WO2013114874A1 - 車両用熱管理システム - Google Patents

車両用熱管理システム Download PDF

Info

Publication number
WO2013114874A1
WO2013114874A1 PCT/JP2013/000504 JP2013000504W WO2013114874A1 WO 2013114874 A1 WO2013114874 A1 WO 2013114874A1 JP 2013000504 W JP2013000504 W JP 2013000504W WO 2013114874 A1 WO2013114874 A1 WO 2013114874A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
temperature
cooler
switching valve
pump
Prior art date
Application number
PCT/JP2013/000504
Other languages
English (en)
French (fr)
Inventor
梯 伸治
山中 隆
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US14/376,316 priority Critical patent/US9643469B2/en
Priority to DE112013000833.5T priority patent/DE112013000833T5/de
Priority to CN201380008012.2A priority patent/CN104093587B/zh
Publication of WO2013114874A1 publication Critical patent/WO2013114874A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a thermal management system used in a vehicle.
  • Patent Document 1 describes a heat control device for cooling a motor generator, an inverter, a battery, and a passenger compartment of an electric vehicle.
  • This prior art thermal control device includes a cooling circuit for circulating cooling water for cooling a motor generator and an inverter, a first circulation circuit for circulating cooling water used for cooling a battery and a vehicle compartment, and an outdoor heat exchanger.
  • a second circulation circuit that circulates cooling water that passes through and exchanges heat with outside air.
  • the thermal control device further includes a first valve that connects and disconnects the cooling circuit and the first circulation circuit, a second valve that connects the cooling circuit to one of the first circulation circuit and the second circulation circuit, and the cooling circuit and the first circuit.
  • a third valve for connecting / disconnecting with the two circulation circuits is provided, and the connection destination of the cooling circuit is switched between the first circulation circuit and the second circulation circuit through the control of these valves.
  • This heat transfer device transfers heat from the low-temperature cooling water to the high-temperature cooling water between the cooling water in the first circulation circuit and the cooling water in the second circulation circuit.
  • the heat of the cooling water of the first circulation circuit is moved to the cooling water of the second circulation circuit by the heat transfer device, and the heat of the cooling water of the second circulation circuit is radiated to the outside air by the outdoor heat exchanger, thereby And can cool the passenger compartment.
  • the cooling circuit is connected to the first circulation circuit or the second circulation circuit by the first to third valves, and the heat of the cooling water of the cooling circuit is radiated to the outside air by the outdoor heat exchanger of the second circulation circuit.
  • the motor generator and the inverter can be cooled.
  • thermoelectric target devices for example, in addition to a motor generator, an inverter, and a battery, there are an EGR cooler, an intake air cooler, and the like as temperature adjustment target devices that require cooling, and these temperature adjustment target devices have different required cooling temperatures.
  • the number of circulation circuits increases according to the number of temperature adjustment target devices. Since the number of valves for connecting / disconnecting each circulation circuit and the cooling circuit also increases, the configuration of the flow path connecting each circulation circuit and the cooling circuit becomes very complicated.
  • This indication aims at simplifying the structure of the thermal management system for vehicles which can switch the heat medium circulating to several apparatus for temperature adjustment in view of the said point.
  • a vehicle thermal management system includes a first pump and a second pump that suck and discharge a heat medium, a heat medium discharged from the first pump, and outside air.
  • a heat exchanger for exchanging heat, a flow path through which the heat medium flows, a plurality of devices to be temperature-adjusted by the heat medium, the heat medium discharge side of the first pump, and the heat of the second pump.
  • the first switching valve for switching between the case where the heat medium discharged from the second pump flows in, the heat medium suction side of the first pump and the heat medium suction side of the second pump are connected in parallel to each other, and a plurality of temperature
  • the heat medium outlet side of the device to be adjusted is connected in parallel to each other, and the second is switched between the case where the heat medium flows out to the first pump and the case where the heat medium flows out to the second pump for each of the plurality of temperature adjustment devices.
  • the first case is switched between the case where the heat medium circulates between the first pump and the case where the heat medium circulates between the second pump.
  • a control device that controls the operation of the switching valve and the second switching valve.
  • the heat medium circulating to the plurality of temperature adjustment target devices is simplified by simply connecting the plurality of temperature adjustment target devices in parallel between the first and second switching valves for switching the flow of the heat medium. Can be switched.
  • 1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment. It is a figure explaining the 1st mode in the thermal management system for vehicles of Drawing 1. It is a figure explaining the 2nd mode in the thermal management system for vehicles of Drawing 1. It is a figure explaining the 3rd mode in the thermal management system for vehicles of Drawing 1. It is a perspective view which shows the 1st switching valve and 2nd switching valve of 1st Embodiment. It is a disassembled perspective view of the 1st switching valve of FIG. It is sectional drawing of the 1st switching valve of FIG. It is sectional drawing of the 1st switching valve of FIG. It is sectional drawing of the 1st switching valve of FIG. It is sectional drawing of the 1st switching valve of FIG. It is sectional drawing of the 1st switching valve of FIG. It is sectional drawing of the 1st switching valve of FIG.
  • a vehicle thermal management system 10 shown in FIG. 1 is used to cool various devices (equipment that requires cooling or heating) and a vehicle interior included in the vehicle to an appropriate temperature.
  • the cooling system 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (internal combustion engine) and a travel electric motor.
  • the hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle.
  • a battery vehicle battery
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
  • the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery is not only the electric motor for running but also the electric motor constituting the cooling system. Supplied to various in-vehicle devices such as type components.
  • the cooling system 10 includes a first pump 11, a second pump 12, a radiator 13, a cooling water cooler 14, a battery cooler 15, an inverter cooler 16, an exhaust gas cooler 17, a cooler core 18, A first switching valve 19 and a second switching valve 20 are provided.
  • the first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water (heat medium).
  • the cooling water is preferably a liquid containing at least ethylene glycol or dimethylpolysiloxane.
  • the radiator 13 is a heat exchanger (heat radiator) for radiating heat to dissipate the heat of the cooling water to the outside air by exchanging heat between the cooling water and the outside air.
  • the cooling water outlet side of the radiator 13 is connected to the cooling water suction side of the first pump 11.
  • the outdoor blower 21 is an electric blower that blows outside air to the radiator 13.
  • the radiator 13 and the outdoor blower 21 are arranged at the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling.
  • the cooling water cooler 14 is a cooling device that cools the cooling water by exchanging heat between the low-pressure refrigerant of the refrigeration cycle 22 and the cooling water.
  • the cooling water inlet side of the cooling water cooler 14 is connected to the cooling water discharge side of the second pump 12.
  • the cooling water cooler 14 constitutes an evaporator of the refrigeration cycle 22.
  • the refrigeration cycle 22 is a vapor compression chiller including a compressor 23, a condenser 24, an expansion valve 25, and a cooling water cooler 14 as an evaporator.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • the compressor 23 is an electric compressor driven by electric power supplied from the battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 22.
  • the condenser 24 is a high-pressure side heat exchanger that condenses the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 23 and the outside air.
  • the expansion valve 25 is a decompression device that decompresses and expands the liquid-phase refrigerant condensed by the condenser 24.
  • the cooling water cooler 14 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 25 and the cooling water. The gas-phase refrigerant evaporated in the cooling water cooler 14 is sucked into the compressor 23 and compressed.
  • the cooling water In the radiator 13, the cooling water is cooled by outside air, whereas in the cooling water cooler 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 22. For this reason, the temperature of the cooling water cooled by the cooling water cooler 14 becomes lower than the temperature of the cooling water cooled by the radiator 13.
  • the radiator 13 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the cooling water cooler 14 can cool the cooling water to a lower temperature than the outside air temperature.
  • the cooling water cooled by the outside air by the radiator 13 is referred to as medium temperature cooling water
  • the cooling water cooled by the low pressure refrigerant of the refrigeration cycle 22 by the cooling water cooler 14 is referred to as low temperature cooling water.
  • the cooling water cooler 14, the battery cooler 15, the inverter cooler 16, the exhaust gas cooler 17, and the cooler core 18 are temperature adjustment target devices whose temperature is adjusted by either the medium temperature cooling water or the low temperature cooling water.
  • the battery cooler 15 has a cooling water flow path, and cools the battery by applying heat of the battery to the cooling water.
  • the battery is preferably maintained at a temperature of about 10 to 40 ° C. for reasons such as lowering output, lowering charging efficiency, and preventing deterioration.
  • the inverter cooler 16 has a cooling water flow path, and cools the inverter by applying heat from the inverter to the cooling water.
  • the inverter is a power conversion device that converts DC power supplied from a battery into an AC voltage and outputs the AC voltage to a traveling electric motor.
  • the inverter is preferably maintained at a temperature of 65 ° C. or lower for reasons such as preventing deterioration.
  • the exhaust gas cooler 17 has a cooling water flow path, and cools the exhaust gas by applying heat of the engine exhaust gas to the cooling water.
  • the exhaust gas cooled by the exhaust gas cooler 17 is returned to the intake side of the engine.
  • the exhaust gas returned to the intake side of the engine is preferably maintained at a temperature of 40 to 100 ° C. for reasons such as reducing engine loss, preventing knocking, and suppressing NOX generation.
  • the cooler core 18 is a cooling heat exchanger (air cooler) that cools the blown air by exchanging heat between the cooling water and the blown air.
  • the indoor blower 26 is an electric blower that blows outside air to the cooler core 18.
  • the cooler core 18 and the indoor blower 26 are disposed inside a casing 27 of the indoor air conditioning unit.
  • the first switching valve 19 and the second switching valve 20 are flow switching devices that switch the flow of cooling water.
  • the first switching valve 19 and the second switching valve have the same basic structure, except that the cooling water inlet and the cooling water outlet are opposite to each other.
  • the first switching valve 19 has two inlets 19a, 19b as cooling water inlets, and four outlets 19c, 19d, 19e, 19f as cooling water outlets.
  • the cooling water discharge side of the first pump 11 is connected to the inlet 19a.
  • the cooling water outlet side of the cooling water cooler 14 is connected to the inlet 19b.
  • the cooling water inlet side of the cooler core 18 is connected to the outlet 19c.
  • a cooling water inlet side of the exhaust gas cooler 17 is connected to the outlet 19d.
  • a cooling water inlet side of the battery cooler 15 is connected to the outlet 19e.
  • a cooling water inlet side of the inverter cooler 16 is connected to the outlet 19f.
  • the second switching valve 20 has inlets 20a, 20b, 20c, and 20d as cooling water inlets and outlets 20e and 20f as cooling water outlets.
  • the cooling water outlet side of the cooler core 18 is connected to the inlet 20a.
  • the cooling water outlet side of the exhaust gas cooler 17 is connected to the inlet 20b.
  • the cooling water outlet side of the battery cooler 15 is connected to the inlet 20c.
  • the cooling water outlet side of the inverter cooler 16 is connected to the inlet 20d.
  • the cooling water inlet side of the radiator 13 is connected to the outlet 20e.
  • the cooling water suction side of the second pump 12 is connected to the outlet 20f.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f into three types.
  • the second switching valve 20 is also configured to be able to switch the communication state between the inlets 20a, 20b, 20c, 20d and the outlets 20e, 20f to three types.
  • FIG. 2 shows the operation (first mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the first state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d, 19e, and 19f and communicates the inlet 19b with the outlet 19c.
  • the first switching valve 19 causes the cooling water flowing from the inlet 19a to flow out from the outlets 19d, 19e, and 19f as shown by the one-dot chain line arrow in FIG. 2, and from the inlet 19b as shown by the solid line arrow in FIG.
  • the cooling water that has flowed in is discharged from the outlet 19c.
  • the second switching valve 20 connects the inlets 20b, 20c, and 20d with the outlet 20e, and connects the inlet 20a with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b, 20c, and 20d to flow out from the outlet 20e as indicated by the one-dot chain line arrow in FIG. 2, and from the inlet 20a as indicated by the solid arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 3 shows the operation of the cooling system 10 (second mode) when the first switching valve 19 and the second switching valve 20 are switched to the second state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d and 19f, and communicates the inlet 19b with the outlets 19c and 19e.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19d and 19f as shown by the one-dot chain arrow in FIG. 3, and flows in from the inlet 19b as shown by the solid line arrow in FIG. Cooling water is discharged from the outlets 19c and 19e.
  • the second switching valve 20 communicates the inlets 20a and 20c with the outlet 20f and communicates the inlets 20b and 20d with the outlet 20e.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b and 20d to flow out from the outlet 20e as indicated by the one-dot chain arrows in FIG. 3, and from the inlets 20a and 20c as indicated by the solid line arrows in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 4 shows the operation of the cooling system 10 (third mode) when the first switching valve 19 and the second switching valve 20 are switched to the third state.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19d, and communicates the inlet 19b with the outlets 19c, 19e, and 19f.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19d as shown by the one-dot chain line arrow in FIG. 4, and the cooling water flowing in from the inlet 19b as shown in the solid line arrow in FIG. From the outlets 19c, 19e, 19f.
  • the second switching valve 20 communicates the inlet 20b with the outlet 20e and communicates the inlets 20a, 20c, and 20d with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlet 20b to flow out from the outlet 20e as shown by a one-dot chain line arrow in FIG. 4, and from the inlets 20a, 20c, 20d as shown in the solid line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • the first switching valve 19 and the second switching valve 20 are each provided with a rotary shaft 191, 201 of the valve body.
  • the rotational force of the output shaft 30a of the switching valve electric motor 30 is transmitted to the rotary shafts 191 and 201 via gears 31, 32, 33, and 34.
  • the valve body of the first switching valve 19 and the valve body of the second switching valve 20 are rotationally driven by the common switching valve electric motor 30.
  • a switching valve electric motor for the first switching valve 19 and a switching valve electric motor for the second switching valve 20 are separately provided, and the operations of the two switching valve electric motors are controlled in conjunction with each other.
  • the valve body of the first switching valve 19 and the valve body of the second switching valve 20 may be rotationally driven in conjunction with each other.
  • first switching valve 19 Since the basic structures of the first switching valve 19 and the second switching valve are the same, the specific structure of the first switching valve 19 will be described below, and the description of the specific structure of the second switching valve 20 will be omitted. .
  • the first switching valve 19 includes a case 192 that forms an outer shell.
  • the case 192 is formed in a substantially cylindrical shape extending in the longitudinal direction (vertical direction in FIG. 5) of the rotary shaft 191 of the valve body.
  • the rotary shaft 191 of the valve body passes through one end surface (the upper end surface in FIG. 5) of the case 192.
  • the cylindrical surface of the case 192 has an outer diameter and an inner diameter that are reduced in four steps from one end side (the upper end side in FIG. 5) to the other end side (the other end side in FIG. 5).
  • the cylindrical surface of the case 192 includes, in order from one end side to the other end side, a first cylindrical portion 192a having the largest outer diameter and inner diameter, and a second cylinder having the next largest outer diameter and inner diameter.
  • a portion 192b, a third cylindrical portion 192c having the next largest outer diameter and inner diameter, and a fourth cylindrical portion 192d having the smallest outer diameter and inner diameter are formed.
  • An outlet 19c is formed in the first cylindrical portion 192a.
  • An outlet 19d is formed in the second cylindrical portion 192b.
  • An outlet 19e is formed in the third cylindrical portion 192c.
  • An outlet 19f is formed in the fourth cylindrical portion 192d.
  • a cooling water inlet 19a and a cooling water inlet 19b are formed on the other end surface (the lower end surface in FIG. 6) of the case 192.
  • An inner cylinder member 193 is inserted into the internal space of the case 192.
  • the inner cylinder member 193 is formed in a cylindrical shape having a constant inner diameter and outer diameter, and is disposed coaxially with the case 192.
  • An end portion (the lower end portion in FIG. 6) of the case 192 on the other end side of the inner cylinder member 193 is fixed in close contact with the other end surface of the case 192.
  • a partition plate 193 a is provided inside the inner cylinder member 193.
  • the partition plate 193a is formed over the entire axial direction of the inner cylinder member 193, and partitions the inner space of the inner cylinder member 193 into two semi-cylindrical spaces 193b and 193c.
  • the first space 193b communicates with the inlet 19a of the case 192
  • the second space 193c communicates with the inlet 19b of the case 192.
  • the cylindrical surface of the inner cylinder member 193 has four openings 193d, 193e, 193f, 193g communicating with the first space 193b, and four openings 193h, 193i, 193j, 193k communicating with the second space 193c. Is formed.
  • the openings 193d and 193h of the inner cylinder member 193 are opposed to the first cylinder 192a of the inner cylinder member 193, and the openings 193e and 193i are the inner cylinder member 193.
  • the openings 193f and 193j are opposed to the third cylinder part 192c, and the openings 193g and 193k are opposed to the fourth cylinder part 192d of the inner cylinder member 193. ing.
  • a valve body 194 that opens and closes the eight openings 193d to 193k of the inner cylinder member 193 is inserted between the case 192 and the inner cylinder member 193.
  • the valve body 194 is formed in a substantially cylindrical shape, and is disposed coaxially with the case 192 and the inner cylinder member 193.
  • Rotating shaft 191 is fixed at the center of one end surface (upper end surface in FIG. 6) of valve body 194.
  • the valve body 194 is rotatable about the rotation shaft 191 with respect to the case 192 and the inner cylinder member 193.
  • the inner diameter of the valve body 194 is constant similarly to the outer diameter of the inner cylinder member 193. As with the inner diameter of the case 192, the outer diameter of the valve body 194 is reduced in four steps from one end side to the other end side.
  • the first cylindrical portion 194a having the largest outer diameter
  • the second cylindrical portion 194b having the next largest outer diameter
  • a third cylindrical portion 194c having the next largest diameter and a fourth cylindrical portion 194d having the smallest outer diameter are formed.
  • the first cylindrical portion 194 a of the valve body 194 faces the first cylindrical portion 192 a of the case 192
  • the second cylindrical portion of the valve body 194 194 b faces the second cylindrical portion 192 b of the case 192
  • the third cylindrical portion 194 c of the valve body 194 faces the third cylindrical portion 194 c of the case 192
  • the fourth cylindrical portion 194 d of the valve body 194 is the second cylindrical portion 194 d of the case 192. It faces the 4 cylindrical part 194d.
  • a plurality of holes 194e are formed in the first cylindrical portion 194a of the valve body 194.
  • a plurality of holes 194 f are formed in the second cylindrical portion 194 b of the valve body 194.
  • a plurality of holes 194 g are formed in the third cylindrical portion 194 c of the valve body 194.
  • a plurality of holes 194 h are formed in the fourth cylindrical portion 194 d of the valve body 194.
  • FIG. 7 is a cross-sectional view of the first switching valve 19 cut at a portion of the first cylindrical portion 194a of the valve body 194 perpendicular to the axial direction.
  • Three holes 194e in the first cylindrical portion 194a of the valve body 194 are formed in the circumferential direction of the first cylindrical portion 194a.
  • the opening portion of the inner cylinder member 193 is formed. It overlaps with 193d and 193h.
  • the packing 195 is being fixed to the peripheral part of the opening parts 193d and 193h of the inner cylinder member 193.
  • the packing 195 is in close contact with the first cylindrical portion 194a of the valve body 194, and plays a role of sealing between the openings 193d and 193h of the inner cylinder member 193 in a liquid-tight manner.
  • a first annular space 196a is formed between the first cylindrical portion 194a of the valve body 194 and the first cylindrical portion 192a of the case 192.
  • the first annular space 196a communicates with the outlet 19c.
  • FIG. 8 is a cross-sectional view of the first switching valve 19 cut at a portion of the second cylindrical portion 194b of the valve body 194 perpendicularly to the axial direction.
  • Three holes 194f of the second cylindrical portion 194b of the valve body 194 are formed in the circumferential direction of the second cylindrical portion 194b, and the opening portion of the inner cylinder member 193 when the valve body 194 is in a predetermined rotational position. It overlaps with 193e and 193i.
  • the packing 195 is being fixed to the peripheral part of the opening parts 193e and 193i of the inner cylinder member 193.
  • the packing 195 is in close contact with the second cylindrical portion 194b of the valve body 194, and plays a role of liquid-tight sealing between the openings 193e and 193i of the inner cylinder member 193.
  • a second annular space 196b is formed between the second cylindrical portion 194b of the valve body 194 and the second cylindrical portion 192b of the case 192.
  • the second annular space 196b communicates with the outlet 19d.
  • FIG. 9 is a cross-sectional view of the first switching valve 19 cut at a portion of the third cylindrical portion 194c of the valve body 194 perpendicular to the axial direction.
  • Three holes 194g of the third cylindrical portion 194c of the valve body 194 are formed in the circumferential direction of the third cylindrical portion 194c, and the opening of the inner cylinder member 193 when the valve body 194 is in a predetermined rotational position. It overlaps with 193f and 193j.
  • the packing 195 is being fixed to the peripheral part of the opening parts 193f and 193j of the inner cylinder member 193.
  • the packing 195 is in close contact with the third cylindrical portion 194c of the valve body 194, and plays a role of liquid-tight sealing between the openings 193f and 193j of the inner cylinder member 193.
  • a third annular space 196c is formed between the third cylindrical portion 194c of the valve body 194 and the third cylindrical portion 192c of the case 192.
  • the third annular space 196c communicates with the outlet 19e.
  • FIG. 10 is a cross-sectional view of the first switching valve 19 cut at a portion of the fourth cylindrical portion 194d of the valve body 194 perpendicular to the axial direction.
  • Three holes 194h of the fourth cylindrical portion 194d of the valve body 194 are formed in the circumferential direction of the third cylindrical portion 194c, and the opening of the inner cylinder member 193 when the valve body 194 is in a predetermined rotational position. It overlaps with 193g and 193k.
  • the packing 195 is being fixed to the peripheral part of the opening parts 193g and 193k of the inner cylinder member 193.
  • the packing 195 is in close contact with the fourth cylindrical portion 194d of the valve body 194, and plays a role of sealing between the openings 193g and 193k of the inner cylinder member 193 in a liquid-tight manner.
  • a fourth annular space 196d is formed between the fourth cylindrical portion 194d of the valve body 194 and the fourth cylindrical portion 192d of the case 192.
  • the fourth annular space 196d communicates with the outlet 19f.
  • the space between the first annular space 196a and the second annular space 196b is liquid-tightly sealed with a packing 197.
  • the packing 197 is formed in an annular shape so as to be sandwiched between the step surface of the valve body 194 and the step surface of the case 192 over the entire circumference.
  • annular packing 197 is also liquid-tightly between the second annular space 196b and the third annular space 196c and between the third annular space 196c and the fourth annular space 196d. It is sealed.
  • FIG. 12 is a cross-sectional view of the first switching valve 19 cut at a portion of the first cylindrical portion 194a of the valve body 194 perpendicular to the axial direction.
  • FIG. 12 for ease of explanation, only one hole 194e, 194f, 194g, 194h out of three holes 194e, 194f, 194g, 194h formed in the valve body 194 is shown, and the other two The holes 194e, 194f, 194g, and 194h are not shown.
  • valve body 194 In the first state, the valve body 194 is rotated to the position shown in FIG. 12, and the hole 194e of the first cylindrical portion 194a of the valve body 194 overlaps the opening 193h on the second space 193c side of the inner cylinder member 193, The opening 193d on the first space 193b side of the cylindrical member 193 is closed by the first cylindrical portion 194a of the valve body 194.
  • the second space 193c of the inner cylinder member 193 has an outlet 19c via the opening 193h of the inner cylinder member 193, the hole 194e of the valve body 194, and the first annular space 196a. Communicate with.
  • the first space 193b of the inner cylinder member 193 does not communicate with the outlet 19c.
  • the outlet 19c communicates with the inlet 19b and does not communicate with the inlet 19a.
  • the hole 194f of the second cylindrical portion 194b of the valve body 194 overlaps the opening 193e on the first space 193b side of the inner cylindrical member 193, and the second of the inner cylindrical member 193
  • the opening 193i on the space 193c side is closed by the second cylindrical portion 194b of the valve body 194.
  • the first space 193b of the inner cylinder member 193 communicates with the outlet 19d, and the second space 193c of the inner cylinder member 193 does not communicate with the outlet 19d. Accordingly, the outlet 19d communicates with the inlet 19a and does not communicate with the inlet 19b.
  • the hole 194g of the third cylindrical portion 194c of the valve body 194 overlaps with the opening 193f on the first space 193b side of the inner cylindrical member 193, and the second of the inner cylindrical member 193 is omitted.
  • the opening 193j on the space 193c side is closed by the third cylindrical portion 194c of the valve body 194.
  • the first space 193b of the inner cylinder member 193 communicates with the outlet 19e, and the second space 193c of the inner cylinder member 193 does not communicate with the outlet 19e. Therefore, the outlet 19e communicates with the inlet 19a and does not communicate with the inlet 19b.
  • the hole 194h of the fourth cylindrical portion 194d of the valve body 194 overlaps the opening 193g on the first space 193b side of the inner cylindrical member 193, and the second of the inner cylindrical member 193
  • the opening 193k on the space 193c side is closed by the fourth cylindrical portion 194d of the valve body 194.
  • the first space 193b of the inner cylinder member 193 communicates with the outlet 19f, and the second space 193c of the inner cylinder member 193 does not communicate with the outlet 19f. Accordingly, the outlet 19f communicates with the inlet 19a and does not communicate with the inlet 19b.
  • FIG. 13 is a cross-sectional view of the first switching valve 19 cut at a portion of the first cylindrical portion 194a of the valve body 194 perpendicular to the axial direction.
  • FIG. 13 for ease of explanation, only one hole 194e, 194f, 194g, 194h out of three holes 194e, 194f, 194g, 194h formed in the valve body 194 is shown, and the other two The holes 194e, 194f, 194g, and 194h are not shown.
  • valve body 194 In the second state, the valve body 194 is rotated to the position shown in FIG. 13, and the hole 194e of the first cylindrical portion 194a of the valve body 194 overlaps the opening 193h on the second space 193c side of the inner cylinder member 193, The opening 193d on the first space 193b side of the cylindrical member 193 is closed by the first cylindrical portion 194a of the valve body 194.
  • the second space 193c of the inner cylinder member 193 communicates with the outlet 19c, and the first space 193b of the inner cylinder member 193 does not communicate with the outlet 19c. Accordingly, the outlet 19c communicates with the inlet 19b and does not communicate with the inlet 19a.
  • the hole 194f of the second cylindrical portion 194b of the valve body 194 overlaps the opening 193e on the first space 193b side of the inner cylindrical member 193, and the second of the inner cylindrical member 193
  • the opening 193i on the space 193c side is closed by the second cylindrical portion 194b of the valve body 194.
  • the first space 193b of the inner cylinder member 193 communicates with the outlet 19d, and the second space 193c of the inner cylinder member 193 does not communicate with the outlet 19d. Accordingly, the outlet 19d communicates with the inlet 19a and does not communicate with the inlet 19b.
  • the hole 194g of the third cylindrical portion 194c of the valve body 194 overlaps with the opening 193j on the second space 193c side of the inner cylindrical member 193, and the first cylindrical portion 193 has a first shape.
  • the opening 193f on the space 193b side is closed by the third cylindrical portion 194c of the valve body 194.
  • the second space 193c of the inner cylinder member 193 communicates with the outlet 19e, and the first space 193b of the inner cylinder member 193 does not communicate with the outlet 19e. Therefore, the outlet 19e communicates with the inlet 19b and does not communicate with the inlet 19a.
  • the hole 194h of the fourth cylindrical portion 194d of the valve body 194 overlaps the opening 193g on the first space 193b side of the inner cylindrical member 193, and the second of the inner cylindrical member 193
  • the opening 193k on the space 193c side is closed by the fourth cylindrical portion 194d of the valve body 194.
  • the first space 193b of the inner cylinder member 193 communicates with the outlet 19f, and the second space 193c of the inner cylinder member 193 does not communicate with the outlet 19f. Accordingly, the outlet 19f communicates with the inlet 19a and does not communicate with the inlet 19b.
  • FIG. 14 is a cross-sectional view of the first switching valve 19 cut at a portion of the first cylindrical portion 194a of the valve body 194 perpendicular to the axial direction.
  • FIG. 14 for ease of explanation, only one hole 194e, 194f, 194g, 194h out of three holes 194e, 194f, 194g, 194h formed in the valve body 194 is shown, and the other two The holes 194e, 194f, 194g, and 194h are not shown.
  • valve body 194 In the third state, the valve body 194 is rotated to the position shown in FIG. 14, and the hole 194e of the first cylindrical portion 194a of the valve body 194 overlaps the opening 193h on the second space 193c side of the inner cylinder member 193, The opening 193d on the first space 193b side of the cylindrical member 193 is closed by the first cylindrical portion 194a of the valve body 194.
  • the second space 193c of the inner cylinder member 193 communicates with the outlet 19c, and the first space 193b of the inner cylinder member 193 does not communicate with the outlet 19c. Accordingly, the outlet 19c communicates with the inlet 19b and does not communicate with the inlet 19a.
  • the hole 194f of the second cylindrical portion 194b of the valve body 194 overlaps the opening 193e on the first space 193b side of the inner cylindrical member 193, and the second of the inner cylindrical member 193
  • the opening 193i on the space 193c side is closed by the second cylindrical portion 194b of the valve body 194.
  • the first space 193b of the inner cylinder member 193 communicates with the outlet 19d, and the second space 193c of the inner cylinder member 193 does not communicate with the outlet 19d. Accordingly, the outlet 19d communicates with the inlet 19a and does not communicate with the inlet 19b.
  • the hole 194g of the third cylindrical portion 194c of the valve body 194 overlaps with the opening 193j on the second space 193c side of the inner cylindrical member 193, and the first cylindrical portion 193 has a first shape.
  • the opening 193f on the space 193b side is closed by the third cylindrical portion 194c of the valve body 194.
  • the second space 193c of the inner cylinder member 193 communicates with the outlet 19e, and the first space 193b of the inner cylinder member 193 does not communicate with the outlet 19e. Therefore, the outlet 19e communicates with the inlet 19b and does not communicate with the inlet 19a.
  • the hole 194 h of the fourth cylindrical portion 194 d of the valve body 194 overlaps the opening 193 k on the second space 193 c side of the inner cylindrical member 193, and the first cylindrical portion 193 has a first shape.
  • the opening 193g on the space 193b side is closed by the fourth cylindrical portion 194d of the valve body 194.
  • the second space 193c of the inner cylinder member 193 communicates with the outlet 19f, and the first space 193b of the inner cylinder member 193 does not communicate with the outlet 19f. Accordingly, the outlet 19f communicates with the inlet 19b and does not communicate with the inlet 19a.
  • the control device 40 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits, performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side.
  • the control device controls the operation of the first pump 11, the second pump 12, the compressor 23, the switching valve electric motor 30, and the like.
  • the control device 40 is configured integrally with a control device that controls various control target devices connected to the output side thereof, but has a configuration (hardware and software) that controls the operation of each control target device.
  • the control device for controlling the operation of each control target device is configured.
  • the configuration (hardware and software) that controls the operation of the electric motor 30 for the switching valve is particularly referred to as the switching valve control device 40a.
  • the switching valve control device 40a may be configured separately from the control device 40.
  • Detecting signals of sensor groups such as the inside air sensor 41, the outside air sensor 42, and the water temperature sensor 43 are input to the input side of the control device 40.
  • the inside air sensor 41 is a detection device (inside air temperature detection device) that detects an inside air temperature (in-vehicle temperature).
  • the outside air sensor 42 is a detection device (outside air temperature detection device) that detects outside air temperature.
  • the water temperature sensor 43 is a detection device (heat medium temperature detection device) that detects the temperature of the cooling water immediately after passing through the radiator 13.
  • the air conditioner switch 44 is a switch for switching on / off of the air conditioner (in other words, cooling on / off), and is disposed near the instrument panel in the passenger compartment.
  • the control device 40 performs the first mode shown in FIG. 2, and the outside air temperature detected by the outside air sensor 42 is more than 15 ° C. and less than 40 ° C.
  • the second mode shown in FIG. 3 is implemented, and when the outside air temperature detected by the outside air sensor 42 is 40 ° C. or higher, the third mode shown in FIG. 4 is implemented.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19d, 19e, 19f, and the inlet 19b communicates with the outlet 19c.
  • the inlets 20b, 20c, and 20d communicate with the outlet 20e, and the inlet 20a communicates with the outlet 20f.
  • the first pump 11, the battery cooler 15, the inverter cooler 16, the exhaust gas cooler 17, and the radiator 13 constitute a first coolant circuit (medium temperature coolant circuit)
  • the second pump 12, the coolant cooler. 14 and the cooler core 18 constitute a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 is branched to the battery cooler 15, the inverter cooler 16, and the exhaust gas cooler 17 by the first switching valve 19. Cooling water that has flowed in parallel through the cooler 15, the inverter cooler 16, and the exhaust gas cooler 17 is collected by the second switching valve 20, flows through the radiator 13, and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14, the first switching valve 19, the cooler core 18, and the second switching valve 20. It is sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the battery cooler 15, the inverter cooler 16 and the exhaust gas cooler 17, and the low temperature cooling water cooled by the cooling water cooler 14 is It flows through the cooler core 18.
  • the battery, inverter and exhaust gas are cooled by the medium temperature cooling water, and the blown air into the vehicle interior is cooled by the low temperature cooling water.
  • the medium temperature cooling water cooled by the outside air by the radiator 13 becomes about 25 ° C., so that the battery, inverter and exhaust gas can be sufficiently cooled by the medium temperature cooling water.
  • the air blown into the vehicle compartment can be sufficiently cooled by the low-temperature cooling water.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the second state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19d and 19f
  • the inlet 19b communicates with the outlets 19c and 19e
  • the inlets 20b and 20d communicate with the outlet 20e
  • the inlets 20a and 20c communicate with the outlet 20f.
  • the first pump 11, the inverter cooler 16, the exhaust gas cooler 17, and the radiator 13 constitute a first coolant circuit (medium temperature coolant circuit)
  • the battery cooler 15 constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 branches to the inverter cooler 16 and the exhaust gas cooler 17 by the first switching valve 19, and the inverter cooler 16 and the exhaust gas are discharged.
  • the cooling water that has flowed in parallel through the gas cooler 17 gathers at the second switching valve 20, flows through the radiator 13, and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14 and branches to the cooler core 18 and the battery cooler 15 by the first switching valve 19 as indicated by the solid line arrows in FIG.
  • the cooling water flowing in parallel through the battery cooler 15 is collected by the second switching valve 20 and sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the inverter cooler 16 and the exhaust gas cooler 17, and the low temperature cooling water cooled by the cooling water cooler 14 is the cooler core 18 and the battery cooler 15. Flowing.
  • the inverter and the exhaust gas are cooled by the medium-temperature cooling water, and the blown air and the battery into the vehicle compartment are cooled by the low-temperature cooling water.
  • the medium temperature cooling water cooled by the outside air by the radiator 13 becomes about 40 ° C., so that the inverter and the exhaust gas can be sufficiently cooled by the medium temperature cooling water.
  • the air blown into the vehicle compartment and the battery can be sufficiently cooled by the low-temperature cooling water.
  • the battery in the second mode, since the battery is cooled by the low-pressure refrigerant of the refrigeration cycle 22, the battery can be sufficiently cooled even when the outside air cannot sufficiently cool the battery due to the high outside air temperature. .
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the third state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlet 19d
  • the inlet 19b communicates with the outlets 19c, 19e, 19f.
  • the inlet 20b communicates with the outlet 20e
  • the inlets 20a, 20c, and 20d communicate with the outlet 20f.
  • the first pump 11, the exhaust gas cooler 17 and the radiator 13 constitute a first coolant circuit (medium temperature coolant circuit)
  • the second pump 12 the coolant cooler 14, the cooler core 18, the battery cooler 15 and
  • the inverter cooler 16 constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 flows through the exhaust gas cooler 17 through the first switching valve 19 and flows through the radiator 13 through the second switching valve 20. And sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14, and the first switching valve 19 causes the cooler core 18, the battery cooler 15, and the inverter cooler 16.
  • the cooling water that branches and flows in parallel through the cooler core 18, the battery cooler 15, and the inverter cooler 16 gathers at the second switching valve 20 and is sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the exhaust gas cooler 17, and the low temperature cooling water cooled by the cooling water cooler 14 is the cooler core 18, the battery cooler 15, and the inverter cooler 16. Flowing.
  • the exhaust gas is cooled by the cooling water cooled by the radiator 13, and the air blown into the vehicle interior, the battery and the inverter are cooled by the cooling water cooled by the cooling water cooler 14.
  • the medium temperature cooling water cooled by the outside air by the radiator 13 becomes about 50 ° C., so that the exhaust gas can be sufficiently cooled by the medium temperature cooling water.
  • the air blown into the vehicle compartment, the battery, and the inverter can be sufficiently cooled by the low-temperature cooling water.
  • the battery and the inverter are cooled by the low-pressure refrigerant of the refrigeration cycle 22, the battery and the inverter can be cooled even when the outside air cannot be sufficiently cooled because the outside air temperature is very high. Can be cooled sufficiently.
  • a plurality of temperature adjustment targets is achieved by a simple configuration in which a plurality of temperature adjustment target devices 15, 16, 17, 18 are connected in parallel between the first and second switching valves 19, 20.
  • the cooling water circulated to the devices 15, 16, 17, 18 can be switched.
  • the outside air temperature is detected as a temperature related to the temperature of the cooling water heat-exchanged by the radiator 13, and the operations of the first switching valve 19 and the second switching valve 20 are controlled in accordance with the outside air temperature. Since the first to third modes are performed, the cooling water circulating to the plurality of temperature adjustment target devices 15, 16, 17, 18 can be switched according to the temperature of the cooling water heat-exchanged by the radiator 13.
  • the first mode is performed and the first pump is applied to all of the plurality of temperature adjustment target devices 15, 16, 17, 18.
  • the second pump 12 is switched from the second mode to the third mode as the outside air temperature increases. Increase the number of temperature control target devices through which cooling water circulates.
  • the cooling load of the cooling water cooler 14 (that is, the cooling load of the refrigeration cycle 22) can be changed according to the temperature of the cooling water heat-exchanged by the radiator 13, so that energy saving can be achieved.
  • the second mode is switched to the third mode, and the cooling water is circulated between the second pump 12 in order from the required temperature adjustment target device having a low cooling temperature.
  • the plurality of temperature adjustment target devices 15, 16, 17, and 18 can be appropriately cooled while achieving the above.
  • the exhaust gas cooler 17 is connected between the outlet 19d of the first switching valve 19 and the inlet 20b of the second switching valve 20, but in the second embodiment, FIG.
  • a condenser 50 temperature adjustment target device
  • a heater core 51 are connected between an outlet 19 d of the first switching valve 19 and an inlet 20 b of the second switching valve 20.
  • the condenser 50 is a high-pressure side heat exchanger that heats the cooling water by condensing the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 23 and the cooling water.
  • the cooling water inlet side of the condenser 50 is connected to the outlet 19 d of the first switching valve 19.
  • the heater core 51 is a heat exchanger for heating that heats the blown air by exchanging heat between the blown air and the cooling water after passing through the cooler core 18.
  • the heater core 51 is disposed on the air flow downstream side of the cooler core 18 inside the casing 27 of the indoor air conditioning unit.
  • the cooling water inlet side of the heater core 51 is connected to the cooling water outlet side of the condenser 50.
  • the cooling water outlet side of the heater core 51 is connected to the inlet 20 b of the second switching valve 20.
  • the cooling water cooler 14 is connected between the discharge side of the first pump 11 and the inlet 19b of the first switching valve 19, but in this embodiment, the cooling water cooler 14 is connected. Is connected between the first switching valve 19 and the cooler core 18. Specifically, the cooling water inlet side of the cooling water cooler 14 is connected to the outlet 19 c of the first switching valve 19, and the cooling water outlet side of the cooling water cooler 14 is connected to the cooling water inlet side of the cooler core 18. Has been.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f into five types.
  • the 2nd switching valve 20 is also the structure which can switch the communication state of the inlets 20a, 20c, 20d and the outlets 20e, 20f into five types of states.
  • FIG. 17 shows the operation (first mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the first state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d, 19e, and 19f and communicates the inlet 19b with the outlet 19c.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19d, 19e, and 19f as shown by a one-dot chain line arrow in FIG. 17, and from the inlet 19b as shown in the solid line arrow in FIG.
  • the cooling water that has flowed in is discharged from the outlet 19c.
  • the second switching valve 20 connects the inlets 20b, 20c, and 20d with the outlet 20e, and connects the inlet 20a with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b, 20c, and 20d to flow out from the outlet 20e as shown by the one-dot chain line arrow in FIG. 17, and from the inlet 20a as shown in the solid line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 18 shows the operation of the cooling system 10 (second mode) when the first switching valve 19 and the second switching valve 20 are switched to the second state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d and 19f, and communicates the inlet 19b with the outlets 19c and 19e.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19d and 19f as shown by the one-dot chain arrow in FIG. 18, and flows in from the inlet 19b as shown by the solid line arrow in FIG. Cooling water is discharged from the outlets 19c and 19e.
  • the second switching valve 20 communicates the inlets 20b and 20d with the outlet 20e and communicates the inlets 20a and 20c with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b and 20d to flow out from the outlet 20e as shown by the one-dot chain arrows in FIG. 18, and from the inlets 20a and 20c as shown by the solid line arrows in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 19 shows the operation of the cooling system 10 (third mode) when the first switching valve 19 and the second switching valve 20 are switched to the third state.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19d, and communicates the inlet 19b with the outlets 19c, 19e, and 19f.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19d as shown by the one-dot chain line arrow in FIG. 19, and the cooling water flowing in from the inlet 19b as shown in the solid line arrow in FIG. From the outlets 19c, 19e, 19f.
  • the second switching valve 20 communicates the inlet 20b with the outlet 20e and communicates the inlets 20a, 20c, and 20d with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlet 20b to flow out from the outlet 20e as shown by a one-dot chain line arrow in FIG. 19, and from the inlets 20a, 20c and 20d as shown in the solid line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 20 shows the operation of the cooling system 10 (fourth mode) when the first switching valve 19 and the second switching valve 20 are switched to the fourth state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19c, 19e, 19f, and communicates the inlet 19b with the outlet 19d.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19c, 19e, and 19f as shown by the solid line arrow in FIG. 20, and from the inlet 19b as shown in the dashed line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 19d.
  • the second switching valve 20 communicates the inlet 20b with the outlet 20f and communicates the inlets 20a, 20c, and 20d with the outlet 20e.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20a, 20c, and 20d to flow out from the outlet 20e as shown by solid line arrows in FIG. 20, and from the inlet 20b as shown by the one-dot chain line arrows in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 21 shows the operation of the cooling system 10 (fifth mode) when the first switching valve 19 and the second switching valve 20 are switched to the fifth state.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19c, and communicates the inlet 19b with the outlets 19d, 19e, and 19f. Thereby, the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19c as shown by the broken line arrow in FIG. 21, and the cooling water flowing in from the inlet 19b as shown in the one-dot chain line arrow in FIG. From the outlets 19d, 19e, 19f.
  • the second switching valve 20 communicates the inlet 20a with the outlet 20e and communicates the inlets 20b, 20c, and 20d with the outlet 20f.
  • the second switching valve 20 causes the coolant flowing in from the inlet 20a to flow out from the outlet 20e as shown by the broken line arrow in FIG. 21, and from the inlets 20b, 20c, and 20d as shown by the one-dot chain line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • the cooling water cooler 14 and the condenser 50 are composed of a single tank-and-tube heat exchanger 52. Almost half of the heat exchanger 52 constitutes the cooling water cooler 14, and the remaining part of the heat exchanger 52 constitutes the condenser 50.
  • the heat exchanger 52 has a heat exchange core part 52a, tank parts 52b and 52c, and a partition part 52d.
  • the heat exchange core part 52a has a plurality of tubes through which cooling water and refrigerant are circulated separately.
  • the plurality of tubes are stacked in parallel to each other.
  • the tank parts 52b and 52c are arranged on both ends of the plurality of tubes, and distribute and collect cooling water and refrigerant to the plurality of tubes.
  • the internal spaces of the tank portions 52b and 52c are partitioned by a partition member (not shown) into a space where cooling water flows and a space where refrigerant flows.
  • the partition part 52d partitions the inside of the tank parts 52b and 52c into two spaces in the tube stacking direction (left and right direction in FIG. 22).
  • a portion of the heat exchanger 52 on one side (right side in FIG. 22) in the tube stacking direction from the partition portion 52d constitutes the cooling water cooler 14, and in the heat exchanger 52, in the tube stacking direction from the partition portion 52d.
  • the other side (left side in FIG. 22) constitutes the condenser 50.
  • the members constituting the heat exchange core part 52a, the tank parts 52b and 52c, and the partition part 52d are formed of metal (for example, an aluminum alloy) and joined to each other by brazing.
  • the cooling water inlet 52e and the refrigerant outlet 52f are formed in a part of the one tank portion 52b constituting the cooling water cooler 14.
  • a cooling water outlet 52g and a refrigerant inlet 52h are formed in a portion of the other tank portion 52c constituting the cooling water cooler 14.
  • the cooling water flows into the tank portion 52b from the inlet 52e, is distributed to the cooling water tubes in the tank portion 52b, and is collected in the tank portion 52c after flowing through the cooling water tubes. And flows out from the outlet 52g.
  • the refrigerant flows into the tank portion 52c from the inlet 52h, is distributed to the refrigerant tube in the tank portion 52c, and is collected in the tank portion 52b after flowing through the refrigerant tube and flows out from the outlet 52f. .
  • the cooling water inlet 52h and the refrigerant outlet 52i are formed in a portion of the one tank portion 52b constituting the condenser 50.
  • a cooling water outlet 52j and a refrigerant inlet 52k are formed in a portion of the other tank portion 52c constituting the condenser 50.
  • the cooling water flows into the tank portion 52b from the inlet 52h, is distributed to the cooling water tube in the tank portion 52b, and is collected in the tank portion 52c after flowing through the cooling water tube. It flows out of 52j.
  • the refrigerant flows into the tank portion 52c from the inlet 52k, is distributed to the refrigerant tube in the tank portion 52c, and after flowing through the refrigerant tube, is collected in the tank portion 52b and flows out from the outlet 52i.
  • the heat exchanger 52 is not limited to a tank and tube type heat exchanger, and other types of heat exchangers can be employed.
  • control device 40 executes the computer program according to the flowchart of FIG.
  • step S100 it is determined whether or not the air conditioner switch 44 is turned on. If it is determined that the air conditioner switch 44 is turned on, it is determined that cooling is necessary, and the process proceeds to step S110, where it is determined whether or not the temperature of the cooling water detected by the water temperature sensor 43 is less than 40 degrees.
  • step S120 When it determines with the temperature of the cooling water detected with the water temperature sensor 43 being less than 40 degree
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19d, 19e, 19f, and the inlet 19b communicates with the outlet 19c.
  • the inlets 20b, 20c, and 20d communicate with the outlet 20e, and the inlet 20a communicates with the outlet 20f.
  • the first pump 11, the battery cooler 15, the inverter cooler 16, the condenser 50, the heater core 51, and the radiator 13 constitute a first cooling water circuit (medium temperature cooling water circuit), and the second pump 12, cooling water cooling.
  • a second cooling water circuit (low temperature cooling water circuit) is configured by the vessel 14 and the cooler core 18.
  • the cooling water discharged from the first pump 11 branches to the battery cooler 15, the inverter cooler 16, and the condenser 50 by the first switching valve 19, and the battery cooler 15, the inverter cooler 16 and the condenser 50 flow in parallel, and the cooling water that flows through the condenser 50 flows through the heater core 51 in series, the cooling water that flows through the heater core 51, the cooling water that flows through the battery cooler 15, and the inverter
  • the cooling water that has flowed through the cooler 16 gathers at the second switching valve 20, flows through the radiator 13, and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14 and the cooler core 18 in series via the first switching valve 19, and passes through the second switching valve 20. Then, it is sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the battery cooler 15, the inverter cooler 16, the condenser 50 and the heater core 51, and the low temperature cooling water cooled by the cooling water cooler 14. Flows through the cooler core 18.
  • the battery and the inverter are cooled by the medium temperature cooling water, and in the condenser 50, the medium temperature cooling water is heated by exchanging heat with the high-pressure refrigerant of the refrigeration cycle 22, and the cooler core In 18, the low-temperature cooling water and the air blown into the vehicle interior exchange heat, thereby cooling the air blown into the vehicle interior.
  • the intermediate temperature cooling water heated by the condenser 50 exchanges heat with the blown air after passing through the cooler core 18 when flowing through the heater core 51. Thereby, in the heater core 51, the blown air after passing through the cooler core 18 is heated. In other words, the blast air cooled and dehumidified by the cooler core 18 can be heated by the heater core 51 to create conditioned air at a desired temperature.
  • the medium temperature cooling water cooled by the outside air by the radiator 13 becomes about 25 ° C., so that the battery and the inverter can be sufficiently cooled by the medium temperature cooling water.
  • the air blown into the vehicle compartment can be sufficiently cooled by the low-temperature cooling water.
  • step S110 determines whether the temperature of the cooling water detected by the water temperature sensor 43 is not less than 40 degrees. If it is determined in step S110 that the temperature of the cooling water detected by the water temperature sensor 43 is not less than 40 degrees, the process proceeds to step S130 as the temperature of the medium temperature cooling water is high, and is detected by the water temperature sensor 43. It is determined whether the temperature of the cooling water is 40 degrees or more and less than 50 degrees.
  • step S140 When it is determined that the temperature of the cooling water detected by the water temperature sensor 43 is not less than 40 degrees and less than 50 degrees, the process proceeds to step S140, and the second mode shown in FIG. 18 is performed.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the second state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19d and 19f
  • the inlet 19b communicates with the outlets 19c and 19e
  • the inlets 20b and 20d communicate with the outlet 20e
  • the inlets 20a and 20c communicate with the outlet 20f.
  • the first pump 11, the inverter cooler 16, the condenser 50, the heater core 51, and the radiator 13 constitute a first coolant circuit (medium temperature coolant circuit), and the second pump 12, the coolant cooler 14, and the cooler core 18.
  • the battery cooler 15 constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 branches to the inverter cooler 16 and the condenser 50 by the first switching valve 19, and the inverter cooler 16 and the condenser 50
  • the cooling water that has flowed through the condenser 50 flows in parallel through the heater core 51, and the cooling water that has flowed through the heater core 51 and the cooling water that has flowed through the inverter cooler 16 are gathered together by the second switching valve 20 to form the radiator 13. And is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 branches to the cooling water cooler 14 and the battery cooler 15 at the first switching valve 19 as shown by the solid line arrow in FIG.
  • the cooling water flowing in the cooler 15 in parallel, the cooling water flowing in the cooling water cooler 14 flowing in the cooler core 18 in series, the cooling water flowing in the cooler core 18 and the cooling water flowing in the battery cooler 15 at the second switching valve 20. Collected and sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the inverter cooler 16, the condenser 50, and the heater core 51, and the low temperature cooling water cooled by the cooling water cooler 14 is the cooler core 18 and the battery. It flows through the cooler 15.
  • the inverter can be cooled by the medium temperature cooling water, the battery can be cooled by the low temperature cooling water, and the blown air cooled and dehumidified by the cooler core 18 is heated by the heater core 51 in the same manner as in the first mode. Can produce.
  • the medium temperature cooling water cooled by the outside air by the radiator 13 becomes about 40 ° C., so that the inverter can be sufficiently cooled by the medium temperature cooling water.
  • the air blown into the vehicle compartment and the battery can be sufficiently cooled by the low-temperature cooling water.
  • the battery can be sufficiently cooled even when the battery cannot be sufficiently cooled by the outside air because the outside air temperature is high.
  • Step S130 when it is determined that the temperature of the cooling water detected by the water temperature sensor 43 is not 40 degrees or more and less than 50 degrees, it is determined that the temperature of the medium temperature cooling water is very high, the process proceeds to Step S150, and FIG. The third mode shown is implemented.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the third state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlet 19d
  • the inlet 19b communicates with the outlets 19c, 19e, 19f.
  • the inlet 20b communicates with the outlet 20e
  • the inlets 20a, 20c, and 20d communicate with the outlet 20f.
  • the first pump 11, the condenser 50, the heater core 51, and the radiator 13 constitute a first cooling water circuit (medium temperature cooling water circuit)
  • the second pump 12 the cooling water cooler 14, the cooler core 18, and the battery cooler 15.
  • the inverter cooler 16 constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 flows in the condenser 50 and the heater core 51 in series through the first switching valve 19 and in the radiator through the second switching valve 20. 13 flows through the first pump 11.
  • the cooling water discharged from the second pump 12 branches to the cooling water cooler 14, the battery cooler 15, and the inverter cooler 16 by the first switching valve 19, as indicated by solid line arrows in FIG.
  • the cooling water that has flowed through the cooler 14 flows through the cooler core 18 in series, and the cooling water that has flowed through the cooler core 18, the cooling water that has flowed through the battery cooler 15, and the cooling water that has flowed through the inverter cooler 16 are Collected and sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the condenser 50 and the heater core 51, and the low temperature cooling water cooled by the cooling water cooler 14 is the cooler core 18, the battery cooler 15, and the inverter cooler. 16 flows.
  • the battery and the inverter can be cooled by the low-temperature cooling water, and the blown air cooled and dehumidified by the cooler core 18 is heated by the heater core 51 in the same manner as in the first and second modes, thereby creating conditioned air at a desired temperature. it can.
  • the medium temperature cooling water cooled by the outside air by the radiator 13 is about 50 ° C. Since the low-temperature cooling water cooled by the low-pressure refrigerant of the refrigeration cycle 22 in the cooling water cooler 14 is about 0 ° C., the blown air, the battery, and the inverter to the vehicle compartment can be sufficiently cooled by the low-temperature cooling water.
  • the battery and the inverter are cooled by the low-pressure refrigerant of the refrigeration cycle 22, the battery and the inverter are sufficiently cooled even when the outside air cannot sufficiently cool the battery and the inverter because the outside air temperature is very high. can do.
  • step S100 If it is determined in step S100 that the air conditioner switch 44 is not turned on, it is determined that cooling is not necessary, and the process proceeds to step S160, where it is determined whether or not the outside air temperature detected by the outside air sensor 42 is 15 degrees or less.
  • step S170 If it is determined that the outside air temperature detected by the outside air sensor 42 is 15 ° C. or less, it is determined that a high heating capacity is necessary, and the process proceeds to step S170, and the fourth mode shown in FIG. 20 is performed.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the fourth state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19c, 19e, 19f, and the inlet 19b communicates with the outlet 19d.
  • the inlets 20a, 20c, and 20d communicate with the outlet 20e, and the inlet 20b communicates with the outlet 20f.
  • the first pump 11, the cooling water cooler 14, the cooler core 18, the battery cooler 15, the inverter cooler 16, and the radiator 13 constitute a first cooling water circuit (low temperature cooling water circuit)
  • the second pump 12, condensing A second cooling water circuit (medium temperature cooling water circuit) is configured by the vessel 50 and the heater core 51.
  • the cooling water discharged from the first pump 11 is branched to the cooling water cooler 14, the battery cooler 15, and the inverter cooler 16 by the first switching valve 19.
  • the cooling water that has flowed through the cooler 14 flows through the cooler core 18 in series, and the cooling water that has flowed through the cooler core 18, the cooling water that has flowed through the battery cooler 15, and the cooling water that has flowed through the inverter cooler 16 are The collected air flows through the radiator 13 and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows in the condenser 50 and the heater core 51 in series through the first switching valve 19, and passes through the second switching valve 20 to the second. 2 is sucked into the pump 12.
  • the low-temperature cooling water cooled by the cooling water cooler 14 flows through the cooler core 18, the battery cooler 15 and the inverter cooler 16. Can be cooled.
  • the cooling water absorbs heat from the outside air at the radiator 13. Then, the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 22 by the cooling water cooler 14 to dissipate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 22 absorbs heat from the outside air through the cooling water.
  • the cooling water in the intermediate temperature cooling water circuit is heated.
  • the coolant in the intermediate temperature coolant circuit heated by the condenser 50 exchanges heat with the blown air that has passed through the cooler core 18 when it flows through the heater core 51 to dissipate heat. Therefore, in the heater core 51, the blown air after passing through the cooler core 18 is heated. For this reason, in the 4th mode, heat pump heating which absorbs heat from outside air and heats the interior of a vehicle can be realized.
  • the medium-temperature cooling water heated by the condenser 50 becomes about 50 ° C., so that the blown air after passing through the cooler core 18 can be sufficiently heated by the medium-temperature cooling water.
  • the battery and the inverter can be sufficiently cooled by the low-temperature cooling water.
  • step S180 it is determined whether or not the inside air temperature detected by the inside air sensor 41 is 25 degrees or more. If it is determined that the internal air temperature detected by the internal air sensor 41 is not 25 degrees or higher, the flow returns to step S180 because a high heating capacity is required. Thereby, the fourth mode is performed until the internal temperature rises to 25 degrees or higher.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the fifth state shown in FIG.
  • the inlet 19a communicates with the outlet 19c
  • the inlet 19b communicates with the outlets 19d, 19e, 19f.
  • the inlet 20a communicates with the outlet 20e
  • the inlets 20b, 20c, and 20d communicate with the outlet 20f.
  • the first pump 11, the cooling water cooler 14, the cooler core 18 and the radiator 13 constitute a first cooling water circuit (low temperature cooling water circuit), and the second pump 12, the battery cooler 15, the inverter cooler 16, the condensation
  • a second cooling water circuit (medium temperature cooling water circuit) is configured by the vessel 50 and the heater core 51.
  • the second pump 12 is operated, and the first pump 11 and the compressor 23 are stopped. Accordingly, the cooling water does not circulate in the first cooling water circuit indicated by the broken line arrow in FIG.
  • the cooling water discharged from the second pump 12 is sent to the battery cooler 15, the inverter cooler 16, and the condenser 50 by the first switching valve 19.
  • the cooling water flowing through the condenser 50 flows in series through the heater core 51, the cooling water flowing through the heater core 51, the cooling water flowing through the battery cooler 15, and the cooling water flowing through the inverter cooler 16 are The two switching valves 20 gather and are sucked into the second pump 12.
  • the cooling water that has absorbed heat from the battery by the battery cooler 15 and the cooling water that has absorbed heat from the inverter by the inverter cooler 16 flow through the heater core 51.
  • the air can be heated.
  • the cooling water heated by the battery cooler 15 and the inverter cooler 16 becomes about 30 ° C. It can be maintained at 25 degrees or more.
  • heating can be performed by performing the fourth mode or the fifth mode.
  • the cooling water is circulated between the cooling water cooler 14 and the first pump 11, and the cooling water heat medium is circulated between the condenser 50 and the second pump 12.
  • the refrigerant of the refrigeration cycle 22 can absorb heat from the outside air through the cooling water flowing through the radiator 13 in the cooling water cooler 14. Therefore, the heat of the outside air can be pumped from the cooling water cooler 14 (low pressure side heat exchanger) of the refrigeration cycle 22 to the condenser 50 (high pressure side heat exchanger).
  • the air blown into the vehicle interior can be heated by the heater core 51 by the heat of the outside air pumped up by the refrigeration cycle 22, heat pump heating that absorbs heat from the outside air and heats the vehicle interior can be realized.
  • the cooling water is circulated between the battery cooler 15 and the heater core 51 between the second pump 12 and the first pump 11 is stopped. Thereby, the cooling water absorbs heat from the battery in the battery cooler 15, and the cooling water absorbed from the battery heats the air blown into the vehicle interior by the heater core 51. Therefore, the waste heat of the battery is recovered and used for heating the vehicle interior. Can be used.
  • the low-pressure refrigerant of the refrigeration cycle 22 is evaporated by the cooling water cooler 14, and the air blown into the passenger compartment is cooled by the cooler core 18, but in the third embodiment, shown in FIG. As described above, the low-pressure refrigerant in the refrigeration cycle 22 is evaporated by the cooling water cooler 14 and the evaporator 55, and the air blown into the passenger compartment is cooled by the evaporator 55 of the refrigeration cycle 22.
  • the refrigerant flows in parallel with the cooling water cooler 14.
  • the refrigeration cycle 22 has a refrigerant flow branch 56 between the refrigerant discharge side of the compressor 23 and the refrigerant inlet side of the expansion valve 25, and is compressed with the refrigerant outlet side of the cooling water cooler 14.
  • a refrigerant flow collecting portion 57 is provided between the refrigerant suction side of the machine 23, and an expansion valve 58 and an evaporator 55 are connected between the branch portion 56 and the collecting portion 57.
  • the expansion valve 58 is a decompression device that decompresses and expands the liquid-phase refrigerant branched by the branch portion 56.
  • the evaporator 55 evaporates the low-pressure refrigerant and cools the blown air by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 25 and the blown air to the passenger compartment.
  • a solenoid valve 59 (open / close valve) is connected between the branch portion 56 and the expansion valve 25.
  • the electromagnetic valve 59 When the electromagnetic valve 59 is in the open state, the refrigerant discharged from the compressor 23 flows into the expansion valve 25 and the cooling water cooler 14.
  • the solenoid valve 59 When the solenoid valve 59 is closed, the refrigerant flow to the expansion valve 25 and the cooling water cooler 14 is blocked. The operation of the electromagnetic valve 59 is controlled by the control device 40.
  • the refrigeration cycle 22 has a supercooler 60.
  • the subcooler 60 is a heat exchanger that further cools the liquid-phase refrigerant by exchanging heat between the liquid-phase refrigerant condensed by the condenser 50 and the cooling water, thereby increasing the degree of supercooling of the refrigerant.
  • the cooling water inlet side of the supercooler 60 is connected to the outlet 19 e of the first switching valve 19.
  • the cooling water outlet side of the subcooler 60 is connected to the cooling water inlet side of the battery cooler 15.
  • the battery cooler 15 and the battery are housed in a heat insulating container made of a heat insulating material. Thereby, the cold heat stored in the battery is prevented from escaping and the battery can be kept cold.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f to two types.
  • the second switching valve 20 is also configured to be able to switch the communication state between the inlets 20a, 20b, 20c, 20d and the outlets 20e, 20f between two types.
  • FIG. 25 shows the operation of the cooling system 10 (first mode) when the first switching valve 19 and the second switching valve 20 are switched to the first state and the electromagnetic valve 59 is switched to the open state.
  • FIG. 26 shows the operation (second mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the first state and the electromagnetic valve 59 is switched to the closed state. .
  • the first switching valve 19 causes the inlet 19a to communicate with the outlets 19d and 19f, and the inlet 19b to communicate with the outlets 19c and 19e.
  • the first switching valve 19 causes the coolant flowing in from the inlet 19a to flow out from the outlets 19d and 19f as shown by the one-dot chain arrows in FIGS. 25 and 26, and as shown by the solid arrows in FIGS.
  • the cooling water flowing in from the inlet 19b is discharged from the outlets 19c and 19e.
  • the second switching valve 20 communicates the inlets 20b and 20d with the outlet 20e and communicates the inlets 20a and 20c with the outlet 20f.
  • the second switching valve 20 causes the coolant flowing in from the inlets 20b and 20d to flow out from the outlet 20e as shown by the one-dot chain arrows in FIGS. 25 and 26, and as shown by the solid arrows in FIGS.
  • the cooling water flowing in from the inlets 20a and 20c is discharged from the outlet 20f.
  • FIG. 27 shows the operation (third mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the second state.
  • the first switching valve 19 connects the inlet 19a with the outlets 19c and 19f, connects the inlet 19b with the outlet 19d, and closes the outlet 19e.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19c and 19f as shown by the solid line arrow in FIG. 27, and flows in from the inlet 19b as shown in the one-dot chain line arrow in FIG.
  • the cooling water is allowed to flow out from the outlet 19d, and the cooling water is not allowed to flow out from the outlet 19e.
  • the second switching valve 20 connects the inlets 20a and 20d with the outlet 20e, connects the inlet 20b with the outlet 20f, and closes the inlet 20c.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20a and 20d to flow out from the outlet 20e as shown by the solid line arrows in FIG. 27, and flows in from the inlet 20b as shown in the dashed line arrows in FIG.
  • the cooling water is allowed to flow out from the outlet 20f, and the cooling water is not allowed to flow in from the inlet 20c.
  • the cooling water cooler 14, the condenser 50, and the supercooler 60 are composed of a single heat exchanger 61 of a tank and tube type. Specifically, a supercooler 60 is disposed between the cooling water cooler 14 and the condenser 50.
  • the heat exchanger 61 has a heat exchange core part 61a, tank parts 61b and 61c, and two partition parts 61d and 61d.
  • the heat exchange core 61a has a plurality of tubes through which cooling water and refrigerant are circulated separately. The plurality of tubes are stacked in parallel to each other.
  • the tank portions 61b and 61c are arranged on both ends of the plurality of tubes, and distribute and collect cooling water and refrigerant to the plurality of tubes.
  • the internal spaces of the tank portions 61b and 61c are partitioned by a partition member (not shown) into a space in which cooling water flows and a space in which refrigerant flows.
  • the two partition portions 61d and 61d partition the inside of the tank portions 61b and 61c into three spaces in the tube stacking direction (the left-right direction in FIG. 28).
  • a portion of the heat exchanger 52 on the one side in the tube stacking direction (the right side in FIG. 28) from the partition 61d constitutes the cooling water cooler 14, and the tube stacking direction in the heat exchanger 52 from the partition 61d.
  • part of the other side (left side of FIG. 28) comprises the condenser 50, and the site
  • the members constituting the heat exchange core portion 61a, the tank portions 61b and 61c, and the partition portion 61d are formed of metal (for example, aluminum alloy) and are joined to each other by brazing.
  • the cooling water inlet 61e and the refrigerant outlet 61f are formed in the portion of the one tank portion 61b constituting the cooling water cooler 14.
  • a cooling water outlet 61g and a refrigerant inlet 61h are formed in a portion of the other tank portion 61c constituting the cooling water cooler 14.
  • the cooling water flows into the tank portion 61b from the inlet 61e, is distributed to the cooling water tubes in the tank portion 61b, and is collected in the tank portion 61c after flowing through the cooling water tubes. And flows out from the outlet 61g.
  • the refrigerant flows into the tank portion 61c from the inlet 61h, is distributed to the refrigerant tube in the tank portion 61c, and is collected in the tank portion 61b after flowing through the refrigerant tube and flows out from the outlet 61f. .
  • the inlet 61i of the cooling water is formed in the part which comprises the condenser 50 among the one tank parts 61b.
  • a hole 61j through which a refrigerant flows is formed in a part of the partition 61d that partitions the internal space of the tank 61b into a tank space of the condenser 50 and a tank space of the supercooler 60.
  • a cooling water outlet 61k and a refrigerant inlet 61l are formed in a portion of the other tank portion 61c constituting the condenser 50.
  • the cooling water flows into the tank portion 61b from the inlet 61i, is distributed to the cooling water tube in the tank portion 61b, and is collected in the tank portion 61c after flowing through the cooling water tube. It flows out from 61k.
  • the refrigerant flows into the tank portion 61c from the inlet 61l, is distributed to the refrigerant tube in the tank portion 61c, and is collected in the tank portion 61b after flowing through the refrigerant tube and passes through the hole 61j of the partition portion 61d. It flows out to the subcooler 60.
  • the outlet 61m of the cooling water is formed in the part which comprises the supercooler 60 among the one tank parts 61b.
  • a cooling water inlet 61n and a refrigerant outlet 61o are formed in a portion of the other tank portion 61c constituting the supercooler 60.
  • the cooling water flows into the tank portion 61c from the inlet 61n, is distributed to the cooling water tubes in the tank portion 61c, and is collected in the tank portion 61b after flowing through the cooling water tubes. It flows out from the outlet 61m.
  • the refrigerant flows into the tank part 61b through the hole 61j of the partition part 61d and is distributed to the refrigerant tube in the tank part 61b. Spill from.
  • control device 40 When the battery is charged by the external power supply, the control device 40 performs the first mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG.
  • the pump 12 and the compressor 23 are operated, and the electromagnetic valve 59 is switched to the open state.
  • the inlet 19a communicates with the outlets 19d and 19f
  • the inlet 19b communicates with the outlets 19c and 19e
  • the inlets 20b and 20d communicate with the outlet 20e
  • the inlets 20a and 20c communicate with the outlet 20f.
  • the first pump 11, the inverter cooler 16, the condenser 50, the heater core 51, and the radiator 13 constitute a first coolant circuit (medium temperature coolant circuit)
  • the second pump 12, the coolant cooler 14, and the supercooler constitute a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 branches to the inverter cooler 16 and the condenser 50 by the first switching valve 19, and the inverter cooler 16 and the condenser 50
  • the cooling water that has flowed through the condenser 50 flows in parallel through the heater core 51, and the cooling water that has flowed through the heater core 51 and the cooling water that has flowed through the inverter cooler 16 are gathered together by the second switching valve 20 to form the radiator 13. And is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 is branched into the cooling water cooler 14 and the supercooler 60 by the first switching valve 19, and the cooling water cooler 14 and The cooling water that flows through the subcooler 60 in parallel, the cooling water that flows through the subcooler 60 flows through the battery cooler 15 in series, and the cooling water that flows through the battery cooler 15 and the cooling water that flows through the cooling water cooler 14
  • the two switching valves 20 gather and are sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the inverter cooler 16, the condenser 50, and the heater core 51, and the low temperature cooling water cooled by the cooling water cooler 14 is subcooler 60. And flows through the battery cooler 15.
  • the high-pressure refrigerant in the inverter and the condenser 50 is cooled by the medium-temperature cooling water, and the liquid-phase refrigerant and the battery in the supercooler 60 are cooled by the low-temperature cooling water. Thereby, cold energy is stored in the battery.
  • the compressor 23 of the refrigeration cycle 22 is driven by electric power supplied from the external power source. Therefore, in the first mode, the battery can be stored cold using the power supplied from the external power source.
  • the evaporator 55 cools the air blown into the vehicle interior by exchanging heat between the low-pressure refrigerant of the refrigeration cycle 22 and the air blown into the vehicle interior.
  • the high-temperature refrigerant in the refrigeration cycle 22 and the intermediate-temperature cooling water are heat-exchanged in the condenser 50 to heat the intermediate-temperature cooling water, and the heater core 51 blows air into the vehicle interior and the intermediate-temperature cooling water.
  • the air blown into the passenger compartment is heated by heat exchange.
  • pre-air-conditioning that performs air conditioning in the vehicle interior can be performed before the occupant gets on the vehicle.
  • control device 40 When the battery is not charged by the external power source and the passenger compartment needs to be cooled, the control device 40 performs the second mode shown in FIG.
  • the control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG.
  • the pump 12 and the compressor 23 are operated to switch the electromagnetic valve 59 to the closed state. That is, in the second mode, the state of the first switching valve 19 and the second switching valve 20 is the same as that in the first mode, and is different from the first mode in that the electromagnetic valve 59 is closed.
  • the cooling water is not cooled by the cooling water cooler 14, but the battery cooler 15 uses the cold heat stored in the battery in the first mode.
  • the cooling water is cooled.
  • the liquid phase refrigerant (high pressure refrigerant) of the supercooler 60 is cooled by the low temperature cooling water.
  • the efficiency of the refrigeration cycle 22 can be improved and energy saving can be achieved.
  • the low temperature cooling water may be cooled by the cooling water cooler 14 by opening the solenoid valve 59 in the second mode.
  • control device 40 When the battery is at a predetermined temperature (for example, 40 ° C.) or lower and the battery does not need to be cooled and the vehicle interior needs to be heated, the control device 40 performs the third mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the second state shown in FIG.
  • the pump 12 and the compressor 23 are operated, and the electromagnetic valve 59 is switched to the open state.
  • the inlet 19a communicates with the outlets 19c and 19f
  • the inlet 19b communicates with the outlet 19d
  • the outlet 19e is closed.
  • the inlets 20a and 20d communicate with the outlet 20e
  • the inlet 20b communicates with the outlet 20f
  • the inlet 20c is closed.
  • the first pump 11, the cooling water cooler 14, the inverter cooler 16 and the radiator 13 constitute a first cooling water circuit (low temperature cooling water circuit), and the second pump 12, the condenser 50 and the heater core 51 are the second.
  • a cooling water circuit (medium temperature cooling water circuit) is configured.
  • the cooling water discharged from the first pump 11 branches to the cooling water cooler 14 and the inverter cooler 16 by the first switching valve 19, and the cooling water cooler 14 and the inverter
  • the cooling water flowing through the cooler 16 in parallel, the cooling water flowing through the cooling water cooler 14, and the cooling water flowing through the inverter cooler 16 are collected by the second switching valve 20, flow through the radiator 13 and are sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the first switching valve 19 in series through the condenser 50 and the heater core 51, and then passes through the second switching valve 20. It is sucked into the second pump 12.
  • the inverter can be cooled with the low-temperature cooling water.
  • the cooling water circulation to the battery cooler 15 is stopped.
  • the cooling water absorbs heat from the outside air at the radiator 13. Then, the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 22 by the cooling water cooler 14 to dissipate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 22 absorbs heat from the outside air through the cooling water.
  • the cooling water in the intermediate temperature cooling water circuit is heated.
  • the cooling water of the intermediate temperature cooling water circuit heated by the condenser 50 exchanges heat with the blown air after passing through the evaporator 55 when it flows through the heater core 51 to dissipate heat. Therefore, in the heater core 51, the blown air after passing through the evaporator 55 is heated. For this reason, in the 4th mode, heat pump heating which absorbs heat from outside air and heats the interior of a vehicle can be realized.
  • the blown air heated by the heater core 51 is dry cold air cooled and dehumidified by the low-pressure refrigerant of the refrigeration cycle 22 in the evaporator 55. Therefore, dehumidifying heating can be performed in the third mode.
  • the battery when the temperature of the battery rises in the third mode, the battery may be cooled by circulating medium temperature cooling water or low temperature cooling water to the battery cooler 15.
  • the low pressure refrigerant of the refrigeration cycle is caused to flow through the cooling water cooler 14 by opening the electromagnetic valve 59.
  • the cooled water flows through the battery cooler 15 to cool the battery. For this reason, the cold heat created by the refrigeration cycle 22 can be stored in the battery.
  • the cooling water that has flowed through the battery cooler 15 flows through the subcooler 60. Therefore, the cooling heat stored in the battery is stored in the battery. Thus, the efficiency of the refrigeration cycle 22 can be improved.
  • the electromagnetic valve 59 is closed so that the low-pressure refrigerant of the refrigeration cycle does not flow into the cooling water cooler 14, so that the cooling load of the refrigeration cycle 22 can be reduced.
  • the cold energy stored in the battery can be used for cooling the temperature adjustment target device to reduce power consumption.
  • the supercooler 60 and the battery cooler 15 are connected in series with each other, the supercooler 60 and the battery cooler 15 are supercooled compared to the case where the supercooler 60 and the battery cooler 15 are connected in parallel with each other. Cooling water heated by flowing through the vessel 60 can be efficiently cooled by the cold heat stored in the battery cooler 15.
  • an intake air cooler 65 (temperature adjustment target device) is added to the third embodiment.
  • the intake air cooler 65 is a heat exchanger that cools the intake air by exchanging heat between the intake air that has been compressed by the engine supercharger and becomes high temperature and the cooling water.
  • the intake air is preferably cooled to about 30 ° C.
  • the cooling water inlet side of the intake air cooler 65 is connected to the outlet 19 g of the first switching valve 19.
  • the cooling water outlet side of the intake air cooler 65 is connected to the inlet 20 g of the second switching valve 20.
  • the supercooler 60 is connected between the coolant outlet side of the coolant cooler 14 and the inlet 20a of the second switching valve 20.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f, 19g to three types.
  • the 2nd switching valve 20 is also the structure which can switch the communication state of the inlets 20a, 20b, 20c, 20d, 20g and the outlets 20e, 20f into three types of states.
  • FIG. 30 shows the operation (first mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the first state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d, 19f, 19g, and communicates the inlet 19b with the outlets 19c, 19e.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19d, 19f, and 19g as shown by a one-dot chain line arrow in FIG. 30, and from the inlet 19b as shown in the solid line arrow in FIG.
  • the cooling water that has flowed in is discharged from the outlets 19c and 19e.
  • the second switching valve 20 connects the inlets 20b, 20d, and 20g with the outlet 20e, and connects the inlets 20a and 20c with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b, 20d, and 20g to flow out from the outlet 20e as shown by the one-dot chain line arrows in FIG. 30, and the inlet 20a,
  • the cooling water flowing in from 20c is discharged from outlet 20f.
  • FIG. 31 shows the operation of the cooling system 10 (second mode) when the first switching valve 19 and the second switching valve 20 are switched to the second state.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19d, and communicates the inlet 19b with the outlets 19c, 19e, 19f, and 19g.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19d as shown by the one-dot chain line arrow in FIG. 31, and the cooling water flowing in from the inlet 19b as shown in the solid line arrow in FIG. From the outlets 19c, 19e, 19f, 19g.
  • the second switching valve 20 communicates the inlet 20b with the outlet 20e and communicates the inlets 20a, 20c, 20d, and 20g with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlet 20b to flow out from the outlet 20e as shown by the one-dot chain line arrow in FIG. 31, and the inlets 20a, 20c, 20d, as shown by the solid line arrow in FIG.
  • the cooling water flowing in from 20 g is discharged from the outlet 20 f.
  • FIG. 32 shows the operation of the cooling system 10 (third mode) when the first switching valve 19 and the second switching valve 20 are switched to the third state.
  • the first switching valve 19 causes the inlet 19a to communicate with the outlets 19c and 19f, and allows the inlet 19b to communicate with the outlets 19d, 19e, and 19g.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19c and 19f as shown by the solid line arrow in FIG. 32, and flows in from the inlet 19b as shown in the one-dot chain line arrow in FIG. Cooling water is discharged from the outlets 19d, 19e, and 19g.
  • the second switching valve 20 communicates the inlets 20a and 20d with the outlet 20e and communicates the inlets 20b, 20c and 20g with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20a and 20d to flow out from the outlet 20e as shown by solid line arrows in FIG. 32, and the inlets 20b, 20c,
  • the cooling water flowing in from 20 g is discharged from the outlet 20 f.
  • the control device 40 performs the first mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG.
  • the pump 12 and the compressor 23 are operated, and the electromagnetic valve 59 is switched to the open state.
  • the inlet 19a communicates with the outlets 19d, 19f, 19g, and the inlet 19b communicates with the outlets 19c, 19e.
  • the inlets 20b, 20d, and 20g communicate with the outlet 20e, and the inlets 20a and 20c communicate with the outlet 20f.
  • the first pump 11, the inverter cooler 16, the condenser 50, the heater core 51, the intake air cooler 65, and the radiator 13 constitute a first cooling water circuit (medium temperature cooling water circuit), and the second pump 12, cooling water cooling
  • the second cooling water circuit (low-temperature cooling water circuit) is configured by the cooler 14, the supercooler 60, and the battery cooler 15.
  • the coolant discharged from the first pump 11 branches to the inverter cooler 16, the condenser 50 and the intake air cooler 65 by the first switching valve 19, and the inverter cooler 16, the condenser 50 and the intake air cooler 65 flow in parallel.
  • the cooling water that has flowed through the condenser 50 flows through the heater core 51 in series, the cooling water that flows through the heater core 51, the cooling water that flows through the inverter cooler 16, and the intake air.
  • the cooling water that has flowed through the cooler 65 gathers at the second switching valve 20, flows through the radiator 13, and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 branches to the cooling water cooler 14 and the battery cooler 15 by the first switching valve 19, and the cooling water cooler 14 and The cooling water that flows through the battery cooler 15 in parallel, the cooling water that flows through the cooling water cooler 14 flows in series through the subcooler 60, and the cooling water that flows through the subcooler 60 and the cooling water that flows through the battery cooler 15 are the first.
  • the two switching valves 20 gather and are sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the inverter cooler 16, the condenser 50, the heater core 51 and the intake air cooler 65, and the low temperature cooling water cooled by the cooling water cooler 14. Flows through the subcooler 60 and the battery cooler 15.
  • the high-pressure refrigerant in the inverter, the intake air, and the condenser 50 is cooled by the medium-temperature cooling water, and the liquid-phase refrigerant and the battery in the supercooler 60 are cooled by the low-temperature cooling water.
  • the evaporator 55 cools the air blown into the vehicle interior by exchanging heat between the low-pressure refrigerant of the refrigeration cycle 22 and the air blown into the vehicle interior.
  • the high-temperature refrigerant in the refrigeration cycle 22 and the intermediate-temperature cooling water are heat-exchanged in the condenser 50 to heat the intermediate-temperature cooling water, and the heater core 51 blows air into the vehicle interior and the intermediate-temperature cooling water.
  • the air blown into the passenger compartment is heated by heat exchange. Therefore, it is possible to air-condition the vehicle interior by creating conditioned air at a desired temperature.
  • control device 40 executes the second mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the second state shown in FIG.
  • the pump 12 and the compressor 23 are operated, and the electromagnetic valve 59 is switched to the open state.
  • the inlet 19a communicates with the outlet 19d
  • the inlet 19b communicates with the outlets 19c, 19e, 19f, 19g.
  • the inlet 20b communicates with the outlet 20e
  • the inlets 20a, 20c, 20d, and 20g communicate with the outlet 20f.
  • the first pump 11, the condenser 50, the heater core 51, and the radiator 13 constitute a first cooling water circuit (medium temperature cooling water circuit)
  • the second pump 12 the cooling water cooler 14, the supercooler 60, and the battery cooling.
  • the cooler 15, the inverter cooler 16, and the intake air cooler 65 constitute a second coolant circuit (low-temperature coolant circuit).
  • the cooling water discharged from the first pump 11 passes through the first switching valve 19 in series through the condenser 50 and the heater core 51, and then passes through the second switching valve 20 to the second. 1 pump 11 is inhaled.
  • the cooling water discharged from the second pump 12 is cooled by the first switching valve 19 in the cooling water cooler 14, the battery cooler 15, the inverter cooler 16, and the intake air cooler 65.
  • the cooling water flowing through the cooling water cooler 14 flows in series through the supercooler 60, the cooling water flowing through the supercooler 60, the cooling water flowing through the battery cooler 15, and the inverter cooler 16.
  • the cooling water and the cooling water flowing through the intake air cooler 65 are collected by the second switching valve 20 and sucked into the second pump 12.
  • the medium-temperature cooling water cooled by the radiator 13 flows through the condenser 50 and the heater core 51, and the low-temperature cooling water cooled by the cooling water cooler 14 is the subcooler 60 and the battery cooler 15. And flows through the inverter cooler 16 and the intake air cooler 65.
  • the high-pressure refrigerant in the condenser 50 is cooled by the medium-temperature cooling water, and the liquid-phase refrigerant, battery, inverter, and intake air of the supercooler 60 are cooled by the low-temperature cooling water.
  • the evaporator 55 cools the air blown into the vehicle interior by exchanging heat between the low-pressure refrigerant of the refrigeration cycle 22 and the air blown into the vehicle interior.
  • the high-temperature refrigerant in the refrigeration cycle 22 and the intermediate-temperature cooling water are heat-exchanged in the condenser 50 to heat the intermediate-temperature cooling water, and the intermediate-temperature cooling water and air blown into the vehicle interior are heated in the heater core 51.
  • the air blown into the passenger compartment is heated by heat exchange. Therefore, it is possible to air-condition the vehicle interior by creating conditioned air at a desired temperature.
  • the intake air is cooled by the low-temperature cooling water so that the low-temperature cooling water flows through the intake air cooler 65 in the same manner as in the second mode at the time of sudden acceleration such as when starting.
  • the intake air can be sufficiently cooled to improve fuel efficiency.
  • the control device 40 When the outside air temperature detected by the outside air sensor 42 is 0 ° C. or lower, the control device 40 performs the third mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the third state shown in FIG.
  • the pump 12 and the compressor 23 are operated, and the electromagnetic valve 59 is switched to the open state.
  • the inlet 19a communicates with the outlets 19c, 19f
  • the inlet 19b communicates with the outlets 19d, 19e, 19g.
  • the inlets 20a and 20d communicate with the outlet 20e
  • the inlets 20b, 20c and 20g communicate with the outlet 20f.
  • the first pump 11, the cooling water cooler 14, the supercooler 60, the inverter cooler 16, and the radiator 13 constitute a first cooling water circuit (low temperature cooling water circuit)
  • the second pump 12 the battery cooler 15.
  • the condenser 50, the heater core 51, and the intake air cooler 65 constitute a second cooling water circuit (medium temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 branches to the cooling water cooler 14 and the inverter cooler 16 by the first switching valve 19 and flows through the cooling water cooler 14.
  • the cooling water that has flowed through the subcooler 60 in series and the cooling water that has flowed through the subcooler 60 and the cooling water that has flowed through the inverter cooler 16 are collected by the second switching valve 20 and sucked into the first pump 11. .
  • the cooling water discharged from the second pump 12 branches to the battery cooler 15, the condenser 50 and the intake air cooler 65 by the first switching valve 19.
  • the cooling water flowing through the heater core 51 flows in series, and the cooling water flowing through the heater core 51, the cooling water flowing through the battery cooler 15, and the cooling water flowing through the intake air cooler 65 gather at the second switching valve 20. And sucked into the second pump 12.
  • the inverter can be cooled with the low-temperature cooling water.
  • the cooling water absorbs heat from the outside air at the radiator 13. Then, the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 22 by the cooling water cooler 14 to dissipate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 22 absorbs heat from the outside air through the cooling water.
  • the cooling water in the intermediate temperature cooling water circuit is heated.
  • the cooling water of the intermediate temperature cooling water circuit heated by the condenser 50 exchanges heat with the blown air after passing through the evaporator 55 when it flows through the heater core 51 to dissipate heat. Therefore, in the heater core 51, the blown air after passing through the evaporator 55 is heated. For this reason, in the 4th mode, heat pump heating which absorbs heat from outside air and heats the interior of a vehicle can be realized.
  • the blown air heated by the heater core 51 is dry cold air that has been cooled and dehumidified by the evaporator 55. Therefore, dehumidifying heating can be performed in the third mode.
  • the medium-temperature cooling water heated by the condenser 50 flows through the battery cooler 15 and the intake air cooler 65, so that the battery can be heated to improve the battery output and the intake air is heated to generate fuel.
  • the atomization of the fuel can be promoted, and the fuel efficiency can be improved.
  • the combustion efficiency can be improved by promoting the atomization of the fuel, particularly at the cold start when the engine is cold and the fuel is difficult to atomize.
  • the radiator 13 is connected between the outlet 20e of the second switching valve 20 and the suction side of the first pump 11, but in the fifth embodiment, as shown in FIG.
  • the radiator 13 is connected between the outlet 19 g of the first switching valve 19 and the inlet 20 g of the second switching valve 20.
  • the cooling water inlet side of the radiator 13 is connected to the outlet 19 g of the first switching valve 19.
  • the coolant outlet side of the radiator 13 is connected to the inlet 20 g of the second switching valve 20.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f, 19g between two types.
  • the 2nd switching valve 20 is also the structure which can switch the communication state of the inlets 20a, 20b, 20c, 20d, 20g and the outlets 20e, 20f into two types of states.
  • FIG. 34 shows the operation (first mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the first state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d and 19e, and communicates the inlet 19b with the outlets 19c, 19f, and 19g.
  • the first switching valve 19 causes the cooling water flowing from the inlet 19a to flow out from the outlets 19d and 19e as shown by the one-dot chain line arrow in FIG. 34, and flows from the inlet 19b as shown by the solid line arrow in FIG. Cooling water is discharged from the outlets 19c, 19f, and 19g.
  • the second switching valve 20 communicates the inlets 20b and 20c with the outlet 20e and communicates the inlets 20a, 20d and 20g with the outlet 20f.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b and 20c to flow out from the outlet 20e as shown by the one-dot chain arrows in FIG. 34, and the inlets 20a, 20d, and so on as shown by the solid line arrows in FIG.
  • the cooling water flowing in from 20 g is discharged from the outlet 20 f.
  • FIG. 35 shows the operation of the cooling system 10 (second mode) when the first switching valve 19 and the second switching valve 20 are switched to the second state.
  • the first switching valve 19 connects the inlet 19a with the outlet 19d, connects the inlet 19b with the outlets 19c, 19e, and 19f, and closes the outlet 19g.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19d as shown by the one-dot chain line arrow in FIG. 35, and the cooling water flowing in from the inlet 19b as shown in the solid line arrow in FIG. Is discharged from the outlets 19c, 19e, and 19f, and the cooling water is not discharged from the outlet 19g.
  • the second switching valve 20 connects the inlet 20b with the outlet 20e, connects the inlets 20a, 20c, and 20d with the outlet 20f, and closes the inlet 20g.
  • the second switching valve 20 causes the cooling water flowing in from the inlet 20b to flow out from the outlet 20e as shown by a one-dot chain line arrow in FIG.
  • the inflowing cooling water is allowed to flow out from the outlet 20f, and the cooling water is not allowed to flow in from the inlet 20g.
  • the control device 40 When the battery is charged by an external power source in winter when the outside air temperature is very low (for example, 0 ° C.), the control device 40 performs the first mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19d, 19e
  • the inlet 19b communicates with the outlets 19c, 19f, 19g.
  • the inlets 20b and 20c communicate with the outlet 20e
  • the inlets 20a, 20d and 20g communicate with the outlet 20f.
  • the first pump 11, the battery cooler 15, the condenser 50, and the heater core 51 constitute a first cooling water circuit (medium temperature cooling water circuit), and the second pump 12, the cooling water cooler 14, the cooler core 18, and the inverter cooling.
  • the second cooling water circuit (low temperature cooling water circuit) is configured by the vessel 16 and the radiator 13.
  • the coolant discharged from the first pump 11 branches to the battery cooler 15 and the condenser 50 at the first switching valve 19, and the battery cooler 15 and the condenser 50
  • the cooling water that flows through the condenser 50 flows in series through the heater core 51, and the cooling water that flows through the heater core 51 and the cooling water that flows through the battery cooler 15 are collected by the second switching valve 20 to form the first. It is sucked into the pump 11.
  • the cooling water discharged from the second pump 12 branches to the cooling water cooler 14, the inverter cooler 16 and the radiator 13 by the first switching valve 19 to cool the cooling water.
  • the cooling water that has flowed through the cooler 14 flows in series through the cooler core 18, the cooling water that has flowed through the cooler core 18, the cooling water that has flowed through the inverter cooler 16, and the cooling water that has flowed through the radiator 13 are collected by the second switching valve 20. It is sucked into the second pump 12.
  • the cooling water cooler 14 flows through the inverter cooler 16 and the cooler core 18, the blown air to the inverter and the vehicle compartment can be cooled by the low-temperature cooling water.
  • the cooling water absorbs heat from the outside air at the radiator 13. Then, the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 22 by the cooling water cooler 14 to dissipate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 22 absorbs heat from the outside air through the cooling water.
  • the cooling water in the intermediate temperature cooling water circuit is heated.
  • the coolant in the intermediate temperature coolant circuit heated by the condenser 50 exchanges heat with the blown air that has passed through the cooler core 18 when it flows through the heater core 51 to dissipate heat. Therefore, in the heater core 51, the blown air after passing through the cooler core 18 is heated. For this reason, in the 4th mode, heat pump heating which absorbs heat from outside air and heats the interior of a vehicle can be realized.
  • the blown air heated by the heater core 51 is dry cold air cooled and dehumidified by the cooler core 18. Therefore, dehumidifying heating can be performed in the first mode.
  • pre-air-conditioning for performing air conditioning in the vehicle interior can be performed before the occupant gets on the vehicle.
  • the battery cooler 15 since the medium temperature cooling water heated by the condenser 50 flows through the battery cooler 15, it is possible to heat the battery and store the heat in the battery.
  • the battery is heated to about 40 ° C. in the first mode.
  • control device 40 executes the second mode shown in FIG.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the second state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlet 19d
  • the inlet 19b communicates with the outlets 19c, 19e, 19f
  • the outlet 19g is closed.
  • the inlet 20b communicates with the outlet 20e
  • the inlets 20a, 20c, and 20d communicate with the outlet 20f
  • the inlet 20g is closed.
  • the first pump 11, the condenser 50 and the heater core 51 constitute a first cooling water circuit (medium temperature cooling water circuit), and the second pump 12, the cooling water cooler 14, the cooler core 18, the battery cooler 15, and the inverter cooling.
  • a second cooling water circuit (low-temperature cooling water circuit) is configured by the vessel 16, and the cooling water circulation to the radiator 13 is stopped.
  • the coolant discharged from the first pump 11 flows through the first switching valve 19 in series through the condenser 50 and the heater core 51, and then passes through the second switching valve 20 to the second. 1 pump 11 is inhaled.
  • the cooling water discharged from the second pump 12 is branched into the cooling water cooler 14, the battery cooler 15 and the inverter cooler 16 by the first switching valve 19, and cooled.
  • the cooling water that has flowed through the water cooler 14 flows through the cooler core 18 in series.
  • the cooling water that has flowed through the cooler core 18, the cooling water that has flowed through the battery cooler 15, and the cooling water that has flowed through the inverter cooler 16 are the second switching valve 20. And are sucked into the second pump 12.
  • the battery cooler 15 absorbs heat from the battery. Then, the cooling water that has absorbed heat from the battery in the battery cooler 15 exchanges heat with the refrigerant in the refrigeration cycle 22 in the cooling water cooler 14 to radiate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 22 absorbs heat from the battery via the cooling water.
  • the cooling water in the intermediate temperature cooling water circuit is heated.
  • the coolant in the intermediate temperature coolant circuit heated by the condenser 50 exchanges heat with the blown air that has passed through the cooler core 18 when it flows through the heater core 51 to dissipate heat. Therefore, in the heater core 51, the blown air after passing through the cooler core 18 is heated. For this reason, in the second mode, heat pump heating that absorbs heat from the battery and heats the passenger compartment can be realized.
  • the blown air heated by the heater core 51 is dry cold air cooled and dehumidified by the cooler core 18. Therefore, dehumidifying heating can be performed in the second mode.
  • the battery since the battery is heated to about 40 ° C. in the first mode, it can be a heat pump that takes heat away from the battery at 40 ° C. in the second mode. For this reason, since the low-pressure refrigerant of the refrigeration cycle 22 can be operated at a higher temperature than that which absorbs heat from outside air (for example, 0 ° C.), the operation efficiency of the heat pump can be increased.
  • the cooling water does not circulate through the radiator 13 and the radiator 13 does not absorb heat from the outside air, so that the frosting of the radiator 13 can be prevented.
  • the cooling water cooler 14, the battery cooler 15, the inverter cooler 16, the exhaust gas cooler 17, the cooler core 18, the condenser 50, and the intake air cooler 65 are provided as the temperature adjustment target devices.
  • an intake air cooler 65, a fuel cooler 66, and an in-vehicle electronic device cooler 67 are provided as temperature adjustment target devices.
  • the fuel cooler 66 is a heat exchanger that cools the fuel by exchanging heat between the fuel supplied to the engine and the coolant.
  • the in-vehicle electronic device cooler 67 is a heat exchanger that cools the in-vehicle electronic device by exchanging heat between the in-vehicle electronic device and the cooling water. As described above, various devices can be used as the temperature adjustment target device.
  • the condenser 50 may be connected between the discharge side of the first pump 11 and the inlet 19a of the first switching valve 19.
  • the cooling water outlet 61g and the cooling water inlet 61n are formed in portions of the tank 61c of the heat exchanger 61 that constitute the cooling water cooler 14 and the supercooler 60.
  • the cooling water outlet 61g and the cooling water inlet 61n are abolished, and the internal space of the tank portion 61b in the partition 61d is used as the tank of the cooling water cooler 14.
  • a hole 61p through which the refrigerant flows is formed in a portion partitioned into the space and the tank space of the supercooler 60.
  • the cooling water flows into the tank portion 61b from the inlet 61e, is distributed to the cooling water tubes in the tank portion 61b, and is collected in the tank portion 61c after flowing through the cooling water tubes. Then, it flows out from the hole 61p of the partition portion 61d to the supercooler 60.
  • the cooling water flows into the tank part 61c through the hole 61p of the partition part 61d, is distributed to the cooling water tube in the tank part 61c, and is collected in the tank part 61b after flowing through the cooling water tube. And flows out from the outlet 61m.
  • the cooling water outlet 61g and the cooling water inlet 61n can be eliminated from the heat exchanger 61 of the third embodiment, so that the cooling water pipe connection structure can be simplified.
  • the cooling water cooler 14, the condenser 50, and the supercooler 60 are configured by one heat exchanger 61.
  • the eighth embodiment as shown in FIG. The water cooler 14, the condenser 50, and the expansion valve 25 are integrated.
  • the cooling water cooler 14 is composed of a tank and tube type heat exchanger, and has a heat exchange core portion 14a and tank portions 14b and 14c.
  • the heat exchange core part 14a has a plurality of tubes through which the cooling water and the refrigerant are circulated separately.
  • the plurality of tubes are stacked in parallel to each other.
  • the tank portions 14b and 14c are disposed on both ends of the plurality of tubes, and distribute and collect cooling water and refrigerant to the plurality of tubes.
  • the members constituting the heat exchange core portion 14a and the tank portions 14b and 14c are formed of metal (for example, aluminum alloy) and joined to each other by brazing.
  • the condenser 50 is composed of a tank and tube type heat exchanger, and has a heat exchange core portion 50a and tank portions 50b and 50c.
  • the heat exchange core part 50a has a plurality of tubes through which cooling water and refrigerant are circulated separately.
  • the plurality of tubes are stacked in parallel to each other.
  • the tank portions 50b and 50c are disposed on both ends of the plurality of tubes, and distribute and collect cooling water and refrigerant to the plurality of tubes.
  • Each member constituting the heat exchange core part 50a and the tank parts 50b, 50c is formed of metal (for example, aluminum alloy) and joined to each other by brazing.
  • the cooling water cooler 14 and the condenser 24 are arranged side by side in the tube stacking direction (left and right direction in FIG. 38).
  • the expansion valve 25 is sandwiched and fixed between the cooling water cooler 14 and the condenser 24.
  • the expansion valve 25 is a temperature type expansion valve in which the valve opening is adjusted by a mechanical mechanism so that the degree of superheat of the refrigerant flowing out of the cooling water cooler 14 falls within a predetermined range, and the outlet side of the cooling water cooler 14 It has the temperature sensing part 25a which detects the superheat degree of a refrigerant
  • the cooling water inlet 14e and the refrigerant outlet 14f are formed in one tank portion 14c of the cooling water cooler 14.
  • the refrigerant outlet 14 f overlaps the refrigerant inlet of the temperature sensing part 25 a of the expansion valve 25.
  • the other tank portion 14b of the cooling water cooler 14 is formed with a cooling water outlet 14g and a refrigerant inlet 14h.
  • the refrigerant inlet 14 h overlaps the refrigerant outlet of the expansion valve 25.
  • the cooling water flows into the tank portion 14c from the inlet 14e, is distributed to the cooling water tubes in the tank portion 14c, and is collected in the tank portion 14b after flowing through the cooling water tubes. And flows out from the outlet 14g.
  • the refrigerant depressurized by the expansion valve 25 flows into the tank portion 14b from the inlet 14h, is distributed to the refrigerant tubes in the tank portion 14b, and circulates through the refrigerant tubes and then gathers in the tank portion 14c. Then, it flows out from the outlet 14f to the temperature sensing part 25a of the expansion valve 25.
  • a refrigerant outlet 25 b is formed in the temperature sensing part 25 a of the expansion valve 25.
  • an inlet 50e for cooling water and an outlet 50f for refrigerant are formed in one tank portion 50b of the condenser 50.
  • the refrigerant outlet 50 b overlaps the refrigerant inlet of the expansion valve 25.
  • a cooling water outlet 50 g and a refrigerant inlet 50 h are formed in the other tank portion 50 c of the condenser 50.
  • the cooling water flows into the tank portion 50b from the inlet 50e, is distributed to the cooling water tubes in the tank portion 50b, and after being circulated through the cooling water tubes, is gathered in the tank portion 50c and exited. It flows out from 50g.
  • the refrigerant flows into the tank portion 50 c from the inlet 50 h, is distributed to the refrigerant tubes in the tank portion 50 c, circulates through the refrigerant tubes, and then collects in the tank portion 50 b and is sent from the outlet 50 f to the expansion valve 25. leak.
  • the refrigerant flowing out from the outlet 50f to the expansion valve 25 is decompressed by the expansion valve 25 and flows into the cooling water cooler 14.
  • the refrigerant piping between the cooling water cooler 14 and the expansion valve 25 and between the condenser 50 and the expansion valve 25 is unnecessary, so that the connection structure of the refrigerant piping can be simplified.
  • the operation mode is switched according to the outside air temperature detected by the outside air sensor 42.
  • the operation mode is changed according to the temperature of the inverter and the temperature of the battery. It is supposed to switch.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f into four types.
  • the second switching valve 20 is also configured to be able to switch the communication state between the inlets 20a, 20b, 20c, 20d and the outlets 20e, 20f into four types of states.
  • FIG. 39 shows the operation (first mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the first state.
  • the first switching valve 19 closes the inlet 19a and allows the inlet 19b to communicate with the outlets 19c, 19d, 19e, and 19f.
  • the first switching valve 19 does not allow the cooling water to flow from the inlet 19a, but causes the cooling water that has flowed from the inlet 19b to flow out from the outlets 19c, 19d, 19e, and 19f as indicated by the solid line arrows in FIG.
  • the second switching valve 20 closes the outlet 20e and allows the inlets 20a, 20b, 20c, and 20d to communicate with the outlet 20f.
  • the second switching valve 20 does not cause the cooling water to flow out from the outlet 20e, but causes the cooling water flowing in from the inlets 20a, 20b, 20c, and 20d to flow out from the outlet 20f as shown by the solid line arrows in FIG.
  • FIG. 40 shows the operation of the cooling system 10 (second mode) when the first switching valve 19 and the second switching valve 20 are switched to the second state.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19d, and communicates the inlet 19b with the outlets 19c, 19e, and 19f.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19d as shown by the one-dot chain line arrow in FIG. 40, and the cooling water flowing in from the inlet 19b as shown in the solid line arrow in FIG. From the outlets 19c, 19e, 19f.
  • the second switching valve 20 communicates the inlets 20a, 20c, and 20d with the outlet 20f and communicates the inlet 20b with the outlet 20e.
  • the second switching valve 20 causes the cooling water flowing in from the inlet 20b to flow out from the outlet 20e as shown by a one-dot chain line arrow in FIG. 40, and from the inlets 20a, 20c and 20d as shown in the solid line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 41 shows the operation of the cooling system 10 (third mode) when the first switching valve 19 and the second switching valve 20 are switched to the third state.
  • the first switching valve 19 communicates the inlet 19a with the outlets 19d and 19e, and communicates the inlet 19b with the outlets 19c and 19f.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlets 19d and 19e as shown by the one-dot chain line arrow in FIG. 41, and flows in from the inlet 19b as shown in the solid line arrow in FIG. Cooling water is discharged from the outlets 19c and 19f.
  • the second switching valve 20 communicates the inlets 20a and 20d with the outlet 20f and communicates the inlets 20b and 20c with the outlet 20e.
  • the second switching valve 20 causes the cooling water flowing in from the inlets 20b and 20c to flow out from the outlet 20e as shown by the one-dot chain line arrow in FIG. 41, and from the inlets 20a and 20d as shown in the solid line arrow in FIG.
  • the inflowing cooling water is discharged from the outlet 20f.
  • FIG. 42 shows an operation (fourth mode) of the cooling system 10 when the first switching valve 19 and the second switching valve 20 are switched to the fourth state.
  • the first switching valve 19 connects the inlet 19a with the outlet 19d, connects the inlet 19b with the outlets 19e and 19f, and closes the outlet 19c.
  • the first switching valve 19 causes the cooling water flowing in from the inlet 19a to flow out from the outlet 19d as shown by the one-dot chain arrow in FIG. 42, and the cooling water flowing in from the inlet 19b as shown in the solid line arrow in FIG. Is discharged from the outlets 19e and 19f, and the cooling water is not discharged from the outlet 19c.
  • the second switching valve 20 connects the inlets 20c and 20d with the outlet 20f, connects the inlet 20b with the outlet 20e, and closes the inlet 20a.
  • the second switching valve 20 causes the cooling water flowing in from the inlet 20b to flow out from the outlet 20e as shown by the one-dot chain line arrow in FIG. 42, and flows in from the inlets 20c and 20d as shown in the solid line arrow in FIG.
  • the cooling water is allowed to flow out from the outlet 20f, and the cooling water is not allowed to flow in from the inlet 20a.
  • the electric control unit of the cooling system 10 receives detection signals from the inverter temperature sensor 45 and the battery temperature sensor 46 on the input side of the control device 40.
  • the inverter temperature sensor 45 is an inverter temperature detection device that detects the temperature of the inverter. For example, the inverter temperature sensor 45 may detect the temperature of the cooling water that has flowed out of the inverter cooler 16.
  • the battery temperature sensor 46 is a battery temperature detection device that detects the temperature of the battery. For example, the battery temperature sensor 46 may detect the temperature of the cooling water that has flowed out of the battery cooler 15.
  • control process executed by the control device 40 of this embodiment will be described with reference to FIG.
  • the control device 40 executes the computer program according to the flowchart of FIG.
  • step S200 it is determined whether or not the inverter temperature Tinv detected by the inverter temperature sensor 45 exceeds 60 ° C.
  • step S210 When it is determined that the inverter temperature Tinv does not exceed 60 ° C., it is determined that the inverter cooling priority is not high, the process proceeds to step S210, and the first mode shown in FIG. 39 is performed.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the first state shown in FIG. 39, and the second pump 12 and the compressor. 23 is operated and the first pump 11 is stopped.
  • the inlet 19a is closed, and the inlet 19b communicates with the outlets 19c, 19d, 19e, and 19f.
  • the inlets 20a, 20b, 20c, and 20d communicate with the outlet 20f, and the outlet 20e is closed.
  • the second pump 12, the coolant cooler 14, the battery cooler 15, the inverter cooler 16, the exhaust gas cooler 17, and the cooler core 18 constitute a low-temperature coolant circuit, and no intermediate-temperature coolant circuit.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14, and the battery cooler 15, the inverter cooler 16, the exhaust gas cooling by the first switching valve 19.
  • the coolant that branches into the cooler 17 and the cooler core 18 and flows in parallel through the battery cooler 15, the inverter cooler 16, the exhaust gas cooler 17, and the cooler core 18 is collected by the second switching valve 20 and sucked into the second pump 12. Is done.
  • the cooling water is not discharged from the first pump 11 and the cooling water does not flow to the radiator 13 as shown by the broken line arrows in FIG.
  • the low-temperature cooling water cooled by the cooling water cooler 14 flows through the battery cooler 15, the inverter cooler 16, the exhaust gas cooler 17, and the cooler core 18. For this reason, the battery, the inverter, the exhaust gas, and the air blown into the passenger compartment are cooled by the low-temperature cooling water.
  • step S200 If it is determined in step S200 that the inverter temperature Tinv exceeds 60 ° C., it is determined that the inverter cooling priority is high, and the process proceeds to step S220 to determine whether the inverter temperature Tinv is less than 70 ° C.
  • step S230 a warning lamp is lit. Thereby, it is possible to notify the occupant that the inverter is at an abnormally high temperature.
  • step S240 the process proceeds to step S240, and the warning lamp is turned off. As a result, it is possible to notify the occupant that the inverter is not at an abnormally high temperature.
  • step S250 it is determined whether or not the cooling water (medium temperature cooling water) of the intermediate temperature cooling water circuit is circulating in the exhaust gas cooler 17. Specifically, it is determined whether or not the cooling water (intermediate cooling water) of the intermediate temperature cooling water circuit is circulated in the exhaust gas cooler 17 according to the operating states of the first switching valve 19 and the second switching valve 20.
  • step S260 When it is determined that the intermediate temperature cooling water is not circulating in the exhaust gas cooler 17, the process proceeds to step S260 to lower the exhaust gas cooling capacity, and the second mode shown in FIG. 40 is performed.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the second state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlet 19d
  • the inlet 19b communicates with the outlets 19c, 19e, 19f.
  • the inlets 20a, 20c, and 20d communicate with the outlet 20f
  • the inlet 20b communicates with the outlet 20e.
  • the first pump 11, the exhaust gas cooler 17 and the radiator 13 constitute an intermediate temperature coolant circuit
  • the second pump 12 the coolant cooler 14, the battery cooler 15, the inverter cooler 16 and the cooler core 18 cool at low temperature.
  • a water circuit is constructed.
  • the cooling water discharged from the first pump 11 flows through the exhaust gas cooler 17 through the first switching valve 19 and flows through the radiator 13 through the second switching valve 20. It flows and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14 and is transferred to the battery cooler 15, the inverter cooler 16 and the cooler core 18 by the first switching valve 19.
  • the cooling water that branches and flows in parallel through the battery cooler 15, the inverter cooler 16, and the cooler core 18 is collected by the second switching valve 20 and sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the exhaust gas cooler 17, and the low temperature cooling water cooled by the cooling water cooler 14 is the battery cooler 15, the inverter cooler 16, and It flows through the cooler core 18.
  • the exhaust gas is cooled by the medium-temperature cooling water, and the air blown into the battery, the inverter and the vehicle compartment is cooled by the low-temperature cooling water.
  • the cooling capacity of the inverter can be improved as compared with the first mode in which the exhaust gas is also cooled by the low-temperature cooling water.
  • step S250 If it is determined in step S250 that the medium-temperature coolant is circulating in the exhaust gas cooler 17, the process proceeds to step S270, and it is determined whether or not the battery temperature Tbatt detected by the battery temperature sensor 46 exceeds 50 ° C. judge.
  • step S280 When it is determined that the battery temperature Tbatt does not exceed 50 ° C., it is determined that the battery cooling priority is not high, the process proceeds to step S280, and the third mode shown in FIG. 41 is performed.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the third state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlets 19d and 19e
  • the inlet 19b communicates with the outlets 19c and 19f.
  • the inlets 20a and 20d communicate with the outlet 20f
  • the inlets 20b and 20c communicate with the outlet 20e.
  • the first pump 11, the battery cooler 15, the exhaust gas cooler 17 and the radiator 13 constitute an intermediate temperature cooling water circuit
  • the second pump 12 the cooling water cooler 14, the inverter cooler 16 and the cooler core 18 cool at a low temperature.
  • a water circuit is constructed.
  • the cooling water discharged from the first pump 11 branches to the battery cooler 15 and the exhaust gas cooler 17 by the first switching valve 19, and the battery cooler 15 and
  • the cooling water that has flowed in parallel through the exhaust gas cooler 17 gathers at the second switching valve 20, flows through the radiator 13, and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14 and branches to the inverter cooler 16 and the cooler core 18 by the first switching valve 19 as shown by the solid line arrow in FIG.
  • the cooling water that has flowed in parallel through the vessel 16 and the cooler core 18 is collected by the second switching valve 20 and sucked into the second pump 12.
  • the medium temperature cooling water cooled by the radiator 13 flows through the battery cooler 15 and the exhaust gas cooler 17, and the low temperature cooling water cooled by the cooling water cooler 14 is converted into the inverter cooler 16 and It flows through the cooler core 18. For this reason, the battery and the exhaust gas are cooled by the medium temperature cooling water, and the blown air to the inverter and the vehicle interior is cooled by the low temperature cooling water.
  • the cooling capacity of the inverter can be improved as compared with the second mode in which the battery is also cooled by the low-temperature cooling water.
  • step S270 When it is determined in step S270 that the battery temperature Tbatt exceeds 50 ° C., it is determined that the battery cooling priority is high, the process proceeds to step S290, and the fourth mode shown in FIG. 42 is performed.
  • control device 40 controls the switching valve electric motor 30 so that the first switching valve 19 and the second switching valve 20 are in the fourth state shown in FIG.
  • the pump 12 and the compressor 23 are operated.
  • the inlet 19a communicates with the outlet 19d
  • the inlet 19b communicates with the outlets 19e and 19f
  • the outlet 19c is closed.
  • the inlet 20a is closed
  • the inlet 20b communicates with the outlet 20e
  • the inlets 20c and 20d communicate with the outlet 20f.
  • the first pump 11, the exhaust gas cooler 17 and the radiator 13 constitute an intermediate temperature coolant circuit
  • the second pump 12 the coolant cooler 14, the battery cooler 15 and the inverter cooler 16 constitute a low temperature coolant circuit. Composed.
  • the coolant discharged from the first pump 11 flows through the exhaust gas cooler 17 through the first switching valve 19 and flows through the radiator 13 through the second switching valve 20, as indicated by a one-dot chain line arrow in FIG. It flows and is sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 flows through the cooling water cooler 14 and branches to the battery cooler 15 and the inverter cooler 16 by the first switching valve 19.
  • the cooling water flowing in parallel through the battery cooler 15 and the inverter cooler 16 is collected by the second switching valve 20 and sucked into the second pump 12.
  • the cooling water does not circulate in the cooler core 18 as indicated by the broken line arrows in FIG.
  • the medium temperature cooling water cooled by the radiator 13 flows through the exhaust gas cooler 17, and the low temperature cooling water cooled by the cooling water cooler 14 passes through the battery cooler 15 and the inverter cooler 16.
  • the cooling water circulation to the cooler core 18 is stopped. For this reason, the battery and the exhaust gas are cooled by the medium-temperature cooling water, the inverter is cooled by the low-temperature cooling water, and cooling of the blown air into the vehicle compartment (that is, cooling) is stopped.
  • the cooling capacity of the battery and the inverter can be improved as compared with the second mode in which the air blown into the vehicle interior is also cooled by the low-temperature cooling water.
  • the third mode is performed and the cooling water is circulated between the inverter cooler 16 and the second pump 12.
  • the cooling water is circulated between the battery cooler 15 and the first pump 11.
  • a cooling water tank 70 for storing cooling water is provided.
  • the cooling water tank 70 is formed with a first cooling water inlet / outlet 70a and a second cooling water inlet / outlet 70b.
  • the first cooling water inlet / outlet 70 a is connected to a first branch portion 71 provided between the outlet 20 e of the second switching valve 20 and the cooling water inlet side of the radiator 13.
  • the second cooling water inlet / outlet 70 b is connected to a second branch portion 72 provided between the outlet 20 f of the second switching valve 20 and the suction side of the second pump 12.
  • the cooling water passage on the suction side of the second pump 12 communicates with the cooling water tank 70.
  • the internal pressure can be equalized between the first cooling water circuit and the second cooling water circuit. Therefore, in each of the first switching valve 19 and the second switching valve 20, the pressure difference acting on the valve body inside the switching valve can be reduced, so that leakage of cooling water inside the switching valve can be prevented.
  • the first cooling water circuit and the second cooling water circuit communicate with each other on the discharge side of the pump and the suction side of the pump
  • the internal pressure of the cooling water circuit communicating with the suction side of the pump becomes abnormal. It will rise.
  • the first cooling water circuit and the second cooling water circuit communicate with each other on the suction side of the pump, so that it is possible to prevent the internal pressure of the cooling water circuit from rising abnormally. Withstand voltage design becomes easy.
  • the first cooling water circuit and the second cooling water circuit are communicated with each other on the suction side of the pump.
  • the circuit and the second cooling water circuit are communicated with each other on the discharge side of the pump.
  • the first branching portion 71 of the first cooling water circuit is provided between the discharge side of the first pump 11 and the inlet 19a of the first switching valve 19, and the first cooling water circuit has a first branching portion 71.
  • the bifurcated portion 72 is provided between the discharge side of the second pump 12 and the inlet 19b of the first switching valve 19.
  • the cooling water tank 70 includes the first cooling water inlet / outlet 70a for connection to the first cooling water circuit and the second cooling water inlet / outlet 70b for connection to the second cooling water circuit.
  • one cooling water inlet / outlet port 70c connected to both the first cooling water circuit and the second cooling water circuit is formed in the cooling water tank 70.
  • the cooling water pipe connected to the cooling water inlet / outlet 70c of the cooling water tank 70 branches from one to two from the cooling water tank 70 side toward the first branch portion 71 and the second branch portion 72. It has a shape to do.
  • the circulation channel 80 is a channel through which the cooling water circulates without passing through the first switching valve 19 and the second switching valve 20, and one end thereof is connected to the cooling water outlet side of the battery cooler 15, and the other end. Is connected to the cooling water inlet side of the battery cooler 15.
  • the circulation flow path 80 is provided in parallel with the battery cooler flow path 84 (non-circulation flow path).
  • the battery cooler channel 84 is a channel in which the battery cooler 15 is disposed, and one end thereof is connected to the outlet 19e of the first switching valve 19 and the other end thereof is the inlet 20c of the second switching valve 20. It is connected to the.
  • the circulation flow path 80 and the battery cooler flow path 84 branch between the battery cooler 15 and the second switching valve 20, and the circulation flow between the battery cooler 15 and the first switching valve 19.
  • the path 80 and the battery cooler flow path 84 merge.
  • the third pump 81 is an electric pump that sucks and discharges cooling water (heat medium), and is disposed in the circulation flow path 80.
  • the third pump 81 is connected to a portion branched from the battery cooler flow channel 84 in the circulation flow channel 80 (a portion forming a flow channel different from the battery cooler flow channel 84). Has been placed.
  • the three-way valve 82 is a circulation switching valve that switches between opening and closing the circulation flow path 80 and the battery cooler flow path 84, and is arranged at a branch portion between the circulation flow path 80 and the battery cooler flow path 84.
  • the cooling water flowing out from the battery cooler 15 circulates through the circulation channel 80 and flows into the battery cooler 15.
  • the three-way valve 82 opens the battery cooler flow path 84 and closes the circulation flow path 80, the cooling water flowing out from the battery cooler 15 flows through the battery cooler flow path 84 and flows into the second switching valve 20. .
  • the inlet water temperature sensor 83 is an inflow temperature detection device that is disposed on the cooling water inlet side of the battery cooler 15 and detects the temperature of the cooling water flowing into the battery cooler 15 (inflow heat medium temperature).
  • the operation of the third pump 81 and the three-way valve 82 is controlled by the control device 40.
  • a detection signal from the inlet water temperature sensor 83 is input to the control device 40.
  • control process executed by the control device 40 of this embodiment will be described with reference to FIG.
  • the control device 40 executes the computer program according to the flowchart of FIG.
  • step S300 it is determined whether there is a battery cooling request. Specifically, when the battery temperature is equal to or higher than a first predetermined temperature (for example, 35 ° C.), it is determined that there is a battery cooling request, and when the battery temperature is lower than the first predetermined temperature, it is determined that there is no battery cooling request.
  • a first predetermined temperature for example, 35 ° C.
  • step S310 it is determined whether or not the battery temperature exceeds a cooling target temperature (for example, 40 ° C.). If it is determined that the battery temperature is higher than the cooling target temperature, the process proceeds to step S320. If it is determined that the battery temperature is not higher than the cooling target temperature, the process returns to step S300.
  • a cooling target temperature for example, 40 ° C.
  • step S320 the operations of the first switching valve 19, the second switching valve 20, the three-way valve 82, and the third pump 81 are controlled so as to be in the first cooling mode (non-circulation mode) shown in FIG.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19d
  • the inlet 19b communicates with the outlets 19c, 19e, and 19f
  • the second switching valve 20 communicates the inlet 20b with the outlet 20e.
  • the inlets 20a, 20c, and 20d are communicated with the outlet 20f.
  • the three-way valve 82 opens the battery cooler flow path 84 and closes the circulation flow path 80, and the third pump 81 stops.
  • a first cooling water circuit (medium temperature cooling water circuit) indicated by a one-dot chain line arrow in FIG. 49 and a second cooling water circuit (low temperature cooling water circuit) indicated by a solid line arrow in FIG. 49 are configured.
  • the first pump 11, the condenser 50, the heater core 51, and the radiator 13 constitute a first cooling water circuit (medium temperature cooling water circuit)
  • the second pump 12 the cooling water cooler 14, the cooler core 18, and the battery cooler 15.
  • the inverter cooler 16 constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the first pump 11 flows in the condenser 50 and the heater core 51 in series via the first switching valve 19, and the second switching valve 20 and the radiator. 13 and sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 branches into the cooling water cooler 14, the battery cooler 15, and the inverter cooler 16 at the first switching valve 19 as shown by the solid line arrows in FIG.
  • the water cooler 14, the battery cooler 15 and the inverter cooler 16 flow in parallel.
  • the coolant that has flowed through the coolant cooler 14 flows in series through the cooler core 18, and the coolant that has flowed through the cooler core 18 and the battery cooler 15
  • the coolant that has flowed and the coolant that has flowed through the inverter cooler 16 are collected by the second switching valve 20 and sucked into the second pump 12.
  • the low-temperature cooling water cooled by the cooling water cooler 14 flows through the battery cooler 15. For this reason, the battery is cooled by the low-temperature cooling water cooled by the cooling water cooler 14.
  • step S330 it is determined whether or not the cooling water temperature detected by the inlet water temperature sensor 83 (hereinafter referred to as the battery cooler inlet water temperature) is lower than a first cooling determination temperature Tc1 (for example, 10 ° C.).
  • the first cooling determination temperature Tc1 is a temperature determined based on the lower limit temperature of the battery operating temperature range (for example, 10 to 40 ° C.), and is stored in the control device 40 in advance.
  • step S340 If it is determined that the battery cooler inlet water temperature is lower than the first cooling determination temperature Tc1, the process proceeds to step S340. If it is determined that the battery cooler inlet water temperature is not lower than the first cooling determination temperature Tc1, the process proceeds to step S310. Return.
  • step S340 the operations of the first switching valve 19, the second switching valve 20, the three-way valve 82, and the third pump 81 are controlled so as to be in the second cooling mode (circulation mode) shown in FIG.
  • the first switching valve 19 connects the inlet 19a with the outlet 19d, connects the inlet 19b with the outlets 19c and 19f, closes the outlet 19e, and the second switching valve 20 connects the inlet 20b with the outlet 20e.
  • the inlets 20a and 20d are communicated with the outlet 20f, and the inlet 20c is closed.
  • the three-way valve 82 opens the circulation flow path 80 and closes the battery cooler flow path 84, and the third pump 81 operates.
  • the first cooling water circuit (medium temperature cooling water circuit) indicated by the one-dot chain line arrow in FIG. 50
  • the second cooling water circuit low temperature cooling water circuit
  • the two-dot chain line in FIG. And an internal circulation circuit indicated by an arrow.
  • the first pump 11, the condenser 50, the heater core 51 and the radiator 13 constitute a first cooling water circuit (medium temperature cooling water circuit), and the second pump 12, the cooling water cooler 14, the cooler core 18 and the inverter cooler 16. Constitutes a second cooling water circuit (low temperature cooling water circuit), and the third pump 81 and the battery cooler 15 constitute an internal circulation circuit.
  • the cooling water discharged from the first pump 11 flows in the condenser 50 and the heater core 51 in series via the first switching valve 19, and the second switching valve 20 and the radiator. 13 and sucked into the first pump 11.
  • the cooling water discharged from the second pump 12 branches to the cooling water cooler 14 and the inverter cooler 16 by the first switching valve 19, and the cooling water cooler 14 and The cooling water flowing through the inverter cooler 16 in parallel, the cooling water flowing through the cooling water cooler 14 flows through the cooler core 18 in series, and the cooling water flowing through the cooler core 18 and the cooling water flowing through the inverter cooler 16 are the second switching valve 20. And are sucked into the second pump 12.
  • the cooling water discharged from the third pump 81 flows through the battery cooler 15 and is sucked into the third pump 81.
  • the cooling water circulating in the internal circulation circuit flows through the battery cooler 15. For this reason, the low-temperature cooling water cooled by the cooling water cooler 14 does not flow through the battery cooler 15.
  • step S350 it is determined whether or not the battery cooler inlet water temperature is higher than a second cooling determination temperature Tc2 (for example, 12 ° C.).
  • the second cooling determination temperature Tc2 is a temperature higher than the first cooling determination temperature Tc1, and is stored in the control device 40 in advance.
  • step S310 If it is determined that the battery cooler inlet water temperature is higher than the second cooling determination temperature Tc2, the process returns to step S310. If it is determined that the battery cooler inlet water temperature is not higher than the second cooling determination temperature Tc2, the process returns to step S350. Return.
  • step S300 determines whether there is a battery heating request. Specifically, when the battery temperature is lower than a second predetermined temperature (for example, 15 ° C.), it is determined that there is a battery heating request, and when the battery temperature is equal to or higher than the second predetermined temperature, it is determined that there is no battery heating request.
  • a second predetermined temperature for example, 15 ° C.
  • step S370 it is determined whether or not the battery temperature is below a heating target temperature (eg, 10 ° C.).
  • a heating target temperature eg, 10 ° C.
  • step S380 the operations of the first switching valve 19, the second switching valve 20, the three-way valve 82, and the third pump 81 are controlled so as to be in the first heating mode (non-circulation mode) shown in FIG.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19c, communicates the inlet 19b with the outlets 19d and 19e, and the second switching valve 20 communicates the inlet 20a with the outlet 20e.
  • 20b and 20c are communicated with the outlet 20f.
  • the three-way valve 82 opens the battery cooler channel 84 and closes the circulation channel 80, and the third pump 81 stops.
  • a first cooling water circuit (medium temperature cooling water circuit) indicated by a one-dot chain line arrow in FIG. 51 and a second cooling water circuit (low temperature cooling water circuit) indicated by a solid line arrow in FIG. 51 are configured.
  • the second pump 12, the battery cooler 15, the condenser 50 and the heater core 51 constitute a first cooling water circuit (medium temperature cooling water circuit), and the first pump 11, the cooling water cooler 14, the cooler core 18 and the radiator 13. Constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the second pump 12 branches to the battery cooler 15 and the condenser 50 by the first switching valve 19, and the battery cooler 15 and the condenser 50, the cooling water flowing through the condenser 50 flows in series through the heater core 51, the cooling water flowing through the battery cooler 15 and the cooling water flowing through the heater core 51 are collected by the second switching valve 20, and 2 is sucked into the pump 12.
  • the cooling water discharged from the first pump 11 flows through the cooling water cooler 14 and the cooler core 18 in series via the first switching valve 19, and the second switching valve 20 and The air is sucked into the first pump 11 through the radiator 13.
  • the medium-temperature cooling water heated by the condenser 50 flows through the battery cooler 15. For this reason, the battery is heated by the medium-temperature cooling water heated by the condenser 50.
  • step S390 it is determined whether or not the battery cooler inlet water temperature is higher than a first heating determination temperature Tw1 (for example, 40 ° C.).
  • the first heating determination temperature Tw1 is a temperature determined based on the upper limit temperature of the battery use temperature range (for example, 10 to 40 ° C.), and is stored in the control device 40 in advance.
  • step S400 If it is determined that the battery cooler inlet water temperature is higher than the first heating determination temperature Tw1, the process proceeds to step S400. If it is determined that the battery cooler inlet water temperature is not higher than the first heating determination temperature Tw1, the process proceeds to step S370. Return.
  • step S400 the operations of the first switching valve 19, the second switching valve 20, the three-way valve 82, and the third pump 81 are controlled so as to be in the second heating mode (circulation mode) shown in FIG.
  • the first switching valve 19 communicates the inlet 19a with the outlet 19c, communicates the inlet 19b with the outlet 19d, closes the outlet 19e, and the second switching valve 20 communicates the inlet 20a with the outlet 20e.
  • the inlet 20b is communicated with the outlet 20f, and the inlet 20c is closed.
  • the three-way valve 82 opens the circulation channel 80 and closes the battery cooler channel 84, and the third pump 81 operates.
  • the first cooling water circuit (medium temperature cooling water circuit) indicated by the one-dot chain line arrow in FIG. 52
  • the second cooling water circuit low temperature cooling water circuit
  • the two-dot chain line in FIG. And an internal circulation circuit indicated by an arrow.
  • the second pump 12, the condenser 50 and the heater core 51 constitute a first cooling water circuit (medium temperature cooling water circuit), and the first pump 11, the cooling water cooler 14, the cooler core 18 and the radiator 13 constitute the second cooling water.
  • a circuit low temperature cooling water circuit is configured.
  • the coolant discharged from the second pump 12 flows through the first switching valve 19 in series through the condenser 50 and the heater core 51, and then passes through the second switching valve 20. It is sucked into the second pump 12.
  • the cooling water discharged from the first pump 11 flows through the first switching valve 19 in series through the cooling water cooler 14 and the cooler core 18, and passes through the second switching valve 20. Then, it is sucked into the first pump 11.
  • the cooling water discharged from the third pump 81 flows through the battery cooler 15 and is sucked into the third pump 81.
  • the cooling water circulating in the internal circulation circuit flows through the battery cooler 15. For this reason, the medium temperature cooling water heated by the condenser 50 does not flow through the battery cooler 15.
  • step S410 it is determined whether or not the battery cooler inlet water temperature is lower than a second heating determination temperature Tw2 (for example, 38 ° C.).
  • the second heating determination temperature Tw2 is a temperature higher than the first heating determination temperature Tw1, and is stored in the control device 40 in advance.
  • step S370 When it is determined that the battery cooler inlet water temperature is lower than the second heating determination temperature Tw2, the process returns to step S370, and when it is determined that the battery cooler inlet water temperature is not lower than the first cooling determination temperature Tc1, the process proceeds to step S410. Return.
  • step S360 determines whether there is no battery heating request. If it is determined in step S360 that there is no battery heating request, the process proceeds to step S420, where the temperature difference between the plurality of battery cells constituting the battery, that is, the temperature difference between the highest temperature cell and the lowest temperature cell. It is determined whether or not it exceeds a predetermined value (for example, 5 ° C.).
  • a predetermined value for example, 5 ° C.
  • step S430 the first switching valve 19 and the first switching valve 19 are set so as to enter the battery soaking operation mode (circulation mode) shown in FIG.
  • the operation of the 2-switch valve 20, the three-way valve 82, and the third pump 81 is controlled.
  • the first switching valve 19 closes the outlet 19e, and the second switching valve 20 closes the inlet 20c.
  • the three-way valve 82 opens the circulation flow path 80 and closes the battery cooler flow path 84, and the third pump 81 operates.
  • an internal circulation circuit indicated by a two-dot chain line arrow in FIG. 53 is configured. Therefore, as indicated by a two-dot chain line arrow in FIG. 53, the cooling water discharged from the third pump 81 flows through the battery cooler 15 and is sucked into the third pump 81.
  • the cooling water circulating in the internal circulation circuit flows through the battery cooler 15. For this reason, the low temperature cooling water cooled by the cooling water cooler 14 and the medium temperature cooling water heated by the condenser 50 do not flow through the battery cooler 15.
  • step S420 If it is determined in step S420 that the temperature difference between the battery cells does not exceed the predetermined value, the process returns to step S300.
  • the first cooling mode when there is a battery cooling request, when the battery cooler inlet water temperature falls below the first cooling determination temperature Tc1, the first cooling mode is switched to the second cooling mode.
  • the operation can be optimized. The reason will be described below.
  • the temperature of the cooling water flowing into the battery cooler 15 is preferably 10 to 40 ° C. This is because the temperature range in which the battery operates optimally is 10 ° C. to 40 ° C. That is, when the temperature of the battery exceeds 40 ° C., the deterioration of the battery is accelerated rapidly, leading to a decrease in battery life or damage. On the other hand, when the temperature of the battery is lower than 10 ° C., the chemical reaction of the battery is suppressed, the input / output of the battery is lowered, the acceleration of the vehicle is lowered, and the efficiency of battery regeneration / charging is lowered.
  • the battery output and internal resistance are temperature dependent, if the battery temperature changes abruptly, the battery input / output characteristics change abruptly and the controllability of the battery deteriorates. In addition, when the battery temperature changes abruptly, the temperature variation within the battery increases and the battery life is reduced.
  • the temperature of the cooling water flowing into the cooler core 18 is preferably 0 to 10 ° C.
  • the battery cooler 15 and the cooler core 18 are different in the appropriate temperature range of the inflowing cooling water.
  • the cooling water circulating in the internal circulation circuit flows through the battery cooler 15, and the low-temperature cooling water cooled by the cooling water cooler 14 does not flow through the battery cooler 15.
  • the cooling water circulating through is heated by the heat of the battery, and the temperature gradually rises.
  • the temperature of the cooling water flowing through the battery cooler 15 is set to be equal to or higher than the first cooling determination temperature Tc1. Therefore, it is possible to prevent the battery temperature from falling below the operating temperature range and the battery input / output from being lowered or the battery charging efficiency from being lowered.
  • the first cooling mode when the temperature of the cooling water circulating in the internal circulation circuit gradually rises and exceeds the second cooling determination temperature Tc2, the first cooling mode is switched, so that the cooling water cooler 14 has cooled the cooling water. Low temperature cooling water is introduced into the battery cooler 15. For this reason, it is possible to prevent the temperature of the cooling water flowing through the battery cooler 15 from further rising above the second cooling determination temperature Tc2.
  • the temperature of the cooling water flowing into the heater core 51 is 50 to 60 ° C. Therefore, in the battery cooler 15 and the heater core 51, the appropriate temperature range of the flowing cooling water. Is different.
  • the first heating mode when there is a battery heating request, when the battery cooler inlet water temperature exceeds the first heating determination temperature Tw1, the first heating mode is switched to the second heating mode, so that the heating performance is ensured.
  • the operation of the battery can be optimized.
  • the cooling water circulating in the internal circulation circuit flows through the battery cooler 15, and the medium temperature cooling water heated by the condenser 50 does not flow through the battery cooler 15, and therefore circulates in the internal circulation circuit.
  • the cooling water is cooled by the battery, and the temperature gradually decreases.
  • the temperature of the cooling water flowing through the battery cooler 15 can be set to the first heating determination temperature Tw1 or more. Therefore, it is possible to prevent the battery temperature from exceeding the operating temperature range and the deterioration of the battery to rapidly progress to reduce the battery life or to easily damage the battery.
  • the medium-temperature cooling water heated by the condenser 50 flows into the heater core 51, the medium-temperature cooling water not lower than the first heating determination temperature Tw1 can flow into the heater core 51 to ensure the heating performance.
  • the mode in the second heating mode, when the temperature of the cooling water circulating in the internal circulation circuit is gradually lowered and falls below the second heating determination temperature Tw2, the mode is switched to the first heating mode, so that the intermediate temperature cooling heated by the condenser 50 is performed. Water is introduced into the battery cooler 15. For this reason, it is possible to prevent the temperature of the cooling water flowing through the battery cooler 15 from further decreasing below the second heating determination temperature Tw2.
  • a battery temperature-uniform operation mode when there is neither a battery cooling request nor a battery heating request, a battery temperature-uniform operation mode when a temperature difference between a plurality of battery cells constituting the battery exceeds a predetermined value (for example, 5 ° C.). Therefore, the temperature difference between the plurality of battery cells constituting the battery can be reduced by circulating the cooling water through the battery cooler 15. The reason will be described below.
  • batteries are mounted under the floor of the vehicle or under the luggage.
  • the volume of the battery is large, so it may be mounted in a distributed manner.
  • Cell temperatures can also vary widely.
  • the cooling water circulating in the internal circulation circuit flows through the battery cooler 15, and the low temperature cooling water cooled by the cooling water cooler 14 and the medium temperature cooling water heated by the condenser 50 are cooled by the battery. Does not flow through vessel 15.
  • the cooling water can be circulated through the battery cooler 15 without circulating the cooling water through the first cooling water circuit and the second cooling water circuit. Compared with the case where the cooling water in the cooling water circuit is circulated through the battery cooler 15, the water flow resistance can be reduced, and the pump power consumption can be reduced.
  • the circulation channel 80 is provided for the battery cooler 15, but in the thirteenth embodiment, the circulation channel 80 is provided for the cooler core 18 as shown in FIG. It has been.
  • the circulation flow path 80 is provided in parallel with the cooler core flow path 85.
  • the cooler core flow path 85 is a flow path in which the cooler core 18 is disposed, and has one end connected to the outlet 19c of the first switching valve 19 and the other end connected to the inlet 20a of the second switching valve 20. ing.
  • One end of the circulation channel 80 is connected to the coolant outlet side of the cooler core 18, and the other end of the circulation channel 80 is connected to the coolant inlet side of the cooler core 18.
  • the circulation flow path 80 and the cooler core flow path 85 branch between the cooler core 18 and the second switching valve 20, and the circulation flow path 80 and the cooler core use flow between the cooler core 18 and the first switching valve 19.
  • the flow path 85 merges.
  • the three-way valve 82 is arranged at a branch portion between the circulation flow path 80 and the cooler core flow path 85, and switches between the circulation flow path 80 and the cooler core flow path 85.
  • the cooling water flowing out of the cooler core 18 circulates in the circulation channel 80 and flows into the cooler core 18.
  • the cooling water flowing out of the cooler core 18 flows through the cooler core 18 and flows into the second switching valve 20.
  • the inlet water temperature sensor 83 is disposed on the cooling water inlet side of the cooler core 18 and detects the temperature of the cooling water flowing into the cooler core 18 (inflowing heat medium temperature).
  • the cooling water cooler 14 and the cooler core 18 are arranged in series in the same flow path.
  • the cooling water cooler 14 and the cooler core 18 are provided in separate flow paths. They are arranged in parallel.
  • cooling water inlet side of the cooling water cooler 14 is connected to the outlet 19 g of the first switching valve 19.
  • the coolant outlet side of the coolant cooler 14 is connected to the inlet 20 g of the second switching valve 20.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f, 19g.
  • the second switching valve 20 also has a structure capable of switching the communication state between the inlets 20a, 20b, 20c, 20d, 20g and the outlets 20e, 20f.
  • an air mix door 86 is disposed between the cooler core 18 and the heater core 51 in the casing 27 of the indoor air conditioning unit.
  • the air mix door 86 adjusts the temperature ratio of the conditioned air blown into the vehicle interior by adjusting the air volume ratio between the air volume passing through the heater core 51 and the air volume bypassing the heater core 51 in the blown air after passing through the cooler core 18. It is a temperature adjusting device.
  • Control processing executed by the control device 40 of this embodiment will be described with reference to FIG.
  • the control device 40 executes the computer program according to the flowchart of FIG.
  • step S500 it is determined whether there is a cooling request. Specifically, when the air conditioner switch 44 is turned on, it is determined that there is a cooling request, and when the air conditioner switch 44 is turned off, it is determined that there is no cooling request.
  • step S510 When it is determined that there is a cooling request, the process proceeds to step S510, and the first switching valve 19, the second switching valve 20, the three-way valve 82, and the third pump 81 are set so that the first cooling mode (non-circulation mode) shown in FIG. Control the operation of
  • the first switching valve 19 communicates the inlet 19a with the outlets 19c and 19g
  • the inlet 19b communicates with the outlets 19d and 19e
  • the second switching valve 20 connects the inlets 20a and 20g with the outlet 20e.
  • the inlets 20b and 20c are communicated with the outlet 20f.
  • the three-way valve 82 opens the cooler core flow path 85 and closes the circulation flow path 80, and the third pump 81 stops.
  • first cooling water circuit medium temperature cooling water circuit
  • second cooling water circuit low temperature cooling water circuit
  • the second pump 12, the condenser 50, the heater core 51, and the battery cooler 15 constitute a first cooling water circuit (medium temperature cooling water circuit), and the first pump 11, the cooling water cooler 14, the cooler core 18, and the radiator 13. Constitutes a second cooling water circuit (low temperature cooling water circuit).
  • the cooling water discharged from the second pump 12 is branched into the condenser 50 and the battery cooler 15 by the first switching valve 19 as shown by the one-dot chain line arrow in FIG.
  • the cooling water discharged from the first pump 11 branches to the cooling water cooler 14 and the cooler core 18 by the first switching valve 19, and the cooling water cooler 14 and the cooler core 18.
  • the cooling water flowing through the cooling water cooler 14 and the cooling water flowing through the cooler core 18 are collected by the second switching valve 20 and sucked into the first pump 11 through the radiator 13.
  • the low-temperature cooling water cooled by the cooling water cooler 14 flows through the cooler core 18. For this reason, the air blown into the vehicle interior is cooled by the low-temperature cooling water cooled by the cooling water cooler 14.
  • step S520 it is determined whether or not the cooling water temperature detected by the inlet water temperature sensor 83 (hereinafter referred to as cooler core inlet water temperature) is lower than the first cooling determination temperature Tf1 (1 ° C. in this example).
  • the first cooling determination temperature Tf1 is a temperature determined based on the lower limit temperature in a temperature range in which frost (frost) does not occur on the surface of the cooler core 18, and is stored in the control device 40 in advance. Note that the surface temperature (fin temperature) of the cooler core 18 may be used instead of the cooler core inlet water temperature.
  • step S530 If it is determined that the cooler core inlet water temperature is not lower than the first cooling determination temperature Tf1, the process returns to step S500.
  • step S530 the operations of the first switching valve 19, the second switching valve 20, the three-way valve 82, and the third pump 81 are controlled so as to be in the second cooling mode (circulation mode) shown in FIG.
  • the first switching valve 19 connects the inlet 19a with the outlet 19g, connects the inlet 19b with the outlets 19d and 19e, closes the outlet 19c, and the second switching valve 20 connects the inlet 20g with the outlet 20e.
  • the inlets 20b and 20c are communicated with the outlet 20f, and the inlet 20a is closed.
  • the three-way valve 82 opens the circulation channel 80 and closes the cooler core channel 85, and the third pump 81 operates.
  • the first cooling water circuit (medium temperature cooling water circuit) indicated by the one-dot chain line arrow in FIG. 57
  • the second cooling water circuit (low temperature cooling water circuit) indicated by the solid line arrow in FIG. 57
  • the two-dot chain line in FIG. And an internal circulation circuit indicated by an arrow.
  • the second pump 12, the condenser 50, the heater core 51, and the battery cooler 15 constitute a first cooling water circuit (medium temperature cooling water circuit), and the first pump 11, the cooling water cooler 14, and the radiator 13 constitute the second cooling water circuit.
  • a cooling water circuit (low temperature cooling water circuit) is configured, and an internal circulation circuit is configured by the third pump 81 and the cooler core 18.
  • the cooling water discharged from the second pump 12 branches to the condenser 50 and the battery cooler 15 by the first switching valve 19, and the cooling water that has flowed through the condenser 50.
  • the water flows through the heater core 51 in series, and the cooling water that flows through the heater core 51 and the cooling water that flows through the battery cooler 15 are combined by the second switching valve 20 and sucked into the second pump 12.
  • the cooling water discharged from the first pump 11 flows through the cooling water cooler 14 via the first switching valve 19, and the cooling water flowing through the cooling water cooler 14 is The air is sucked into the second pump 12 through the second switching valve 20 and the radiator 13.
  • the cooling water discharged from the third pump 81 flows through the cooler core 18 and is sucked into the third pump 81.
  • the cooling water circulating in the internal circulation circuit flows through the cooler core 18. For this reason, the low-temperature cooling water cooled by the cooling water cooler 14 does not flow through the cooler core 18.
  • step S540 it is determined whether or not the cooler core inlet water temperature exceeds the second cooling determination temperature Tf2 (second cooling determination temperature).
  • the second cooling determination temperature Tf2 is a temperature (for example, 3 ° C.) higher than the first cooling determination temperature Tf1, and is stored in the control device 40 in advance.
  • step S500 If it is determined that the cooler core inlet water temperature is higher than the second cooling determination temperature Tf2, the process returns to step S500. If it is determined that the cooler core inlet water temperature is not higher than the second cooling determination temperature Tf2, the process returns to step S540.
  • the first cooling mode when there is a cooling request, when the cooler core inlet water temperature falls below the first cooling determination temperature Tf1, the first cooling mode is switched to the second cooling mode, so that frost (frost) is generated on the surface of the cooler core 18. Can be suppressed. The reason will be described below.
  • the condensed water adhering to the surface of the cooler core 18 freezes to generate frost (frost).
  • frost frost
  • the ventilation path of the cooler core 18 is blocked and enters the vehicle interior.
  • the air flow rate is reduced, and the air conditioning performance is reduced. Therefore, the appropriate temperature range of the temperature of the cooling water flowing into the cooler core 18 is 0 ° C. or higher.
  • the cooling mode when there is a cooling request, in the first cooling mode, when the cooler core inlet water temperature falls below the first cooling determination temperature Tf1, the cooling mode is switched to the second cooling mode.
  • the low-temperature cooling water that flows through the cooler core 18 and is cooled by the cooling water cooler 14 does not flow through the cooler core 18.
  • the cooling water circulating in the internal circulation circuit is heated by the air blown into the passenger compartment and the temperature gradually rises. For this reason, even if the temperature of the low-temperature cooling water cooled by the cooling water cooler 14 is lower than the first cooling determination temperature Tf1, the temperature of the cooling water flowing through the cooler core 18 can be made equal to or higher than the first cooling determination temperature Tf1. Therefore, it is possible to suppress the formation of frost (frost) on the surface of the cooler core 18.
  • the third pump 81 is disposed in a portion of the circulation channel 80 that is branched from the battery cooler channel 84. In the fourteenth embodiment, as shown in FIG. The third pump 81 is disposed in a portion of the circulation flow path 80 that is integrated with the battery cooler flow path 84 (a vicinity of the battery cooler 15).
  • the same operational effects as those of the twelfth embodiment can be obtained. Furthermore, according to the present embodiment, if the third pump 81 is always operated, the battery cooler 15 is switched when switching between the non-circulation mode (first cooling mode, etc.) and the circulation mode (second cooling mode, etc.). It is possible to prevent the supply of cooling water to the power supply.
  • the cooling water cooler 14 is disposed between the second pump 12 and the first switching valve 19. That is, the cooling water inlet side of the cooling water cooler 14 is connected to the cooling water discharge side of the second pump 12, and the cooling water outlet side of the cooling water cooler 14 is connected to the inlet 19 b of the first switching valve 19. .
  • the condenser 50 is disposed between the first pump 11 and the first switching valve 19. That is, the cooling water inlet side of the condenser 50 is connected to the cooling water discharge side of the first pump 11, and the cooling water outlet side of the condenser 50 is connected to the inlet 19 a of the first switching valve 19.
  • the radiator 13 is disposed between the first switching valve 19 and the second switching valve 20. That is, the cooling water inlet side of the radiator 13 is connected to the outlet 19 g of the first switching valve 19, and the cooling water outlet side of the radiator 13 is connected to the inlet 20 g of the second switching valve 20.
  • the first switching valve 19 has a structure capable of switching the communication state between the inlets 19a, 19b and the outlets 19c, 19d, 19e, 19f, 19g.
  • the second switching valve 20 also has a structure capable of switching the communication state between the inlets 20a, 20b, 20c, 20d, 20g and the outlets 20e, 20f.
  • the cooling water is circulated to the battery cooler 15 without passing through the first switching valve 19 and the second switching valve 20, thereby ensuring air conditioning performance (cooling performance and heating performance).
  • the battery cooler 15 is configured by a heat pipe heat exchanger, thereby improving the air conditioning performance. The battery operation is optimized while ensuring.
  • the up and down arrows in FIG. 60 indicate the up and down direction (gravity direction) in the vehicle mounted state.
  • the battery cooler 15 includes a first gas-liquid phase change unit 151 and a second gas-liquid phase change unit 152 where the refrigerant (working fluid) is condensed or evaporated.
  • 1st gas-liquid phase change part 151 has container 151a and cooling water piping 151b.
  • the container 151a is filled with a refrigerant in a gas-liquid two-phase state.
  • the inlet side of the cooling water pipe 151b is connected to the outlet of the first switching valve 19, the outlet side of the cooling water pipe 151b is connected to the inlet of the second switching valve 20, and the intermediate part of the cooling water pipe 151b is inside the container 151a. Is arranged.
  • the refrigerant sealed in the container 151a is condensed or evaporated by exchanging heat with the cooling water flowing through the cooling water pipe 151b.
  • the second gas-liquid phase change unit 152 has a refrigerant pipe 152a through which the refrigerant flows.
  • One end side of the refrigerant pipe 152a is connected to a lower part of the container 151a of the first gas-liquid phase change unit 151, that is, a part where a liquid-phase refrigerant exists.
  • the other end side of the refrigerant pipe 152a is connected to an upper portion of the container 151a of the first gas-liquid phase change unit 151, that is, a portion where a refrigerant in a gas phase exists.
  • the refrigerant flowing through the refrigerant pipe 152a is heated or cooled by the battery 90 to evaporate or condense.
  • the battery 90 is composed of a plurality of battery cells.
  • a battery temperature sensor 91 for detecting the temperature of the battery cell is attached to the battery 90.
  • a detection signal from the battery temperature sensor 91 is input to the control device 40.
  • the gas-phase refrigerant When the temperature of the cooling water flowing into the first gas-liquid phase change unit 151 is low, the gas-phase refrigerant is cooled by the cooling water and condensed in the first gas-liquid phase change unit 151. At this time, when the liquid refrigerant is heated and evaporated by the battery 90 in the second gas-liquid phase change unit 152, the arrow in FIG. 60 is formed between the first gas-liquid phase change unit 151 and the second gas-liquid phase change unit 152. As shown, the refrigerant circulates to cool the battery 90.
  • the liquid-phase refrigerant is heated by the cooling water in the first gas-liquid phase change unit 151. Evaporate.
  • the arrow in FIG. 60 is provided between the first gas-liquid phase change unit 151 and the second gas-liquid phase change unit 152. The refrigerant circulates in the opposite direction to heat the battery 90.
  • control process executed by the control device 40 of this embodiment will be described with reference to FIG.
  • the control device 40 executes the computer program according to the flowchart of FIG.
  • step S600 it is determined whether there is a battery cooling request. Specifically, when the battery temperature is equal to or higher than a first predetermined temperature (for example, 35 ° C.), it is determined that there is a battery cooling request, and when the battery temperature is lower than the first predetermined temperature, it is determined that there is no battery cooling request.
  • a first predetermined temperature for example, 35 ° C.
  • step S610 When it is determined that there is a battery cooling request, the process proceeds to step S610, and it is determined whether or not the battery temperature exceeds a cooling target temperature (for example, 40 ° C.). If it is determined that the battery temperature is higher than the cooling target temperature, the process proceeds to step S620. If it is determined that the battery temperature is not higher than the cooling target temperature, the process returns to step S600.
  • a cooling target temperature for example, 40 ° C.
  • step S620 the operation of the first switching valve 19 and the second switching valve 20 is controlled so that the low-temperature cooling water (cooling water cooled by the cooling water cooler 14) is supplied to the battery cooler 15. Thereby, the battery 90 is cooled.
  • step S630 it is determined whether or not the temperature of the battery cell detected by the battery temperature sensor 91 is lower than a first cooling determination temperature Tc1 (for example, 15 ° C.).
  • the first cooling determination temperature Tc1 is the lower limit temperature of the battery operating temperature range (for example, 15 to 35 ° C.).
  • step S640 If it is determined that the battery cooler inlet water temperature is lower than the first cooling determination temperature Tc1, the process proceeds to step S640. If it is determined that the battery cooler inlet water temperature is not lower than the first cooling determination temperature Tc1, the process proceeds to step S610. Return.
  • step S640 the operation of the first switching valve 19 and the second switching valve 20 is controlled so that the supply of the low-temperature cooling water to the battery cooler 15 is stopped.
  • step S650 it is determined whether or not the battery cooler inlet water temperature is higher than a second cooling determination temperature Tc2 (for example, 17 ° C.).
  • the second cooling determination temperature Tc2 is a temperature higher than the first cooling determination temperature Tc1.
  • step S610 If it is determined that the battery cooler inlet water temperature is higher than the second cooling determination temperature Tc2, the process returns to step S610. If it is determined that the battery cooler inlet water temperature is not higher than the second cooling determination temperature Tc2, the process returns to step S650. Return.
  • step S600 when it is determined in step S600 that there is no battery cooling request, the process proceeds to step S660, and it is determined whether there is a battery heating request. Specifically, when the battery temperature is lower than a second predetermined temperature (for example, 15 ° C.), it is determined that there is a battery heating request, and when the battery temperature is equal to or higher than the second predetermined temperature, it is determined that there is no battery heating request.
  • a second predetermined temperature for example, 15 ° C.
  • step S670 If it is determined that there is a battery heating request, the process proceeds to step S670. If it is determined that there is no battery heating request, the process returns to step S600.
  • step S670 it is determined whether or not the battery temperature is lower than the heating target temperature (for example, 10 ° C.). When it is determined that the battery temperature is lower than the heating target temperature, the process proceeds to step S680, and when it is determined that the battery temperature is not lower than the heating target temperature, the process returns to step S600.
  • the heating target temperature for example, 10 ° C.
  • step S680 the operation of the first switching valve 19 and the second switching valve 20 is controlled so that the high-temperature cooling water (cooling water heated by the condenser 50) is supplied to the battery cooler 15. Thereby, the battery 90 is heated.
  • the high-temperature cooling water cooling water heated by the condenser 50
  • step S690 it is determined whether or not the temperature of the battery cell detected by the battery temperature sensor 91 is higher than a first heating determination temperature Tw1 (for example, 35 ° C.).
  • the first heating determination temperature Tw1 is the upper limit temperature of the battery operating temperature range (for example, 15 to 35 ° C.).
  • step S700 If it is determined that the battery cooler inlet water temperature is higher than the first heating determination temperature Tw1, the process proceeds to step S700. If it is determined that the battery cooler inlet water temperature is not higher than the first heating determination temperature Tw1, the process proceeds to step S670. Return.
  • step S700 the operation of the first switching valve 19 and the second switching valve 20 is controlled so that the supply of the high-temperature cooling water to the battery cooler 15 is stopped.
  • step S710 it is determined whether or not the battery cooler inlet water temperature is lower than a second heating determination temperature Tw2 (for example, 33 ° C.).
  • the second heating determination temperature Tw2 is a temperature lower than the first heating determination temperature Tw1.
  • step S670 If it is determined that the battery cooler inlet water temperature is lower than the second heating determination temperature Tw2, the process returns to step S670. If it is determined that the battery cooler inlet water temperature is not lower than the second heating determination temperature Tw2, the process returns to step S710. Return.
  • the supply of the low-temperature cooling water to the battery cooler 15 is stopped. It is possible to prevent the battery input / output from being lowered and the charging efficiency of the battery from being lowered.
  • the low-temperature cooling water In the state where the supply of the low-temperature cooling water to the battery cooler 15 is stopped, when the battery cell temperature gradually rises and exceeds the second cooling determination temperature Tc2, the low-temperature cooling water is supplied to the battery cooler 15. It can be prevented that the temperature continues to rise further above the second cooling determination temperature Tc2.
  • the supply of the high-temperature cooling water to the battery cooler 15 is stopped when the battery cell temperature exceeds the first heating determination temperature Tw1, so that the battery temperature exceeds the use temperature range and the battery It is possible to prevent the battery from rapidly deteriorating and the battery life from decreasing or the battery from being easily damaged.
  • the battery cell temperature is gradually decreased and the high-temperature cooling water is supplied to the battery cooler 15 when the temperature falls below the second heating determination temperature Tw2. It can be prevented that the temperature continues to decrease further below the second heating determination temperature Tw2.
  • the battery cooler 15 is configured by a heat pipe heat exchanger
  • the battery 90 is configured by the action of the refrigerant even if the supply of the cooling water to the battery cooler 15 is stopped.
  • the temperature difference between the plurality of battery cells can be reduced.
  • the battery cooler 15 is configured by a heat pipe heat exchanger.
  • the cooler core 18 is configured by a heat pipe heat exchanger. Has been.
  • the cooler core 18 includes a first gas-liquid phase change unit 181 and a second gas-liquid phase change unit 182 where the refrigerant is condensed or evaporated.
  • the first gas-liquid phase change unit 181 includes an upper tank 181a and a cooling water pipe 181b.
  • the second gas-liquid phase change unit 182 includes tubes 182a, fins 182b, and a lower tank 182c.
  • the tubes 182a form a refrigerant flow path through which the refrigerant flows, and a plurality of tubes 182a are arranged in parallel with each other so that the longitudinal direction thereof faces the vertical direction. Between the tubes 182a, an air passage is formed through which blown air into the passenger compartment flows.
  • the fin 182b is a heat transfer promoting member that increases the heat transfer area between the blown air into the vehicle interior and the tube 182a and promotes heat exchange between the blown air into the vehicle interior and the refrigerant, and is joined to the outer surface of the tube 182a. Has been.
  • the upper tank 181a and the lower tank 182c are tanks that distribute or collect the refrigerant to the plurality of tubes 182a.
  • the upper tank 181a is disposed above the multiple tubes 182a, and the lower tank 182c includes a large number of lower tanks 182c. It is arranged on the lower side of the tube 182a.
  • the cooling water pipe 181b is disposed inside the upper tank 181a.
  • the inlet side of the cooling water pipe 181 b is connected to the outlet of the first switching valve 19, and the outlet side of the cooling water pipe 181 b is connected to the inlet of the second switching valve 20.
  • a refrigerant is sealed in a gas-liquid two-phase state. Specifically, the refrigerant is sealed in the liquid phase state in the tube 182a and the lower tank 182c, and the refrigerant is sealed in the gas phase state in the upper tank 181a.
  • a cooler core temperature sensor 95 that detects the temperature of the fin 182b, that is, the surface temperature of the cooler core 18, is attached to the fin 182b. A detection signal of the cooler core temperature sensor 95 is input to the control device 40.
  • the gas-phase refrigerant When the temperature of the cooling water flowing into the cooling water pipe 181b is low, the gas-phase refrigerant is cooled and condensed in the upper tank 181a by the cooling water flowing through the cooling water pipe 181b. At this time, when the liquid refrigerant is heated and evaporated in the tube 182a by the air blown into the vehicle interior, the refrigerant circulates between the upper tank 181a and the tube 182a to cool the air blown into the vehicle interior.
  • Control processing executed by the control device 40 of the present embodiment will be described with reference to FIG.
  • the control device 40 executes the computer program according to the flowchart of FIG.
  • step S700 it is determined whether there is a cooling request. Specifically, when the air conditioner switch 44 is turned on, it is determined that there is a cooling request, and when the air conditioner switch 44 is turned off, it is determined that there is no cooling request.
  • step S710 If it is determined that there is a cooling request, the process proceeds to step S710. If it is determined that there is no cooling request, the process returns to step S700.
  • step S710 the operation of the first switching valve 19 and the second switching valve 20 is controlled so that the low-temperature cooling water (cooling water cooled by the cooling water cooler 14) is supplied to the cooler core 18. Thereby, the air blown into the passenger compartment is cooled in the cooler core 18.
  • step S720 it is determined whether or not the cooler core temperature detected by the cooler core temperature sensor 95 is lower than a first cooling determination temperature Tf1 (for example, 1 ° C.).
  • the first cooling determination temperature Tf1 is a temperature determined based on the lower limit temperature in a temperature range in which frost (frost) does not occur on the surface of the cooler core 18, and is stored in the control device 40 in advance.
  • step S730 When it is determined that the cooler core temperature is lower than the first cooling determination temperature Tf1, the process proceeds to step S730, and when it is determined that the cooler core temperature is not lower than the first cooling determination temperature Tf1, the process returns to step S700.
  • step S730 the operation of the first switching valve 19 and the second switching valve 20 is controlled so that the supply of the low-temperature cooling water to the cooler core 18 is stopped.
  • step S740 it is determined whether or not the cooler core temperature exceeds a second cooling determination temperature Tf2 (eg, 3 ° C.).
  • the second cooling determination temperature Tf2 is a temperature (for example, 3 ° C.) higher than the first cooling determination temperature Tf1, and is stored in the control device 40 in advance.
  • step S700 When it is determined that the cooler core temperature is higher than the second cooling determination temperature Tf2, the process returns to step S700, and when it is determined that the cooler core temperature is not higher than the second cooling determination temperature Tf2, the process returns to step S740.
  • the supply of low-temperature cooling water to the cooler core 18 is stopped when the cooler core temperature falls below the first cooling determination temperature Tf1, so that frost (frost) is generated on the surface of the cooler core 18. Can be suppressed.
  • the cooler core temperature gradually rises and exceeds the second cooling determination temperature Tf2, so that the low-temperature cooling water is supplied to the cooler core 18, so the cooler core temperature is determined as the second cooling determination. It is possible to prevent the temperature Tf2 from further rising above the temperature Tf2.
  • thermo adjustment target device Various devices can be used as the temperature adjustment target device.
  • a heat exchanger that is built in a seat on which an occupant is seated and that cools and heats the seat with cooling water may be used as the temperature adjustment target device.
  • the number of temperature adjustment target devices may be any number as long as it is plural (two or more).
  • the first embodiment shows an example of the arrangement pattern of the holes of the first switching valve 19 and the second switching valve 20, and the first switching valve 19 and the second switching valve 20 Various arrangement patterns of the holes of the valve body can be changed.
  • the first to third modes are switched based on the outside air temperature detected by the outside air sensor 42. However, the first to third modes are switched based on the cooling water temperature detected by the water temperature sensor 43. The three modes may be switched.
  • the high-pressure refrigerant of the refrigeration cycle 22 is supercooled using the cold energy stored in the battery. You may make it utilize for cooling, such as an inverter.
  • the cooling water cooler 14 that cools the cooling water with the low-pressure refrigerant of the refrigeration cycle 22 is used as a cooling device that cools the cooling water to a temperature lower than the temperature of the outside air. It may be used as a cooling device.
  • the cooling capacity of the battery may be controlled by intermittently circulating cooling water through the battery cooler 15.
  • switching between the case where the intermediate temperature cooling water circulates in the exhaust gas cooler 17 and the case where the low temperature cooling water circulates may be performed according to the engine load.
  • Switching to low-temperature cooling water circulation when the engine load is small, such as when driving in an urban area can increase the density of exhaust gas that is cooled by the refrigeration cycle 22 and returned to the engine intake side, thereby improving fuel efficiency. Can do.
  • cooling water is used as a heat medium for cooling or heating the temperature adjustment target device, but various media such as oil may be used as the heat medium.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. It may be used.
  • the refrigeration cycle 22 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
  • the three-way valve 82 switches between the circulation channel 80 and the battery cooler channel 84.
  • the three-way valve 82 is eliminated and the circulation channel 80 is removed.
  • a check valve may be provided.
  • the first switching valve 19 and the second switching valve 20 close the battery cooler channel 84 to enter the circulation mode (second cooling mode, second heating mode, battery soaking operation mode, second cooling mode). Can be switched.
  • the first switching valve 19 connects the battery cooler flow path 84 to one of the first cooling water circuit and the second cooling water circuit, and the second switching valve 20 passes the battery cooler flow path 84.
  • the circulation mode can also be switched by connecting to the other cooling water circuit of the first cooling water circuit and the second cooling water circuit.
  • an internal circulation circuit may be formed for the inverter cooler 16. According to this, since the cooling capacity of the inverter can be adjusted, the low-temperature cooling water is introduced as it is into the inverter cooler 16 in the driving condition where the heat generation amount of the inverter is small, and the cooling capacity becomes excessive. Can be prevented.
  • the supply of cooling water to the battery cooler 15 is intermittent according to the temperature of the battery 90, but the cooling water supplied to the battery cooler 15 according to the temperature of the battery 90 The flow rate may be adjusted.
  • the supply of cooling water to the cooler core 18 is intermittent according to the temperature of the cooler core 18, but the flow rate of the cooling water supplied to the cooler core 18 is adjusted according to the temperature of the cooler core 18. You may do it.
  • the flow rate of the cooling water can be adjusted by controlling the operation of at least one of the first switching valve 19 and the second switching valve 20.
  • a refrigerant pipe that directly returns the refrigerant condensed in the upper tank 181a to the lower tank 182c may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

第1ポンプ(11)の熱媒体吐出側および第2ポンプ(12)の熱媒体吐出側が互いに並列に第1切替弁(19)に接続され、複数個の温度調整対象機器(15、16、17、18、50、65)の熱媒体入口側が互いに並列に第1切替弁(19)に接続され、複数個の温度調整対象機器の熱媒体出口側が互いに並列に第2切替弁(20)に接続される。また、第1ポンプ(11)の熱媒体吸入側および第2ポンプ(12)の熱媒体吸入側が互いに並列に第2切替弁(20)に接続され、複数個の温度調整対象機器のそれぞれについて、第1ポンプ(11)との間で熱媒体が循環する場合と、第2ポンプ(12)との間で熱媒体が循環する場合とが切り替わる。

Description

車両用熱管理システム 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年2月2日に出願された日本特許出願2012-20905、2012年4月3日に出願された日本特許出願2012-84444、2012年12月20日に出願された日本特許出願2012-278552を基にしている。
本開示は、車両に用いられる熱管理システムに関する。
 従来、特許文献1には、電気自動車のモータジェネレータ、インバータ、バッテリおよび車室を冷却する熱制御装置が記載されている。
 この従来技術の熱制御装置は、モータジェネレータおよびインバータを冷却する冷却水を循環させる冷却回路と、バッテリおよび車室の冷却に用いられる冷却水を循環させる第1循環回路と、室外熱交換器を通過して外気との間で熱交換が行われる冷却水を循環させる第2循環回路とを備えている。
 さらに熱制御装置は、冷却回路と第1循環回路との断接を行う第1バルブ、冷却回路を第1循環回路及び第2循環回路のいずれかに接続する第2バルブ、及び冷却回路と第2循環回路との断接を行う第3バルブを備え、それら各バルブの制御を通じて冷却回路の接続先を第1循環回路と第2循環回路との間で切り換えるようにしている。
 第2循環回路を循環する冷却水と第1循環回路を循環する冷却水との間では、熱移動装置による熱の移動を行うことが可能となっている。この熱移動装置は、第1循環回路の冷却水と第2循環回路の冷却水との間で、低温の冷却水から高温の冷却水への熱の移動を行う。
 そして、第1循環回路の冷却水の熱を熱移動装置によって第2循環回路の冷却水へ移動させ、第2循環回路の冷却水の熱を室外熱交換器で外気に放熱することによって、バッテリおよび車室を冷却することができる。
 また、冷却回路を第1~第3バルブで第1循環回路または第2循環回路に接続して、冷却回路の冷却水の熱を第2循環回路の室外熱交換器で外気に放熱することによって、モータジェネレータおよびインバータを冷却することができる。
特開2011-121551号公報
 上記従来技術によると、モータジェネレータ、インバータ、バッテリおよび車室といった複数個の温度調整対象機器を冷却する冷却システムにおいて、室外熱交換器が1つだけで済むという利点があるものの、全体の回路構成が複雑になるという場合がある。この場合は、温度調整対象機器の個数が多くなるほど顕著になる。
 例えば、モータジェネレータ、インバータ、バッテリの他にも冷却を必要とする温度調整対象機器としてEGRクーラ、吸気冷却器などがあり、それらの温度調整対象機器は、要求される冷却温度が互いに異なる。
 そのため、各温度調整対象機器を適切に冷却すべく各温度調整対象機器に循環する冷却水を切り替え可能にしようとすると、温度調整対象機器の個数に応じて循環回路の個数が増え、それに伴って各循環回路と冷却回路との断接を行うバルブの個数も増えるので、各循環回路と冷却回路とを接続する流路の構成が非常に複雑になってしまう。
 本開示は上記点に鑑みて、複数個の温度調整対象機器に循環する熱媒体を切り替えることのできる車両用熱管理システムの構成を簡素化することを目的とする。
 上記目的を達成するため、本開示の第1態様による車両用熱管理システムは、熱媒体を吸入して吐出する第1ポンプおよび第2ポンプと、第1ポンプから吐出された熱媒体と外気とを熱交換させる熱交換器と、熱媒体が流通する流路を有し、熱媒体によって温度調整される複数個の温度調整対象機器と、第1ポンプの熱媒体吐出側および第2ポンプの熱媒体吐出側が互いに並列に接続され且つ複数個の温度調整対象機器の熱媒体入口側が互いに並列に接続され、複数個の温度調整対象機器のそれぞれについて第1ポンプから吐出された熱媒体が流入する場合と第2ポンプから吐出された熱媒体が流入する場合とを切り替える第1切替弁と、第1ポンプの熱媒体吸入側および第2ポンプの熱媒体吸入側が互いに並列に接続され且つ複数個の温度調整対象機器の熱媒体出口側が互いに並列に接続され、複数個の温度調整対象機器のそれぞれについて第1ポンプへ熱媒体が流出する場合と第2ポンプへ熱媒体が流出する場合とを切り替える第2切替弁と、複数個の温度調整対象機器のそれぞれについて、第1ポンプとの間で熱媒体が循環する場合と、第2ポンプとの間で熱媒体が循環する場合とが切り替わるように第1切替弁および第2切替弁の作動を制御する制御装置とを備える。
 これにより、熱媒体の流れを切り替える第1、第2切替弁の間に複数個の温度調整対象機器を並列に接続するという簡素な構成によって、複数個の温度調整対象機器に循環する熱媒体を切り替えることができる。
第1実施形態における車両用熱管理システムの全体構成図である。 図1の車両用熱管理システムにおける第1モードを説明する図である。 図1の車両用熱管理システムにおける第2モードを説明する図である。 図1の車両用熱管理システムにおける第3モードを説明する図である。 第1実施形態の第1切替弁および第2切替弁を示す斜視図である。 図5の第1切替弁の分解斜視図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の断面図である。 図5の第1切替弁の第1状態を示す断面図である。 図5の第1切替弁の第2状態を示す断面図である。 図5の第1切替弁の第3状態を示す断面図である。 図1の車両用熱管理システムの電気制御部を示すブロック図である。 第2実施形態における車両用熱管理システムの全体構成図である。 図16の車両用熱管理システムにおける第1モードを説明する図である。 図16の車両用熱管理システムにおける第2モードを説明する図である。 図16の車両用熱管理システムにおける第3モードを説明する図である。 図16の車両用熱管理システムにおける第4モードを説明する図である。 図16の車両用熱管理システムにおける第5モードを説明する図である。 第2実施形態の冷却水冷却器および凝縮器を示す斜視図である。 第2実施形態の制御装置が実行する制御処理を示すフローチャートである。 第3実施形態における車両用熱管理システムの全体構成図である。 図24の車両用熱管理システムにおける第1モードを説明する図である。 図24の車両用熱管理システムにおける第2モードを説明する図である。 図24の車両用熱管理システムにおける第3モードを説明する図である。 第3実施形態の冷却水冷却器、凝縮器および過冷却器を示す斜視図である。 第4実施形態における車両用熱管理システムの全体構成図である。 図29の車両用熱管理システムにおける第1モードを説明する図である。 図29の車両用熱管理システムにおける第2モードを説明する図である。 図29の車両用熱管理システムにおける第3モードを説明する図である。 第5実施形態における車両用熱管理システムの全体構成図である。 図33の車両用熱管理システムにおける第1モードを説明する図である。 図34の車両用熱管理システムにおける第2モードを説明する図である。 第6実施形態における車両用熱管理システムの全体構成図である。 第7実施形態の冷却水冷却器、凝縮器および過冷却器を示す斜視図である。 第8実施形態の冷却水冷却器、凝縮器および膨張弁を示す斜視図である。 第9実施形態の車両用熱管理システムにおける第1モードを説明する図である。 第9実施形態の車両用熱管理システムにおける第2モードを説明する図である。 第9実施形態の車両用熱管理システムにおける第3モードを説明する図である。 第9実施形態の車両用熱管理システムにおける第4モードを説明する図である。 第9実施形態の車両用熱管理システムの電気制御部を示すブロック図である。 第9実施形態の制御装置が実行する制御処理を示すフローチャートである。 第10実施形態における車両用熱管理システムの全体構成図である。 第11実施形態における車両用熱管理システムの全体構成図である。 第12実施形態における車両用熱管理システムの全体構成図である。 第12実施形態の制御装置が実行する制御処理を示すフローチャートである。 第12実施形態の車両用熱管理システムにおける第1冷却モードを説明する図である。 第12実施形態の車両用熱管理システムにおける第2冷却モードを説明する図である。 第12実施形態の車両用熱管理システムにおける第1加熱モードを説明する図である。 第12実施形態の車両用熱管理システムにおける第2加熱モードを説明する図である。 第12実施形態の車両用熱管理システムにおける電池均温運転モードを説明する図である。 第13実施形態における車両用熱管理システムの全体構成図である。 第13実施形態の制御装置が実行する制御処理を示すフローチャートである。 第13実施形態の車両用熱管理システムにおける第1冷却モードを説明する図である。 第13実施形態の車両用熱管理システムにおける第2冷却モードを説明する図である。 第14実施形態における車両用熱管理システムの全体構成図である。 第15実施形態における車両用熱管理システムの全体構成図である。 第16実施形態における電池冷却器の断面図である。 第16実施形態の制御装置が実行する制御処理を示すフローチャートである。 第17実施形態における電池冷却器の断面図である。 第17実施形態の制御装置が実行する制御処理を示すフローチャートである。
 (第1実施形態)
 以下、第1実施形態を図1~図15に基づいて説明する。図1に示す車両用熱管理システム10は、車両が備える各種機器(冷却または加熱を要する機器)や車室内を適切な温度に冷却するために用いられる。
 本実施形態では、冷却システム10を、エンジン(内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
 エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、冷却システムを構成する電動式構成機器をはじめとする各種車載機器に供給される。
 図1に示すように、冷却システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17、クーラコア18、第1切替弁19および第2切替弁20を備えている。
 第1ポンプ11および第2ポンプ12は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。冷却水としては、少なくともエチレングリコールまたはジメチルポリシロキサンを含む液体が好ましい。
 ラジエータ13は、冷却水と外気とを熱交換することによって冷却水の熱を外気に放熱させる放熱用の熱交換器(放熱器)である。ラジエータ13の冷却水出口側は、第1ポンプ11の冷却水吸入側に接続されている。室外送風機21は、ラジエータ13へ外気を送風する電動送風機である。ラジエータ13および室外送風機21は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。
 冷却水冷却器14は、冷凍サイクル22の低圧冷媒と冷却水とを熱交換させることによって冷却水を冷却する冷却装置である。冷却水冷却器14の冷却水入口側は、第2ポンプ12の冷却水吐出側に接続されている。
 冷却水冷却器14は、冷凍サイクル22の蒸発器を構成している。冷凍サイクル22は、圧縮機23、凝縮器24、膨張弁25、および蒸発器としての冷却水冷却器14を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル22では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
 圧縮機23は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル22の冷媒を吸入して圧縮して吐出する。凝縮器24は、圧縮機23から吐出された高圧冷媒と外気とを熱交換させることによって高圧冷媒を凝縮させる高圧側熱交換器である。
 膨張弁25は、凝縮器24で凝縮された液相冷媒を減圧膨張させる減圧装置である。冷却水冷却器14は、膨張弁25で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発させる低圧側熱交換器である。冷却水冷却器14で蒸発した気相冷媒は圧縮機23に吸入されて圧縮される。
 ラジエータ13では外気によって冷却水を冷却するのに対し、冷却水冷却器14では冷凍サイクル22の低圧冷媒によって冷却水を冷却する。このため、冷却水冷却器14で冷却された冷却水の温度は、ラジエータ13で冷却された冷却水の温度に比べて低くなる。
 具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却することはできないのに対し、冷却水冷却器14では冷却水を外気の温度よりも低温まで冷却することができる。
 そこで以下では、ラジエータ13で外気によって冷却された冷却水を中温冷却水と言い、冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された冷却水を低温冷却水と言う。
 冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18は、中温冷却水および低温冷却水のいずれかによって温度調整される温度調整対象機器である。
 電池冷却器15は、冷却水の流路を有しており、電池の熱を冷却水に与えることによって電池を冷却する。電池は、出力低下、充電効率低下および劣化防止等の理由から10~40℃程度の温度に維持されるのが好ましい。
 インバータ冷却器16は、冷却水の流路を有しており、インバータの熱を冷却水に与えることによってインバータを冷却する。インバータは、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。インバータは、劣化防止等の理由から65℃以下の温度に維持されるのが好ましい。
 排気ガス冷却器17は、冷却水の流路を有しており、エンジンの排気ガスの熱を冷却水に与えることによって排気ガスを冷却する。排気ガス冷却器17で冷却された排気ガスは、エンジンの吸気側に戻される。エンジンの吸気側に戻される排気ガスは、エンジンの損失低減、ノッキングの防止、およびNOX発生の抑制等の理由から40~100℃の温度に維持されるのが好ましい。
 クーラコア18は、冷却水と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器(空気冷却器)である。室内送風機26は、クーラコア18へ外気を送風する電動送風機である。クーラコア18および室内送風機26は、室内空調ユニットのケーシング27の内部に配置されている。
 第1切替弁19および第2切替弁20は、冷却水の流れを切り替える流れ切替装置である。第1切替弁19および第2切替弁は、基本構造は互いに同一であり、冷却水の入口と冷却水の出口とが互いに逆になっている点が相違している。
 第1切替弁19は、冷却水の入口として2つの入口19a、19bを有し、冷却水の出口として4つの出口19c、19d、19e、19fを有している。
 入口19aには、第1ポンプ11の冷却水吐出側が接続されている。入口19bには、冷却水冷却器14の冷却水出口側が接続されている。
 出口19cには、クーラコア18の冷却水入口側が接続されている。出口19dには、排気ガス冷却器17の冷却水入口側が接続されている。出口19eには、電池冷却器15の冷却水入口側が接続されている。出口19fには、インバータ冷却器16の冷却水入口側が接続されている。
 第2切替弁20は、冷却水の入口として入口20a、20b、20c、20dを有し、冷却水の出口として出口20e、20fを有している。
 入口20aには、クーラコア18の冷却水出口側が接続されている。入口20bには、排気ガス冷却器17の冷却水出口側が接続されている。入口20cには、電池冷却器15の冷却水出口側が接続されている。入口20dには、インバータ冷却器16の冷却水出口側が接続されている。
 出口20eには、ラジエータ13の冷却水入口側が接続されている。出口20fには、第2ポンプ12の冷却水吸入側が接続されている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を3種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20dと出口20e、20fとの連通状態を3種類の状態に切り替え可能な構造になっている。
 図2は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
 第1状態では、第1切替弁19は、入口19aを出口19d、19e、19fと連通させ、入口19bを出口19cと連通させる。これにより、第1切替弁19は、図2の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19e、19fから流出させ、図2の実線矢印に示すように入口19bから流入した冷却水を出口19cから流出させる。
 第1状態では、第2切替弁20は、入口20b、20c、20dを出口20eと連通させ、入口20aを出口20fと連通させる。これにより、第2切替弁20は、図2の一点鎖線矢印に示すように入口20b、20c、20dから流入した冷却水を出口20eから流出させ、図2の実線矢印に示すように入口20aから流入した冷却水を出口20fから流出させる。
 図3は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
 第2状態では、第1切替弁19は、入口19aを出口19d、19fと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図3の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19fから流出させ、図3の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
 第2状態では、第2切替弁20は、入口20a、20cを出口20fと連通させ、入口20b、20dを出口20eと連通させる。これにより、第2切替弁20は、図3の一点鎖線矢印に示すように入口20b、20dから流入した冷却水を出口20eから流出させ、図3の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
 図4は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
 第3状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させる。これにより、第1切替弁19は、図4の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図4の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させる。
 第3状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、図4の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図3の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させる。
 図5に示すように、第1切替弁19および第2切替弁20はそれぞれ、弁体の回転軸191、201を備えている。これら回転軸191、201には、切替弁用電動モータ30の出力軸30aの回転力が歯車31、32、33、34を介して伝達される。これにより、共通の切替弁用電動モータ30によって、第1切替弁19の弁体と第2切替弁20の弁体とが連動して回転駆動される。
 なお、第1切替弁19用の切替弁用電動モータと第2切替弁20用の切替弁用電動モータとを個別に設け、2つの切替弁用電動モータの作動を連動制御することによって、第1切替弁19の弁体と第2切替弁20の弁体とを連動して回転駆動するようにしてもよい。
 第1切替弁19および第2切替弁の基本構造は互いに同一であるので、以下では第1切替弁19の具体的構造を説明し、第2切替弁20の具体的構造については説明を省略する。
 第1切替弁19は、外殻をなすケース192を備えている。ケース192は、弁体の回転軸191の長手方向(図5では上下方向)に延びる略円筒状に形成されている。ケース192の一端面(図5では上端面)には、弁体の回転軸191が貫通している。
 ケース192の円筒面は、一端側(図5では上端側)から他端側(図5では他端側)に向かって外径および内径が4段階に縮小している。具体的には、ケース192の円筒面には、一端側から他端側に向かって順に、外径および内径が最も大きい第1円筒部192aと、外径および内径がその次に大きい第2円筒部192bと、外径および内径がその次に大きい第3円筒部192cと、外径および内径が最も小さい第4円筒部192dとが形成されている。
 第1円筒部192aには出口19cが形成されている。第2円筒部192bには出口19dが形成されている。第3円筒部192cには出口19eが形成されている。第4円筒部192dには出口19fが形成されている。
 図6に示すように、ケース192の他端面(図6では下端面)には、冷却水の入口19aおよび冷却水の入口19bが形成されている。
 ケース192の内部空間には、内筒部材193が挿入されている。内筒部材193は、内径および外径が一定の円筒状に形成され、ケース192と同軸状に配置されている。内筒部材193のうちケース192他端側の端部(図6では下端部)は、ケース192の他端面に密着して固定されている。
 内筒部材193の内部には仕切板193aが設けられている。仕切板193aは、内筒部材193の軸方向全域にわたって形成されており、内筒部材193の内部空間を半円筒状の2つの空間193b、193cに仕切っている。
 2つの空間193b、193cのうち第1空間193bはケース192の入口19aと連通し、第2空間193cはケース192の入口19bと連通している。
 内筒部材193の円筒面には、第1空間193bに連通する4つの開口部193d、193e、193f、193gと、第2空間193cに連通する4つの開口部193h、193i、193j、193kとが形成されている。
 内筒部材193をケース192の内部に挿入した状態では、内筒部材193の開口部193d、193hは内筒部材193の第1円筒部192aに対向し、開口部193e、193iは内筒部材193の第2円筒部192bに対向し、開口部193f、193jは、内筒部材193の第3円筒部192cに対向し、開口部193g、193kは内筒部材193の第4円筒部192dに対向している。
 ケース192と内筒部材193との間には、内筒部材193の8つの開口部193d~193kを開閉する弁体194が挿入されている。弁体194は、略円筒状に形成され、ケース192および内筒部材193と同軸状に配置されている。
 弁体194の一端面(図6では上端面)の中心部には回転軸191が固定されている。弁体194は、ケース192および内筒部材193に対して回転軸191を中心に回転可能になっている。
 弁体194の内径は、内筒部材193の外径と同様に一定となっている。弁体194の外径は、ケース192の内径と同様に、一端側から他端側に向かって4段階に縮小している。
 これにより、弁体194の外周面には、一端側から他端側に向かって順に、外径が最も大きい第1円筒部194aと、外径がその次に大きい第2円筒部194bと、外径がその次に大きい第3円筒部194cと、外径が最も小さい第4円筒部194dとが形成されている。
 弁体194をケース192と内筒部材193との間に挿入した状態では、弁体194の第1円筒部194aはケース192の第1円筒部192aと対向し、弁体194の第2円筒部194bはケース192の第2円筒部192bと対向し、弁体194の第3円筒部194cはケース192の第3円筒部194cと対向し、弁体194の第4円筒部194dはケース192の第4円筒部194dと対向している。
 弁体194の第1円筒部194aには、複数個の孔194eが形成されている。弁体194の第2円筒部194bには、複数個の孔194fが形成されている。弁体194の第3円筒部194cには、複数個の孔194gが形成されている。弁体194の第4円筒部194dには、複数個の孔194hが形成されている。
 図7は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。
 弁体194の第1円筒部194aの孔194eは、第1円筒部194aの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193d、193hと重なり合う。
 内筒部材193の開口部193d、193hの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第1円筒部194aに密着しており、内筒部材193の開口部193d、193h相互間を液密にシールする役割を果たす。
 弁体194の第1円筒部194aとケース192の第1円筒部192aとの間には第1環状空間196aが形成されている。第1環状空間196aは出口19cと連通している。
 図8は、第1切替弁19を弁体194の第2円筒部194bの部分で軸方向と垂直に切断した断面図である。
 弁体194の第2円筒部194bの孔194fは、第2円筒部194bの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193e、193iと重なり合う。
 内筒部材193の開口部193e、193iの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第2円筒部194bに密着しており、内筒部材193の開口部193e、193i相互間を液密にシールする役割を果たす。
 弁体194の第2円筒部194bとケース192の第2円筒部192bとの間には第2環状空間196bが形成されている。第2環状空間196bは出口19dと連通している。
 図9は、第1切替弁19を弁体194の第3円筒部194cの部分で軸方向と垂直に切断した断面図である。
 弁体194の第3円筒部194cの孔194gは、第3円筒部194cの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193f、193jと重なり合う。
 内筒部材193の開口部193f、193jの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第3円筒部194cに密着しており、内筒部材193の開口部193f、193j相互間を液密にシールする役割を果たす。
 弁体194の第3円筒部194cとケース192の第3円筒部192cとの間には第3環状空間196cが形成されている。第3環状空間196cは出口19eと連通している。
 図10は、第1切替弁19を弁体194の第4円筒部194dの部分で軸方向と垂直に切断した断面図である。
 弁体194の第4円筒部194dの孔194hは、第3円筒部194cの周方向に3個形成されており、弁体194が所定の回転位置になったときに内筒部材193の開口部193g、193kと重なり合う。
 内筒部材193の開口部193g、193kの周縁部にはパッキン195が固定されている。パッキン195は、弁体194の第4円筒部194dに密着しており、内筒部材193の開口部193g、193k相互間を液密にシールする役割を果たす。
 弁体194の第4円筒部194dとケース192の第4円筒部192dとの間には第4環状空間196dが形成されている。第4環状空間196dは出口19fと連通している。
 図11に示すように、第1環状空間196aと第2環状空間196bとの間はパッキン197によって液密にシールされている。パッキン197は、弁体194の段差面とケース192の段差面との間に全周にわたって挟み込まれるように環状に形成されている。
 図示を省略しているが、第2環状空間196bと第3環状空間196cとの間、および第3環状空間196cと第4環状空間196dとの間も同様に、環状のパッキン197によって液密にシールされている。
 第1切替弁19の第1状態を図12に基づいて説明する。図12は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。図12では、説明を容易にするために、弁体194に3つずつ形成された孔194e、194f、194g、194hのうち1つの孔194e、194f、194g、194hのみ図示し、他の2つの孔194e、194f、194g、194hについては図示を省略している。
 第1状態では、弁体194が図12に示す位置に回転操作され、弁体194の第1円筒部194aの孔194eが内筒部材193の第2空間193c側の開口部193hに重なり合い、内筒部材193の第1空間193b側の開口部193dは弁体194の第1円筒部194aによって閉塞される。
 これにより、図12の実線矢印に示すように、内筒部材193の第2空間193cは、内筒部材193の開口部193h、弁体194の孔194eおよび第1環状空間196aを介して出口19cと連通する。一方、内筒部材193の第1空間193bは出口19cと連通しない。
 したがって、第1状態では、出口19cは、入口19bと連通し、入口19aとは連通しない。
 図示を省略しているが、第1状態では、弁体194の第2円筒部194bの孔194fが内筒部材193の第1空間193b側の開口部193eと重なり合い、内筒部材193の第2空間193c側の開口部193iが弁体194の第2円筒部194bによって閉塞される。
 これにより、図12の破線矢印に示すように、内筒部材193の第1空間193bは出口19dと連通し、内筒部材193の第2空間193cは出口19dと連通しない。したがって、出口19dは、入口19aと連通し、入口19bとは連通しない。
 図示を省略しているが、第1状態では、弁体194の第3円筒部194cの孔194gが内筒部材193の第1空間193b側の開口部193fと重なり合い、内筒部材193の第2空間193c側の開口部193jが弁体194の第3円筒部194cによって閉塞される。
 これにより、図12の破線矢印に示すように、内筒部材193の第1空間193bは出口19eと連通し、内筒部材193の第2空間193cは出口19eと連通しない。したがって、出口19eは、入口19aと連通し、入口19bとは連通しない。
 図示を省略しているが、第1状態では、弁体194の第4円筒部194dの孔194hが内筒部材193の第1空間193b側の開口部193gと重なり合い、内筒部材193の第2空間193c側の開口部193kが弁体194の第4円筒部194dによって閉塞される。
 これにより、図12の破線矢印に示すように、内筒部材193の第1空間193bは出口19fと連通し、内筒部材193の第2空間193cは出口19fと連通しない。したがって、出口19fは、入口19aと連通し、入口19bとは連通しない。
 第1切替弁19の第2状態を図13に基づいて説明する。図13は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。図13では、説明を容易にするために、弁体194に3つずつ形成された孔194e、194f、194g、194hのうち1つの孔194e、194f、194g、194hのみ図示し、他の2つの孔194e、194f、194g、194hについては図示を省略している。
 第2状態では、弁体194が図13に示す位置に回転操作され、弁体194の第1円筒部194aの孔194eが内筒部材193の第2空間193c側の開口部193hに重なり合い、内筒部材193の第1空間193b側の開口部193dは弁体194の第1円筒部194aによって閉塞される。
 これにより、図13の実線矢印に示すように、内筒部材193の第2空間193cは出口19cと連通し、内筒部材193の第1空間193bは出口19cと連通しない。したがって、出口19cは、入口19bと連通し、入口19aとは連通しない。
 図示を省略しているが、第2状態では、弁体194の第2円筒部194bの孔194fが内筒部材193の第1空間193b側の開口部193eと重なり合い、内筒部材193の第2空間193c側の開口部193iが弁体194の第2円筒部194bによって閉塞される。
 これにより、図13の破線矢印に示すように、内筒部材193の第1空間193bは出口19dと連通し、内筒部材193の第2空間193cは出口19dと連通しない。したがって、出口19dは、入口19aと連通し、入口19bとは連通しない。
 図示を省略しているが、第2状態では、弁体194の第3円筒部194cの孔194gが内筒部材193の第2空間193c側の開口部193jと重なり合い、内筒部材193の第1空間193b側の開口部193fが弁体194の第3円筒部194cによって閉塞される。
 これにより、図13の破線矢印に示すように、内筒部材193の第2空間193cは出口19eと連通し、内筒部材193の第1空間193bは出口19eと連通しない。したがって、出口19eは、入口19bと連通し、入口19aとは連通しない。
 図示を省略しているが、第2状態では、弁体194の第4円筒部194dの孔194hが内筒部材193の第1空間193b側の開口部193gと重なり合い、内筒部材193の第2空間193c側の開口部193kが弁体194の第4円筒部194dによって閉塞される。
 これにより、図13の破線矢印に示すように、内筒部材193の第1空間193bは出口19fと連通し、内筒部材193の第2空間193cは出口19fと連通しない。したがって、出口19fは、入口19aと連通し、入口19bとは連通しない。
 第1切替弁19の第3状態を図14に基づいて説明する。図14は、第1切替弁19を弁体194の第1円筒部194aの部分で軸方向と垂直に切断した断面図である。図14では、説明を容易にするために、弁体194に3つずつ形成された孔194e、194f、194g、194hのうち1つの孔194e、194f、194g、194hのみ図示し、他の2つの孔194e、194f、194g、194hについては図示を省略している。
 第3状態では、弁体194が図14に示す位置に回転操作され、弁体194の第1円筒部194aの孔194eが内筒部材193の第2空間193c側の開口部193hに重なり合い、内筒部材193の第1空間193b側の開口部193dは弁体194の第1円筒部194aによって閉塞される。
 これにより、図14の実線矢印に示すように、内筒部材193の第2空間193cは出口19cと連通し、内筒部材193の第1空間193bは出口19cと連通しない。したがって、出口19cは、入口19bと連通し、入口19aとは連通しない。
 図示を省略しているが、第3状態では、弁体194の第2円筒部194bの孔194fが内筒部材193の第1空間193b側の開口部193eと重なり合い、内筒部材193の第2空間193c側の開口部193iが弁体194の第2円筒部194bによって閉塞される。
 これにより、図14の破線矢印に示すように、内筒部材193の第1空間193bは出口19dと連通し、内筒部材193の第2空間193cは出口19dと連通しない。したがって、出口19dは、入口19aと連通し、入口19bとは連通しない。
 図示を省略しているが、第3状態では、弁体194の第3円筒部194cの孔194gが内筒部材193の第2空間193c側の開口部193jと重なり合い、内筒部材193の第1空間193b側の開口部193fが弁体194の第3円筒部194cによって閉塞される。
 これにより、図14の破線矢印に示すように、内筒部材193の第2空間193cは出口19eと連通し、内筒部材193の第1空間193bは出口19eと連通しない。したがって、出口19eは、入口19bと連通し、入口19aとは連通しない。
 図示を省略しているが、第3状態では、弁体194の第4円筒部194dの孔194hが内筒部材193の第2空間193c側の開口部193kと重なり合い、内筒部材193の第1空間193b側の開口部193gが弁体194の第4円筒部194dによって閉塞される。
 これにより、図14の破線矢印に示すように、内筒部材193の第2空間193cは出口19fと連通し、内筒部材193の第1空間193bは出口19fと連通しない。したがって、出口19fは、入口19bと連通し、入口19aとは連通しない。
 次に、冷却システム10の電気制御部を図15に基づいて説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された第1ポンプ11、第2ポンプ12、圧縮機23、切替弁用電動モータ30等の作動を制御する制御装置である。
 制御装置40は、その出力側に接続された各種制御対象機器を制御する制御装置が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御装置を構成している。
 本実施形態では、特に切替弁用電動モータ30の作動を制御する構成(ハードウェアおよびソフトウェア)を切替弁制御装置40aとする。もちろん、切替弁制御装置40aを制御装置40に対して別体で構成してもよい。
 制御装置40の入力側には、内気センサ41、外気センサ42、水温センサ43等のセンサ群の検出信号が入力される。
 内気センサ41は、内気温(車室内温度)を検出する検出装置(内気温度検出装置)である。外気センサ42は、外気温を検出する検出装置(外気温度検出装置)である。水温センサ43は、ラジエータ13を通過した直後の冷却水の温度を検出する検出装置(熱媒体温度検出装置)である。
 さらに、制御装置40の入力側には、エアコンスイッチ44からの操作信号が入力される。エアコンスイッチ44は、エアコンのオン・オフ(換言すれば冷房のオン・オフ)を切り替えるスイッチであり、車室内の計器盤付近に配置されている。
 次に、上記構成における作動を説明する。制御装置40は、外気センサ42で検出された外気温が15℃以下である場合、図2に示す第1モードを実施し、外気センサ42で検出された外気温が15℃超40℃未満である場合、図3に示す第2モードを実施し、外気センサ42で検出された外気温が40℃以上である場合、図4に示す第3モードを実施する。
 第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図2に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19d、19e、19fと連通し、入口19bが出口19cと連通する。第2切替弁20では、入口20b、20c、20dが出口20eと連通し、入口20aが出口20fと連通する。
 したがって、第1ポンプ11、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14およびクーラコア18によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図2の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で電池冷却器15、インバータ冷却器16および排気ガス冷却器17に分岐し、電池冷却器15、インバータ冷却器16および排気ガス冷却器17を並列に流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図2の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19を経てクーラコア18を流れ、第2切替弁20を経て第2ポンプ12に吸入される。
 このように、第1モードでは、ラジエータ13で冷却された中温冷却水が電池冷却器15、インバータ冷却器16および排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れる。
 このため、中温冷却水によって電池、インバータおよび排気ガスが冷却され、低温冷却水によって車室内への送風空気が冷却される。
 例えば、外気温が15℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は25℃程度になるので、中温冷却水によって電池、インバータおよび排気ガスを十分に冷却することができる。
 冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気を十分に冷却することができる。
 第1モードでは、電池、インバータおよび排気ガスを外気によって冷却するので、電池、インバータおよび排気ガスを冷凍サイクル22の低圧冷媒で冷却する場合に比べて省エネルギー化を図ることができる。
 第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図3に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19d、19fと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20dが出口20eと連通し、入口20a、20cが出口20fと連通する。
 したがって、第1ポンプ11、インバータ冷却器16、排気ガス冷却器17およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図3の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16および排気ガス冷却器17に分岐し、インバータ冷却器16および排気ガス冷却器17を並列に流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図3の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19でクーラコア18および電池冷却器15に分岐し、クーラコア18および電池冷却器15を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 すなわち、第2モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16および排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18および電池冷却器15を流れる。
 このため、中温冷却水によってインバータおよび排気ガスが冷却され、低温冷却水によって車室内への送風空気および電池が冷却される。
 例えば、外気温が25℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は40℃程度になるので、中温冷却水によってインバータおよび排気ガスを十分に冷却することができる。
 冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気および電池を十分に冷却することができる。
 このように、第2モードでは、電池を冷凍サイクル22の低圧冷媒で冷却するので、外気温が高いために外気では電池を十分に冷却できない場合であっても電池を十分に冷却することができる。
 第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図4に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通する。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20dが出口20fと連通する。
 したがって、第1ポンプ11、排気ガス冷却器17およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図4の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て排気ガス冷却器17を流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図4の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19でクーラコア18、電池冷却器15およびインバータ冷却器16に分岐し、クーラコア18、電池冷却器15およびインバータ冷却器16を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 したがって、第3モードでは、ラジエータ13で冷却された中温冷却水が排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18、電池冷却器15およびインバータ冷却器16を流れる。
 このため、ラジエータ13で冷却された冷却水によって排気ガスが冷却され、冷却水冷却器14で冷却された冷却水によって車室内への送風空気、電池およびインバータが冷却される。
 例えば、外気温が40℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は50℃程度になるので、中温冷却水によって排気ガスを十分に冷却することができる。
 冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気、電池およびインバータを十分に冷却することができる。
 このように、第3モードでは、電池およびインバータを冷凍サイクル22の低圧冷媒で冷却するので、外気温が非常に高いために外気では電池およびインバータを十分に冷却できない場合であっても電池およびインバータを十分に冷却することができる。
 本実施形態によると、第1、第2切替弁19、20の間に複数個の温度調整対象機器15、16、17、18を並列に接続するといった簡素な構成によって、複数個の温度調整対象機器15、16、17、18に循環する冷却水を切り替えることができる。
 具体的には、ラジエータ13で熱交換された冷却水の温度に関連する温度として外気温を検出し、外気温に応じて第1切替弁19および第2切替弁20の作動を制御して第1~第3モードを実施するので、ラジエータ13で熱交換された冷却水の温度に応じて、複数個の温度調整対象機器15、16、17、18に循環する冷却水を切り替えることができる。
 より具体的には、外気温が所定温度(本例では15℃)よりも低い場合、第1モードを実施して複数個の温度調整対象機器15、16、17、18の全てについて第1ポンプ11との間で冷却水を循環させ、外気温が所定温度(本例では15℃)よりも高い場合、外気温が高くなるにつれて第2モードから第3モードへ切り替えて、第2ポンプ12との間で冷却水が循環する温度調整対象機器の個数を増加させる。
 これにより、ラジエータ13で熱交換された冷却水の温度に応じて冷却水冷却器14の冷却負荷(すなわち冷凍サイクル22の冷却負荷)を変化させることができるので、省エネルギー化を図ることができる。
 さらに具体的には、複数個の温度調整対象機器15、16、17、18は要求される冷却温度が互いに異なっており、外気温が所定温度(本例では15℃)よりも高い場合、外気温が高くなるにつれて第2モードから第3モードへ切り替えて、要求される冷却温度の低い温度調整対象機器から順番に第2ポンプ12との間で冷却水を循環させていく。
 これにより、各温度調整対象機器15、16、17、18について、要求される冷却温度に応じて、低温冷却水が循環する場合と高温冷却水が循環する場合とに切り替えることができるので、省エネルギー化を図りつつ複数個の温度調整対象機器15、16、17、18を適切に冷却することができる。
(第2実施形態)
 上記第1実施形態では、第1切替弁19の出口19dと第2切替弁20の入口20bとの間に排気ガス冷却器17が接続されているが、本第2実施形態では、図16に示すように、第1切替弁19の出口19dと第2切替弁20の入口20bとの間に凝縮器50(温度調整対象機器)およびヒータコア51が接続されている。
 凝縮器50は、圧縮機23から吐出された高圧冷媒と冷却水とを熱交換させることによって高圧冷媒を凝縮させ、冷却水を加熱する高圧側熱交換器である。凝縮器50の冷却水入口側は第1切替弁19の出口19dに接続されている。
 ヒータコア51は、クーラコア18通過後の送風空気と冷却水とを熱交換させて送風空気を加熱する加熱用熱交換器である。ヒータコア51は、室内空調ユニットのケーシング27の内部においてクーラコア18の空気流れ下流側に配置されている。
 ヒータコア51の冷却水入口側は凝縮器50の冷却水出口側に接続されている。ヒータコア51の冷却水出口側は第2切替弁20の入口20bに接続されている。
 上記第1実施形態では、冷却水冷却器14は、第1ポンプ11の吐出側と第1切替弁19の入口19bとの間に接続されているが、本実施形態では、冷却水冷却器14は、第1切替弁19とクーラコア18との間に接続されている。具体的には、冷却水冷却器14の冷却水入口側は、第1切替弁19の出口19cに接続され、冷却水冷却器14の冷却水出口側は、クーラコア18の冷却水入口側に接続されている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を5種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20c、20dと出口20e、20fとの連通状態を5種類の状態に切り替え可能な構造になっている。
 図17は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
 第1状態では、第1切替弁19は、入口19aを出口19d、19e、19fと連通させ、入口19bを出口19cと連通させる。これにより、第1切替弁19は、図17の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19e、19fから流出させ、図17の実線矢印に示すように入口19bから流入した冷却水を出口19cから流出させる。
 第1状態では、第2切替弁20は、入口20b、20c、20dを出口20eと連通させ、入口20aを出口20fと連通させる。これにより、第2切替弁20は、図17の一点鎖線矢印に示すように入口20b、20c、20dから流入した冷却水を出口20eから流出させ、図17の実線矢印に示すように入口20aから流入した冷却水を出口20fから流出させる。
 図18は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
 第2状態では、第1切替弁19は、入口19aを出口19d、19fと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図18の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19fから流出させ、図18の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
 第2状態では、第2切替弁20は、入口20b、20dを出口20eと連通させ、入口20a、20cを出口20fと連通させる。これにより、第2切替弁20は、図18の一点鎖線矢印に示すように入口20b、20dから流入した冷却水を出口20eから流出させ、図18の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
 図19は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
 第3状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させる。これにより、第1切替弁19は、図19の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図19の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させる。
 第3状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、図19の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図19の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させる。
 図20は、第1切替弁19および第2切替弁20が第4状態に切り替えられたときの冷却システム10の作動(第4モード)を示している。
 第4状態では、第1切替弁19は、入口19aを出口19c、19e、19fと連通させ、入口19bを出口19dと連通させる。これにより、第1切替弁19は、図20の実線矢印に示すように入口19aから流入した冷却水を出口19c、19e、19fから流出させ、図20の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19dから流出させる。
 第4状態では、第2切替弁20は、入口20bを出口20fと連通させ、入口20a、20c、20dを出口20eと連通させる。これにより、第2切替弁20は、図20の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20eから流出させ、図20の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20fから流出させる。
 図21は、第1切替弁19および第2切替弁20が第5状態に切り替えられたときの冷却システム10の作動(第5モード)を示している。
 第5状態では、第1切替弁19は、入口19aを出口19cと連通させ、入口19bを出口19d、19e、19fと連通させる。これにより、第1切替弁19は、図21の破線矢印に示すように入口19aから流入した冷却水を出口19cから流出させ、図21の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19d、19e、19fから流出させる。
 第5状態では、第2切替弁20は、入口20aを出口20eと連通させ、入口20b、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、図21の破線矢印に示すように入口20aから流入した冷却水を出口20eから流出させ、図21の一点鎖線矢印に示すように入口20b、20c、20dから流入した冷却水を出口20fから流出させる。
 本実施形態における冷却水冷却器14および凝縮器50の具体的構造を図22に基づいて説明する。冷却水冷却器14および凝縮器50は、タンクアンドチューブ型の1つの熱交換器52で構成されている。熱交換器52の略半分が冷却水冷却器14を構成し、熱交換器52の残余の部分が凝縮器50を構成している。
 熱交換器52は、熱交換コア部52a、タンク部52b、52cおよび仕切部52dを有している。熱交換コア部52aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。
 タンク部52b、52cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。タンク部52b、52cの内部空間は、仕切部材(図示せず)によって、冷却水が流れる空間と冷媒が流れる空間とに仕切られている。
 仕切部52dは、タンク部52b、52cの内部をチューブ積層方向(図22の左右方向)に2つの空間に仕切る。熱交換器52のうち仕切部52dよりもチューブ積層方向一方側(図22の右方側)の部位が冷却水冷却器14を構成し、熱交換器52のうち仕切部52dよりもチューブ積層方向他方側(図22の左方側)の部位が凝縮器50を構成している。
 熱交換コア部52a、タンク部52b、52cおよび仕切部52dを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
 一方のタンク部52bのうち冷却水冷却器14を構成している部位には、冷却水の入口52eと冷媒の出口52fとが形成されている。他方のタンク部52cのうち冷却水冷却器14を構成している部位には、冷却水の出口52gと冷媒の入口52hとが形成されている。
 これにより、冷却水冷却器14では、冷却水が入口52eからタンク部52bに流入し、タンク部52bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部52cで集合されて出口52gから流出する。
 冷却水冷却器14では、冷媒が入口52hからタンク部52cに流入し、タンク部52cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部52bで集合されて出口52fから流出する。
 一方のタンク部52bのうち凝縮器50を構成している部位には、冷却水の入口52hと冷媒の出口52iとが形成されている。他方のタンク部52cのうち凝縮器50を構成している部位には、冷却水の出口52jと冷媒の入口52kとが形成されている。
 これにより、凝縮器50では、冷却水が入口52hからタンク部52bに流入し、タンク部52bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部52cで集合されて出口52jから流出する。
 凝縮器50では、冷媒が入口52kからタンク部52cに流入し、タンク部52cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部52bで集合されて出口52iから流出する。
 熱交換器52として、タンクアンドチューブ型の熱交換器に限定されることなく、他の形式の熱交換器を採用することができる。例えば、多数枚の板状部材を積層して接合してなる積層型熱交換器を採用してもよい。
 本実施形態の制御装置40が実行する制御処理を図23に基づいて説明する。制御装置40は、図23のフローチャートにしたがってコンピュータプログラムを実行する。
 まずステップS100では、エアコンスイッチ44がオンされているか否かを判定する。エアコンスイッチ44がオンされていると判定した場合、冷房が必要であるとしてステップS110へ進み、水温センサ43で検出された冷却水の温度が40度未満であるか否かを判定する。
 水温センサ43で検出された冷却水の温度が40度未満であると判定した場合、ラジエータ13で外気によって冷却された冷却水(中温冷却水)の温度が低くなっているとしてステップS120へ進み、図17に示す第1モードを実施する。
 第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図17に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19d、19e、19fと連通し、入口19bが出口19cと連通する。第2切替弁20では、入口20b、20c、20dが出口20eと連通し、入口20aが出口20fと連通する。
 したがって、第1ポンプ11、電池冷却器15、インバータ冷却器16、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14およびクーラコア18によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図17の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で電池冷却器15、インバータ冷却器16および凝縮器50に分岐し、電池冷却器15、インバータ冷却器16および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図17の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14およびクーラコア18を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
 このように、第1モードでは、ラジエータ13で冷却された中温冷却水が電池冷却器15、インバータ冷却器16、凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れる。
 このため、電池冷却器15およびインバータ冷却器16では、中温冷却水によって電池およびインバータが冷却され、凝縮器50では、中温冷却水が冷凍サイクル22の高圧冷媒と熱交換することによって加熱され、クーラコア18では、低温冷却水と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。
 凝縮器50で加熱された中温冷却水は、ヒータコア51を流れる際に、クーラコア18通過後の送風空気と熱交換する。これにより、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。すなわち、クーラコア18によって冷却・除湿された送風空気をヒータコア51にて加熱して、所望温度の空調風を作り出すことができる。
 例えば、外気温が15℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は25℃程度になるので、中温冷却水によって電池およびインバータを十分に冷却することができる。
 冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気を十分に冷却することができる。
 第1モードでは、電池およびインバータを外気によって冷却するので、電池およびインバータを冷凍サイクル22の低圧冷媒で冷却する場合に比べて省エネルギー化を図ることができる。
 一方、ステップS110にて、水温センサ43で検出された冷却水の温度が40度未満でないと判定した場合、中温冷却水の温度が高くなっているとしてステップS130へ進み、水温センサ43で検出された冷却水の温度が40度以上50度未満であるか否かを判定する。
 水温センサ43で検出された冷却水の温度が40度以上50度未満であると判定した場合、ステップS140へ進み、図18に示す第2モードを実施する。
 第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図18に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19d、19fと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20dが出口20eと連通し、入口20a、20cが出口20fと連通する。
 したがって、第1ポンプ11、インバータ冷却器16、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図18の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16および凝縮器50に分岐し、インバータ冷却器16および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図18の実線矢印に示すように、第2ポンプ12から吐出された冷却水は第1切替弁19で冷却水冷却器14および電池冷却器15に分岐し、冷却水冷却器14および電池冷却器15を並列に流れ、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第2モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16、凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18および電池冷却器15を流れる。
 このため、インバータを中温冷却水によって冷却でき、電池を低温冷却水によって冷却できるとともに、第1モードと同様にクーラコア18によって冷却・除湿された送風空気をヒータコア51で加熱して所望温度の空調風を作り出すことができる。
 例えば、外気温が30℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は40℃程度になるので、中温冷却水によってインバータを十分に冷却することができる。
 冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気および電池を十分に冷却することができる。
 第2モードでは、電池を冷凍サイクル22の低圧冷媒で冷却するので、外気温が高いために外気では電池を十分に冷却できない場合であっても電池を十分に冷却することができる。
 ステップS130にて、水温センサ43で検出された冷却水の温度が40度以上50度未満でないと判定した場合、中温冷却水の温度が非常に高くなっているとしてステップS150へ進み、図19に示す第3モードを実施する。
 第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図19に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通する。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20dが出口20fと連通する。
 したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図19の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図19の実線矢印に示すように、第2ポンプ12から吐出された冷却水は第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 したがって、第3モードでは、ラジエータ13で冷却された中温冷却水が凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18、電池冷却器15およびインバータ冷却器16を流れる。
 このため、電池およびインバータを低温冷却水によって冷却できるとともに、第1、第2モードと同様にクーラコア18によって冷却・除湿された送風空気をヒータコア51で加熱して所望温度の空調風を作り出すことができる。
 例えば、外気温が40℃程度の場合、ラジエータ13で外気によって冷却された中温冷却水は50℃程度になる。冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気、電池およびインバータを十分に冷却することができる。
 第3モードでは、電池およびインバータを冷凍サイクル22の低圧冷媒で冷却するので、外気温が非常に高いために外気では電池およびインバータを十分に冷却できない場合であっても電池およびインバータを十分に冷却することができる。
 ステップS100にて、エアコンスイッチ44がオンされていないと判定した場合、冷房が必要ないとしてステップS160へ進み、外気センサ42で検出された外気温が15度以下であるか否かを判定する。
 外気センサ42で検出された外気温が15度以下であると判定した場合、高い暖房能力が必要であるとしてステップS170へ進み、図20に示す第4モードを実施する。
 第4モードでは、制御装置40は、第1切替弁19および第2切替弁20が図20に示す第4状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19c、19e、19fと連通し、入口19bが出口19dと連通する。第2切替弁20では、入口20a、20c、20dが出口20eと連通し、入口20bが出口20fと連通する。
 したがって、第1ポンプ11、冷却水冷却器14、クーラコア18、電池冷却器15、インバータ冷却器16およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、凝縮器50およびヒータコア51によって第2冷却水回路(中温冷却水回路)が構成される。
 すなわち、図20の実線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図20の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
 したがって、第4モードでは、冷却水冷却器14で冷却された低温冷却水がクーラコア18、電池冷却器15およびインバータ冷却器16を流れるので、車室内への送風空気、電池およびインバータを低温冷却水で冷却することができる。
 また、第4モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
 冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際にクーラコア18通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
 例えば、外気温が10℃の場合、凝縮器50で加熱された中温冷却水は50℃程度になるので、クーラコア18通過後の送風空気を中温冷却水によって十分に加熱することができる。
 冷却水冷却器14で冷凍サイクル22の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって電池およびインバータを十分に冷却することができる。
 ちなみに、第4モードでは、クーラコア18で冷却・除湿された送風空気がヒータコア51で加熱されるので、除湿暖房を実現できる。
 続くステップS180では、内気センサ41で検出された内気温が25度以上であるか否かを判定する。内気センサ41で検出された内気温が25度以上でないと判定した場合、高い暖房能力が必要であるとしてステップS180に戻る。これにより、内気温が25度以上に上昇するまで第4モードが実施される。
 内気センサ41で検出された内気温が25度以上であると判定した場合、高い暖房能力が必要ないとしてステップS190へ進み、図21に示す第5モードを実施する。
 第5モードでは、制御装置40は、第1切替弁19および第2切替弁20が図21に示す第5状態になるように切替弁用電動モータ30を制御する。
 これにより、第1切替弁19では、入口19aが出口19cと連通し、入口19bが出口19d、19e、19fと連通する。第2切替弁20では、入口20aが出口20eと連通し、入口20b、20c、20dが出口20fと連通する。
 したがって、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、電池冷却器15、インバータ冷却器16、凝縮器50およびヒータコア51によって第2冷却水回路(中温冷却水回路)が構成される。
 このとき、第2ポンプ12を作動させ、第1ポンプ11および圧縮機23を停止させる。したがって、図21の破線矢印に示す第1冷却水回路では冷却水が循環しない。
 一方、図21の一点鎖線矢印に示すように、第2冷却水回路では、第2ポンプ12から吐出された冷却水は第1切替弁19で電池冷却器15、インバータ冷却器16および凝縮器50に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は、第2切替弁20で集合して第2ポンプ12に吸入される。
 したがって、第5モードでは、電池冷却器15で電池から吸熱した冷却水、およびインバータ冷却器16でインバータから吸熱した冷却水がヒータコア51を流れるので、電池およびインバータの廃熱によって車室内への送風空気を加熱することができる。
 例えば、外気温が10℃の場合、電池冷却器15およびインバータ冷却器16で加熱された冷却水は30℃程度になるので、車室内への送風空気を25度以上に加熱して内気温を25度以上に維持することができる。
 本実施形態によると、外気温が所定温度(本例では15℃)よりも低い場合、第4モードまたは第5モードを実施して暖房を行うことができる。
 第4モードでは、冷却水冷却器14について第1ポンプ11との間で冷却水を循環させ、凝縮器50について第2ポンプ12との間で冷却水熱媒体を循環させる。
 これにより、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、冷却水冷却器14において冷凍サイクル22の冷媒がラジエータ13を流れる冷却水を介して外気から吸熱することができる。したがって、冷凍サイクル22の冷却水冷却器14(低圧側熱交換器)から凝縮器50(高圧側熱交換器)へ外気の熱を汲み上げることができる。
 そして、冷凍サイクル22が汲み上げた外気の熱によって、ヒータコア51で車室内への送風空気を加熱することができるので、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
 第5モードでは、電池冷却器15およびヒータコア51について第2ポンプ12との間で冷却水を循環させ、第1ポンプ11を停止させる。これにより、電池冷却器15で冷却水が電池から吸熱し、電池から吸熱した冷却水がヒータコア51で車室内への送風空気を加熱するので、電池の廃熱を回収して車室内の暖房に利用することができる。
 (第3実施形態)
 上記第2実施形態では、冷凍サイクル22の低圧冷媒を冷却水冷却器14で蒸発させ、車室内への送風空気をクーラコア18で冷却しているが、本第3実施形態では、図24に示すように、冷凍サイクル22の低圧冷媒を冷却水冷却器14および蒸発器55で蒸発させ、車室内への送風空気を冷凍サイクル22の蒸発器55で冷却している。
 蒸発器55は、冷却水冷却器14に対して冷媒が並列に流れる。具体的には、冷凍サイクル22は、圧縮機23の冷媒吐出側と膨張弁25の冷媒入口側との間に冷媒流れの分岐部56を有し、冷却水冷却器14の冷媒出口側と圧縮機23の冷媒吸入側との間に冷媒流れの集合部57を有し、分岐部56と集合部57との間に膨張弁58および蒸発器55が接続されている。
 膨張弁58は、分岐部56で分岐された液相冷媒を減圧膨張させる減圧装置である。蒸発器55は、膨張弁25で減圧膨張された低圧冷媒と車室内への送風空気とを熱交換させることによって低圧冷媒を蒸発させ送風空気を冷却する。
 分岐部56と膨張弁25との間には電磁弁59(開閉弁)が接続されている。電磁弁59が開弁状態の場合、膨張弁25および冷却水冷却器14に圧縮機23から吐出された冷媒が流れる。電磁弁59が閉弁状態の場合、膨張弁25および冷却水冷却器14への冷媒流れが遮断される。電磁弁59の作動は、制御装置40によって制御される。
 冷凍サイクル22は過冷却器60を有している。過冷却器60は、凝縮器50で凝縮された液相冷媒と冷却水とを熱交換することによって液相冷媒を更に冷却して冷媒の過冷却度を高める熱交換器である。
 過冷却器60の冷却水入口側は、第1切替弁19の出口19eに接続されている。過冷却器60の冷却水出口側は、電池冷却器15の冷却水入口側に接続されている。
 本実施形態では、電池冷却器15および電池は、断熱材からなる断熱容器に収納されている。これにより、電池に蓄えられた冷熱が外に逃げることを抑制して電池を保冷できるようにしている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を2種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20dと出口20e、20fとの連通状態を2種類の状態に切り替え可能な構造になっている。
 図25は、第1切替弁19および第2切替弁20が第1状態に切り替えられ且つ電磁弁59が開弁状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。図26は、第1切替弁19および第2切替弁20が第1状態に切り替えられ且つ電磁弁59が閉弁状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
 第1状態および第2状態では、第1切替弁19は、入口19aを出口19d、19fと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図25、図26の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19fから流出させ、図25、図26の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
 第1状態および第2状態では、第2切替弁20は、入口20b、20dを出口20eと連通させ、入口20a、20cを出口20fと連通させる。これにより、第2切替弁20は、図25、図26の一点鎖線矢印に示すように入口20b、20dから流入した冷却水を出口20eから流出させ、図25、図26の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
 図27は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
 第3状態では、第1切替弁19は、入口19aを出口19c、19fと連通させ、入口19bを出口19dと連通させ、出口19eを閉じる。これにより、第1切替弁19は、図27の実線矢印に示すように入口19aから流入した冷却水を出口19c、19fから流出させ、図27の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19dから流出させ、出口19eから冷却水を流出させない。
 第3状態では、第2切替弁20は、入口20a、20dを出口20eと連通させ、入口20bを出口20fと連通させ、入口20cを閉じる。これにより、第2切替弁20は、図27の実線矢印に示すように入口20a、20dから流入した冷却水を出口20eから流出させ、図27の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20fから流出させ、入口20cから冷却水を流入させない。
 本実施形態における冷却水冷却器14、凝縮器50および過冷却器60の具体的構造を図28に基づいて説明する。
 冷却水冷却器14、凝縮器50および過冷却器60は、タンクアンドチューブ型の1つの熱交換器61で構成されている。具体的には、冷却水冷却器14と凝縮器50との間に過冷却器60が配置されている。
 熱交換器61は、熱交換コア部61a、タンク部61b、61cおよび2つの仕切部61d、61dを有している。熱交換コア部61aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。
 タンク部61b、61cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。タンク部61b、61cの内部空間は、仕切部材(図示せず)によって、冷却水が流れる空間と冷媒が流れる空間とに仕切られている。
 2つの仕切部61d、61dは、タンク部61b、61cの内部をチューブ積層方向(図28の左右方向)に3つの空間に仕切る。熱交換器52のうち仕切部61dよりもチューブ積層方向一方側(図28の右方側)の部位が冷却水冷却器14を構成し、熱交換器52のうち仕切部61dよりもチューブ積層方向他方側(図28の左方側)の部位が凝縮器50を構成し、仕切部61d、61d同士の間の部位が過冷却器60を構成している。
 熱交換コア部61a、タンク部61b、61cおよび仕切部61dを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
 一方のタンク部61bのうち冷却水冷却器14を構成している部位には、冷却水の入口61eと冷媒の出口61fとが形成されている。他方のタンク部61cのうち冷却水冷却器14を構成している部位には、冷却水の出口61gと冷媒の入口61hとが形成されている。
 これにより、冷却水冷却器14では、冷却水が入口61eからタンク部61bに流入し、タンク部61bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61cで集合されて出口61gから流出する。
 冷却水冷却器14では、冷媒が入口61hからタンク部61cに流入し、タンク部61cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部61bで集合されて出口61fから流出する。
 一方のタンク部61bのうち凝縮器50を構成している部位には、冷却水の入口61iが形成されている。仕切部61dのうちタンク部61bの内部空間を凝縮器50のタンク空間と過冷却器60のタンク空間とに仕切る部位には、冷媒が流通する孔61jが形成されている。他方のタンク部61cのうち凝縮器50を構成している部位には、冷却水の出口61kと冷媒の入口61lとが形成されている。
 これにより、凝縮器50では、冷却水が入口61iからタンク部61bに流入し、タンク部61bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61cで集合されて出口61kから流出する。
 凝縮器50では、冷媒が入口61lからタンク部61cに流入し、タンク部61cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部61bで集合されて仕切部61dの孔61jを通じて過冷却器60へ流出する。
 一方のタンク部61bのうち過冷却器60を構成している部位には、冷却水の出口61mが形成されている。他方のタンク部61cのうち過冷却器60を構成している部位には、冷却水の入口61nと冷媒の出口61oとが形成されている。
 これにより、過冷却器60では、冷却水が入口61nからタンク部61cに流入し、タンク部61cにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61bで集合されて出口61mから流出する。
 過冷却器60では、冷媒が仕切部61dの孔61jを通じてタンク部61bに流入し、タンク部61bにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部61cで集合されて出口61oから流出する。
 次に、上記構成における作動を説明する。電池が外部電源によって充電されている場合、制御装置40は図25に示す第1モードを実施する。
 第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図25に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
 これにより、第1切替弁19では、入口19aが出口19d、19fと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20dが出口20eと連通し、入口20a、20cが出口20fと連通する。
 したがって、第1ポンプ11、インバータ冷却器16、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、過冷却器60および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図25の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16および凝縮器50に分岐し、インバータ冷却器16および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図25の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14および過冷却器60に分岐し、冷却水冷却器14および過冷却器60を並列に流れ、過冷却器60を流れた冷却水は電池冷却器15を直列に流れ、電池冷却器15を流れた冷却水および冷却水冷却器14を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第1モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16、凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水が過冷却器60および電池冷却器15を流れる。
 このため、中温冷却水によってインバータおよび凝縮器50の高圧冷媒が冷却され、低温冷却水によって過冷却器60の液相冷媒および電池が冷却される。これにより、電池に冷熱が蓄えられる。
 電池が外部電源によって充電されている場合、冷凍サイクル22の圧縮機23は、外部電源から供給される電力によって駆動されるようになっている。したがって、第1モードでは、外部電源から供給される電力を用いて電池に蓄冷することができる。
 第1モードでは、蒸発器55にて冷凍サイクル22の低圧冷媒と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。また、第1モードでは、凝縮器50にて冷凍サイクル22の高圧冷媒と中温冷却水とが熱交換することによって中温冷却水が加熱され、ヒータコア51にて中温冷却水と車室内への送風空気が熱交換することによって車室内への送風空気が加熱される。
 したがって、所望温度の空調風を作り出して車室内を空調することができる。例えば、乗員が乗車する前に電池の充電が実施される場合には、乗員が乗車する前に車室内空調を実施するプレ空調を行うことができる。
 電池が外部電源によって充電されておらず、かつ車室内を冷房する必要がある場合、制御装置40は図26に示す第2モードを実施する。
 第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図26に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を閉弁状態に切り替える。すなわち、第2モードは、第1切替弁19および第2切替弁20の状態は第1モードと同じであり、電磁弁59を閉弁状態にする点が第1モードと異なっている。
 これにより、冷却水冷却器14に冷凍サイクル22の低圧冷媒が流れなくなるので、冷却水冷却器14で冷却水が冷却されなくなるが、電池冷却器15では第1モード時に電池に蓄えられた冷熱によって冷却水が冷却される。
 そして、電池冷却器15で冷却された低温冷却水が過冷却器60を流れるので、低温冷却水によって過冷却器60の液相冷媒(高圧冷媒)が冷却される。
 したがって、第2モードでは、電池に蓄えられた冷熱を利用して冷凍サイクル22の高圧冷媒を過冷却することができるので、冷凍サイクル22の効率を向上させて省エネルギー化を図ることができる。
 ちなみに、第2モードにおいて電磁弁59を開弁状態にして、冷却水冷却器14で低温冷却水を冷却するようにしてもよい。
 電池が所定温度(例えば40℃)以下になっていて電池を冷却する必要がなく且つ車室内を暖房する必要がある場合、制御装置40は図27に示す第3モードを実施する。
 第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図27に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
 これにより、第1切替弁19では、入口19aが出口19c、19fと連通し、入口19bが出口19dと連通し、出口19eが閉じられる。第2切替弁20では、入口20a、20dが出口20eと連通し、入口20bが出口20fと連通し、入口20cが閉じられる。
 したがって、第1ポンプ11、冷却水冷却器14、インバータ冷却器16およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、凝縮器50およびヒータコア51によって第2冷却水回路(中温冷却水回路)が構成される。
 すなわち、図27の実線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で冷却水冷却器14およびインバータ冷却器16に分岐し、冷却水冷却器14およびインバータ冷却器16を並列に流れ、冷却水冷却器14を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図27の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
 したがって、第3モードでは、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16を流れるので、インバータを低温冷却水で冷却することができる。
 この場合、電池は所定温度(例えば40℃)以下になっていて電池を冷却する必要がないので、電池冷却器15への冷却水循環は停止されている。
 第3モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
 冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際に蒸発器55通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、蒸発器55通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
 なお、ヒータコア51で加熱される送風空気は、蒸発器55で冷凍サイクル22の低圧冷媒によって冷却・除湿された乾いた冷風である。したがって、第3モードでは除湿暖房を行うことができる。
 ちなみに、第3モード時に電池の温度が上昇してきた場合、電池冷却器15へ中温冷却水または低温冷却水を循環させて電池を冷却するようにしてもよい。
 本実施形態によると、外部電源から供給された電力を電池に充電している場合、電磁弁59を開けて冷却水冷却器14に冷凍サイクルの低圧冷媒を流すので、冷却水冷却器14で冷却された冷却水が電池冷却器15を流れて電池が冷却される。このため、冷凍サイクル22が作り出した冷熱を電池に蓄えることができる。
 そして、外部電源から供給された電力を電池に充電した後の場合、電池冷却器15を流れた冷却水が過冷却器60を流れるので、過冷却器60を流れる冷媒を電池に蓄えられた冷熱によって冷却することができ、ひいては冷凍サイクル22の効率を向上できる。このとき、電磁弁59を閉じて冷却水冷却器14に冷凍サイクルの低圧冷媒を流さないようにするので、冷凍サイクル22の冷却負荷を低減することができる。
 したがって、例えば車両走行中のように外部電源を利用することができない場合に、電池に蓄えられた冷熱を温度調整対象機器の冷却に利用して消費電力を低減することができる。
 本実施形態では、過冷却器60と電池冷却器15とが互いに直列に接続されているので、過冷却器60と電池冷却器15とが互いに並列に接続されている場合に比べて、過冷却器60を流れて加熱された冷却水を電池冷却器15に蓄えられた冷熱によって効率的に冷却することができる。
 (第4実施形態)
 本第4実施形態では、図29に示すように、上記第3実施形態に対して吸気冷却器65(温度調整対象機器)を追加している。吸気冷却器65は、エンジン用過給器で圧縮されて高温になった吸気と冷却水とを熱交換して吸気を冷却する熱交換器である。吸気は30℃程度まで冷却されるのが好ましい。
 吸気冷却器65の冷却水入口側は、第1切替弁19の出口19gに接続されている。吸気冷却器65の冷却水出口側は、第2切替弁20の入口20gに接続されている。
 本実施形態では、過冷却器60は、冷却水冷却器14の冷却水出口側と第2切替弁20の入口20aとの間に接続されている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を3種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を3種類の状態に切り替え可能な構造になっている。
 図30は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
 第1状態では、第1切替弁19は、入口19aを出口19d、19f、19gと連通させ、入口19bを出口19c、19eと連通させる。これにより、第1切替弁19は、図30の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19f、19gから流出させ、図30の実線矢印に示すように入口19bから流入した冷却水を出口19c、19eから流出させる。
 第1状態では、第2切替弁20は、入口20b、20d、20gを出口20eと連通させ、入口20a、20cを出口20fと連通させる。これにより、第2切替弁20は、図30の一点鎖線矢印に示すように入口20b、20d、20gから流入した冷却水を出口20eから流出させ、図30の実線矢印に示すように入口20a、20cから流入した冷却水を出口20fから流出させる。
 図31は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
 第2状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19f、19gと連通させる。これにより、第1切替弁19は、図31の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図31の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19f、19gから流出させる。
 第2状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20d、20gを出口20fと連通させる。これにより、第2切替弁20は、図31の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図31の実線矢印に示すように入口20a、20c、20d、20gから流入した冷却水を出口20fから流出させる。
 図32は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
 第3状態では、第1切替弁19は、入口19aを出口19c、19fと連通させ、入口19bを出口19d、19e、19gと連通させる。これにより、第1切替弁19は、図32の実線矢印に示すように入口19aから流入した冷却水を出口19c、19fから流出させ、図32の一点鎖線矢印に示すように入口19bから流入した冷却水を出口19d、19e、19gから流出させる。
 第3状態では、第2切替弁20は、入口20a、20dを出口20eと連通させ、入口20b、20c、20gを出口20fと連通させる。これにより、第2切替弁20は、図32の実線矢印に示すように入口20a、20dから流入した冷却水を出口20eから流出させ、図32の一点鎖線矢印に示すように入口20b、20c、20gから流入した冷却水を出口20fから流出させる。
 次に、上記構成における作動を説明する。制御装置40は、外気センサ42で検出された外気温が15℃超40℃未満である場合、図30に示す第1モードを実施する。
 第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図30に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
 これにより、第1切替弁19では、入口19aが出口19d、19f、19gと連通し、入口19bが出口19c、19eと連通する。第2切替弁20では、入口20b、20d、20gが出口20eと連通し、入口20a、20cが出口20fと連通する。
 したがって、第1ポンプ11、インバータ冷却器16、凝縮器50、ヒータコア51、吸気冷却器65およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、過冷却器60および電池冷却器15によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図30の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19でインバータ冷却器16、凝縮器50および吸気冷却器65に分岐し、インバータ冷却器16、凝縮器50および吸気冷却器65を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、インバータ冷却器16を流れた冷却水および吸気冷却器65を流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図30の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14および電池冷却器15に分岐し、冷却水冷却器14および電池冷却器15を並列に流れ、冷却水冷却器14を流れた冷却水は過冷却器60を直列に流れ、過冷却器60を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第1モードでは、ラジエータ13で冷却された中温冷却水がインバータ冷却器16、凝縮器50、ヒータコア51および吸気冷却器65を流れ、冷却水冷却器14で冷却された低温冷却水が過冷却器60および電池冷却器15を流れる。
 このため、中温冷却水によってインバータ、吸気および凝縮器50の高圧冷媒が冷却され、低温冷却水によって過冷却器60の液相冷媒および電池が冷却される。
 第1モードでは、蒸発器55にて冷凍サイクル22の低圧冷媒と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。また、第1モードでは、凝縮器50にて冷凍サイクル22の高圧冷媒と中温冷却水とが熱交換することによって中温冷却水が加熱され、ヒータコア51にて中温冷却水と車室内への送風空気が熱交換することによって車室内への送風空気が加熱される。したがって、所望温度の空調風を作り出して車室内を空調することができる。
 制御装置40は、外気センサ42で検出された外気温が40℃以上である場合、図31に示す第2モードを実施する。
 第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図31に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
 これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19f、19gと連通する。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20d、20gが出口20fと連通する。
 したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、過冷却器60、電池冷却器15、インバータ冷却器16および吸気冷却器65によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図31の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第1ポンプ11に吸入される。
 一方、図31の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、電池冷却器15、インバータ冷却器16および吸気冷却器65に分岐し、冷却水冷却器14を流れた冷却水は過冷却器60を直列に流れ、過冷却器60を流れた冷却水、電池冷却器15を流れた冷却水、インバータ冷却器16を流れた冷却水および吸気冷却器65を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第2モードでは、ラジエータ13で冷却された中温冷却水が凝縮器50およびヒータコア51を流れ、冷却水冷却器14で冷却された低温冷却水が過冷却器60、電池冷却器15、インバータ冷却器16および吸気冷却器65を流れる。
 このため、中温冷却水によって凝縮器50の高圧冷媒が冷却され、低温冷却水によって過冷却器60の液相冷媒、電池、インバータおよび吸気が冷却される。
 第2モードでは、蒸発器55にて冷凍サイクル22の低圧冷媒と車室内への送風空気とが熱交換することによって車室内への送風空気が冷却される。また、第2モードでは、凝縮器50にて冷凍サイクル22の高圧冷媒と中温冷却水とが熱交換することによって中温冷却水が加熱され、ヒータコア51にて中温冷却水と車室内への送風空気が熱交換することによって車室内への送風空気が加熱される。したがって、所望温度の空調風を作り出して車室内を空調することができる。
 ちなみに、第1モードを実施している場合であっても、発進時等の急加速時に第2モードと同様に吸気冷却器65に低温冷却水が流れるようにして吸気を低温冷却水によって冷却するようにすれば、急加速時に過給圧が上がって吸気温度が上昇しても吸気を十分に冷却して燃費を向上することができる。
 制御装置40は、外気センサ42で検出された外気温が0℃以下である場合、図32に示す第3モードを実施する。
 第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図32に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させ、電磁弁59を開弁状態に切り替える。
 これにより、第1切替弁19では、入口19aが出口19c、19fと連通し、入口19bが出口19d、19e、19gと連通する。第2切替弁20では、入口20a、20dが出口20eと連通し、入口20b、20c、20gが出口20fと連通する。
 したがって、第1ポンプ11、冷却水冷却器14、過冷却器60およびインバータ冷却器16およびラジエータ13によって第1冷却水回路(低温冷却水回路)が構成され、第2ポンプ12、電池冷却器15、凝縮器50、ヒータコア51および吸気冷却器65によって第2冷却水回路(中温冷却水回路)が構成される。
 すなわち、図32の実線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で冷却水冷却器14およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水は過冷却器60を直列に流れ、過冷却器60を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第1ポンプ11に吸入される。
 一方、図32の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で電池冷却器15、凝縮器50および吸気冷却器65に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水、電池冷却器15を流れた冷却水および吸気冷却器65を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 第3モードでは、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16を流れるので、インバータを低温冷却水で冷却することができる。
 第3モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
 冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際に蒸発器55通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、蒸発器55通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
 なお、ヒータコア51で加熱される送風空気は、蒸発器55で冷却・除湿された乾いた冷風である。したがって、第3モードでは除湿暖房を行うことができる。
 第3モードでは、凝縮器50で加熱された中温冷却水が電池冷却器15および吸気冷却器65を流れるので、電池を加熱して電池出力を向上させることができるとともに、吸気を加熱して燃料の霧化を促進し、ひいては燃費を向上させることができる。特にエンジンが冷えていて燃料が霧化しにくい冷間始動時において、燃料の霧化を促進することによって燃焼効率を向上できる。
 (第5実施形態)
 上記第2実施形態では、ラジエータ13が第2切替弁20の出口20eと第1ポンプ11の吸入側との間に接続されているが、本第5実施形態では、図33に示すように、ラジエータ13が第1切替弁19の出口19gと第2切替弁20の入口20gとの間に接続されている。
 ラジエータ13の冷却水入口側は、第1切替弁19の出口19gに接続されている。ラジエータ13の冷却水出口側は、第2切替弁20の入口20gに接続されている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を2種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を2種類の状態に切り替え可能な構造になっている。
 図34は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
 第1状態では、第1切替弁19は、入口19aを出口19d、19eと連通させ、入口19bを出口19c、19f、19gと連通させる。これにより、第1切替弁19は、図34の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19eから流出させ、図34の実線矢印に示すように入口19bから流入した冷却水を出口19c、19f、19gから流出させる。
 第1状態では、第2切替弁20は、入口20b、20cを出口20eと連通させ、入口20a、20d、20gを出口20fと連通させる。これにより、第2切替弁20は、図34の一点鎖線矢印に示すように入口20b、20cから流入した冷却水を出口20eから流出させ、図30の実線矢印に示すように入口20a、20d、20gから流入した冷却水を出口20fから流出させる。
 図35は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
 第2状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させ、出口19gを閉じる。これにより、第1切替弁19は、図35の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図35の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させ、出口19gから冷却水を流出させない。
 第2状態では、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させ、入口20gを閉じる。これにより、第2切替弁20は、図35の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図35の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させ、入口20gから冷却水を流入させない。
 外気温が非常に低温(例えば0℃)になっている冬季において電池が外部電源によって充電されている場合、制御装置40は図34に示す第1モードを実施する。
 第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図34に示す第1状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19d、19eと連通し、入口19bが出口19c、19f、19gと連通する。第2切替弁20では、入口20b、20cが出口20eと連通し、入口20a、20d、20gが出口20fと連通する。
 したがって、第1ポンプ11、電池冷却器15、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、インバータ冷却器16およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図34の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19で電池冷却器15および凝縮器50に分岐し、電池冷却器15および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第1ポンプ11に吸入される。
 一方、図34の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、インバータ冷却器16およびラジエータ13に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、インバータ冷却器16を流れた冷却水およびラジエータ13を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 第1モードでは、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16およびクーラコア18を流れるので、低温冷却水によってインバータおよび車室内への送風空気を冷却できる。
 第1モードでは、冷却水冷却器14で冷却された低温冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して外気から吸熱する。
 冷却水冷却器14にて外気から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際にクーラコア18通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。このため、第4モードでは、外気から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
 なお、ヒータコア51で加熱される送風空気は、クーラコア18で冷却・除湿された乾いた冷風である。したがって、第1モードでは除湿暖房を行うことができる。
 例えば、乗員が乗車する前に電池の充電が実施される場合には、乗員が乗車する前に車室内空調を実施するプレ空調を行うことができる。
 さらに、第1モードでは、凝縮器50で加熱された中温冷却水が電池冷却器15を流れるので、電池を加熱して電池に温熱を蓄えることができる。本例では、第1モードでは電池を40℃程度まで加熱する。
 外部電源による電池の充電が完了して走行を開始した場合、制御装置40は図35に示す第2モードを実施する。
 第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図35に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通し、出口19gが閉じられる。第2切替弁20では、入口20bが出口20eと連通し、入口20a、20c、20dが出口20fと連通し、入口20gが閉じられる。
 したがって、第1ポンプ11、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成され、ラジエータ13への冷却水循環が停止される。
 すなわち、図35の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第1ポンプ11に吸入される。
 一方、図35の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 第2モードでは、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れるので、電池冷却器15で低温冷却水が電池から吸熱する。そして、電池冷却器15にて電池から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル22の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル22の冷媒が冷却水を介して電池から吸熱する。
 冷却水冷却器14にて電池から吸熱した冷媒は、凝縮器50にて中温冷却水回路の冷却水と熱交換するので、中温冷却水回路の冷却水が加熱される。凝縮器50で加熱された中温冷却水回路の冷却水は、ヒータコア51を流れる際にクーラコア18通過後の送風空気と熱交換して放熱する。したがって、ヒータコア51では、クーラコア18通過後の送風空気が加熱される。このため、第2モードでは、電池から吸熱して車室内を暖房するヒートポンプ暖房を実現できる。
 なお、ヒータコア51で加熱される送風空気は、クーラコア18で冷却・除湿された乾いた冷風である。したがって、第2モードでは除湿暖房を行うことができる。
 本例では、第1モードで電池を40℃程度まで加熱しているので、第2モードでは40℃の電池から熱を奪うヒートポンプにすることができる。このため、冷凍サイクル22の低圧冷媒が外気(例えば0℃)から吸熱するよりも高温で運転することができるので、ヒートポンプの運転効率を高くできる。
 第2モードでは、ラジエータ13に冷却水が循環せずラジエータ13が外気から吸熱しないので、ラジエータ13の着霜を防止できる。
 (第6実施形態)
 上記各実施形態では、温度調整対象機器として冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17、クーラコア18、凝縮器50および吸気冷却器65が設けられている例を示したが、本第6実施形態では、図36に示すように、温度調整対象機器として吸気冷却器65、燃料冷却器66および車載電子機器冷却器67が設けられている。
 燃料冷却器66は、エンジンに供給される燃料と冷却水とを熱交換することによって燃料を冷却する熱交換器である。車載電子機器冷却器67は、車載電子機器と冷却水とを熱交換することによって車載電子機器を冷却する熱交換器である。このように、温度調整対象機器として種々の機器を用いることができる。
 また、本実施形態のように、凝縮器50は、第1ポンプ11の吐出側と第1切替弁19の入口19aとの間に接続されていてもよい。
 (第7実施形態)
 上記第3実施形態では、熱交換器61のタンク部61cのうち冷却水冷却器14および過冷却器60を構成している部位に冷却水の出口61gおよび冷却水の入口61nが形成されているが、本第7実施形態では、図37に示すように、冷却水の出口61gおよび冷却水の入口61nが廃止され、仕切部61dのうちタンク部61bの内部空間を冷却水冷却器14のタンク空間と過冷却器60のタンク空間とに仕切る部位に、冷媒が流通する孔61pが形成されている。
 これにより、冷却水冷却器14では、冷却水が入口61eからタンク部61bに流入し、タンク部61bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61cで集合されて仕切部61dの孔61pから過冷却器60へ流出する。
 過冷却器60では、冷却水が仕切部61dの孔61pを通じてタンク部61cに流入し、タンク部61cにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部61bで集合されて出口61mから流出する。
 本実施形態によると、上記第3実施形態の熱交換器61に対して冷却水の出口61gおよび冷却水の入口61nを廃止できるので、冷却水配管の接続構造を簡素化できる。
 (第8実施形態)
 上記第7実施形態では、冷却水冷却器14、凝縮器50および過冷却器60が1つの熱交換器61で構成されているが、本第8実施形態では、図38に示すように、冷却水冷却器14、凝縮器50および膨張弁25が一体化されている。
 冷却水冷却器14は、タンクアンドチューブ型の熱交換器で構成されており、熱交換コア部14a、タンク部14b、14cを有している。熱交換コア部14aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。タンク部14b、14cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。
 熱交換コア部14aおよびタンク部14b、14cを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
 凝縮器50は、タンクアンドチューブ型の熱交換器で構成されており、熱交換コア部50a、タンク部50b、50cを有している。熱交換コア部50aは、冷却水および冷媒を別々に流通させる複数本のチューブを有している。複数本のチューブは、互いに平行に積層されている。タンク部50b、50cは、複数本のチューブの両端側に配置されており、複数本のチューブに対して冷却水および冷媒の分配および集合を行う。
 熱交換コア部50aおよびタンク部50b、50cを構成する各部材は金属(例えばアルミニウム合金)で成形され、ろう付けにて互いに接合されている。
 冷却水冷却器14および凝縮器24はチューブ積層方向(図38では左右方向)に並んで配置されている。膨張弁25は、冷却水冷却器14と凝縮器24との間に挟まれて固定されている。
 膨張弁25は、冷却水冷却器14流出冷媒の過熱度が予め定めた所定範囲となるように弁開度が機械的機構によって調整される温度式膨張弁であり、冷却水冷却器14出口側冷媒の過熱度を検知する感温部25aを有している。
 冷却水冷却器14の一方のタンク部14cには、冷却水の入口14eと冷媒の出口14fとが形成されている。冷媒の出口14fは、膨張弁25の感温部25aの冷媒入口と重なり合っている。
 冷却水冷却器14の他方のタンク部14bには、冷却水の出口14gと冷媒の入口14hとが形成されている。冷媒の入口14hは、膨張弁25の冷媒出口と重なり合っている。
 これにより、冷却水冷却器14では、冷却水が入口14eからタンク部14cに流入し、タンク部14cにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部14bで集合されて出口14gから流出する。
 冷却水冷却器14では、膨張弁25で減圧された冷媒が入口14hからタンク部14bに流入し、タンク部14bにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部14cで集合されて出口14fから膨張弁25の感温部25aへ流出する。膨張弁25の感温部25aには、冷媒の出口25bが形成されている。
 凝縮器50の一方のタンク部50bには、冷却水の入口50eと冷媒の出口50fとが形成されている。冷媒の出口50bは、膨張弁25の冷媒入口と重なり合っている。凝縮器50の他方のタンク部50cには、冷却水の出口50gと冷媒の入口50hとが形成されている。
 これにより、凝縮器50では、冷却水が入口50eからタンク部50bに流入し、タンク部50bにて冷却水用チューブに分配され、冷却水用チューブを流通した後にタンク部50cで集合されて出口50gから流出する。
 凝縮器50では、冷媒が入口50hからタンク部50cに流入し、タンク部50cにて冷媒用チューブに分配され、冷媒用チューブを流通した後にタンク部50bで集合されて出口50fから膨張弁25へ流出する。出口50fから膨張弁25へ流出した冷媒は、膨張弁25で減圧されて冷却水冷却器14に流入する。
 本実施形態によると、冷却水冷却器14と膨張弁25との間、および凝縮器50と膨張弁25との間の冷媒配管が不要であるので、冷媒配管の接続構造を簡素化できる。
 (第9実施形態)
 上記第1実施形態では、外気センサ42で検出された外気温に応じて運転モードを切り替えるようになっているが、本第9実施形態では、インバーターの温度および電池の温度に応じて運転モードを切り替えるようになっている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19fとの連通状態を4種類の状態に切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20dと出口20e、20fとの連通状態を4種類の状態に切り替え可能な構造になっている。
 図39は、第1切替弁19および第2切替弁20が第1状態に切り替えられたときの冷却システム10の作動(第1モード)を示している。
 第1状態では、第1切替弁19は、入口19aを閉じ、入口19bを出口19c、19d、19e、19fと連通させる。これにより、第1切替弁19は、入口19aから冷却水を流入させず、図39の実線矢印に示すように入口19bから流入した冷却水を出口19c、19d、19e、19fから流出させる。
 第1状態では、第2切替弁20は、出口20eを閉じ、入口20a、20b、20c、20dを出口20fと連通させる。これにより、第2切替弁20は、出口20eから冷却水を流出させず、図39の実線矢印に示すように入口20a、20b、20c、20dから流入した冷却水を出口20fから流出させる。
 図40は、第1切替弁19および第2切替弁20が第2状態に切り替えられたときの冷却システム10の作動(第2モード)を示している。
 第2状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させる。これにより、第1切替弁19は、図40の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図40の実線矢印に示すように入口19bから流入した冷却水を出口19c、19e、19fから流出させる。
 第2状態では、第2切替弁20は、入口20a、20c、20dを出口20fと連通させ、入口20bを出口20eと連通させる。これにより、第2切替弁20は、図40の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図40の実線矢印に示すように入口20a、20c、20dから流入した冷却水を出口20fから流出させる。
 図41は、第1切替弁19および第2切替弁20が第3状態に切り替えられたときの冷却システム10の作動(第3モード)を示している。
 第3状態では、第1切替弁19は、入口19aを出口19d、19eと連通させ、入口19bを出口19c、19fと連通させる。これにより、第1切替弁19は、図41の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19d、19eから流出させ、図41の実線矢印に示すように入口19bから流入した冷却水を出口19c、19fから流出させる。
 第3状態では、第2切替弁20は、入口20a、20dを出口20fと連通させ、入口20b、20cを出口20eと連通させる。これにより、第2切替弁20は、図41の一点鎖線矢印に示すように入口20b、20cから流入した冷却水を出口20eから流出させ、図41の実線矢印に示すように入口20a、20dから流入した冷却水を出口20fから流出させる。
 図42は、第1切替弁19および第2切替弁20が第4状態に切り替えられたときの冷却システム10の作動(第4モード)を示している。
 第4状態では、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19e、19fと連通させ、出口19cを閉じる。これにより、第1切替弁19は、図42の一点鎖線矢印に示すように入口19aから流入した冷却水を出口19dから流出させ、図42の実線矢印に示すように入口19bから流入した冷却水を出口19e、19fから流出させ、出口19cから冷却水を流出させない。
 第4状態では、第2切替弁20は、入口20c、20dを出口20fと連通させ、入口20bを出口20eと連通させ、入口20aを閉じる。これにより、第2切替弁20は、図42の一点鎖線矢印に示すように入口20bから流入した冷却水を出口20eから流出させ、図42の実線矢印に示すように入口20c、20dから流入した冷却水を出口20fから流出させ、入口20aから冷却水を流入させない。
 次に、冷却システム10の電気制御部を図43に基づいて説明する。冷却システム10の電気制御部は、上記第1実施形態の構成に加えて、制御装置40の入力側にインバータ温度センサ45および電池温度センサ46の検出信号が入力される。
 インバータ温度センサ45は、インバータの温度を検出するインバータ温度検出装置である。例えば、インバータ温度センサ45は、インバータ冷却器16を流出した冷却水の温度を検出するようにすればよい。電池温度センサ46は、電池の温度を検出する電池温度検出装置である。例えば、電池温度センサ46は、電池冷却器15を流出した冷却水の温度を検出するようにすればよい。
 本実施形態の制御装置40が実行する制御処理を図44に基づいて説明する。制御装置40は、図44のフローチャートにしたがって、コンピュータプログラムを実行する。
 まず、ステップS200では、インバータ温度センサ45によって検出されたインバータの温度Tinvが60℃を超えているか否かを判定する。
 インバータの温度Tinvが60℃を超えていないと判定した場合、インバータの冷却優先度が高くないとしてステップS210へ進み、図39に示す第1モードを実施する。
 第1モードでは、制御装置40は、第1切替弁19および第2切替弁20が図39に示す第1状態になるように切替弁用電動モータ30を制御するとともに第2ポンプ12および圧縮機23を作動させ、第1ポンプ11を停止させる。
 これにより、第1切替弁19では、入口19aが閉じられ、入口19bが出口19c、19d、19e、19fと連通する。第2切替弁20では、入口20a、20b、20c、20dが出口20fと連通し、出口20eが閉じられる。
 したがって、第2ポンプ12、冷却水冷却器14、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18によって低温冷却水回路が構成され、中温冷却水回路は構成されない。
 すなわち、図39の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19で電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18に分岐し、電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 一方、図39の破線矢印に示すように、第1ポンプ11からは冷却水が吐出されず、ラジエータ13に冷却水が流れない。
 このように、第1モードでは、冷却水冷却器14で冷却された低温冷却水が電池冷却器15、インバータ冷却器16、排気ガス冷却器17およびクーラコア18を流れる。このため、低温冷却水によって電池、インバータ、排気ガスおよび車室内への送風空気が冷却される。
 ステップS200にてインバータの温度Tinvが60℃を超えていると判定した場合、インバータの冷却優先度が高いとしてステップS220へ進み、インバータの温度Tinvが70℃未満であるか否かを判定する。
 インバータの温度Tinvが70℃以上であると判定した場合、インバータが異常高温になっているとしてステップS230へ進み、警告灯を点灯する。これにより、インバータが異常高温になっていることを乗員に報知することができる。
 一方、インバータの温度Tinvが70℃未満であると判定した場合、インバータが異常高温になっていないとしてステップS240へ進み、警告灯を消灯する。これにより、インバータが異常高温になっていないことを乗員に報知することができる。
 ステップS230、S240に続くステップS250では、排気ガス冷却器17に中温冷却水回路の冷却水(中温冷却水)が循環しているか否かを判定する。具体的には、第1切替弁19および第2切替弁20の作動状態によって、排気ガス冷却器17に中温冷却水回路の冷却水(中温冷却水)が循環しているか否かを判定する。
 排気ガス冷却器17に中温冷却水が循環していないと判定した場合、排気ガスの冷却能力を下げるべくステップS260へ進み、図40に示す第2モードを実施する。
 第2モードでは、制御装置40は、第1切替弁19および第2切替弁20が図40に示す第2状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19c、19e、19fと連通する。第2切替弁20では、入口20a、20c、20dが出口20fと連通し、入口20bが出口20eと連通する。
 したがって、第1ポンプ11、排気ガス冷却器17およびラジエータ13によって中温冷却水回路が構成され、第2ポンプ12、冷却水冷却器14、電池冷却器15、インバータ冷却器16およびクーラコア18によって低温冷却水回路が構成される。
 すなわち、図40の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水はは第1切替弁19を経て排気ガス冷却器17を流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図40の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19で電池冷却器15、インバータ冷却器16およびクーラコア18に分岐し、電池冷却器15、インバータ冷却器16およびクーラコア18を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第2モードでは、ラジエータ13で冷却された中温冷却水が排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水が電池冷却器15、インバータ冷却器16およびクーラコア18を流れる。このため、中温冷却水によって排気ガスが冷却され、低温冷却水によって電池、インバータおよび車室内への送風空気が冷却される。
 このため、排気ガスも低温冷却水によって冷却される第1モードに比べてインバータの冷却能力を向上させることができる。
 ステップS250にて排気ガス冷却器17に中温冷却水が循環していると判定した場合、ステップS270へ進み、電池温度センサ46によって検出された電池の温度Tbattが50℃を超えているか否かを判定する。
 電池の温度Tbattが50℃を超えていないと判定した場合、電池の冷却優先度が高くないとしてステップS280へ進み、図41に示す第3モードを実施する。
 第3モードでは、制御装置40は、第1切替弁19および第2切替弁20が図41に示す第3状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19d、19eと連通し、入口19bが出口19c、19fと連通する。第2切替弁20では、入口20a、20dが出口20fと連通し、入口20b、20cが出口20eと連通する。
 したがって、第1ポンプ11、電池冷却器15、排気ガス冷却器17およびラジエータ13によって中温冷却水回路が構成され、第2ポンプ12、冷却水冷却器14、インバータ冷却器16およびクーラコア18によって低温冷却水回路が構成される。
 すなわち、図41の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水はは第1切替弁19で電池冷却器15および排気ガス冷却器17に分岐し、電池冷却器15および排気ガス冷却器17を並列に流れた冷却水は第2切替弁20で集合してラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図41の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19でインバータ冷却器16およびクーラコア18に分岐し、インバータ冷却器16およびクーラコア18を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第2モードでは、ラジエータ13で冷却された中温冷却水が電池冷却器15および排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水がインバータ冷却器16およびクーラコア18を流れる。このため、中温冷却水によって電池および排気ガスが冷却され、低温冷却水によってインバータおよび車室内への送風空気が冷却される。
 このため、電池も低温冷却水によって冷却される第2モードに比べてインバータの冷却能力を向上させることができる。
 ステップS270にて電池の温度Tbattが50℃を超えていると判定した場合、電池の冷却優先度が高いとしてステップS290へ進み、図42に示す第4モードを実施する。
 第4モードでは、制御装置40は、第1切替弁19および第2切替弁20が図42に示す第4状態になるように切替弁用電動モータ30を制御するとともに第1ポンプ11、第2ポンプ12および圧縮機23を作動させる。
 これにより、第1切替弁19では、入口19aが出口19dと連通し、入口19bが出口19e、19fと連通し、出口19cが閉じられる。第2切替弁20では、入口20aが閉じられ、入口20bが出口20eと連通し、入口20c、20dが出口20fと連通する。
 したがって、第1ポンプ11、排気ガス冷却器17およびラジエータ13によって中温冷却水回路が構成され、第2ポンプ12、冷却水冷却器14、電池冷却器15およびインバータ冷却器16によって低温冷却水回路が構成される。
 すなわち、図42の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水はは第1切替弁19を経て排気ガス冷却器17を流れ、第2切替弁20を経てラジエータ13を流れて第1ポンプ11に吸入される。
 一方、図41の実線矢印に示すように、第2ポンプ12から吐出された冷却水は冷却水冷却器14を流れ、第1切替弁19で電池冷却器15およびインバータ冷却器16に分岐し、電池冷却器15およびインバータ冷却器16を並列に流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。一方、図41の破線矢印に示すように、クーラコア18には冷却水が循環しない。
 このように、第2モードでは、ラジエータ13で冷却された中温冷却水が排気ガス冷却器17を流れ、冷却水冷却器14で冷却された低温冷却水が電池冷却器15およびインバータ冷却器16を流れ、クーラコア18への冷却水の循環が停止される。このため、中温冷却水によって電池および排気ガスが冷却され、低温冷却水によってインバータが冷却され、車室内への送風空気の冷却(すなわち冷房)が停止される。
 このため、車室内への送風空気も低温冷却水によって冷却される第2モードに比べて電池およびインバータの冷却能力を向上させることができる。
 本実施形態によると、インバータの温度Tinvが所定温度(本例では60℃)よりも高い場合、第3モードを実施して、インバータ冷却器16について第2ポンプ12との間で冷却水を循環させ、前記電池冷却器15について第1ポンプ11との間で冷却水を循環させる。このため、インバータの温度が高い場合に、熱容量の小さいインバータを、熱容量の大きい電池よりも優先的に冷却することができる。このため、電池の温度上昇を抑制しつつインバータを効果的に冷却することができる。
 (第10実施形態)
 本第10実施形態では、図45に示すように、上記第1実施形態の構成に加えて、冷却水を貯留する冷却水タンク70を備えている。
 冷却水タンク70には、第1冷却水出入口70aおよび第2冷却水出入口70bが形成されている。第1冷却水出入口70aは、第2切替弁20の出口20eとラジエータ13の冷却水入口側との間に設けられた第1分岐部71に接続されている。第2冷却水出入口70bは、第2切替弁20の出口20fと第2ポンプ12の吸入側との間に設けられた第2分岐部72に接続されている。
 これにより、第1冷却水回路(第1ポンプ11側の冷却水回路)のうち第1ポンプ11の吸入側の冷却水流路と、第2冷却水回路(第2ポンプ12側の冷却水回路)のうち第2ポンプ12の吸入側の冷却水流路とが冷却水タンク70を介して連通している。
 本実施形態によると、第1冷却水回路と第2冷却水回路とが連通しているので、第1冷却水回路と第2冷却水回路との間で内圧を均圧化できる。そのため、第1切替弁19および第2切替弁20のそれぞれにおいて、切替弁内部の弁体に作用する圧力差を低減できるので、切替弁内部での冷却水漏れを防止できる。
 ここで、例えば第1冷却水回路と第2冷却水回路とがポンプの吐出側とポンプの吸入側で連通している場合、ポンプの吸入側で連通する方の冷却水回路の内圧が異常に上昇してしまう。この点、本実施形態では、第1冷却水回路と第2冷却水回路とが互いにポンプの吸入側で連通しているので、冷却水回路の内圧が異常に上昇することを防止でき、ひいては部品の耐圧設計が容易になる。
 (第11実施形態)
 上記第10実施形態では、第1冷却水回路と第2冷却水回路とが互いにポンプの吸入側で連通されているが、本第11実施形態では、図46に示すように、第1冷却水回路と第2冷却水回路とが互いにポンプの吐出側で連通されている。
 具体的には、第1冷却水回路の第1分岐部71は、第1ポンプ11の吐出側と第1切替弁19の入口19aとの間に設けられており、第2冷却水回路の第2分岐部72は、第2ポンプ12の吐出側と第1切替弁19の入口19bとの間に設けられている。
 また、上記第10実施形態では、冷却水タンク70に、第1冷却水回路との接続用の第1冷却水出入口70aと、第2冷却水回路との接続用の第2冷却水出入口70bが形成されているが、本第11実施形態では、冷却水タンク70に、第1冷却水回路および第2冷却水回路の両方に接続される1つの冷却水出入口70cが形成されている。
 これに伴って、冷却水タンク70の冷却水出入口70cに接続される冷却水配管は、冷却水タンク70側から第1分岐部71および第2分岐部72に向かって1本から2本に分岐する形状になっている。
 本実施形態においても、上記第10実施形態と同様の作用効果を得ることができる。
 (第12実施形態)
 本第12実施形態では、図47に示すように、上記第2実施形態に対して、循環流路80、第3ポンプ81、三方弁82および入口水温センサ83を追加している。
 循環流路80は、第1切替弁19および第2切替弁20を介することなく冷却水が循環する流路であり、その一端部が電池冷却器15の冷却水出口側に接続され、その他端部が電池冷却器15の冷却水入口側に接続されている。
 循環流路80は、電池冷却器用流路84(非循環流路)と並列に設けられている。なお、電池冷却器用流路84は、電池冷却器15が配置された流路であって、その一端が第1切替弁19の出口19eに接続され、その他端が第2切替弁20の入口20cに接続されている。
 図47の例では、循環流路80および電池冷却器用流路84のうち電池冷却器15の近傍部位が一体化されて1つの流路を構成している。したがって、電池冷却器15と第2切替弁20との間にて循環流路80と電池冷却器用流路84とが分岐し、電池冷却器15と第1切替弁19との間にて循環流路80と電池冷却器用流路84とが合流している。
 第3ポンプ81は、冷却水(熱媒体)を吸入して吐出する電動ポンプであり、循環流路80に配置されている。図47の例では、第3ポンプ81は、循環流路80のうち電池冷却器用流路84から分岐された部位(電池冷却器用流路84とは別の流路を形成している部位)に配置されている。
 三方弁82は、循環流路80と電池冷却器用流路84とを切替開閉する循環切替弁であり、循環流路80と電池冷却器用流路84との分岐部に配置されている。
 三方弁82が循環流路80を開けて電池冷却器用流路84を閉じると、電池冷却器15から流出した冷却水は循環流路80を循環して電池冷却器15に流入する。一方、三方弁82が電池冷却器用流路84を開けて循環流路80を閉じると、電池冷却器15から流出した冷却水は電池冷却器用流路84を流れて第2切替弁20に流入する。
 入口水温センサ83は、電池冷却器15の冷却水入口側に配置され、電池冷却器15に流入する冷却水の温度(流入熱媒体温度)を検出する流入温度検出装置である。
 第3ポンプ81および三方弁82の作動は制御装置40によって制御される。入口水温センサ83の検出信号は制御装置40に入力される。
 本実施形態の制御装置40が実行する制御処理を図48に基づいて説明する。制御装置40は、図48のフローチャートにしたがってコンピュータプログラムを実行する。
 まずステップS300では、電池冷却要求の有無を判定する。具体的には、電池の温度が第1所定温度(例えば35℃)以上の場合、電池冷却要求有りと判定し、電池の温度が第1所定温度未満の場合、電池冷却要求無しと判定する。
 電池冷却要求有りと判定した場合、ステップS310へ進み、電池の温度が冷却目標温度(例えば40℃)を上回っているか否かを判定する。電池の温度が冷却目標温度を上回っていると判定した場合、ステップS320へ進み、電池の温度が冷却目標温度を上回っていないと判定した場合、ステップS300へ戻る。
 ステップS320では、図49に示す第1冷却モード(非循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 第1冷却モードでは、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19e、19fと連通させ、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20c、20dを出口20fと連通させる。
 また、第1冷却モードでは、三方弁82が電池冷却器用流路84を開けて循環流路80を閉じ、第3ポンプ81が停止する。
 これにより、図49の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図49の実線矢印に示す第2冷却水回路(低温冷却水回路)とが構成される。
 したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18、電池冷却器15およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図49の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20およびラジエータ13を経て第1ポンプ11に吸入される。
 一方、図49の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14、電池冷却器15およびインバータ冷却器16に分岐し、冷却水冷却器14、電池冷却器15およびインバータ冷却器16を並列に流れ、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水、電池冷却器15を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 このように、第1冷却モードでは、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れる。このため、冷却水冷却器14で冷却された低温冷却水によって電池が冷却される。
 続くステップS330では、入口水温センサ83が検出した冷却水温度(以下、電池冷却器入口水温と言う。)が第1冷却判定温度Tc1(例えば10℃)を下回っているか否かを判定する。第1冷却判定温度Tc1は、電池の使用温度範囲(例えば10~40℃)の下限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。
 電池冷却器入口水温が第1冷却判定温度Tc1を下回っていると判定した場合、ステップS340へ進み、電池冷却器入口水温が第1冷却判定温度Tc1を下回っていないと判定した場合、ステップS310へ戻る。
 ステップS340では、図50に示す第2冷却モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 第2冷却モードでは、第1切替弁19は、入口19aを出口19dと連通させ、入口19bを出口19c、19fと連通させ、出口19eを閉じ、第2切替弁20は、入口20bを出口20eと連通させ、入口20a、20dを出口20fと連通させ、入口20cを閉じる。
 また、第2冷却モードでは、三方弁82が循環流路80を開けて電池冷却器用流路84を閉じ、第3ポンプ81が作動する。
 これにより、図50の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図50の実線矢印に示す第2冷却水回路(低温冷却水回路)と、図50の二点鎖線矢印に示す内部循環回路とが構成される。
 したがって、第1ポンプ11、凝縮器50、ヒータコア51およびラジエータ13によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ12、冷却水冷却器14、クーラコア18およびインバータ冷却器16によって第2冷却水回路(低温冷却水回路)が構成され、第3ポンプ81および電池冷却器15によって内部循環回路が構成される。
 すなわち、図50の一点鎖線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20およびラジエータ13を経て第1ポンプ11に吸入される。
 一方、図50の実線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で冷却水冷却器14およびインバータ冷却器16に分岐し、冷却水冷却器14およびインバータ冷却器16を並列に流れ、冷却水冷却器14を流れた冷却水はクーラコア18を直列に流れ、クーラコア18を流れた冷却水およびインバータ冷却器16を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 さらに、図50の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、電池冷却器15を流れて第3ポンプ81に吸入される。
 このように、第2冷却モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れる。このため、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れない。
 続くステップS350では、電池冷却器入口水温が第2冷却判定温度Tc2(例えば12℃)を上回っているか否かを判定する。第2冷却判定温度Tc2は、第1冷却判定温度Tc1よりも高い温度であり、予め制御装置40に記憶されている。
 電池冷却器入口水温が第2冷却判定温度Tc2を上回っていると判定した場合、ステップS310へ戻り、電池冷却器入口水温が第2冷却判定温度Tc2を上回っていないと判定した場合、ステップS350へ戻る。
 一方、ステップS300にて電池冷却要求無しと判定した場合、ステップS360へ進み、電池加熱要求の有無を判定する。具体的には、電池の温度が第2所定温度(例えば15℃)未満の場合、電池加熱要求有りと判定し、電池の温度が第2所定温度以上の場合、電池加熱要求無しと判定する。
 電池加熱要求有りと判定した場合、ステップS370へ進み、電池の温度が加熱目標温度(例えば10℃)を下回っているか否かを判定する。電池の温度が加熱目標温度を下回っていると判定した場合、ステップS380へ進み、電池の温度が加熱目標温度を下回っていないと判定した場合、ステップS300へ戻る。
 ステップS380では、図51に示す第1加熱モード(非循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 第1加熱モードでは、第1切替弁19は、入口19aを出口19cと連通させ、入口19bを出口19d、19eと連通させ、第2切替弁20は、入口20aを出口20eと連通させ、入口20b、20cを出口20fと連通させる。
 また、第1加熱モードでは、三方弁82が電池冷却器用流路84を開けて循環流路80を閉じ、第3ポンプ81が停止する。
 これにより、図51の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図51の実線矢印に示す第2冷却水回路(低温冷却水回路)とが構成される。
 したがって、第2ポンプ12、電池冷却器15、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図51の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で電池冷却器15および凝縮器50に分岐し、電池冷却器15および凝縮器50を並列に流れ、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、電池冷却器15を流れた冷却水およびヒータコア51を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 一方、図51の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14およびクーラコア18を直列に流れ、第2切替弁20およびラジエータ13を経て第1ポンプ11に吸入される。
 このように、第1加熱モードでは、凝縮器50で加熱された中温冷却水が電池冷却器15を流れる。このため、凝縮器50で加熱された中温冷却水によって電池が加熱される。
 続くステップS390では、電池冷却器入口水温が第1加熱判定温度Tw1(例えば40℃)を上回っているか否かを判定する。第1加熱判定温度Tw1は、電池の使用温度範囲(例えば10~40℃)の上限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。
 電池冷却器入口水温が第1加熱判定温度Tw1を上回っていると判定した場合、ステップS400へ進み、電池冷却器入口水温が第1加熱判定温度Tw1を上回っていないと判定した場合、ステップS370へ戻る。
 ステップS400では、図52に示す第2加熱モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 第2加熱モードでは、第1切替弁19は、入口19aを出口19cと連通させ、入口19bを出口19dと連通させ、出口19eを閉じ、第2切替弁20は、入口20aを出口20eと連通させ、入口20bを出口20fと連通させ、入口20cを閉じる。
 また、第2加熱モードでは、三方弁82が循環流路80を開けて電池冷却器用流路84を閉じ、第3ポンプ81が作動する。
 これにより、図52の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図52の実線矢印に示す第2冷却水回路(低温冷却水回路)と、図52の二点鎖線矢印に示す内部循環回路とが構成される。
 したがって、第2ポンプ12、凝縮器50およびヒータコア51によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図52の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19を経て凝縮器50およびヒータコア51を直列に流れ、第2切替弁20を経て第2ポンプ12に吸入される。
 一方、図52の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14およびクーラコア18を直列に流れ、第2切替弁20を経て第1ポンプ11に吸入される。
 さらに、図52の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、電池冷却器15を流れて第3ポンプ81に吸入される。
 このように、第2加熱モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れる。このため、凝縮器50で加熱された中温冷却水が電池冷却器15を流れない。
 続くステップS410では、電池冷却器入口水温が第2加熱判定温度Tw2(例えば38℃)を下回っているか否かを判定する。第2加熱判定温度Tw2は、第1加熱判定温度Tw1よりも高い温度であり、予め制御装置40に記憶されている。
 電池冷却器入口水温が第2加熱判定温度Tw2を下回っていると判定した場合、ステップS370へ戻り、電池冷却器入口水温が第1冷却判定温度Tc1を下回っていないと判定した場合、ステップS410へ戻る。
 一方、ステップS360にて電池加熱要求無しと判定した場合、ステップS420へ進み、電池を構成する複数個の電池セル間の温度差、すなわち最も温度が高いセルと最も温度が低いセルの温度差が所定値(例えば5℃)を上回っているか否かを判定する。
 複数個の電池セル間の温度差が所定値を上回っていると判定した場合、ステップS430へ進み、図53に示す電池均温運転モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 電池均温運転モードでは、第1切替弁19は出口19eを閉じ、第2切替弁20は入口20cを閉じる。また、電池均温運転モードでは、三方弁82が循環流路80を開けて電池冷却器用流路84を閉じ、第3ポンプ81が作動する。
 これにより、図53の二点鎖線矢印に示す内部循環回路が構成される。したがって、図53の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、電池冷却器15を流れて第3ポンプ81に吸入される。
 このように、電池均温運転モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れる。このため、冷却水冷却器14で冷却された低温冷却水および凝縮器50で加熱された中温冷却水が電池冷却器15を流れない。
 ステップS420にて電池セル間の温度差が所定値を上回っていないと判定した場合、ステップS300へ戻る。
 本実施形態によると、電池冷却要求が有る場合、電池冷却器入口水温が第1冷却判定温度Tc1を下回ると第1冷却モードから第2冷却モードに切り替えるので、冷房性能を確保しつつ、電池の作動を最適化できる。以下、その理由を説明する。
 電池冷却器15に流入する冷却水の温度は10~40℃であることが好ましい。これは、電池が最適に作動する温度範囲は10℃~40℃とされるからである。すなわち、電池の温度が40℃を上回ると急速に電池の劣化が促進し、電池寿命低下、あるいは破損を招く。一方、電池の温度が10℃を下回ると電池の化学反応が抑制され電池の入出力が低下し、車両の加速性が低下したり、電池の回生・充電の効率が低下したりする。
 また、電池の出力や内部抵抗は温度依存性を持つため、電池温度が急激に変化すると、電池入出力特性も急激に変化して電池の制御性が悪化する。また、電池温度が急激に変化すると、電池内部の温度ばらつきが大きくなって電池寿命が低下してしまう。
 一方、冷房性能を確保しようとすると、クーラコア18に流入する冷却水の温度は0~10℃であることが好ましい。
 このように、電池冷却器15とクーラコア18とでは、流入する冷却水の適正温度範囲が異なっている。
 この点、第2冷却モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れ、冷却水冷却器14で冷却された低温冷却水が電池冷却器15を流れないので、内部循環回路を循環する冷却水は電池の熱によって加熱されて温度が徐々に上昇する。
 このため、冷却水冷却器14で冷却された低温冷却水の温度が第1冷却判定温度Tc1を下回っていても、電池冷却器15を流れる冷却水の温度を第1冷却判定温度Tc1以上にすることができるので、電池の温度が使用温度範囲を下回って電池の入出力が低下したり、電池の充電効率が低下したりすることを防止できる。
 一方、クーラコア18には、冷却水冷却器14で冷却された低温冷却水が流入するので、第1冷却判定温度Tc1以下の低温冷却水をクーラコア18に流入させて冷房性能を確保することができる。
 しかも、第2冷却モードにおいて、内部循環回路を循環する冷却水の温度が徐々に上昇して第2冷却判定温度Tc2を上回ると第1冷却モードに切り替えるので、冷却水冷却器14で冷却された低温冷却水が電池冷却器15に導入される。このため、電池冷却器15を流れる冷却水の温度が第2冷却判定温度Tc2をさらに上回って上昇し続けることを防止できる。
 同様に、暖房性能を確保しようとすると、ヒータコア51に流入する冷却水の温度は50~60℃であることが好ましいので、電池冷却器15とヒータコア51とでは、流入する冷却水の適正温度範囲が異なっている。
 この点に鑑みて、本実施形態では、電池加熱要求が有る場合、電池冷却器入口水温が第1加熱判定温度Tw1を上回ると第1加熱モードから第2加熱モードに切り替えるので、暖房性能を確保しつつ、電池の作動を最適化できる。
 すなわち、第2加熱モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れ、凝縮器50で加熱された中温冷却水が電池冷却器15を流れないので、内部循環回路を循環する冷却水は電池によって冷却されて温度が徐々に低下する。
 このため、凝縮器50で加熱された中温冷却水の温度が第1加熱判定温度Tw1を上回っていても、電池冷却器15を流れる冷却水の温度を第1加熱判定温度Tw1以上にすることができるので、電池の温度が使用温度範囲を上回って電池の劣化が急速に進んで電池寿命が低下したり、電池が破損しやすくなることを防止できる。
 一方、ヒータコア51には、凝縮器50で加熱された中温冷却水が流入するので、第1加熱判定温度Tw1以上の中温冷却水をヒータコア51に流入させて暖房性能を確保することができる。
 しかも、第2加熱モードにおいて、内部循環回路を循環する冷却水の温度が徐々に低下して第2加熱判定温度Tw2を下回ると第1加熱モードに切り替えるので、凝縮器50で加熱された中温冷却水が電池冷却器15に導入される。このため、電池冷却器15を流れる冷却水の温度が第2加熱判定温度Tw2をさらに下回って低下し続けることを防止できる。
 さらに、本実施形態では、電池冷却要求および電池加熱要求のいずれもが無い場合、電池を構成する複数個の電池セル間の温度差が所定値(例えば5℃)を上回ると電池均温運転モードを実行するので、電池冷却器15に冷却水を循環させて電池を構成する複数個の電池セル間の温度差を低減することができる。以下、その理由を説明する。
 一般的に電池は車両の床下やラゲージ下に搭載されるが、特に電池自動車などでは電池の体積が大きいために分散して搭載されることもあり、電池セル周囲温度に分布が生じ、各電池セルの温度も大きくばらつくことがある。
 電池セル間に温度差があると、各セルの内部抵抗がばらつくため、各セルの発熱量、出力、劣化速度等にもばらつきが生じ、電池パックの出力低下、寿命低下等の問題が生じる。
 この点に鑑みて、本実施形態では、電池冷却要求および電池加熱要求のいずれもが無い場合であっても、複数個の電池セル間の温度差が所定値(例えば5℃)を上回ると電池均温運転モードを実行して電池冷却器15に冷却水を循環させるので、複数個の電池セル間の温度差を低減することができる。
 この電池均温運転モードでは、内部循環回路を循環する冷却水が電池冷却器15を流れ、冷却水冷却器14で冷却された低温冷却水および凝縮器50で加熱された中温冷却水が電池冷却器15を流れない。
 このため、空調が不要な場合、すなわち冷却水冷却器14で冷却水を冷却したり凝縮器50で冷却水を加熱したりする必要がない場合であっても電池冷却器15に冷却水を循環させることができる。
 また、空調が不要な場合、第1冷却水回路および第2冷却水回路に冷却水を循環させることなく電池冷却器15に冷却水を循環させることができるので、第1冷却水回路または第2冷却水回路の冷却水を電池冷却器15に循環させる場合に比べて通水抵抗を小さくでき、ひいてはポンプ消費電力を低減できる。
 (第13実施形態)
 上記第12実施形態では、循環流路80が電池冷却器15に対して設けられているが、本第13実施形態では、図54に示すように、循環流路80がクーラコア18に対して設けられている。
 循環流路80は、クーラコア用流路85と並列に設けられている。なお、クーラコア用流路85は、クーラコア18が配置された流路であって、その一端が第1切替弁19の出口19cに接続され、その他端が第2切替弁20の入口20aに接続されている。
 循環流路80の一端部はクーラコア18の冷却水出口側に接続され、循環流路80の他端部はクーラコア18の冷却水入口側に接続されている。
 図54の例では、循環流路80およびクーラコア用流路85のうちクーラコア18の近傍部位が一体化されて1つの流路を構成している。したがって、クーラコア18と第2切替弁20との間にて循環流路80とクーラコア用流路85とが分岐し、クーラコア18と第1切替弁19との間にて循環流路80とクーラコア用流路85とが合流している。
 三方弁82は、循環流路80とクーラコア用流路85との分岐部に配置され、循環流路80とクーラコア用流路85とを切替開閉する。
 すなわち、三方弁82が循環流路80を開けてクーラコア用流路85を閉じると、クーラコア18から流出した冷却水は循環流路80を循環してクーラコア18に流入する。一方、三方弁82がクーラコア用流路85を開けて循環流路80を閉じると、クーラコア18から流出した冷却水はクーラコア18を流れて第2切替弁20に流入する。
 入口水温センサ83は、クーラコア18の冷却水入口側に配置されており、クーラコア18に流入する冷却水の温度(流入熱媒体温度)を検出する。
 上記第12実施形態では、冷却水冷却器14とクーラコア18とが同一の流路に直列に配置されていたが、本実施形態では、冷却水冷却器14とクーラコア18とが別々の流路に並列に配置されている。
 すなわち、冷却水冷却器14の冷却水入口側は、第1切替弁19の出口19gに接続されている。冷却水冷却器14の冷却水出口側は、第2切替弁20の入口20gに接続されている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を切り替え可能な構造になっている。
 上記実施形態では説明を省略しているが、図54に示すように、室内空調ユニットのケーシング27の内部においてクーラコア18とヒータコア51との間には、エアミックスドア86が配置されている。エアミックスドア86は、クーラコア18通過後の送風空気のうちヒータコア51を通過する風量とヒータコア51を迂回する風量との風量割合を調整することによって、車室内へ送風される空調風の温度を調整する温度調整装置である。
 本実施形態の制御装置40が実行する制御処理を図55に基づいて説明する。制御装置40は、図55のフローチャートにしたがってコンピュータプログラムを実行する。
 まずステップS500では、冷房要求の有無を判定する。具体的には、エアコンスイッチ44がオンされている場合、冷房要求有りと判定し、エアコンスイッチ44がオフされている場合、冷房要求無しと判定する。
 冷房要求有りと判定した場合、ステップS510へ進み、図56に示す第1冷房モード(非循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 第1冷房モードでは、第1切替弁19は、入口19aを出口19c、19gと連通させ、入口19bを出口19d、19eと連通させ、第2切替弁20は、入口20a、20gを出口20eと連通させ、入口20b、20cを出口20fと連通させる。
 また、第1冷却モードでは、三方弁82がクーラコア用流路85を開けて循環流路80を閉じ、第3ポンプ81が停止する。
 これにより、図56の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図56の実線矢印に示す第2冷却水回路(低温冷却水回路)とが構成される。
 したがって、第2ポンプ12、凝縮器50、ヒータコア51および電池冷却器15によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14、クーラコア18およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成される。
 すなわち、図56の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で凝縮器50および電池冷却器15に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で集合して第2ポンプ12に吸入される。
 一方、図56の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19で冷却水冷却器14およびクーラコア18に分岐し、冷却水冷却器14およびクーラコア18を並列に流れ、冷却水冷却器14を流れた冷却水およびクーラコア18を流れた冷却水は第2切替弁20で集合してラジエータ13を経て第1ポンプ11に吸入される。
 このように、第1冷却モードでは、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れる。このため、冷却水冷却器14で冷却された低温冷却水によって車室内への送風空気が冷却される。
 続くステップS520では、入口水温センサ83が検出した冷却水温度(以下、クーラコア入口水温と言う。)が第1冷却判定温度Tf1(本例では1℃)を下回っているか否かを判定する。第1冷却判定温度Tf1は、クーラコア18の表面に着霜(フロスト)が発生しない温度範囲の下限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。なお、クーラコア入口水温の代わりに、クーラコア18の表面温度(フィン温度)を用いてもよい。
 クーラコア入口水温が第1冷却判定温度Tf1を下回っていると判定した場合、ステップS530へ進み、クーラコア入口水温が第1冷却判定温度Tf1を下回っていないと判定した場合、ステップS500へ戻る。
 ステップS530では、図57に示す第2冷房モード(循環モード)になるように第1切替弁19、第2切替弁20、三方弁82および第3ポンプ81の作動を制御する。
 第2冷房モードでは、第1切替弁19は、入口19aを出口19gと連通させ、入口19bを出口19d、19eと連通させ、出口19cを閉じ、第2切替弁20は、入口20gを出口20eと連通させ、入口20b、20cを出口20fと連通させ、入口20aを閉じる。
 また、第2冷却モードでは、三方弁82が循環流路80を開けてクーラコア用流路85を閉じ、第3ポンプ81が作動する。
 これにより、図57の一点鎖線矢印に示す第1冷却水回路(中温冷却水回路)と、図57の実線矢印に示す第2冷却水回路(低温冷却水回路)と、図57の二点鎖線矢印に示す内部循環回路とが構成される。
 したがって、第2ポンプ12、凝縮器50、ヒータコア51および電池冷却器15によって第1冷却水回路(中温冷却水回路)が構成され、第1ポンプ11、冷却水冷却器14およびラジエータ13によって第2冷却水回路(低温冷却水回路)が構成され、第3ポンプ81およびクーラコア18によって内部循環回路が構成される。
 すなわち、図57の一点鎖線矢印に示すように、第2ポンプ12から吐出された冷却水は、第1切替弁19で凝縮器50および電池冷却器15に分岐し、凝縮器50を流れた冷却水はヒータコア51を直列に流れ、ヒータコア51を流れた冷却水および電池冷却器15を流れた冷却水は第2切替弁20で合流して第2ポンプ12に吸入される。
 一方、図57の実線矢印に示すように、第1ポンプ11から吐出された冷却水は、第1切替弁19を経て冷却水冷却器14を流れ、冷却水冷却器14を流れた冷却水は第2切替弁20およびラジエータ13を経て第2ポンプ12に吸入される。
 さらに、図57の二点鎖線矢印に示すように、第3ポンプ81から吐出された冷却水は、クーラコア18を流れて第3ポンプ81に吸入される。
 このように、第2冷房モードでは、内部循環回路を循環する冷却水がクーラコア18を流れる。このため、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れない。
 続くステップS540では、クーラコア入口水温が第2冷却判定温度Tf2(第2冷却判定温度)を上回っているか否かを判定する。第2冷却判定温度Tf2は、第1冷却判定温度Tf1よりも高い温度(例えば3℃)であり、予め制御装置40に記憶されている。
 クーラコア入口水温が第2冷却判定温度Tf2を上回っていると判定した場合、ステップS500へ戻り、クーラコア入口水温が第2冷却判定温度Tf2を上回っていないと判定した場合、ステップS540へ戻る。
 本実施形態によると、冷房要求が有る場合、クーラコア入口水温が第1冷却判定温度Tf1を下回ると第1冷房モードから第2冷房モードに切り替えるので、クーラコア18の表面に着霜(フロスト)が発生することを抑制できる。以下、その理由を説明する。
 クーラコア18の表面温度が0℃を下回ると、クーラコア18の表面に付着した凝縮水が凍結して着霜(フロスト)が発生し、その結果、クーラコア18の通風路が塞がれて車室内への送風量が低下し、空調性能が低下してしまう。そのため、クーラコア18に流入する冷却水の温度の適正温度範囲は0℃以上である。
 この点、本実施形態では、冷房要求が有る場合、第1冷房モードにおいて、クーラコア入口水温が第1冷却判定温度Tf1を下回ると第2冷房モードに切り替えるので、内部循環回路を循環する冷却水がクーラコア18を流れ、冷却水冷却器14で冷却された低温冷却水がクーラコア18を流れなくなる。
 このとき、内部循環回路を循環する冷却水は車室内への送風空気によって加熱されて温度が徐々に上昇する。このため、冷却水冷却器14で冷却された低温冷却水の温度が第1冷却判定温度Tf1を下回っていても、クーラコア18を流れる冷却水の温度を第1冷却判定温度Tf1以上にすることができるので、クーラコア18の表面に着霜(フロスト)が発生することを抑制できる。
 (第14実施形態)
 上記第12実施形態では、第3ポンプ81が循環流路80のうち電池冷却器用流路84から分岐された部位に配置されているが、本第14実施形態では、図58に示すように、第3ポンプ81が、循環流路80のうち電池冷却器用流路84と一体化された部位(電池冷却器15の近傍部位)に配置されている。
 本実施形態においても、上記第12実施形態と同様の作用効果を奏することができる。さらに、本実施形態によると、第3ポンプ81が常時運転されるようにすれば、非循環モード(第1冷却モード等)と循環モード(第2冷却モード等)との切り替え時に電池冷却器15への冷却水の供給が途絶えないようにすることができる。
 (第15実施形態)
 本第15実施形態では、図59に示すように、上記第12実施形態に対して、冷却水冷却器14、凝縮器50およびラジエータ13の配置を変更している。
 冷却水冷却器14は、第2ポンプ12と第1切替弁19との間に配置されている。すなわち、冷却水冷却器14の冷却水入口側は第2ポンプ12の冷却水吐出側に接続され、冷却水冷却器14の冷却水出口側は第1切替弁19の入口19bに接続されている。
 凝縮器50は、第1ポンプ11と第1切替弁19との間に配置されている。すなわち、凝縮器50の冷却水入口側は第1ポンプ11の冷却水吐出側に接続され、凝縮器50の冷却水出口側は第1切替弁19の入口19aに接続されている。
 ラジエータ13は、第1切替弁19と第2切替弁20との間に配置されている。すなわち、ラジエータ13の冷却水入口側は第1切替弁19の出口19gに接続され、ラジエータ13の冷却水出口側は第2切替弁20の入口20gに接続されている。
 第1切替弁19は、その入口19a、19bと出口19c、19d、19e、19f、19gとの連通状態を切り替え可能な構造になっている。第2切替弁20も、その入口20a、20b、20c、20d、20gと出口20e、20fとの連通状態を切り替え可能な構造になっている。
 本実施形態においても、上記第12実施形態と同様の作用効果を奏することができる。
 (第16実施形態)
 上記第12実施形態では、電池冷却器15に対して第1切替弁19および第2切替弁20を介することなく冷却水を循環させることによって、空調性能(冷房性能および暖房性能)を確保しつつ電池の作動を最適化するようになっているが、本第16実施形態では、図60に示すように、電池冷却器15がヒートパイプ式熱交換器で構成されていることによって、空調性能を確保しつつ電池の作動を最適化するようになっている。
 図60中の上下の矢印は、車両搭載状態における上下方向(重力方向)を示している。電池冷却器15は、冷媒(作動流体)が凝縮または蒸発する第1気液相変化部151および第2気液相変化部152を有している。
 第1気液相変化部151は、容器151aと冷却水配管151bとを有している。容器151aには、冷媒が気液2相状態で封入されている。冷却水配管151bの入口側は第1切替弁19の出口に接続され、冷却水配管151bの出口側は第2切替弁20の入口に接続され、冷却水配管151bの中間部は容器151aの内部に配置されている。
 容器151aの内部に封入された冷媒は、冷却水配管151bを流れる冷却水と熱交換することによって凝縮または蒸発する。
 第2気液相変化部152は、冷媒が流通する冷媒配管152aを有している。冷媒配管152aの一端側は第1気液相変化部151の容器151aの下部、すなわち液相状態の冷媒が存在している部位に接続されている。冷媒配管152aの他端側は第1気液相変化部151の容器151aの上部、すなわち気相状態の冷媒が存在している部位に接続されている。
 第2気液相変化部152では、冷媒配管152aを流れる冷媒が電池90によって加熱または冷却されて蒸発または凝縮する。
 電池90は複数個の電池セルで構成されている。電池90には、電池セルの温度を検出する電池温度センサ91が取り付けられている。電池温度センサ91の検出信号は制御装置40に入力される。
 第1気液相変化部151に流入する冷却水の温度が低い場合、第1気液相変化部151において気相冷媒が冷却水によって冷却されて凝縮する。このとき、第2気液相変化部152において液相冷媒が電池90によって加熱されて蒸発すると、第1気液相変化部151と第2気液相変化部152との間で図60の矢印に示すように冷媒が循環して電池90が冷却される。
 これとは逆に、第1気液相変化部151(電池冷却器15)に流入する冷却水の温度が高い場合、第1気液相変化部151において液相冷媒が冷却水によって加熱されて蒸発する。このとき、第2気液相変化部152において気相冷媒が電池90によって冷却されて凝縮すると、第1気液相変化部151と第2気液相変化部152との間で図60の矢印とは逆方向に冷媒が循環して電池90が加熱される。
 本実施形態の制御装置40が実行する制御処理を図61に基づいて説明する。制御装置40は、図61のフローチャートにしたがってコンピュータプログラムを実行する。
 まずステップS600では、電池冷却要求の有無を判定する。具体的には、電池の温度が第1所定温度(例えば35℃)以上の場合、電池冷却要求有りと判定し、電池の温度が第1所定温度未満の場合、電池冷却要求無しと判定する。
 電池冷却要求有りと判定した場合、ステップS610へ進み、電池の温度が冷却目標温度(例えば40℃)を上回っているか否かを判定する。電池の温度が冷却目標温度を上回っていると判定した場合、ステップS620へ進み、電池の温度が冷却目標温度を上回っていないと判定した場合、ステップS600へ戻る。
 ステップS620では、電池冷却器15に低温冷却水(冷却水冷却器14で冷却された冷却水)が供給されるように第1切替弁19および第2切替弁20の作動を制御する。これにより電池90が冷却される。
 続くステップS630では、電池温度センサ91で検出された電池セルの温度が第1冷却判定温度Tc1(例えば15℃)を下回っているか否かを判定する。第1冷却判定温度Tc1は、電池の使用温度範囲(例えば15~35℃)の下限温度である。
 電池冷却器入口水温が第1冷却判定温度Tc1を下回っていると判定した場合、ステップS640へ進み、電池冷却器入口水温が第1冷却判定温度Tc1を下回っていないと判定した場合、ステップS610へ戻る。
 ステップS640では、電池冷却器15への低温冷却水の供給が停止されるように第1切替弁19および第2切替弁20の作動を制御する。
 続くステップS650では、電池冷却器入口水温が第2冷却判定温度Tc2(例えば17℃)を上回っているか否かを判定する。第2冷却判定温度Tc2は、第1冷却判定温度Tc1よりも高い温度である。
 電池冷却器入口水温が第2冷却判定温度Tc2を上回っていると判定した場合、ステップS610へ戻り、電池冷却器入口水温が第2冷却判定温度Tc2を上回っていないと判定した場合、ステップS650へ戻る。
 一方、ステップS600にて電池冷却要求無しと判定した場合、ステップS660へ進み、電池加熱要求の有無を判定する。具体的には、電池の温度が第2所定温度(例えば15℃)未満の場合、電池加熱要求有りと判定し、電池の温度が第2所定温度以上の場合、電池加熱要求無しと判定する。
 電池加熱要求有りと判定した場合、ステップS670へ進み、電池加熱要求無しと判定した場合、ステップS600へ戻る。
 ステップS670では、電池の温度が加熱目標温度(例えば10℃)を下回っているか否かを判定する。電池の温度が加熱目標温度を下回っていると判定した場合、ステップS680へ進み、電池の温度が加熱目標温度を下回っていないと判定した場合、ステップS600へ戻る。
 ステップS680では、電池冷却器15に高温冷却水(凝縮器50で加熱された冷却水)が供給されるように第1切替弁19および第2切替弁20の作動を制御する。これにより電池90が加熱される。
 続くステップS690では、電池温度センサ91で検出された電池セルの温度が第1加熱判定温度Tw1(例えば35℃)を上回っているか否かを判定する。第1加熱判定温度Tw1は、電池の使用温度範囲(例えば15~35℃)の上限温度である。
 電池冷却器入口水温が第1加熱判定温度Tw1を上回っていると判定した場合、ステップS700へ進み、電池冷却器入口水温が第1加熱判定温度Tw1を上回っていないと判定した場合、ステップS670へ戻る。
 ステップS700では、電池冷却器15への高温冷却水の供給が停止されるように第1切替弁19および第2切替弁20の作動を制御する。
 続くステップS710では、電池冷却器入口水温が第2加熱判定温度Tw2(例えば33℃)を下回っているか否かを判定する。第2加熱判定温度Tw2は、第1加熱判定温度Tw1よりも低い温度である。
 電池冷却器入口水温が第2加熱判定温度Tw2を下回っていると判定した場合、ステップS670へ戻り、電池冷却器入口水温が第2加熱判定温度Tw2を下回っていないと判定した場合、ステップS710へ戻る。
 本実施形態によると、電池冷却要求が有る場合、電池セル温度が第1冷却判定温度Tc1を下回ると電池冷却器15への低温冷却水の供給を停止するので、電池の温度が使用温度範囲を下回って電池の入出力が低下したり、電池の充電効率が低下することを防止できる。
 電池冷却器15への低温冷却水の供給を停止した状態において、電池セル温度が徐々に上昇して第2冷却判定温度Tc2を上回ると電池冷却器15に低温冷却水を供給するので、電池セル温度が第2冷却判定温度Tc2をさらに上回って上昇し続けることを防止できる。
 同様に、電池加熱要求が有る場合、電池セル温度が第1加熱判定温度Tw1を上回ると電池冷却器15への高温冷却水の供給を停止するので、電池の温度が使用温度範囲を上回って電池の劣化が急速に進んで電池寿命が低下したり、電池が破損しやすくなることを防止できる。
 電池冷却器15への高温冷却水の供給を停止した状態において、電池セル温度が徐々に低下して第2加熱判定温度Tw2を下回ると電池冷却器15に高温冷却水を供給するので、電池セル温度が第2加熱判定温度Tw2をさらに下回って低下し続けることを防止できる。
 さらに、本実施形態では、電池冷却器15がヒートパイプ式熱交換器で構成されているので、電池冷却器15への冷却水の供給を停止しても、冷媒の作用によって、電池90を構成する複数個の電池セル間の温度差を低減することができる。
 (第17実施形態)
 上記第16実施形態では、電池冷却器15がヒートパイプ式熱交換器で構成されているが、本第17実施形態では、図62に示すように、クーラコア18がヒートパイプ式熱交換器で構成されている。
 図62中の上下の矢印は、車両搭載状態における上下方向(重力方向)を示している。クーラコア18は、冷媒が凝縮または蒸発する第1気液相変化部181および第2気液相変化部182を有している。第1気液相変化部181は、上側タンク181aおよび冷却水配管181bを有している。第2気液相変化部182は、チューブ182a、フィン182bおよび下側タンク182cを有している。
 チューブ182aは、冷媒が流れる冷媒流路を形成しており、その長手方向が上下方向を向くように多数本、互いに並列に配置されている。チューブ182a同士の間には、車室内への送風空気が流れる空気通路が形成されている。
 フィン182bは、車室内への送風空気とチューブ182aとの伝熱面積を増大させて車室内への送風空気と冷媒との熱交換を促進する伝熱促進部材であり、チューブ182aの外面に接合されている。
 上側タンク181aおよび下側タンク182cは、複数本のチューブ182aに対する冷媒の分配または集合を行うタンクであり、上側タンク181aは多数本のチューブ182aの上方側に配置され、下側タンク182cは多数本のチューブ182aの下方側に配置されている。
 冷却水配管181bは上側タンク181aの内部に配置されている。冷却水配管181bの入口側は第1切替弁19の出口に接続され、冷却水配管181bの出口側は第2切替弁20の入口に接続されている。
 クーラコア18の内部には、冷媒が気液2相状態で封入されている。具体的には、チューブ182aおよび下側タンク182cには冷媒が液相状態で封入され、上側タンク181aには冷媒が気相状態で封入されている。
 フィン182bには、フィン182bの温度、すなわちクーラコア18の表面温度を検出するクーラコア温度センサ95が取り付けられている。クーラコア温度センサ95の検出信号は制御装置40に入力される。
 冷却水配管181bに流入する冷却水の温度が低い場合、上側タンク181aにおいて気相冷媒が、冷却水配管181bを流れる冷却水によって冷却されて凝縮する。このとき、チューブ182aにおいて液相冷媒が車室内への送風空気によって加熱されて蒸発すると、上側タンク181aとチューブ182aとの間で冷媒が循環して車室内への送風空気が冷却される。
 本実施形態の制御装置40が実行する制御処理を図63に基づいて説明する。制御装置40は、図63のフローチャートにしたがってコンピュータプログラムを実行する。
 まずステップS700では、冷房要求の有無を判定する。具体的には、エアコンスイッチ44がオンされている場合、冷房要求有りと判定し、エアコンスイッチ44がオフされている場合、冷房要求無しと判定する。
 冷房要求有りと判定した場合、ステップS710へ進み、冷房要求無しと判定した場合、ステップS700へ戻る。
 ステップS710では、クーラコア18に低温冷却水(冷却水冷却器14で冷却された冷却水)が供給されるように第1切替弁19および第2切替弁20の作動を制御する。これにより、クーラコア18において車室内への送風空気が冷却される。
 続くステップS720では、クーラコア温度センサ95で検出したクーラコア温度が第1冷却判定温度Tf1(例えば1℃)を下回っているか否かを判定する。第1冷却判定温度Tf1は、クーラコア18の表面に着霜(フロスト)が発生しない温度範囲の下限温度に基づいて決定された温度であり、予め制御装置40に記憶されている。
 クーラコア温度が第1冷却判定温度Tf1を下回っていると判定した場合、ステップS730へ進み、クーラコア温度が第1冷却判定温度Tf1を下回っていないと判定した場合、ステップS700へ戻る。
 ステップS730では、クーラコア18への低温冷却水の供給が停止されるように第1切替弁19および第2切替弁20の作動を制御する。
 続くステップS740では、クーラコア温度が第2冷却判定温度Tf2(例えば3℃)を上回っているか否かを判定する。第2冷却判定温度Tf2は、第1冷却判定温度Tf1よりも高い温度(例えば3℃)であり、予め制御装置40に記憶されている。
 クーラコア温度が第2冷却判定温度Tf2を上回っていると判定した場合、ステップS700へ戻り、クーラコア温度が第2冷却判定温度Tf2を上回っていないと判定した場合、ステップS740へ戻る。
 本実施形態によると、冷房要求が有る場合、クーラコア温度が第1冷却判定温度Tf1を下回るとクーラコア18への低温冷却水の供給を停止するので、クーラコア18の表面に着霜(フロスト)が発生することを抑制できる。
 クーラコア18への低温冷却水の供給を停止した状態において、クーラコア温度が徐々に上昇して第2冷却判定温度Tf2を上回るとクーラコア18に低温冷却水を供給するので、クーラコア温度が第2冷却判定温度Tf2をさらに上回って上昇し続けることを防止できる。
 (他の実施形態)
 本開示は上記実施形態に限定されることなく、以下のように種々変形可能である。
 (1)温度調整対象機器として種々の機器を用いることができる。例えば、乗員が着座するシートに内蔵されて冷却水によりシートを冷却・加熱する熱交換器を温度調整対象機器として用いてもよい。温度調整対象機器の個数は、複数個(2個以上)であるならば何個でもよい。
 (2)上記第1実施形態は、第1切替弁19および第2切替弁20の弁体の孔の配置パターンの一例を示したものであり、第1切替弁19および第2切替弁20の弁体の孔の配置パターンを種々変更することができる。
 第1切替弁19および第2切替弁20の弁体の孔の配置パターンを変更することによって冷却水入口と冷却水出口との連通状態を様々に変更できるので、運転モードの追加等の仕様変更に容易に対応することができる。
 (3)上記第1実施形態では、外気センサ42で検出された外気温に基づいて第1~第3モードを切り替えたが、水温センサ43で検出された冷却水温度に基づいて第1~第3モードを切り替えるようにしてもよい。
 (4)上記第3実施形態では、第2モードにおいて、電池に蓄えられた冷熱を利用して冷凍サイクル22の高圧冷媒を過冷却しているが、電池に蓄えられた冷熱を車室内空気やインバータなどの冷却に利用するようにしてもよい。
 (5)上記実施形態では、冷却水を外気の温度よりも低温まで冷却する冷却装置として、冷凍サイクル22の低圧冷媒で冷却水を冷却する冷却水冷却器14を用いているが、ペルチェ素子を冷却装置として用いてもよい。
 (6)上記各実施形態において、電池冷却器15に冷却水を間欠的に循環させることによって電池に対する冷却能力を制御するようにしてもよい。
 (7)上記各実施形態において、エンジンの負荷に応じて、排気ガス冷却器17に中温冷却水が循環する場合と低温冷却水が循環する場合とに切り替えるようにしてもよい。例えば市街地走行時等、エンジンの負荷が小さい場合に低温冷却水循環に切り替えれば、排気ガスを冷凍サイクル22で冷却してエンジン吸気側に戻す排気ガス密度を高めることができるので、燃費を向上させることができる。
 (8)上記各実施形態では、温度調整対象機器を冷却または加熱するための熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
 (9)上記各実施形態の冷凍サイクル22では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
 また、上記各実施形態の冷凍サイクル22は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
 (10)上記各実施形態では、本開示の車両用熱管理システムをハイブリッド自動車に適用した例を示したが、エンジンを備えず走行用電動モータから車両走行用の駆動力を得る電気自動車に本開示を適用してもよい。
 (11)上記第12~15実施形態では、三方弁82によって循環流路80と電池冷却器用流路84とを切替開閉するようになっているが、三方弁82を廃止して循環流路80に逆止弁を設けてもよい。
 この場合、第1切替弁19および第2切替弁20が電池冷却器用流路84を閉じることによって循環モード(第2冷却モード、第2加熱モード、電池均温運転モード、第2冷房モード)に切り替えることができる。また、第1切替弁19が電池冷却器用流路84を第1冷却水回路および第2冷却水回路のうち一方の冷却水回路に接続し、第2切替弁20が電池冷却器用流路84を第1冷却水回路および第2冷却水回路のうち他方の冷却水回路に接続することによっても循環モードに切り替えることができる。
 (12)上記第12~15実施形態では、電池冷却器15またはクーラコア18に対して内部循環回路を形成する例を示したが、これに限定されるものではなく、他の温度調整対象機器に対して内部循環回路を形成するようにしてもよい。
 例えば、インバータ冷却器16に対して内部循環回路を形成するようにしてもよい。これによると、インバータの冷却能力を調整することができるので、インバータの発熱量が小さい走行条件の場合に低温冷却水がそのままインバータ冷却器16に導入されて冷却能力が過剰になってしまうことを防止できる。
 (13)上記第16実施形態では、電池90の温度に応じて電池冷却器15への冷却水の供給を断続するが、電池90の温度に応じて電池冷却器15に供給される冷却水の流量を調整するようにしてもよい。
 同様に、上記第17実施形態では、クーラコア18の温度に応じてクーラコア18への冷却水の供給を断続するが、クーラコア18の温度に応じてクーラコア18に供給される冷却水の流量を調整するようにしてもよい。
 冷却水の流量調整は、第1切替弁19および第2切替弁20のうち少なくとも一方の作動を制御することによって行うことができる。
 (14)上記第17実施形態のクーラコア18において、上側タンク181aにおいて凝縮した冷媒を下側タンク182cに直接戻す冷媒配管を設けてもよい。

Claims (24)

  1.  熱媒体を吸入して吐出する第1ポンプ(11)および第2ポンプ(12)と、
     前記熱媒体と外気とを熱交換させる熱交換器(13)と、
     前記熱媒体が流通する流路を有し、前記熱媒体によって温度調整される複数個の温度調整対象機器(15、16、17、18、50、65)と、
     前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が互いに並列に接続され且つ前記複数個の温度調整対象機器の熱媒体入口側が互いに並列に接続され、前記複数個の温度調整対象機器のそれぞれについて前記第1ポンプ(11)から吐出された熱媒体が流入する場合と前記第2ポンプ(12)から吐出された前記熱媒体が流入する場合とを切り替える第1切替弁(19)と、
     前記第1ポンプ(11)の熱媒体吸入側および前記第2ポンプ(12)の熱媒体吸入側が互いに並列に接続され且つ前記複数個の温度調整対象機器の熱媒体出口側が互いに並列に接続され、前記複数個の温度調整対象機器のそれぞれについて前記第1ポンプ(11)へ前記熱媒体が流出する場合と前記第2ポンプ(12)へ熱媒体が流出する場合とを切り替える第2切替弁(20)と、
     前記複数個の温度調整対象機器のそれぞれについて、前記第1ポンプ(11)との間で前記熱媒体が循環する場合と、前記第2ポンプ(12)との間で前記熱媒体が循環する場合とが切り替わるように前記第1切替弁(19)および前記第2切替弁(20)の作動を制御する制御装置(40)とを備える車両用熱管理システム。
  2.  さらに、前記熱交換器(13)で熱交換された前記熱媒体の温度に関連する温度を検出する検出装置(42、43)を備え、
     前記制御装置(40)は、前記検出装置(42、43)で検出された温度に応じて前記第1切替弁(19)および前記第2切替弁(20)の作動を制御する請求項1に記載の車両用熱管理システム。
  3.  さらに、前記第2ポンプ(12)から吐出された前記熱媒体を前記外気の温度よりも低い温度まで冷却する冷却装置(14)を備え、
     前記熱交換器(13)は、前記第1ポンプ(11)から吐出された前記熱媒体と外気とを熱交換させるようになっており、
     前記制御装置(40)は、前記検出装置(42、43)で検出された温度が所定温度よりも低い場合、前記複数個の温度調整対象機器の全てについて前記第1ポンプ(11)との間で前記熱媒体が循環し、前記検出装置(42、43)で検出された温度が前記所定温度よりも高い場合、前記検出装置(42、43)で検出された温度が高くなるにつれて、前記第2ポンプ(12)との間で前記熱媒体が循環する前記温度調整対象機器の個数が増加するように、前記第1切替弁(19)および前記第2切替弁(20)の作動を制御する請求項2に記載の車両用熱管理システム。
  4.  前記複数個の温度調整対象機器は、要求される冷却温度が互いに異なっており、
     前記制御装置(40)は、
     前記検出装置(42、43)で検出された温度が所定温度よりも高い場合、前記検出装置(42、43)で検出された温度が高くなるにつれて、前記冷却温度の低い前記温度調整対象機器から順番に前記第2ポンプ(12)との間で前記熱媒体が循環していくように、前記第1切替弁(19)および前記第2切替弁(20)を制御する請求項3に記載の車両用熱管理システム。
  5.  さらに、冷凍サイクル(22)の低圧冷媒と前記熱媒体とを熱交換する低圧側熱交換器(14)を備え、
     前記低圧側熱交換器(14)の熱媒体入口側は前記第1切替弁(19)に接続され、
     前記低圧側熱交換器(14)の熱媒体出口側は前記第2切替弁(20)に接続され、
     前記第1切替弁(19)は、前記低圧側熱交換器(14)について前記第1ポンプ(11)から吐出された熱媒体が流入する場合と前記第2ポンプ(12)から吐出された前記熱媒体が流入する場合とを切り替え、
     前記第2切替弁(20)は、前記低圧側熱交換器(14)について前記第1ポンプ(11)へ前記熱媒体が流出する場合と前記第2ポンプ(12)へ熱媒体が流出する場合とを切り替え、
     前記複数個の温度調整対象機器のうち1つの温度調整対象機器(50)は、前記冷凍サイクル(22)の高圧冷媒と前記熱媒体とを熱交換する高圧側熱交換器であり、
     前記熱交換器(13)は、前記第1ポンプ(11)から吐出された前記熱媒体と外気とを熱交換させるようになっており、
     前記制御装置(40)は、前記検出装置(42、43)で検出された温度が所定温度よりも低い場合、前記低圧側熱交換器(14)について前記第1ポンプ(11)との間で前記熱媒体が循環し、前記高圧側熱交換器(50)について前記第2ポンプ(12)との間で前記熱媒体が循環するように、前記第1切替弁(19)および前記第2切替弁(20)を制御する請求項2に記載の車両用熱管理システム。
  6. さらに、前記高圧側熱交換器(50)で熱交換された前記熱媒体によって車室内への送風空気を加熱する加熱用熱交換器(51)を備える請求項5に記載の車両用熱管理システム。
  7.  外部電源から供給された電力を電池に充電可能な車両に適用される車両用熱管理システムであって、
     前記高圧側熱交換器(50)で熱交換された前記冷媒を前記熱媒体によって冷却する過冷却器(60)と、
     前記低圧側熱交換器(14)に流入する冷媒が流れる冷媒流路を開閉する開閉弁(59)とを備え、
     前記複数個の温度調整対象機器のうち1つの温度調整対象機器(15)は、前記電池を前記熱媒体によって冷却する電池冷却器であり、
     前記過冷却器(60)には、前記低圧側熱交換器(14)および前記電池冷却器(15)を流れた前記熱媒体が流れるようになっており、
     前記制御装置(40)は、前記外部電源から供給された電力を電池に充電している場合、前記開閉弁(59)を開け、前記外部電源から供給された電力を電池に充電した後の場合、前記開閉弁(59)を閉じる請求項5または6に記載の車両用熱管理システム。
  8.  前記過冷却器(60)の熱媒体入口側は、前記第1切替弁(19)に接続され、
     前記過冷却器(60)の熱媒体出口側は、前記電池冷却器(15)の熱媒体入口側に接続されている請求項7に記載の車両用熱管理システム。
  9.  さらに、前記第2ポンプ(12)から吐出された前記熱媒体を前記外気よりも低い温度まで冷却する冷却装置(14)を備え、
     前記熱交換器(13)は、前記第1ポンプ(11)から吐出された前記熱媒体と外気とを熱交換させるようになっており、
     前記複数個の温度調整対象機器のうち2つの温度調整対象機器は、電池を前記熱媒体によって冷却する電池冷却器(15)、および前記電池よりも熱容量の小さいインバータを前記熱媒体によって冷却するインバータ冷却器(16)であり、
     前記制御装置(40)は、前記インバータの温度が所定温度よりも高い場合、前記インバータ冷却器(16)について前記第2ポンプ(12)との間で前記熱媒体が循環し、前記電池冷却器(15)について前記第1ポンプ(11)との間で前記熱媒体が循環するように、前記第1切替弁(19)および前記第2切替弁(20)を制御する請求項1に記載の車両用熱管理システム。
  10.  さらに、前記熱媒体によって車室内への送風空気を加熱する加熱用熱交換器(51)を備え、
     前記加熱用熱交換器(51)の前記熱媒体入口側は前記第1切替弁(19)に接続され、
     前記加熱用熱交換器(51)の前記熱媒体出口側は前記第2切替弁(20)に接続され、
     前記第1切替弁(19)は、前記加熱用熱交換器(51)について前記第1ポンプ(11)から吐出された熱媒体が流入する場合と前記第2ポンプ(12)から吐出された前記熱媒体が流入する場合とを切り替え、
     前記第2切替弁(20)は、前記加熱用熱交換器(51)について前記第1ポンプ(11)へ前記熱媒体が流出する場合と前記第2ポンプ(12)へ熱媒体が流出する場合とを切り替え、
     前記複数個の温度調整対象機器のうち1つの温度調整対象機器は、電池を前記熱媒体によって冷却する電池冷却器(15)であり、
     前記熱交換器(13)は、前記第1ポンプ(11)から吐出された前記熱媒体と外気とを熱交換させるようになっており、
     前記制御装置(40)は、前記検出装置(42、43)で検出された温度が所定温度よりも低い場合、前記電池冷却器(15)および前記加熱用熱交換器(51)について前記第2ポンプ(12)との間で前記熱媒体が循環するように前記第1切替弁(19)および前記第2切替弁(20)を制御する請求項1に記載の車両用熱管理システム。
  11.  前記第1切替弁(19)は、前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が1対1で個別に接続される2つの入口(19a、19b)と、前記複数個の温度調整対象機器の熱媒体入口側が1対1で個別に接続される複数個の出口(19c、19d、19e、19f、19g)との間で前記熱媒体の流れを切り替えるように構成され、
     前記第2切替弁(20)は、前記複数個の温度調整対象機器の熱媒体出口側が1対1で個別に接続される複数個の入口(20a、20b、20c、20d、20g)と、前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が1対1で個別に接続される2つの出口(20e、20f)との間で前記熱媒体の流れを切り替えるように構成されている請求項1ないし10のいずれか1つに記載の車両用熱管理システム。
  12.  前記第1切替弁(19)および前記第2切替弁(20)を介することなく前記熱媒体が循環する循環流路(80)に配置され、前記熱媒体を吸入して吐出する第3ポンプ(81)を備え、
     前記複数個の温度調整対象機器のうち少なくとも1つの温度調整対象機器(15、18)には、前記第1切替弁(19)から前記少なくとも1つの温度調整対象機器(15、18)を経て前記第2切替弁(20)に至る非循環流路(84)を流れる前記熱媒体、および前記循環流路(80)を流れる前記熱媒体の両方が流通可能になっており、
     前記非循環流路(84)を流れる前記熱媒体が前記少なくとも1つの温度調整対象機器(15、18)を流通する非循環モードと、前記循環流路(80)を循環する前記熱媒体が前記少なくとも1つの温度調整対象機器(15、18)を流通する循環モードとを切り替え可能になっている請求項1ないし4のいずれか1つに記載の車両用熱管理システム。
  13.  前記非循環流路(84)に対する前記熱媒体の流れが切り替わるように前記第1切替弁(19)および前記第2切替弁(20)が作動することによって、前記循環モードと前記非循環モードとを切り替える請求項12に記載の車両用熱管理システム。
  14.  前記非循環流路(84)と前記循環流路(80)とを切替開閉する循環切替弁(82)を備える請求項12または13に記載の車両用熱管理システム。
  15.  前記少なくとも1つの温度調整対象機器(15、18)に流入する前記熱媒体の温度である流入熱媒体温度に応じて前記循環モードと前記非循環モードとを切り替える請求項12ないし14のいずれか1つに記載の車両用熱管理システム。
  16.  前記少なくとも1つの温度調整対象機器(15、18)の冷却時において、前記流入熱媒体温度が第1冷却判定温度(Tc1、Tf1)以下となった場合、前記循環モードに切り替え、前記流入熱媒体温度が、前記第1冷却判定温度(Tc1、Tf1)よりも高い温度である第2冷却判定温度(Tc2、Tf2)以上となった場合、前記非循環モードに切り替える請求項15に記載の車両用熱管理システム。
  17.  前記少なくとも1つの温度調整対象機器(15)の加熱時において、前記流入熱媒体温度が第1加熱判定温度(Tw1)以上となった場合、前記循環モードに切り替え、前記流入熱媒体温度が、前記第1加熱判定温度(Tw1)よりも低い温度である第2加熱判定温度(Tw2)以下となった場合、前記非循環モードに切り替える請求項15または16に記載の車両用熱管理システム。
  18.  前記少なくとも1つの温度調整対象機器は、電池を前記熱媒体によって冷却する電池冷却器(15)であり、
     前記第1冷却判定温度(Tc1)は、前記電池の使用温度範囲の下限温度に基づいて決定された温度である請求項16に記載の車両用熱管理システム。
  19.  前記少なくとも1つの温度調整対象機器は、前記熱媒体によって車室内への送風空気を冷却する空気冷却器(18)であり、
     前記第1冷却判定温度(Tf1)は、前記空気冷却器(18)に着霜が発生しない温度範囲の下限温度に基づいて決定された温度である請求項16に記載の車両用熱管理システム。
  20.  前記少なくとも1つの温度調整対象機器は、電池を前記熱媒体によって加熱する機器(15)であり、
     前記第1加熱判定温度(Tw1)は、前記電池の使用温度範囲の上限温度に基づいて決定された温度である請求項17に記載の車両用熱管理システム。
  21.  前記少なくとも1つの温度調整対象機器(15、18)は、前記作動流体と前記熱媒体とを熱交換することによって前記作動流体を凝縮または蒸発させる第1気液相変化部(151、181)と、前記作動流体が吸熱または放熱することによって前記作動流体を蒸発または凝縮させる第2気液相変化部(152、182)とを有するヒートパイプ式熱交換器で構成されている請求項1ないし4のいずれか1つに記載の車両用熱管理システム。
  22.  前記制御装置(40)が前記第1切替弁(19)、前記第2切替弁(20)、前記第1ポンプ(11)および前記第2ポンプ(12)のうち少なくとも1つの作動を制御することによって、前記少なくとも1つの温度調整対象機器(15、18)に流入する前記熱媒体の流量が調整されるようになっている請求項21に記載の車両用熱管理システム。
  23.  前記少なくとも1つの温度調整対象機器は、電池(91)から吸熱した前記作動流体を冷却して凝縮させる電池冷却器(15)である請求項21または22に記載の車両用熱管理システム。
  24.  前記少なくとも1つの温度調整対象機器は、車室内への送風空気から吸熱した前記作動流体を冷却して凝縮させる空気冷却器(18)である請求項21または22に記載の車両用熱管理システム。
PCT/JP2013/000504 2012-02-02 2013-01-30 車両用熱管理システム WO2013114874A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/376,316 US9643469B2 (en) 2012-02-02 2013-01-30 Vehicle thermal management system
DE112013000833.5T DE112013000833T5 (de) 2012-02-02 2013-01-30 Fahrzeugwärmemanagementsystem
CN201380008012.2A CN104093587B (zh) 2012-02-02 2013-01-30 车辆热管理系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012020905 2012-02-02
JP2012-020905 2012-02-02
JP2012084444 2012-04-03
JP2012-084444 2012-04-03
JP2012278552A JP5880863B2 (ja) 2012-02-02 2012-12-20 車両用熱管理システム
JP2012-278552 2012-12-20

Publications (1)

Publication Number Publication Date
WO2013114874A1 true WO2013114874A1 (ja) 2013-08-08

Family

ID=48904919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000504 WO2013114874A1 (ja) 2012-02-02 2013-01-30 車両用熱管理システム

Country Status (5)

Country Link
US (1) US9643469B2 (ja)
JP (1) JP5880863B2 (ja)
CN (1) CN104093587B (ja)
DE (1) DE112013000833T5 (ja)
WO (1) WO2013114874A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133083A1 (ja) * 2014-03-05 2015-09-11 株式会社デンソー 車両用熱管理システム
CN105398327A (zh) * 2015-12-19 2016-03-16 重庆小康工业集团股份有限公司 电动汽车冷却控制系统
CN108944504A (zh) * 2018-06-28 2018-12-07 赵磊 一种基于热泵原理的电动汽车整车热管理系统
US20200031191A1 (en) * 2018-07-25 2020-01-30 Hyundai Motor Company Vehicle heat management system

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910517B2 (ja) 2012-02-02 2016-04-27 株式会社デンソー 熱交換器
JP6135256B2 (ja) * 2012-05-23 2017-05-31 株式会社デンソー 車両用熱管理システム
JP6060797B2 (ja) 2012-05-24 2017-01-18 株式会社デンソー 車両用熱管理システム
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
DE102013105747B4 (de) * 2012-07-18 2022-06-09 Hanon Systems Vorrichtungen zur Wärmeverteilung in einem Kraftfahrzeug
JP6155907B2 (ja) * 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
JP5962556B2 (ja) 2013-03-19 2016-08-03 株式会社デンソー 車両用熱管理システム
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6112039B2 (ja) 2013-04-08 2017-04-12 株式会社デンソー 車両用熱管理システム
JP6065779B2 (ja) 2013-07-31 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6233009B2 (ja) 2013-12-26 2017-11-22 株式会社デンソー 車両用空調装置
JP6252186B2 (ja) * 2014-01-15 2017-12-27 株式会社デンソー 車両用熱管理システム
DE102014206770A1 (de) * 2014-04-08 2015-10-08 MAHLE Behr GmbH & Co. KG Batteriekühleinrichtung und zugehöriges Betriebsverfahren
CN106255849B (zh) 2014-07-18 2019-10-22 三菱电机株式会社 热介质流路切换装置和具备该热介质流路切换装置的空调装置
JP6385436B2 (ja) 2014-07-18 2018-09-05 三菱電機株式会社 空気調和装置
CN106574731B (zh) * 2014-08-22 2019-12-10 三菱电机株式会社 复合阀
JP6287793B2 (ja) 2014-12-10 2018-03-07 株式会社デンソー 車両用空調装置
DE102014226346A1 (de) * 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Wärmesystem für ein Elektro- oder Hybridfahrzeug
KR101646441B1 (ko) * 2015-01-29 2016-08-05 현대자동차주식회사 차량의 aaf 및 ets 통합 제어방법 및 제어장치
KR101679971B1 (ko) * 2015-05-14 2016-11-25 현대자동차주식회사 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
US9827846B2 (en) * 2015-06-10 2017-11-28 Ford Global Technologies, Llc Traction battery cooling system
JP6380455B2 (ja) * 2015-07-14 2018-08-29 株式会社デンソー 冷凍サイクル装置
WO2017038677A1 (ja) 2015-08-28 2017-03-09 株式会社デンソー 空調システム
FR3041484A3 (fr) * 2015-09-22 2017-03-24 Renault Sas Dispositif de conditionnement thermique d'une batterie d'un vehicule electrique ou hybride durant une recharge rapide
CN108473040A (zh) * 2016-01-07 2018-08-31 博格华纳瑞典公司 用于电驱动系统的热管理
WO2017158991A1 (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 電動車両の高電圧機器冷却システム
US10718256B2 (en) * 2016-05-03 2020-07-21 GM Global Technology Operations LLC Powertrain thermal management system and method
JP6471133B2 (ja) * 2016-10-25 2019-02-13 本田技研工業株式会社 車両用電源装置
JP6624107B2 (ja) 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
CN107230812B (zh) * 2017-05-31 2020-08-07 重庆长安汽车股份有限公司 一种混合动力汽车动力电池的冷却控制系统及方法
WO2018226649A1 (en) 2017-06-06 2018-12-13 Carrier Corporation Transport refrigeration system
JP2019002350A (ja) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 冷却システム
JP6867258B2 (ja) * 2017-09-08 2021-04-28 本田技研工業株式会社 車両用熱交換システム、車両用熱交換方法、およびプログラム
DE102017215984B4 (de) * 2017-09-11 2023-11-09 Vitesco Technologies GmbH Steuermodul zur Klimatisierung einer Batterie
CN111788082B (zh) * 2018-03-28 2024-03-01 沃尔沃卡车集团 用于电驱动车辆的热调节系统和包括这种系统的车辆
CN110323512B (zh) * 2018-03-29 2024-01-30 上海加冷松芝汽车空调股份有限公司 具有分时冷却及加热功能的层叠式组合换热器
CN108544901B (zh) * 2018-04-23 2020-11-06 杭州富阳春江汽车空调厂 一种热能综合利用的新能源汽车
CN108482067B (zh) * 2018-05-21 2019-11-29 上海思致汽车工程技术有限公司 一种节能型多回路电动汽车热管理系统
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
JP7268976B2 (ja) * 2018-08-10 2023-05-08 サンデン株式会社 車両用空気調和装置
CN109130952B (zh) * 2018-08-31 2021-03-23 长沙理工大学 一种电动汽车调控系统
EP3623183B1 (en) * 2018-09-11 2020-12-02 C.R.F. Società Consortile per Azioni A system for thermal management of the components of a hybrid vehicle
JP2020046102A (ja) * 2018-09-18 2020-03-26 シャープ株式会社 空気調和機
CN109435658B (zh) * 2018-09-20 2021-05-11 中汽动力(沈阳)有限公司 车辆的热管理系统及其控制方法和车辆
NL2022033B1 (en) * 2018-11-20 2020-06-03 Johannes Verbakel Albert Base unit and system for liquid circulation and heating and for vacuumizing
KR20200067008A (ko) * 2018-12-03 2020-06-11 현대자동차주식회사 6웨이 밸브 및 이를 포함한 차량용 열관리시스템
KR102600059B1 (ko) * 2018-12-03 2023-11-07 현대자동차 주식회사 차량용 열 관리 시스템
JP2020102377A (ja) * 2018-12-21 2020-07-02 本田技研工業株式会社 温度調整回路及びその制御方法
CN109878325A (zh) * 2018-12-29 2019-06-14 北京新能源汽车技术创新中心有限公司 电动车冷却系统、电动车及电动车冷却系统控制方法
CN111376692B (zh) * 2018-12-29 2022-06-07 宇通客车股份有限公司 一种车辆、多支路温度调节液冷电源系统及其控制方法
JP7031789B2 (ja) 2019-04-16 2022-03-08 株式会社デンソー 流路切替弁および流体循環回路
KR102647199B1 (ko) * 2019-04-22 2024-03-14 현대자동차주식회사 친환경 차량의 배터리 관리 시스템 및 방법
KR20200125791A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 전기차용 열관리시스템
JP7290070B2 (ja) * 2019-06-07 2023-06-13 株式会社デンソー 流体循環システム
KR102215293B1 (ko) * 2019-07-25 2021-02-15 현대위아(주) 통합 열관리용 밸브조립체 및 이를 포함한 통합 열관리 모듈
KR102239253B1 (ko) * 2019-08-01 2021-04-12 현대위아(주) 통합 열관리용 밸브조립체 및 이를 포함한 통합 열관리 모듈
JP7111082B2 (ja) * 2019-09-30 2022-08-02 トヨタ自動車株式会社 冷却システム
IT201900018704A1 (it) * 2019-10-14 2021-04-14 Ind Saleri Italo Spa Dispositivo di comando fluidico di un veicolo
IT201900018710A1 (it) * 2019-10-14 2021-04-14 Ind Saleri Italo Spa Assieme di gestione termica di un veicolo
IT201900018701A1 (it) * 2019-10-14 2021-04-14 Ind Saleri Italo Spa Assieme di gestione termica di un veicolo
SE544141C2 (en) * 2020-03-23 2022-01-11 Scania Cv Ab A temperature control system, a vehicle provided therewith and a method for controlling the operation thereof
KR20220033184A (ko) * 2020-09-09 2022-03-16 현대자동차주식회사 다유로 냉각수 밸브
US20220134839A1 (en) * 2020-10-29 2022-05-05 Rivian Ip Holdings, Llc Integrated thermal management system for a vehicle
CN112477549B (zh) * 2020-11-23 2022-03-18 艾泰斯热系统研发(上海)有限公司 一种多负载热泵系统的冷却液冷热源切换装置
US11592221B2 (en) 2020-12-22 2023-02-28 Deere & Company Two-phase cooling system
CN113561852B (zh) * 2021-08-31 2023-07-11 岚图汽车科技有限公司 一种节能增程式phev热管理系统
KR102588667B1 (ko) * 2021-09-27 2023-10-16 명화공업주식회사 칠러
CN114161923B (zh) * 2021-12-03 2023-10-20 华人运通(江苏)技术有限公司 一种电动汽车的热管理系统
DE102022109110A1 (de) 2022-04-13 2023-10-19 Bayerische Motoren Werke Aktiengesellschaft Temperiereinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512540A (ja) * 2002-09-18 2006-04-13 ヴァレオ テルミーク モツール 流体回路用制御弁、およびこの弁を備える回路
JP2006321269A (ja) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd 車両用熱源分配システム
JP2009202794A (ja) * 2008-02-28 2009-09-10 Toyota Motor Corp ヒートマネージメントシステム
JP2010272289A (ja) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd バッテリ温度制御装置
JP2011157035A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp ハイブリッド車両の冷却装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451141B2 (ja) 1994-11-14 2003-09-29 本田技研工業株式会社 バッテリ温度調節装置
US5904052A (en) * 1996-09-02 1999-05-18 Denso Corporation Brine type air conditioning apparatus
FR2766261B1 (fr) 1997-07-18 1999-09-24 Valeo Thermique Moteur Sa Dispositif de climatisation de vehicule avec boucle de refrigerant resserree
US6357541B1 (en) * 1999-06-07 2002-03-19 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicle
DE10123830A1 (de) * 2001-05-16 2002-11-28 Bosch Gmbh Robert Klimaanlage
JP2004257728A (ja) 2003-02-25 2004-09-16 Linde Ag プレート式熱交換器
US7100280B2 (en) 2003-02-25 2006-09-05 Linde Aktiengesellschaft Method for producing a heat exchanger
US7185449B2 (en) * 2004-03-16 2007-03-06 Kime James A System for controlling the hydraulic actuated components of a truck
FR2890606B1 (fr) 2005-09-13 2008-11-07 Renault Sas Procede de commande d'un groupe motopropulseur de vehicule comprenant deux circuits de refroidissement
JP4823936B2 (ja) * 2006-04-19 2011-11-24 株式会社デンソー 廃熱利用装置およびその制御方法
JP2010119282A (ja) * 2008-10-17 2010-05-27 Denso Corp 熱マネージメントシステム
CN201386123Y (zh) * 2009-03-10 2010-01-20 常州市双强机械制造有限公司 无缝环件制造热处理系统
JP2011098628A (ja) 2009-11-05 2011-05-19 Toyota Motor Corp ハイブリッド車両の冷却システム
JP5396246B2 (ja) * 2009-11-18 2014-01-22 株式会社日立製作所 車両用空調装置
JP2011121551A (ja) 2009-12-14 2011-06-23 Toyota Motor Corp 車両の熱制御装置
US8997503B2 (en) * 2010-01-15 2015-04-07 Mitsubishi Heavy Industries, Ltd. Vehicle air-conditioning system and operation control method therefor
US9279608B2 (en) * 2010-07-29 2016-03-08 Mitsubishi Electric Corporation Heat pump
CN202006709U (zh) * 2011-01-30 2011-10-12 比亚迪股份有限公司 一种电动车的供热系统
JP5320419B2 (ja) * 2011-02-04 2013-10-23 株式会社日本自動車部品総合研究所 冷却装置
CN103354891A (zh) * 2011-02-07 2013-10-16 三菱电机株式会社 空气调节装置
US8899062B2 (en) 2011-02-17 2014-12-02 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
JP5644648B2 (ja) * 2011-04-18 2014-12-24 株式会社デンソー 電池温度調整装置
JP5755490B2 (ja) * 2011-04-18 2015-07-29 トヨタ自動車株式会社 冷却装置
JP5910517B2 (ja) 2012-02-02 2016-04-27 株式会社デンソー 熱交換器
JP6060797B2 (ja) * 2012-05-24 2017-01-18 株式会社デンソー 車両用熱管理システム
JP5867305B2 (ja) * 2012-06-20 2016-02-24 株式会社デンソー 車両用熱管理システム
JP5983187B2 (ja) * 2012-08-28 2016-08-31 株式会社デンソー 車両用熱管理システム
JP6155907B2 (ja) * 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
US10035404B2 (en) * 2012-10-15 2018-07-31 Ford Global Technologies, Llc Thermostatically-controlled multi-mode coolant loops
JP5962556B2 (ja) * 2013-03-19 2016-08-03 株式会社デンソー 車両用熱管理システム
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
JP6197657B2 (ja) * 2014-01-14 2017-09-20 株式会社デンソー 車両用熱管理システム
JP6252186B2 (ja) * 2014-01-15 2017-12-27 株式会社デンソー 車両用熱管理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512540A (ja) * 2002-09-18 2006-04-13 ヴァレオ テルミーク モツール 流体回路用制御弁、およびこの弁を備える回路
JP2006321269A (ja) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd 車両用熱源分配システム
JP2009202794A (ja) * 2008-02-28 2009-09-10 Toyota Motor Corp ヒートマネージメントシステム
JP2010272289A (ja) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd バッテリ温度制御装置
JP2011157035A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp ハイブリッド車両の冷却装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133083A1 (ja) * 2014-03-05 2015-09-11 株式会社デンソー 車両用熱管理システム
JP2015168297A (ja) * 2014-03-05 2015-09-28 株式会社デンソー 車両用熱管理システム
CN105398327A (zh) * 2015-12-19 2016-03-16 重庆小康工业集团股份有限公司 电动汽车冷却控制系统
CN108944504A (zh) * 2018-06-28 2018-12-07 赵磊 一种基于热泵原理的电动汽车整车热管理系统
CN108944504B (zh) * 2018-06-28 2023-10-31 赵磊 一种基于热泵原理的电动汽车整车热管理系统
US20200031191A1 (en) * 2018-07-25 2020-01-30 Hyundai Motor Company Vehicle heat management system
US10906373B2 (en) * 2018-07-25 2021-02-02 Hyundai Motor Company Vehicle heat management system

Also Published As

Publication number Publication date
CN104093587B (zh) 2017-07-14
DE112013000833T5 (de) 2014-10-16
CN104093587A (zh) 2014-10-08
JP5880863B2 (ja) 2016-03-09
US20140374081A1 (en) 2014-12-25
JP2013230805A (ja) 2013-11-14
US9643469B2 (en) 2017-05-09

Similar Documents

Publication Publication Date Title
JP5880863B2 (ja) 車両用熱管理システム
JP5910517B2 (ja) 熱交換器
JP5962556B2 (ja) 車両用熱管理システム
JP6015184B2 (ja) 車両用熱管理システム
JP5949522B2 (ja) 温調装置
JP6065779B2 (ja) 車両用熱管理システム
JP6303615B2 (ja) 車両用熱管理システム
JP5626194B2 (ja) 熱交換システム
JP6064753B2 (ja) 車両用熱管理システム
JP4451312B2 (ja) 特に自動車用の空調装置
WO2014034061A1 (ja) 車両用熱管理システム
JP2019077398A (ja) 車両用熱管理システム
JP2021027045A (ja) 温度調整装置
WO2020004219A1 (ja) 機器温調装置
WO2018047538A1 (ja) 機器温調システム
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
WO2020213535A1 (ja) 車両用サーモサイフォン式冷却装置
CN110126584B (zh) 电动汽车空调系统及其除霜方法、运行方法、控制系统
WO2020175261A1 (ja) 冷凍サイクル装置
WO2020246337A1 (ja) 熱交換器、冷凍サイクル装置
JP5842755B2 (ja) 車両用熱管理システム
WO2023171445A1 (ja) 複合型熱交換器、熱交換システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376316

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130008335

Country of ref document: DE

Ref document number: 112013000833

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744411

Country of ref document: EP

Kind code of ref document: A1