JP5813321B2 - 体細胞の再プログラム化 - Google Patents

体細胞の再プログラム化 Download PDF

Info

Publication number
JP5813321B2
JP5813321B2 JP2010501136A JP2010501136A JP5813321B2 JP 5813321 B2 JP5813321 B2 JP 5813321B2 JP 2010501136 A JP2010501136 A JP 2010501136A JP 2010501136 A JP2010501136 A JP 2010501136A JP 5813321 B2 JP5813321 B2 JP 5813321B2
Authority
JP
Japan
Prior art keywords
cells
cell
potential
pluripotent
somatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010501136A
Other languages
English (en)
Other versions
JP2010521990A5 (ja
JP2010521990A (ja
Inventor
ジェイムズ トムソン
ジェイムズ トムソン
ジュンイン ユー
ジュンイン ユー
Original Assignee
ウィスコンシン アラムニ リサーチ ファンデーション
ウィスコンシン アラムニ リサーチ ファンデーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39708430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5813321(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ウィスコンシン アラムニ リサーチ ファンデーション, ウィスコンシン アラムニ リサーチ ファンデーション filed Critical ウィスコンシン アラムニ リサーチ ファンデーション
Publication of JP2010521990A publication Critical patent/JP2010521990A/ja
Publication of JP2010521990A5 publication Critical patent/JP2010521990A5/ja
Application granted granted Critical
Publication of JP5813321B2 publication Critical patent/JP5813321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/99Coculture with; Conditioned medium produced by genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/027Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a retrovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Plant Pathology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Psychology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

関連出願の相互引用
本出願は、米国仮特許出願60/919,687号(2007年3月23日出願);米国仮特許出願60/974,980号(2007年9月25日出願);及び米国仮特許出願60/989,058号(2007年11月19日出願)(前記の各々は、参照によりあたかもその全体が示されたかのように本明細書に含まれる)の権利を主張する。
連邦政府の研究開発支援に関する記述
該当無し
胚性幹(ES)細胞は、多能性を維持しながら無限に増殖することができ、さらに三つの胚葉の全ての細胞に分化することができる(Evans & Kaufman, Nature 1981, 292:154-156)。ヒトES細胞は、宿主の疾患(例えばパーキンソン病、脊髄損傷及び糖尿病)の治療に有用であろう(Thomson et al. Science 1998, 282:1145-1147)。研究者らは、胚盤胞細胞からES細胞を作製する従来の方法を避けるため、及び患者への移植後の予想される組織拒絶の問題を回避するための技術的解決を模索してきた。これらの解決を達成する1つの望ましい方法は、出生後の個体の体細胞から直接多能細胞を作製することであろう。
体細胞は、それらの核の内容物を卵母細胞に移すことによって(Wilmut et al. Nature 1997, 385:810-813)又はES細胞との融合によって(Cowan et al. Science 2005, 309:1369-1373)再プログラム化することができ、未受精卵及びES細胞は体細胞に全能性又は多能性を付与する因子を含むことが示唆された。
同様に、Yuらは、H1Oct4ノックインES細胞からin vitro分化によって誘導された細胞はEGFPを発現しないが、EGFP発現はヒトES細胞との細胞対細胞融合に際して回復することを示した(Yu et al. Stem Cells 2006, 24:168-176、前記文献は参照によりあたかもその全体が示されたかのように本明細書に含まれる)。したがって、Yuらは、分化した細胞はヒトES細胞との細胞対細胞融合により多能性となるえることを示した。分化した細胞のタイプに関係なく、未分化ヒトES細胞と融合したとき、融合ハイブリッド細胞では、ES細胞特異的抗原及びマーカー遺伝子が発現され、分化特異的抗原はもはや検出できなかった。都合のよいことに、EGFP発現がハイブリッド細胞で再度確立され、多能性幹細胞状態の再確立の簡便なマーカーを提供した。ハイブリッド細胞が胚様体(EB)を形成したとき、全3胚葉及び胚体外組織に特徴的な遺伝子がアップレギュレートされ、ハイブリッド細胞は多様な系列に分化する潜在能力を有することが示唆された。
多能性の転写に関する規定は完全には理解されていないが、いくつかの転写因子(Oct 3/4(Nichols et al. Cell 1998, 95:379-391)、Sox2(Avilion et al. Genes Dev 2003, 17:126-140)及びNanog(Chambers et al. Cell 2003, 113:643-655)を含む)がES細胞の多能性の維持に必要とされる。しかしながら、いずれもそれだけではES細胞の実体を特徴付けるために十分ではない。
Chambers & Smith(EP1698639A2(2002))は、分化抑制因子をコード又は活性化するベクターを導入することによって、フィーダ層又はフィーダ細胞抽出物の非存在下及びgp130サイトカインの非存在下で多能性ネズミ細胞を維持したが、しかしながら分化細胞を多能性状態に転換できなかった。
その後、Takahashi & Yamanakaは、マウスES細胞及びマウス成体線維芽細胞(前記は、マウスES細胞の形態及び増殖特性並びにマウスES細胞マーカー遺伝子の発現を示す誘導性多能性幹細胞(iPS細胞)の獲得のためにマウスES細胞にとって適切な条件下で培養された)に4因子(すなわちOct3/4、Sox2、c-Myc及びKlf4)を導入した(Takahashi & Yamanaka, Cell 2006, 126:663-676)。注目すべきことに、マウス線維芽細胞に導入された外因性Oct-4は最小限のOct-4発現しかもたらさなかった。ヌードマウスへのiPS細胞の皮下移植は、3胚葉の全てに由来する多様な組織を含む腫瘍を生じた。胚盤胞への注入後、iPS細胞はマウス胚の発育に貢献した。しかしながら、c-Myc(多能性の誘導のために必要であった)はオンコジーンである。同様にKlf4もオンコジーンである。これらのデータは、レトロウイルス系形質導入を用いてほんの数個の特定の因子を添加することによって、多能性細胞をマウス線維芽細胞培養から直接作製できることを示している。しかしながら以下に記載するように、分化したマウス細胞からiPS細胞を作製するために用いられる因子セットは、さらに別の変化を細胞に導入しない限り、ヒト体細胞を、レンチウイルスベクターを用いて多能性に再プログラム化するには不十分であった。
マウスのES細胞及びヒトのES細胞は、未分化状態を維持するために別個の因子セットを要求し、種特異的相違(哺乳動物間ですら)の重要性が示されているので、ヒトの体細胞を再プログラム化することができる因子は、モデル生物(マウスを含む)の体細胞を再プログラム化することができる因子とは異なりえると仮定できよう。例えば、白血病抑制因子(LIF)/Sta3経路(マウスES細胞の増殖にとって不可欠である)は、ヒトES細胞増殖を支援せず、ヒトES細胞を支援する条件下では活性をもたないようである(L. Daheron et al. Stem Cells 2004, 22:770-778;R. Humphrey et al. Stem Cells 2004, 22:522-530;及びT. Matsuda et al. EMBO J 1999, 18:4261-4269)。
同様に、骨形態発生タンパク質(BMP)はLIFと一緒になって、無血清培養液下でのクローン密度でマウスES細胞の自己再生を支援するが(Q. Ying et al. Cell 2003, 115:281-292)、一方、それらは、また別の場合には自己再生を支援するような条件下で(例えば線維芽細胞上での培養又は線維芽細胞条件付け培養液中での培養で)ヒトES細胞の急速な分化を引き起こす(R. Xu et al. Nat Biotechnol 2002, 20:1261-1264)。実際、ヒトES細胞でのBMPシグナリングの阻害は有益である(R. Xu et al. Nat Methods 2005, 2:185-190)。
さらにまた、線維芽細胞増殖因子(FGF)のシグナリングは、ヒトES細胞の自己再生にとって重要であるが、マウスには明らかに重要ではない(Xu et al. 2005, 上掲書;及びC. Xu et al. Stem Cells 2005, 23:315-323)。
したがって、当分野ではなお、多能性細胞を得るために、少なくとも霊長類(ヒト及び非ヒトを含む)の体細胞を再プログラム化する方法で使用されるために適した潜在能力決定因子セットが探索されている。胚性組織に依存する必要がない細胞は、既存の多能性霊長類ES細胞のために既に熟慮された用途での使用に適していよう。
本発明は、おおざっぱに言えば分化した霊長類の体細胞を多能性細胞、より具体的にはiPS細胞に再プログラム化(reprogramming)する方法に関すると要約される。本明細書で用いられる、“iPS細胞”とは、対応するそれら細胞のもともとの分化した体細胞と遺伝的に実質同一であり、本明細書に記載するより高い潜在能力を有する細胞(higher potency cell)(例えばES細胞)と類似の特徴を示す細胞を指す。前記細胞は種々の分化した(すなわち非多能性及び多分化能性(multipotent))体細胞から入手することができる。
iPS細胞は、ES細胞と類似の形態学的特性(すなわち球状形、大きな核小体及び貧弱な細胞質)及び増殖特性(すなわち倍増時間:ES細胞は約17時間から18時間の倍増時間を有する)を示す。さらにまた、iPS細胞は、多能性細胞特異的マーカーを発現する(例えばOct-4、SSEA-3、SSEA-4、Tra-1-60、Tra-1-81を発現するが、SSEA-1は発現しない)。しかしながら、iPS細胞は胚から直接誘導されるわけではなく、さらに、少なくともiPS細胞が多能性になるまで、選択した潜在能力決定因子(potency-determining factor)の1つ以上のコピーを一過性又は安定的に発現することができる。本明細書で用いられる、“胚から直接誘導されるわけではなく”とは、iPS細胞を生じる出発の細胞タイプが、非多能性細胞、例えば多分化能性細胞又は最終的に分化した細胞、例えば出生後の個体から得られる体細胞であることを意味する。
本明細書に記載する方法では、少なくとも2つの潜在能力決定因子が、分化した体細胞に導入され発現されて、その結果、前記体細胞は、多能性細胞、例えばヒトES細胞(すなわち少なくともOct-4、SSEA-3、SSEA-4、TRA-1-60、TRA-1-81を発現するが、SSEA-1は発現せず、核:細胞質比が高く核小体が目立つ密なコロニーの外観を有する)に特徴的な特性を有する細胞に培養の状態で転換される(前記多能性細胞は、三つの胚葉に特徴的な全ての細胞に分化することができ、さらに出生後の個体の体細胞の遺伝的に必要な全量を含む)。潜在能力決定因子をコードするために導入される遺伝物質は別として、再プログラム化された細胞は、それらが誘導された体細胞と遺伝的に実質同一である。
本明細書で用いられる、“潜在能力決定因子”は、例えば遺伝子又は他の核酸又はその機能的フラグメントのような因子とともに、コードされた因子又はその機能的フラグメントを指し、前記は、体細胞が多能性になることができるように、その潜在能力を高めるために用いられる。潜在能力決定因子は、場合によって再プログラム化された細胞に単に一過性で存在してもよいが、また再プログラム化された細胞のゲノム内に転写的に活性又は不活性な状態で維持されてあってもよい。同様に、潜在能力決定因子は、再プログラム化細胞内に1コピー以上で存在することができ、この場合、前記潜在能力決定因子は細胞のゲノム内に組み込まれてあっても、染色体外にあっても、又はその両方であってもよい。潜在能力決定因子には、Stella(配列番号:1)、POU5F1(Oct-4;配列番号:2)、Sox2(配列番号:3)、FoxD3、UTF1、Rex1、ZNF206、Sox15、Mybl2、Lin28(配列番号:4)、Nanog(配列番号:5)、DPPA2、ESG1、Otx2及びそのサブセットが含まれえるが、ただしこれらに限定されない。いくつかの実施態様では、わずか2つの潜在能力決定因子、例えばOct-4及びSox2で十分である。しかしながら、再プログラム化細胞を獲得する効率は、追加の潜在能力決定因子、例えばLin28、Nanog又はその両方を含むことによって改善することができる。
第一の特徴では、本発明は、出生後の個体、特に生存個体、場合によって死亡個体から入手される多能性細胞の補充可能な濃縮集団に関する。濃縮細胞集団内の細胞は、少なくとも1つの細胞タイプ特異的マーカー(Oct-4、SSEA3、SSEA4、Tra-1-60、Tra-1-81またはその組合せを含む)を発現し、さらに多能性細胞、例えばES細胞の他の特徴を有する。さらにまた、前記多能性細胞はアルカリ性ホスファターゼ(ALP)を発現することができる。さらにまた、多能性細胞は、以前に存在していた分化した個体由来細胞のゲノムと遺伝的に実質同一のゲノムを有することができる。同様に、前記多能性細胞は、少なくとも1つの潜在能力決定因子をコードするゲノムを有することができ、前記は再プログラム化後に、転写的に活性であっても不活性であってもよい。さらにまた、潜在能力決定因子は再プログラミング配列(reprogramming sequence)の形態であってもよく、前記配列では、潜在能力決定因子をコードするポリヌクレオチドは、異種プロモータと機能的に連結される。本明細書で用いられる、“異種プロモータ”は、当該プロモータが通常は転写を開始しないポリヌクレオチドと機能的に連結されるプロモータを意味する。
第二の特徴では、本発明は、体細胞を多能性細胞に再プログラム化するために必要な潜在能力決定因子の認定のための方法及び組成物に関する。
特段に指定されなければ、本明細書で用いられる全ての技術用語及び学術用語は、本発明が属する分野の業者が一般的に理解する意味と同じ意味を有する。本発明を実施又は試験するための適切な方法及び材料は下記に記載されるが、本明細書に記載のものと類似又は等価の他の方法及び材料(前記は当分野では周知である)もまた用いることができる。
本発明の他の目的、利点及び特徴は、添付の図面と併せて以下の詳細な説明から明白となるであろう。
ノックイン構築物が導入された、ヒトOct4プロモータから下流の部位を示す。このノックイン構築物を含む細胞では、Oct4プロモータが活性を有するときに、強化緑色蛍光タンパク質(EGFP)及びネオマイシンホスホトランスフェラーゼ(NEO)が発現される。これらの細胞を用いて、どの因子が体細胞を多能性細胞に再プログラム化できるかを判定することができる。 図2A−2BはヒトH1 ES細胞分化を示す。図2Aは、ヒトES細胞から骨髄球様前駆細胞の誘導及び精製を模式的に示す。図2Bは、パーコール(Percoll(商標))分離後に得られた分化細胞の表現型分析を示す。灰色線:アイソタイプコントロール;黒線:抗体染色。略語:hESC、ヒト胚性幹細胞;MPO、ミエロパーオキシダーゼ;pHEMA、ポリ(2-ヒドロキシエチルメタクリレート)。 図1のノックイン構築物を含むOct-4領域を示す。 図4A−Cは、体細胞のレンチウイルスによる形質導入を示す。図4Aはレンチウイルス構築物の模式図を示す。図4Bは、パーコール(Percoll(商標))精製細胞が、種々のMOIのEGFP発現レンチウイルスベクターで形質導入されたことを示す。EGFP発現は、薬剤選別無しで形質導入3日後にフローサイトメトリーによって分析した。図4Cは、マトリゲル(Matrigel(商標))でさらに数日培養した後のパーコール(Percoll(商標))精製細胞のレンチウイルス形質導入を示す。EGFP発現は、レンチウイルスによる形質導入の2日後に分析した。 マトリゲル(Matrigel(商標))で7日間分化させた細胞におけるトランスジーンの過剰発現を示す。形態における有意な変化は、Nanog又はEGFP(コントロール)を過剰発現する細胞では観察されなかった。Oct-4発現細胞の形態は劇的に変化し、これら細胞の多くがネオマイシン選別に生き残ったが、これら細胞はいずれも典型的なヒトES細胞の形態を示さず、Oct-4発現ES細胞の薬剤選別性集団は、骨髄球様分化に必要な培養期間の端から端までを生存しぬけないことを示している。 図6A−Bは、14の潜在能力決定因子の導入によるOct4KICD45+A細胞の再プログラム化を示す。図6Aは、樹立クローンは未分化ヒトES細胞の形態を示し、内因性Oct4プロモータの指令下でEGFPを発現させることを示す。図6Bは、樹立クローンにおけるヒトES細胞特異的細胞表面抗原の発現のフローサイトメトリー分析を示す。灰色線:アイソタイプコントロール;黒線:抗体染色。 図7A−Cは。潜在能力決定因子の種々のセットの導入後のコロニー形成によって実証される再プログラム化効率を示す。図7Aは、14の潜在能力決定因子を組み合わせた識別セットが細胞に導入されたことを示す(各組合せにおいて14因子の1つが排除された)。被検細胞をES様状態に再プログラム化する潜在能力決定因子の能力を判定することによって、発明者らは、排除された潜在能力決定因子が再プログラム化に必須であるか否かを決定した。例えば、OCT-4を欠いたM1と称される潜在能力決定因子セット(M1−Oct-4と記されている)は、有意な数のES様コロニーを形成することができなかった。したがって、OCT-4は体細胞の再プログラム化に重要であると結論された。図7Bは、更なる試験で判定した潜在能力決定因子のセット(図7Aから削減された)は14から4に削減されたことを示している(M4はOct-4、Sox2、Lin28及びNanogである)。これら4つの潜在能力決定因子を、4つのうちの1つを組合せから連続的に排除することによって試験した。3つの潜在能力決定因子の組合せ(例えばM4−Oct-4)が、被検細胞が有意な数の安定なES様コロニーを形成するように再プログラム化できなかった場合、発明者らは、省かれた遺伝子が体細胞の再プログラム化のために重要であると結論した。図7Bでは、淡灰色の棒線は典型的なヒトES細胞の形態を有して形成された再プログラム化コロニーの総数を示し、濃灰色の棒線は分化が最小限の大きなコロニーの数を示す。図7Cは、更なる試験で判定した潜在能力決定因子のセット(図7Bから削減された)は、4つから2つ(すなわちOct-4及びSox2)に削減されたことを示している。Oct-4、Sox2、Lin28及びNanogを、組合せから4つのうち2つを連続的に排除することによって試験した。 図8A−Bは、ヒト成人の皮膚線維芽細胞における再プログラム化を示す。図8Aは、ヒト成人の皮膚細胞(p5)(左)及び再プログラム化細胞(右)の明視野像を示す。図8Bは、ヒト成人の皮膚細胞(p5)(下)及び再プログラム化細胞(上)におけるヒトES細胞特異的マーカーのフローサイトメトリー分析を示す。灰色線:アイソタイプコントロール;黒線:抗体染色。 図9A−Bは、Oct-4及びSox2の相対的発現の再プログラム化への影響を示す。図9Aは、293FT細胞におけるOct-4及びSox2のウェスタンブロット分析を示す。レーン1、pSin4-EF2-Oct4-IRES1-Sox2(OS-IRES1);レーン2、pSin4-Ef2-Oct4-IRES2-Sox2(OS-IRES2);レーン3、pSin4-EF2-Oct4-F2A-Sox2(OS-F2A);レーン4、pSin4-EF2-Oct4-IRES1-puro(O);レーン5、pSin4-EF2-Sox2-IRES1-puro(S);レーン6、プラスミド無し(コントロール)。図9Bは、連結させた潜在能力決定因子を用いた、OCT4ノックインヒトES細胞から誘導した間葉細胞における再プログラム化を示す。遺伝子の組合せは図9Aの場合と同じで、pSin4-EF2-Nanog-IRES1-puro(N)及びpSin4-EF2-Lin28-IRES1-puro(L)が加えられた。
発明者らは、霊長類のES細胞に存在する潜在能力決定因子は多能性の維持に重要な役割を果たし、さらに分化した体細胞は潜在能力決定因子の発現を介して多能性の状態に再プログラム化されえると仮説を立てた。
細胞タイプは、分化を経る間に種々の潜在能力レベル、たとえば全能性、多能性及び多分化能性を経験する。本明細書で特に重要なものは多能性細胞である。本明細書で用いられる、“多能性細胞”とは、三胚葉(例えば内胚葉、中胚葉及び外胚葉)のいずれにも分化できる細胞集団を指す。多能性細胞は、多様な多能性細胞特異的マーカーを発現し、未分化細胞に特異的な細胞形態を有し(すなわち密なコロニー、高い核:細胞質比及び顕著な核小体)、免疫不全動物(例えばSCIDマウス)に導入したときテラトーマを形成する。テラトーマは典型的にはどの三胚葉にも特徴的な細胞又は組織を含む。当業者は、当分野で一般的に用いられる技術を使用してこれらの特徴を判定することができる。例えば上掲書(Thomson et al.)を参照されたい。多能性細胞は、細胞培養で増殖することも、多分化能特性を示す種々の系列拘束細胞集団に分化することもできる。多分化能性体細胞は、多能性細胞に比してより分化しているが、最終分化にまでは至っていない。したがって、多能性細胞は多分化能性細胞よりも高い潜在能力を有する。本明細書で用いられる、“再プログラム化霊長類多能性幹細胞”(及び同様な言及)は、体細胞再プログラム化方法の多能性生成物を指す。そのような細胞は、研究及びヒトES細胞のために現時点で想定されている治療的用途での使用に適切である。
おおざっぱに、本発明は、少なくとも2つの潜在能力決定因子を体細胞に投与して、体細胞の潜在能力よりも高いレベルの潜在能力を再プログラム化細胞で達成することによって、分化した体細胞をより高い潜在能力をもつ細胞(例えば多能性細胞)に再プログラム化する新規な方法に関する。有利なことには、本発明は、体細胞に潜在能力決定因子を導入するために細胞表面レセプターの添加を必要とすることなく、体細胞から多能性細胞(例えばiPS細胞)を作製することを可能にする。本明細書で用いられる、“再プログラム化”とは、遺伝学的プロセスであって、当該プロセスによって分化体細胞が脱分化多能性細胞に転換され、したがってそれらが誘導された細胞よりも強力な多能性潜在能力を有する前記遺伝学的プロセスを指す。すなわち、再プログラム化細胞は、以下の多能性細胞特異的マーカーの少なくとも1つを発現する:SSEA-3、SSEA-4、TRA-1-60又はTRA 1-81。好ましくは、再プログラム化細胞はこれらマーカーの全てを発現する。
体細胞を再プログラム化することができる潜在能力決定因子には、例えばOct-4、Sox2、FoxD3、UTF1、Stella、Rex1、ZNF206、Sox15、Mybl2、Lin28、Nanog、DPPA2、ESG1、Otx2のような因子、又は前記の組合せが含まれるが、ただしこれらに限定されない。実施例では、14因子のうちのわずか2因子を含むセットが被検細胞の再プログラム化に十分であった。このセットはOct-4及びSox2を含んでいた。他の潜在能力決定因子のOct-4及びSox2への添加は、しかしながら再プログラム化細胞の獲得効率を高めた。しかしながらc-Myc及びKlf4は潜在能力決定因子として必須ではない。好ましくは、潜在能力決定因子は転写因子でありえる。
適切な体細胞はいずれの体細胞でもよいが、ただし、出発の体細胞が約24時間の倍増時間を有するときに、より高い再プログラム化頻度が観察される。本発明で有用な体細胞は、ヒトを含む霊長類の胎児、新生児又は成体から得られる非胚性細胞である。本明細書に記載の方法とともに用いることができる体細胞の例には、骨髄細胞、上皮細胞、線維芽細胞、造血細胞、肝細胞、腸細胞、間葉細胞、骨髄球様前駆細胞及び脾臓細胞が含まれるが、ただしこれらに限定されない。また別の体細胞タイプは、基層と結合するCD29+ CD44+ CD166+ CD105+ CD73+及びCD31-間葉細胞である。また別には、前記体細胞は、それ自体分裂し、他のタイプの細胞に分化することができる細胞であってもよい。前記には血液幹細胞、筋/骨幹細胞、脳幹細胞及び肝幹細胞が含まれる。多分化能性造血細胞(適切には骨髄球様前駆細胞又は間葉細胞)は、本発明の方法で使用するために適切なものとして特に意図される。
同様に、適切な体細胞は、潜在能力決定因子(当該因子をコードする遺伝物質を含む)の取込みに対して受容性を有するか、又は学術文献で一般的に知られている方法を用いて受容性にすることができる。取込みを強化する方法は、細胞タイプ及び発現系によって多様でありえる。適切な形質導入効率を有する受容性体細胞を調製するために用いられる例示的条件は当分野で公知であり、下記の実施例に記載される。潜在能力決定因子に対して細胞を受容性にするある方法は、エレクトロポレーション法と併せて下記に記載する。
潜在能力決定因子は、前記潜在能力決定因子をコードするポリヌクレオチド配列が異種プロモータに機能的に連結されている再プログラミング配列として導入することができる(前記は、体細胞が再プログラム化された後で不活性になってもよい)。前記異種プロモータは、体細胞内で潜在能力決定因子をコードするポリヌクレオチド配列の発現を駆動することができる任意のプロモータ配列、例えばOct4プロモータである。
潜在能力決定因子の相対的な比率は再プログラム化効率を高めるために調節することができる。例えば、単一ベクターでOct-4及びSox2を1:1で連結することによって、潜在能力決定因子が別々の構築物及びベクターで細胞に提供された場合(この場合、単一細胞内へのそれぞれの潜在能力決定因子の取込み比率は制御できない)と比較したとき、細胞の再プログラム化効率は4倍増加した(図9A−B)。潜在能力決定因子の比率は、使用される潜在能力決定因子セットに応じて異なりえるが、当業者は、潜在能力決定因子の最適比を本開示から容易に決定することができる。
多能性細胞は、多能性細胞の増殖を支援するために用いられる任意の培地で培養することができる。典型的な培地には、規定培地、例えばTeSRTM(StemCell Technologies, Inc, Vancouver, Canada)、mTeSRTM(StemCell Technologies, Inc.)及びStemLine(商標)無血清培地(Sigma, St. Louis, MO)とともに、条件付け培地、例えばマウス胎児線維芽細胞(MEF)条件付け培地が含まれるが、ただしこれらに限定されない。本明細書で用いられる、“規定培地”とは、もっぱら生化学的に規定された成分で構成される、生化学的に規定された処方物を指す。規定培地はまた、公知の化学的組成を有する成分のみを含むことができる。規定培地はさらに公知の供給源に由来する成分を含むことができる。本明細書で用いられる、“条件付け培地”とは、培地中で培養した細胞の可溶性因子がさらに補充された増殖培地を指す。また別に、細胞は培養液中のMEF上で維持してもよい。
発明者らは、ES細胞で豊富な遺伝子のトランスクリプトームプロフィルを入手するために、遺伝子発現連続分析(SAGE)ライブラリーを用いた。特に、ES細胞で多能性及び自己再生を調節する潜在能力決定因子を認定するためにSAGEライブラリーを用いた。SAGEライブラリーは当業者には周知であり、公開されているか、又はメーカー(例えばAgencourt Bioscience Corp., Beverly, MA)によって特別に構築されえる。
また別の特徴では、本発明は、出生後の個体の細胞と遺伝的に実質同一である多能性細胞の濃縮集団を提供する。前記細胞は、出生後個体から単離した体細胞を再プログラム化することによって入手できる。いくつかの実施態様では、前記細胞集団は精製された集団であり、前記精製集団は、集団内の細胞の少なくとも60%、70%、80%、有利には95%を超える割合、及びその間の任意のかつ全ての完全な整数又は不完全な整数で表される割合を占める。再プログラム化細胞は正倍数性であり、多能性細胞に特徴的な細胞形態を示し、多能性細胞特異的マーカー、例えばOct-4、SSEA-3、SSEA-4、Tra-1-60、Tra-1-81又はその組合せを発現し、さらに免疫不全動物に導入したときテラトーマを形成する。
さらに別の特徴は、体細胞を多能性細胞に再プログラム化するために十分な潜在能力決定因子を認定し使用するための方法及び組成物を提供する。本明細書に記載するように、再プログラム化された多能性細胞は、出生後個体から得られた体細胞の遺伝的全量を含み、さらに前記体細胞と遺伝的に実質同一である。概して、潜在能力決定因子を認定する方法は、1つ又は複数の推定的潜在能力決定因子をコードする遺伝物質を、前記遺伝物質の取込に受容性を有する体細胞に、前記導入した遺伝物質上にコードされている前記因子を十分なレベルで発現させるために有効な条件下で導入して、分化の度合いがより低く潜在能力がより高い状態へ前記細胞を再プログラム化する工程、及び前記遺伝物質の導入後の多能性細胞の集団を観察する工程を含む。前記多能性細胞は、細胞の形態学、多能性細胞特異的マーカー又はその両方を特徴とすることができる。有利には、多能性細胞は、細胞が多能性状態に再プログラム化されたときにのみ発現されるように細胞に提供されたマーカーの処置細胞における発現によって認定することができる。このアプローチを介して、下記実施例に記載するように、体細胞を多能性細胞に再プログラム化することができる潜在能力決定因子を認定することができる。
潜在能力決定因子をコードする遺伝物質は、ベクター(例えば組込みベクター又は非組込みベクター)を用いて、トランスフェクション又は形質導入によって体細胞に導入することができる。本明細書で特に重要なものはレトロウイルスベクターである。レトロウイルスベクター、特にレンチウイルスベクターは、細胞に接触させる前にビリオン中にベクターをパッケージすることによって形質導入される。導入後、潜在能力決定因子をコードするDNAセグメントは、染色体外(例えばエピソーム型プラスミドとして)に存在しても、又は安定的に細胞染色体に組み込まれてもよい。
ウイルス系(viral-based)遺伝子移入及び発現ベクターは、大半の細胞(非分裂性細胞及びトランスフェクションが困難な細胞(初代細胞、血液細胞、幹細胞)を含む)への遺伝物質の効率的で旺盛なin vitro又はin vivoデリバリーを可能にする遺伝的構築物である。ゲノムDNAに組み込まれたウイルス系構築物は高い発現レベルをもたらす。対象の潜在能力決定因子をコードするDNAセグメントに加えて、ベクターは、前記DNAセグメントに対してそれぞれ上流及び下流に機能的に連結された転写プロモータ及びポリアデニル化シグナルを含む。ベクターは、ただ1つの潜在能力決定因子をコードするただ1つのDNAセグメント、又は複数の潜在能力決定因子コードDNAセグメントを含むことができる。複数のベクターを1個の体細胞に導入してもよい。ベクターは、ベクターを取り込み発現する細胞を確認するために、場合によって選別性マーカーをコードすることができる。例示として、ベクターが細胞に抗生物質耐性を付与する場合、抗生物質を培養液に添加して、細胞へのベクター導入の成功を確認することができる。組込みベクターを利用して、例示の場合のように概念を立証することができる。レトロウイルス(例えばレンチウイルス)ベクターは組み込みベクターである。しかしながら非組込みベクターもまた用いることができる。そのようなベクターは、記載のように再プログラム化後に希釈によって細胞から失われる。適切な非組込みベクターは、エプスタイン・バーウイルス(EBV)ベクターである(C. Ren et al. Acta Biochim Biophys 2005, Sin 37:68-73;及びC. Ren et al. Stem Cells 2006, 24:1338-1347、前記文献の各々は参照によりその全体が示されたかのように本明細書に含まれる)。
本明細書に記載のベクターは、当分野で周知の技術を用いて構築及び操作して、治療におけるそれらの安全性を高め、さらに適切な発現エレメント及び治療遺伝子を付加することができる。本発明での使用に適した発現ベクターを構築するための標準的な技術は当業者に周知であり、例えば以下のような文献で見出すことができる:J. Sambrook et al. “Molecular cloning: a laboratory manual”(3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 2001)(参照によりその全体が本明細書に含まれる)。
多能性細胞を識別及び濃縮する能力は、体細胞に非致死性マーカー、例えば緑色蛍光タンパク質(GFP)、強化緑色蛍光タンパク質(EGFP)又はルシフェラーゼを、前記体細胞が多能性状態に転換された後でのみ活性を示すプロモータの制御下で提供することによって促進することができる。選択性マーカー遺伝子を用い、前記マーカーを発現する再プログラム化細胞を可視化細胞選別技術(例えば蛍光性細胞分類技術)により識別する。また別には、再プログラム化細胞は選別性マーカーを用いないで作製してもよい。下記の実施例では、マーカーは、Oct-4発現を調節するプロモーターの下流で体細胞ゲノムに提供される。内因性Oct4プロモータは未分化の多能性ES細胞で活性を有する。Oct-4発現ES細胞の薬剤選別性集団は、骨髄球様分化に必要な培養期間の端から端までを生存しぬけなかった。しかしながらいくらかのOct-4発現は分化の初期段階で存続できるので、特徴的なES細胞形態を有するコロニーを選別することによって、さらにES細胞維持培養条件下でこれらの細胞を維持することによって、多能性細胞の集団を濃縮することは適切である。再プログラム化細胞培養中の全細胞が所望レベルの潜在能力を有することは意図されない。細胞分類技術の非効率性、遺伝子発現及び他の生物学的作用のレベルの変動がある場合には、濃縮集団中のいくつかの細胞は多能性でない可能性がある。しかしながら、実際的レベルでは、体細胞から誘導された再プログラム化細胞集団は、多能性細胞が濃縮されている。
非致死性マーカーは、その後続いて当技術分野で周知の多様な技術のいずれか(例えばCre仲介位置特異的遺伝子除去)を用いて除去できるように構築することができる。例えば、多能性細胞集団を入手した後でマーカー遺伝子を除去し、前記細胞を用いて実施される実験又はプロセスにおけるマーカー遺伝子の生成物による干渉を回避することを所望することができる。誘導削除は、マーカー遺伝子近くにその容易な削除を可能にする構造を提供することによって達成することができる。すなわち、Cre/Lox遺伝的エレメントを用いることができる。Lox部位は細胞内に構築することができる。多能性細胞からマーカーを除去することが所望される場合、Cre因子を細胞に添加することができる。他の同様な系もまた用いることができる。Cre/Lox除去は、望ましくない染色体再編成を導入し、除去後に残留する遺伝物質を残すことがあるので、発明者らは、潜在能力決定因子を非組込み型エピソームベクターにより体細胞に導入し、その後で、再プログラム化工程中にベクターを維持するために用いられた薬剤選別を撤回することによりエピソームベクターが、例えば約5%/世代の割合で失われた細胞を入手することが望ましいことを認識している。
以下の実施例は、体細胞を多能性細胞に転換する潜在能力決定遺伝子又は因子を認定する方法のさらに別の非限定的例示として提供される。いくつかの実施例では、ヒトH1 Oct4ノックインES細胞を間質細胞共培養で分化させ、再プログラム化することができる体細胞としての使用に適した細胞を得た。これらの細胞は、体細胞再プログラム化方法で使用するために出生後の個体から単離される細胞のモデルである。
本方法を他の分化細胞タイプを用いて繰り返した。ある細胞タイプはヒト胎児肺線維芽細胞、IMR-90であった(以下を参照されたい:W. Nichols et al. Science 1977, 196:60-63(前記文献はその全体が参照により本明細書に含まれる))。IMR-90細胞は、ENCODE協会によって徹底的に性状が調べられ、アメリカ菌培養収集所(ATCC; Manassas, VA; Catalog No. CCL-186)から容易に入手することができ、再プログラム化クローンの起源を別個に確認することを可能にするフィンガープリントが公表されている。さらにまた、これらの細胞は、イーグル最少必須培地-10%FBSで老衰期に入る前に20継代を超える期間激しく増殖するが、ヒトES細胞培養条件下ではゆっくりと増殖し、この相違は、再プログラム化クローンに増殖に関する利点を提供し、形態学的基準のみによるそれらの選別を容易にする。本方法で用いられた他の分化細胞タイプは、ヒト出生後包皮線維芽細胞(ATCC; Catalog No. CRL-2097)及びヒト成人皮膚細胞(ATCC; Catalog No. CRL-2106)であった。
細胞は、下記に記載するように、ウイルス発現系による形質導入に対して受容性にした。前記体細胞に、多能性細胞に再プログラム化することができるように、多能性と密接に関与していると考えられる潜在能力決定因子をコードするポリヌクレオチドを形質導入した。形質導入ベクターで提供された14の潜在能力決定因子の全てが体細胞に取り込まれ、発現されたか否かはまだ決定されていない。14の潜在能力決定因子セット及び体細胞の再プログラム化に十分な14因子のうちの少なくとも2つのサブセットを認定することによって、発明者らは、同様に体細胞を再プログラム化することができる潜在能力決定因子の1つ以上の特異的なサブセットを認定する能力を当業者に提供し、それによって、そのような潜在能力決定因子の他のサブセットの認定を容易にする。したがって、下記に記載する本方法は、体細胞の多能性細胞への再プログラム化に必要な潜在能力決定因子の認定を促進する。
体細胞を再プログラム化するために十分な潜在能力決定因子セットは、体細胞の細胞タイプに応じて変動しえることは特に想定される。14の潜在能力決定因子セットへの暴露は、表示の体細胞の培養で多能性状態への転換をもたらした。下記に示すように、潜在能力決定因子の種々の組合せ(他の潜在能力決定因子と同様に前記14の潜在能力決定因子のいくつかまたは全てを含むことができる)を用い、下記に記載の方法を繰り返すことによって、他の細胞タイプを再プログラム化するために十分な潜在能力決定因子セットを認定することができる。結果として、以前に存在していた分化した体細胞と遺伝的に実質同一の多能性細胞株/集団を作製することができる。
実施例
以下の実施例では、分化細胞は種々の潜在能力決定因子をコードするベクターを受容した。これら細胞のいくつかは、統制管理されているOct4プロモータ(前記は多能性細胞でのみ活性を有する)の下流に配置されたEGFPコードマーカー遺伝子をそのゲノム内に含んでいた。この有用なツールの作製はYuら(上掲書)が記載しており、前記文献は、ヒトES細胞との細胞対細胞融合により分化細胞は多能性になることができることを示した。
レンチウイルスベクターのパッケージングと作製
トランスジーン発現レンチウイルスベクターは293FT細胞株(Invitrogen)で生成した。293Tは、形質転換293胎児腎細胞に由来する、増殖が速くトランスフェクション性が高いクローン変種である。前記は、より高いウイルス力価に寄与する高レベルのパッケージングタンパク質の発現のために大量のT抗原を含む。日常的な維持管理及び発現のために、これら細胞は、293FT培養液(DMEM/10%FBS、2mM L-グルタミン及び0.1mM MEM非必須アミノ酸)で500μg/mLのゲネチシンの存在下で培養した。パッケージングのために、293FT細胞をトリプシン処理によって採集した。遠心によりトリプシンを除去した後、これらの細胞を、ゲネチシンを含まない293FT培養液にてT75フラスコに分注した(15x106細胞/フラスコ及び6フラスコ/構築物)。
細胞の分注直後に、スーパーフェクト(Superfect(商標))トランスフェクション試薬(Qiagen)を用いて、レンチウイルスと2つのヘルパープラスミドの同時トランスフェクションを実施した(レンチウイルスベクター:MD.G:pCMVdeltaR8.9:Superfect(商標)=1フラスコ当り5μg:5μg:10μg:400μLのイスコフ(Iscove)改変ダルベッコー培地(IMDM)(1X)中に40μLで、室温にて10分インキュベーション)。次の日、トランスフェクション混合物を含む培養液を、1mMのピルビン酸ナトリウムを補充した新しい293FT培養液で置き換えた(8mL/フラスコ)。形質導入後約48から72時間でレンチウイルス含有上清を採集した(〜48mL/構築物)。4℃にて15分3000rpm(1750g)で遠心して、上清から293FT細胞屑を除去した。レンチウイルスを濃縮するために、0.4μMの酢酸セルロース(CA)メンブレン(Cornington, 115mL低タンパク質結合)で上清をろ過し、70mLの滅菌ビン(Beckman, Cat#355622、45Tiローター専用ポリカーボネート)で、4℃にて2.5時間33,000rpm(50,000g)で超遠心した。残留する一切の細胞屑と一緒にレンチウイルスは目に見えるペレットを遠心チューブの底に形成した。上清を除去した後、PBS(各構築物につき〜300μL)を添加し、4℃にて8から14時間、又は室温にて2時間遠心チューブを揺らすことによりペレットを再懸濁した。残留する細胞屑を5000rpm(2700g)で5分遠心して除去し、再懸濁レンチウイルスを小分けして-80℃で保存した。得られた力価は、濃縮後の1mL当りおおむね107から108ウイルス粒子(vp)の範囲であった。Stella(配列番号:1)を保持するレンチウイルスの配列(pSIN4-EF2-Stella-puro;配列番号:6、3604から4083のStellaの配列を含む)は、配列リストで提供される。同じ配列を他の全ての潜在能力決定因子(例えば配列番号2−5)のために用いたが、ただしStella(配列番号:1)の配列は別の潜在能力決定因子の配列と置き換えた。
骨髄球様細胞に潜在能力決定因子を効率的に導入するために、発明者らは前記レンチウイルス発現系を改変した(図4A)。発明者らは、最初のレンチウイルス構築物のサイズ(>11kb)を、連続欠失分析により5'及び3'LTRに隣接する配列を除去することによって短縮した。これらの改変は、パッケージング効率におけるマイナスの作用を最小限にした。日常的に得られた力価は、上清1mLにつき105から106vp、濃縮(超遠心による)後は107から108ウイルスvp/mLの範囲であった。個々のトランスジーンのコード領域の簡便な交換のために、骨格内に制限部位を導入した。
レンチウイルスによる形質導入後の骨髄球様前駆細胞の再プログラム化及び潜在能力決定因子の発現
分化細胞を多能性状態に再プログラム化することができる遺伝子を認定するために、細胞の効率的な形質導入が要求される。発明者らは、先ず初めにヒトH1 Oct4ノックインES細胞のパーコール(Percoll(商標))精製直後のレンチウイルス形質導入効率を試験した(図2)。
H1.1ヒトES細胞(WiCell Research Institute; Madison,WI)を、照射マウス胎児線維芽細胞(MEF)上でDMEM/F12培養液中で維持した。前記DMEM/F12培養液は、20%KnockOut血清代替物、1%非必須アミノ酸(Gibco)、1mMのL-グルタミン、0.1mMβ-メルカプトエタノール(Sigma)及び4ng/mLの塩基性線維芽細胞増殖因子(bFGF)(特段の記載がなければいずれもInvitorgenより)が補充された80%ダルベッコー改変イーグル培養液(ピルビン酸塩なし、高グルコース処方物(Invitrogen, Carlsbad, CA))から成る。前記培養液については以前に記載されたとおりである(以下を参照されたい:Amit et al. Dev Biol 2000, 227:271-27;及びThomson et al. Science 1998, 282:1145-1147(前記文献はそれぞれ参照によりその全体が本明細書に含まれる))。化学的に規定されたTeSRTM培養液(StemCell Technologies, Inc.)を用いるマトリゲル(Matrigel(商標))(BD Biosciences, Bedford, MA)上での無フィーダー培養は、以下の文献の記載にしたがって実施した:T. Ludwig et al. Nat Methods 2006, 3:637-646;及びT. Ludwig et al. Nat Biotechnol 2006, 24:185-187(前記文献はそれぞれ参照によりその全体が本明細書に含まれる)。
H1 Oct4ノックインES細胞株は、以下の文献に記載された方法にしたがいH1.1ヒトES細胞から作製した:米国特許公開公報2006/0128018(Zwaka & Thomson)及びT. Zwaka & J. Thomson Nat Biotecnol 2003, 21:319-321(前記文献はそれぞれ参照によりその全体が本明細書に含まれる)。略記すれば、遺伝子誘導ベクターは、カセット、IRES-EGFP、IRES-NEO及びサルウイルスポリアデニル化配列(ほぼ3.2キロベース(kb))を、ヒトOct-4(オクタマー結合転写因子4)遺伝子の第5ドメイン(POUドメイン、クラス5、転写因子1(POU5F1)としてもまた知られている)の3'非翻訳領域に挿入することによって構築した。このカセットは、5'方向において6.3kbの相同アームとフランキングし、さらに3'領域で1.6kb(また別の誘導ベクターでは6.5kb)の相同アームとフランキングした。前記カセットをOct-4遺伝子(配列番号:2)の31392位に挿入した。長いアームは25054から31392までの配列を含み、短いアームは31392から32970までの配列を含んでいた。また別の誘導ベクターでは、短いアームは、より長い相同領域で置換された(AC006047の31392−32970プラス遺伝子アクセッション番号AC004195の2387−7337)。アイソジェニックな相同DNAはロングディスタンス、ゲノムPCRによって入手しサブクローニングした。全てのゲノムフラグメント及びカセットは、クローニングベクター、pBluescript(商標)SKII(GenBank Accession Number X52328;Stratagene, La Jolla, CA)のマルチクローニング部位(MCS)でクローニングした。
エレクトロポレーションのために、コラゲナーゼIV(1mg/mL、Invitrogen)を37℃で7分用いて細胞を採集し、培養液で洗浄し、0.5mLの培養液に再懸濁した(1.5−3.0x107細胞)。エレクトロポレーション用細胞を調製するために、40mgの直鎖化した誘導ベクターDNAを含むリン酸緩衝食塩水(PBS、Invitrogen)に細胞を添加した。続いて、バイオラド社(BioRad)のジーンパルサー(Gene Pulser(商標))IIを用い、室温で320V、200μFの1回パルスに細胞を暴露した(0.4cmギャップキュベット)。細胞を室温で10分インキュベートし、Matrigel(商標)上に高密度で播種した。G418選別(50mg/mL、Invitrogen)をエレクトロポレーションの48時間後に開始した。1週間後に、G418濃度を2倍にした。三週間後に、NEOカセット特異的プライマー及び3'相同領域の直ぐ下流のPOU5F1遺伝子に特異的なプライマーをそれぞれ用いて、生存コロニーを個々にPCRによって解析した。PCR陽性コロニーは、BamHI消化DNA及び誘導構築物の外側のプローブを用いてサザンブロット分析によって再度スクリーニングした。
H1 Oct4ノックインES細胞株は、二元性内部リボソームエントリー部位(IRES)を用いて、内部Oct4プロモータ/調節領域からEGFP及びネオマイシンホスホトランスフェラーゼ(neo)の両者を発現した(図3)。H1 Oct4ノックインES細胞でのEGFP及びneoの発現は、活性を有する内因性Oct4プロモータ/調節領域のインジケーターであった。
H1 Oct4ノックインES細胞は、加熱不活化処理を施されていない規定ウシ胎児血清(FBS、HyClone Laboratories, Logan, UT)(20%)を補充したDMEM培養液(Invitrogen)(10mL/プレート)から成る、ゼラチン被覆10cmプラスチックプレート(BD Biosciences)上で維持したマウスOP9骨髄間質細胞との共培養により維持した(図2A)。OP9培養は4日毎に1:7の割合で分割した。ヒトES細胞分化で使用するために、OP9細胞が4日目にコンフルエントになった後、培養液の半分を交換し、細胞をさらに4日間培養した。
再プログラム化のために、H1 Oct4ノックインES細胞を付着細胞に分化させた(すなわちCD29+ CD44+ CD166+ CD105+ CD73+及びCD31-)。略記すれば、ヒトH1 Oct4ノックインES細胞(p76から110)を、10%FBS(HyClone Laboratories)及び100μMモノチオグリセロール(MTG、Sigma, St. Louis, MO)補充DMEM培養液20mL中にあるOP9単層培養(1.5x106/10cmプレート)に添加した。ヒトES/OP9細胞の共培養を9日間、4、6及び8日目に培養液の半分を交換しながらインキュベートした。インキュベーション後に、37℃で20分のコラゲナーゼIV処理(DMEM培養液(Invitrogen)中に1mg/mL)、続いて37℃で15分のトリプシン処理(0.05%トリプシン/0.5mM EDTA(Invitrogen))によって前記共培養を個々の細胞に分散させた。細胞を培養液で2回洗浄し、10%FBS、100μMのMTG及び100ng/mLのGM-CSF(Leukine、Berlex Laboratories Inc., Richmond, CA)を補充したDMEM培養液に2x106/mLで再懸濁させた。細胞をさらに、ポリ(2-ヒドロキシエチルメタクリレート)(pHEMA、Sigma)で被覆したフラスコで、3日毎に培養液の半分を交換しながら10日間培養した。粘着防止pHEMA培養の間、処置が施されてなければ粘着していたはずの細胞は浮遊凝集塊を形成し、一方、対象の細胞は個々の細胞として懸濁状態で増殖した。大きな細胞凝集塊を100μMの細胞ろ過器(BD Biosciences)でろ過することにより除去し、一方、小さな凝集塊及び死細胞は25%のPercoll(商標)(Sigma)による遠心によって除去した。細胞ペレットから回収した分化細胞はCD33、MPO、CD11b及びCD11c分子を発現した(前記は骨髄の骨髄球様細胞の特徴である)(図2B)。発明者らは、1x106のH1 ES細胞(ヒトH1 Oct4ノックインES細胞)から6−10x106の分化細胞を日常的に作製している。Yuらの論文(Science, 2007, 318:1917-1920)もまた参照されたい(前記はワールドワイドウェブの科学ウェブサイトで入手できる補充物質を含む)(前記文献は参照により本明細書に含まれる)。
ポリブレンキャリア(Sigma)を最終濃度6μg/mLで添加した後、潜在能力決定因子をコードするレンチウイルスを添加した(MOIは3から10)。次の日、レンチウイルス含有培養液を新しい培養液と交換し、細胞を適切な培養液でさらに培養した。必要な場合には、薬剤選別は形質導入後3日目に開始した。図5Bに示すように、形質導入効率は非常に低かった(MOI10で〜18.4%)。さらにまた、EGFPの発現はかろうじてバックグラウンドを超えただけであった。同様な結果が、日常的なプラスミド又はエプスタイン・バーウイルス核内抗原(EBNA)系プラスミドのトランスフェクションで得られた(データは示されていない)。
他方で、高い形質導入効率を有する細胞を以下のように調製した。Percoll(商標)精製H1 Oct4ノックインES細胞を、上記に記載したように、Matrigel(商標)上でGM-CSFの存在下にてさらに7日間、類間葉細胞にまで分化させた。この培養期間中に多くの細胞がプレートに付着した。この付着細胞(下記ではOct4KICD45+A細胞又は単にCD45+A細胞と称する)は、顕著に高い形質導入効率を示し(図4C)、この再プログラム化実験のために使用した。実験時にはこの細胞はCD45+ではなかったが、細胞はCD45+細胞から得られた。本明細書の別の場所に記載したように、付着細胞の細胞表面マーカーは、CD29+ CD44+ CD166+ CD105+ CD73+及びCD31-とみなした。
発明者らは、分化細胞は、Oct4KICD45+A細胞で潜在能力決定因子を発現することによって多能性状態に再プログラム化されえるという仮説を試験し、有望な結果を得た。Nanog及びOct-4はもっとも性状が調べられた潜在能力決定因子であるので、発明者らは細胞内におけるそれらの過剰発現の影響を調べた。
Oct4KICD45+A細胞を先ず初めにトリプシンにより個々の細胞に分離し、TeSRTM培養液中のMatrigel(商標)上に〜105細胞/ウェルで6ウェルプレートに再度播種した。トランスジーンを発現するレンチウイルスの形質導入を次の日に実施した。Nanogを発現するOct4KICD45+A細胞は、EGFPをトランスフェクトした細胞の形態と類似する形態を示した(図5)。しかしながら、Nanog過剰発現はOct4KICD45+A細胞の増殖を顕著に強化し、ヒトES細胞で観察されたものと同様であった。活性な内因性Oct4プロモータ/調節領域のためのネオマイシン選別の後、Nanog又はEGFPがトランスフェクトされた細胞は生存しなかった。重要なことに、これらの結果は、薬剤によって選別することができるOct-4発現ES細胞集団は分化に必要な培養期間の全体を存続しえないことを示している。Oct-4発現は、劇的な形態の変化を生じ(図5)、これらの細胞の多くはネオマイシン選別に生き残った。しかしながら、これらの細胞のいずれもヒトES細胞に典型的な形態を示さなかった。Nanog及びOct-4を一緒に発現するOct4KICD45+A細胞は、Oct-4のみを発現する細胞で観察される形態的変化と同様な形態的変化を示した。したがって、2つの重要な潜在能力決定因子、Nanog及びOct-4は単独では、分化細胞を多能性に転換するためには不十分であったようである。
細胞は、体細胞を前記因子に暴露する前及び後で細胞分類の方法を用いて分析した。粘着細胞はトリプシン処理(トリプシン/0.5mM EDTA、Invitrogen)で個々に分離し、2%パラホルムアルデヒドで20分室温にて固定した。細胞を40μmのメッシュでろ過し、FACS緩衝液(2%のFBS及び0.1%のアジ化ナトリウムを含むPBS)に再懸濁した。懸濁状態で増殖させた細胞は、1mMのEDTA及び1%の正常マウス血清(Sigma)を補充したFACS緩衝液中で染色した。Fix & Perm(商標)試薬(Caltag Laboratories, Burlingame, CA)を用いて、細胞内のミエロペルオキシダーゼ(MPO)染色を実施した。5x105細胞を含む、約100μLの細胞懸濁液を各標識で用いた。一次抗体及び二次抗体の両インキュベーション(適用される場合)は室温で30分実施した。コントロールサンプルはアイソタイプ適合コントロール抗体を用いて染色した。洗浄後、細胞を300−500μLのFACS緩衝液に再懸濁し、FACSCaliburフローサイトメーター(BDIS, San Jose, CA)で、CellQuestTM捕捉分析ソフト(BDIS)を用いて解析した。合計20,000事象を捕捉した。フローサイトメトリーで使用した全抗体を表1に挙げた。最終データ及びグラフは、FlowJoソフト(Tree Star, Inc., Ashland, OR)を用いて解析及び作成された。
表1:フローサイトメトリーのための抗体
Figure 0005813321
BD Pharmingen(San Diego, CA)
BD Immunocytometry Systems(San Jose, CA)
Caltag Laboratories(Burlingame, CA)
Chemicon International(Temecula, CA)
AbD Serotec(Raleigh, NC)
NA:適用せず
これら細胞の再プログラム化に必要な潜在能力決定因子をさらに判定するために、発明者らは、潜在能力決定因子の多様な組合せを用いて濃縮ES細胞プールの形質導入を調べた。骨髄球様前駆細胞を再プログラム化するために必要な潜在能力決定因子の例示的プールには、下記の表2に記載した14の潜在能力決定因子が含まれていた。
表2:ヒトES細胞濃縮遺伝子
Figure 0005813321
Oct4KICD45+A細胞におけるこれら14因子の少なくとも数個の発現は、多能性細胞(例えばヒトES細胞)の典型的な形態を有するコロニーを生じた(図6A、左側写真)。〜105から出発してOct4KICD45+A細胞のネオマイシン選別後に、最初に10を超える明瞭なES細胞の形態を有するコロニーが出現した。その後これらのコロニーの半分以上が分化のために消失し、1つ以上の導入遺伝子の過剰発現は細胞に対して負の作用を有するか、又は細胞は外来のトランスジーン及び遺伝子サイレンシングに左右され続けることを示唆した。それにもかかわらず、残存コロニーは内因性Oct4プロモータによって駆動されるEGFPを発現し(図7A、右側の写真)、内因性Oct4プロモータ/調節領域が再活性化されたことを示した。
この実施態様では、EGFP発現は、もともと存在するOct4プロモータ/調節領域が活性であるときに生じる。換言すれば、未分化細胞は、細胞が分化したときに消失する緑色によって識別される。したがって、霊長類のES細胞における内因性Oct-4の発現を選別することができる。これらのコロニーはまたOct-4、SSEA3、SSEA4、Tra-1-60及びTra-1-81多能性細胞特異的マーカーを発現した(図6B)。同様な結果は、化学的に規定されたTeSRTM培養液を用いて得られた再プログラム化コロニーにおいても得られた。
発明者らは、14のES細胞濃縮潜在能力決定因子の同じプールを用いて2つの別個のトランスフェクションから6個のコロニーをランダムに採取し、5個の安定なコロニーを少なくとも8週間増殖させた。したがって、発明者らは、14の潜在能力決定因子を霊長類の体細胞に投与することによって、体細胞を再プログラム化してより高い潜在能力をもつ細胞にさせる、新規なアプローチを認定した。
本明細書に記載したレンチウイルスデリバリー系を用いて、これらの細胞を潜在能力決定因子の他の組合せ(すなわちSox2、c-Myc、Oct3/4及びKlf4)に暴露したとき、細胞の再プログラム化及び転換は観察されなかった。
発明者らは本明細書に記載した技術を用いて、被検細胞を再プログラム化するために十分な14の試験因子のサブセットについてスクリーニングした。本発明者らの十分な能力をもつ14の因子のセットは、続いて6つの遺伝子、さらにこれらの細胞を再プログラム化するために十分な4つの遺伝子のセットに削減された(図7A−B、下記でさらに説明される)。安定な多能性細胞を生じるために十分であることが示された4つの遺伝子は、図7Bに示されるようにOct-4、Nanog、Sox2及びLin28であった。
レンチウイルス形質導入後の4つの潜在能力決定因子の限定的セットによる類間葉細胞の再プログラム化
分化した細胞を多能性に再プログラム化することができる潜在能力決定因子のさらに限定されたセットを認定するために、Pou5F1(Oct-4)、Nanog、Sox2及びLin28の組合せを用いて上記で認定した方法を繰り返した。発明者らは上記に記載した技術を用い、これら潜在能力決定因子をそれらの細胞再プログラム化能力についてスクリーニングした。
この実施例では種々の細胞タイプを用い、本方法の有用性をさらに明確に示した。細胞タイプは、上記のヒトH1 Oct4ノックインES細胞から直接分化させた類間葉クローン細胞であった。本明細書で用いられる、“クローン”は、共通の祖先に由来する細胞の集団の特徴を指す(すなわち細胞凝集塊に由来するのではなく単一細胞に由来する)。すなわち、“クローン集団”においては、細胞は、均質な細胞表面マーカーパターン及び形態学的特徴を示すとともに、遺伝的に実質同一である。
略記すれば、マウスOP9骨髄間質細胞との共培養で、ヒトH1 Oct4ノックインES細胞(p76からp110)の分化を誘導した(以下を参照されたい:M. Vodyanyk et al. Blood 2005, 105:617-626(前記文献は参照により本明細書に含まれる))。ヒトH1 Oct4ノックインES細胞の小さな凝集塊を、10%FCS及び100μMのMTG(Sigma)を補充したアルファMEM中のOP9細胞に添加した。培養の次の日(培養1日目)、培養液を交換し、下記に示す日数で培養を採集した。
共培養2日目に、NimbleGen(商標)(Madison, WI)マイクロアレイを用いて、中胚葉の確証が、中内胚葉(GSC、MIXL1及びT(BRACHYURY))及び初期中胚葉(EVX1、LHX1及びTBX6)のための転写因子のピーク発現によって検出された。3−5日目の間に、内胚葉及び中胚葉系統枝の特殊化が観察された。このステージは、上皮-間葉遷移(EMT;SNAIL及びSLUG)及び細胞増殖(HOXB2-3)に必要な遺伝子の持続的発現を伴った。このステージはまた、ヒトH1 Oct4ノックインES細胞/OP9共培養での最高の細胞分裂速度と同時に生じた。
特異的な中内胚葉系統枝への分化は共培養の5−7日目に観察された。このとき発生中の内胚葉(AFP及びSERPINA1)、間葉(SOX9、RUNX2及びPPARG2)及び血液上皮(CDH5及びGATA1)細胞のマーカーが観察された。しかしながら、筋肉誘導因子(MYOD1、MYF5及びMYF6)は共培養の7日間を通して発現されなかった。さらにまた、神経外胚葉(SOX1及びNEFL)又は栄養外胚葉(CGB及びPLAC)マーカーも検出されず、OP9は、中内胚葉経路への定方向hESC分化のために効率的な誘導環境を提供することが示された。
さらにまた2日目に、以下の連続的酵素処理によって、ヒトES細胞から誘導された細胞の単一細胞懸濁物を採取した:DMEM/F12培養液中の1mg/mLのコラゲナーゼIV(Gibco-Invitrogen)で37℃にて15分及び0.05%トリプシン-0.5mM EDTA(Gibco−Invitorgen)で37℃にて10分。細胞を3回PBS-5%FBSで洗浄し、70μM及び30μMの細胞ろ過器(BD Labware, Bedford, MA)でろ過し、抗マウスCD29-PE(AbD Serotec, Raleigh, NC)及び抗PE常磁性モノクローナル抗体(Miltenyi Biotech, Auburn, CA)で標識した。細胞懸濁物をMidi-MACS分離ユニット(Miltenyi Biotech)に結合させたLD磁気カラムを通過させることにより、磁石活性化細胞分類(MACs)により前記懸濁物を精製して、OP9が激減したヒトH1 Oct4ノックインES細胞誘導細胞の陰性分画を得た。ヒトH1 Oct4ノックインES細胞誘導細胞の純度は汎用抗ヒトTRA-1-85モノクローナル抗体(R&D Systems, Minneapolis, MN)を用いて実証した。
精製ヒトH1 Oct4ノックインES細胞誘導細胞を、以下を補充したStemLineTM無血清培地(Sigma)を含む半固形無血清培地に2x104細胞/mLの密度で播種した:5−100ng/mLの塩基性線維芽細胞増殖因子(bFGF, PeproTech, Rocky Hill, NJ)及び1%メチルセルロース(StemCell Technologies, Inc.)、10-20ng/mLのPDGF-BB(Pepro Tech)は添加又は無添加。PDGF-BBは間葉細胞の増殖を改善したがコロニー形成には必須ではなかった。14−21日間培養した後、大きくて密な間葉細胞コロニーが形成され、胚様体(EB)と類似していた。間葉細胞コロニーは7日目に検出されたが、活発に増殖するコロニーが明らかになるには14−21日が必要であった。
個々の間葉細胞コロニーを、5−100ng/mLのbFGFを補充したStemLineTM無血清培養液(0.2mL/ウェル)を予め満たした、コラーゲン被覆又はフィブロネクチン被覆96ウェルプレートのウェルに移した。3−4日間培養した後、個々のウェルから粘着細胞をトリプシン処理によって採集し、5−100ng/mLのbFGFを補充したStemLineTM無血清培養液を加えたコラーゲン被覆又はフィブロネクチン被覆プレートで増やした。
続いてトランスジーン発現レンチウイルスの形質導入を上記に記載したように実施した。発明者らは、分化した類間葉細胞は、潜在能力決定因子の限定セット(例えばOct-4、Nanog、Sox2及びLin28)を発現させることによって多能性の状態に再プログラム化できるという仮説を試験した。少なくともこれら4つの潜在能力決定因子の発現は、多能性細胞(例えばヒトES細胞)の典型的な形態の細胞を有するコロニーを生じた(図7B、濃い灰色の棒線)。図7Bに示すように、典型的な多能性細胞の形態を有する細胞を含むコロニーの最大数は、Oct-4、Nanog、Sox2及びLin28の全部を用いて得られた。しかしながら、Oct-4、Nanog、Sox2及びLin28の1つが欠落したとき、ES様コロニーの数は顕著に減少するか(例えばNanog又はLin28)又は消失した(例えばOct-4又はSox2)。
この実施態様では、EGFP発現は、もともと存在するOct4プロモータ/調節領域が活性であった時に発生した。換言すれば、未分化細胞は、分化細胞には存在しない緑色によって識別された。したがって、細胞内の内因性Oct-4の発現は検出可能であった。再プログラム化コロニーはまた、Oct-4、SSEA3、SSEA4、Tra-1-60及びTra-1-81多能性細胞特異的マーカーを発現した(データは示されていない)。
発明者らは、14のES細胞濃縮潜在能力決定因子の同じプールを用いた別々の2つのトランスフェクションから6個のコロニーをランダムに採取し、5個の安定なコロニーを少なくとも8週間増殖させた。したがって、発明者らは、4つの潜在能力決定因子を体細胞に投与することによって、より高い潜在能力をもつ細胞になるように霊長類の体細胞を再プログラム化するための新規なアプローチを認定した。
本明細書に記載したレンチウイルスデリバリー系を用いて、これらの細胞を潜在能力決定因子の他の組合せ(すなわちSox2、c-Myc、Oct3/4及びKlf4)に暴露したとき、細胞の再プログラム化及び転換は観察されなかった。
レンチウイルス形質導入後の2つの潜在能力決定因子の限定セットによる類間葉細胞の再プログラム化
分化した細胞を多能性に再プログラム化できる潜在能力決定因子のさらに限定されたセットを認定するために、以下の4つの潜在能力決定因子(Oct-4、Nanog、Sox2及びLin28)のうちの2つの組合せを用いて、上記で認定された方法を実施例3の類間葉細胞で繰り返した。発明者らは、上記に記載した技術を用いて、これらの潜在能力決定因子をそれらの細胞を再プログラム化する能力についてスクリーニングした。
したがって、トランスジーンを発現するレンチウイルスによる形質導入を上記に記載したように実施した。発明者らは、分化した類間葉細胞は、4つよりも少ない潜在能力決定因子を発現させることによって多能性の状態に再プログラム化できるという仮説を試験した。少なくともOct-4及びSox2の発現は、多能性細胞(例えばヒトES細胞)の典型的な形態の細胞を有するコロニーを生じた(図7C)。Nanog及びLin28は、単独でも組み合せても、多能性状態への再プログラム化効率をヒトES細胞誘導間葉細胞で改善することによってクローンの回収に有益な作用を示したが、再プログラム化細胞の初期の出現においても再プログラム化細胞の増殖においても必須ではなかった。
レンチウイルスによる形質導入後の分化細胞の再プログラム化及び4つの潜在能力決定因子の発現
分化細胞の多能性への再プログラム化における潜在能力決定因子の限定セットの有用性をさらに明確に示すために、上記の認定方法をATCCカタログ番号CCL-186(IMR-90;ATCC)を用いて繰り返した。前記はヒト胎児肺線維芽細胞である(以下もまた参照されたい:E. Birney et al. Nature 2007, 447:799-816)。
トランスジーン発現レンチウイルス形質導入を上記のように実施した。すなわち、IMR-90細胞(0.9x106/ウェル)にOct-4、Sox2、Nanog及びLin28を形質導入した。発明者らは、分化した線維芽細胞は、潜在能力決定因子の限定セット(例えばOct-4、Sox2、Nanog及びLin28)を発現させることによって多能性の状態に再プログラム化できるという仮説を試験した。形質導入の後、照射したマウス胎児線維芽細胞(MEF)を播種した3枚の10cmプレートに細胞を移した。形質導入後12日目までに、ヒトES細胞の形態を有する小さなコロニーが見えるようになった。形質導入20日目に、合計198のコロニーが3つのプレートで見ることができた。41のコロニーを採取し、そのうちの35をさらに3週間増やすことができた。続いて、これらのコロニーのうち6個を選択し、増殖及び分析を続け、他の29のコロニーを凍結した。
少なくともOct-4、Sox2、Nanog及びLin28の導入は、通常の核型を有するヒトES細胞のような多能性細胞の典型的な形態を有するコロニーを生じた。各コロニーの細胞は同様にテロメラーゼ活性を発現し、ヒトES細胞特異的表面抗原(すなわちSSEA-3、SSEA-4、Tra-1-60及びTra-1-81)を発現した。コロニーの各々について、内因性OCT4及びNANOGの発現は、多能性細胞の発現レベルと同様なレベルであったが、これら遺伝子の外因性発現は変動した。さらにまた、EB及びテラトーマの形成は、この再プログラム化細胞が3つの一次胚葉の全ての分化誘導体を生じる発生潜在能力を有することを示した。
DNAフィンガープリント解析によって、これらのコロニーはIMR-90細胞に由来し、ヒトES細胞株(例えばH1、H7、H9、H13及びH14)から派生したのではないことが確認された。
分化間葉細胞を用いて得られたデータと同様に、多能性細胞(例えばヒトES細胞)の典型的な形態の細胞を有するコロニーの最大数は、Oct-4、Nanog、Sox2及びLin28の全部を用いて得られた。しかしながら、Oct-4、Nanog、Sox2又はLin28を欠いたとき、ES様コロニーの数は顕著に減少するか(たとえばNanog又はLin28)又は消失した(例えばOct-4又はSox2)。
増殖及び詳細な性状決定のために選択したコロニーは少なくとも12週間増殖し、再プログラム化中に多能性特異的遺伝子の活性化について選別を実施しなかった場合でも、通常の多能性細胞の典型的な特徴を維持した。
再プログラム化細胞は形態のみによって認定した(すなわち、核:細胞質比が高く、核小体が目立つ密なコロニーを有すること)。再プログラム化細胞はまた、Oct-4、SSEA-3、SSEA-4、Tra-1-60及びTra-1-81多能性細胞特異的マーカーを発現した。
レンチウイルスによる形質導入後の分化細胞の再プログラム化及び3つの潜在能力決定因子の発現
分化細胞の多能性への再プログラム化における潜在能力決定因子の限定的セットの有用性をさらに明示するために、上記記載のIMR-90細胞を用いて上記認定方法を繰り返した。この実験セットでは、実施例5よりも少ない潜在能力決定因子を用いた。
トランスジーン発現レンチウイルスによる形質導入を上記のように実施した。以下のうちの3つの因子の組合せをIMR-90細胞に形質導入した:Oct-4、Sox2、Nanog及びLin28。発明者らは、分化した線維芽細胞は、潜在能力決定因子のよりいっそう限定されたセットを発現させることによって多能性の状態に再プログラム化できるという仮説を試験した。少なくとも3つの因子の発現は、ヒトES細胞に類似する多能性細胞の典型的形態を有するコロニーを生じた。多能性細胞の典型的な形態をもつ細胞を有する再プログラム化コロニーは、Oct-4、Sox2及びNanogの全部をLin28と一緒に又はLin28無しに用いたときに得られた。したがって、Lin28の有無は再プログラム化には影響を与えなかった。しかしながら、Oct-4、Nanog又はSox2のいずれかが存在しないとき、再プログラム化コロニーの数は顕著に減少するか又は消失した。
再プログラム化細胞におけるOct-4、Sox2、Nanog及びLin28プロウイルスの存在について調べるために、トランスジーン特異的プライマー対(表3を参照されたい:1つの遺伝子特異的プライマー及び1つのレンチウイルス特異的プラーマー)を用いたPCRを、IMR-90クローンのゲノムDNAを鋳型として用いて実施した。この反応ではpfx DNAポリメラーゼ(Invitrogen、増幅緩衝液は2xで用い、エンハンサー溶液は3xで用いた)及び以下の条件を用いた:最初の変性は95℃で1分;94℃で30秒、55℃で30秒、68℃で2分の35サイクル;前記に続いて68℃で7分。トランスジーンのPCR解析によって、4つのトランスジーンの全て又は3つのトランスジーン(すなわちOct-4、Sox2及びNanog)が、トランスジーン発現レンチウイルスベクターへの暴露の後に多能性細胞に組み込まれたことが示された。

表3:プロウイルス組込み判定用プライマーセット
Figure 0005813321
再プログラム化細胞は形態のみによって認定した(すなわち、核:細胞質比が高く、核小体が目立つ密なコロニーを有すること)。再プログラム化細胞はまた、Oct-4、SSEA-3、SSEA-4、Tra-1-60及びTra-1-81多能性細胞特異的マーカーを発現した。
レンチウイルスによる形質導入後の分化細胞の再プログラム化及び3つの潜在能力決定因子の発現
分化細胞の多能性への再プログラム化における潜在能力決定因子の限定的セットの有用性をさらに示すために、ATCCカタログ番号CRL-2097(ATCC)(前記はヒト出生後包皮線維芽細胞である)を用いて上記認定方法を繰り返した。
トランスジーン発現レンチウイルス形質導入は上記に記載したように実施した。出生後線維芽細胞(0.6x106/ウェル)にOct-4、Sox2、Nanog及びLin28の組合せを形質導入した。発明者らは、分化した出生後の線維芽細胞は、潜在能力決定因子の限定されたセットを発現させることによって多能性の状態に再プログラム化できるという仮説を試験し、有望な結果を得た。形質導入に続いて、照射したMEFを播種した3枚の10cmプレートに細胞を移した。形質導入後15日目までに、多能性細胞の形態を有する小さなコロニーが見えるようになった。形質導入20日目に、合計57のコロニーをプレート上に見ることができた。29のコロニーを採取し、そのうちの27をさらに3週間増やすことができた。続いて、これらのコロニーのうち4個を選択し、増殖及び分析を続け、他の23個を凍結した。
Oct-4、Sox2、Nanog及びLin28の発現は、多能性細胞(例えばES細胞)の典型的な形態及び通常の核型をもつ細胞を有するコロニーを生じた。再プログラム化コロニーは同様にテロメラーゼ活性を発現し、多能性細胞特異的表面抗原(すなわちSSEA-3、SSEA-4、Tra-1-60及びTra-1-81)を発現した。各々について、内因性OCT4及びNANOGが、ヒト多能性細胞で観察される発現レベルと同様なレベルで発現されたが、ただしこれら遺伝子の外因性発現は変動した。さらにまた、EB及びテラトーマの形成は、この再プログラム化細胞は3つの一次胚葉の全ての分化誘導体を生じる発生潜在能力を有することを示した。しかしながら、IMR-90細胞から得られたiPS細胞とは対照的に、CRL-2097細胞に由来するiPS細胞は、5週間後に調べたテラトーマで明白な系統枝における変動を示した。iPSコロニーの2つは神経分化を示し、一方、他の2つは柱状の上皮細胞で構成された多様なフォーカスを示し、原始的内胚葉を連想させた。
DNAフィンガープリント解析によって、これらのコロニーは本来の細胞株に由来し、ヒトES細胞株(例えばH1、H7、H9、H13及びH14)から派生したのではないことが確認された。
分化した間葉細胞の形質導入後に得られたデータと同様に、ヒト多能性細胞の典型的な形態をもつ細胞を有するコロニーの最大数は、Oct-4、Sox2、Nanog及びLin28の全部を用いて得られた。興味深いことに、1つの細胞株はLin28を欠き、Lin28は体細胞の再プログラム化に必須ではないことが確認された。
増殖及び詳細な性状決定のために選択したコロニーは少なくとも12週間増殖し、再プログラム化中に多能性特異的遺伝子の活性化について選別を実施しなかった場合でも、通常のヒト多能性細胞の典型的な特徴を維持した。
再プログラム化細胞は形態のみによって認定した(すなわち、核:細胞質比が高く、核小体が目立つ密なコロニーを有すること)。再プログラム化細胞はまた、Oct-4、SSEA-3、SSEA-4、Tra-1-60及びTra-1-81多能性細胞特異的マーカーを発現した。
本明細書に記載したレンチウイルスデリバリー系を用いて、これらの細胞を潜在能力決定因子の他の組合せ(すなわちSox2、c-Myc、Oct3/4及びKlf4)に暴露したとき、細胞の再プログラム化及び転換は観察されなかった。
レンチウイルスによる形質導入後の分化細胞の再プログラム化及び4つの潜在能力決定因子の発現
分化細胞の多能性への再プログラム化における潜在能力決定因子の限定的セットの有用性をさらに示すために、ATCCカタログ番号CRL-2106(SK46;ATCC)(前記はヒト成人皮膚細胞である)を用いて上記認定方法を繰り返した。
トランスジーン発現レンチウイルス形質導入は上記に記載したように実施した。すなわち、皮膚細胞(2.0x105/ウェル)にOct-4、Sox2、Nanog及びLin28の組合せを形質導入した。発明者らは、成人皮膚細胞は、潜在能力決定因子の限定されたセットを発現させることによって多能性の状態に再プログラム化できるという仮説を試験し、有望な結果を得た。形質導入に続いて、照射したマウス胎児線維芽細胞(MEF)を播種した3枚の10cmプレートに細胞を移した。ヒトES細胞培養液で10日後に、照射MEFで条件付けしたヒトES細胞培養液を細胞増殖の支援に用いた。形質導入後18日目までに、多能性細胞の形態を有する小さなコロニーが見えるようになった。
Oct-4、Sox2、Nanog及びLin28の発現は、多能性細胞(例えばES細胞)の典型的な形態をもつ細胞を有するコロニーを生じた(すなわち、核:細胞質比が高く核小体が目立つ密なコロニー有する)。図8Bに示すように、再プログラム化細胞はまた、多能性細胞に典型的な細胞表面マーカーを発現したが、SK46細胞(コントロール)は発現しなかった。しかしながら、成人皮膚細胞由来の再プログラム化コロニーは実施例7の細胞よりも遅く出現し、実施例7の細胞よりも再プログラム化効率は低かった。
単一構築物上で潜在能力決定因子を連結することにより再プログラム化効率を高める
再プログラム化効率を高めるために、図4で示した構築物を用いて上記で認定した方法を繰り返した。しかしながら、Oct-4又はSox2のどちらかをトランスジーン部分に挿入し、さらにSox2は場合によってピューロマイシン耐性遺伝子に置き換えた。続いて、293FT細胞又はOCT4ノックインヒトH1 ES細胞(p6)のどちらかで構築物を発現させた。
トランスジーン発現レンチウイルス形質導入を上記に記載したように実施した。すなわち、293FT細胞又は間葉細胞(6ウェルプレートに〜2x105細胞/ウェル、播種して一晩おく)に、種々のトランスジーンの組合せを形質導入した。レンチウイルスと一晩インキュベートした後、細胞を10cmのMEFプレートに移した(6ウェルプレートの1ウェルから1枚の10cm MEFプレートへ)。活性な内因性OCT4プロモータのためのゲネチシン選別(50μg/mL)を形質導入後11日目から15日目に実施した。iPSコロニーは16日目に数えた。
図9Aは、Oct-4及びSox2の発現がトランスフェクションに続いて293FT細胞で生じたことを示している(例えばレーン1−3を参照)。図9A−Bでは、pSin4-EF2-Oct4-IRES1-Sox2はOS-IRES1と略記され、pSin4-EF2-Oct4-IRES2-Sox2はOS-IRES2と略記され、pSin4-EF2-Oct4-F2A-Sox2はOS-F2Aと略記され、pSin4-EF2-Oct4-IRES1-puroはOと略記され、pSin4-EF2-Sox2-IRES1-puroはSと略記される。
図9Bは、Oct-4及びSox2が同じ構築物で提供されたとき、OCT4ノックインヒトH1 ES細胞(p6)から誘導された間葉細胞で再プログラム化効率が高くなったことを示している(IRES1は非常に低効率の内部リボソームエントリー部位であるが、IRES2は非常に高効率の内部リボソームエントリー部位である)。OS-IRES2+N+L(高効率IRES)は、O+S、O+S+N+L又はOS-IRES1(低効率IRES)+N+Lと比較したとき、ほぼ4倍の再プログラム化効率の増加を示した。したがって、各潜在能力決定因子のほぼ等しい発現レベルを提供する1つの構築物での潜在能力決定因子の提供は再プログラム化効率を改善することができる。
本明細書に開示した本発明の一定の改案は当業者の日常的な最適化の範囲であり、本発明の範囲又は添付の特許請求の範囲を外れることなく実施されえることは理解されよう。
本明細書で述べた全ての刊行物及び特許は参照により本明細書に含まれる。開示した本発明の方法及び系の多様な修正及び変型は、本発明の範囲を逸脱することなく当業者には明白であろう。しかしながら、上記に示した本発明の実施例及び実施態様は例示であり、本発明を制限しようとするものではないことは理解されよう。本発明は、以下の特許請求の範囲内に入る全ての実施例及び実施態様の改変型を包含する。

本発明のまた別の態様は、以下のとおりであってもよい。
〔1〕以下の工程を含む、霊長類の体細胞を再プログラム化する方法:
細胞を再プログラム化するために十分な条件下で、複数の潜在能力決定因子を霊長類の体細胞に暴露する工程であって、ここで前記潜在能力決定因子がc-Myc及びKlf4を含まない、前記工程;及び
暴露された細胞を培養して、霊長類の体細胞よりも高い潜在能力を有する再プログラム化細胞を入手する工程。
〔2〕霊長類体細胞が出生後の個体から得られる、前記〔1〕に記載の方法。
〔3〕再プログラム化細胞が、前記出生後個体と遺伝的に実質同一である、前記〔2〕に記載の方法。
〔4〕霊長類体細胞が幹細胞のin vitro分化によって得られる、前記〔1〕に記載の方法。
〔5〕暴露工程が、1つ以上の潜在能力決定因子をコードするベクターを霊長類体細胞に導入する工程を含む、前記〔1〕に記載の方法。
〔6〕ベクターがウイルス系ベクターである、前記〔5〕に記載の方法。
〔7〕ウイルス系ベクターがレトロウイルスベクターである、前記〔6〕に記載の方法。
〔8〕レトロウイルスベクターがレンチウイルスベクターである、前記〔7〕に記載の方法。
〔9〕潜在能力決定因子が再プログラミング配列として体細胞に導入され、前記再プログラミング配列では、潜在能力決定因子をコードする核酸配列が異種プロモータに機能的に連結されてある、前記〔1〕に記載の方法。
〔10〕複数の潜在能力決定因子が、Oct-4、Sox2、Nanog及びLin28から成る群から選択される、前記〔1〕に記載の方法。
〔11〕潜在能力決定因子がOct-4、Sox2並びにNanog及びLin28の少なくとも1つである、前記〔1〕に記載の方法。
〔12〕潜在能力決定因子がOct-4及びSox2である、前記〔1〕に記載の方法。
〔13〕再プログラム化細胞が多能性である、前記〔1〕に記載の方法。
〔14〕再プログラム化細胞が、(i)Oct-4、SSEA3、SSEA4、Tra-1-60、Tra-1-81から成る群から選択される細胞マーカーを発現し;(ii)多能性細胞に特徴的な形態を示し;さらに(iii)免疫不全動物に導入したときテラトーマを形成する、前記〔1〕に記載の方法。
〔15〕以下の工程を含む方法にしたがって作製される、霊長類の多能性細胞の濃縮集団:
潜在能力決定因子を発現させるために十分な条件下で、複数の潜在能力決定因子を霊長類の体細胞に導入し、それによって体細胞が正倍数性の霊長類多能性細胞を生じるように再プログラム化する工程であって、ここで前記潜在能力決定因子がc-Myc又はKlf4を含まない、前記工程。
〔16〕霊長類多能性細胞が、(i)Oct-4、SSEA3、SSEA4、Tra-1-60、Tra-1-81から成る群から選択される細胞表面マーカーを発現し;(ii)多能性細胞に特徴的な形態を示し;さらに(iii)免疫不全動物に導入したときテラトーマを形成する、前記〔15〕に記載の細胞濃縮集団。
〔17〕潜在能力決定因子が、Oct-4、Sox2並びにNanog及びLin28の少なくとも1つである、前記〔15〕に記載の細胞濃縮集団。
〔18〕潜在能力決定因子がOct-4及びSox2である、前記〔15〕に記載の細胞濃縮集団。
〔19〕霊長類多能性細胞が集団の少なくとも60%を占める、前記〔15〕に記載の細胞濃縮集団。
〔20〕霊長類多能性細胞が集団の少なくとも80%を占める、前記〔15〕に記載の細胞濃縮集団。
〔21〕霊長類多能性細胞が集団の少なくとも95%を占める、前記〔15〕に記載の細胞濃縮集団。
〔22〕以前に存在していた霊長類個体の分化細胞のゲノムを有する正倍数性多能性細胞を含む細胞培養。
〔23〕霊長類がヒトである、前記〔22〕に記載の細胞培養。
〔24〕細胞が、潜在能力決定因子をコードする複数の導入ポリヌクレオチドをゲノム内に含み、前記潜在能力決定因子がc-Myc及びKlf4を含まない、前記〔22〕に記載の細胞培養。
〔25〕以下の工程を含む、霊長類の体細胞を多能性細胞に転換するために少なくとも1つの推定的潜在能力決定因子が適切であることを判定する方法:
霊長類の体細胞を少なくとも1つの推定的潜在能力決定因子に暴露する工程であって、ここで、前記霊長類体細胞は、前記因子の取り込みに受容性を有し、さらに多能性細胞で活性を示す調節性プロモータの制御下にあるマーカー遺伝子を含む、前記工程;及び
前記少なくとも1つの因子への暴露後、前記マーカー遺伝子が前記細胞で発現されるか否かを判定する工程であって、ここで、発現は、前記霊長類体細胞の多能性細胞への転換のために前記少なくとも1つの因子が適切であることの指標である、前記工程。
〔26〕調節性プロモータがOct4プロモータである、前記〔25〕に記載の方法。
〔27〕少なくとも1つの推定的潜在能力決定因子が、Oct-4、Sox2並びにNanog及びLin28の少なくとも1つである、前記〔25〕に記載の方法。

Claims (9)

  1. 以下の工程を含む、霊長類の体細胞を再プログラム化する方法:
    細胞を再プログラム化するために十分な条件下で、複数の潜在能力決定因子を霊長類の体細胞に暴露する工程であって、ここで前記複数の潜在能力決定因子がOct-4Sox2Nanog及びLin28であり、前記霊長類体細胞が出生後の個体から得られたものである、前記工程;及び
    暴露された細胞を培養して、霊長類の体細胞よりも高い潜在能力を有する再プログラム化細胞を入手する工程であって、前記再プログラム化細胞が、前記出生後個体と遺伝的に実質同一である工程。
  2. 霊長類体細胞が幹細胞のin vitro分化によって得られる、請求項1に記載の方法。
  3. 暴露工程が、1つ以上の潜在能力決定因子をコードするベクターを霊長類体細胞に導入する工程を含む、請求項1に記載の方法。
  4. ベクターがウイルス系ベクターである、請求項3に記載の方法。
  5. ウイルス系ベクターがレトロウイルスベクターである、請求項4に記載の方法。
  6. レトロウイルスベクターがレンチウイルスベクターである、請求項5に記載の方法。
  7. 潜在能力決定因子が再プログラミング配列として体細胞に導入され、前記再プログラミング配列では、潜在能力決定因子をコードする核酸配列が異種プロモータに機能的に連結されてある、請求項1に記載の方法。
  8. 再プログラム化細胞が多能性である、請求項1に記載の方法。
  9. 再プログラム化細胞が、(i)Oct-4、SSEA3、SSEA4、Tra-1-60及びTra-1-81から成る群から選択される細胞マーカーを発現し;(ii)多能性細胞に特徴的な形態を示し;さらに(iii)免疫不全動物に導入したときテラトーマを形成する、請求項1に記載の方法。
JP2010501136A 2007-03-23 2008-03-21 体細胞の再プログラム化 Active JP5813321B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US91968707P 2007-03-23 2007-03-23
US60/919,687 2007-03-23
US97498007P 2007-09-25 2007-09-25
US60/974,980 2007-09-25
US98905807P 2007-11-19 2007-11-19
US60/989,058 2007-11-19
PCT/US2008/057924 WO2008118820A2 (en) 2007-03-23 2008-03-21 Somatic cell reprogramming

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015094203A Division JP6788329B2 (ja) 2007-03-23 2015-05-01 体細胞の再プログラム化

Publications (3)

Publication Number Publication Date
JP2010521990A JP2010521990A (ja) 2010-07-01
JP2010521990A5 JP2010521990A5 (ja) 2011-04-14
JP5813321B2 true JP5813321B2 (ja) 2015-11-17

Family

ID=39708430

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2010501136A Active JP5813321B2 (ja) 2007-03-23 2008-03-21 体細胞の再プログラム化
JP2015094203A Active JP6788329B2 (ja) 2007-03-23 2015-05-01 体細胞の再プログラム化
JP2018147683A Active JP6924732B2 (ja) 2007-03-23 2018-08-06 体細胞の再プログラム化
JP2018147684A Pending JP2018183183A (ja) 2007-03-23 2018-08-06 体細胞の再プログラム化
JP2021126772A Pending JP2021176331A (ja) 2007-03-23 2021-08-02 体細胞の再プログラム化
JP2024010931A Pending JP2024038501A (ja) 2007-03-23 2024-01-29 体細胞の再プログラム化

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2015094203A Active JP6788329B2 (ja) 2007-03-23 2015-05-01 体細胞の再プログラム化
JP2018147683A Active JP6924732B2 (ja) 2007-03-23 2018-08-06 体細胞の再プログラム化
JP2018147684A Pending JP2018183183A (ja) 2007-03-23 2018-08-06 体細胞の再プログラム化
JP2021126772A Pending JP2021176331A (ja) 2007-03-23 2021-08-02 体細胞の再プログラム化
JP2024010931A Pending JP2024038501A (ja) 2007-03-23 2024-01-29 体細胞の再プログラム化

Country Status (10)

Country Link
US (6) US8440461B2 (ja)
EP (2) EP3399025A1 (ja)
JP (6) JP5813321B2 (ja)
KR (1) KR101516833B1 (ja)
CN (1) CN101743306A (ja)
AU (1) AU2008231020B2 (ja)
CA (1) CA2684242C (ja)
IL (1) IL200982A (ja)
SG (2) SG193653A1 (ja)
WO (1) WO2008118820A2 (ja)

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
SE531979C2 (sv) * 2005-06-01 2009-09-22 Wisconsin Alumni Res Found Metod för att framställa dendritiska celler från mänskliga embryonala stamceller, samt odlingar framställda med metoden
US8034613B2 (en) * 2005-06-01 2011-10-11 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
PT1970446E (pt) 2005-12-13 2011-09-01 Univ Kyoto Factor de reprogramação nuclear
CA2641967C (en) 2006-02-09 2019-03-19 Wisconsin Alumni Research Foundation Erythroid cells producing adult-type .beta.-hemoglobin generated from human embryonic stem cells
SG193653A1 (en) * 2007-03-23 2013-10-30 Wisconsin Alumni Res Found Somatic cell reprogramming
EP2145000A4 (en) 2007-04-07 2010-05-05 Whitehead Biomedical Inst REPROGRAMMING SOMATIC CELLS
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
JP2008307007A (ja) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US20110236971A2 (en) * 2007-09-25 2011-09-29 Maksym Vodyanyk Generation of Clonal Mesenchymal Progenitors and Mesenchymal Stem Cell Lines Under Serum-Free Conditions
CN101617043B (zh) * 2007-10-31 2014-03-12 国立大学法人京都大学 核重编程方法
KR101532442B1 (ko) 2007-12-10 2015-06-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 효율적인 핵 초기화 방법
US9683232B2 (en) * 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
KR101661940B1 (ko) * 2008-05-02 2016-10-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 핵 초기화 방법
EP2297298A4 (en) * 2008-05-09 2011-10-05 Vistagen Therapeutics Inc PANCREATIC ENDOCRINE PROGENITOR CELLS FROM PLURIPOTENT STEM CELLS
ES2587395T3 (es) * 2008-06-04 2016-10-24 Cellular Dynamics International, Inc. Procedimientos para la producción de células IPS usando un enfoque no vírico
CN105671065A (zh) 2008-06-13 2016-06-15 怀特黑德生物医学研究所 细胞编程和重编程
US8530238B2 (en) 2008-06-27 2013-09-10 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010013845A1 (en) * 2008-07-30 2010-02-04 Kyoto University Method of efficiently establishing induced pluripotent stem cells
JP2012500005A (ja) * 2008-08-12 2012-01-05 セルラー ダイナミクス インターナショナル, インコーポレイテッド iPS細胞を生成するための方法
WO2010033906A2 (en) * 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010042800A1 (en) * 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
EP3450545B1 (en) 2008-10-24 2023-08-23 Wisconsin Alumni Research Foundation Pluripotent stem cells obtained by non-viral reprogramming
JP2012507258A (ja) * 2008-10-30 2012-03-29 国立大学法人京都大学 人工多能性幹細胞の作製方法
US20110318830A1 (en) * 2008-11-12 2011-12-29 The Regents Of The University Of California Compositions and methods for re-programming and re-differentiating cells
US9045737B2 (en) * 2008-12-13 2015-06-02 Dnamicroarray, Inc. Artificial three-dimensional microenvironment niche culture
US20110300627A1 (en) * 2009-01-20 2011-12-08 Sing George L Dedifferentiation and reprogramming of cells
EP2398897B1 (en) 2009-02-20 2017-06-28 Cellular Dynamics International, Inc. Methods and compositions for the differentiation of stem cells
CA2753845C (en) 2009-02-27 2019-10-29 Kyoto University Nuclear reprogramming substance comprising glis1
CN102405280B (zh) 2009-03-20 2015-03-04 中胚层公司 重新设定的多能干细胞的制备
US9109245B2 (en) 2009-04-22 2015-08-18 Viacyte, Inc. Cell compositions derived from dedifferentiated reprogrammed cells
US20100272695A1 (en) 2009-04-22 2010-10-28 Alan Agulnick Cell compositions derived from dedifferentiated reprogrammed cells
JP5777113B2 (ja) 2009-05-29 2015-09-09 学校法人慶應義塾 人工多能性幹細胞のクローンの選択方法
CN102459575A (zh) 2009-06-05 2012-05-16 细胞动力国际有限公司 重编程t细胞和造血细胞的方法
WO2010144696A1 (en) 2009-06-11 2010-12-16 Burnham Institute For Medical Research Directed differentiation of stem cells
JP5645197B2 (ja) * 2009-06-23 2014-12-24 学校法人日本大学 幹細胞の未分化状態を維持する新規方法
AU2010279913B2 (en) 2009-08-07 2016-04-28 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US8709805B2 (en) 2009-08-07 2014-04-29 Kyoto University Canine iPS cells and method of producing same
US20120282318A1 (en) 2009-08-19 2012-11-08 Koyoto University Sheet for corneal transplants
JP5773393B2 (ja) 2009-09-24 2015-09-02 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
GB2474492B (en) * 2009-10-19 2014-05-21 Tristem Trading Cyprus Ltd Treatment using reprogrammed mature adult cells
JP5957382B2 (ja) * 2009-10-29 2016-07-27 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞
AU2010312291A1 (en) 2009-10-29 2012-06-21 Mcmaster University Generating induced pluripotent stem cells and progenitor cells from fibroblasts
EP2496689B1 (en) * 2009-11-04 2015-05-20 Cellular Dynamics International, Inc. Episomal reprogramming with chemicals
WO2011071118A1 (ja) 2009-12-09 2011-06-16 国立大学法人京都大学 ニトロビンを含む多能性幹細胞の心筋細胞への分化促進剤
JP2011121949A (ja) 2009-12-14 2011-06-23 Kyoto Univ 筋萎縮性側索硬化症の予防および治療用医薬組成物
EP2526189B1 (en) 2010-01-22 2016-10-12 Kyoto University Method for improving induced pluripotent stem cell generation efficiency
SG183315A1 (en) 2010-02-16 2012-09-27 Univ Kyoto Method of efficiently establishing induced pluripotent stem cells
CN102190731B (zh) * 2010-03-09 2016-01-27 中国科学院上海生命科学研究院 用人工转录因子诱导产生多能干细胞
EP2547768B1 (en) 2010-03-17 2015-12-30 Association Institut de Myologie Modified u7 snrnas for treatment of neuromuscular diseases
JP5860805B2 (ja) * 2010-03-23 2016-02-16 オリンパス株式会社 幹細胞の分化状態をモニタリングする方法
US8815592B2 (en) 2010-04-21 2014-08-26 Research Development Foundation Methods and compositions related to dopaminergic neuronal cells
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
EP2569420B1 (en) * 2010-05-13 2018-09-05 The Regents of The University of California Method and composition for inducing human pluripotent stem cells
JP5936134B2 (ja) 2010-06-15 2016-06-15 国立大学法人京都大学 ヒト人工多能性幹細胞の選択方法
WO2011159684A2 (en) 2010-06-15 2011-12-22 Cellular Dynamics International, Inc. Generation of induced pluripotent stem cells from small volumes of peripheral blood
US9938496B2 (en) 2010-08-13 2018-04-10 Kyoto University Method of inducing differentiation from pluripotent stem cells to germ cells
WO2012027358A1 (en) 2010-08-23 2012-03-01 President And Fellows Of Harvard College Optogenetic probes for measuring membrane potential
JP5930205B2 (ja) 2010-08-26 2016-06-08 国立大学法人京都大学 多能性幹細胞の心筋分化促進剤
US9499790B2 (en) 2010-08-26 2016-11-22 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
US9856210B2 (en) 2010-09-02 2018-01-02 Kyoto University Pharmaceutical composition for prevention and treatment of amyotrophic lateral sclerosis
US9447408B2 (en) 2010-09-14 2016-09-20 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US20130296183A1 (en) 2010-09-17 2013-11-07 President And Fellows Of Harvard College Functional genomics assay for characterizing pluripotent stem cell utility and safety
EP2630232A4 (en) 2010-10-22 2014-04-02 Biotime Inc METHOD FOR MODIFYING TRANSCRIPTIONAL REGULATORY NETWORKS IN STEM CELLS
JP6029137B2 (ja) 2010-12-03 2016-11-24 国立大学法人京都大学 効率的な人工多能性幹細胞の樹立方法
CA2824553A1 (en) 2011-01-19 2012-07-26 The Regents Of The University Of California Somatic cells with innate potential for pluripotency
WO2012098260A1 (en) 2011-01-21 2012-07-26 Axiogenesis Ag A non-viral system for the generation of induced pluripotent stem (ips) cells
JP5761826B2 (ja) 2011-04-08 2015-08-12 国立大学法人大阪大学 改変ラミニンおよびその利用
WO2012141181A1 (ja) * 2011-04-11 2012-10-18 国立大学法人京都大学 核初期化物質
US9133266B2 (en) 2011-05-06 2015-09-15 Wisconsin Alumni Research Foundation Vitronectin-derived cell culture substrate and uses thereof
KR101791926B1 (ko) 2011-07-25 2017-11-20 고쿠리츠 다이가쿠 호진 교토 다이가쿠 유도 만능 줄기 세포 스크리닝 방법
US9822343B2 (en) * 2011-08-22 2017-11-21 Mayo Foundation For Medical Education And Research Methods and materials for obtaining induced pluripotent stem cells
WO2013028684A1 (en) 2011-08-23 2013-02-28 Wisconsin Alumni Research Foundation Angiohematopoietic progenitor cells
WO2013055834A2 (en) * 2011-10-11 2013-04-18 The New York Stem Cell Foundation Er stress relievers in beta cell protection
US20140248698A1 (en) 2011-10-21 2014-09-04 Arkray, Inc. Method for culturing pluripotency-maintained singly dispersed cells by means of laminar flow
GB2496375A (en) 2011-10-28 2013-05-15 Kymab Ltd A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof
EP2784153B1 (en) 2011-11-25 2018-01-03 Kyoto University Method for culturing pluripotent stem cell
US8450107B1 (en) 2011-11-30 2013-05-28 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer TAL effectors
US10238755B2 (en) 2011-11-30 2019-03-26 The Wistar Institute Of Anatomy And Biology Methods and compositions for regulation of cell aging, carcinogenesis and reprogramming
GB201122047D0 (en) 2011-12-21 2012-02-01 Kymab Ltd Transgenic animals
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
WO2013086008A1 (en) 2011-12-05 2013-06-13 Factor Bioscience Inc. Methods and products for transfecting cells
US8772460B2 (en) 2011-12-16 2014-07-08 Wisconsin Alumni Research Foundation Thermostable FGF-2 mutant having enhanced stability
JP6274510B2 (ja) 2012-01-27 2018-02-07 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
AU2013264708B2 (en) 2012-05-23 2019-03-07 Kyoto University Highly efficient method for establishing artificial pluripotent stem cell
US9884076B2 (en) 2012-06-05 2018-02-06 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
EP3563859B1 (en) 2012-08-13 2021-10-13 Cedars-Sinai Medical Center Cardiosphere-derived exosomes for tissue regeneration
US9175263B2 (en) 2012-08-22 2015-11-03 Biotime, Inc. Methods and compositions for targeting progenitor cell lines
WO2014057997A1 (ja) 2012-10-09 2014-04-17 Hayashi Nakanobu 初期化ペプチド及びその用途
US10077429B2 (en) 2012-10-23 2018-09-18 Kyoto University Method of efficiently establishing induced pluripotent stem cells
EP3786298A1 (en) 2012-11-01 2021-03-03 Factor Bioscience Inc. Methods and products for expressing proteins in cells
EP3766962A1 (en) 2013-02-06 2021-01-20 University of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
EP2955223B1 (en) 2013-02-08 2019-12-18 Kyoto University Production methods for megakaryocytes and platelets
US9738861B2 (en) 2013-03-06 2017-08-22 Kyoto University Culture system for pluripotent stem cells and method for subculturing pluripotent stem cells
JP6351567B2 (ja) 2013-03-08 2018-07-04 国立大学法人京都大学 Egf受容体阻害剤を含む多能性幹細胞の心筋分化促進剤
EP2970912B1 (en) 2013-03-13 2019-03-06 Wisconsin Alumni Research Foundation Methods and materials for hematoendothelial differentiation of human pluripotent stem cells under defined conditions
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
KR102164270B1 (ko) 2013-03-25 2020-10-12 고에키 자이단 호징 고베 이료 산교 도시 스이신 기코 세포의 선별 방법
US10961508B2 (en) 2013-04-12 2021-03-30 Kyoto University Method for inducing alveolar epithelial progenitor cells
WO2014185358A1 (ja) 2013-05-14 2014-11-20 国立大学法人京都大学 効率的な心筋細胞の誘導方法
KR101870174B1 (ko) 2013-05-31 2018-06-22 아이하트 재팬 가부시키가이샤 하이드로겔을 포함하는 적층화된 세포 시트
EP3003290B1 (en) 2013-06-05 2021-03-10 AgeX Therapeutics, Inc. Compositions for use in the treatment of wounds in mammalian species
US11085067B2 (en) 2013-06-10 2021-08-10 President And Fellows Of Harvard College Early developmental genomic assay for characterizing pluripotent stem cell utility and safety
BR112015030918A2 (pt) 2013-06-11 2017-12-05 Astellas Pharma Inc método para produção de células progenitoras renais, e fármacos contendo células progenitoras renais
WO2015006725A2 (en) 2013-07-12 2015-01-15 Cedars-Sinai Medical Center Generation of induced pluripotent stem cells from normal human mammary epithelial cells
JP6378183B2 (ja) 2013-08-07 2018-08-22 国立大学法人京都大学 膵ホルモン産生細胞の製造法
CN105849255A (zh) 2013-09-05 2016-08-10 国立大学法人京都大学 新的产多巴胺神经前体细胞诱导方法
JP6611170B2 (ja) 2013-09-12 2019-11-27 株式会社カネカ 人工多能性幹細胞の分化誘導方法及び選別方法
EP3045451B1 (en) 2013-09-13 2018-03-28 Kyoto University Compound promoting differentiation of pluripotent stem cells into cardiomyocytes
US10100283B2 (en) 2013-11-01 2018-10-16 Kyoto University Efficient chondrocyte induction method
WO2015069736A1 (en) 2013-11-08 2015-05-14 The Mclean Hospital Corporation METHODS FOR EFFICIENT GENERATION OF GABAergic INTERNEURONS FROM PLURIPOTENT STEM CELLS
US11377639B2 (en) 2013-11-15 2022-07-05 Wisconsin Alumni Research Foundation Lineage reprogramming to induced cardiac progenitor cells (iCPC) by defined factors
MX2016007671A (es) 2013-12-11 2016-10-14 Pfizer Ltd Metodo para producir celulas del epitelio pigmentario retiniano.
EP3099801B1 (en) 2014-01-31 2020-03-18 Factor Bioscience Inc. Synthetic rna for use in the treatment of dystrophic epidermolysis bullosa
US11078462B2 (en) 2014-02-18 2021-08-03 ReCyte Therapeutics, Inc. Perivascular stromal cells from primate pluripotent stem cells
US10233426B2 (en) 2014-05-30 2019-03-19 Kyoto University Method for inducing cardiac differentiation of pluripotent stem cell with low-molecular compounds
US10240127B2 (en) 2014-07-03 2019-03-26 ReCyte Therapeutics, Inc. Exosomes from clonal progenitor cells
JP7012432B2 (ja) 2014-07-14 2022-01-28 中外製薬株式会社 タンパク質のエピトープを同定するための方法
EP3194571A4 (en) 2014-09-18 2018-04-18 North Carolina State University Mammalian lung spheroids and lung spheroid cells and uses thereof
WO2016054591A1 (en) 2014-10-03 2016-04-07 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
CA2963934C (en) * 2014-10-06 2023-05-09 Memorial Sloan-Kettering Cancer Center Method to reduce oncogenic potential of induced pluripotent stem cells from aged donors
PT3233129T (pt) 2014-12-17 2020-04-15 Fundacion Para La Investig Medica Aplicada Construções de ácido nucleico e vetores de terapia génica para utilização no tratamento de doença de wilson e outras condições
BR112017012895A2 (pt) 2014-12-17 2018-02-06 Fundacion Para La Investig Medica Aplicada construto de ácido nucleico e seu uso, vetor, célula hospedeira, partícula viral, composição farmacêutica, kit, método de tratamento de uma afecção, processo de produção de partículas virais
WO2016104717A1 (ja) 2014-12-26 2016-06-30 国立大学法人京都大学 肝細胞誘導方法
US10544431B2 (en) 2015-01-16 2020-01-28 National Institute Of Advanced Industrial Science And Technology Gene expression system using stealthy RNA, and gene introduction/expression vector including said RNA
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
JP2016202172A (ja) 2015-04-16 2016-12-08 国立大学法人京都大学 疑似膵島の製造方法
US9724432B2 (en) 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
LT3347457T (lt) 2015-09-08 2022-02-10 FUJIFILM Cellular Dynamics, Inc. Tinklainės pigmento epitelio ląstelių, kilusių iš kamieninių ląstelių, valymas macs metodu
ES2970537T3 (es) 2015-09-08 2024-05-29 Us Health Método para la diferenciación reproducible de células epiteliales del pigmento retiniano de calidad clínica
CN108350429B (zh) 2015-10-20 2022-02-25 富士胶片细胞动力公司 用于将多能干细胞定向分化为免疫细胞的方法
CA3005739A1 (en) 2015-11-18 2017-05-26 Orbis Health Solutions Llc T7 alpha viral vector system
CN108291211A (zh) * 2015-11-24 2018-07-17 葛兰素史密斯克莱知识产权发展有限公司 用于产生逆转录病毒的瞬时转染方法
WO2017123662A1 (en) 2016-01-11 2017-07-20 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
CN109153973A (zh) 2016-03-18 2019-01-04 国立大学法人京都大学 用于冷冻多能干细胞来源心肌细胞的聚集体的方法
WO2017179720A1 (ja) 2016-04-15 2017-10-19 国立大学法人京都大学 Cd8陽性t細胞を誘導する方法
SG11201809279YA (en) 2016-04-22 2018-11-29 Univ Kyoto Method for producing dopamine-producing neural precursor cells
WO2017196175A1 (en) 2016-05-12 2017-11-16 Erasmus University Medical Center Rotterdam A method for culturing myogenic cells, cultures obtained therefrom, screening methods, and cell culture medium.
WO2017210652A1 (en) 2016-06-03 2017-12-07 Cedars-Sinai Medical Center Cdc-derived exosomes for treatment of ventricular tachyarrythmias
CN105861447B (zh) * 2016-06-13 2017-12-19 广州市搏克生物技术有限公司 一种非病毒iPSCs诱导组合物及其试剂盒
US10221395B2 (en) 2016-06-16 2019-03-05 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
US11572545B2 (en) 2016-06-16 2023-02-07 Cedars-Sinai Medical Center Efficient method for reprogramming blood to induced pluripotent stem cells
CN105936889B (zh) * 2016-06-24 2019-10-18 肇庆大华农生物药品有限公司 一种ad293球形细胞团的培养方法
JP7099967B2 (ja) 2016-07-01 2022-07-12 リサーチ ディベロップメント ファウンデーション 幹細胞由来移植片からの増殖性細胞の排除
CA3033788A1 (en) 2016-08-17 2018-02-22 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
WO2018057542A1 (en) 2016-09-20 2018-03-29 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
WO2018067826A1 (en) 2016-10-05 2018-04-12 Cellular Dynamics International, Inc. Generating mature lineages from induced pluripotent stem cells with mecp2 disruption
US20200141921A1 (en) 2016-12-27 2020-05-07 Sumitomo Chemical Company, Limited Evaluation method and selection method for induced pluripotent stem cells, and production method for induced pluripotent stem cells
WO2018135646A1 (ja) 2017-01-20 2018-07-26 国立大学法人京都大学 CD8α+β+細胞傷害性T細胞の製造方法
WO2018139548A1 (ja) 2017-01-26 2018-08-02 国立大学法人大阪大学 幹細胞の中胚葉系細胞への分化誘導用培地および中胚葉系細胞の製造方法
WO2018159805A1 (ja) 2017-03-03 2018-09-07 国立大学法人京都大学 膵前駆細胞の製造方法
JP7171055B2 (ja) 2017-03-14 2022-11-15 国立大学法人京都大学 多能性幹細胞からヘルパーt細胞を製造する方法
CN110891967A (zh) 2017-04-18 2020-03-17 富士胶片细胞动力公司 抗原特异性免疫效应细胞
EP3612191A4 (en) 2017-04-19 2020-12-30 Cedars-Sinai Medical Center METHODS AND COMPOSITIONS FOR TREATING SKELETAL MUSCLE DYSTROPHY
KR20230150412A (ko) 2017-05-25 2023-10-30 고쿠리츠 다이가쿠 호진 교토 다이가쿠 중간 중배엽 세포로부터 신장 전구 세포로의 분화 유도 방법 및 다능성 줄기세포로부터 신장 전구 세포로의 분화 유도 방법
JPWO2018230588A1 (ja) 2017-06-14 2020-04-16 武田薬品工業株式会社 細胞封入デバイス
JP6758631B2 (ja) 2017-06-19 2020-09-23 国立大学法人大阪大学 角膜内皮細胞マーカー及びその利用
WO2018235583A1 (ja) 2017-06-19 2018-12-27 公益財団法人神戸医療産業都市推進機構 多能性幹細胞の分化能の予測方法及びそのための試薬
US10760057B2 (en) 2017-07-06 2020-09-01 Wisconsin Alumni Research Foundation Human pluripotent stem cell-based screening for smooth muscle cell differentiation and disease
US11718829B2 (en) * 2017-07-28 2023-08-08 Breakthrough Tech Llc Methods and compositions for manufacturing extracellular matrix
NL2019517B1 (en) 2017-09-08 2019-03-19 Univ Erasmus Med Ct Rotterdam New therapy for Pompe disease
WO2019078263A1 (ja) 2017-10-17 2019-04-25 国立大学法人京都大学 多能性幹細胞から人工神経筋接合部を得る方法
EP3727351A4 (en) 2017-12-20 2021-10-06 Cedars-Sinai Medical Center MODIFIED EXTRACELLULAR VESICLES FOR IMPROVED TISSUE DELIVERY
TW201945536A (zh) 2018-03-19 2019-12-01 國立大學法人京都大學 水凝膠膠囊
AU2019261083A1 (en) 2018-04-23 2020-11-12 Orizuru Therapeutics, Inc. Growth inhibitor
US20210260002A1 (en) 2018-06-18 2021-08-26 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
CA3103675A1 (en) 2018-06-21 2019-12-26 University Of Rochester Methods of treating or inhibiting onset of huntington's disease
SG11202100260QA (en) 2018-07-13 2021-02-25 Univ Kyoto METHOD FOR PRODUCING γδ T CELLS
JP7285015B2 (ja) 2018-07-19 2023-06-01 国立大学法人京都大学 多能性幹細胞由来の板状軟骨およびその製造方法
US20210332329A1 (en) 2018-07-23 2021-10-28 Kyoto University Novel renal progenitor cell marker and method for concentrating renal progenitor cells using same
CA3107421A1 (en) 2018-08-10 2020-02-13 Kyoto University Method for producing cd3-positive cell
WO2020051453A1 (en) 2018-09-07 2020-03-12 Wisconsin Alumni Research Foundation Generation of hematopoietic progenitor cells from human pluripotent stem cells
BR112021006881A2 (pt) 2018-10-12 2021-07-13 Vivet Therapeutics transgene otimizado por códon para o tratamento de colestase intra-hepática familiar progressiva tipo 3 (pfic3)
US20220002751A1 (en) 2018-11-07 2022-01-06 Vivet Therapeutics Codon-optimized abcb11 transgene for the treatment of progressive familial intrahepatic cholestasis type 2 (pfic2)
WO2020102723A1 (en) 2018-11-16 2020-05-22 Encoded Therapeutics, Inc. Compositions and methods for treating wilson's disease
WO2020102715A1 (en) * 2018-11-16 2020-05-22 Rapa Therapeutics, Llc Method for t cell de-differentiation and resulting cells
EP3887518A2 (en) 2018-11-28 2021-10-06 Board of Regents, The University of Texas System Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment
WO2020112493A1 (en) 2018-11-29 2020-06-04 Board Of Regents, The University Of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
EP3892722A4 (en) 2018-12-06 2022-10-05 Kirin Holdings Kabushiki Kaisha METHOD FOR PRODUCING T LYMPHOCYTES OR NK CELLS, MEDIUM FOR CULTIVATING T LYMPHOCYTES OR NK CELLS, METHOD FOR CULTURING T LYMPHOCYTES OR NK CELLS, METHOD FOR MAINTAINING THE UNDIFFERENTIATED STATE OF UNDIFFERENTIATED T LYMPHOCYTES, AND GROWTH ACCELERATION FOR T LYMPHOCYTES OR NK CELLS
WO2020123663A1 (en) 2018-12-11 2020-06-18 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
EP3900787A4 (en) 2018-12-21 2022-02-23 Kyoto University CARTILAGE-LIKE TISSUE WITH LOCALIZED LUBRICINE, METHOD FOR THE PRODUCTION THEREOF, AND COMPOSITION COMPRISING IT FOR THE TREATMENT OF ARTICULAR CARTILAGE LESIONS
WO2020138371A1 (ja) 2018-12-26 2020-07-02 キリンホールディングス株式会社 改変tcr及びその製造方法
EP3923962A2 (en) 2019-02-13 2021-12-22 University of Rochester Gene networks that mediate remyelination of the human brain
JPWO2020175592A1 (ja) 2019-02-26 2020-09-03
CN113811316A (zh) 2019-05-15 2021-12-17 味之素株式会社 神经嵴细胞或角膜上皮细胞的纯化方法
CA3141455A1 (en) 2019-05-20 2020-11-26 Ajinomoto Co., Inc. Expansion culture method for cartilage or bone precursor cells
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
EP4074321A4 (en) 2019-12-12 2024-01-03 Univ Chiba Nat Univ Corp FREEZE DRIED PREPARATION CONTAINING MEGAKARYOCYTES AND PLATELETS
WO2021174004A1 (en) 2020-02-28 2021-09-02 Millennium Pharmaceuticals, Inc. Method for producing natural killer cells from pluripotent stem cells
CN115516084A (zh) 2020-03-31 2022-12-23 国立大学法人京都大学 T细胞祖细胞的制造方法
JPWO2021241658A1 (ja) 2020-05-26 2021-12-02
EP3922431A1 (en) 2020-06-08 2021-12-15 Erasmus University Medical Center Rotterdam Method of manufacturing microdevices for lab-on-chip applications
EP4170020A1 (en) 2020-06-17 2023-04-26 Kyoto University Chimeric antigen receptor-expressing immunocompetent cells
US20230256024A1 (en) 2020-07-13 2023-08-17 Kyoto University Skeletal muscle precursor cells and method for purifying same, composition for treating myogenic diseases, and method for producing cell group containing skeletal muscle precursor cells
WO2022019152A1 (ja) 2020-07-20 2022-01-27 学校法人 愛知医科大学 多能性細胞の未分化維持培養用組成物、多能性細胞の未分化維持培養用培地、多能性細胞の未分化状態での維持培養方法、および多能性細胞の製造方法
US20230265456A1 (en) 2020-08-10 2023-08-24 Fundacion Para La Investigacion Medica Aplicada Gene therapy vector expressing cyp27a1 for the treatment of cerebrotendinous xanthomatosis
EP4202041A1 (en) 2020-08-18 2023-06-28 Kyoto University Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
US20230220025A1 (en) 2020-09-04 2023-07-13 Heartseed Inc. Quality Improving Agent for IPS Cells, Method of Producing IPS Cells, IPS Cells, and Composition for Producing IPS Cells
JP2023542728A (ja) 2020-09-29 2023-10-11 ジェネトン ユートロフィン調節エレメント内に変異を誘導することによる細胞におけるユートロフィン発現の増強、及びその治療的使用
WO2022104109A1 (en) 2020-11-13 2022-05-19 Catamaran Bio, Inc. Genetically modified natural killer cells and methods of use thereof
EP4263818A1 (en) 2020-12-16 2023-10-25 Universitat Pompeu Fabra Therapeutic lama2 payload for treatment of congenital muscular dystrophy
US20240091382A1 (en) 2020-12-23 2024-03-21 Vivet Therapeutics Minimal bile acid inducible promoters for gene therapy
EP4310176A1 (en) 2021-03-17 2024-01-24 Astellas Pharma Inc. Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
CA3214045A1 (en) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions and methods for generating gamma-delta t cells from induced pluripotent stem cells
CN117441010A (zh) 2021-04-07 2024-01-23 世纪治疗股份有限公司 从诱导多能干细胞产生α-βT细胞的组合物和方法
CN117597433A (zh) 2021-04-30 2024-02-23 国立研究开发法人理化学研究所 视网膜色素上皮细胞的条状聚集体、用于制造其的装置和制造方法、以及含有该条状聚集体的治疗药物
CN117413051A (zh) 2021-06-04 2024-01-16 麒麟控股株式会社 细胞组合物、细胞组合物的制造方法和含有细胞组合物的药物组合物
EP4353243A1 (en) 2021-06-10 2024-04-17 Ajinomoto Co., Inc. Method for producing mesenchymal stem cells
BR112023026141A2 (pt) 2021-06-15 2024-03-05 Takeda Pharmaceuticals Co Métodos para produzir uma população de células enriquecida em células nk, para produzir células nk derivadas de células-tronco pluripotentes induzidas, para tratar um sujeito em necessidade de terapia de células e para produzir uma população de células compreendendo células progenitoras hematopoiéticas cd34+, e, populações de células nk e de células não classificadas
WO2023286832A1 (ja) 2021-07-15 2023-01-19 アステラス製薬株式会社 血管内皮増殖因子(vegf)高発現ペリサイト様細胞の製造方法
EP4372080A1 (en) 2021-07-15 2024-05-22 Astellas Pharma Inc. Pericyte-like cell expressing vascular endothelial growth factor (vegf) at high level
EP4374914A1 (en) 2021-07-21 2024-05-29 Kyoto University Method for producing retinal tissue
WO2023017848A1 (ja) 2021-08-11 2023-02-16 国立大学法人京都大学 腎間質前駆細胞の製造方法並びにエリスロポエチン産生細胞、およびレニン産生細胞の製造方法
AU2022343749A1 (en) 2021-09-13 2024-03-28 FUJIFILM Cellular Dynamics, Inc. Methods for the production of committed cardiac progenitor cells
CA3232099A1 (en) 2021-09-23 2023-03-30 Adam Ezra Cohen Genetically encoded voltage indicators and uses thereof
WO2023053220A1 (ja) 2021-09-28 2023-04-06 公益財団法人京都大学iPS細胞研究財団 多能性幹細胞の製造方法
WO2023069386A1 (en) * 2021-10-18 2023-04-27 Wisconsin Alumni Research Foundation Systems and methods for label-free tracking of human somatic cell reprogramming
US20230226116A1 (en) 2021-10-20 2023-07-20 University Of Rochester Method for rejuvenating glial progenitor cells and rejuvenated glial progenitor cells per se
WO2023069843A1 (en) 2021-10-20 2023-04-27 University Of Rochester Humanized chimeras for the prospective assessment of cell addition and replacement therapies
US20230277600A1 (en) 2021-10-20 2023-09-07 University Of Rochester Treatment Of Age-Related White Matter Loss By Competitive Replacement Of Glial Cells
CA3236365A1 (en) 2021-11-02 2023-05-11 University Of Rochester Tcf7l2 mediated remyelination in the brain
WO2023085356A1 (ja) 2021-11-11 2023-05-19 株式会社ヘリオス 遺伝子改変多能性幹細胞、それ由来の免疫担当細胞、それらの製造方法及びそれらの用途
WO2023150557A1 (en) 2022-02-01 2023-08-10 University Of Rochester Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods
WO2023215455A1 (en) 2022-05-05 2023-11-09 University Of Rochester Dual macroglial-microglial approach towards therapeutic cell replacement in neurodegenerative and neuropsychiatric disease
WO2023240147A1 (en) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Genetically engineered cells expressing cd16 variants and nkg2d and uses thereof
WO2024073776A1 (en) 2022-09-30 2024-04-04 FUJIFILM Cellular Dynamics, Inc. Methods for the production of cardiac fibroblasts

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228457A1 (de) 1992-08-27 1994-04-28 Beiersdorf Ag Herstellung von heterodimerem PDGF-AB mit Hilfe eines bicistronischen Vektorsystems in Säugerzellen
DE4228458A1 (de) 1992-08-27 1994-06-01 Beiersdorf Ag Multicistronische Expressionseinheiten und deren Verwendung
FR2722208B1 (fr) 1994-07-05 1996-10-04 Inst Nat Sante Rech Med Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6667176B1 (en) * 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US20040199935A1 (en) 1999-06-30 2004-10-07 Chapman Karen B. Cytoplasmic transfer to de-differentiate recipient cells
AU6842001A (en) 2000-06-15 2001-12-24 Tanja Dominko Pluripotent mammalian cells
US20040235173A1 (en) 2000-07-03 2004-11-25 Gala Design, Inc. Production of host cells containing multiple integrating vectors by serial transduction
US20020136709A1 (en) 2000-12-12 2002-09-26 Nucleus Remodeling, Inc. In vitro-derived adult pluripotent stem cells and uses therefor
US20030044976A1 (en) 2001-08-27 2003-03-06 Advanced Cell Technology De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
JP2004248505A (ja) 2001-09-21 2004-09-09 Norio Nakatsuji 移植抗原の一部または全てを欠除したes細胞由来の未分化な体細胞融合細胞およびその製造
ITMI20012110A1 (it) 2001-10-12 2003-04-12 Keryos Spa Vettori multi-cistronici utilizzabili in protocolli di trsferimento genico
WO2003056019A1 (en) 2001-12-24 2003-07-10 Es Cell International Pte Ltd Method of transducing es cells
GB0202149D0 (en) 2002-01-30 2002-03-20 Univ Edinburgh Pluripotency determining factors and uses thereof
GB0206357D0 (en) 2002-03-18 2002-05-01 Univ Bath Cells
DK2457999T3 (en) * 2002-12-16 2019-02-11 Technion Res & Dev Foundation CULTIVATION MEDIUM FOR PLURIPOTENT STEM CELLS
US20060128018A1 (en) 2003-02-07 2006-06-15 Zwaka Thomas P Directed genetic modifications of human stem cells
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
WO2005080598A1 (ja) * 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
WO2005086845A2 (en) * 2004-03-10 2005-09-22 Regents Of The University Of California Compositions and methods for growth of embryonic stem cells
KR100484653B1 (ko) 2004-05-06 2005-04-20 주식회사 대웅 원핵세포에서 활성형의 가용성 단백질을 제조하는 방법 및 이를 위한 폴리시스트론 벡터
US7465580B2 (en) 2004-05-19 2008-12-16 Wisconsin Alumni Research Foundation Non-cytotoxic oriP replicon
JP2008502644A (ja) 2004-06-18 2008-01-31 グラクソ グループ リミテッド ヒスタミンh3アンタゴニストとしての3−シクロアルキルベンズアゼピン
WO2007027157A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
US20070087437A1 (en) 2005-10-14 2007-04-19 Jifan Hu Methods for rejuvenating cells in vitro and in vivo
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
PT1970446E (pt) 2005-12-13 2011-09-01 Univ Kyoto Factor de reprogramação nuclear
JP4803584B2 (ja) 2006-02-08 2011-10-26 独立行政法人産業技術総合研究所 脂質生産性の高い形質転換微生物
EP2048229B1 (en) 2006-07-07 2016-02-17 Kyowa Hakko Kirin Co., Ltd. Human artificial chromosome (hac) vector, and human cell pharmaceutical comprising human artificial chromosome (hac) vector
US20100137202A1 (en) 2006-07-19 2010-06-03 University Of Florida Research Foundation Compositions for reprogramming a cell and uses therefor
KR20090043559A (ko) 2006-08-15 2009-05-06 에이전시 포 사이언스, 테크놀로지 앤드 리서치 중간엽 줄기세포 조절배지
US20110318792A1 (en) 2006-08-15 2011-12-29 Ishihara Sangyo Kaisha, Ltd. Novel method for utilization of microbial mutant
JP2008067693A (ja) 2006-08-15 2008-03-27 Ishihara Sangyo Kaisha Ltd 微生物変異体の新規利用方法
US20100069251A1 (en) 2006-09-15 2010-03-18 Children's Medical Center Corporation Methods for producing embryonic stem cells from parthenogenetic embryos
SG193653A1 (en) 2007-03-23 2013-10-30 Wisconsin Alumni Res Found Somatic cell reprogramming
WO2008150814A2 (en) 2007-05-29 2008-12-11 Reid Christopher B Methods for production and uses of multipotent cell populations
JP2008307007A (ja) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
WO2009032456A2 (en) 2007-08-01 2009-03-12 Primegen Biotech Llc Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
CN101855338B (zh) 2007-08-31 2013-07-17 怀特黑德生物医学研究所 在程序重排体细胞中的wnt途径刺激
US7615374B2 (en) 2007-09-25 2009-11-10 Wisconsin Alumni Research Foundation Generation of clonal mesenchymal progenitors and mesenchymal stem cell lines under serum-free conditions
US20110236971A2 (en) 2007-09-25 2011-09-29 Maksym Vodyanyk Generation of Clonal Mesenchymal Progenitors and Mesenchymal Stem Cell Lines Under Serum-Free Conditions
CN101617043B (zh) 2007-10-31 2014-03-12 国立大学法人京都大学 核重编程方法
WO2009061442A1 (en) * 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
US9005966B2 (en) 2007-11-19 2015-04-14 The Regents Of The University Of California Generation of pluripotent cells from fibroblasts
EP2072618A1 (en) 2007-12-14 2009-06-24 Johannes Gutenberg-Universität Mainz Use of RNA for reprogramming somatic cells
US9206439B2 (en) 2008-01-14 2015-12-08 Wisconsin Alumni Research Foundation Efficient oriP/EBNA-1 plasmid vector
WO2009092042A1 (en) 2008-01-18 2009-07-23 Nevada Cancer Institute Reprogramming of differentiated progenitor or somatic cells using homologous recombination
WO2009102983A2 (en) * 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
KR101661940B1 (ko) 2008-05-02 2016-10-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 핵 초기화 방법
ES2587395T3 (es) 2008-06-04 2016-10-24 Cellular Dynamics International, Inc. Procedimientos para la producción de células IPS usando un enfoque no vírico
WO2010012077A1 (en) 2008-07-28 2010-02-04 Mount Sinai Hospital Compositions, methods and kits for reprogramming somatic cells
JP2012500005A (ja) 2008-08-12 2012-01-05 セルラー ダイナミクス インターナショナル, インコーポレイテッド iPS細胞を生成するための方法
WO2010028019A2 (en) 2008-09-03 2010-03-11 The General Hospital Corporation Direct reprogramming of somatic cells using non-integrating vectors
EP3450545B1 (en) 2008-10-24 2023-08-23 Wisconsin Alumni Research Foundation Pluripotent stem cells obtained by non-viral reprogramming

Also Published As

Publication number Publication date
US10106772B2 (en) 2018-10-23
US20140057355A1 (en) 2014-02-27
US20110028537A1 (en) 2011-02-03
US20200239840A1 (en) 2020-07-30
AU2008231020A1 (en) 2008-10-02
JP2018183183A (ja) 2018-11-22
CA2684242C (en) 2019-11-12
JP2021176331A (ja) 2021-11-11
CA2684242A1 (en) 2008-10-02
JP2015165810A (ja) 2015-09-24
EP3399025A1 (en) 2018-11-07
US20190106675A1 (en) 2019-04-11
AU2008231020B2 (en) 2013-09-05
SG193653A1 (en) 2013-10-30
US11898162B2 (en) 2024-02-13
US20080233610A1 (en) 2008-09-25
WO2008118820A2 (en) 2008-10-02
WO2008118820A3 (en) 2008-11-20
IL200982A0 (en) 2010-05-17
JP2010521990A (ja) 2010-07-01
US20130210138A1 (en) 2013-08-15
JP6788329B2 (ja) 2020-11-25
CN101743306A (zh) 2010-06-16
US9499786B2 (en) 2016-11-22
IL200982A (en) 2013-03-24
KR101516833B1 (ko) 2015-05-07
JP2024038501A (ja) 2024-03-19
JP2018183182A (ja) 2018-11-22
EP2137296A2 (en) 2009-12-30
US8183038B2 (en) 2012-05-22
US8440461B2 (en) 2013-05-14
JP6924732B2 (ja) 2021-08-25
SG193652A1 (en) 2013-10-30
KR20090126303A (ko) 2009-12-08

Similar Documents

Publication Publication Date Title
US11898162B2 (en) Reprogramming somatic cells into pluripotent cells using a vector encoding Oct4 and Sox2
EP2476750A1 (en) Somatic cell reprogramming
US10221396B2 (en) Reprogramming T cells and hematopoietic cells
WO2010131747A1 (ja) ウイルス産生細胞
Zaehres et al. Induced pluripotent stem cells
AU2015200413B2 (en) Reprogramming t cells and hematopoietic cells
AU2016200360B2 (en) Somatic cell reprogramming
AU2013267048B2 (en) Somatic cell reprogramming
BROWN et al. Patent 2764373 Summary

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20110224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140421

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5813321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250