JP4027295B2 - ランキンサイクル装置における凝縮器の液面位置制御装置 - Google Patents

ランキンサイクル装置における凝縮器の液面位置制御装置 Download PDF

Info

Publication number
JP4027295B2
JP4027295B2 JP2003344492A JP2003344492A JP4027295B2 JP 4027295 B2 JP4027295 B2 JP 4027295B2 JP 2003344492 A JP2003344492 A JP 2003344492A JP 2003344492 A JP2003344492 A JP 2003344492A JP 4027295 B2 JP4027295 B2 JP 4027295B2
Authority
JP
Japan
Prior art keywords
condenser
liquid
working medium
liquid level
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003344492A
Other languages
English (en)
Other versions
JP2005106039A (ja
Inventor
弘芳 谷口
誠 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003344492A priority Critical patent/JP4027295B2/ja
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to EP04023385A priority patent/EP1624269A3/en
Priority to US10/953,352 priority patent/US7174732B2/en
Priority to EP04024220A priority patent/EP1614866A3/en
Priority to US10/952,881 priority patent/US6952924B2/en
Priority to EP04024219A priority patent/EP1619357A3/en
Priority to US10/953,343 priority patent/US7159400B2/en
Priority to US10/952,912 priority patent/US7131290B2/en
Priority to US10/953,341 priority patent/US7117691B2/en
Publication of JP2005106039A publication Critical patent/JP2005106039A/ja
Application granted granted Critical
Publication of JP4027295B2 publication Critical patent/JP4027295B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/02Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled thermally
    • F16T1/10Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled thermally by thermally-expansible liquids

Description

本発明はランキンサイクル装置における凝縮器の液面位置制御装置に関し、特に、例えば車載エンジンの排熱エネルギを機械エネルギに変換する車載用装置として用いられるランキンサイクル装置における凝縮器の液面位置制御装置に関する。
従来、熱エネルギを機械的な仕事に変換するシステムとしてランキンサイクル装置が知られている。ランキンサイクル装置は、循環系を形成する密閉状態の配管システムにおいて、水を液相状態および気相状態で循環させる構造を有するものである。ランキンサイクル装置は、給水ポンプユニットと蒸発器と膨張機と凝縮器を有し、これらを接続する配管で循環回路を形成する。
ランキンサイクル装置の概略的構成を図13に示す。図13では、車載用ランキンサイクル装置を想定し、全体の構成を示すと共に、凝縮器の構造および内部状態が詳細に示されている。
図13において、ランキンサイクル装置は、給水ポンプユニット110と蒸発器111と膨張機107と凝縮器100を備える。これらの要素は配管108,115で接続され、循環回路が形成される。給水ポンプユニット110に基づき配管115を通して毎分所定量で送り出される水(液相)は、蒸発器111で熱を与えられ、水蒸気(気相)になる。この水蒸気は次の配管115を通して膨張機107に送られ、ここで膨張作用を生じる。膨張機107での水蒸気の膨張作用で機械装置(図示せず)を駆動することにより機械的な仕事が行われる。その後、降温降圧し膨張作用を終了した水蒸気は配管108を通って凝縮器100へ送られ、ここで水蒸気の状態から水の状態に戻される。その後、配管115を通って給水ポンプユニット110に戻され、再び給水ポンプユニット110から送出され、上記の作用を繰り返すことになる。上記において蒸発器111はエンジンの排気口から延設された排気管から熱を受ける構造となっている。なおランキンサイクル装置の構造例を示す文献として例えば特許文献1を挙げることができる。
次に、上記車載用ランキンサイクル装置での凝縮器100の構造と作用を詳述する。
車載用ランキンサイクル装置の凝縮器100は、水蒸気導入室101と、集水室102と、これらの2つの室を上下方向に接続する多数の冷却パイプ103を備えている。図13では1本の冷却パイプ103のみを誇張して示している。冷却パイプ103の内部におけるほぼ上半分は水蒸気(気相部分)104であり、ほぼ下半分は水(液相部分)105である。水蒸気104の部分では、水蒸気導入室101から冷却パイプ103に導入された作動媒体の大部分が気相状態にある。水105の部分では、冷却パイプ103を流れる作動媒体の大部分が液相状態(凝縮水)にある。水蒸気104と水105の境界部が液面位置112となる。冷却パイプ103の背後(図13中右側)には1台の冷却ファン106が備えられ、駆動される。通常、電子制御ユニットによって凝縮器100の出口の水温に基づいて冷却ファン106の動作を制御する。冷却パイプ103は、その上側端部から下側端部まで、1台の冷却ファン106によって同時に送風され、冷却される。
上記凝縮器100は次のように動作する。ランキンサイクル装置の運転に伴って膨張機107から降温降圧し排出された比較的に低温の水蒸気は、低圧水蒸気配管108を経て凝縮器100の水蒸気導入室101に導入され、冷却パイプ103に流入する。冷却ファン106に吸引された冷却風109が凝縮器100に供給される。凝縮器100の上流側の水蒸気104、つまり冷却パイプ103内に水蒸気と水が混在している部分には冷却ファン106によって強い冷却風が作用し、水蒸気が液化する際に放出する潜熱が冷却風によって有効に回収される。また、凝縮器100の下流側の水105、つまり冷却パイプ103内に実質的に水だけが存在している部分にも、冷却ファン106による冷却風が作用する。凝縮器100の冷却パイプ103内で凝縮した水は集水室102に集められる。その後、前述の通り、給水ポンプユニット110で加圧されて蒸発器111に供給される。
上記車載用ランキンサイクル装置の問題を図14を参照して説明する。図14で(A)は車速の変化、(B)はエンジン出力の変化、(C)は蒸発器給水流量の変化、(D)は凝縮器での液面位置の変化をそれぞれ示す。図14で横軸は時間である。ランキンサイクル装置が搭載された車両が図14(A)で示すような車速変化をするとき、図14(B)で示すようにエンジン出力が変化し、それに関連して図14(C)に示すように蒸発器111への給水流量の変化が生じ、さらに図14(D)に示すように凝縮器100の液面位置112が変化する。換言すれば、横方向の時間軸において、車両が時刻t1,t3,t5で発進し、時刻t2,t4,t6で停止したとき、その車両の発進・停止に伴ってエンジン出力は変化し、蒸発器111への給水流量も変化し、凝縮器100の液面位置112が変動する。
上記のように、従来の車載用ランキンサイクルの凝縮器100では、図14(A)に示したように車両の発進・停止時や過渡的車速変化時に、図14(B)に示すごとくエンジン出力が変化するので、蒸発器111への給水流量が変化し、凝縮器100の冷却パイプ103における液面位置112が変動することになる。つまり、凝縮器100において、水蒸気の流入量が凝縮水の排水量より多い場合には液面位置112は上昇し、水蒸気の流入量が凝縮水の排水量より少ない場合には液面位置112は低下することになる。
その結果、凝縮器100の冷却パイプ103内での水蒸気の占める領域(104)が増減する。凝縮水(水105)は流量制御された給水ポンプユニット110により排水されるため、膨張機107の出口113から給水ポンプユニット110の入り口114までの圧力は凝縮器100の圧力により決まる。凝縮器100の圧力は水蒸気104が接している部分の冷却による凝縮熱交換量により決まり、凝縮熱交換量は冷却媒体の流量と凝縮伝熱部の表面積116により決まる。従って液面位置112の変動により水蒸気の占める領域が増減すると、凝縮伝熱部の表面積116が増減して凝縮器100内の圧力と冷却媒体流量が一律に対応しなくなり、冷却媒体流量の調節による凝縮器100内の圧力の制御は不可能となる。凝縮器100内の圧力が制御できない場合、凝縮器100内の圧力が上昇すると膨張機出力の低下につながり、凝縮器100内の圧力が低くなると下流側の給水ポンプユニット110でキャビテーション(気泡)が発生して給水ポンプユニット110の機能低下並びに耐久性に影響を及ぼす。
同様に凝縮水出口温度は、凝縮水が接している部分での冷却による熱交換量により決まり、さらに凝縮水の熱交換量は冷却媒体の流量と凝縮水の伝熱部の表面積117により決まる。従って、液面位置112の変動により凝縮水の占める領域(105)が増減すると、凝縮水部の伝熱の表面積117が増減して凝縮水温度と冷却媒体流量が一律に対応しなくなり、冷却媒体流量の調節による凝縮水温度の制御は困難となる。凝縮水温度が高くなると給水ポンプユニット110内でキャビテーションが発生して給水ポンプユニット110の機能低下並びに耐久性に影響を及ぼす。逆に、凝縮水温度が低くなると、その水を蒸発器111に供給して再び加熱する際に余分の熱エネルギを消費するという問題がある。
そこで、特許文献2,3では、凝縮器100の冷却パイプ103内の液面位置を凝縮器出口調整弁で調節を行うようにしている。すなわち、特許文献2では、送風機および復水出口調節弁等を具備し機内圧力を大気圧力以上で操作すると共に復水の温度を100℃以下に過冷却する空冷式の高圧コンデンサ(凝縮器)において、機内圧力を送風機からの冷却風量を調節することにより制御すると共に、機内水位を復水出口調節弁を調節することにより制御している。さらに特許文献3では、復水器内の気相圧力と液相圧力との圧力差を復水器水位設定値と比較して圧力差が一定となるように復水器出口側調節弁を制御する第1制御器と、復水器内の気相圧力を圧力設定値と比較して気相圧力が一定となるように復水器冷却用ファンを制御する第2制御器とから成っている。しかしながら、上記特許文献に記載される構成では、水の出口での調整を行っているだけなので、液面が下がったときに、水を補充するということはできない。
凝縮器の内部の液面位置112の変化は、凝縮器における水蒸気に対応する気相部と凝縮水に対応する液相部のそれぞれの伝熱面積(116,117)の変化をもたらし、凝縮器内の水蒸気圧力および凝縮水温度の変動を著しくし、冷却制御が複雑化し、良好な冷却作動が得られにくい。またランキンサイクル装置においては、水蒸気圧力の上昇により膨張機出力を低下させ、また水蒸気圧力の低下および、凝縮水温度上昇による給水ポンプユニット内にキャビテーションを発生させ、さらに凝縮水の温度低下による蒸発器での再加熱の際に余分な熱エネルギの消費等の不具合を生じる。
特開2002−115504公報 特開昭63−201492号公報 特開平10−185458号公報
本発明の課題は、凝縮器内の凝縮水の液面位置の変動を低減することにより、凝縮器における凝縮前の水蒸気に対応する部分(水蒸気凝縮部)の伝熱面積と凝縮後の水に対応する部分(凝縮水冷却部)の伝熱面積のそれぞれの変化を低減し、その伝熱面積の変化を加味することなく冷却を行い、早期にかつ制御の精度向上を図り、給水ポンプユニット内のキャビテーションの発生および、蒸発器での再加熱の際の余分な熱エネルギの消費を低減する凝縮器内の液面位置制御を行うものである。
本発明の目的は、上記の課題に鑑み、凝縮器内の凝縮水の液面位置を制御することにより、水蒸気凝縮部と凝縮水冷却部の伝熱面積のそれぞれの変化を所要範囲で安定化させ、水蒸気凝縮部と凝縮水冷却部にそれぞれ取り付けられた冷却ファンにより凝縮器圧力および凝縮水出口温度の制御を安定して行うことができるランキンサイクル装置における凝縮器の液面位置制御装置を提供することにある。
本発明に係るランキンサイクル装置における凝縮器の液面位置制御装置は、上記の目的を達成するために、次のように構成される。
第1のランキンサイクル装置における凝縮器の液面位置制御装置(請求項1に対応):
ランキンサイクル装置は、基本的なシステムの構成要素として、熱源からの熱で、液相作動媒体すなわち水を気相作動媒体すなわち水蒸気に変換する蒸発器と、水蒸気を冷却して水に戻す凝縮器とを備えている。ランキンサイクル装置のシステムでは循環回路を備え、そこでは作動媒体が水の状態(液相)または水蒸気の状態(気相)で循環する。水蒸気の膨張作用に基づいて機械的エネルギが得られ、所要の仕事が行われる。
このランキンサイクル装置では、凝縮器には、この凝縮器内の水の液面位置を検出しかつ第1設定液面位置を定める液面位置検出部(液面センサ)と、凝縮器の第2設定液面位置に設けた中間排出口と、液相作動媒体の沸点温度よりも低い温度で開弁し、沸点温度より低い温度の液相作動媒体を排出する排出弁装置とで構成され、凝縮器内の水を排出しかつ第2設定液面位置を定める液相作動媒体排出部を備える。ランキンサイクル装置は、さらに、凝縮器内へ水を供給する液相作動媒体供給部(リターンポンプ等)と、液面位置検出部からの検出信号によって液相作動媒体供給部を駆動制御する制御装置を備えている。
以上の構成において、凝縮器内の液相作動媒体である水の液面位置が第2設定液面位置を超えるときには液相作動媒体排出部の中間排出口および排出弁装置により水を凝縮器から排出させる。また、水の液面位置が第1設定液面位置を下回るときには、上記制御装置による制御に基づき液相作動媒体供給部を駆動し、水を凝縮器に補充し、液面の位置を高くする。上記の構成によれば、凝縮器内の水の液面位置が所望の位置に存するようにし、液面位置を常に最適な位置に維持する。また、凝縮器における水に対応する部分(液相部)の伝熱面積および水蒸気に対応する部分(気相部)の伝熱面積のそれぞれの変化幅を、許容範囲内に保つことができ、かつ水の排出と補充供給の切換え動作にヒステリシスを持たせることにより、切換え動作の頻度を少なくし、凝縮器の作動安定化と共に、排出および補充供給に係わる装置の耐久性が向上する。

上記のごとく液相作動媒体排出部は、凝縮器の第2設定液面位置に設けた中間排出口と、水を排出する排出弁とで構成される。これにより、第2設定液面位置より上部の水を排出でき、液面位置を所要のレベルに制御し、水蒸気の排出は防止できるので、凝縮器の作動の安定化を図ることが可能である。
第2の凝縮器の液面位置制御装置(請求項2に対応)は、上記の各構成において、好ましくは、排出弁装置は、中間排水口に接続される接続部と、リザーブ用タンクに通じる弁口と、内部に感温液を収容するダイヤフラム部材で形成され、周囲環境に気相作動媒体が存在するときにはダイヤフラム部材が膨張して弁口を閉じかつ周囲環境に液相作動媒体が存在するときにはダイヤフラム部材が収縮して前記弁口を開く弁と、を備え、これにより、液相作動媒体の沸点温度よりも低い温度で開弁し、沸点温度より低い温度の液相作動媒体を排出することを特徴とする。
第3の凝縮器の液面位置制御装置(請求項3に対応)は、上記の各構成において、好ましくは、排出弁装置はエアベントであり、このエアベントの弁は、内部に感温液を収容する2枚のダイヤフラムの組合せ構造で形成され、排出弁装置内部の周囲環境に水蒸気が存在するときには水蒸気の温度で感温液が気化し2枚のダイヤフラムが外方へ膨張して弁口を閉じ、周囲環境に水または空気が存在するときには周囲環境の温度に応じて感温液が液体状態を維持し2枚のダイヤフラムが内方へ収縮して弁口を開き、水をリザーブ用タンクに排出することを特徴とする
第4の凝縮器の液面位置制御装置(請求項4に対応)は、上記の各構成において、好ましくは、凝縮器から排出された水の補集と凝縮器に補充される水とを蓄え、排出または補充される水を循環させるリザーブ用タンクを有している。これにより、循環回路内で作動媒体の総質量流量を維持しつつ、液面位置を最適に制御することが可能となり、リザーブ用タンクを含んで成るランキンサイクル装置に対する外部への作動媒体(水)の排出、および当該外部からの作動媒体(水)の補充という特別な装置を付加する必要がない循環回路を実現することができる。
第5の凝縮器の液面位置制御装置(請求項5に対応)は、上記の構成において、好ましくは、液相作動媒体供給部は、リザーブ用タンクに蓄えられた水をポンプによって凝縮器に補充することで特徴づけられる。これにより、水を蓄えたリザーブ用タンクからポンプを介して直接に設定された液面位置なるまで水を適宜に補充・供給するので、液面位置の調整を、ポンプの高応答・高精度の供給量制御により、早期に正確に安定させることができる。
第6の凝縮器の液面位置制御装置(請求項6に対応)は、上記の構成において、好ましくは、凝縮器は、複数の凝縮管を有し、液面の位置に対応する箇所に少なくとも2以上の凝縮管を連通する中間室を設けたことで特徴づけられる。これにより、凝縮器の各凝縮管毎の液面位置のばらつきを少なくでき、水の排出および補充供給の際における液面位置を早期にかつ正確に安定させることができ、凝縮器の作動安定化を図ることが可能である。
第7の凝縮器の液面位置制御装置(請求項7に対応)は、上記の構成において、好ましくは、上記の第1設定液面位置と第2設定液面位置を同じ液面位置としたことで特徴づけられる。第1および第2の設定液面位置で作られる液面位置の変化幅を小さくし、実質的にゼロにすることも可能であり、特に凝縮器の気相部および液相部の伝熱面積の変化幅を小さくし、または実質的にゼロとすることとなり、凝縮器の作動安定化が図れる。
凝縮器内の凝縮水の液面位置は、蒸発器への給水量の変化により変化する。すなわち、水蒸気の凝縮器への流入量が凝縮水の排水量より多い場合は上昇し、少ない場合は低下する。凝縮器内の凝縮水の液面位置の変化は、凝縮器における水蒸気に対応する気相部と凝縮後の水に対応する液相部の互いの伝熱面積の変化をもたらし、凝縮器内の圧力(水蒸気圧力)および凝縮器の温度(凝縮水温度)の変動を著しくし、冷却制御も困難となる。その結果、ランキンサイクルでは、水蒸気圧力の上昇により膨張機出力を低下させ、また水蒸気圧力の降下により給水ポンプ内にキャビテーションを発生させ、さらに、凝縮水温度の上昇により給水ポンプ内にキャビテーションを発生させ、凝縮器の温度低下により蒸発器での再加熱の際、余分に熱エネルギを消費する。本発明によれば、凝縮器内の凝縮水の液面位置の変動を低減することにより、凝縮器の気相部と液相部の互いの伝熱面積の変化を低減して、その伝熱面積の変化を加味することなく冷却を行え、かつ制御の精度向上を図り、給水ポンプ内のキャビテーションの発生および、蒸発器での再加熱の際の余分な熱エネルギの消費を低減する凝縮器の液面位置制御装置を得ることができる。
以下、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。
最初に、図1を参照して本発明に係るランキンサイクル装置の全体システムの構成を説明する。
ランキンサイクル装置10は、蒸発器11と、膨張機12と、凝縮器13と、供給ポンプを備えた給水ポンプユニット14とから構成される。蒸発器11から膨張機12へは配管15により接続され、膨張機12から凝縮器13へは配管16により接続され、凝縮器13から給水ポンプユニット14へは配管17により接続され、給水ポンプユニット14から蒸発器11へは配管18により接続されている。かかる配管構造によって、ランキンサイクル装置10内で作動媒体が循環する循環回路が形成される。ランキンサイクル装置10において作動媒体は水または水蒸気である。
ランキンサイクル装置10の循環回路は、水または水蒸気を循環させる外界に対して密閉された循環構造を有している。ランキンサイクル装置10の循環回路において、凝縮器13における破線P1で示された液面位置から給水ポンプユニット14を通って蒸発器11に水(液相)が移動する。図1で水の部分に係る配管17,18は太い実線で表現されている。また蒸発器11から膨張機12を通って凝縮器13の液面位置P1に到る部分は水蒸気(気相)が移動する。図1で水蒸気の部分に係る配管15,16は太い破線で表現されている。
ランキンサイクル装置10は、熱源から排出される熱を利用して水を水蒸気に相変化させ、水蒸気の膨張作用を利用して機械的な仕事を生じさせるものである。水を水蒸気に相変化させる機構が上記蒸発器11である。この実施形態に係るランキンサイクル装置10は、後述するごとく、自動車に搭載する車載用装置として構成している。そのため、蒸発器11は、排気ガスの有する熱を熱源として利用する。すなわち蒸発器11は、エンジン(内燃機関)の排気管45を通る排気ガスの熱を利用して、給水ポンプユニット14から供給される水を加熱し、さらに過熱することにより昇温昇圧させた高温高圧の水蒸気を発生させる。蒸発器11で発生した高温高圧の水蒸気は膨張機12に供給される。なお、排気管45に拘らず、エンジンの排気バルブより下流の排気ポートや排気マニホルド(不図示)等の、より高温の排気ガスの熱を利用できることは言うまでもない。
膨張機12では、その出力軸12aが、モータ/ジェネレータ(M/G)19のロータ等(不図示)に接続され、発電機として駆動させている。膨張機12は、蒸発器11から供給される高温高圧の水蒸気を膨張させる構造を有し、この水蒸気の膨張作用に基づき出力軸12aを回転させる。膨張機12の出力軸12aが回転すると、モータ/ジェネレータ19のロータを回転させ、所要の機械的回転動作または発電動作を行わせる。これにより、排気ガスの熱を利用して機械的な仕事を行うことができる。また膨張機12の出力軸12aは、油圧ポンプ25にも接続され、これを駆動させる。
上記のごとく膨張機12は、蒸発器11から配管15を通して供給される高温高圧の水蒸気の膨張作用によって機械的な仕事を出力し、モータ/ジェネレータ19や油圧ポンプ25等の各負荷を動作駆動させる。膨張機12から排出され、降温降圧された水蒸気は、温度および圧力が低下し、その状態で配管16を経由して凝縮器13に供給される。凝縮器13は、膨張機12からの水蒸気を冷却して液化する。凝縮器13での液化で生じた水(凝縮水)は配管17を経由して給水ポンプユニット14に戻される。給水ポンプユニット14の高圧給水ポンプ44は、凝縮器13で液化された凝縮水を加圧し、配管18を通して再び蒸発器11に供給する。
上記のような全体システム構成を有するランキンサイクル装置10は、他の関連構成要素として、次のような要素を備えている。
蒸発器11の近傍の配管18の部分には配管18内の圧力変動に応じて配管18内の圧力調整を行うための安全弁22が取り付けられる。膨張機12のケーシング21には、漏れた水蒸気を配管16に戻すためのブリーザ(セパレータ)23が設けられる。また膨張機12の下部にはオイル溜め24を備え、オイル溜め24からの水が混入したオイルを油圧ポンプ25によって、配管26を通して油コアレッサ27を通すようにしている。油コアレッサ27によって水とオイルは分離され、水は比重差から油タンク28の下部に収容される。油タンク28にはフロートセンサ29で動作する弁機構30が取り付けられている。また油コアレッサ27によって分離された油タンク28の上部に溜められたオイルは配管31を通ってオイル溜め24に戻される。油タンク28の下部に溜められた水は、弁機構30の動作で給水ポンプユニット14の開放タンク32に配管33を通して供給される。給水ポンプユニット14の開放タンク32からは逆止弁34を介して凝縮器13への配管35が設けられている。凝縮器13には、液面位置の近傍に、液面センサ38とエアベント39が設けられる。開放タンク32から凝縮器13への給水は、液面センサ38からの信号でオン・オフ動作するモータ36で駆動されるリターンポンプ37によって行われる。さらに凝縮器13にはエアベント39を通して開放タンク32に排水する配管40が設けられている。凝縮器13から排出される凝縮水を戻す配管17は、給水ポンプユニット14の密閉タンク41内の水コアレッサ42に接続されている。また密閉タンク41内の水は、モータ43によって動作する高圧給水ポンプ44によって配管18を通して蒸発器11に供給される。さらに凝縮器13にはその場所に応じて独立に冷却風を生じさせるための複数の冷却ファン46,47,48が設けられている。
上記の構成において、凝縮器13の内部の液面位置から下側部分に関連する装置部分、および給水ポンプユニット14によって作動媒体供給装置が構成される。ランキンサイクル装置10における密閉された作動媒体の循環系において、膨張機12のブリーザ23から漏れた作動媒体は出口P2を介して、配管16に戻され、循環系内に戻される。
図2は、上記の給水ポンプユニット14の具体的構造を示す構成図である。給水ポンプユニット14は、水コアレッサ42と密閉タンク41と駆動モータ43で動作する高圧給水ポンプ44と開放タンク32とリターンポンプ37と逆止弁34とから構成される。なお図2中、駆動モータ43の回転軸49が紙面に平行に図示してあるが、これは説明の便宜のためであって、実際は、回転軸49が紙面に垂直になるように配置されている。駆動モータ43の回転軸49にはカム機構49aが係合しており、カム軸となっている。
上記において、水コアレッサ42は油分分離を行う。密閉タンク41は高圧給水ポンプ44からのリーク水を直接回収する。高圧給水ポンプ44は、要求水量をポンプ回転数により制御して供給する。また開放タンク32は、系外へのリーク水の一時貯蔵をするためのものである。リターンポンプ37は密閉タンク41へのリーク水の戻しまたは凝縮機13の過冷却器への水の戻しを行う。すなわち、リターンポンプ37は、逆止弁151を備えた配管152を通して開放タンク32から密閉タンク41へリーク水を戻し、必要に応じて逆止弁34を備えた配管35を通して凝縮器13の過冷却器に水を送る。配管152における逆止弁151は密閉タンク41からの逆流を防止し、配管35における逆止弁34は、凝縮機13の過冷却器からの逆流を防止する。凝縮器13の出口13aからの水は、配管17を通して駆動モータ43により駆動される高圧給水ポンプ44に入る。高圧給水ポンプ44は配管18を通して水を蒸発器11に送る。またリーク水が配管40により開放タンク32に戻される。
次に、図3を参照して、上記のランキンサイクル装置10を車両に搭載したときの構成例を説明する。
201は車両前部のボディ形状の輪郭を示し、202は前輪を示している。ボディ201の内部はエンジンルーム203になっており、エンジンルーム203内にはエンジン50が搭載されている。エンジン50の背面側には排気マニホルド51が設けられ、排気マニホルド51には前述した排気管45が接続されている。上記の蒸発器11は、排気管45における排気マニホルド51に近い箇所に設けられる。蒸発器11には、高圧給水ポンプ44からの配管18が接続されている。配管18は、排気マニホルド51から排出される排気ガスの熱を熱源とする蒸発器11に水を供給する。蒸発器11は、排気ガスの熱で水を水蒸気に相変換し、膨張機12の水蒸気流入口52に接続される配管15によって水蒸気を膨張機12に供給する。膨張機12は、水蒸気の膨張エネルギを機械的エネルギに変換する。
膨張機12の水蒸気流出口53は配管16につながっている。この配管16と、高圧給水ポンプ44の入口側に通じる密閉タンク41との間には、水蒸気を冷却・凝縮させて液体にする凝縮器13が配置されている。凝縮器13は車両前部の前面に位置している。図3では、その他に、開放タンク32、水コアレッサ42、リターンポンプ37、油コアレッサ27、過冷却器(凝縮器13の液相部)54、エアベント39、逆止弁34等のレイアウト状態が示されている。
上記の高圧給水ポンプ44、蒸発器11、膨張機12、凝縮器13等は、前述の通り、熱エネルギを機械的エネルギに変換するランキンサイクル装置を構成している。
次に、上記ランキンサイクル装置の動作を水および水蒸気の流れに沿って説明する。
凝縮器13で冷却・凝縮された水は、高圧給水ポンプ44で加圧され、配管18を通って蒸発器11に供給される。
液相作動媒体である水は、蒸発器11で熱エネルギを付加されて加熱され、さらに過熱されて昇温昇圧された高温高圧の水蒸気となり、膨張機12に供給される。膨張機12は、昇温昇圧された高温高圧の水蒸気の膨張作用によって熱エネルギを機械エネルギに変換する。これにより、膨張機12に付設されたモータ/ジェネレータ19は機械的エネルギを得る。
膨張器12から流出した水蒸気は降温降圧された水蒸気となり、凝縮器13に流入する。凝縮器13に流入した降温降圧された水蒸気は、ここで再び冷却・凝縮され、その後、凝縮水となって水コアレッサ42を介して高圧給水ポンプ44に供給される。以後、作動媒体である水は上記の循環を繰り返し、膨張機12に昇温昇圧された高温高圧の水蒸気を供給し続ける。
次に、図4〜図12を参照して、上記ランキンサイクル装置10における凝縮器13内に貯留される水の液面位置の制御について説明する。
図4は上記ランキンサイクル装置10のシステムを凝縮器13を中心にして描いたものであり、凝縮器13は車両前方側から見た正面図として描かれている。図4では、凝縮器13の内部における作動媒体の状態(水(または凝縮水):W1、水蒸気:W2)が示されている。また図5は凝縮器13における冷却ファン46,47,48の配置関係を示す凝縮器の側面図であり、同時に内部の状態も示されている。
凝縮器13は、上端部に水蒸気導入室13A、下端部に集水室13Bを備え、さらに中央に中間室56を備える。水蒸気導入室13Aと中間室56の間、中間室56と集水室13Bとの間には、それぞれ、複数本の冷却パイプ55が設けられ、各室は連通された状態になっている。冷却パイプ55の周囲には冷却フィン55aが設けられている。
凝縮器13の水蒸気導入室13Aは、配管16を介して膨張機12の水蒸気流出口53と接続されている。凝縮器13の集水室13Bは、配管17等を介して給水ポンプユニット14に接続されている。前述の通り、膨張機12は配管15を介して蒸発器11に接続され、同様に給水ポンプユニット14は配管18を介して蒸発器11に接続されている。蒸発器11は、排気管45を介してエンジン(熱源)50の排気ガスからの熱50Aを受ける。給水ポンプユニット14内には、前述した通りの密閉タンク41、水コアレッサ42、高圧給水ポンプ44、駆動モータ43、開放タンク32、リターンポンプ37、モータ36等の各構成要素が示されている。
凝縮器13では、水蒸気W2が冷却されて凝縮し、水(凝縮水)W1となり、その内部の下側に貯留される。中間室56内で示された水平線65は、凝縮器13内に貯留された水W1の液面の位置を示している。中間室56内の液面65の位置に対応させて所要の位置に液面センサ38と中間排水口59が設けられている。液面センサ38から出力される液面位置に係る検出信号は制御装置60に送られる。制御装置60は、液面位置検出信号に基づきモータ制御指令信号を生成し、このモータ制御指令信号をリターンポンプ37のモータ36に与える。他方、中間排水口59には水蒸気用のエアベント39が接続される。エアベント39の出口側は、チャッキ弁58を備えた配管40を介して開放タンク32に通じている。配管40には並行に排気ポンプ57が付設されている。
また凝縮器13では、図5に示されるように、その背面側に、水蒸気W2の存在領域部分に対応して冷却ファン46が配置され、水W1の存在領域部分に対応して冷却ファン47,48が配置されている。冷却ファン46の冷却動作は、例えば水蒸気W2が供給される配管16に取り付けられた圧力センサ61の水蒸気圧力検出信号に基づき圧力制御装置62によって制御される。冷却ファン46は水蒸気圧力調整に用いる凝縮用冷却ファンである。また冷却ファン47,48の冷却動作は、例えば水W1が流れる配管17に取り付けられた温度センサ63の水温検出信号に基づき温度制御装置64によって制御される。冷却ファン47,48は凝縮水を冷却するための水冷却用冷却ファンである。図5で、A1は冷却ファン46の回転動作に基づく前方からの冷却用空気の流れを示し、A2は冷却ファン47,48の回転動作に基づく前方からの冷却用空気の流れを示している。上記のように、凝縮器13では、水蒸気W2に対応する機器部分である気相部(水蒸気凝縮部)70の冷却と、水W1に対応する機器部分である液相部(凝縮水冷却部)71の冷却は、それぞれ独立に行われる。72は、独立な各冷却領域を区画するシュラウドである。
上記の構成において、膨張機12の水蒸気流出口53から出る水蒸気は大気圧相当である。上側の冷却パイプ(凝縮管)55の各々の出口集合部である中間室56では、液面65をこの空間内に位置するよう調整するために、エアベント39から水を排出する。また高圧給水ポンプ44は、ランキンサイクル装置10のメインの循環回路の給水ポンプとして、所要量の水を蒸発器11に送る。
さらに上記の構成において、リザーブ用開放タンク32は、大気開放型であり、システム内の密閉された循環回路に対しリザーブ用として予備的な水を保有しておく。リターンポンプ37は、液面センサ38の信号を受けて凝縮器13内に給水する。排気ポンプ57は、凝縮器13を負圧で運転するときはエアベント39の下流を吸引する。
なお、上記の排気ポンプ57の動作については、図5に示した圧力センサ61と圧力制御装置62によって負圧時を感知させることにより動作させたり、あるいは、液面センサ38の検出により液面65の位置が所定範囲の上限を超えるときに感知させ、制御装置60によって動作させる、ように構成することができる。
またチャッキ弁58は、凝縮器13内が負圧になる場合に大気の逆流を防ぐ。逆止弁34は、リターンポンプ37の逆流を防止する。水蒸気用エアベント39は、水、空気は通すが水蒸気は通さない。中間排水口59は不凝縮性ガスの排出、水のオーバーフローにより凝縮水の液面65の位置の変化に制限を与え、所定の範囲で液面位置が変動するようにするためのものである。液面センサ38は、液面65に係る位置信号を制御装置60に出力する。制御装置60は、液面65の位置が中間室56内に存するようにリターンポンプ37の動作を制御する。液面65の位置は、エアベント39と液面センサ38の間の範囲に含まれる高さ位置になるように制御される。液面センサ38には、例えば静電容量式レベルセンサやフロート式レベルスイッチが用いられる。
圧力センサ61は、凝縮器13の内部の圧力を検出するもので、基本的に水蒸気W2の圧力を検出する。圧力制御装置62は、凝縮器13の内部圧力が設定値になるように冷却ファン46を動作させる。温度センサ63は、凝縮水W1の温度を検出する。温度制御装置64は、凝縮水温度が設定値になるように冷却ファン47,48を動作させる。
図6〜図8を参照してエアベント39の構造・作用を詳述する。図6と図7はエアベント39の閉じているときの状態を示し、図6は縦断面図、図7は図6でのA−A線断面図である。また図8はエアベントの開いているときの状態を示す縦断面図である。図6等において、エアベント39の左側が凝縮器側であり、右側が大気側である。エアベント39は、内部が飽和水蒸気で満たされているときには密閉され(図6)、水や空気などの不凝縮性ガスが存在するときには自動的に開放され、水や不凝縮性ガスを排出して再び密閉する(図8)。
エアベント39は、容器中央の位置に配置された弁66と、この弁66を支持する弁サポート67と、弁口(パッキン)68を備える。弁サポート67で支持された弁66は、弁口68を塞ぐことができる位置関係にて配置されている。弁66は2枚のダイヤフラム66aを密閉空間を形成するように組み合わせて形成され、その内部の密閉空間にサーモリキッド(感温液)69を収容している。サーモリキッド69は、水と同じように、或る圧力下、或る温度以下では液体であり、或る温度以上になると気体となって膨張するという特性を有している。図9にサーモリキッドの飽和曲線C1と水の飽和曲線C2を示す。サーモリキッド69が気体になる温度は、水が蒸気になる温度よりもΔT(約10℃)だけ低い温度であるため、エアベント39の内部が水蒸気W2の雰囲気の時にはサーモリキッド69は気化して気体となっており、膨張したサーモリキッド69の入った密閉空間が両側のダイヤフラム66aを外方へ押し、ダイヤフラム66aで形成される弁66と弁口68との間にあった隙間を閉じる(図6)。逆に内部が低温である場合(周囲環境が空気のごとき不凝縮性ガスA3等である状態)はサーモリキッド69は液体の状態であり、ダイヤフラム66aは内方へ収縮し、弁66と弁口68の間の隙間から空気等が排出されることになる(図8)。
以上の構成において、制御装置60は、冷却ファン46で冷却して水蒸気W2を水(凝縮水)W1に戻す凝縮器13における液面65の位置を所定範囲内で変化させるように制御するための制御装置である。制御装置60は、凝縮器13における気相部70と液相部71との境界である液面65の位置を検出する液面センサ38からの検出信号に基づき、上記の所定範囲の下限よりも低下するときには凝縮器13内に水を供給するリターンポンプ37のモータ36の動作を制御し、不足分の水を開放タンク32から配管35を介して補充する。また液相部71の液面65の位置が上記の所定範囲の上限を超えるときには、中間排水口59とエアベント39等により開放タンク32に超過した水を排出する。こうして、液面センサ38に基づく下限およびエアベント39に基づく上限で決まる範囲によって液面65の位置の望ましい所定範囲が設定される。
さらに詳しく説明する。凝縮器13の中間室56に、水(凝縮水)W1を排水するのための中間排水口59を設置して液面65の上限位置を規制する。中間排水口59以上に液面65が上昇したときは中間排水口59からリザーブ用開放タンク32に水をオーバーフローさせることにより液面65の位置を下げる。液面65が中間排水口59より下側に位置するときには、中間排水口59から水蒸気が排出されないように、中間排水口59にはエアベント39が設置されている。図6〜図8に示したように、水蒸気の排出を阻止するためのエアベント39は、内部に水蒸気が存在するときには自動的に閉弁し、内部に空気(不凝縮ガス)や水が存在するときには自動的に開弁する作動を行う。また中間排水口59の下側の位置には液面センサ38を配置して、液面65の位置が液面センサ38よりも低下したときには開放タンク32からリターンポンプ37により給水して液面65の位置を液面センサ38の位置まで上昇させる。上記の作用に基づき液面65の位置は常に中間排水口59と液面センサ38の間の範囲内に維持される。中間排水口59と液面センサ38の間隔が広くなると、水蒸気W2側と水(凝縮水)W1側の伝熱面積の誤差が大きくなる。逆に当該間隔が小さくなると、リターンポンプ37とエアベント39の動作が頻繁に起きることになる。従って、中間排水口59と液面センサ38の間隔は、これらの2つの影響が共に小さくなる範囲に設定されればよい。さらに該伝熱面積を一定化することを主眼とすれば、当該間隔は限りなく小さく、ゼロとすることが望ましい。
図10に液面65の位置設定の詳細を示す。図10で、(A)は液面センサ38とエアベント39と液面65の位置関係を示し、(B)は液面位置とエアベントの動作とリターンポンプの動作との関係を表で示している。
図10の(A)では、上限液面位置としてH、下限液面位置としてH、液面位置65としてHがそれぞれ設定されている。液面65の位置Hが上限液面位置Hより高いときには、エアベント39は開状態であり、リターンポンプ37はオフ(OFF)である。液面65の位置Hが、上限液面位置Hと下限液面位置Hの間にあるときは、エアベント39は閉状態であり、リターンポンプ37はオフである。液面65の位置Hが下限液面位置Hより低いときには、エアベント39は閉状態であり、リターンポンプ37はオン(ON)である。以上により、液面65の変動は上限液面位置Hと下限液面位置Hの範囲内に抑えられる。
またランキンサイクル装置10の起動・停止時や過渡的変化時に水蒸気の流入量(質量流量)や凝縮器13から高圧給水ポンプ44への排水量(質量流量)が変化する場合にも、凝縮器13の内部における液面65の位置の変動を抑制し、安定して凝縮器13の運転を行うことができる。
さらに、図4で示したように、ランキンサイクル装置10の密閉された主回路とは別に、大気開放のリザーブ用開放タンク32が設けられている。開放タンク32は、凝縮器13と、その中間排水口59に接続されたエアベント39とチャッキ弁58を介して接続されている。また開放タンク32の下部は、リターンポンプ37と配管35と逆止弁34を介して凝縮器13の出口部13aに接続されている。液面65が中間排水口59より高い場合には水は開放タンク32にオーバーフローされ、液面65が液面センサ38より低い場合にはリターンポンプ37が作動して水の補充が行われる。凝縮器13の下流に位置する高圧給水ポンプ44は給水量が制御されているため、リターンポンプ37が作動すると、凝縮器13内への給水で液面65が上昇して液面センサ38の位置でリターンポンプ37は停止する。また中間排水口59と液面センサ38を含む領域に中間室56を設けて複数の冷却パイプ(凝縮管)55が集合するような構造としたため、中間排水口59からの排水時やリターンポンプ37からの給水時に液面65の変化の応答性を良好にし、かつ安定させることができる。なお、水蒸気導入室13A側と集水室13B側の中間室56部分を各冷却パイプ(凝縮管)55が連通されていればよく、中間室56を設けることは必須のことではない。
次に、図11のフローチャートを参照して、制御装置60において実施される液面位置制御の流れを説明する。
最初に、液面センサ38によって液面65の位置Hの読込みを行う(ステップS10)。液面位置Hが上限液面位置Hよりも高いか否かが判断される(ステップS11)。もし液面位置Hが上限液面位置Hより高いときには、エアベント39が開かれて排水され、液面65が下げられる(ステップS12)。その後、リターンに移行してステップS10に戻る。もし液面位置Hが上限液面位置H以下のときには、エアベント39を閉じる(ステップS13)。次のステップでは、液面位置Hが下限液面位置Hより低いか否かが判断される(ステップS14)。もし液面位置Hが下限液面位置Hより低いときには、リターンポンプ37がオンになり、水が補給される(ステップS15)。もし液面位置Hが下限液面位置H以上のときには、リターンポンプ37がオフとなり、水の補給は行われない(ステップS16)。その後、リターンに移行してステップS10に戻る。
図12は、本実施形態に係るランキンサイクル装置10を搭載した車両の車速変化とエンジン出力変化と蒸発器への給水流量と凝縮器の液面位置の変化を示すタイミングチャートである。図12の(A)〜(D)は、背景技術の箇所で説明した図14の(A)〜(D)のそれぞれと同じ内容のグラフであるので、詳細な説明は省略する。図12の(E)に示した液面位置の変化に係る図が新たに加わった図である。車両が図12(A)で示すような車速変化をするとき、ランキンサイクル装置10では、前述の通り、液面位置の制御が行われるので、液面位置は、車両の発進時と停止時において上限位置Hと下限位置Hの間での変動のみであり、大きな変動は起こらない。
以上のように、凝縮器13内に貯留される水(凝縮水)W1の液面65の位置変動を所定範囲に抑制することにより、凝縮器13における水蒸気に対応する気相部と凝縮水に対応する液相部の互いの伝熱面積の変化を低減して、その伝熱面積の変化を考慮することなく冷却を行え、かつ制御の精度向上を図り、ポンプ装置内のキャビテーションおよび、蒸発器11での再加熱の際の余分な熱エネルギの消費を低減する凝縮器13の液面位置制御装置を得ることができる。
また伝熱面積の変化幅を許容範囲内に保つことができ、かつ液相作動媒体の排出と補充供給の切換え動作にヒステリシスを持たせることができ、それによって切換え動作の頻度を少なくし、凝縮器の作動安定化と共に、排出および補充供給に係わる装置の耐久性が向上する。さらに、液相作動媒体(水)を排出して設定液面を適切に制御しつつ、気相作動媒体(水蒸気)の排出は阻止するので、凝縮器の作動安定化を図ることができる。また、液相作動媒体を蓄えたリザーブ用開放タンクからリターンポンプを介して直接に設定液面まで液相作動媒体の補充供給することができ、これにより液面位置の調整をポンプの高応答・高精度の供給量制御により、液面位置を早期に正確に安定させることができる。さらに、総質量流量の維持・回路内で作動媒体の総質量流量を維持しつつ液面位置制御が可能となり、作動媒体の外部への排出、および外部からの補充という特別な装置を付加する必要がない循環回路として構成できる。さらに、凝縮器の各冷却パイプ毎の液面位置のばらつきを少なくでき、液相作動媒体の排水および補充供給時における液面を早期に正確に安定させることができ、凝縮器の作動安定化を行うことができる。
本発明は、車載用ランキンサイクル装置で凝縮器内の水の液面位置を最適に制御する装置として利用される。
発明に係るランキンサイクル装置の全体システムを示す構成図である。 本実施形態に係る給水ポンプユニットの内部構造を示す部分断面側面図である。 本発明に係るランキンサイクル装置を車両に搭載したときの配置構成を示す図である。 ランキンサイクル装置の作動媒体の流れを示すシステム構成図である。 凝縮器の部分の内部構造と周辺装置を示す側面図である。 エアベントの閉じているときの構造を示す断面図である。 図6におけるA−A線断面図である。 エアベントの開いているときの構造を示す断面図である。 サーモリキッドと水の飽和曲線を示すグラフである。 液面位置設定の詳細を説明するための図である。 凝縮器の液面位置制御装置の動作フローを示すフローチャートである。 本発明に係るランキンサイクル装置を搭載した車両の車速変化とエンジン出力変化と蒸発器への給水流量と凝縮器の液面位置の変化を示すタイミングチャートである。 従来の車載用ランキンサイクル装置を簡略して示した模式図である。 従来のランキンサイクル装置を搭載した車両の車速変化とエンジン出力変化と蒸発器への給水流量と凝縮器の液面位置の変化を示すタイミングチャートである。
符号の説明
10 ランキンサイクル装置
11 蒸発器
12 膨張機
13 凝縮器
14 給水ポンプユニット
15 配管
16 配管
17 配管
18 配管
26 配管
32 開放タンク
37 リターンポンプ
38 液面センサ
39 エアベント
41 密閉タンク
42 水コアレッサ
43 モータ
44 高圧給水ポンプ
45 排気管
46,47,48 冷却ファン

Claims (7)

  1. 熱源からの熱で液相作動媒体を気相作動媒体に変換する蒸発器と、前記気相作動媒体を冷却して前記液相作動媒体に戻す凝縮器とを備えるランキンサイクル装置において、
    前記凝縮器内の前記液相作動媒体の液面位置を検出し、第1設定液面位置を定める液面位置検出手段と、
    前記凝縮器の前記第2設定液面位置に設けた中間排出口と、前記液相作動媒体の沸点温度よりも低い温度で開弁し、前記沸点温度より低い温度の前記液相作動媒体を排出する排出弁装置とで構成され、前記凝縮器内の前記液相作動媒体を排出し、第2設定液面位置を定める液相作動媒体排出手段と、
    前記凝縮器内へ前記液相作動媒体を供給する液相作動媒体供給手段と、
    前記液面位置検出手段からの検出信号によって前記液相作動媒体供給手段を駆動制御する制御手段と、を備え、
    前記液面の位置が前記第2設定液面位置を超えるとき前記液相作動媒体排出手段の前記中間排出口および前記排出弁装置により前記液相作動媒体を前記凝縮器から排出し、前記液面の位置が前記第1設定液面位置を下回るとき前記制御手段で前記液相作動媒体供給手段を駆動して前記液相作動媒体を前記凝縮器に補充することを特徴とするランキンサイクル装置における凝縮器の液面位置制御装置。
  2. 前記排出弁装置は、
    前記中間排水口に接続される接続部と、
    リザーブ用タンクに通じる弁口と、
    内部に感温液を収容するダイヤフラム部材で形成され、周囲環境に前記気相作動媒体が存在するときには前記ダイヤフラム部材が膨張して前記弁口を閉じかつ前記周囲環境に前記液相作動媒体が存在するときには前記ダイヤフラム部材が収縮して前記弁口を開く弁と、を備え、
    これにより、前記液相作動媒体の沸点温度よりも低い温度で開弁し、前記沸点温度より低い温度の前記液相作動媒体を排出することを特徴とする請求項1記載のランキンサイクル装置における凝縮器の液面位置制御装置。
  3. 前記排出弁装置はエアベントであり、このエアベントの前記弁は、内部に前記感温液を収容する2枚のダイヤフラムの組合せ構造で形成され、排出弁装置内部の前記周囲環境に水蒸気が存在するときには前記水蒸気の温度で前記感温液が気化し前記2枚のダイヤフラムが外方へ膨張して前記弁口を閉じ、前記周囲環境に水または空気が存在するときには周囲環境の温度に応じて前記感温液が液体状態を維持し前記2枚のダイヤフラムが内方へ収縮して前記弁口を開き、前記水を前記リザーブ用タンクに排出することを特徴とする請求項記載のランキンサイクル装置における凝縮器の液面位置制御装置。
  4. 前記凝縮器から排出された前記液相作動媒体と前記凝縮器に補充される前記液相作動媒体とを蓄え、排出または補充される前記液相作動媒体を循環させるリザーブ用タンクを有することを特徴とする請求項記載のランキンサイクル装置における凝縮器の液面位置制御装置。
  5. 前記液相作動媒体供給手段は、リザーブ用タンクに蓄えられた前記液相作動媒体をポンプによって凝縮器に補充することを特徴とする請求項記載のランキンサイクル装置における凝縮器の液面位置制御装置。
  6. 前記凝縮器は、複数の凝縮管を有し、前記液面の位置の対応する箇所に少なくとも2以上の凝縮管を連通する中間室を設けたことを特徴とする請求項1〜5のいずれか1項に記載のランキンサイクル装置における凝縮器の液面位置制御装置。
  7. 前記第1設定液面位置と前記第2設定液面位置を同じ液面位置としたことを特徴とする請求項1〜6のいずれか1項に記載のランキンサイクル装置における凝縮器の液面位置制御装置。
JP2003344492A 2003-10-02 2003-10-02 ランキンサイクル装置における凝縮器の液面位置制御装置 Expired - Fee Related JP4027295B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003344492A JP4027295B2 (ja) 2003-10-02 2003-10-02 ランキンサイクル装置における凝縮器の液面位置制御装置
US10/953,352 US7174732B2 (en) 2003-10-02 2004-09-30 Cooling control device for condenser
EP04024220A EP1614866A3 (en) 2003-10-02 2004-09-30 Device for controlling liquid level position within condenser in rankine cycle apparatus
US10/952,881 US6952924B2 (en) 2003-10-02 2004-09-30 Rankine cycle apparatus
EP04023385A EP1624269A3 (en) 2003-10-02 2004-09-30 Cooling control device for condenser
EP04024219A EP1619357A3 (en) 2003-10-02 2004-09-30 Rankine cycle apparatus
US10/953,343 US7159400B2 (en) 2003-10-02 2004-09-30 Rankine cycle apparatus
US10/952,912 US7131290B2 (en) 2003-10-02 2004-09-30 Non-condensing gas discharge device of condenser
US10/953,341 US7117691B2 (en) 2003-10-02 2004-09-30 Device for controlling liquid level position within condenser in rankine cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344492A JP4027295B2 (ja) 2003-10-02 2003-10-02 ランキンサイクル装置における凝縮器の液面位置制御装置

Publications (2)

Publication Number Publication Date
JP2005106039A JP2005106039A (ja) 2005-04-21
JP4027295B2 true JP4027295B2 (ja) 2007-12-26

Family

ID=34386315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344492A Expired - Fee Related JP4027295B2 (ja) 2003-10-02 2003-10-02 ランキンサイクル装置における凝縮器の液面位置制御装置

Country Status (3)

Country Link
US (1) US7117691B2 (ja)
EP (1) EP1614866A3 (ja)
JP (1) JP4027295B2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952924B2 (en) * 2003-10-02 2005-10-11 Honda Motor Co., Ltd. Rankine cycle apparatus
US9541312B2 (en) 2008-05-07 2017-01-10 United Technologies Corporation Passive oil level limiter
US8739532B2 (en) * 2009-08-05 2014-06-03 Mitsubishi Electric Corporation Exhaust heat regeneration system
BR112012024146B1 (pt) * 2010-03-23 2020-12-22 Echogen Power Systems, Inc. circuito de fluido de trabalho para recuperação de calor perdido e método de recuperação de calor perdido em um circuito de fluido de trabalho
WO2012055555A2 (de) 2010-10-28 2012-05-03 Daimler Ag Brennkraftmaschine
SE535453C2 (sv) * 2010-12-01 2012-08-14 Scania Cv Ab Arrangemang och förfarande för att omvandla värmeenergi till mekanisk energi
DE102010053835A1 (de) * 2010-12-08 2012-06-14 Daimler Ag Verfahren und Vorrichtung zur Entlüftung eines Abwärmenutzungskreislaufs in einem Fahrzeug
DE102010054733A1 (de) * 2010-12-16 2012-06-21 Daimler Ag Abwärmenutzungsvorrichtung, Betriebsverfahren
US8826662B2 (en) * 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
JP2013122173A (ja) * 2011-12-09 2013-06-20 Toyota Industries Corp 車両用廃熱利用装置
CN104246195B (zh) * 2012-04-23 2016-09-07 丰田自动车株式会社 热输送装置
DE102013001569A1 (de) * 2013-01-30 2014-07-31 Daimler Ag Verfahren zum Betreiben einer Abwärmenutzungsvorrichtung
KR20160028999A (ko) 2013-03-04 2016-03-14 에코진 파워 시스템스, 엘엘씨 큰 네트 파워 초임계 이산화탄소 회로를 구비한 열 엔진 시스템
US10077683B2 (en) * 2013-03-14 2018-09-18 Echogen Power Systems Llc Mass management system for a supercritical working fluid circuit
DE102014223626A1 (de) 2013-11-20 2015-05-21 MAHLE Behr GmbH & Co. KG Vorrichtung und Verfahren zur Rückgewinnung von Abwärmeenergie und ein Nutzkraftfahrzeug
DE102014206026A1 (de) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh Kühleinrichtung für einen Kondensator eines Systems für einen thermodynamischen Kreisprozess, System für einen thermodynamischen Kreisprozess, Anordnung mit einer Brennkraftmaschine und einem System, Kraftfahrzeug, und ein Verfahren zum Durchführen eines thermodynamischen Kreisprozesses
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
DE102015209091A1 (de) * 2015-05-19 2016-11-24 Robert Bosch Gmbh Abwärmenutzungsanordnung einer Brennkraftmaschine
KR101936508B1 (ko) * 2017-06-15 2019-01-08 두산중공업 주식회사 냉각 모듈 및 이를 포함하는 초임계 유체 발전 시스템 및 이를 이용한 초임계 유체 공급 방법
US10690014B2 (en) 2017-05-12 2020-06-23 DOOSAN Heavy Industries Construction Co., LTD Cooling module, supercritical fluid power generation system including the same, and supercritical fluid supply method using the same
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN109899122B (zh) * 2019-04-10 2022-04-15 广西玉柴机器股份有限公司 船用发动机的排气余热回收系统的控制方法
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
EP4259907A1 (en) 2020-12-09 2023-10-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
CN114087888B (zh) * 2021-11-29 2024-01-12 江南造船(集团)有限责任公司 冷凝器双恒定运行控制方法、系统及二回路系统
US20230331214A1 (en) * 2022-04-13 2023-10-19 Thermal Power Recovery LLC. Internal combustion engine powerplant having high efficiency waste energy recovery and distribution

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788091A (en) * 1970-09-25 1974-01-29 Statham Instrument Inc Thermodynamic cycles
US3863454A (en) * 1972-02-22 1975-02-04 Du Pont Rotary heat engine powered two fluid cooling and heating apparatus
JPS5334001A (en) * 1976-09-10 1978-03-30 Toshiba Corp Water level control apparatus for condensing and water supplying components of power plant
US4464908A (en) * 1982-08-12 1984-08-14 The United States Of America As Represented By The United States Department Of Energy Solar-powered turbocompressor heat pump system
JPS61215407A (ja) 1985-03-20 1986-09-25 Hitachi Ltd コンバインドプラントの復水器水位制御方法
US4854121A (en) 1986-10-09 1989-08-08 Kabushiki Kaisha Toshiba Combined cycle power plant capable of controlling water level in boiler drum of power plant
JPH0678868B2 (ja) 1987-02-17 1994-10-05 株式会社荏原製作所 高圧コンデンサの制御方法
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
JPH10185458A (ja) 1996-12-19 1998-07-14 Meidensha Corp 空冷式高圧復水器の制御装置
JP2002115504A (ja) * 2000-10-06 2002-04-19 Honda Motor Co Ltd ランキンサイクル装置
JP2002129908A (ja) * 2000-10-25 2002-05-09 Kawasaki Steel Corp 蒸気タービン復水器の水位レベル制御方法
US7174732B2 (en) * 2003-10-02 2007-02-13 Honda Motor Co., Ltd. Cooling control device for condenser
US6952924B2 (en) * 2003-10-02 2005-10-11 Honda Motor Co., Ltd. Rankine cycle apparatus
US7131290B2 (en) * 2003-10-02 2006-11-07 Honda Motor Co., Ltd. Non-condensing gas discharge device of condenser
EP1619357A3 (en) * 2003-10-02 2006-03-08 Honda Motor Co., Ltd. Rankine cycle apparatus

Also Published As

Publication number Publication date
US20050072182A1 (en) 2005-04-07
US7117691B2 (en) 2006-10-10
EP1614866A2 (en) 2006-01-11
EP1614866A3 (en) 2006-03-08
JP2005106039A (ja) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4027295B2 (ja) ランキンサイクル装置における凝縮器の液面位置制御装置
US7174732B2 (en) Cooling control device for condenser
US7131290B2 (en) Non-condensing gas discharge device of condenser
US7159400B2 (en) Rankine cycle apparatus
US6952924B2 (en) Rankine cycle apparatus
JP4027303B2 (ja) ランキンサイクル装置
JP4027299B2 (ja) 凝縮器の冷却制御装置
JPH0692730B2 (ja) 車両用内燃機関の沸騰冷却装置
JP4027298B2 (ja) 凝縮器の不凝縮性ガス排出装置
EP1624269A2 (en) Cooling control device for condenser
JP2010156315A (ja) エンジンの廃熱利用装置
JP2005140013A (ja) ランキンサイクル装置
JP2006230096A (ja) モータの冷却装置および冷却方法。
US5924480A (en) Air conditioning system
JPH0424100Y2 (ja)
JPH0326252Y2 (ja)
JPS6116222A (ja) エンジンの沸騰冷却装置
JPH0324826Y2 (ja)
JPH0248665Y2 (ja)
JPH0248661Y2 (ja)
JPH0248660Y2 (ja)
JPH0248659Y2 (ja)
JPH0422708A (ja) エンジンの流動沸騰冷却装置
JPH0452430Y2 (ja)
JPS62223409A (ja) 内燃機関の沸騰冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees