JP2020102377A - 温度調整回路及びその制御方法 - Google Patents

温度調整回路及びその制御方法 Download PDF

Info

Publication number
JP2020102377A
JP2020102377A JP2018240230A JP2018240230A JP2020102377A JP 2020102377 A JP2020102377 A JP 2020102377A JP 2018240230 A JP2018240230 A JP 2018240230A JP 2018240230 A JP2018240230 A JP 2018240230A JP 2020102377 A JP2020102377 A JP 2020102377A
Authority
JP
Japan
Prior art keywords
circuit
coupling
temperature control
control circuit
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018240230A
Other languages
English (en)
Inventor
拓也 本荘
Takuya Honjo
拓也 本荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018240230A priority Critical patent/JP2020102377A/ja
Priority to CN201911335395.XA priority patent/CN111347932B/zh
Publication of JP2020102377A publication Critical patent/JP2020102377A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】消費電力を抑制できる温度調整回路及びその制御方法を提供する。【解決手段】温度調整回路1は、第1温度調節回路4と、第2温度調節回路6と、第2ポンプEWP2と、第1温度調節回路4と第2温度調節回路6とを結合して結合回路7を形成する第1結合通路8及び第2結合通路9と、熱媒体が結合回路7を循環する循環状態と、熱媒体が結合回路7を循環しない非循環状態とを切替可能な電磁切替弁EWVと、結合回路7において一部をバイパスする分岐通路16と、分岐通路16に配置されて分岐通路16の開閉を切替えるノーマルオープン型の電磁逆止弁FSVと、電磁逆止弁FSVの通電を制御する制御装置10と、を備える。制御装置10は、非循環状態から循環状態への切替が完了した後、電磁逆止弁FSVへの通電を停止する又は電磁逆止弁FSVの通電電流を低減する。【選択図】図5

Description

本発明は、バッテリなどの温度調整を行う温度調整回路及びその制御方法に関する。
第1温度調節回路と、第2温度調節回路と、第1温度調節回路及び第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、第1温度調節回路と第2温度調節回路とを結合して結合回路を形成する結合通路と、熱媒体が結合回路を循環する循環状態と、熱媒体が結合回路を循環しない非循環状態とを切替可能な切替部と、を備える電動車両用の温度調整回路が知られている。
例えば、特許文献1には、バッテリを冷却する冷却回路と、インバータを冷却する冷却回路と、バッテリを冷却する冷却回路に設けられる第1冷媒ポンプと、インバータを冷却する冷却回路に設けられる第2冷媒ポンプと、バッテリ及びインバータを同一回路で温度調整する状態(以下、循環状態とも呼ぶ。)とバッテリ及びインバータを別々の回路で温度調整する状態(以下、非循環状態とも呼ぶ。)とを切り換える切換バルブと、を備える温度調整回路において、外気温度が所定温度未満である場合、循環状態とする一方、外気温度が所定温度以上である場合、非循環状態とすることにより、温度調整の精度を高めることが記載されている。
特開2013−188098号公報
しかしながら、特許文献1に記載の温度調整回路では、切換バルブで循環状態と非循環状態とに切替えるにあたり、循環状態及び非循環状態の少なくとも一方において切替バルブへの通電を継続する必要があるため、切替バルブの消費電力が増加してしまう虞があった。
本発明は、消費電力を抑制できる温度調整回路及びその制御方法を提供する。
本発明は、
温度調整回路であって、
バッテリと熱交換する第1温度調節回路と、
モータ、及び前記モータに電力を供給する電力変換装置の少なくとも一方と熱交換する第2温度調節回路と、
前記第1温度調節回路及び前記第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、
前記第1温度調節回路と前記第2温度調節回路とを結合して結合回路を形成する結合通路と、
前記熱媒体が前記結合回路を循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態とを切替可能な切替部と、
前記結合回路において、一部をバイパスする分岐通路と、
前記分岐通路と前記結合回路とを接続する第1接続部及び第2接続部と、
前記分岐通路に配置されて、前記分岐通路の開閉を切替える電磁弁と、
前記電磁弁の通電を制御する制御装置と、を備え、
前記第1接続部は、前記結合回路の前記循環状態において前記ポンプから見て前記第2接続部よりも上流側に配置されており、
前記電磁弁は、
弁体が第1位置に位置する状態では、開弁するとともに、
前記第1位置から所定方向に移動した第2位置に位置する状態では、閉弁するように構成されており、
前記電磁弁は、前記第1位置が前記第1接続部側に配置され、
前記結合回路の前記循環状態では、前記分岐通路の前記電磁弁が閉弁されて前記分岐通路を経由した前記熱媒体の循環が停止されており、
前記制御装置は、
前記結合通路の前記非循環状態から前記循環状態への切替の際に、前記電磁弁に通電して前記電磁弁を閉弁させ、
前記循環状態に切替わった後に、前記電磁弁の通電を停止又は前記電磁弁の通電電流を低減する。
また、本発明は、
バッテリと熱交換する第1温度調節回路と、
モータ、及び前記モータに電力を供給する電力変換装置の少なくとも一方と熱交換する第2温度調節回路と、
前記第1温度調節回路及び前記第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、
前記第1温度調節回路と前記第2温度調節回路とを結合して結合回路を形成する結合通路と、
前記熱媒体が前記結合回路を循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態とを切替可能な切替部と、
前記結合回路において、一部をバイパスする分岐通路と、
前記分岐通路と前記結合回路とを接続する第1接続部及び第2接続部と、
前記分岐通路に配置されて、前記分岐通路の開閉を切替える電磁弁と、を備える、温度調整回路の制御方法であって、
前記第1接続部は、前記結合回路の前記循環状態において前記ポンプから見て前記第2接続部よりも上流側に配置されており、
前記電磁弁は、
弁体が第1位置に位置する状態では、開弁するとともに、
前記第1位置から所定方向に移動した第2位置に位置する状態では、閉弁するように構成されており、
前記電磁弁は、前記第1位置が前記第1接続部側に配置され、
前記結合回路の前記循環状態では、前記分岐通路の前記電磁弁が閉弁されて前記分岐通路を経由した前記熱媒体の循環が停止されており、
前記制御方法は、
前記結合通路の前記非循環状態から前記循環状態への切替の際に、前記電磁弁に通電して前記電磁弁を閉弁させる閉弁工程と、
前記循環状態に切替わった後に、前記電磁弁の通電を停止又は前記電磁弁の通電電流を低減する通電停止工程と、を備える。
本発明によれば、結合回路の循環状態においては、第1接続部と第2接続部との間に差圧が発生することにより、差圧を用いて電磁弁を閉弁状態に維持することができる。したがって、結合通路の非循環状態から循環状態への切替の際に、電磁弁に通電して電磁弁を閉弁させることで回路の切替を安定的に行いながら、循環状態に切替わった後に電磁弁の通電を停止又は通電電流を低減することで電磁弁の消費電力の増加を抑制することができる。
本発明の一実施形態に係る温度調整回路の構成を示す回路図である。 図1の温度調整回路においてセパレートモード時の熱媒体の流れ及び電磁弁の動作を示す説明図である。 図1の温度調整回路においてシリーズモード時の熱媒体の流れ及び電磁弁の動作を示す説明図である。 図1の温度調整回路の制御手順を示すフローチャートである。 図1の温度調整回路の動作を示すタイミングチャートである。 本実施形態の温度調整回路が使用可能な電動車両の概略構成を示す斜視図である。
以下、本発明の一実施形態について、図1〜図5を参照して説明する。
[温度調整回路]
図1に示すように、電動車両用の温度調整回路1は、バッテリ2及び充電器3と熱交換する第1温度調節回路4と、モータ105(図6参照)に電力を供給する電力変換装置(パワーコントロールユニット)5と熱交換する第2温度調節回路6と、第1温度調節回路4と第2温度調節回路6とを結合して結合回路7を形成する結合通路8、9と、熱媒体が結合回路7を循環するシリーズモード(循環状態)と、熱媒体が結合回路7を循環せず、別々の温度調節回路4、6を循環するセパレートモード(非循環状態)とを切替可能な電磁切替弁EWVと、電磁切替弁EWVなどを制御する制御装置10と、を備える。なお、熱媒体は、水、ラジエータ液、クーラント液等の液状媒体である。
[第1温度調節回路]
第1温度調節回路4は、該回路に熱媒体を循環させる第1ポンプEWP1と、第1ポンプEWP1の下流側に配置され、電動車両の空調回路を利用して熱交換を行うチラー11と、チラー11の下流側に配置されるバッテリ2及び充電器3と、充電器3の下流側で、且つ第1ポンプEWP1の上流側に配置される電磁逆止弁FSV(電磁弁)と、を備える。
図2に示すように、セパレートモードでは、電磁逆止弁FSVの開弁状態で第1ポンプEWP1を駆動し、該第1ポンプEWP1が吐出する熱媒体をチラー11、バッテリ2、充電器3の順番で循環させる。これにより、チラー11によって冷却された熱媒体がバッテリ2及び充電器3と熱交換し、バッテリ2及び充電器3が適切に冷却される。
[第2温度調節回路]
第2温度調節回路6は、該回路に熱媒体を循環させる第2ポンプEWP2と、第2ポンプEWP2の下流側に配置され、セパレートモードとシリーズモードとを切替える電磁切替弁EWVと、電磁切替弁EWVの下流側に配置される電力変換装置5と、電力変換装置5の下流側に配置され、熱媒体を冷却するラジエータ12と、を備える。
電磁切替弁EWVは、例えば電磁三方弁であり、セパレートモードでは第2ポンプEWP2側の流路と電力変換装置5側の流路との接続を許容するとともに、第2ポンプEWP2側の流路と後述する第1結合通路8との接続を遮断する。一方、シリーズモードでは第2ポンプEWP2側の流路と電力変換装置5側の流路との接続を遮断するとともに、第2ポンプEWP2側の流路と後述する第1結合通路8との接続を許容する。電力変換装置5は、直流電力を交流電力に変換するとともに交流電力を直流電力に変換するインバータ、及び直流電圧を昇圧又は降圧するDC−DCコンバータの少なくとも一方を含む。
図2に示すように、セパレートモードでは、第2ポンプEWP2を駆動し、該第2ポンプEWP2が吐出する熱媒体を電力変換装置5、ラジエータ12の順番で循環させる。これにより、ラジエータ12によって冷却された熱媒体が電力変換装置5と熱交換し、電力変換装置5が適切に冷却される。
[結合回路]
結合通路8、9は、第1結合通路8と第2結合通路9とを含む。第1結合通路8は、第2温度調節回路6の電磁切替弁EWVと第1温度調節回路4の第1接続部13とを結合し、第2結合通路9は、第2温度調節回路6の接続部14と第1温度調節回路4の第2接続部15とを結合している。接続部14は、第2温度調節回路6における電磁切替弁EWVの下流側で、且つ電力変換装置5の上流側に位置し、第1接続部13は、第1温度調節回路4における第1ポンプEWP1の下流側で、且つチラー11の上流側に位置し、第2接続部15は、第1温度調節回路4における充電器3の下流側で、且つ電磁逆止弁FSVの上流側に位置する。即ち、第1接続部13は、第1温度調節回路4において第1ポンプEWP1から見て第2接続部15よりも上流側に配置されている。
第1温度調節回路4における第1接続部13と第2接続部15との間の通路、即ち第1温度調節回路4において第1ポンプEWP1及び電磁逆止弁FSVが配置される通路は、結合回路7において、その一部をバイパスする分岐通路16として機能する。
図3に示すように、熱媒体が結合回路7を循環するシリーズモードでは、第1ポンプEWP1を停止させ、第2ポンプEWP2の駆動によって熱媒体を循環させる。これにより、第2ポンプEWP2から吐出される熱媒体がチラー11、バッテリ2、充電器3、電力変換装置5、ラジエータ12の順番で循環し、バッテリ2、充電器3及び電力変換装置5が冷却される。また、シリーズモードでは、電磁逆止弁FSVを閉弁して分岐通路16を経由した熱媒体の循環を停止する。
図2及び図3に示すように、本実施形態の電磁逆止弁FSVは、ノーマルオープン型(非通電時に開弁)の電磁弁であって、第1接続部13(第1ポンプEWP1)側に接続される第1ポート17と、第2接続部15側に接続される第2ポート18と、第1ポート17と第2ポート18との間の通路を開閉する弁体19と、弁体19を開弁方向に付勢するスプリング20と、スプリング20の付勢力に抗して弁体19を閉弁させる電磁石(図示せず)と、を備える。
電磁逆止弁FSVは、弁体19が第1位置(図2の位置)に位置する状態では、開弁するとともに、第1位置から所定方向に移動した第2位置(図3の位置)に位置する状態では、閉弁するように構成されており、第1位置が第1接続部13側に配置され、第2位置が第2接続部15側に配置されている。
前述したように、セパレートモードからシリーズモードへの切替に際しては、分岐通路16を経由した熱媒体の循環を停止するために、電磁逆止弁FSVに通電して電磁逆止弁FSVを閉弁させるが、シリーズモードに切替わった後に、電磁逆止弁FSVへの通電を停止するようになっている。つまり、シリーズモードに切替わった後は、第2ポンプEWP2との位置関係により上流側の第1接続部13と下流側の第2接続部15との間に差圧が発生するため、電磁逆止弁FSVに通電しなくても差圧を用いて弁体19を閉弁位置に維持し、電磁逆止弁FSVの消費電力を抑制することができる。この差圧は、熱媒体が第1接続部13から第2接続部15に流れる間における圧力損失に起因する。ただし、電磁逆止弁FSVのスプリング20の付勢力は、差圧による弁体19の閉弁維持力よりも小さく設定される必要がある。
[制御装置]
制御装置10は、バッテリ2及び電力変換装置5の温度情報と、第1ポンプEWP1及び第2ポンプEWP2の回転数情報と、を入力するとともに、これらの入力情報に応じた判断により、第1ポンプEWP1、第2ポンプEWP2、電磁切替弁EWV及び電磁逆止弁FSVを制御することで、温度調整回路1をセパレートモードとシリーズモードとに自動的に切替える。
制御装置10は、電動車両のイグニッションスイッチがオンされた後、セパレートモードでバッテリ2、充電器3及び電力変換装置5の冷却を開始する。制御装置10は、電磁切替弁EWVをセパレートモード側に切替えるとともに、電磁逆止弁FSVへの通電をオフとした上で、第1ポンプEWP1及び第2ポンプEWP2を駆動することにより、温度調整回路1をセパレートモードで動作させる。なお、セパレートモードでは、第1温度調節回路4及び第2温度調節回路6のいずれか一方のみで熱媒体を循環させてもよい。
制御装置10は、バッテリ2及び電力変換装置5の温度情報に基づいてセパレートモードの継続及びシリーズモードへの移行を判断している。制御装置10は、シリーズモードに移行すると判断した場合、第1ポンプEWP1を停止した後、電磁逆止弁FSVに通電して分岐通路16を遮断するとともに、第2ポンプEWP2の回転を抑制した状態で電磁切替弁EWVをシリーズモード側に切替、さらに、第2ポンプEWP2の回転を通常回転に復帰させることで、温度調整回路1をシリーズモードで動作させる。
制御装置10は、シリーズモードへの切替が完了した後、電磁逆止弁FSVの弁体19が差圧で閉弁状態を維持することを前提として電磁逆止弁FSVへの通電を停止し、電磁逆止弁FSVの消費電力を抑制する。制御装置10による電磁逆止弁FSVへの通電停止は、シリーズモードへの切替動作が完了した後、第2ポンプEWP2の回転数が安定したと判断したタイミングで実行されることが好ましい。例えば、所定時間当りの第2ポンプEWP2の回転数の変動幅が所定値以下となった際に第2ポンプEWP2の回転数が安定したと判断し、電磁逆止弁FSVへの通電を停止すればよい。なお、制御装置10による電磁逆止弁FSVへの通電停止は、シリーズモードへの切替動作が完了した後、所定時間が経過したと判断したタイミングで実行するようにしてもよい。
[制御方法]
つぎに、セパレートモードからシリーズモードへの安定的な切替と、シリーズモードにおける消費電力の抑制を可能にする制御装置10の具体的な制御手順及び動作について、図4及び図5を参照して説明する。ただし、図5に示すT1〜T4は、各電気デバイスの動作タイミングを示しており、タイマ時間を示すものではない。
制御装置10は、電動車両のイグニッションスイッチがオンされた後、図4に示す制御手順をスタートすると、まず、セパレートモードでバッテリ2、充電器3及び電力変換装置5の冷却を開始する(図4のS1)。ここで制御装置10は、電磁切替弁EWVをセパレートモード側に切替えるとともに、電磁逆止弁FSVへの通電をオフとした上で、第1ポンプEWP1及び第2ポンプEWP2を駆動することにより、温度調整回路1をセパレートモードで動作させる。
つぎに、制御装置10は、バッテリ2及び電力変換装置5の温度情報に基づいてセパレートモードの継続及びシリーズモードへの移行を判断する(図4のS2)。ここで制御装置10は、バッテリ2の温度(Tw BATT)がTEa℃(例えば、35〜50℃)以下であるか、又は電力変換装置5の温度とバッテリ2の温度との差(Tw PCU−Tw BATT)がTEb℃(例えば、5〜10℃)よりも大きいか否かを判断し、該判断結果がいずれもNOである場合は、セパレートモードを継続する一方(図4のS3)、いずれかがYESであると判断した場合は、シリーズモードへの移行を許可する(図4のS4)。
制御装置10は、シリーズモードに移行すると判断した場合、まず、第1ポンプEWP1の停止指示を行う(図4のS5、図5のT1)。ここで制御装置10は、第1ポンプEWP1の回転数(Duty)を低下させつつ、第1ポンプEWP1の回転が停止したか否かを所定時間毎に判断し(図4のS6、S7)、第1ポンプEWP1を運転状態(Duty on)から停止状態(Duty off)に移行させる。
制御装置10は、第1ポンプEWP1の回転が停止したと判断すると、電磁逆止弁FSVに通電して分岐通路16を遮断するとともに(図4のS8、図5のT2、閉弁工程)、第2ポンプEWP2の回転を運転状態(Duty Hi)から低回転状態(Duty Lo)に抑制した後(図4のS9)、電磁切替弁EWVをシリーズモード側に切替え(図4のS10、図5のT3)、さらに、第2ポンプEWP2の回転を運転状態に復帰させる(図4のS11)。これにより、温度調整回路1は、シリーズモードで動作する。
さらに、制御装置10は、シリーズモードへの切替が完了した後、第2ポンプEWP2の回転数が安定したか否かを繰り返し判断し(図4のS12)、この判断結果がYESになったら、電磁逆止弁FSVへの通電を停止する(図4のS13、図5のT4、通電停止工程)。これにより、電磁逆止弁FSVは、通電しなくても差圧で閉弁状態を維持し、消費電力が抑制される。
[車両]
図6は、本実施形態の温度調整回路1が使用可能な電動車両100の概略構成を示す斜視図である。電動車両100は、駆動源として電動機のみを有する電気自動車、燃料電池車であってもよく、電動機及び内燃機関を有するハイブリッド自動車でもよいが、以下の説明では、電気自動車を例に説明する。
電動車両100の車体101には、車室102の床下部分にバッテリ2を収容するバッテリケース103が搭載されている。電動車両100の前部には、モータルーム104が設けられている。モータルーム104内には、モータ105、電力変換装置5、分岐ユニット106、充電器3等が設けられている。
モータ105の回転駆動力は、シャフト107に伝達される。シャフト107の両端部には、電動車両100の前輪108が接続されている。電力変換装置5は、モータ105の上側に配置されてモータ105のケースに直接、締結固定されている。電力変換装置5は、電源ケーブル111でバッテリケース103のコネクタに電気的に接続されている。また、電力変換装置5は、例えば三相バスバーによりモータ105に電気的に接続されている。電力変換装置5は、バッテリ2から供給される電力によりモータ105を駆動制御する。
分岐ユニット106および充電器3は、左右に並列して配置されている。分岐ユニット106および充電器3は、電力変換装置5の上方に配置されている。分岐ユニット106および充電器3は、電力変換装置5と離間した状態で配置されている。分岐ユニット106とバッテリケース103とは、両端にコネクタを有するケーブル110により電気的に接続されている。
分岐ユニット106は、充電器3に電気的に接続されている。充電器3は、家庭用電源等の一般的な外部電源に接続して、バッテリ2に対して充電を行う。充電器3と分岐ユニット106とは、両端にコネクタを有する不図示のケーブルにより電気的に接続されている。
なお、前述した実施形態は、適宜、変形、改良、等が可能である。例えば、前述した実施形態では、モータに電力を供給する電力変換装置5を第2温度調節回路6で冷却しているが、電力変換装置5に代えてモータを第2温度調節回路6で冷却するようにしてもよいし、モータ105及び電力変換装置5を第2温度調節回路6で冷却してもよい。
また、電磁逆止弁FSVは、通電のオン/オフによって開弁状態と閉弁状態とが切替えられるものとしたが、通電電流値を制御可能な場合には、S13の通電停止工程において、完全に通電は停止せずに、通電電流を低減させてもよい。この場合、第1接続部13と第2接続部15との間の差圧、及び、低減された通電電流に応じて電磁石から弁体19に与えられる閉弁維持力により、閉弁状態に維持される。
本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1) バッテリ(バッテリ2)と熱交換する第1温度調節回路(第1温度調節回路4)と、
モータ(モータ105)、及び前記モータに電力を供給する電力変換装置(電力変換装置5)の少なくとも一方と熱交換する第2温度調節回路(第2温度調節回路6)と、
前記第1温度調節回路及び前記第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプ(第2ポンプEWP2)と、
前記第1温度調節回路と前記第2温度調節回路とを結合して結合回路(結合回路7)を形成する結合通路(第1結合通路8、第2結合通路9)と、
前記熱媒体が前記結合回路を循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態とを切替可能な切替部(電磁切替弁EWV)と、
前記結合回路において、一部をバイパスする分岐通路(分岐通路16)と、
前記分岐通路と前記結合回路とを接続する第1接続部(第1接続部13)及び第2接続部(第2接続部15)と、
前記分岐通路に配置されて、前記分岐通路の開閉を切替える電磁弁(電磁逆止弁FSV)と、
前記電磁弁の通電を制御する制御装置(制御装置10)と、を備え、
前記第1接続部は、前記結合回路の前記循環状態において前記ポンプから見て前記第2接続部よりも上流側に配置されており、
前記電磁弁は、
弁体(弁体19)が第1位置に位置する状態では、開弁するとともに、
前記第1位置から所定方向に移動した第2位置に位置する状態では、閉弁するように構成されており、
前記電磁弁は、前記第1位置が前記第1接続部側に配置され、
前記結合回路の前記循環状態では、前記分岐通路の前記電磁弁が閉弁されて前記分岐通路を経由した前記熱媒体の循環が停止されており、
前記制御装置は、
前記結合通路の前記非循環状態から前記循環状態への切替の際に、前記電磁弁に通電して前記電磁弁を閉弁させ、
前記循環状態に切替わった後に、前記電磁弁の通電を停止する、温度調整回路。
(1)によれば、結合回路の循環状態においては、第1接続部と第2接続部との間に差圧が発生することにより、差圧を用いて電磁弁を閉弁状態に維持することができる。したがって、結合通路の非循環状態から循環状態への切替の際に、電磁弁に通電して電磁弁を閉弁させることで回路の切替を安定的に行いながら、循環状態に切替わった後に電磁弁の通電を停止又は通電電流を低減することで電磁弁の消費電力の増加を抑制することができる。
(2) (1)に記載の温度調整回路であって、
前記制御装置は、前記循環状態に切替った後、且つ、前記ポンプの回転数が安定した際に、前記電磁弁の通電を停止する、温度調整回路。
(2)によれば、循環状態に切替った後、且つ、ポンプの回転数が安定した際に電磁弁の通電を停止することで、電磁弁に通電しなくてもより確実に電磁弁を閉弁状態に維持することができる。
(3) (1)に記載の温度調整回路であって、
前記制御装置は、前記循環状態に切替わった後、且つ、前記切替部を前記循環状態に切替えて所定時間が経過した後に、前記電磁弁の通電を停止する、温度調整回路。
(3)によれば、循環状態に切替った後、且つ、切替部を前記循環状態に切替えて所定時間が経過した後に電磁弁の通電を停止することで、電磁弁に通電しなくてもより確実に電磁弁を閉弁状態に維持することができる。
(4) (1)〜(3)のいずれか1項に記載の温度調整回路であって、
前記第1温度調節回路は、空調回路のチラー(チラー11)と、充電器(充電器3)と、を含む、温度調整回路。
(4)によれば、第1温度調節回路において、熱媒体が空調回路のチラー及び充電器を通過することで、チラーによって冷却された熱媒体がバッテリ及び充電器と熱交換する。これにより、バッテリ及び充電器を適切に冷却することができる。
(5) (1)〜(4)のいずれか1項に記載の温度調整回路であって、
前記第2温度調節回路は、熱交換器(ラジエータ12)を含む、温度調整回路。
(5)によれば、第2温度調節回路において、熱媒体が熱交換器を通過するため、熱交換器によって冷却された熱媒体がモータ及び/又は電力変換装置と熱交換する。これにより、モータ及び/又は電力変換装置を適切に冷却することができる。
(6) バッテリ(バッテリ2)と熱交換する第1温度調節回路(第1温度調節回路4)と、
モータ(モータ105)、及び前記モータに電力を供給する電力変換装置(電力変換装置5)の少なくとも一方と熱交換する第2温度調節回路(第2温度調節回路6)と、
前記第1温度調節回路及び前記第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプ(第2ポンプEWP2)と、
前記第1温度調節回路と前記第2温度調節回路とを結合して結合回路(結合回路7)を形成する結合通路(第1結合通路8、第2結合通路9)と、
前記熱媒体が前記結合回路を循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態とを切替可能な切替部(電磁切替弁EWV)と、
前記結合回路において、一部をバイパスする分岐通路(分岐通路16)と、
前記分岐通路と前記結合回路とを接続する第1接続部(第1接続部13)及び第2接続部(第2接続部15)と、
前記分岐通路に配置されて、前記分岐通路の開閉を切替える電磁弁(電磁逆止弁FSV)と、を備える、温度調整回路(温度調整回路1)の制御方法であって、
前記第1接続部は、前記結合回路の前記循環状態において前記ポンプから見て前記第2接続部よりも上流側に配置されており、
前記電磁弁は、
弁体(弁体19)が第1位置に位置する状態では、開弁するとともに、
前記第1位置から所定方向に移動した第2位置に位置する状態では、閉弁するように構成されており、
前記電磁弁は、前記第1位置が前記第1接続部側に配置され、
前記結合回路の前記循環状態では、前記分岐通路の前記電磁弁が閉弁されて前記分岐通路を経由した前記熱媒体の循環が停止されており、
前記制御方法は、
前記結合通路の前記非循環状態から前記循環状態への切替の際に、前記電磁弁に通電して前記電磁弁を閉弁させる閉弁工程と、
前記循環状態に切替わった後に、前記電磁弁の通電を停止する通電停止工程と、を備える、温度調整回路の制御方法。
(6)によれば、結合回路の循環状態においては、第1接続部と第2接続部との間に差圧が発生することにより、差圧を用いて電磁弁を閉弁状態に維持することができる。したがって、結合通路の非循環状態から循環状態への切替の際に、電磁弁に通電して電磁弁を閉弁させることで回路の切替を安定的に行いながら、循環状態に切替わった後に電磁弁の通電を停止又は通電電流を低減することで電磁弁の消費電力の増加を抑制することができる。
(7) (6)に記載の温度調整回路の制御方法であって、
前記通電停止工程において、前記循環状態に切替った後、且つ、前記ポンプの回転数が安定した際に、前記電磁弁の通電を停止する、温度調整回路の制御方法。
(7)によれば、循環状態に切替った後、且つ、ポンプの回転数が安定した際に電磁弁の通電を停止することで、電磁弁に通電しなくてもより確実に電磁弁を閉弁状態に維持することができる。
(8) (6)に記載の温度調整回路の制御方法であって、
前記通電停止工程において、前記循環状態に切替わった後、且つ、前記切替部を前記循環状態に切替えて所定時間が経過した後に、前記電磁弁の通電を停止する、温度調整回路の制御方法。
(8)によれば、循環状態に切替った後、且つ、切替部を前記循環状態に切替えて所定時間が経過した後に電磁弁の通電を停止することで、電磁弁に通電しなくてもより確実に電磁弁を閉弁状態に維持することができる。
1 温度調整回路
2 バッテリ
3 充電器
4 第1温度調節回路
5 電力変換装置
6 第2温度調節回路
7 結合回路
8 第1結合通路(結合通路)
9 第2結合通路(結合通路)
10 制御装置
11 チラー
12 ラジエータ
13 第1接続部
15 第2接続部
16 分岐通路
19 弁体
105 モータ
EWP2 第2ポンプ(ポンプ)
EWV 電磁切替弁(切替部)
FSV 電磁逆止弁(電磁弁)

Claims (8)

  1. バッテリと熱交換する第1温度調節回路と、
    モータ、及び前記モータに電力を供給する電力変換装置の少なくとも一方と熱交換する第2温度調節回路と、
    前記第1温度調節回路及び前記第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、
    前記第1温度調節回路と前記第2温度調節回路とを結合して結合回路を形成する結合通路と、
    前記熱媒体が前記結合回路を循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態とを切替可能な切替部と、
    前記結合回路において、一部をバイパスする分岐通路と、
    前記分岐通路と前記結合回路とを接続する第1接続部及び第2接続部と、
    前記分岐通路に配置されて、前記分岐通路の開閉を切替える電磁弁と、
    前記電磁弁の通電を制御する制御装置と、を備え、
    前記第1接続部は、前記結合回路の前記循環状態において前記ポンプから見て前記第2接続部よりも上流側に配置されており、
    前記電磁弁は、
    弁体が第1位置に位置する状態では、開弁するとともに、
    前記第1位置から所定方向に移動した第2位置に位置する状態では、閉弁するように構成されており、
    前記電磁弁は、前記第1位置が前記第1接続部側に配置され、
    前記結合回路の前記循環状態では、前記分岐通路の前記電磁弁が閉弁されて前記分岐通路を経由した前記熱媒体の循環が停止されており、
    前記制御装置は、
    前記結合通路の前記非循環状態から前記循環状態への切替の際に、前記電磁弁に通電して前記電磁弁を閉弁させ、
    前記循環状態に切替わった後に、前記電磁弁の通電を停止又は前記電磁弁の通電電流を低減する、温度調整回路。
  2. 請求項1に記載の温度調整回路であって、
    前記制御装置は、前記循環状態に切替った後、且つ、前記ポンプの回転数が安定した際に、前記電磁弁の通電を停止する、温度調整回路。
  3. 請求項1に記載の温度調整回路であって、
    前記制御装置は、前記循環状態に切替わった後、且つ、前記切替部を前記循環状態に切替えて所定時間が経過した後に、前記電磁弁の通電を停止する、温度調整回路。
  4. 請求項1〜3のいずれか1項に記載の温度調整回路であって、
    前記第1温度調節回路は、空調回路のチラーと、充電器と、を含む、温度調整回路。
  5. 請求項1〜4のいずれか1項に記載の温度調整回路であって、
    前記第2温度調節回路は、熱交換器を含む、温度調整回路。
  6. バッテリと熱交換する第1温度調節回路と、
    モータ、及び前記モータに電力を供給する電力変換装置の少なくとも一方と熱交換する第2温度調節回路と、
    前記第1温度調節回路及び前記第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、
    前記第1温度調節回路と前記第2温度調節回路とを結合して結合回路を形成する結合通路と、
    前記熱媒体が前記結合回路を循環する循環状態と、前記熱媒体が前記結合回路を循環しない非循環状態とを切替可能な切替部と、
    前記結合回路において、一部をバイパスする分岐通路と、
    前記分岐通路と前記結合回路とを接続する第1接続部及び第2接続部と、
    前記分岐通路に配置されて、前記分岐通路の開閉を切替える電磁弁と、を備える、温度調整回路の制御方法であって、
    前記第1接続部は、前記結合回路の前記循環状態において前記ポンプから見て前記第2接続部よりも上流側に配置されており、
    前記電磁弁は、
    弁体が第1位置に位置する状態では、開弁するとともに、
    前記第1位置から所定方向に移動した第2位置に位置する状態では、閉弁するように構成されており、
    前記電磁弁は、前記第1位置が前記第1接続部側に配置され、
    前記結合回路の前記循環状態では、前記分岐通路の前記電磁弁が閉弁されて前記分岐通路を経由した前記熱媒体の循環が停止されており、
    前記制御方法は、
    前記結合通路の前記非循環状態から前記循環状態への切替の際に、前記電磁弁に通電して前記電磁弁を閉弁させる閉弁工程と、
    前記循環状態に切替わった後に、前記電磁弁の通電を停止又は前記電磁弁の通電電流を低減する通電停止工程と、を備える、温度調整回路の制御方法。
  7. 請求項6に記載の温度調整回路の制御方法であって、
    前記通電停止工程において、前記循環状態に切替った後、且つ、前記ポンプの回転数が安定した際に、前記電磁弁の通電を停止する、温度調整回路の制御方法。
  8. 請求項6に記載の温度調整回路の制御方法であって、
    前記通電停止工程において、前記循環状態に切替わった後、且つ、前記切替部を前記循環状態に切替えて所定時間が経過した後に、前記電磁弁の通電を停止する、温度調整回路の制御方法。
JP2018240230A 2018-12-21 2018-12-21 温度調整回路及びその制御方法 Pending JP2020102377A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018240230A JP2020102377A (ja) 2018-12-21 2018-12-21 温度調整回路及びその制御方法
CN201911335395.XA CN111347932B (zh) 2018-12-21 2019-12-20 温度调整回路及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018240230A JP2020102377A (ja) 2018-12-21 2018-12-21 温度調整回路及びその制御方法

Publications (1)

Publication Number Publication Date
JP2020102377A true JP2020102377A (ja) 2020-07-02

Family

ID=71139876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018240230A Pending JP2020102377A (ja) 2018-12-21 2018-12-21 温度調整回路及びその制御方法

Country Status (2)

Country Link
JP (1) JP2020102377A (ja)
CN (1) CN111347932B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927792A (zh) * 2022-05-12 2022-08-19 广汽埃安新能源汽车有限公司 冷却装置、温差调节方法、动力电池模组及电动车

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2592972Y (zh) * 2002-10-11 2003-12-17 张曙东 常开电磁阀
CN200949680Y (zh) * 2006-09-15 2007-09-19 陆宝宏 脉冲电磁阀
EP2599651A1 (de) * 2011-12-01 2013-06-05 Magna E-Car Systems GmbH & Co OG Heiz-/Kühlsystem für eine Batterie eines Kraftfahrzeugs sowie Betriebsverfahren hierfür
JP5880863B2 (ja) * 2012-02-02 2016-03-09 株式会社デンソー 車両用熱管理システム
JP5912689B2 (ja) * 2012-03-12 2016-04-27 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド電気自動車の冷却装置
JP6124834B2 (ja) * 2014-04-09 2017-05-10 株式会社アドヴィックス 車両制御装置
JP6090301B2 (ja) * 2014-12-17 2017-03-08 トヨタ自動車株式会社 エンジン冷却システムおよびその運転方法
CN108730601B (zh) * 2018-07-26 2024-06-14 华帝股份有限公司 一种低功耗电磁阀

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927792A (zh) * 2022-05-12 2022-08-19 广汽埃安新能源汽车有限公司 冷却装置、温差调节方法、动力电池模组及电动车
CN114927792B (zh) * 2022-05-12 2024-04-02 广汽埃安新能源汽车有限公司 冷却装置、温差调节方法、动力电池模组及电动车

Also Published As

Publication number Publication date
CN111347932A (zh) 2020-06-30
CN111347932B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6886961B2 (ja) 温度調整回路及びその制御方法
US9096207B2 (en) Hybrid vehicle powertrain cooling system
US11247577B2 (en) Vehicle
JP6997883B2 (ja) 温度調整回路
JP6886960B2 (ja) 温度調整回路及びその制御方法
JP6997884B2 (ja) 車両
WO2019022023A1 (ja) 冷却水回路
JP2000274240A (ja) ハイブリッド車両用冷却装置
JP2021017230A (ja) ペルチェ式セルを備えた電気駆動車両用熱調節システム
JP2020102377A (ja) 温度調整回路及びその制御方法
JP7042362B2 (ja) 温度調整回路
JP7038231B2 (ja) 車両
KR20220049648A (ko) 구동모터 과냉각 시스템 및 이의 제어방법
JP2020102379A (ja) 温度調整回路及びその制御方法
KR20190092801A (ko) 전기자동차용 캐빈 히터 예열시스템
WO2022107383A1 (ja) 温調装置
WO2022107381A1 (ja) 温調装置
WO2022107428A1 (ja) 温調装置
JP2021035215A (ja) 温度調整回路
JP2013148245A (ja) 冷却システム