WO2020203152A1 - 車両用サーモサイフォン式冷却装置 - Google Patents

車両用サーモサイフォン式冷却装置 Download PDF

Info

Publication number
WO2020203152A1
WO2020203152A1 PCT/JP2020/010926 JP2020010926W WO2020203152A1 WO 2020203152 A1 WO2020203152 A1 WO 2020203152A1 JP 2020010926 W JP2020010926 W JP 2020010926W WO 2020203152 A1 WO2020203152 A1 WO 2020203152A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
amount
storage unit
vehicle
Prior art date
Application number
PCT/JP2020/010926
Other languages
English (en)
French (fr)
Inventor
功嗣 三浦
康光 大見
義則 毅
毅 古賀
鈴木 雄介
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2020203152A1 publication Critical patent/WO2020203152A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • thermosiphon type cooling device for cooling an in-vehicle device.
  • Patent Document 1 describes a thermosiphon type cooling device that naturally circulates a refrigerant.
  • This conventional technology includes a heat exchange unit that condenses the gas refrigerant into a liquid refrigerant, and an evaporator that evaporates the liquid refrigerant into a gas refrigerant.
  • the liquid refrigerant in the heat exchange section flows down to the evaporator, and the gas refrigerant in the evaporator rises to the heat exchange section.
  • the liquid refrigerant absorbs heat in the evaporator to exert a cooling effect.
  • thermosiphon type cooling device such as the above conventional technology is mounted on a vehicle and applied to cool an in-vehicle device, it may occur that the cooling performance cannot be sufficiently exhibited due to the inclination of the vehicle.
  • the liquid refrigerant when the vehicle is tilted, the liquid refrigerant is biased in the evaporator and there is a part where the liquid refrigerant does not exist, so that there is a part where the liquid refrigerant cannot absorb heat. Therefore, there are some parts where the in-vehicle device cannot be cooled.
  • an object of the present disclosure is to provide a thermosiphon type cooling device for vehicles that can secure cooling performance as much as possible even if the amount of inclination changes.
  • the vehicle thermosiphon type cooling device includes an evaporation unit, a condenser, an inclination amount detection unit, a storage unit, and a storage amount adjustment unit.
  • the evaporation unit absorbs heat from the in-vehicle device to evaporate the refrigerant.
  • the condenser condenses the refrigerant evaporated in the evaporation section.
  • the tilt amount detection unit detects the tilt amount of the vehicle.
  • the storage unit stores the refrigerant circulating between the evaporation unit and the condenser in a liquid phase state.
  • the storage amount adjusting unit adjusts the amount of refrigerant stored in the storage unit according to the amount of inclination detected by the inclination amount detecting unit.
  • the cooling performance can be secured as much as possible even if the amount of inclination changes.
  • thermosiphon type cooling system for a vehicle in 1st Embodiment. It is a graph which shows the correlation between a battery temperature and a battery input / output. It is an overall block diagram which shows the operating state in the horizontal state of the thermosiphon type cooling system for vehicles in 1st Embodiment. It is a flowchart which shows the control process which the control device of the thermosiphon type cooling device for a vehicle executes in 1st Embodiment.
  • thermosiphon type cooling device for a vehicle in 1st Embodiment.
  • 6 is a control characteristic diagram used for calculating the amount of liquid refrigerant in the liquid storage unit in the control process executed by the control device of the thermosiphon type cooling device for vehicles in the second embodiment.
  • It is a flowchart which shows the control process which the control device of the thermosiphon type cooling device for a vehicle executes in 3rd Embodiment.
  • thermosiphon type cooling system for vehicles in 4th Embodiment. It is an overall block diagram of the thermosiphon type cooling system for vehicles in 5th Embodiment. It is an overall block diagram of the thermosiphon type cooling system for vehicles in 6th Embodiment. It is an overall block diagram which shows the operating state in the horizontal state of the thermosiphon type cooling system for vehicles in 7th Embodiment. It is an overall block diagram which shows the operating state in the inclined state of the thermosiphon type cooling system for vehicles in 7th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for a vehicle in the modification of 7th Embodiment.
  • thermosiphon type cooling system for vehicles in 8th Embodiment. It is an overall block diagram which shows the operating state in the tilted state of the thermosiphon type cooling system for vehicles in 8th Embodiment. It is an overall block diagram which shows the operating state in the horizontal state of the thermosiphon type cooling system for vehicles in 9th Embodiment. It is an overall block diagram which shows the operating state in the inclined state of the thermosiphon type cooling device for a vehicle in 9th Embodiment. It is an overall block diagram which shows the operating state in the horizontal state of the thermosiphon type cooling system for vehicles in tenth embodiment.
  • thermosiphon type cooling system for vehicles in tenth embodiment. It is an overall block diagram which shows the operating state in the tilted state of the thermosiphon type cooling system for vehicles in tenth embodiment. It is an overall block diagram which shows the operating state in the tilted state of the thermosiphon type cooling system for vehicles in eleventh embodiment. It is an overall block diagram which shows the operating state in the horizontal state of the thermosiphon type cooling system for vehicles in eleventh embodiment. It is an overall block diagram which shows the operating state in the tilted horizontal state of the thermosiphon type cooling device for a vehicle in the modification of 11th Embodiment.
  • thermosiphon type cooling device for a vehicle in the modification of 11th Embodiment. It is an overall block diagram which shows the operating state in the horizontal state of the thermosiphon type cooling system for vehicles in 12th Embodiment. It is an overall block diagram which shows the operating state in the inclined state of the thermosiphon type cooling system for vehicles in 12th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for a vehicle in 13th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for a vehicle in 14th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for a vehicle in 15th Embodiment.
  • thermosiphon type cooling system for a vehicle in 16th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for vehicles in 1st Example of 17th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for vehicles in 2nd Example of 17th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for vehicle in 3rd Example of 17th Embodiment. It is an overall block diagram which shows the thermosiphon type cooling system for vehicle in 4th Example of 17th Embodiment.
  • the vehicle thermosiphon type cooling device 10 of the present embodiment is a vehicle battery cooling device that cools a battery mounted on a vehicle.
  • the arrows of up, down, front, back, left, and right indicate the up, down, front, back, left, and right directions of the vehicle.
  • the assembled battery 11 is a power storage device such as a secondary battery that stores electric energy.
  • the assembled battery 11 supplies electricity to the traveling motor via an inverter or the like.
  • the assembled battery 11 is a storage battery that stores regenerative power.
  • the assembled battery 11 self-heats when it is charged or discharged, such as during running.
  • the assembled battery 11 is a cooling object of the thermosiphon type cooling device 10.
  • the assembled battery 11 has a plurality of battery cells 111.
  • a plurality of sets of two battery cells 111 connected in parallel to each other are connected in series with each other.
  • the amount of discharge of the battery cell 111 increases and the amount of heat generated increases, so it is necessary to cool the battery cell 111 with a high cooling capacity.
  • the temperature of the battery cell 111 rises not only during driving but also during parking in the summer. If the battery cell 111 is left in a high temperature state, its life is significantly shortened. Therefore, it is necessary to maintain the battery temperature at a low temperature by cooling the battery cell 111 even while it is left in the parking lot.
  • thermosiphon type cooling device 10 includes a refrigerant circuit 12.
  • the refrigerant circuit 12 has a plurality of evaporators 13, a condenser 14, a gas pipe 15, and a liquid pipe 16.
  • the refrigerant circuit 12 is filled with a refrigerant.
  • the refrigerant circuit 12 is a heat medium circuit in which a refrigerant as a working fluid circulates.
  • a fluorocarbon-based refrigerant such as HFO-1234yf or HFC-134a is used as the refrigerant.
  • the refrigerant is sealed in the refrigerant circuit 12 at a predetermined pressure. At room temperature, the refrigerant is mostly in a liquid state and partly in a gas state in the refrigerant circuit 12.
  • the refrigerant circuit 12 is a heat pipe that transfers heat by evaporating and condensing the refrigerant.
  • the refrigerant circuit 12 is a loop-type thermosiphon in which a flow path through which a gaseous refrigerant flows and a flow path through which a liquid refrigerant flows are separated.
  • the plurality of evaporators 13 are evaporation units that absorb heat from the assembled battery 11 to evaporate the refrigerant.
  • the evaporator 13 is a heat exchanger that exchanges heat with the refrigerant.
  • the evaporator 13 cools a plurality of battery cells 111 by evaporating the refrigerant.
  • the evaporator 13 is capable of conducting heat with the battery cell 111, and causes the refrigerant to absorb the heat of the battery cell 111 to cool the battery cell 111 and evaporate the refrigerant.
  • the evaporator 13 has a thin rectangular outer shape extending in the vertical direction of the vehicle.
  • the evaporator 13 has a heat exchange section 131, a liquid passage section 132, and a gas passage section 133.
  • the heat exchange unit 131, the liquid passage unit 132, and the gas passage unit 133 are arranged in the order of the gas passage unit 133, the heat exchange unit 131, and the liquid passage unit 132 from the upper side to the lower side.
  • the outer surface of the heat exchange unit 131 is flat.
  • the battery cell 111 has a rectangular parallelepiped outer shape. One surface of the battery cell 111 is in contact with the outer surface of the heat exchange unit 131 so as to be heat conductive via the electrically insulated heat conductive sheet 17. Each battery cell 111 is arranged so that its terminal 112 faces the side opposite to the heat exchange unit 131.
  • the electrically insulated heat conductive sheet 17 is a thin film-like member having both electrical insulation and thermal conductivity.
  • a plate-shaped heat conductive member may be interposed between the heat exchange unit 131 and the battery cell 111.
  • the heat exchange unit 131 makes the liquid refrigerant flowing through the internal refrigerant flow path absorb the heat of the battery cell 111 to boil and evaporate the liquid refrigerant.
  • a large number of refrigerant flow paths (not shown) are formed inside the heat exchange unit 131.
  • a large number of refrigerant flow paths of the heat exchange unit 131 extend in parallel with each other in the vertical direction.
  • a liquid pipe 16 is connected to the liquid passage portion 132.
  • the liquid passage portion 132 distributes the liquid refrigerant flowing through the liquid pipe 16 to a large number of refrigerant passages of the heat exchange portion 131.
  • a gas pipe 15 is connected to the gas passage portion 133.
  • the gas passage portion 133 collects the gas refrigerant that has boiled and evaporated in a large number of refrigerant passages of the heat exchange portion 131 and causes the gas refrigerant to flow out to the gas pipe 15.
  • the condenser 14 is a heat exchanger that cools and condenses the refrigerant evaporated by the evaporator 13 by exchanging heat with the cooling water of the cooling water circuit 20.
  • the condenser 14 is arranged in the engine room of the vehicle.
  • the condenser 14 is arranged above the vehicle above the evaporator 13.
  • Cooling water is a fluid as a heat medium.
  • the cooling water is, for example, a liquid containing at least ethylene glycol or dimethylpolysiloxane, an antifreeze liquid, a coolant, or the like.
  • the gas pipe 15 and the liquid pipe 16 are refrigerant pipes that connect the evaporator 13 and the condenser 14.
  • the gas pipe 15 is a refrigerant pipe through which the gas refrigerant evaporated by the evaporator 13 flows.
  • the gas pipe 15 forms a gas refrigerant flow path that guides the gas refrigerant to the condenser 14.
  • the liquid pipe 16 is a refrigerant pipe through which the liquid refrigerant condensed by the condenser 14 flows.
  • the liquid pipe 16 forms a liquid refrigerant flow path that guides the liquid refrigerant to the evaporator 13.
  • thermosiphon type cooling device 10 is mounted on the vehicle so that the condenser 14 is located on the front side of the vehicle and the evaporator 13 is located on the rear side of the vehicle.
  • the gas pipe 15 and the liquid pipe 16 extend in the front-rear direction of the vehicle.
  • the plurality of evaporators 13 are arranged side by side in the front-rear direction of the vehicle.
  • the plurality of evaporators 13 are arranged at the same height as each other with respect to the vehicle.
  • the plurality of evaporators 13 are arranged so as to branch off from a set of gas pipes 15 and liquid pipes 16 extending in the front-rear direction of the vehicle.
  • three evaporators 13 are arranged.
  • the three evaporators 13 are arranged on the left side of the vehicle with respect to the gas pipe 15 and the liquid pipe 16.
  • the relative positions of the plurality of evaporators 13 are fixed to each other.
  • the number of evaporators 13 is not limited to three, and may be one or more than three. There may be.
  • the thermosiphon type cooling device 10 includes a liquid storage unit 40, a heater 41, a liquid communication pipe 42, a gas communication pipe 43, a liquid storage valve 44, and a check valve 45.
  • the liquid storage unit 40 is a storage unit that stores the refrigerant of the thermosiphon type cooling device 10 in a liquid phase state.
  • the liquid storage unit 40 is arranged at substantially the same height as the evaporator 13 with respect to the vehicle.
  • the liquid storage unit 40 has a refrigerant inlet 401 and a refrigerant outlet 402.
  • the refrigerant inlet 401 and the refrigerant outlet 402 are refrigerant distribution ports through which the refrigerant flows.
  • the heater 41 heats and evaporates the liquid refrigerant in the liquid storage unit 40.
  • the heater 41 is an electric heater that generates heat when electric power is supplied.
  • the liquid communication pipe 42 connects the refrigerant inlet 401 of the liquid storage unit 40 and the liquid pipe 16.
  • the liquid communication pipe 42 forms a refrigerant flow path that allows the liquid refrigerant of the refrigerant circuit 12 to flow into the liquid storage unit 40.
  • the gas communication pipe 43 connects the gas refrigerant inlet 401 of the liquid storage unit 40 and the gas pipe 15.
  • the gas communication pipe 43 forms a refrigerant flow path for allowing the gas refrigerant of the liquid storage unit 40 to flow into the refrigerant circuit 12.
  • the liquid storage valve 44 is a solenoid valve that opens and closes the liquid communication pipe 42.
  • the check valve 45 allows the flow of the refrigerant from the liquid storage unit 40 side to the gas pipe 15 side in the gas communication pipe 43, and prohibits the flow of the refrigerant from the gas pipe 15 side to the liquid storage unit 40 side.
  • the liquid storage unit 40 is arranged in the vicinity of the evaporator 13 farthest from the condenser 14 among the plurality of evaporators 13.
  • the cooling water circuit 20 has a cooling water pump 21 and a radiator 22.
  • the cooling water pump 21 is a pump that sucks in and discharges the cooling water of the cooling water circuit 20.
  • the radiator 22 is a heat exchanger that cools the cooling water by exchanging heat between the cooling water circulating in the cooling water circuit 20 and the outside air.
  • the outside air blower 23 is a blower that blows outside air to the radiator 22.
  • the operation of the heater 41, the liquid storage valve 44, the cooling water pump 21, and the outside air blower 23 is controlled by the control device 30.
  • the control device 30 is composed of a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 30 is a control unit that performs various calculations and processes based on the control program stored in the ROM and controls the operation of the cooling water pump 21 and the outside air blower 23 connected to the output side thereof.
  • the control device 30, the heater 41, and the liquid storage valve 44 are storage amount adjusting units that adjust the storage amount of the refrigerant in the liquid storage unit 40.
  • a battery cell temperature sensor 31, a liquid level sensor 32, a gyro sensor 33, etc. are connected to the input side of the control device 30. Then, the detection signals of these sensor groups are input to the control device 30.
  • the battery cell temperature sensor 31 is a temperature detection unit that detects the temperature of at least two or more battery cells 111 among the plurality of battery cells 111.
  • the liquid level sensor 32 detects the height of the liquid level of the liquid refrigerant in the liquid storage unit 40.
  • the gyro sensor 33 detects the tilt angle of the vehicle (in other words, the tilt angle of the thermosiphon type cooling device 10).
  • the gyro sensor 33 is a tilt amount detection unit that detects the tilt amount of the vehicle.
  • FIG. 3 shows a state in which the vehicle is in a horizontal state, in other words, the thermosiphon type cooling device 10 is in a horizontal state, and the liquid storage valve 44 is open.
  • a portion of the thermosiphon type cooling device 10 in which the liquid refrigerant exists is illustrated by point hatching.
  • the amount of the liquid refrigerant filled in the thermosiphon type cooling device 10 is set so that the liquid level of the liquid refrigerant is located at a height substantially intermediate between the evaporator 13 and the liquid storage unit 40 in the state of FIG.
  • the refrigerant circuit 12 of the thermosiphon type cooling device 10 has a thermosiphon.
  • the refrigerant circulates due to the phenomenon (in other words, the phase change of the refrigerant).
  • the liquid refrigerant absorbs heat from the assembled battery 11 and evaporates to become a gas refrigerant.
  • the gas refrigerant evaporated in the evaporator 13 flows into the gas pipe 15, rises in the gas pipe 15, and flows into the condenser 14.
  • the gas refrigerant flowing from the gas pipe 15 dissipates heat to the cooling water of the cooling water circuit 20 and condenses to become a liquid refrigerant.
  • the liquid refrigerant condensed in the condenser 14 flows down the liquid pipe 16 due to gravity and flows into the evaporator 13.
  • the assembled battery 11 can be cooled by the evaporator 13. Since the refrigerant can be circulated in the refrigerant circuit 12 without using power, power saving can be achieved and the assembled battery 11 can be cooled even when the battery is left parked.
  • the control device 30 executes the control process shown in the flowchart of FIG.
  • step S100 the gyro sensor 33 determines whether or not the absolute value
  • the positive / negative of the inclination angle ⁇ may be positive on the side where the front of the vehicle faces upward and negative on the side where the front of the vehicle faces downward, or vice versa.
  • the first threshold value ⁇ is a fixed value stored in advance in the control device 30.
  • step S110 When it is determined that the absolute value
  • step S120 it is determined whether or not the evaporation of the liquid refrigerant in the liquid storage unit 40 is completed. Specifically, it is determined based on the detection signal of the liquid level sensor 32 whether or not the amount of the liquid refrigerant in the liquid storage unit 40 has decreased to the lower limit amount.
  • the lower limit amount is a fixed value stored in advance in the control device 30.
  • step S120 is repeated.
  • the process proceeds to step S130 to stop the heater 41. As a result, the evaporation of the liquid refrigerant in the liquid storage unit 40 is stopped.
  • step S100 If it is determined in step S100 that the absolute value
  • the second threshold value ⁇ is a fixed value stored in advance in the control device 30.
  • the second threshold value ⁇ is a value smaller than the first threshold value ⁇ .
  • step S150 When it is determined that the absolute value
  • step S160 it is determined whether or not the storage of the liquid refrigerant in the liquid storage unit 40 (in other words, the liquid storage) is completed. Specifically, it is determined based on the detection signal of the liquid level sensor 32 whether or not the amount of the liquid refrigerant in the liquid storage unit 40 has increased to the upper limit amount.
  • the upper limit amount is a fixed value stored in advance in the control device 30.
  • step S160 is repeated.
  • the process proceeds to step S170 and the liquid storage valve 44 is closed. As a result, the inflow of the liquid refrigerant from the refrigerant circuit 12 into the liquid storage unit 40 is stopped.
  • the refrigerant in the refrigerant circuit 12 is increased when tilted, and the refrigerant in the refrigerant circuit 12 is decreased when horizontal. Therefore, it is possible to suppress the shortage of the liquid refrigerant in the evaporator 13 at the time of inclination, and it is possible to prevent the liquid refrigerant in the evaporator 13 from becoming excessive and blowing up to the gas pipe 15 at the time of horizontalization. Therefore, the cooling performance can be ensured as much as possible even if the inclination angle changes.
  • control device 30, the heater 41, and the liquid storage valve 44 adjust the amount of refrigerant stored in the liquid storage unit 40 according to the amount of inclination detected by the gyro sensor 33. According to this, since the amount of the liquid refrigerant in the evaporator 13 can be adjusted according to the amount of inclination of the vehicle, the cooling performance can be ensured as much as possible even if the amount of inclination changes.
  • the control device 30 and the heater 41 reduce the amount of refrigerant stored in the liquid storage unit 40 as the amount of inclination detected by the gyro sensor 33 increases. According to this, since the amount of the liquid refrigerant in the evaporator 13 increases when the vehicle is tilted, it is possible to suppress the occurrence of a portion in the evaporator 13 in which the liquid refrigerant does not exist when the vehicle is tilted. Therefore, the cooling performance can be ensured as much as possible when the vehicle is tilted.
  • control device 30 and the heater 41 reduce the amount of refrigerant stored in the liquid storage unit 40 by performing heat transfer accompanied by a phase change of the refrigerant in the liquid storage unit 40 from the liquid phase to the gas phase. Let me. As a result, the amount of liquid refrigerant stored in the liquid storage unit 40 can be reliably reduced when the vehicle is tilted.
  • control device 30 and the liquid storage valve 44 increase the amount of refrigerant stored in the liquid storage unit 40 by adjusting the opening area of the refrigerant inlet 401 of the liquid storage unit 40. As a result, the amount of refrigerant stored in the liquid storage unit 40 can be reliably increased when the inclination of the vehicle is small.
  • the amount of the liquid refrigerant can be adjusted according to the amount of inclination of the vehicle for the plurality of evaporators 13 whose relative positions are fixed to each other, so that a plurality of evaporators 13 can be adjusted even if the amount of inclination changes.
  • the cooling performance of the evaporator 13 can be ensured as much as possible.
  • the amount of the liquid refrigerant in the liquid storage unit 40 is changed to the lower limit amount or the upper limit amount according to the absolute value
  • the amount of the liquid refrigerant in the liquid storage unit 40 is continuously changed according to the absolute value
  • the control device 30 determines the amount of liquid stored using the control map of FIG. 6 based on the absolute value
  • the control device 30 controls the heater 41 and the liquid storage valve 44 so that the amount of the liquid refrigerant in the liquid storage unit 40 becomes the determined liquid storage amount.
  • the heater 41 is operated when the amount of the liquid refrigerant in the liquid storage unit 40 is reduced, and the liquid storage valve 44 is opened when the amount of the liquid refrigerant in the liquid storage unit 40 is increased.
  • the cooling performance can be secured as much as possible even if the amount of inclination changes, as in the above embodiment.
  • the amount of the liquid refrigerant in the liquid storage unit 40 is changed according to the absolute value
  • the control device 30 executes the control process shown in the flowchart of FIG. 7.
  • step S200 it is determined whether or not the absolute value
  • step S210 When it is determined that the absolute value
  • step S220 it is determined whether or not the evaporation of the liquid refrigerant in the liquid storage unit 40 is completed. Specifically, it is determined based on the detection signal of the liquid level sensor 32 whether or not the amount of the liquid refrigerant in the liquid storage unit 40 has decreased to the lower limit amount.
  • the lower limit amount is a fixed value stored in advance in the control device 30.
  • step S220 is repeated.
  • the process proceeds to step S230 to stop the heater 41. As a result, the evaporation of the liquid refrigerant in the liquid storage unit 40 is stopped.
  • step S200 If it is determined in step S200 that the absolute value
  • the second threshold value ⁇ is a fixed value stored in advance in the control device 30.
  • the second threshold value ⁇ is a value smaller than the first threshold value ⁇ .
  • step S250 When it is determined that the absolute value
  • the target cooling amount of the assembled battery 11 is estimated from the current value of the assembled battery 11, the temperature of the assembled battery 11, the temperature of the refrigerant flowing into the condenser 14, the speed of the vehicle, the tilt angle of the vehicle, the charging power of the assembled battery 11, and the like. It is preferable to be done.
  • the predetermined cooling amount Q is a fixed value stored in advance in the control device 30.
  • step S260 If it is determined that the target cooling amount of the assembled battery 11 exceeds the predetermined cooling amount Q, the process proceeds to step S260 and the liquid storage valve 44 is opened. As a result, a part of the liquid refrigerant circulating in the refrigerant circuit 12 flows into the liquid storage unit 40 through the liquid communication pipe 42, so that the liquid level of the liquid refrigerant in the liquid storage unit 40 rises. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 is reduced.
  • the liquid refrigerant in the evaporator 13 evaporates violently and the refrigerant is likely to be blown up. Therefore, the amount of the liquid refrigerant in the evaporator 13 is reduced to reduce the refrigerant. Suppresses the blow-up.
  • step S260 it is determined whether or not the storage of the liquid refrigerant in the liquid storage unit 40 (in other words, the liquid storage) is completed. Specifically, it is determined based on the detection signal of the liquid level sensor 32 whether or not the amount of the liquid refrigerant in the liquid storage unit 40 has increased to the upper limit amount.
  • the upper limit amount is a fixed value stored in advance in the control device 30.
  • step S260 is repeated.
  • the process proceeds to step S270 and the liquid storage valve 44 is closed. As a result, the inflow of the liquid refrigerant from the refrigerant circuit 12 into the liquid storage unit 40 is stopped.
  • the liquid storage unit 40 Increase the amount of refrigerant stored in.
  • the check valve 45 is arranged in the gas communication pipe 43, but in the present embodiment, the on-off valve 46 is arranged in the gas communication pipe 43 as shown in FIG.
  • the on-off valve 46 is a solenoid valve that opens and closes the gas communication pipe 43. The operation of the on-off valve 46 is controlled by the control device 30.
  • the on-off valve 46 is a storage amount adjusting unit.
  • the control device 30 When the control device 30 operates the heater 41 with the liquid storage valve 44 closed, the liquid refrigerant in the liquid storage unit 40 is heated and evaporated to become a gas refrigerant. At this time, by opening the on-off valve 46, the gas refrigerant in the liquid storage unit 40 flows into the gas pipe 15 through the gas communication pipe 43 and circulates in the refrigerant circuit 12, so that the liquid storage unit 40 is as shown in FIG. The liquid level of the liquid refrigerant in the part 40 is lowered. In FIGS. 8 and 9, the portion of the thermosiphon type cooling device 10 in which the liquid refrigerant is present is illustrated by point hatching. As the liquid level of the liquid refrigerant in the liquid storage unit 40 decreases, the amount of the refrigerant circulating in the refrigerant circuit 12 increases.
  • the control device 30 opens the liquid storage valve 44, a part of the liquid refrigerant circulating in the refrigerant circuit 12 flows into the liquid storage unit 40 through the liquid communication pipe 42. Therefore, as shown in FIG. 8, the liquid storage unit 40 The liquid level of the liquid refrigerant inside rises. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 is reduced.
  • the liquid storage unit 40 is arranged in the vicinity of the evaporator 13 farthest from the condenser 14 among the plurality of evaporators 13.
  • the liquid storage unit 40 is arranged in the vicinity of the evaporator 13 closest to the condenser 14 among the plurality of evaporators 13.
  • control device 30 controls the operation of the heater 41 and the liquid storage valve 44 to increase or decrease the liquid refrigerant in the liquid storage unit 40, thereby increasing or decreasing the liquid refrigerant in the liquid storage unit 40.
  • the amount of refrigerant circulating in the water can be increased or decreased.
  • the gas communication pipe 43 is connected to the gas pipe 15, but in the present embodiment, the gas communication pipe 43 is connected to the upper part of the liquid pipe 16 as shown in FIG.
  • control device 30 controls the operation of the heater 41 and the liquid storage valve 44 to increase or decrease the liquid refrigerant in the liquid storage unit 40, thereby increasing or decreasing the liquid refrigerant in the liquid storage unit 40.
  • the amount of refrigerant circulating in the water can be increased or decreased.
  • the liquid storage unit 40 is connected to the refrigerant circuit 12 by the liquid communication pipe 42 and the gas communication pipe 43, but in the present embodiment, as shown in FIG. 12, the liquid storage unit 40 is the first. It is connected to the refrigerant circuit 12 by a one-liquid communication pipe 47 and a second liquid communication pipe 48.
  • the liquid storage unit 40 is arranged in the vicinity of the evaporator 13 closest to the condenser 14 among the plurality of evaporators 13.
  • the first liquid communication pipe 47 connects the refrigerant inlet 401 of the liquid storage unit 40 and the upper part of the liquid pipe 16.
  • the second liquid communication pipe 48 connects the refrigerant outlet 402 of the liquid storage unit 40 and the lower part of the liquid pipe 16.
  • a liquid storage valve 49 is arranged in the first liquid communication pipe 47.
  • the liquid storage valve 49 is a solenoid valve that opens and closes the first liquid communication pipe 47.
  • the liquid storage valve 49 is a storage amount adjusting unit.
  • a check valve 50 is arranged in the second liquid communication pipe 48.
  • the check valve 50 allows the flow of the refrigerant from the refrigerant outlet side of the liquid storage unit 40 to the liquid pipe 16 side in the second liquid communication pipe 48, and from the liquid pipe 16 side to the refrigerant outlet side of the liquid storage unit 40. Prohibit the flow of refrigerant in.
  • the control device 30 opens the liquid storage valve 49, the liquid refrigerant in the liquid pipe 16 flows into the liquid storage unit 40 through the first liquid communication pipe 47, and the liquid refrigerant in the liquid pipe 16 flows. Liquid refrigerant accumulates to almost the same height as the surface.
  • the portion of the thermosiphon type cooling device 10 in which the liquid refrigerant exists is illustrated by point hatching.
  • the height of the liquid refrigerant in the liquid pipe 16 is higher than the height of the liquid refrigerant in the evaporator 13 by the amount of pressure loss. Therefore, the height of the liquid storage unit 40 is higher than the height of the liquid level of the liquid refrigerant in the evaporator 13.
  • the liquid storage unit 40 is a tank-shaped member. As in the modified example shown in FIG. 14, the liquid storage unit 40 may be a pipe-shaped member thicker than the liquid pipe 16.
  • the liquid storage unit 40 has a refrigerant inlet 401 and a refrigerant outlet 402, but in the present embodiment, as shown in FIG. 15, the liquid storage unit 40 has a refrigerant inlet / outlet 403. have.
  • the liquid storage unit 40 is arranged in the vicinity of the evaporator 13 closest to the condenser 14 among the plurality of evaporators 13.
  • the refrigerant inlet / outlet 403 of the liquid storage unit 40 is provided above the liquid storage unit 40.
  • the refrigerant inlet / outlet 403 of the liquid storage unit 40 is connected to the gas pipe 15 by a communication pipe 51.
  • An on-off valve 52 is arranged in the communication pipe 51.
  • the on-off valve 52 is an electromagnetic valve that opens and closes the communication pipe 51.
  • the on-off valve 52 is a storage amount adjusting unit. The operation of the on-off valve 52 is controlled by the control device 30.
  • the control device 30 When the control device 30 operates the heater 41 to open the on-off valve 52, the liquid refrigerant in the liquid storage unit 40 is heated and evaporated, flows into the gas pipe 15 through the communication pipe 51, and circulates in the refrigerant circuit 12. Therefore, as shown in FIG. 16, the liquid level of the liquid refrigerant in the liquid storage unit 40 is lowered.
  • the portion of the thermosiphon type cooling device 10 in which the liquid refrigerant exists is shown by point hatching. As the liquid level of the liquid refrigerant in the liquid storage unit 40 decreases, the amount of the refrigerant circulating in the refrigerant circuit 12 increases.
  • the control device 30 opens the on-off valve 52 without operating the heater 41, so that the liquid refrigerant blown up from the evaporator 13 to the gas pipe 15 passes through the communication pipe 51. It flows into the liquid storage unit 40. Therefore, as shown in FIG. 15, the liquid level of the liquid refrigerant in the liquid storage unit 40 rises. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 is reduced.
  • the liquid refrigerant can be efficiently stored in the liquid storage unit 40. This is because the liquid refrigerant separated by the gas-liquid separator can flow into the liquid storage unit 40, and the gas refrigerant separated by the gas-liquid separator can flow into the condenser 14.
  • the liquid storage unit 40 has a refrigerant inlet / outlet 403, but in the present embodiment, the liquid storage unit 40 has a refrigerant inlet / outlet 403 and a refrigerant outlet 404, as shown in FIG. There is.
  • the refrigerant outlet 402 of the liquid storage unit 40 is provided at the lower part of the liquid storage unit 40.
  • the refrigerant outlet 402 of the liquid storage unit 40 is connected to the liquid pipe 16 by a liquid communication pipe 53.
  • An outflow valve 54 is arranged in the liquid communication pipe 42.
  • the outflow valve 54 is a solenoid valve that opens and closes the liquid communication pipe 42.
  • the outflow valve 54 is a storage amount adjusting unit. The operation of the outflow valve 54 is controlled by the control device 30.
  • the control device 30 When the control device 30 operates the heater 41 to open the on-off valve 52, the liquid refrigerant in the liquid storage unit 40 is heated and evaporated, and flows into the gas pipe 15 through the communication pipe 51. As shown in FIG. In addition, the liquid level of the liquid refrigerant in the liquid storage unit 40 drops. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 increases. In FIGS. 17 and 18, the portion of the thermosiphon type cooling device 10 in which the liquid refrigerant is present is illustrated by point hatching. As the liquid level of the liquid refrigerant in the liquid storage unit 40 decreases, the amount of the refrigerant circulating in the refrigerant circuit 12 increases.
  • the control device 30 opens the outflow valve 54, the liquid refrigerant in the liquid storage unit 40 flows into the liquid pipe 16 through the liquid communication pipe 42. Therefore, as shown in FIG. 18, the liquid refrigerant in the liquid storage unit 40 The liquid level drops. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 increases.
  • the control device 30 opens the on-off valve 52 without operating the heater 41, so that the liquid refrigerant blown up from the evaporator 13 to the gas pipe 15 passes through the communication pipe 51. It flows into the liquid storage unit 40. Therefore, as shown in FIG. 17, the liquid level of the liquid refrigerant in the liquid storage unit 40 rises. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 is reduced.
  • the liquid refrigerant can be efficiently stored in the liquid storage unit 40. This is because the liquid refrigerant separated by the gas-liquid separator can flow into the liquid storage unit 40, and the gas refrigerant separated by the gas-liquid separator can flow into the condenser 14.
  • the liquid storage unit 40 is a device independent of the refrigerant circuit 12, but in the present embodiment, as shown in FIGS. 19 to 20, the liquid storage unit 40 is integrated with the condenser 14. ing.
  • the liquid storage unit 40 has a refrigerant inlet 401, a gas refrigerant outlet 405, and a liquid refrigerant outlet 406.
  • the refrigerant inlet 401 and the gas refrigerant outlet 402 are provided above the liquid storage unit 40.
  • the liquid refrigerant outlet 402 is provided at the lower part of the liquid storage unit 40.
  • the refrigerant inlet 401 is connected to the gas pipe 15.
  • the gas refrigerant outlet 402 is connected to the gas refrigerant inlet 141 of the condenser 14.
  • the gas refrigerant inlet 141 of the condenser 14 is provided above the condenser 14.
  • the liquid refrigerant outlet 402 is connected to the liquid refrigerant inlet 142 of the condenser 14.
  • the liquid refrigerant outlet 143 of the condenser 14 is provided at the lower part of the condenser 14.
  • An outflow valve 55 is arranged at the liquid refrigerant outlet 402 of the liquid storage unit 40.
  • the outflow valve 55 is a solenoid valve that opens and closes the liquid refrigerant outlet 402 of the liquid storage unit 40.
  • the outflow valve 55 is a storage amount adjusting unit. The operation of the outflow valve 55 is controlled by the control device 30.
  • the liquid refrigerant in the liquid storage unit 40 flows into the condenser 14 from the liquid refrigerant inlet 401 through the liquid refrigerant outlet 402. Therefore, as shown in FIG. 21, the liquid storage unit 40 The liquid level of the liquid refrigerant inside is lowered.
  • the portion of the thermosiphon type cooling device 10 in which the liquid refrigerant is present is illustrated by point hatching. As the liquid level of the liquid refrigerant in the liquid storage unit 40 decreases, the amount of the refrigerant circulating in the refrigerant circuit 12 increases.
  • the liquid refrigerant blown up from the evaporator 13 to the gas pipe 15 flows into the liquid storage unit 40 through the refrigerant inlet 401 and is stored, which is shown in FIG.
  • the liquid level of the liquid refrigerant in the liquid storage unit 40 rises. Therefore, the amount of the refrigerant circulating in the refrigerant circuit 12 is reduced.
  • the gas refrigerant that has flowed into the liquid storage unit 40 from the gas pipe 15 through the refrigerant inlet 401 flows into the condenser 14 from the gas refrigerant outlet 402 through the gas refrigerant inlet 401.
  • the liquid storage unit 40 has a refrigerant inlet 401 into which the refrigerant flowing out of the evaporator 13 flows in, a gas refrigerant outlet 402 in which the gas phase refrigerant flows out to the condenser 14 side, and a liquid to the condenser 14 side. It has a liquid refrigerant outlet 406 that allows the phase refrigerant to flow out.
  • the outflow valve 55 opens and closes the liquid refrigerant outlet 406 of the liquid storage unit 40.
  • the liquid storage amount is adjusted by opening / closing control of the liquid storage valve 44, on-off valve 46, 52, outflow valve 54, etc. and heating of the liquid refrigerant by the heater 41, but in the present embodiment, FIGS. As shown in 23, the amount of liquid stored is adjusted by changing the volume of the liquid storage unit 40.
  • the liquid storage unit 40 is arranged in the liquid pipe 16.
  • the liquid storage unit 40 has a volume adjusting member 407.
  • the volume adjusting member 407 adjusts the volume of the liquid storage unit 40 by entering and exiting the internal space of the liquid storage unit 40.
  • the volume adjusting member 407 is a storage amount adjusting unit.
  • the volume adjusting member 407 is driven by an electric actuator (not shown). The operation of the electric actuator (not shown) is controlled by the control device 30.
  • thermosiphon type cooling device 10 in which the liquid refrigerant exists is shown by point hatching.
  • the control device 30 puts the volume adjusting member 407 into the internal space of the liquid storage unit 40 to reduce the volume of the liquid storage unit 40 and reduce the liquid storage amount of the liquid storage unit 40. ..
  • control device 30 causes the volume adjusting member 407 to be taken out from the internal space of the liquid storage unit 40 to increase the volume of the liquid storage unit 40 and increase the liquid storage amount of the liquid storage unit 40. ..
  • the liquid storage unit 40 is arranged at a position lower than the liquid level of the liquid refrigerant in the evaporator 13.
  • the liquid storage unit 40 may be arranged at a position higher than the liquid level of the liquid refrigerant in the evaporator 13. This is because the height of the liquid refrigerant in the liquid pipe 16 is higher than the height of the liquid refrigerant in the evaporator 13 by the amount of pressure loss.
  • the volume adjusting member 407 adjusts the volume of the refrigerant in the storage section 40 by adjusting the volume of the storage section 40.
  • the liquid refrigerant is stored by flowing the liquid refrigerant into the liquid storage unit 40, but in the present embodiment, as shown in FIGS. 26 to 27, the gas refrigerant flowing into the liquid storage unit 40 is cooled and condensed.
  • the liquid refrigerant is stored by letting it.
  • the liquid storage unit 40 has a refrigerant inlet / outlet 403.
  • the refrigerant inlet / outlet 403 is provided above the liquid storage unit 40.
  • the refrigerant inlet / outlet 403 is connected to the gas pipe 15 via the communication pipe 51.
  • the heating / cooling unit 56 heats or cools the refrigerant in the liquid storage unit 40.
  • the heating / cooling unit 56 is a Peltier element.
  • the heating / cooling unit 56 is a storage amount adjusting unit. The operation of the heating / cooling unit 56 is controlled by the control device 30.
  • thermosiphon type cooling device 10 in which the liquid refrigerant exists is shown by point hatching.
  • the liquid refrigerant in the liquid storage unit 40 evaporates and flows into the gas pipe 15 through the communication pipe 51. Therefore, as shown in FIG. 27, the liquid level of the liquid refrigerant in the liquid storage unit 40 is lowered, and the amount of the refrigerant circulating in the refrigerant circuit 12 is increased.
  • the gas refrigerant in the liquid storage unit 40 is condensed and stored as a liquid refrigerant. Therefore, as shown in FIG. 26, the liquid level of the liquid refrigerant in the liquid storage unit 40 rises, and the amount of the refrigerant circulating in the refrigerant circuit 12 decreases.
  • control device 30 and the heating / cooling unit 56 store the refrigerant in the liquid storage unit 40 by performing heat transfer accompanied by a phase change of the refrigerant in the liquid storage unit 40 from the liquid phase to the gas phase. Adjust the amount. As a result, the amount of refrigerant stored in the liquid storage unit 40 can be adjusted.
  • the on-off valve 57 may be arranged in the communication pipe 51 with respect to the twelfth embodiment.
  • the on-off valve 57 is a solenoid valve that opens and closes the communication pipe 51.
  • the on-off valve 57 is a storage amount adjusting unit. The operation of the on-off valve 57 is controlled by the control device 30.
  • An internal pressure sensor 58 is arranged in the liquid storage unit 40.
  • the internal pressure sensor 58 detects the internal pressure of the liquid storage unit 40.
  • the control device 30 opens the on-off valve 57 when the internal pressure of the liquid storage unit 40 detected by the internal pressure sensor 58 exceeds a predetermined pressure. As a result, it is possible to prevent the liquid storage unit 40 from being damaged due to an excessive increase in the internal pressure of the liquid storage unit 40.
  • the on-off valve 57 may be a relief valve.
  • the relief valve is a valve having a mechanical mechanism that opens when a predetermined pressure or higher is applied.
  • the plurality of evaporators 13 are arranged on the left side of the vehicle with respect to the gas pipe 15 and the liquid pipe 16, but in the present embodiment, a plurality of evaporators 13 are arranged as shown in FIG. Evaporators 13 are arranged on both sides of the gas pipe 15 and the liquid pipe 16 in the left-right direction of the vehicle. In the example of FIG. 29, three evaporators 13 are arranged in the left-right direction of the vehicle.
  • a set of gas pipes 15 and a liquid pipe 16 extend in the front-rear direction of the vehicle, but in the present embodiment, as shown in FIG. 30, a set of gases connected to the condenser 14
  • the pipe 15 and the liquid pipe 16 are branched into two sets on the evaporator 13 side and extend in the front-rear direction of the vehicle.
  • a plurality of evaporators 13 are arranged in the middle of the gas pipe 15 and the liquid pipe 16 of each set.
  • two evaporators 13 are arranged in the middle of the gas pipe 15 and the liquid pipe 16 of each set.
  • the two evaporators 13 are arranged in series with each other.
  • the gas pipe 15 and the liquid pipe 16 extending in the front-rear direction of the vehicle are not limited to two sets, and may be three or more sets.
  • the number of evaporators 13 arranged in the middle of the gas pipe 15 and the liquid pipe 16 of each set is not limited to two, and may be one or three or more. ..
  • the condenser 14 is arranged above the evaporator 13 of the vehicle, but in the present embodiment, as shown in FIG. 31, the condenser 14 is at substantially the same height as the evaporator 13. Have been placed. Therefore, the assembled battery 11 can be heated by flowing hot water through the condenser 14.
  • the liquid refrigerant evaporates in the condenser 14, and the gas refrigerant is condensed by the assembled battery 11 endothermic from the gas refrigerant in the evaporator 13.
  • the assembled battery 11 can be cooled by flowing low-temperature cooling water through the condenser 14, and the assembled battery 11 can be heated by flowing hot water through the condenser 14.
  • the condenser 14 is a heat exchanger that exchanges heat between the refrigerant and the cooling water of the cooling water circuit 20, but the condenser 14 is a heat exchanger that exchanges heat between the refrigerant and various cooling media. There may be.
  • the condenser 14 may be a heat exchanger that exchanges heat with the outside air for the refrigerant.
  • the outside air is blown to the condenser 14 by the outdoor blower 59.
  • the condenser 14 and the outdoor blower 59 are arranged in the engine room of the vehicle 1.
  • the condenser 14 is a heat exchanger that exchanges heat between the refrigerant and the cooling water of the cooling water circuit 20, and the cooling water of the cooling water circuit 20 is the refrigerant of the refrigerating cycle 60. It may be cooled by.
  • the refrigerating cycle 60 includes a compressor 61, a radiator 62, a battery cooling expansion valve 63, and a cooling water cooler 64.
  • the compressor 61 sucks in the refrigerant of the refrigeration cycle 60, compresses it, and discharges it.
  • the radiator 62 is a heat exchanger that dissipates heat and condenses the refrigerant discharged from the compressor 61.
  • the battery cooling expansion valve 63 is a decompression unit that decompresses and expands the refrigerant condensed by the radiator 62.
  • the cooling water cooler 64 exchanges heat between the refrigerant of the refrigerating cycle 60 expanded under reduced pressure by the expansion valve 63 for cooling the battery and the cooling water of the cooling water circuit 20 to evaporate the refrigerant of the refrigerating cycle 60 and cool the cooling water.
  • the cooling water of the circuit 20 is cooled.
  • the condenser 14 may be a heat exchanger that exchanges heat between the refrigerant of the refrigerant circuit 12 and the refrigerant of the refrigeration cycle 60.
  • the condenser 14 heat-exchanges the refrigerant of the refrigerating cycle 60 expanded under reduced pressure by the battery cooling expansion valve 63 with the refrigerant of the refrigerant circuit 12 evaporated by the evaporator 13 to evaporate the refrigerant of the refrigerating cycle 60.
  • the refrigerant in the refrigerant circuit 12 is condensed.
  • the refrigeration cycle 60 may include an air conditioning expansion valve 65 and an air conditioning evaporator 66.
  • the air conditioning expansion valve 65 is a decompression unit that decompresses and expands the refrigerant condensed by the radiator 62.
  • the air-conditioning evaporator 66 is a cooling heat exchanger that cools the air blown into the vehicle interior by exchanging heat between the refrigerant of the refrigeration cycle 60 and the air blown into the vehicle interior.
  • the air conditioning expansion valve 65 and the air conditioning evaporator 66 are arranged in parallel with the radiator 62 in the refrigerant flow of the refrigeration cycle 60.
  • a battery cooling side on-off valve 67 is arranged at the refrigerant inlet of the battery cooling expansion valve 63.
  • the battery cooling side on-off valve 67 is a solenoid valve that opens and closes the refrigerant flow path on the battery cooling expansion valve 63 side.
  • the operation of the battery cooling side on-off valve 67 is controlled by the control device 30.
  • An air-conditioning side on-off valve 68 is arranged at the refrigerant inlet of the air-conditioning expansion valve 65.
  • the air-conditioning side on-off valve 68 is a solenoid valve that opens and closes the refrigerant flow path on the battery cooling expansion valve 63 side.
  • the operation of the air-conditioning side on-off valve 68 is controlled by the control device 30.
  • the gas pipe 15 and the liquid pipe 16 may be arranged so as to bypass other parts and members of the vehicle for the convenience of mounting on the vehicle.
  • the assembled battery 11 is arranged under the floor of the vehicle, but the assembled battery 11 may be arranged behind the vehicle, for example, under the trunk room or the rear seat.
  • the assembled battery 11 may be arranged in front of the vehicle, for example, in the engine room.
  • a fluorocarbon-based refrigerant is used as the refrigerant of the refrigerant circuit 12, but various refrigerants having a characteristic of not becoming a supercritical state during operation may be used.
  • the device cooled by the thermosiphon type cooling device 10 is the assembled battery 11, but the device cooled by the thermosiphon type cooling device 10 includes various devices such as a motor, an inverter, and a charger. It may be an in-vehicle device of.
  • the cooling water circulates in the cooling water circuit 20, but a liquid cooling medium (for example, an insulating fluid such as insulating oil) may circulate instead of the cooling water.
  • a liquid cooling medium for example, an insulating fluid such as insulating oil
  • the structure for cooling the battery cell 111 with the evaporator 13 is not limited to the structure shown in the above embodiment.
  • each battery cell 111 is not limited to a rectangular parallelepiped shape, and may be, for example, a cylindrical shape or a laminated shape.
  • the condenser 14 and the evaporator 13 are arranged in the vehicle front-rear direction, but the present invention is not limited to this.
  • the condenser 14 and the evaporator 13 are arranged in the vehicle left-right direction. May be good.
  • the amount of refrigerant stored in the liquid storage unit 40 is adjusted according to the inclination in the front-rear direction of the vehicle, but the present invention is not limited to this, and for example, the liquid storage unit 40 is adjusted according to the inclination in the left-right direction of the vehicle.
  • the amount of refrigerant stored in the above may be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)

Abstract

車両用サーモサイフォン式冷却装置において、傾斜量が変化しても冷却性能を極力確保する。車載機器(11)から吸熱して冷媒を蒸発させる蒸発部(13)と、蒸発部(13)で蒸発した冷媒を凝縮させる凝縮器(14)と、車両の傾斜量を検出する傾斜量検出部(33)と、蒸発部(13)と凝縮器(14)との間を循環する冷媒を液相状態で貯留する貯留部(40)と、貯留部(40)の冷媒の貯留量を、傾斜量検出部(33)が検出した傾斜量に応じて調整する貯留量調整部(30、41、44、46、49、52、54、55、56、57、407)とを備える。

Description

車両用サーモサイフォン式冷却装置 関連出願の相互参照
 本出願は、2019年3月29日に出願された日本特許出願2019-66105号に基づくもので、ここにその記載内容を援用する。
 本開示は、車載機器を冷却するサーモサイフォン式冷却装置に関する。
 従来、特許文献1には、冷媒を自然循環させるサーモサイフォン式冷却装置が記載されている。
 この従来技術は、ガス冷媒を凝縮して液冷媒とする熱交換部と、液冷媒を蒸発させてガス冷媒とする蒸発器とを備えている。熱交換部の液冷媒は蒸発器へ流下し、蒸発器のガス冷媒は熱交換部へ上昇する。蒸発器で液冷媒が吸熱することによって冷却作用を発揮する。
特許第4945712号
 上記従来技術のようなサーモサイフォン式冷却装置を車両に搭載して車載機器の冷却に適用した場合、車両の傾斜によって冷却性能を十分に発揮できないことが起こりうる。
 すなわち、車両が傾斜すると蒸発器内において液冷媒に偏りが生じて液冷媒が存在しない部位が生じるので、液冷媒で吸熱できない部位が生じる。そのため、車載機器を冷却できない部位が生じる。
 この対策として、液冷媒を多めに封入しておけば、車両が傾斜しても蒸発器内に液冷媒が存在しない部位が生じないようにすることができる。しかしながら、液冷媒を多めに封入すると、車両が傾斜していないときに蒸発器内の液冷媒が多くなりすぎるので、液冷媒の蒸発に伴って液冷媒がガス冷媒とともに吹き上げられてガス冷媒の上昇を妨げてしまい、冷却性能が低下してしまう。
 本開示は上記点に鑑みて、傾斜量が変化しても冷却性能を極力確保できる車両用サーモサイフォン式冷却装置を提供することを目的とする。
 本開示の一態様による車両用サーモサイフォン式冷却装置は、蒸発部と、凝縮器と、傾斜量検出部と、貯留部と、貯留量調整部とを備える。蒸発部は、車載機器から吸熱して冷媒を蒸発させる。凝縮器は、蒸発部で蒸発した冷媒を凝縮させる。傾斜量検出部は、車両の傾斜量を検出する。貯留部は、蒸発部と凝縮器との間を循環する冷媒を液相状態で貯留する。貯留量調整部は、貯留部の冷媒の貯留量を、傾斜量検出部が検出した傾斜量に応じて調整する。
 これによると、蒸発部内の液冷媒の量を傾斜量に応じて調整できるので、傾斜量が変化しても冷却性能を極力確保できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な既述により、より明確となる。
第1実施形態における車両用サーモサイフォン式冷却装置の全体構成図である。 電池温度と電池入出力との相関関係を示すグラフである。 第1実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第1実施形態における車両用サーモサイフォン式冷却装置の制御装置が実行する制御処理を示すフローチャートである。 第1実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第2実施形態における車両用サーモサイフォン式冷却装置の制御装置が実行する制御処理において貯液部内の液冷媒の量の算出に用いられる制御特性図である。 第3実施形態における車両用サーモサイフォン式冷却装置の制御装置が実行する制御処理を示すフローチャートである。 第4実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第4実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第5実施形態における車両用サーモサイフォン式冷却装置の全体構成図である。 第6実施形態における車両用サーモサイフォン式冷却装置の全体構成図である。 第7実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第7実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第7実施形態の変形例における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第8実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第8実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第9実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第9実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第10実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第10実施形態における車両用サーモサイフォン式冷却装置の貯液部および凝縮器を示す模式図である。 第10実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第11実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第11実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第11実施形態の変形例における車両用サーモサイフォン式冷却装置の傾斜水平状態における作動状態を示す全体構成図である。 第11実施形態の変形例における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第12実施形態における車両用サーモサイフォン式冷却装置の水平状態における作動状態を示す全体構成図である。 第12実施形態における車両用サーモサイフォン式冷却装置の傾斜状態における作動状態を示す全体構成図である。 第13実施形態における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第14実施形態における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第15実施形態における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第16実施形態における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第17実施形態の第1実施例における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第17実施形態の第2実施例における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第17実施形態の第3実施例における車両用サーモサイフォン式冷却装置を示す全体構成図である。 第17実施形態の第4実施例における車両用サーモサイフォン式冷却装置を示す全体構成図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 本実施形態の車両用サーモサイフォン式冷却装置10は、車両に搭載される電池を冷却する車両用電池冷却装置である。図1中、上下前後左右の矢印は、車両の上下前後左右方向を示している。
 組電池11は、電気エネルギーを蓄える二次電池などの蓄電装置である。組電池11は、インバータなどを介して走行用モータに電気を供給する。組電池11は、回生電力を蓄える蓄電池である。組電池11は、走行中など充放電使用時に自己発熱する。組電池11は、サーモサイフォン式冷却装置10の冷却対象物である。
 組電池11は、複数の電池セル111を有している。本実施形態では、互いに並列に接続された2個1組の電池セル111が複数組、互いに直列に接続されている。
 図2に示すように、電池セル111が高温になると劣化あるいは破損を招く。そのため、電池に許容される出力および入力を抑えて発熱量を抑える必要がある。そのため、電池セル111を冷却して一定温度以下に維持する必要がある。
 特に加速時や登坂時(換言すれば走行負荷が高い時)には電池セル111の放電量が多くなって発熱量が増加するので、電池セル111を高い冷却能力で冷却する必要がある。
 電池セル111の温度は、走行中だけでなく夏期の駐車放置中などにも上昇する。電池セル111を高温状態で放置すると寿命が大幅に低下するため、駐車放置中も冷却するなど電池温度を低温に維持する必要がある。
 図1に示すように、サーモサイフォン式冷却装置10は、冷媒回路12を備える。冷媒回路12は、複数個の蒸発器13、凝縮器14、ガス配管15および液配管16を有している。
 冷媒回路12内には、冷媒が封入充填されている。冷媒回路12は、作動流体としての冷媒が循環する熱媒体回路である。本実施形態では、冷媒としてHFO-1234yfやHFC-134aなどのフロン系冷媒が用いられている。
 冷媒は、冷媒回路12に所定の圧力で封入されている。冷媒は、常温時には冷媒回路12内において大部分は液状態、一部はガス状態になっている。
 冷媒回路12は、冷媒の蒸発および凝縮により熱移動を行うヒートパイプである。冷媒回路12は、ガス状の冷媒が流れる流路と、液状の冷媒が流れる流路とが分離されたループ型のサーモサイフォンである。
 複数個の蒸発器13は、組電池11から吸熱して冷媒を蒸発させる蒸発部である。蒸発器13は、冷媒を熱交換させる熱交換器である。蒸発器13は、複数の電池セル111を、冷媒の蒸発により冷却する。蒸発器13は、電池セル111と熱伝導可能になっており、電池セル111の熱を冷媒に吸熱させることによって電池セル111を冷却するとともに冷媒を蒸発させる。
 蒸発器13は、車両上下方向に延びる薄形矩形状の外形を有している。蒸発器13は、熱交換部131、液通路部132およびガス通路部133を有している。熱交換部131、液通路部132およびガス通路部133は、上方から下方に向かって、ガス通路部133、熱交換部131、液通路部132の順番で配置されている。
 熱交換部131の外面は平面状になっている。電池セル111は、直方体状の外形を有している。電池セル111の1つの面は、熱交換部131の外面に、電気絶縁熱伝導シート17を介して熱伝導可能に当接している。各電池セル111は、その端子112が熱交換部131とは反対側を向くように配置されている。
 電気絶縁熱伝導シート17は、電気絶縁性と熱伝導性とを有する薄膜状の部材である。熱交換部131と電池セル111との間に、板状の熱伝導部材が介在していてもよい。
 熱交換部131は、内部の冷媒流路を流れる液冷媒に電池セル111の熱を吸熱させて液冷媒を沸騰蒸発させる。
 熱交換部131の内部には、図示しない多数の冷媒流路が形成されている。熱交換部131の多数の冷媒流路は、互いに並列に上下方向に延びている。
 液通路部132には、液配管16が接続されている。液通路部132は、液配管16を流れた液冷媒を熱交換部131の多数の冷媒流路に分配する。
 ガス通路部133には、ガス配管15が接続されている。ガス通路部133は、熱交換部131の多数の冷媒流路にて沸騰蒸発したガス冷媒を集合させてガス配管15に流出させる。
 凝縮器14は、蒸発器13で蒸発した冷媒を、冷却水回路20の冷却水と熱交換させて冷却凝縮させる熱交換器である。凝縮器14は、車両のエンジンルームに配置されている。凝縮器14は、蒸発器13よりも車両の上方側に配置されている。
 冷却水は、熱媒体としての流体である。冷却水は、例えば、少なくともエチレングリコールまたはジメチルポリシロキサンを含む液体や、不凍液体、クーラント等である。
 ガス配管15および液配管16は、蒸発器13と凝縮器14とを接続する冷媒配管である。ガス配管15は、蒸発器13で蒸発したガス冷媒が流れる冷媒配管である。ガス配管15は、ガス冷媒を凝縮器14に導くガス冷媒流路を形成している。
 液配管16は、凝縮器14で凝縮した液冷媒が流れる冷媒配管である。液配管16は、液冷媒を蒸発器13に導く液冷媒流路を形成している。
 サーモサイフォン式冷却装置10は、凝縮器14が車両前方側に位置し、蒸発器13が車両後方側に位置するように車両に搭載されている。ガス配管15および液配管16は、車両前後方向に延びている。
 複数個の蒸発器13は、車両前後方向に並んで配置されている。複数個の蒸発器13は、車両に対して、互いに同じ高さに配置されている。複数個の蒸発器13は、車両前後方向に延びる1組のガス配管15および液配管16から分岐するように配置されている。
 図1の例では、蒸発器13が3個配置されている。3個の蒸発器13は、ガス配管15および液配管16に対して車両左方側に配置されている。複数個の蒸発器13は、互いの相対位置が固定されている
 蒸発器13の個数は3個に限定されるものではなく、1個であってもよいし、3個よりも多い複数個であってもよい。
 サーモサイフォン式冷却装置10は、貯液部40、ヒータ41、液連通配管42、ガス連通配管43、貯液弁44および逆止弁45を備える。
 貯液部40は、サーモサイフォン式冷却装置10の冷媒を液相状態で貯留する貯留部である。貯液部40は、車両に対して、蒸発器13とほぼ同じ高さに配置されている。貯液部40は、冷媒入口401と冷媒出口402とを有している。冷媒入口401および冷媒出口402は、冷媒が流通する冷媒流通口である。ヒータ41は、貯液部40内の液冷媒を加熱して蒸発させる。ヒータ41は、電力を供給されることによって発熱する電気ヒータである。
 液連通配管42は、貯液部40の冷媒入口401と液配管16とを接続している。液連通配管42は、冷媒回路12の液冷媒を貯液部40に流入させる冷媒流路を形成している。
 ガス連通配管43は、貯液部40のガス冷媒入口401とガス配管15とを接続している。ガス連通配管43は、貯液部40のガス冷媒を冷媒回路12に流入させる冷媒流路を形成している。
 貯液弁44は、液連通配管42を開閉する電磁弁である。逆止弁45は、ガス連通配管43において、貯液部40側からガス配管15側への冷媒の流れを許容し、ガス配管15側から貯液部40側への冷媒の流れを禁止する。
 貯液部40は、複数個の蒸発器13のうち凝縮器14から最も離れた蒸発器13の近傍に配置されている。
 冷却水回路20は、冷却水ポンプ21およびラジエータ22を有している。冷却水ポンプ21は、冷却水回路20の冷却水を吸入して吐出するポンプである。ラジエータ22は、冷却水回路20を循環する冷却水と外気とを熱交換させて冷却水を冷却する熱交換器である。外気送風機23は、ラジエータ22に外気を送風する送風機である。
 ヒータ41、貯液弁44、冷却水ポンプ21および外気送風機23の作動は、制御装置30によって制御される。制御装置30は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置30は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された冷却水ポンプ21および外気送風機23等の作動を制御する制御部である。
 制御装置30、ヒータ41および貯液弁44は、貯液部40の冷媒の貯留量を調整する貯留量調整部である。
 制御装置30の入力側には、電池セル温度センサ31、液面センサ32、ジャイロセンサ33等が接続されている。そして、制御装置30には、これらのセンサ群の検出信号が入力される。
 電池セル温度センサ31は、複数の電池セル111のうち、少なくとも2つ以上の電池セル111の温度を検出する温度検出部である。液面センサ32は、貯液部40内の液冷媒の液面の高さを検出する。
 ジャイロセンサ33は、車両の傾斜角度(換言すれば、サーモサイフォン式冷却装置10の傾斜角度)を検出するジャイロセンサ33は、車両の傾斜量を検出する傾斜量検出部である。
 図3は、車両が水平状態、換言すればサーモサイフォン式冷却装置10が水平状態にあり、かつ貯液弁44が開いている状態を示している。図3では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
 図3の状態において液冷媒の液面が蒸発器13および貯液部40のほぼ中間の高さに位置するように、サーモサイフォン式冷却装置10への液冷媒の封入量が設定されている。
 次に、上記構成における作動を説明する。冷却水ポンプ21が作動して凝縮器14に冷却水を供給している状態において、組電池11の温度が冷媒の沸点よりも高ければ、サーモサイフォン式冷却装置10の冷媒回路12では、サーモサイフォン現象(換言すれば冷媒の相変化)によって冷媒が循環する。
 具体的には、蒸発器13内において、液冷媒は組電池11からの熱を吸熱して蒸発してガス冷媒となる。蒸発器13内で蒸発したガス冷媒はガス配管15に流入し、ガス配管15を上昇して凝縮器14に流入する。
 凝縮器14では、ガス配管15から流入したガス冷媒が冷却水回路20の冷却水に放熱して凝縮し、液冷媒となる。凝縮器14で凝縮した液冷媒は、重力により液配管16を流下して蒸発器13に流入する。
 このように冷媒回路12を冷媒が循環することによって、蒸発器13で組電池11を冷却できる。動力を利用することなく冷媒回路12に冷媒を循環させることができるので、省動力化を図ることができ、駐車放置時にも組電池11を冷却できる。
 このとき、制御装置30は、図4のフローチャートに示す制御処理を実行する。ステップS100では、図5に示す傾斜角度θの絶対値|θ|、すなわち車両の前後方向における傾斜角度θの絶対値|θ|が第1閾値αを上回っているか否かを、ジャイロセンサ33が検出した車両の傾斜角度に基づいて判定する。傾斜角度θの正負は、車両前方が上方を向く側が正、車両前方が下方を向く側が負であってもよいし、その逆であってもよい。第1閾値αは、制御装置30に予め記憶された固定値である。
 傾斜角度θの絶対値|θ|が第1閾値αを上回っていると判定した場合、すなわち車両前方が上方を向く側への傾斜が大きい場合、ステップS110へ進み、ヒータ41を作動させる。これにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、図5に示すように、貯液部40内の液冷媒の液面が低下する。図5では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
 ステップS120では、貯液部40内の液冷媒の蒸発が完了したか否かを判定する。具体的には、貯液部40内の液冷媒の量が下限量まで減少したか否かを液面センサ32の検出信号に基づいて判定する。下限量は、制御装置30に予め記憶された固定値である。貯液部40内の液冷媒の量が下限量まで減少していないと判定した場合、ステップS120を繰り返す。貯液部40内の液冷媒の量が下限量まで減少したと判定した場合、ステップS130へ進み、ヒータ41を停止させる。これにより、貯液部40内の液冷媒の蒸発が停止する。
 ステップS100にて傾斜角度θの絶対値|θ|が第1閾値αを上回っていないと判定した場合、すなわち車両前方が上方を向く側への傾斜が大きくない場合、ステップS140へ進み、傾斜角度θの絶対値|θ|が第2閾値βを下回っているか否かを判定する。第2閾値βは、制御装置30に予め記憶された固定値である。第2閾値βは第1閾値αよりも小さい値である。
 傾斜角度θの絶対値|θ|が第2閾値βを下回っていると判定した場合、すなわち車両がほぼ水平状態である場合、ステップS150へ進み、貯液弁44を開く。これにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、図3に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
 ステップS160では、貯液部40内の液冷媒の貯留(換言すれば、貯液)が完了したか否かを判定する。具体的には、貯液部40内の液冷媒の量が上限量まで増加したか否かを、液面センサ32の検出信号に基づいて判定する。上限量は、制御装置30に予め記憶された固定値である。貯液部40内の液冷媒の量が上限量まで増加していないと判定した場合、ステップS160を繰り返す。貯液部40内の液冷媒の量が上限量まで増加したと判定した場合、ステップS170へ進み、貯液弁44を閉じる。これにより、冷媒回路12から貯液部40への液冷媒の流入が停止する。
 このように、本実施形態では、傾斜時に冷媒回路12の冷媒を増やし、水平時に冷媒回路12の冷媒を減らす。そのため、傾斜時に蒸発器13内の液冷媒が不足することを抑制できるとともに、水平時に蒸発器13内の液冷媒が過剰になってガス配管15に吹き上げることを抑制できる。したがって、傾斜角度が変化しても冷却性能を極力確保できる。
 本実施形態では、制御装置30、ヒータ41および貯液弁44は、貯液部40の冷媒の貯留量を、ジャイロセンサ33が検出した傾斜量に応じて調整する。これによると、蒸発器13内の液冷媒の量を車両の傾斜量に応じて調整できるので、傾斜量が変化しても冷却性能を極力確保できる。
 本実施形態では、制御装置30およびヒータ41は、ジャイロセンサ33が検出した傾斜量が増加すると貯液部40の冷媒の貯留量を減少させる。これによると、車両が傾斜したときに蒸発器13内の液冷媒の量が増えるので、車両が傾斜したときに蒸発器13内において液冷媒が存在しない部位が生じることを抑制できる。そのため、車両が傾斜したときに冷却性能を極力確保できる。
 本実施形態では、制御装置30およびヒータ41は、貯液部40内の冷媒の液相から気相への相変化を伴う伝熱を行うことによって、貯液部40の冷媒の貯留量を減少させる。これにより、車両が傾斜したときに貯液部40の液冷媒の貯留量を確実に減少させることができる。
 本実施形態では、制御装置30および貯液弁44は、貯液部40の冷媒入口401の開口面積を調整することによって貯液部40の冷媒の貯留量を増加させる。これにより、車両の傾斜が小さいときに貯液部40の冷媒の貯留量を確実に増加させることができる。
 本実施形態によると、互いの相対位置が固定されている複数個の蒸発器13に対して、液冷媒の量を車両の傾斜量に応じて調整できるので、傾斜量が変化しても複数個の蒸発器13の冷却性能を極力確保できる。
 (第2実施形態)
 上記第1実施形態では、傾斜角度θの絶対値|θ|に応じて貯液部40内の液冷媒の量を下限量または上限量に変化させるが、本実施形態では、図6に示すように、傾斜角度θの絶対値|θ|に応じて貯液部40内の液冷媒の量を連続的に変化させる。
 制御装置30は、傾斜角度θの絶対値|θ|に基づいて、図6の制御マップを用いて、貯液量を決定する。制御装置30は、貯液部40内の液冷媒の量が、決定した貯液量となるように、ヒータ41および貯液弁44を制御する。貯液部40内の液冷媒の量を減らすときはヒータ41を作動させ、貯液部40内の液冷媒の量を増やすときは貯液弁44を開ける。
 本実施形態によると、上記実施形態と同様に、傾斜量が変化しても冷却性能を極力確保できる。
 (第3実施形態)
 上記第1、第2実施形態では、傾斜角度θの絶対値|θ|に応じて貯液部40内の液冷媒の量を変化させるが、本実施形態では、図7のフローチャートに示すように、傾斜角度θの絶対値|θ|と組電池11の目標冷却量とに応じて貯液部40内の液冷媒の量を変化させる。
 制御装置30は、図7のフローチャートに示す制御処理を実行する。ステップS200では、傾斜角度θの絶対値|θ|が第1閾値αを上回っているか否かを、ジャイロセンサ33が検出した車両の傾斜角度に基づいて判定する。
 傾斜角度θの絶対値|θ|が第1閾値αを上回っていると判定した場合、すなわち車両前方が上方を向く側への傾斜が大きい場合、ステップS210へ進み、ヒータ41を作動させる。これにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、貯液部40内の液冷媒の液面が低下する。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
 ステップS220では、貯液部40内の液冷媒の蒸発が完了したか否かを判定する。具体的には、貯液部40内の液冷媒の量が下限量まで減少したか否かを、液面センサ32の検出信号に基づいて判定する。下限量は、制御装置30に予め記憶された固定値である。貯液部40内の液冷媒の量が下限量まで減少していないと判定した場合、ステップS220を繰り返す。貯液部40内の液冷媒の量が下限量まで減少したと判定した場合、ステップS230へ進み、ヒータ41を停止させる。これにより、貯液部40内の液冷媒の蒸発が停止する。
 ステップS200にて傾斜角度θの絶対値|θ|が第1閾値αを上回っていないと判定した場合、すなわち車両前方が上方を向く側への傾斜が大きくない場合、ステップS240へ進み、傾斜角度θの絶対値|θ|が第2閾値βを下回っているか否かを判定する。第2閾値βは、制御装置30に予め記憶された固定値である。第2閾値βは第1閾値αよりも小さい値である。
 傾斜角度θの絶対値|θ|が第2閾値βを下回っていると判定した場合、すなわち車両がほぼ水平状態である場合、ステップS250へ進み、組電池11の目標冷却量が所定冷却量Qを上回っているか否かを判定する。
 組電池11の目標冷却量は、組電池11の電流値、組電池11の温度、凝縮器14に流入する冷媒の温度、車両の速度、車両の傾斜角度、組電池11の充電電力等から推定されるのが好ましい。所定冷却量Qは、制御装置30に予め記憶された固定値である。
 組電池11の目標冷却量が所定冷却量Qを上回っていると判定した場合、ステップS260へ進み、貯液弁44を開く。これにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
 すなわち、組電池11の冷却量が大きい場合には蒸発器13内の液冷媒の蒸発が激しくなって冷媒の吹き上げが起こりやすくなることから、蒸発器13内の液冷媒の量を減少させて冷媒の吹き上げを抑制する。
 ステップS260では、貯液部40内の液冷媒の貯留(換言すれば、貯液)が完了したか否かを判定する。具体的には、貯液部40内の液冷媒の量が上限量まで増加したか否かを液面センサ32の検出信号に基づいて判定する。上限量は、制御装置30に予め記憶された固定値である。貯液部40内の液冷媒の量が上限量まで増加していないと判定した場合、ステップS260を繰り返す。貯液部40内の液冷媒の量が上限量まで増加したと判定した場合、ステップS270へ進み、貯液弁44を閉じる。これにより、冷媒回路12から貯液部40への液冷媒の流入が停止する。
 本実施形態では、制御装置30および貯液弁44は、ジャイロセンサ33が検出した傾斜量が減少し、かつ組電池11の目標冷却量が所定冷却量Qを上回っている場合、貯液部40の冷媒の貯留量を増加させる。
 これにより、蒸発器13内の液冷媒の蒸発が激しい場合に冷媒の吹き上げを抑制できるので、傾斜量が変化しても冷却性能を極力確保できる。
 傾斜量が小さいときであっても組電池11の冷却量が小さくて冷媒の蒸発が激しくない場合には蒸発器13内の液冷媒の量を減少させないので、蒸発器13内の液冷媒の量を必要以上に調整することを抑制できる。
 (第4実施形態)
 上記第1実施形態では、ガス連通配管43に逆止弁45が配置されているが、本実施形態では、図8に示すように、ガス連通配管43に開閉弁46が配置されている。
 開閉弁46は、ガス連通配管43を開閉する電磁弁である。開閉弁46の作動は、制御装置30によって制御される。開閉弁46は貯留量調整部である。
 制御装置30が、貯液弁44を閉じた状態でヒータ41を作動させることにより、貯液部40内の液冷媒が加熱されて蒸発してガス冷媒となる。このとき、開閉弁46を開くことにより、貯液部40内のガス冷媒は、ガス連通配管43を通じてガス配管15に流入し、冷媒回路12を循環するので、図9に示すように、貯液部40内の液冷媒の液面が低下する。図8および図9では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
 制御装置30が貯液弁44を開くことにより、冷媒回路12を循環する液冷媒の一部が液連通配管42を通じて貯液部40に流入するので、図8に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
 本実施形態においても、上記第1実施形態と同様の作用効果を奏することができる。
 (第5実施形態)
 上記第1実施形態では、貯液部40は、複数個の蒸発器13のうち凝縮器14から最も離れた蒸発器13の近傍に配置されている。本実施形態では、図10に示すように、貯液部40は、複数個の蒸発器13のうち凝縮器14に最も近い蒸発器13の近傍に配置されている。
 本実施形態においても、上記第1実施形態と同様に、制御装置30がヒータ41および貯液弁44の作動を制御することによって、貯液部40内の液冷媒を増減させて、冷媒回路12を循環する冷媒の量を増減させることができる。
 (第6実施形態)
 上記第5実施形態では、ガス連通配管43はガス配管15に接続されているが、本実施形態では、図11に示すように、ガス連通配管43は液配管16の上部に接続されている。
 本実施形態においても、上記第5実施形態と同様に、制御装置30がヒータ41および貯液弁44の作動を制御することによって、貯液部40内の液冷媒を増減させて、冷媒回路12を循環する冷媒の量を増減させることができる。
 (第7実施形態)
 上記実施形態では、貯液部40は、液連通配管42およびガス連通配管43によって冷媒回路12に接続されているが、本実施形態では、図12に示すように、貯液部40は、第1液連通配管47および第2液連通配管48によって冷媒回路12に接続されている。
 貯液部40は、複数個の蒸発器13のうち凝縮器14に最も近い蒸発器13の近傍に配置されている。
 第1液連通配管47は、貯液部40の冷媒入口401と液配管16の上部とを接続している。第2液連通配管48は、貯液部40の冷媒出口402と液配管16の下部とを接続している。
 第1液連通配管47には貯液弁49が配置されている。貯液弁49は、第1液連通配管47を開閉する電磁弁である。貯液弁49は貯留量調整部である。
 第2液連通配管48には逆止弁50が配置されている。逆止弁50は、第2液連通配管48において、貯液部40の冷媒出口側から液配管16側への冷媒の流れを許容し、液配管16側から貯液部40の冷媒出口側への冷媒の流れを禁止する。
 図12に示すように、制御装置30が貯液弁49を開けることにより、液配管16の液冷媒が第1液連通配管47を通じて貯液部40に流入し、液配管16における液冷媒の液面とほぼ同じ高さまで液冷媒が貯まる。図12では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
 図12の例では、液配管16における液冷媒の液面の高さは、蒸発器13における液冷媒の液面の高さよりも、圧力損失の分、高くなっている。そのため、貯液部40の高さは、蒸発器13における液冷媒の液面の高さよりも高くなっている。
 図13に示すように、貯液部40に液冷媒が貯まっている状態で貯液弁49を閉じると、液配管16の液冷媒が貯液部40に流入しなくなり、蒸発器13における液冷媒の液面とほぼ同じ高さまで液冷媒が減少する。図13では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
 図12~図13の実施例では、貯液部40は、タンク状の部材である。図14に示す変形例のように、貯液部40は、液配管16よりも太い配管状の部材であってもよい。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (第8実施形態)
 上記第1~第7実施形態では、貯液部40は冷媒入口401と冷媒出口402とを有しているが、本実施形態では、図15に示すように、貯液部40は冷媒出入口403を有している。
 貯液部40は、複数個の蒸発器13のうち凝縮器14に最も近い蒸発器13の近傍に配置されている。貯液部40の冷媒出入口403は、貯液部40の上部に設けられている。貯液部40の冷媒出入口403は、連通配管51によってガス配管15に接続されている。
 連通配管51には開閉弁52が配置されている。開閉弁52は、連通配管51を開閉する電磁弁である。開閉弁52は貯留量調整部である。開閉弁52の作動は、制御装置30によって制御される。
 制御装置30がヒータ41を作動させて開閉弁52を開けることにより、貯液部40内の液冷媒が加熱されて蒸発し、連通配管51を通じてガス配管15に流入し、冷媒回路12を循環するので、図16に示すように、貯液部40内の液冷媒の液面が低下する。図15および図16では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
 蒸発器13における液冷媒の液面が高いときに制御装置30がヒータ41を作動させることなく開閉弁52を開けることにより、蒸発器13からガス配管15に吹き上がった液冷媒が連通配管51を通じて貯液部40に流入する。そのため、図15に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
 本実施形態においても、上記第1~第7実施形態と同様の作用効果を奏することができる。
 連通配管51とガス配管15との接続部に気液分離器が配置されていれば貯液部40に液冷媒を効率良く貯めることができる。気液分離器で分離された液冷媒を貯液部40に流入させ、気液分離器で分離されたガス冷媒を凝縮器14に流入させることができるからである。
 (第9実施形態)
 上記第8実施形態では、貯液部40は冷媒出入口403を有しているが、本実施形態では、図17に示すように、貯液部40は冷媒出入口403および冷媒出口404を有している。
 貯液部40の冷媒出口402は、貯液部40の下部に設けられている。貯液部40の冷媒出口402は、液連通配管53によって液配管16に接続されている。
 液連通配管42には流出弁54が配置されている。流出弁54は、液連通配管42を開閉する電磁弁である。流出弁54は貯留量調整部である。流出弁54の作動は、制御装置30によって制御される。
 制御装置30がヒータ41を作動させて開閉弁52を開けることにより、貯液部40内の液冷媒が加熱されて蒸発し、連通配管51を通じてガス配管15に流入するので、図18に示すように、貯液部40内の液冷媒の液面が低下する。したがって、冷媒回路12を循環する冷媒の量が増加する。図17および図18では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
 制御装置30が流出弁54を開けることにより、貯液部40内の液冷媒が液連通配管42を通じて液配管16に流入するので、図18に示すように、貯液部40内の液冷媒の液面が低下する。したがって、冷媒回路12を循環する冷媒の量が増加する。
 蒸発器13における液冷媒の液面が高いときに制御装置30がヒータ41を作動させることなく開閉弁52を開けることにより、蒸発器13からガス配管15に吹き上がった液冷媒が連通配管51を通じて貯液部40に流入する。そのため、図17に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
 本実施形態においても、上記8実施形態と同様の作用効果を奏することができる。
 連通配管51とガス配管15との接続部に気液分離器が配置されていれば貯液部40に液冷媒を効率良く貯めることができる。気液分離器で分離された液冷媒を貯液部40に流入させ、気液分離器で分離されたガス冷媒を凝縮器14に流入させることができるからである。
 (第10実施形態)
 上記実施形態では、貯液部40は冷媒回路12から独立した機器になっているが、本実施形態では、図19~図20に示すように、貯液部40は凝縮器14と一体化されている。
 貯液部40は、冷媒入口401、ガス冷媒出口405および液冷媒出口406を有している。冷媒入口401およびガス冷媒出口402は貯液部40の上部に設けられている。液冷媒出口402は貯液部40の下部に設けられている。
 冷媒入口401はガス配管15に接続されている。ガス冷媒出口402は凝縮器14のガス冷媒入口141に接続されている。凝縮器14のガス冷媒入口141は凝縮器14の上部に設けられている。液冷媒出口402は凝縮器14の液冷媒入口142に接続されている。凝縮器14の液冷媒出口143は凝縮器14の下部に設けられている。
 貯液部40の液冷媒出口402には流出弁55が配置されている。流出弁55は、貯液部40の液冷媒出口402を開閉する電磁弁である。流出弁55は貯留量調整部である。流出弁55の作動は、制御装置30によって制御される。
 制御装置30が流出弁55を開けることにより、貯液部40内の液冷媒が液冷媒出口402を通じて液冷媒入口401から凝縮器14に流入するので、図21に示すように、貯液部40内の液冷媒の液面が低下する。図19および図21では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。貯液部40内の液冷媒の液面が低下することによって、冷媒回路12を循環する冷媒の量が増加する。
 蒸発器13における液冷媒の液面が高くなっていると、蒸発器13からガス配管15に吹き上がった液冷媒が冷媒入口401を通じて貯液部40に流入して貯えられるので、図19に示すように、貯液部40内の液冷媒の液面が上昇する。したがって、冷媒回路12を循環する冷媒の量が減少する。
 ガス配管15から冷媒入口401を通じて貯液部40に流入したガス冷媒は、ガス冷媒出口402からガス冷媒入口401を通じて凝縮器14に流入する。
 本実施形態では、貯液部40は、蒸発器13から流出した冷媒が流入する冷媒入口401と、凝縮器14側へ気相の冷媒を流出させるガス冷媒出口402と、凝縮器14側へ液相の冷媒を流出させる液冷媒出口406とを有している。流出弁55は、貯液部40の液冷媒出口406を開閉する。
 これにより、上記実施形態と同様の作用効果を奏することができる。
 (第11実施形態)
 上記実施形態では、貯液弁44、開閉弁46、52、流出弁54等の開閉制御やヒータ41での液冷媒の加熱によって貯液量を調整するが、本実施形態では、図22~図23に示すように、貯液部40の容積を変化させることによって貯液量を調整する。
 貯液部40は、液配管16に配置されている。貯液部40は、容積調整部材407を有している。容積調整部材407は、貯液部40の内部空間に出入りすることによって貯液部40の容積を調整する。容積調整部材407は貯留量調整部である。容積調整部材407は、図示しない電動アクチュエータによって駆動される。図示しない電動アクチュエータの作動は、制御装置30によって制御される。
 図22および図23では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
 図22に示すように、制御装置30が容積調整部材407を貯液部40の内部空間に入れられることによって、貯液部40の容積を減少させて貯液部40の貯液量を減少させる。
 図23に示すように、制御装置30が容積調整部材407を貯液部40の内部空間から出されることによって、貯液部40の容積を増加させて貯液部40の貯液量を増加させる。
 図22~図23の実施例では、貯液部40は、蒸発器13における液冷媒の液面よりも低い位置に配置されている。
 図24~図25に示す変形例のように、貯液部40は、蒸発器13における液冷媒の液面よりも高い位置に配置されていてもよい。液配管16における液冷媒の液面の高さは、蒸発器13における液冷媒の液面の高さよりも、圧力損失の分、高くなるからである。
 本実施形態では、容積調整部材407が貯留部40の容積を調整することによって貯留部40の冷媒の貯留量を調整する。これにより、上記実施形態と同様の作用効果を奏することができる。
 (第12実施形態)
 上記実施形態では、貯液部40に液冷媒を流入させることによって液冷媒を貯えるが、本実施形態では、図26~図27に示すように、貯液部40に流入したガス冷媒を冷却凝縮させることによって液冷媒を貯える。
 貯液部40は冷媒出入口403を有している。冷媒出入口403は貯液部40の上部に設けられている。冷媒出入口403は連通配管51を介してガス配管15に接続されている。
 加熱冷却部56は、貯液部40内の冷媒を加熱したり冷却したりする。例えば加熱冷却部56はペルチェ素子である。加熱冷却部56は貯留量調整部である。加熱冷却部56の作動は制御装置30によって制御される。
 図26および図27では、サーモサイフォン式冷却装置10のうち液冷媒が存在する部分を点ハッチングで図示している。
 加熱冷却部56で貯液部40内の液冷媒を加熱することにより、貯液部40内の液冷媒が蒸発し、連通配管51を通じてガス配管15に流入する。したがって、図27に示すように、貯液部40内の液冷媒の液面が低下し、冷媒回路12を循環する冷媒の量が増加する。
 加熱冷却部56で貯液部40内のガス冷媒を冷却することにより、貯液部40内のガス冷媒が凝縮し液冷媒となって貯留される。したがって、図26に示すように、貯液部40内の液冷媒の液面が上昇し、冷媒回路12を循環する冷媒の量が減少する。
 本実施形態によると、制御装置30および加熱冷却部56は、貯液部40内の冷媒の液相から気相への相変化を伴う伝熱を行うことによって、貯液部40の冷媒の貯留量を調整する。これにより、貯液部40の冷媒の貯留量を調整できる。
 (第13実施形態)
 図28に示すように、上記第12実施形態に対して、連通配管51に開閉弁57を配置してもよい。開閉弁57は、連通配管51を開閉する電磁弁である。開閉弁57は貯留量調整部である。開閉弁57の作動は、制御装置30によって制御される。
 開閉弁57を閉じることにより、貯液部40内に貯留された液冷媒がガス配管15に流出することを防止できる。
 貯液部40には内圧センサ58が配置されている。内圧センサ58は、貯液部40の内部圧力を検出する。
 制御装置30は、内圧センサ58で検出した貯液部40の内部圧力が所定圧力を上回った場合、開閉弁57を開ける。これにより、貯液部40の内部圧力が上昇しすぎて貯液部40が破損することを防止できる。
 開閉弁57は、リリーフ弁であってもよい。リリーフ弁は、所定の圧力以上になると開く機械的機構を有する弁である。
 (第14実施形態)
 上記第1実施形態では、複数個の蒸発器13は、ガス配管15および液配管16に対して車両左方側に配置されているが、本実施形態では、図29に示すように、複数個の蒸発器13は、ガス配管15および液配管16に対して車両左右方向の両側に配置されている。図29の例では、蒸発器13が車両左右方向に3個ずつ配置されている。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (第15実施形態)
 上記第1実施形態では、1組のガス配管15および液配管16が車両前後方向に延びているが、本実施形態では、図30に示すように、凝縮器14に接続された1組のガス配管15および液配管16が、蒸発器13側で2組に分岐して車両前後方向に延びている。
 蒸発器13は、各組のガス配管15および液配管16の途中に複数個ずつ配置されている。図30の例では、蒸発器13は、各組のガス配管15および液配管16の途中に2個ずつ配置されている。各組のガス配管15および液配管16において、2個の蒸発器13は、互いに直列に配置されている。
 車両前後方向に延びるガス配管15および液配管16は2組に限定されるものではなく、3組以上の複数組であってもよい。
 各組のガス配管15および液配管16の途中に配置される蒸発器13の個数は2個ずつに限定されるものではなく、1個でもよいし、3個以上の複数個であってもよい。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (第16実施形態)
 上記実施形態では、凝縮器14は蒸発器13よりも車両の上方側に配置されているが、本実施形態では、図31に示すように、凝縮器14は蒸発器13とほぼ同じ高さに配置されている。そのため、凝縮器14に温水を流すことによって組電池11を加熱できる。
 凝縮器14に高温の冷却水を流すことによって、凝縮器14で液冷媒が蒸発し、蒸発器13で組電池11がガス冷媒から吸熱することによってガス冷媒が凝縮する。
 本実施形態によると、凝縮器14に低温の冷却水を流すことによって組電池11を冷却でき、凝縮器14に温水を流すことによって組電池11を加熱できる。
 (第17実施形態)
 上記実施形態では、凝縮器14は、冷媒を冷却水回路20の冷却水と熱交換させる熱交換器であるが、凝縮器14は冷媒と種々の冷却用媒体とを熱交換させる熱交換器であってもよい。
 図32に示す第1実施例のように、凝縮器14は、冷媒を外気と熱交換させる熱交換器であってもよい。凝縮器14には、室外送風機59によって外気が送風される。凝縮器14および室外送風機59は、車両1のエンジンルームに配置されている。
 図33に示す第2実施例のように、凝縮器14は冷媒と冷却水回路20の冷却水とを熱交換させる熱交換器であり、冷却水回路20の冷却水は、冷凍サイクル60の冷媒によって冷却されるようになっていてもよい。
 冷凍サイクル60は、圧縮機61と放熱器62と電池冷却用膨張弁63と冷却水冷却器64とを備える。
 圧縮機61は、冷凍サイクル60の冷媒を吸入して圧縮し吐出する。放熱器62は、圧縮機61から吐出された冷媒を放熱させて凝縮させる熱交換器である。電池冷却用膨張弁63は、放熱器62で凝縮された冷媒を減圧膨張させる減圧部である。冷却水冷却器64は、電池冷却用膨張弁63で減圧膨張された冷凍サイクル60の冷媒と、冷却水回路20の冷却水とを熱交換させて、冷凍サイクル60の冷媒を蒸発させるとともに冷却水回路20の冷却水を冷却する。
 図34に示す第3実施例のように、凝縮器14は、冷媒回路12の冷媒と冷凍サイクル60の冷媒とを熱交換させる熱交換器であってもよい。凝縮器14は、電池冷却用膨張弁63で減圧膨張された冷凍サイクル60の冷媒と、蒸発器13で蒸発した冷媒回路12の冷媒とを熱交換させて、冷凍サイクル60の冷媒を蒸発させるとともに冷媒回路12の冷媒を凝縮させる。
 図35に示す第4実施例のように、冷凍サイクル60は、空調用膨張弁65および空調用蒸発器66を備えていてもよい。
 空調用膨張弁65は、放熱器62で凝縮された冷媒を減圧膨張させる減圧部である。空調用蒸発器66は、冷凍サイクル60の冷媒と車室内へ送風させる空気とを熱交換させて車室内へ送風させる空気を冷却する冷却用熱交換器である。
 空調用膨張弁65および空調用蒸発器66は、冷凍サイクル60の冷媒流れにおいて放熱器62と並列に配置されている。
 電池冷却用膨張弁63の冷媒入口には、電池冷却側開閉弁67が配置されている。電池冷却側開閉弁67は、電池冷却用膨張弁63側の冷媒流路を開閉する電磁弁である。電池冷却側開閉弁67の作動は、制御装置30によって制御される。
 空調用膨張弁65の冷媒入口には、空調側開閉弁68が配置されている。空調側開閉弁68は、電池冷却用膨張弁63側の冷媒流路を開閉する電磁弁である。空調側開閉弁68の作動は、制御装置30によって制御される。
 本実施形態の第1~第4実施例においても、上記実施形態と同様の作用効果を奏することができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 ガス配管15および液配管16は、車両搭載の都合上、車両の他の部品や部材を迂回するように配置されていてもよい。
 上記実施形態では、組電池11は、車両の床下に配置されているが、組電池11は、車両の後方の、例えばトランクルームやリアシート下などに配置されていてもよい。組電池11は、車両の前方の、例えばエンジンルームなどに配置されていてもよい。
 上記実施形態では、冷媒回路12の冷媒としてフロン系冷媒が用いられているが、作動時に超臨界状態にならない特性を持つ種々の冷媒が用いられてもよい。
 上記実施形態では、サーモサイフォン式冷却装置10によって冷却される機器が組電池11である例を示したが、サーモサイフォン式冷却装置10によって冷却される機器は、モータ、インバータ、充電器等の種々の車載機器であってもよい。
 上記第1実施形態では、冷却水回路20に冷却水が循環するが、冷却水の代わりに液体状の冷却媒体(例えば、絶縁オイル等の絶縁流体)が循環するようになっていてもよい。
 蒸発器13で電池セル111を冷却する構造は、上記実施形態に示した構造に限定されない。
 各電池セル111の外形は直方体状に限定されるものではなく、例えば円筒状やラミネート状であってもよい。
 上記実施形態では、凝縮器14と蒸発器13とが車両前後方向に並んでいるが、これに限定されるものではなく、例えば、凝縮器14と蒸発器13とが車両左右方向に並んでいてもよい。
 上記実施形態では、車両前後方向の傾きに応じて貯液部40の冷媒の貯留量を調整するが、これに限定されるものではなく、例えば、車両左右方向の傾きに応じて貯液部40の冷媒の貯留量を調整してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  車載機器(11)から吸熱して冷媒を蒸発させる蒸発部(13)と、
     前記蒸発部で蒸発した前記冷媒を凝縮させる凝縮器(14)と、
     車両の傾斜量を検出する傾斜量検出部(33)と、
     前記蒸発部と前記凝縮器との間を循環する前記冷媒を液相状態で貯留する貯留部(40)と、
     前記貯留部の前記冷媒の貯留量を、前記傾斜量検出部が検出した傾斜量に応じて調整する貯留量調整部(30、41、44、46、49、52、54、55、56、57、407)とを備える車両用サーモサイフォン式冷却装置。
  2.  前記貯留量調整部は、前記傾斜量検出部が検出した傾斜量が増加すると前記貯留部の前記冷媒の貯留量を減少させる請求項1に記載の車両用サーモサイフォン式冷却装置。
  3.  前記貯留量調整部は、前記傾斜量検出部が検出した傾斜量が減少し、かつ前記車載機器の目標冷却量が所定冷却量(Q)を上回っている場合、前記貯留部の前記冷媒の貯留量を増加させる請求項1または2に記載の車両用サーモサイフォン式冷却装置。
  4.  前記貯留量調整部は、前記貯留部内の前記冷媒の相変化を伴う伝熱を行うことによって、前記貯留部の前記冷媒の貯留量を調整する請求項1ないし3のいずれか1つに記載の車両用サーモサイフォン式冷却装置。
  5.  前記貯留量調整部は、前記貯留部の冷媒流通口(401、402)の開口面積を調整することによって前記貯留部の前記冷媒の貯留量を調整する請求項1ないし4のいずれか1つに記載の車両用サーモサイフォン式冷却装置。
  6.  前記貯留量調整部は、前記貯留部の容積を調整することによって前記貯留部の前記冷媒の貯留量を調整する請求項1ないし3のいずれか1つに記載の車両用サーモサイフォン式冷却装置。
  7.  前記貯留部は、前記蒸発部から流出した前記冷媒が流入する冷媒入口(401)と、前記凝縮器側へ気相の前記冷媒を流出させるガス冷媒出口(405)と、前記凝縮器側へ液相の前記冷媒を流出させる液冷媒出口(406)とを有し、
     さらに、前記液冷媒出口を開閉する流出弁(55)を備える請求項1ないし4のいずれか1つに記載の車両用サーモサイフォン式冷却装置。
  8.  前記蒸発部は、前記車載機器と前記冷媒とを熱交換させる複数の熱交換器を有しており、
     前記複数の熱交換器は、互いの相対位置が固定されている請求項1ないし7のいずれか1つに記載の車両用サーモサイフォン式冷却装置。
PCT/JP2020/010926 2019-03-29 2020-03-12 車両用サーモサイフォン式冷却装置 WO2020203152A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066105 2019-03-29
JP2019066105A JP2020165586A (ja) 2019-03-29 2019-03-29 車両用サーモサイフォン式冷却装置

Publications (1)

Publication Number Publication Date
WO2020203152A1 true WO2020203152A1 (ja) 2020-10-08

Family

ID=72668285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010926 WO2020203152A1 (ja) 2019-03-29 2020-03-12 車両用サーモサイフォン式冷却装置

Country Status (2)

Country Link
JP (1) JP2020165586A (ja)
WO (1) WO2020203152A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576281B1 (en) * 2020-12-02 2023-02-07 Amazon Technologies, Inc. Dynamic regulation of two-phase thermal management systems for servers
US11665865B1 (en) 2020-12-02 2023-05-30 Amazon Technologies, Inc. Dynamic control of two-phase thermal management systems for servers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285896A (ja) * 2009-06-09 2010-12-24 Toyota Motor Corp 沸騰冷却装置
WO2013179466A1 (ja) * 2012-05-31 2013-12-05 トヨタ自動車株式会社 排気熱回収装置
WO2018047532A1 (ja) * 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
WO2018168276A1 (ja) * 2017-03-16 2018-09-20 株式会社デンソー 機器温調装置
JP2019002642A (ja) * 2017-06-16 2019-01-10 株式会社デンソー 冷却器、およびサーモサイフォン
WO2019054076A1 (ja) * 2017-09-13 2019-03-21 株式会社デンソー 機器温調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285896A (ja) * 2009-06-09 2010-12-24 Toyota Motor Corp 沸騰冷却装置
WO2013179466A1 (ja) * 2012-05-31 2013-12-05 トヨタ自動車株式会社 排気熱回収装置
WO2018047532A1 (ja) * 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
WO2018168276A1 (ja) * 2017-03-16 2018-09-20 株式会社デンソー 機器温調装置
JP2019002642A (ja) * 2017-06-16 2019-01-10 株式会社デンソー 冷却器、およびサーモサイフォン
WO2019054076A1 (ja) * 2017-09-13 2019-03-21 株式会社デンソー 機器温調装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576281B1 (en) * 2020-12-02 2023-02-07 Amazon Technologies, Inc. Dynamic regulation of two-phase thermal management systems for servers
US11665865B1 (en) 2020-12-02 2023-05-30 Amazon Technologies, Inc. Dynamic control of two-phase thermal management systems for servers

Also Published As

Publication number Publication date
JP2020165586A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
US10557660B2 (en) Heat exchanger with a plurality of heat exchanging portions
US9643469B2 (en) Vehicle thermal management system
JP6604442B2 (ja) 機器温調装置
US20190363411A1 (en) Device temperature regulator
CN109690222B (zh) 设备温度调节装置
JP6610800B2 (ja) 機器温調装置
CN111295555A (zh) 设备冷却装置
WO2018047533A1 (ja) 機器温調装置
JP6669266B2 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
JP6729527B2 (ja) 機器温調装置
JP2021027045A (ja) 温度調整装置
WO2018047532A1 (ja) 機器温調装置
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
WO2019150751A1 (ja) 温度調整装置
WO2020213535A1 (ja) 車両用サーモサイフォン式冷却装置
WO2018047538A1 (ja) 機器温調システム
WO2020129491A1 (ja) 電池昇温装置
JP7159771B2 (ja) 機器温調装置
WO2019123881A1 (ja) 機器温調装置
US20220407136A1 (en) Battery cooling device
WO2020246248A1 (ja) 沸騰冷却装置
JP6919505B2 (ja) サーモサイフォン式温調装置
WO2021025128A1 (ja) 温度調整装置
JP7505452B2 (ja) 電池冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783017

Country of ref document: EP

Kind code of ref document: A1