前記第2偏差(ΔT2)の絶対値よりも大きければ前記第1制御モードを実施し、前記第2偏差(ΔT2)の絶対値が前記第1偏差(ΔT1)の絶対値よりも大きければ前記第2制御モードを実施し、
    前記第1偏差(ΔT1)が正の値から負の値に変化し且つ前記第2偏差(ΔT2)が負の値である場合であって、前記第1熱授受機器(13、81)における前記熱媒体の流量が前記第5所定量未満である場合、前記第1制御モードを実施することを特徴とする請求項9ないし16のいずれか1つに記載の車両用空調装置。
  18. 前記第1熱媒体空気熱交換器(16、17)における前記熱媒体と前記送風空気との熱交換量または熱交換要求量が前記第1熱授受機器(13、81)における前記熱媒体との熱授受量または熱授受要求量よりも高い場合または高いと推定される場合、
    前記冷媒流量調整手段(60d)は、前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TC、TH)に関連する温度が前記第1目標温度(TC、THO)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が前記第2目標温度(TCO2、THO2)に近づくように前記熱媒体の流量を調整し、
    前記第1熱授受機器(13、81)における前記熱媒体との熱授受量または熱授受要求量が前記第1熱媒体空気熱交換器(16、17)における前記熱媒体と前記送風空気との熱交換量または熱交換要求量よりも高い場合または高いと推定される場合、
    前記冷媒流量調整手段(60d)は、前記第1熱授受機器(13、81)の温度(TC2、TH2)に関連する温度が前記第2目標温度(TCO2、THO2)に近づくように前記冷媒の流量を調整し、
    前記熱交換器用調整手段(60a、60b)は、前記第1熱媒体空気熱交換器(16、17)で顕熱交換された前記送風空気の温度(TH)に関連する温度が前記第1目標温度(THO)に近づくように前記熱媒体の流量を調整することを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
  19. 前記送風空気を冷却する空気冷却用熱交換器(16)と、
    前記送風空気を加熱する空気加熱用熱交換器(17)とを備え、
    前記第1熱媒体空気熱交換器(16、17)は、前記空気冷却用熱交換器(16)または前記空気加熱用熱交換器(17)であり、
    前記空気冷却用熱交換器(16)および前記空気加熱用熱交換器(17)のうち少なくとも一方の熱交換器で温度調整されて前記車室内へ吹き出される前記送風空気の温度(TAV)に関連する温度が第3目標温度(TAO)に近づくように、前記空気冷却用熱交換器(16)で冷却された送風空気のうち前記空気加熱用熱交換器(17)を流れる前記送風空気と前記空気加熱用熱交換器(17)を迂回して流れる前記送風空気との風量割合を調整する風量割合調整手段(55、60g)を備えることを特徴とする請求項1ないし18のいずれか1つに記載の車両用空調装置。
  20. 前記送風空気を冷却する空気冷却用熱交換器(16)と、
    前記送風空気を加熱する空気加熱用熱交換器(17)とを備え、
    前記第1熱媒体空気熱交換器(16、17)は、前記空気冷却用熱交換器(16)または前記空気加熱用熱交換器(17)であり、
    前記空気冷却用熱交換器(16)および前記空気加熱用熱交換器(17)のうち少なくとも一方の熱交換器で温度調整されて前記車室内へ吹き出される前記送風空気の温度(TAV)に関連する温度が第3目標温度(TAO)に近づくように、前記送風空気の風量を制御する風量制御手段(54、60f)を備えることを特徴とする請求項1ないし18のいずれか1つに記載の車両用空調装置。
  21. 前記第1熱授受機器(81)は、車両後席の乗員に向けて吹き出される送風空気と熱媒体とを顕熱交換させる後席用熱交換器であることを特徴とする請求項1、2、4ないし20のいずれか1つに記載の車両用空調装置。
  22. 前記第1熱授受機器(81)は、車両に搭載された電池と熱媒体とを顕熱交換させて前記電池の温度を調整する電池温調用熱交換器であることを特徴とする請求項1、2、4ないし20のいずれか1つに記載の車両用空調装置。
JP2013268580A 2013-12-26 2013-12-26 車両用空調装置 Active JP6233009B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013268580A JP6233009B2 (ja) 2013-12-26 2013-12-26 車両用空調装置
CN201480071010.2A CN105848937B (zh) 2013-12-26 2014-11-28 车辆用空调装置
DE112014006077.1T DE112014006077T5 (de) 2013-12-26 2014-11-28 Klimaanlage für Fahrzeug
PCT/JP2014/005957 WO2015097988A1 (ja) 2013-12-26 2014-11-28 車両用空調装置
US15/107,149 US10457117B2 (en) 2013-12-26 2014-11-28 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268580A JP6233009B2 (ja) 2013-12-26 2013-12-26 車両用空調装置

Publications (3)

Publication Number Publication Date
JP2015123829A JP2015123829A (ja) 2015-07-06
JP2015123829A5 JP2015123829A5 (ja) 2015-12-10
JP6233009B2 true JP6233009B2 (ja) 2017-11-22

Family

ID=53477900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268580A Active JP6233009B2 (ja) 2013-12-26 2013-12-26 車両用空調装置

Country Status (5)

Country Link
US (1) US10457117B2 (ja)
JP (1) JP6233009B2 (ja)
CN (1) CN105848937B (ja)
DE (1) DE112014006077T5 (ja)
WO (1) WO2015097988A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
JP6239185B2 (ja) * 2014-03-21 2017-11-29 アリース エコ アーク(ケイマン) シーオー.エルティーディー. 電気自動車の温度制御システム
WO2017007882A1 (en) * 2015-07-07 2017-01-12 Carrier Corporation Transport refrigeration unit
JP6663676B2 (ja) * 2015-10-02 2020-03-13 株式会社デンソー 車両用熱管理装置
US10703174B2 (en) 2015-11-30 2020-07-07 Thermo King Corporation Device and method for controlling operation of transport refrigeration unit
WO2017126082A1 (ja) * 2016-01-21 2017-07-27 フタバ産業株式会社 排気熱回収装置
DE112016006612T5 (de) * 2016-03-16 2018-11-29 Honda Motor Co., Ltd. Kühlungssystem für eine Hochspannungsausstattung für Fahrzeuge mit Elektroantrieb
JP6590321B2 (ja) * 2016-03-25 2019-10-16 パナソニックIpマネジメント株式会社 車両用空調装置
US9957876B2 (en) * 2016-05-23 2018-05-01 Ford Global Technologies, Llc Methods and systems for controlling air flow paths in an engine
DE102016214623A1 (de) * 2016-08-08 2018-02-08 Robert Bosch Gmbh Fahrzeugvorrichtung
AU2016422665B2 (en) * 2016-09-08 2019-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR102373420B1 (ko) * 2017-03-30 2022-03-14 현대자동차주식회사 전기자동차 공조 시스템
KR102510377B1 (ko) * 2017-04-05 2023-03-16 한온시스템 주식회사 차량용 열관리 시스템의 수가열식 ptc 히터 제어 방법
US20190016195A1 (en) * 2017-07-11 2019-01-17 Minnie Stinson Battery operated air controller system in motor vehicles
KR102429009B1 (ko) * 2017-08-09 2022-08-03 현대자동차 주식회사 차량용 히트 펌프 시스템
KR102429010B1 (ko) * 2017-08-09 2022-08-03 현대자동차 주식회사 차량용 히트 펌프 시스템
DE102018104409A1 (de) 2018-02-27 2019-08-29 Volkswagen Aktiengesellschaft Kühlsystem und Brennkraftmaschine
JP6919611B2 (ja) * 2018-03-26 2021-08-18 トヨタ自動車株式会社 車両の温度制御装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
KR102548280B1 (ko) * 2018-08-10 2023-06-27 한온시스템 주식회사 차량용 공조장치
EP3623896B1 (en) * 2018-09-12 2021-04-28 Fimcim S.P.A. Method and device for controlling the flow of a fluid in an air-conditioning and/or heating system
US10752129B2 (en) * 2018-10-26 2020-08-25 Pratt & Whitney Canada Corp. Battery heating in hybrid electric power plant
KR102600059B1 (ko) * 2018-12-03 2023-11-07 현대자동차 주식회사 차량용 열 관리 시스템
JP7215162B2 (ja) * 2018-12-27 2023-01-31 株式会社デンソー 車両用空調装置
KR102168653B1 (ko) * 2019-04-04 2020-10-21 엘지전자 주식회사 사방밸브
JP7172815B2 (ja) * 2019-04-10 2022-11-16 トヨタ自動車株式会社 車載温調装置
DE102019205901B4 (de) 2019-04-25 2021-01-21 Audi Ag Verfahren zum Betreiben einer Fahrzeug-Kälteanlage mit einem kombinierten Kälteanlagen- und Wärmepumpenbetrieb
JP7280770B2 (ja) * 2019-07-29 2023-05-24 サンデン株式会社 車両用空気調和装置
JP7328171B2 (ja) * 2020-03-19 2023-08-16 トヨタ自動車株式会社 熱管理装置
KR20220048170A (ko) * 2020-10-12 2022-04-19 현대자동차주식회사 차량용 열 관리 시스템
DE102020128728B4 (de) * 2020-11-02 2022-09-08 Audi Aktiengesellschaft Kraftfahrzeug und Verfahren zum Betrieb einer Kühleinrichtung
JP7380650B2 (ja) * 2021-05-19 2023-11-15 トヨタ自動車株式会社 車載温調システム
JP7309989B1 (ja) * 2022-09-16 2023-07-18 三菱重工サーマルシステムズ株式会社 車両用の温調システムおよび温調方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697210B1 (fr) * 1992-10-26 1994-12-09 Valeo Thermique Habitacle Dispositif de climatisation plus particulièrement pour véhicule électrique.
JPH11301254A (ja) * 1998-04-16 1999-11-02 Tgk Co Ltd 自動車用空調装置
JP2000161722A (ja) * 1998-11-25 2000-06-16 Zexel Corp 空気調和装置
FR2812243B1 (fr) * 2000-07-28 2003-05-09 Valeo Climatisation Dispositif de chauffage-climatisation de l'habitacle d'un vehicule automobile
JP3969254B2 (ja) * 2001-10-29 2007-09-05 株式会社デンソー バッテリ温度管理装置
JP3953377B2 (ja) * 2002-07-16 2007-08-08 トヨタ自動車株式会社 空調装置
JP3974826B2 (ja) * 2002-07-16 2007-09-12 トヨタ自動車株式会社 車両用空調装置
US6862892B1 (en) * 2003-08-19 2005-03-08 Visteon Global Technologies, Inc. Heat pump and air conditioning system for a vehicle
US7370486B2 (en) * 2003-12-24 2008-05-13 Caterpillar Inc. Air-treatment system with secondary circuit
SE533005C2 (sv) * 2008-10-21 2010-06-08 Scania Cv Abp Metod och system för kylning och uppvärmning
JP2010260449A (ja) * 2009-05-07 2010-11-18 Nippon Soken Inc 車両用空調装置
CN102414414B (zh) * 2009-05-07 2013-10-30 丰田自动车株式会社 车辆的热量管理装置
JP5433387B2 (ja) * 2009-11-30 2014-03-05 株式会社日立製作所 車両用機器冷却暖房システム
JP2011112312A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 移動体の熱サイクルシステム
JP5581886B2 (ja) * 2010-08-11 2014-09-03 株式会社日立製作所 車両用空調システム
WO2012098966A1 (ja) * 2011-01-21 2012-07-26 サンデン株式会社 車両用空気調和装置
JP5929372B2 (ja) 2011-04-04 2016-06-08 株式会社デンソー 冷凍サイクル装置
DE102012205200B4 (de) 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung
JP5482728B2 (ja) * 2011-05-20 2014-05-07 株式会社デンソー 冷凍サイクル装置
WO2013101519A1 (en) * 2011-12-29 2013-07-04 Magna E-Car Systems Of America, Inc. Thermal management system for vehicle having traction motor
JP5910517B2 (ja) 2012-02-02 2016-04-27 株式会社デンソー 熱交換器
JP5880863B2 (ja) * 2012-02-02 2016-03-09 株式会社デンソー 車両用熱管理システム
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
CN102774252B (zh) * 2012-08-06 2014-12-17 上海加冷松芝汽车空调股份有限公司 能量调控装置以及使用该能量调控装置的车辆空调系统
JP6073651B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
US20140144160A1 (en) * 2012-11-25 2014-05-29 Kenneth J. Jackson Hv battery thermal control system and method
JP6167892B2 (ja) 2013-06-06 2017-07-26 株式会社デンソー 車両用空調装置
JP6197642B2 (ja) 2013-12-26 2017-09-20 株式会社デンソー 車両用空調装置

Also Published As

Publication number Publication date
CN105848937A (zh) 2016-08-10
CN105848937B (zh) 2017-10-03
WO2015097988A1 (ja) 2015-07-02
DE112014006077T5 (de) 2016-09-08
US10457117B2 (en) 2019-10-29
JP2015123829A (ja) 2015-07-06
US20170028813A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6233009B2 (ja) 車両用空調装置
JP6167892B2 (ja) 車両用空調装置
JP6314821B2 (ja) 車両用空調装置
JP6197671B2 (ja) 空調装置
JP6398764B2 (ja) 車両用熱管理システム
JP6555112B2 (ja) 冷凍サイクル装置
JP6252186B2 (ja) 車両用熱管理システム
JP6197657B2 (ja) 車両用熱管理システム
JP6197745B2 (ja) 車両用冷凍サイクル装置
JP6206231B2 (ja) 車両用熱管理システム
JP6663676B2 (ja) 車両用熱管理装置
JP6197642B2 (ja) 車両用空調装置
WO2015115050A1 (ja) 車両用熱管理システム
JP6365434B2 (ja) 車両用熱管理装置
WO2015004904A1 (ja) 車両用空調装置
JP6390223B2 (ja) 車両用温度調整装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R151 Written notification of patent or utility model registration

Ref document number: 6233009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250