JP5835474B2 - 熱輸送装置 - Google Patents

熱輸送装置 Download PDF

Info

Publication number
JP5835474B2
JP5835474B2 JP2014512050A JP2014512050A JP5835474B2 JP 5835474 B2 JP5835474 B2 JP 5835474B2 JP 2014512050 A JP2014512050 A JP 2014512050A JP 2014512050 A JP2014512050 A JP 2014512050A JP 5835474 B2 JP5835474 B2 JP 5835474B2
Authority
JP
Japan
Prior art keywords
heat
unit
circulation path
heat transport
transport medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014512050A
Other languages
English (en)
Other versions
JPWO2013160993A1 (ja
Inventor
崇 発田
崇 発田
山田 賢一
賢一 山田
隆幸 岩川
隆幸 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013160993A1 publication Critical patent/JPWO2013160993A1/ja
Application granted granted Critical
Publication of JP5835474B2 publication Critical patent/JP5835474B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は熱輸送装置に関する。
熱輸送装置としては熱の輸送媒体が自然循環によって凝縮した状態で受熱するとともに、蒸気化した状態で放熱することを繰り返し行う蒸気ループ構造が知られている。この点、かかる蒸気ループ構造によって熱を回収し利用する技術として、エンジンの廃熱を利用するエンジンの廃熱利用装置が例えば特許文献1で開示されている。
このほか本発明と関連性があると考えられる技術が例えば特許文献2から5で開示されている。特許文献2ではランキンサイクルを備えたエンジンが停止し、冷却された際の蒸気の凝縮に起因する系内の負圧を軽減し、配管等の破損を回避する廃熱回収装置が開示されている。特許文献3では機関冷却系の冷媒蒸気を排気により加熱してタービンを駆動する廃熱回収装置を備えた内燃機関が開示されている。特許文献3の明細書の段落0037では機関停止時に冷却経路内が真空化し、外部から空気を吸い込むおそれがあることと、これに対し真空ポンプを設けて冷却経路内の空気を排除可能であることが開示されている。
特許文献4では上述した蒸気ループ構造の一種であるループ式ヒートパイプ構造の排熱回収装置を備える内燃機関の暖機装置が開示されている。特許文献4の明細書の段落0055ではループ式ヒートパイプ構造の排熱回収装置の内部が真空状態にされていることが開示されている。特許文献5では冷却水流路のエア抜きが可能な車両冷却装置が開示されている。
特開2010−156315号公報 特開2008−185001号公報 特開2000−345835号公報 特開2010−281236号公報 特開2008−121434号公報
熱輸送装置では外部から真空状態にある循環経路部内に空気の吸い込みが発生することがある。そして、空気の吸い込みが発生すると、熱の輸送媒体の代わりに空気が存在する分、受熱量および放熱量が低下する結果、装置性能が低下する虞がある。
この点、熱輸送装置としては具体的には例えば上述した蒸気ループ構造を備えるものがある。そして、かかる熱輸送装置では受熱が行われる熱回収器で熱の輸送媒体が蒸気化し、その後拡散的に移動することで、放熱が行われる凝縮部に到達することになる。このため、かかる熱輸送装置では空気の吸い込みが発生すると、熱の輸送媒体の移動が大きく阻害されることになる。結果、熱の輸送ができなくなるか、或いは熱の輸送性能が大幅に低下することで、装置性能が大幅に低下する虞がある。
一方、空気の吸い込みは例えば循環経路部内が完全に密閉されていれば、特段懸念されるものではないともいえる。ところが、循環経路部内を完全に密閉するのは困難であり、必ずしも現実的ではない。このため、一般には例えば各種のシール部材を用いて循環経路部内の密閉性を高めることが考えられる。ところがこの場合には、空気の吸い込みが多少なりとも発生することで、循環経路部内に空気が次第に蓄積される虞がある。またこの場合には、シール部材の経時劣化を伴うことから、長期に亘って高い密閉性を確保することが困難となる結果、空気の吸い込みを抑制すること自体も困難となる。
このため、装置性能の低下に対処するには空気の吸い込みが発生することを前提として対処することが現実的であると考えられる。そしてこのためには、例えば特許文献3で開示されているように真空ポンプを用いることで循環経路部内から空気を排除することが考えられる。ところが、この場合には例えばコスト面で不利になる虞や小型化に不利になる虞がある。
本発明は上記課題に鑑み、例えばコスト面で有利な構成で空気の吸い込みで低下した装置性能の回復を図ることが可能な熱輸送装置を提供することを目的とする。
本発明は熱の輸送媒体を蒸気化する熱回収器と、前記熱回収器で蒸気化された熱の輸送媒体が凝縮する凝縮部とが組み込まれているとともに、真空状態を有する循環経路部と、前記循環経路部から分岐するとともに、流通を制御可能なバルブが組み込まれている分岐経路部と、前記循環経路部が空気を吸い込んでいることが検出或いは推定された場合に、前記循環経路部内の圧力が所定圧よりも高い状態で前記バルブを開閉する第1の制御部とを備え、前記循環経路部に補充する熱の輸送媒体を液相状態で貯留するリザーブタンクをさらに備えるとともに、前記分岐経路部が前記リザーブタンクで少なくとも確保されるべき液面の高さよりも低い位置で開口するように前記リザーブタンクに接続されており、前記リザーブタンクから前記循環経路部に補充すべき熱の輸送媒体の補充量を算出する補充量算出部と、前記第1の制御部が前記バルブを開閉した後に、前記循環経路部内の圧力が前記所定圧よりも低下した状態で、前記補充量算出部が算出する補充量に応じて前記バルブを開閉する第2の制御部とをさらに備える熱輸送装置である。
本発明は前記循環経路部内を循環する熱の輸送媒体が凍結する可能性があるか否かを判断する凍結判断部と、前記凍結判断部が前記循環経路部内を循環する熱の輸送媒体が凍結する可能性があると判断した場合に、作動停止状態からの作動開始条件成立時に前記循環経路部内に必要とされる熱の輸送媒体量を減量補正する減量補正部とをさらに備える構成とすることができる。
本発明は熱を輸送するにあたり、前記循環経路部内を循環する熱の輸送媒体が自然循環によって前記熱回収器において凝縮した状態で受熱するとともに、前記凝縮部において蒸気化した状態で放熱することを繰り返し行う構成とすることができる。
本発明は内燃機関を備える車両に搭載され、前記熱回収器が前記内燃機関の排気熱を回収する構成とすることができる。
本発明によれば、例えばコスト面で有利な構成で空気の吸い込みで低下した装置性能の回復を図ることができる。
熱輸送装置の概略構成図である。 実施例1の制御例をフローチャートで示す図である。 実施例2の制御例をフローチャートで示す図である。 実施例3の制御例をフローチャートで示す図である。 実施例5の制御例をフローチャートで示す図である。 実施例6の制御例をフローチャートで示す図である。
図面を用いて本発明の実施例について説明する。
図1は熱輸送装置1Aの概略構成図である。図1では熱輸送装置1Aとともに内燃機関50や排気管51やスタータコンバータ52やアンダーフロアコンバータ53を示す。図1に示す各構成は図示しない車両に搭載されている。熱輸送装置1Aは循環経路部10と分岐経路部20とリザーブタンク30とECU40Aとを備えている。熱輸送装置1Aは熱の輸送として、受熱によって蒸気化するとともに放熱によって凝縮する現象を利用した熱の輸送媒体(以下、単に輸送媒体と称す)による熱の輸送を行う。
循環経路部10は熱回収器11と凝縮部12と供給配管13と戻り配管14とを備えている。循環経路部10はこれらの構成を有して構成されることで、熱回収器11と凝縮部12とが組み込まれた循環経路を形成している。循環経路部10内には輸送媒体が大気圧よりも減圧された状態(例えば−100kPa)で予め封入されている。そしてこれにより、輸送媒体による熱の輸送を行うにあたり、使用環境に合わせて輸送媒体の沸点を調整している。この点、輸送媒体には具体的にはここではHOが用いられている。
熱回収器11は熱交換器であり、輸送媒体を蒸気化する。熱回収器11は具体的にはここでは内燃機関50の排気と輸送媒体との間で熱交換を行うことで排気から熱を回収し、輸送媒体を蒸気化する熱交換器となっている。この点、内燃機関50の始動は熱輸送装置1Aの作動開始条件となり、内燃機関50の停止は熱輸送装置1Aの作動停止条件となる。そして、循環経路部10は作動停止条件成立後に冷却が進む結果、輸送媒体の凝縮が進むことで真空状態を有することになる。
内燃機関50の排気は排気管51に設けられたスタータコンバータ52やアンダーフロアコンバータ53で浄化された上で、排気管51を介して排出される。そして、熱回収器11は具体的には排気管51のうち、アンダーフロアコンバータ53よりも下流側の部分に設けられている。
凝縮部12は蒸気化された輸送媒体である蒸気が凝縮する部分であり、蒸気が輸送する熱を利用する部分となっている。凝縮部12は具体的にはここでは内燃機関50のうち、蒸気が輸送する熱を暖機に利用する部分となっている。このため、熱輸送装置1Aは内燃機関50と共有するかたちで凝縮部12を備えている。凝縮部12は内燃機関50のうち、蒸気が輸送する熱で冷間時の内燃機関50のフリクショントルクを低減可能な部分とすることができる。凝縮部12は具体的には例えば内燃機関50のクランクシャフトを軸支する軸受部とすることができる。
供給配管13は熱回収器11から凝縮部12に蒸気を供給する。供給配管13には圧力センサ61と温度センサ62とが設けられている。圧力センサ61は供給配管13内の圧力を検知することで、循環経路部10内の圧力(以下、系内圧と称す)を検知する。温度センサ62は供給配管13内の温度を検知することで、循環経路部10内の温度(以下、系内温と称す)を検知する。
この点、圧力センサ61は循環経路部10のうち、最も位置が高い部分に設けられている。また、温度センサ62は循環経路部10のうち、圧力センサ61が系内圧を検知する部分の系内温を検知するように設けられている。戻り配管14は凝縮部12から熱回収器11に凝縮した輸送媒体を戻す。戻り配管14は具体的には熱回収器11とともに凝縮した輸送媒体を凝縮部12から熱回収器11に重力の作用によって戻すことができるように設けられている。
分岐経路部20は分岐配管21とバルブ22とを備えている。分岐経路部20はこれらの構成を有して構成されることで、バルブ22が組み込まれた分岐経路を形成している。分岐配管21は循環経路部10から分岐している。バルブ22は分岐配管21の流通を制御する。バルブ22は具体的には流量調節弁となっている。バルブ22は例えば開閉弁であってもよい。分岐配管21はバルブ22を介してリザーブタンク30に接続されている。リザーブタンク30は循環経路部10に補充する輸送媒体を液相状態で貯留する。
この点、分岐配管21は具体的にはバルブ22を介してリザーブタンク30の底部に下方から接続されている。そしてこれにより、リザーブタンク30で少なくとも確保されるべき液面の高さよりも低い位置で開口するようにリザーブタンク30に接続されている。このようにリザーブタンク30に接続される分岐配管21はさらに具体的には次のように設けられている。すなわち、戻り配管14から重力作用方向において上方に向かって分岐および延伸するように設けられている。また、戻り配管14のうち、熱回収器11寄りの部分から分岐するように設けられている。
リザーブタンク30は具体的には液相状態で貯留する輸送媒体に大気圧が作用する大気開放型のタンクとなっている。また、液相状態で貯留する輸送媒体に加えて、さらに循環経路部10内を循環する輸送媒体を液相状態で貯留可能な容量を有している。リザーブタンク30は例えば所定の圧力で開弁することで、内圧の上昇を抑制するブリーザバルブ付きのタンクであってもよい。
ECU40Aは電子制御装置であり、ECU40Aには圧力センサ61や温度センサ62のほか、大気圧を検知する大気圧センサ63や、大気温を検知する大気温センサ64や、内燃機関50の運転状態を検出するためのセンサ群65がセンサ・スイッチ類として電気的に接続されている。また、バルブ22が制御対象として電気的に接続されている。
センサ群65は内燃機関50の回転数NEを検出可能なクランクセンサや、内燃機関50の吸入空気量を計測可能なエアフロメータや、内燃機関50に対して加速要求を行うアクセルペダルの踏み込み量を検知するアクセル開度センサや、内燃機関50の冷却水温を検知する水温センサや、内燃機関50の排気温を検知する排気温センサや、内燃機関50を始動するためのイグニッションスイッチを含む。センサ群65の出力やセンサ群65の出力に基づく各種の情報は例えば内燃機関50制御用のECUを介して取得されてもよい。或いは、ECU40Aが内燃機関50制御用のECUであってもよい。
ECU40AではCPUがROMに格納されたプログラムに基づき、必要に応じてRAMの一時記憶領域を利用しつつ処理を実行する。そしてこれにより、例えば次に示す第1の制御部など各種の機能部が実現される。
第1の制御部は循環経路部10内の同一の作動条件に対する系内圧の上昇があると認められた場合に、系内圧が所定圧αよりも高い状態でバルブ22を開閉する。作動条件は例えば循環経路部10内の輸送媒体量や大気温や熱回収器11の熱的状態や凝縮部12の熱的状態である。そして、同一の作動条件に対する系内圧の上昇があると認められた場合とは、具体的には循環経路部10が空気を吸い込んでいることが検出或いは推定された場合である。すなわち、この場合には空気を吸い込んでいる分、空気を吸い込んでいない場合と比較して同一の作動条件で系内圧が上昇することになる。
このため、ECU40Aでは循環経路部10が空気を吸い込んでいるか否かを判断する吸い込み判断部がさらに実現される。したがって、第1の制御部は具体的には循環経路部10が空気を吸い込んでいると吸い込み判断部が判断した場合に、系内圧が所定圧αよりも高い状態でバルブ22を開閉する。
所定圧αは具体的には分岐経路部20の接続先であるリザーブタンク30側から閉弁状態にあるバルブ22に作用する圧力とすることができる。当該圧力は例えば圧力センサを用いて検出できる。一方、ここではリザーブタンク30が大気開放型のタンクとなっている。また、リザーブタンク30に液相状態で貯留されている輸送媒体の液圧は大気圧と比較して無視できる程度に小さい。このため、ここでは所定圧αとして大気圧を用いることとしている。この点、所定圧αを大気圧とすることは、このようにしてリザーブタンク30側から閉弁状態にあるバルブ22に圧力が作用する場合を含むこととする。
系内圧が所定圧αよりも高い状態は具体的にはここでは系内圧が所定圧βよりも高い場合となっている。所定圧βは所定圧αよりも高い圧力とすることができる。第1の制御部は具体的には例えば作動開始条件成立後、作動停止条件が成立するまでの間(ここでは内燃機関50運転中)にバルブ22を開閉することができる。
吸い込み判断部は具体的には系内圧および系内温を取得するとともに、取得した系内温に対応する飽和蒸気圧を算出する。そして、算出した飽和蒸気圧と取得した系内圧との差分を算出するとともに、算出した差分の大きさが所定値よりも大きい場合に、空気を吸い込んでいると判断する。系内圧は圧力センサ61の出力に基づき検出することで、系内温は温度センサ62の出力に基づき検出することでそれぞれ取得できる。系内圧や系内温は例えば推定によって取得されてもよい。
このように構成された熱輸送装置1Aは熱を輸送するにあたり、輸送媒体が自然循環によって凝縮した状態で熱回収器11において受熱するとともに、蒸気化した状態で凝縮部12において放熱することを繰り返し行う。そしてこれにより、熱の回収と利用とを行う。
次にECU40Aの制御動作の一例を図2に示すフローチャートを用いて説明する。本フローチャートは例えば内燃機関50運転中に行うことができる。本フローチャートは内燃機関50停止中に行われてもよい。ECU40Aは系内圧および系内温を取得する(ステップS1)。続いてECU40Aは取得した系内温に対応する飽和蒸気圧を算出する(ステップS2)。また、算出した飽和蒸気圧と取得した系内圧との差分を算出するとともに(ステップS3)、算出した差分の大きさが所定値よりも大きいか否かを判定する(ステップS4)。否定判定であれば本フローチャートを一旦終了する。
ステップS4で肯定判定であれば、ECU40Aは系内圧を取得するとともに(ステップS5)、取得した系内圧が所定圧βよりも高いか否かを判定する(ステップS6)。この点、系内圧は熱回収器11における輸送媒体の受熱が進むことで上昇し、所定圧αをさらには所定圧βを上回ることになる。したがって、ステップS6では本フローチャートの実行タイミングに応じて、例えば内燃機関50の冷間始動後、ある期間が経過してから内燃機関50停止後、ある期間が経過するまでの間のいずれかのタイミングで肯定判定されることになる。
ステップS6で否定判定であればステップS5に戻る。一方、ステップS6で肯定判定であれば、循環経路部10が空気を吸い込んでいると判断される。このためこの場合にはECU40Aはバルブ22を開閉する(ステップS7)。バルブ22は例えば圧力センサ61の出力に基づき系内圧が所定圧αよりも高い所定の圧力を下回るまでの間、開弁することができる。或いは、バルブ22の開弁期間や開弁度合いは例えば所定圧α、β間の差圧に応じて予め設定されていてもよい。ステップS7の後には本フローチャートを一旦終了する。
次に熱輸送装置1Aの作用効果について説明する。熱輸送装置1Aは同一の作動条件に対する系内圧の上昇があると認められた場合に、系内圧が所定圧αよりも高い状態でバルブ22を開閉する。そしてこれにより、循環経路部10内に凝縮した輸送媒体を残しつつ、循環経路部10内から蒸気とともに空気を排出することで、少なくとも熱の輸送性能の観点から装置性能の回復を図ることができる。
この点、循環経路部10内から蒸気とともに空気を排出した後には、循環経路部10内の輸送媒体量は減少する。一方、系内圧は例えば作動停止条件成立後、循環経路部10の冷却が進むことで大気圧よりも低下することになる。そして、系内圧が大気圧よりも低下した場合には循環経路部10内に輸送媒体を補充することが可能になる。
このため、熱輸送装置1Aは具体的には少なくとも作動停止条件成立後、作動停止状態からの次の作動開始条件成立時までには輸送量の観点からも装置性能を回復できる。そして、このようにして空気の吸い込みで低下した装置性能の回復を図ることが可能な熱輸送装置1Aは例えば真空ポンプが不要である分、コスト面で有利な構成とすることができる。また、真空ポンプが不要である分、小型化に有利な構成とすることもできる。
熱輸送装置1Aは具体的には循環経路部10が空気を吸い込んでいると判断した場合に、系内圧が所定圧αよりも高い状態でバルブ22を開閉する。この点、熱輸送装置1Aは系内圧および系内温の代わりに例えば系内圧に基づき、循環経路部10が空気を吸い込んでいるか否かを判断するように構成することもできる。
ところが、この場合には検出精度との関係上、比較の対象となる基準の系内圧を作動条件が安定する場合(例えば内燃機関50停止後、一定期間が経過した場合など)に合わせて把握しておくことが現実的となる。このためこの場合には、空気の吸い込みを検出する機会が限られてくる虞がある。
これに対し、熱輸送装置1Aは系内圧および系内温を取得するとともに、取得した系内温に対応する飽和蒸気圧を算出する。そして、算出した飽和蒸気圧と取得した系内圧との差分を算出するとともに、算出した差分の大きさが所定値よりも大きい場合に循環経路部10が空気を吸い込んでいると判断する。このため、熱輸送装置1Aは作動状態に関わらず空気の吸い込みを検出できるようにすることもできる。結果、空気の吸い込みの早期検出を可能にすることもできる。
熱輸送装置1Aは熱を輸送するにあたり、輸送媒体が自然循環によって凝縮した状態で熱回収器11において受熱するとともに、蒸気化した状態で凝縮部12において放熱することを繰り返し行う構成となっている。この点、このように構成された熱輸送装置1Aでは空気の吸い込みによって蒸気の拡散的な移動が妨げられることになる。このため、このように構成された熱輸送装置1Aでは空気の吸い込みによって熱の輸送性能が大幅に低下することで、装置性能が大幅に低下する虞がある。このため、熱輸送装置1Aは具体的にはこのような構成である場合に装置性能の回復を特に好適に図ることができる。
内燃機関50を備える車両においては、熱輸送装置1Aを搭載することで内燃機関50の排気熱の回収および利用を図ることができる。一方、車両においては熱輸送装置1Aを搭載するスペースが限られてくる。また、車両においては循環経路部10内を完全に密閉する試みは、経時劣化が発生し得ることやコストを考慮すると特に現実的ではない。このため、熱輸送装置1Aは内燃機関50を備える車両に搭載され、熱回収器11が内燃機関50の排気熱を回収する場合に特に適している。この場合、熱の輸送性能の回復を図ることで、具体的には内燃機関50の暖機性向上による燃費向上を図ることができる。
熱輸送装置1Aはリザーブタンク30を備えるとともに、分岐経路部20をリザーブタンク30に接続する構成となっている。そしてこれにより、循環経路部10とリザーブタンク30とを接続するために分岐経路部をさらに設ける必要がない構成となっている。このため、熱輸送装置1Aは具体的にはかかる構成であることで、さらにコスト面で有利な構成とすることや小型化に有利な構成とすることができる。
分岐経路部20の接続先は例えば大気とすることもできる。この場合でも、分岐経路部20と同様の分岐経路部をさらに備えるとともに、当該分岐経路部をリザーブタンク30に接続することで、装置性能の回復を図ることができる。この場合、分岐経路部20を第1の分岐経路部とするとともに、リザーブタンク30を接続先とする分岐経路部を第2の分岐経路部とすることができる。
なお、熱輸送装置1Aでは循環経路部10内に補充すべき輸送媒体の補充量の算出および輸送媒体の補充は適宜行われてよい。この点、補充量の算出および輸送媒体の補充を行うにあたっては、熱輸送装置1Aは例えば実施例3で後述する補充量算出部と第2の制御部とをさらに備えることができる。これは次に説明する熱輸送装置1Bについても同様である。
本実施例の熱輸送装置1BはECU40Aの代わりにECU40Bを備える点以外、熱輸送装置1Aと実質的に同一である。ECU40Bは以下に示す点以外、ECU40Aと実質的に同一である。このため、熱輸送装置1Bについては図示省略する。
ECU40Bでは循環経路部10が空気を吸い込んでいるか否かを判断するにあたり、吸い込み判断部が次のように判断する。すなわち、ECU40Bでは吸い込み判断部が熱回収器11の回収熱量に応じた系内圧の実変化量と予測変化量との差分の大きさが所定値よりも大きい場合に、循環経路部10が空気を吸い込んでいると判断する。
回収熱量は所定の回収期間内に熱回収器11で回収された熱量である。回収熱量は例えば内燃機関50から排出される時々の排気の量と排気温とに基づき算出(推定)できる。回収期間は例えば作動停止状態からの作動開始条件成立時(ここでは内燃機関50の冷間始動時)から所定時間が経過するまでの間とすることができる。これにより、作動条件のうち、熱回収器11や凝縮部12の熱的状態を安定させることができる。
実変化量は回収期間開始時および終了時の系内圧それぞれに基づき算出できる。予測変化量は例えば所定の回収期間内に予測される範囲内の回収熱量に応じて予め設定しておくことができる。予測変化量は例えば作動開始条件成立時の大気温に応じて補正されてもよい。
次にECU40Bの制御動作の一例を図3に示すフローチャートを用いて説明する。本フローチャートは例えば内燃機関50の冷間始動時に開始することができる。ECU40Bは系内圧を取得する(ステップS11)。ステップS11では回収期間開始時の系内圧が取得される。続いてECU40Bは回収熱量の算出を開始するとともに(ステップS12)、回収期間が経過したか否かを判定する(ステップS13)。否定判定であればステップS12に戻る。肯定判定であれば、ECU40Bは系内圧を取得する(ステップS14)。ステップS14では回収期間終了時の系内圧が取得される。
続いてECU40Bは回収期間開始時および終了時の系内圧それぞれに基づき、系内圧の実変化量を算出する(ステップS15)。また、算出した回収熱量に対応する予測変化量を取得する(ステップS16)。続いてECU40Bは実変化量と予測変化量との差分を算出し(ステップS17)、算出した差分の大きさが所定値よりも大きいか否かを判定する(ステップS18)。そして、肯定判定であればバルブ22を開閉し(ステップS19)、本フローチャートを終了する。また、ステップS18で否定判定であれば本フローチャートを終了する。
次に熱輸送装置1Bの作用効果について説明する。ここで、熱輸送装置1Aの場合には熱回収器11や凝縮器12の熱的状態が過渡的に変化している場合でも空気の吸い込みを検出できる。しかしながら、例えばこの場合には、変化が急激である場合ほど検出精度も低下し得る。また、熱輸送装置1Aの場合には例えば内燃機関50の冷却水温等に基づき系内温を推定することもできる。しかしながら、この場合には内燃機関50の運転態様によっては系内温と冷却水温等との間に必ずしも高い相関関係が得られない場合もある。結果、このような場合にも検出精度が低下し得る。
これに対し、熱輸送装置1Bは熱回収器11の回収熱量に応じた系内圧の実変化量と予測変化量との差分の大きさが所定値よりも大きい場合に、循環経路部10が空気を吸い込んでいると判断する。そしてこれにより、熱輸送装置1Aでは空気の吸い込みを高い検出精度で検出し難い場合に空気の吸い込みを検出できる。この点、熱輸送装置1Bは実施例1で前述した吸い込み判断部をさらに備えることで、検出精度を好適に高めることもできる。この場合、例えば実施例1で前述した吸い込み判断部を第1の吸い込み判断部とし、本実施例で説明した吸い込み判断部を第2の吸い込み判断部とすることができる。
本実施例の熱輸送装置1CはECU40Aの代わりにECU40Cを備える点以外、熱輸送装置1Aと実質的に同一である。ECU40Cは以下に示す点以外、ECU40Aと実質的に同一である。このため、熱輸送装置1Cについては図示省略する。同様の変更は例えば熱輸送装置1Bに対して行われてもよい。
ECU40Cでは補充量算出部と第2の制御部とがさらに実現される。補充量算出部はリザーブタンク30から循環経路部10に補充すべき輸送媒体の補充量を算出する。第2の制御部は第1の制御部がバルブ22を開閉した後に、系内圧が所定圧αよりも低下した状態で補充量算出部が算出する補充量に応じてバルブ22を開閉する。系内圧が所定圧αよりも低下した状態は具体的にはここでは系内圧が所定圧γよりも低下した場合となっている。所定圧γは所定圧αよりも低い圧力とすることができる。
補充量算出部は具体的には作動開始条件成立後、作動停止条件が成立するまでの間(ここでは内燃機関50運転中)に第1の制御部がバルブ22を開閉した場合に、第1の制御部がバルブ22を開閉した際に排出される輸送媒体量に応じて補充量を算出する。当該補充量は具体的には系内圧と所定圧αとの差圧と、第1の制御部がバルブ22を開閉した際の開弁期間とに応じて(ここではさらに開弁度合いに応じて)算出することができる。
第2の制御部は具体的には作動開始条件成立後、作動停止条件が成立するまでの間に第1の制御部がバルブ22を開閉した後、引き続き作動停止条件が成立するまでの間に系内圧が所定圧αよりも低下した状態で補充量算出部が算出した補充量に応じてバルブ22を開閉する。
次にECU40Cの制御動作の一例を図4に示すフローチャートを用いて説明する。本フローチャートは図2に示すフローチャートが内燃機関50運転中に行われた場合に、ステップS6に続いて引き続き内燃機関50運転中に行うことができる。ECU40Cは補充量を算出する(ステップS21)。続いてEUC40Cは系内圧を取得するとともに(ステップS22)、取得した系内圧が所定圧γよりも低下したか否かを判定する(ステップS23)。否定判定であればステップS22に戻る。肯定判定であれば、ECU40Cは算出した補充量に応じてバルブ22を開閉する(ステップS24)。ステップS24の後には本フローチャートを終了する。
次に熱輸送装置1Cの作用効果について説明する。熱輸送装置1Cは補充量を算出するとともに、第1の制御部がバルブ22を開閉した後に系内圧が所定圧αよりも低下した状態で、算出した補充量に応じてバルブ22を開閉する。そしてこれにより、熱の輸送量の観点から装置性能の回復を図ることができる。すなわち、循環経路部10内から蒸気とともに空気を排出した後には、具体的にはこのようにして熱の輸送量の観点からも装置性能の回復を図ることができる。
一方、第1の制御部がバルブ22を開閉した後には系内圧を高めていた空気が排出されるだけでなく、循環経路部10内の輸送媒体量も減少した状態となる。このためこの場合には、作動停止条件が成立する前でも熱回収器11における受熱状況や凝縮部12における放熱状況に応じて系内圧が所定圧αよりも低下し得る状態となる。
これに対し、熱輸送装置1Cは具体的には作動開始条件成立後、作動停止条件が成立するまでの間に第1の制御部がバルブ22を開閉した後、第1の制御部がバルブ22を開閉した際に排出される輸送媒体量に応じて補充量を算出する。また、引き続き作動停止条件が成立するまでの間に系内圧が所定圧αよりも低下した状態で算出した補充量に応じてバルブ22を開閉する。このため、熱輸送装置1Cは作動停止条件成立後、循環経路部10の冷却が進むことを待つことなく受熱量の観点からも早期に装置性能の回復を図ることができる。
本実施例の熱輸送装置1DはECU40Cの代わりにECU40Dを備える点以外、熱輸送装置1Cと実質的に同一である。ECU40Dは以下に示す点以外、ECU40Aと実質的に同一である。このため、熱輸送装置1Dについては図示省略する。ECU40Dでは補充量算出部と第2の制御部とが具体的には次に示すように実現される。
すなわち、ECU40Dでは補充量算出部が具体的には循環経路部10内に残留する輸送媒体の残留量と、作動停止状態からの作動開始条件成立時に循環経路部10内に必要とされる輸送媒体量とに基づき輸送媒体の補充量を算出する。また、第2の制御部が具体的には作動停止条件成立後、系内圧が所定圧αよりも低下した状態で補充量算出部が算出する補充量に応じてバルブ22を開閉する。
残留量は具体的には次のようにして算出できる。すなわち、まずバルブ22の開閉に応じて循環経路部10内から排出される輸送媒体の積算排出量と、バルブ22の開閉に応じて循環経路部10内に補充される輸送媒体の積算補充量とを算出する。そして、循環経路部10内に予め封入した輸送媒体量から積算排出量を減算するとともに、当該輸送媒体量に積算補充量を加算することで算出できる。作動停止状態からの作動開始条件成立時に循環経路部10内に必要とされる輸送媒体量は予め設定しておくことができる。
ECU40Dの制御動作は例えば図2に示すフローチャートが内燃機関50運転中に行われた場合に、図4に示すフローチャートと同様の制御動作をステップS6に続いて内燃機関50停止後に開始することで実現できる。このため、ECU40Dの制御動作を示すフローチャートについては図示省略する。なお、補充量を算出するにあたり、残留量は図4に示すフローチャートとは別に逐次算出することができる。この点、補充量は必ずしも作動停止条件成立時に限られず、例えば残留量とともに逐次算出されてもよい。
次に熱輸送装置1Dの作用効果について説明する。熱輸送装置1Dは補充量を算出するにあたり、具体的には上述したように補充量を算出する。また、算出した補充量に応じてバルブ22を開閉するにあたり、具体的には上述したようにバルブ22を開閉する。そしてこれにより、作動停止状態からの次の作動開始条件成立時に備えて、作動停止条件成立後に循環経路部10内に適量の輸送媒体量を確保することができる。すなわち、輸送量の観点からも装置性能の回復を図るには、具体的にはこのように装置性能の回復を図ることもできる。
本実施例の熱輸送装置1EはECU40Aの代わりにECU40Eを備える点以外、熱輸送装置1Aと実質的に同一である。ECU40Eは以下に示す点以外、ECU40Aと実質的に同一である。このため、熱輸送装置1Eについては図示省略する。同様の変更は例えば熱輸送装置1B、1C、1Dに対して行われてもよい。
ECU40Eでは凍結判断部と減量補正部とがさらに実現される。凍結判断部は循環経路部10内を循環する輸送媒体が凍結する可能性があるか否かを判断する。減量補正部は凍結判断部が循環経路部10内を循環する輸送媒体が凍結する可能性があると判断した場合に、作動停止状態からの作動開始条件成立時に循環経路部10内に必要とされる輸送媒体量を減量補正する。
凍結判断部は例えば大気温に基づき輸送媒体が凍結する可能性があるか否かを判断することができる。この場合、凍結判断部は例えば大気温を常時検出或いは推定するとともに、大気温が所定温度よりも低い場合に輸送媒体が凍結する可能性があると判断することができる。所定温度は循環経路部10内の輸送媒体が凍結する温度以上の温度とすることができる。凍結判断部は必ずしも常時大気温を検出或いは推定しなくてもよい。凍結判断部はこのほかにも適宜の方法で輸送媒体が凍結する可能性があるか否かを判断するように構成されてよい。
減量補正部は具体的には補充量を減量補正する。そしてこれにより、作動停止状態からの作動開始条件成立時に循環経路部10内に必要とされる輸送媒体量を減量補正する。減量補正時の減量補正量は予め設定しておくことができる。減量補正部は例えば所定期間の間、凍結判断部によって輸送媒体が凍結する可能性がないと判断された場合に、減量補正を解除することができる。
次にECU40Eの制御動作の一例を図5に示すフローチャートを用いて説明する。なお、本フローチャートは大気温を常時検出する場合の例を示す。ECU40Eは大気温を検出するとともに(ステップS31)、検出した大気温が所定温度よりも低いか否かを判定する(ステップS32)。肯定判定であれば、輸送媒体が凍結する可能性があると判断される。このため、肯定判定であればECU40Eは補充量を減量補正する(ステップS33)。
一方、ステップS32で否定判定であれば、輸送媒体が凍結する可能性はないと判断される。この場合、ECU40Eは所定期間の間、凍結の可能性がないと判断されたか否か(所定期間の間、ステップS32で否定判定が続いたか否か)を判定する(ステップS34)。そして、肯定判定であれば補充量の減量補正を解除する(ステップS35)。ステップS33の後、ステップS34の否定判定、或いはステップS35の後には本フローチャートを一旦終了する。
次に熱輸送装置1Eの作用効果について説明する。熱輸送装置1Eは上述したように輸送媒体が凍結する可能性があるか否かを判断するとともに、輸送媒体が凍結する可能性があると判断した場合に減量補正を行う。そしてこれにより、作動停止状態からの作動開始条件成立時における循環経路部10内の輸送媒体の熱容量を低下させることができる。結果、低温状態からの作動性を向上させることができる。
熱輸送装置1Eは減量補正に応じて循環経路部10内の輸送媒体量を減量することで、熱回収器11および熱回収器11の周辺部以外で輸送媒体が凍結することも防止或いは抑制できる。そしてこれにより、凍結による経路閉塞の防止や凍結した輸送媒体の早期液相化を図ることで、低温状態からの作動性を向上させることもできる。このため、熱輸送装置1Eは輸送量の観点から熱の輸送性能の回復を図るにあたり、さらに低温状態からの作動性を向上させることができる。
本実施例の熱輸送装置1FはECU40Eの代わりにECU40Fを備える点以外、熱輸送装置1Eと実質的に同一である。ECU40Fは以下に示す点以外、ECU40Aと実質的に同一である。このため、熱輸送装置1Fについては図示省略する。
ECU40Fでは第3の制御部がさらに実現される。第3の制御部は循環経路部10内の状態が作動開始条件成立後に系内圧が所定圧δを上回らない状態である場合にバルブ22を開閉する。所定圧δは系内圧が到達すべき圧力である。
この点、所定圧δは具体的には例えば作動開始条件成立後、所定期間内に系内圧が到達すべき圧力として予め設定しておくことができる。この場合、第3の制御部は例えば作動開始条件成立後、所定期間が経過した際に系内圧が所定圧δよりも低い場合にバルブ22を開閉することができる。また、所定期間が経過した際の系内圧と所定圧δとの差圧に応じてバルブ22を開閉することができる。なお、系内圧と所定圧δの代わりに例えば系内圧の変化量と系内圧が到達すべき圧力に変化する場合の変化量とが適用されてもよい。
次にECU40Fの制御動作の一例を図6に示すフローチャートを用いて説明する。本フローチャートは内燃機関50冷間始動時に開始することができる。ECU40Fは内燃機関50始動後、所定期間が経過したか否かを判定する(ステップS41)。否定判定であればステップS41に戻る。肯定判定であれば、ECU40Fは系内圧を取得するとともに(ステップS42)、取得した系内圧が所定圧δよりも低いか否かを判定する(ステップS43)。否定判定であれば、本フローチャートを終了する。肯定判定であれば、ECU40Fはバルブ22を開閉する(ステップS44)。ステップS44の後には本フローチャートを終了する。
次に熱輸送装置1Fの作用効果について説明する。ここで、熱輸送装置1Fでは減量補正が行われた場合に循環経路部10内の輸送媒体量が減少することになる。このため、作動開始条件成立後、ある程度の時間が経過した段階においては熱回収器11や凝縮部12の熱的状態に照らして輸送媒体量が不足する事態が発生することがある。結果、輸送量の観点から熱の輸送性能が十分に発揮されなくなることがある。
一方、この場合には循環経路部10内の輸送媒体量が減少している分、系内圧が低下することになる。これに対し、熱輸送装置1Fは上述したようにバルブ22を開閉することで、循環経路部10内の輸送媒体量を増量する。そしてこれにより、さらに減量補正に応じて低下する熱の輸送性能を適切に高めることができる。
作動停止状態からの作動開始条件成立時に循環経路部10内に必要とされる熱の輸送媒体量は、作動性向上の観点から例えば作動開始条件成立後に増量するようにすることで、増量した場合と比較して予め減量した値に設定しておくこともできる。このため、同様の変更は例えば熱輸送装置1A、1B、1C、1Dに対して行われてもよい。
この場合、例えば作動停止条件成立後に系内圧が所定圧αよりも高い状態でバルブ22を開閉することで、再び循環経路部10内の輸送媒体量を減量することができる。これは上述したようにバルブ22を開閉することで、減量補正が解除されていない場合に循環経路部10内の輸送媒体量を増量する熱輸送装置1Fについても同様である。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
例えば上述した実施例では輸送媒体がHOである場合について説明した。しかしながら、本発明においては必ずしもこれに限られず、輸送媒体には例えばアルコールなど適宜のものが用いられてもよい。また、輸送媒体は必ずしも減圧された状態で循環経路部内に予め封入されていなくてもよい。この場合でも例えば作動停止時に冷却が進む結果、輸送媒体の凝縮が進むことで循環経路部が真空状態を有することになる限り、空気の吸い込みは発生することになる。また、例えば熱輸送装置はランキンサイクルを行う熱輸送装置であってもよい。
熱輸送装置 1A、1B、1C、1D、1E、1F
循環経路部 10
熱回収器 11
凝縮部 12
分岐経路部 20
バルブ 22
ECU 40A、40B、40C、40D、40E、40F

Claims (4)

  1. 熱の輸送媒体を蒸気化する熱回収器と、前記熱回収器で蒸気化された熱の輸送媒体が凝縮する凝縮部とが組み込まれているとともに、真空状態を有する循環経路部と、
    前記循環経路部から分岐するとともに、流通を制御可能なバルブが組み込まれている分岐経路部と、
    前記循環経路部が空気を吸い込んでいることが検出或いは推定された場合に、前記循環経路部内の圧力が所定圧よりも高い状態で前記バルブを開閉する第1の制御部とを備え
    前記循環経路部に補充する熱の輸送媒体を液相状態で貯留するリザーブタンクをさらに備えるとともに、前記分岐経路部が前記リザーブタンクで少なくとも確保されるべき液面の高さよりも低い位置で開口するように前記リザーブタンクに接続されており、
    前記リザーブタンクから前記循環経路部に補充すべき熱の輸送媒体の補充量を算出する補充量算出部と、
    前記第1の制御部が前記バルブを開閉した後に、前記循環経路部内の圧力が前記所定圧よりも低下した状態で、前記補充量算出部が算出する補充量に応じて前記バルブを開閉する第2の制御部とをさらに備える熱輸送装置。
  2. 請求項1に記載の熱輸送装置であって、
    前記循環経路部内を循環する熱の輸送媒体が凍結する可能性があるか否かを判断する凍結判断部と、
    前記凍結判断部が前記循環経路部内を循環する熱の輸送媒体が凍結する可能性があると判断した場合に、作動停止状態からの作動開始条件成立時に前記循環経路部内に必要とされる熱の輸送媒体量を減量補正する減量補正部とをさらに備える熱輸送装置。
  3. 請求項1または2に記載の熱輸送装置であって、
    熱を輸送するにあたり、前記循環経路部内を循環する熱の輸送媒体が自然循環によって前記熱回収器において凝縮した状態で受熱するとともに、前記凝縮部において蒸気化した状態で放熱することを繰り返し行う熱輸送装置。
  4. 請求項1または2に記載の熱輸送装置であって、
    内燃機関を備える車両に搭載され、前記熱回収器が前記内燃機関の排気熱を回収する熱輸送装置。
JP2014512050A 2012-04-23 2012-04-23 熱輸送装置 Active JP5835474B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060885 WO2013160993A1 (ja) 2012-04-23 2012-04-23 熱輸送装置

Publications (2)

Publication Number Publication Date
JPWO2013160993A1 JPWO2013160993A1 (ja) 2015-12-21
JP5835474B2 true JP5835474B2 (ja) 2015-12-24

Family

ID=49482364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512050A Active JP5835474B2 (ja) 2012-04-23 2012-04-23 熱輸送装置

Country Status (5)

Country Link
US (1) US20150136381A1 (ja)
EP (1) EP2843222B1 (ja)
JP (1) JP5835474B2 (ja)
CN (1) CN104246195B (ja)
WO (1) WO2013160993A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084352B4 (de) * 2011-10-12 2022-12-29 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Leitungskreises zur Abwärmenutzung einer Brennkraftmaschine

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841127A (en) * 1955-02-16 1958-07-01 White Motor Co Cooling system
DE2058995B2 (de) * 1970-12-01 1973-08-09 Vorrichtung zum entlueften der kuehlfluessigkeit einer brennkraftmaschine
DE2721064A1 (de) * 1977-05-11 1978-11-16 Maschf Augsburg Nuernberg Ag Kuehlanlage fuer fluessigkeitsgekuehlte verbrennungskraftmaschinen von kraftfahrzeugen
HU176054B (en) * 1978-11-30 1980-12-28 Autoipari Kutato Intezet Automatic deaeration plant for forced-flowing fluid system particularly for cooling system of internal combustion engine
US4346757A (en) * 1980-09-10 1982-08-31 Borg-Warner Corporation Automotive cooling system using a non-pressurized reservoir bottle
JPS6093116A (ja) * 1983-10-26 1985-05-24 Nissan Motor Co Ltd 蒸発冷却式インタ−ク−ラ装置
US4586338A (en) * 1984-11-14 1986-05-06 Caterpillar Tractor Co. Heat recovery system including a dual pressure turbine
JPS61120027A (ja) * 1984-11-16 1986-06-07 Hitachi Ltd 簡易型深部体温計
JPH0248664Y2 (ja) * 1985-01-17 1990-12-20
JPH0629551B2 (ja) * 1986-05-21 1994-04-20 株式会社日本自動車部品総合研究所 内燃機関の排気熱回収装置
DE3809136C2 (de) * 1987-04-02 2001-07-26 Volkswagen Ag Einrichtung zur Verdampfungskühlung einer Brennkraftmaschine und zum Betreiben eines Heizungswärmetauschers durch das Kühlmittel
JP2505568Y2 (ja) * 1989-01-11 1996-07-31 三菱重工業株式会社 復水タ―ビン起動時の減圧装置
JP2950553B2 (ja) * 1989-09-26 1999-09-20 株式会社日本自動車部品総合研究所 内燃機関の冷却装置
US5191766A (en) * 1991-06-10 1993-03-09 Vines Frank L Hybrid internal combustion/steam engine
JP2654286B2 (ja) * 1991-11-19 1997-09-17 株式会社日本自動車部品総合研究所 水冷式エンジンの冷却装置
FR2684721A1 (fr) * 1991-12-06 1993-06-11 Valeo Thermique Moteur Sa Procede et dispositif de refroidissement d'un moteur thermique a charge fortement variable.
JPH0743801U (ja) * 1993-05-28 1995-09-19 株式会社タクマ 減圧蒸気室の抽気装置
JP3232181B2 (ja) * 1993-12-09 2001-11-26 ヤンマーディーゼル株式会社 エンジン駆動ヒートポンプ及び駆動用エンジン
JP3777527B2 (ja) * 1997-11-18 2006-05-24 東芝プラントシステム株式会社 空気抽出装置
US6330910B1 (en) * 1999-03-03 2001-12-18 Easton Bennett Heat exchanger for a motor vehicle exhaust
JP2000345835A (ja) 1999-06-07 2000-12-12 Nissan Motor Co Ltd 内燃機関
US6905792B2 (en) * 2000-10-13 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Cooling system and cooling process of fuel cell
JP2002222018A (ja) * 2001-01-26 2002-08-09 Honda Motor Co Ltd 熱交換器における作動媒体の供給制御装置
JP2003041905A (ja) * 2001-07-30 2003-02-13 Sumitomo Heavy Ind Ltd 復水装置
DE10138083A1 (de) * 2001-08-03 2003-02-27 Mtu Friedrichshafen Gmbh Kühlwasser-Kreislaufsystem für eine Brennkraftmaschine
JP3929977B2 (ja) * 2001-12-03 2007-06-13 東京電力株式会社 排熱回収システム
EP1452807A1 (en) * 2001-12-03 2004-09-01 The Tokyo Electric Power Co., Inc. Exhaust heat recovery system
JP3901609B2 (ja) * 2002-07-25 2007-04-04 本田技研工業株式会社 ランキンサイクル装置
US20060112682A1 (en) * 2002-08-09 2006-06-01 Honda Giken Kogyo Kabushiki Kaisha Working medium supply control system in heat exchanger
JP4027295B2 (ja) * 2003-10-02 2007-12-26 本田技研工業株式会社 ランキンサイクル装置における凝縮器の液面位置制御装置
US6952924B2 (en) * 2003-10-02 2005-10-11 Honda Motor Co., Ltd. Rankine cycle apparatus
US7131290B2 (en) * 2003-10-02 2006-11-07 Honda Motor Co., Ltd. Non-condensing gas discharge device of condenser
CN101243243A (zh) * 2005-06-16 2008-08-13 Utc电力公司 机械并热配接到驱动公共负载的发动机上的有机朗肯循环
JP2007333293A (ja) * 2006-06-14 2007-12-27 Denso Corp ループ式ヒートパイプ
WO2008050894A1 (en) * 2006-10-27 2008-05-02 Canon Kabushiki Kaisha Heat transfer controlling mechanism and fuel cell system having the heat transfer controlling mechanism
JP2008121434A (ja) 2006-11-08 2008-05-29 Aisin Seiki Co Ltd 車両冷却装置
JP4848968B2 (ja) 2007-01-31 2011-12-28 トヨタ自動車株式会社 廃熱回収装置
JP2008255923A (ja) * 2007-04-06 2008-10-23 Sanden Corp 内燃機関の廃熱利用装置
JP2009008318A (ja) * 2007-06-27 2009-01-15 Denso Corp 排熱回収装置
JP2009036103A (ja) * 2007-08-01 2009-02-19 Denso Corp 排気熱回収装置
JP2009052405A (ja) * 2007-08-23 2009-03-12 Toyota Motor Corp 廃熱回収装置
US7921640B2 (en) * 2007-12-14 2011-04-12 Gm Global Technology Operations, Llc Exhaust gas waste heat recovery
WO2009107383A1 (ja) * 2008-02-28 2009-09-03 Kanemitsu Toshinori 中温熱機関
JP5018592B2 (ja) * 2008-03-27 2012-09-05 いすゞ自動車株式会社 廃熱回収装置
EP2284458A4 (en) * 2008-05-01 2011-11-23 Sanden Corp DEVICE FOR USING RESIDUAL HEAT FOR INTERNAL COMBUSTION ENGINE
JP5326577B2 (ja) 2009-01-05 2013-10-30 トヨタ自動車株式会社 エンジンの廃熱利用装置
FR2945574B1 (fr) * 2009-05-13 2015-10-30 Inst Francais Du Petrole Dispositif de controle du fluide de travail circulant dans un circuit ferme fonctionnant selon un cycle de rankine et procede pour un tel dispositif
JP5304450B2 (ja) 2009-06-03 2013-10-02 トヨタ自動車株式会社 内燃機関の暖機装置
US8627663B2 (en) * 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
CN102022166B (zh) * 2009-09-23 2012-10-03 刘邦健 废气的热能回收系统
AT509395B1 (de) * 2010-01-15 2012-08-15 Man Truck & Bus Oesterreich Ag System zur abwärmenutzung einer brennkraftmaschine mit einfrierschutzeinrichtung
JP5331026B2 (ja) * 2010-02-18 2013-10-30 トヨタ自動車株式会社 排熱回収装置
JP5496006B2 (ja) * 2010-08-02 2014-05-21 三菱重工業株式会社 発電プラント設備およびその運転方法
US8361422B2 (en) * 2010-08-19 2013-01-29 Dow Global Technologies Llc Method and devices for heating urea-containing materials in vehicle emission control system
DE102010042405A1 (de) * 2010-10-13 2012-04-19 Robert Bosch Gmbh Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
DE112011104516B4 (de) * 2010-12-23 2017-01-19 Cummins Intellectual Property, Inc. System und Verfahren zur Regulierung einer EGR-Kühlung unter Verwendung eines Rankine-Kreisprozesses
DE102012000100A1 (de) * 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine-kreisprozess-abwärmenutzungssystem
US9657847B2 (en) * 2012-07-18 2017-05-23 Pres-Vac Engineering Aps Pressure relief valve
CH708204A1 (de) * 2013-06-12 2014-12-15 Belimo Holding Ag Druckausgleichseinsatz.
KR101446709B1 (ko) * 2014-02-27 2014-10-06 한국원자력연구원 열혼합을 방지하는 피동고압안전주입 시스템
GB2533640B (en) * 2014-12-24 2017-10-25 Cameron Int Corp Valve assembly

Also Published As

Publication number Publication date
CN104246195A (zh) 2014-12-24
EP2843222A1 (en) 2015-03-04
US20150136381A1 (en) 2015-05-21
CN104246195B (zh) 2016-09-07
WO2013160993A1 (ja) 2013-10-31
JPWO2013160993A1 (ja) 2015-12-21
EP2843222B1 (en) 2020-07-29
EP2843222A4 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5369481B2 (ja) 車両用化学蓄熱システム
JP5950054B2 (ja) 熱輸送装置
US20130276446A1 (en) Arrangement and method for converting thermal energy to mechanical energy
US9518480B2 (en) Exhaust heat recovery device
JP4870702B2 (ja) 排気熱回収器
JP5835474B2 (ja) 熱輸送装置
JP2016200048A (ja) 熱エネルギー回収装置
JP2004293394A (ja) エンジンオイルの希釈防止装置
JP5835479B2 (ja) 排気熱回収装置
AU2014358835B2 (en) Waste heat recovery apparatus
JP6366006B2 (ja) 蒸発燃料処理装置
SE1650658A1 (sv) Anordning för snabbavfrostning utan kompressorstopp av förångaren i en luft-vatten-värmepump och för att köra värmepumpen vid extremt låga förångartemepraturer och vid extremt lågalaster
JP5397314B2 (ja) 車両の熱管理システム
JP2002276367A (ja) 循環熱媒液の蒸発抑制装置
JP5880975B2 (ja) 冷凍装置の制御装置および制御方法、並びに該制御装置を具備する冷凍装置
JP5678900B2 (ja) 内燃機関の廃熱回収装置
JP5786723B2 (ja) エンジンの排気熱利用装置
JP5609843B2 (ja) エンジンの排気熱利用装置
KR20210143209A (ko) 이동체
JPS60243319A (ja) 内燃機関の沸騰冷却装置
JP2012097685A (ja) 熱機関
JPH04111549U (ja) 蒸発ガソリンの液化回収装置
JPS60243318A (ja) 内燃機関の沸騰冷却装置
JP2009046986A (ja) 廃熱回収装置
JPS6183417A (ja) 自動車用内燃機関の沸騰冷却装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R151 Written notification of patent or utility model registration

Ref document number: 5835474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151