WO2020175592A1 - iPS細胞を用いた骨芽細胞塊の作製法 - Google Patents
iPS細胞を用いた骨芽細胞塊の作製法 Download PDFInfo
- Publication number
- WO2020175592A1 WO2020175592A1 PCT/JP2020/007876 JP2020007876W WO2020175592A1 WO 2020175592 A1 WO2020175592 A1 WO 2020175592A1 JP 2020007876 W JP2020007876 W JP 2020007876W WO 2020175592 A1 WO2020175592 A1 WO 2020175592A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- culture
- cell
- osteoblast
- mass
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3821—Bone-forming cells, e.g. osteoblasts, osteocytes, osteoprogenitor cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0654—Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3834—Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
- A61L27/3843—Connective tissue
- A61L27/3847—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3895—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
Definitions
- the present invention relates to a method for producing an osteoblast cell mass using iPS cells.
- non-absorbable materials such as hydroxyapatite and/or absorbable materials such as /S-tricalcium phosphate, which are clinically used as artificial bone and bone replacement materials, are compared to autologous bone.
- the prognosis of surgical procedures was not always good because of problems such as lack of osteoinductivity.
- a hybrid artificial bone/bone replacement material that combines human bones, which is expected to be developed as a next-generation type, and growth factor proteins such as BMP (B one Morphogenetic Protein) is important for bone tissue regeneration. Since there is no such "extracellular matrix", a sufficient bone regeneration effect could not be obtained.
- the present inventor produces a bone regenerating agent characterized by using stem cells as a raw material, containing an inactivated cell mass, and the inactivated cell mass containing at least a calcified substance and an extracellular matrix.
- Patent Documents 1 and 2 have been successful.
- Patent Document 1 W0201 5/064705
- Patent Document 2 W0201 8/1 81 960 Non-patent literature
- Non-Patent Document 1 Stem Ce U Reports Vo l. 2, 751 -760, June 3, 2014
- the inventors of the present invention have conducted extensive studies under the above circumstances, and as a result, using undifferentiated iPS cells as a raw material, an embryoid body formation induction step, a differentiation induction step into mesodermal cells, and an osteoblast.
- the method for producing an osteoblastic cell mass including the step of inducing differentiation into cells, the use of fine space culture in (1) the step of inducing embryoid body formation and (2) the step of inducing differentiation into mesodermal cells, Surprisingly, we found that we could obtain an osteoblastic mass with a very high bone regeneration capacity.
- the present inventors have further scrutinized the culture conditions and the like based on the new findings, and completed the present invention.
- the present invention provides a method, an osteoblast mass and the like shown in the following items:
- Item 1 Non-adherent culture of undifferentiated iPS cells to induce embryoid body formation
- the steps (1) and (2) are carried out using a culture vessel having a bottom surface and an annular side wall standing upright from the bottom surface, the bottom surface having a plurality of recesses provided independently of each other. How to be.
- Item 2 The circle equivalent diameter of at least one of the plurality of recesses is 200 to 9
- Item 3 The method according to Item 1 or 2, wherein the openings of the plurality of recesses have a substantially circular shape.
- Item 4. The aforementioned 3 cells are human 3 cells or mouse 3 cells,
- Item 5 The method according to Item 4, wherein the culturing time in the step (1) is 0.625 to 3.5 days.
- the culturing in the step (2) is performed in the presence of at least one selected from the group consisting of a W n I signal activator and a hedgehog signal inhibitor.
- Item 7 The n I signal activator is 6-Bromo indirubin-3' one oxime, Kenpaullone, 36-2 1 6763, 3 ⁇ !_ 2001, deoxycholic acid, ⁇ /Hachijoichi 3 1 6606, 3 0 1 693 868, ricinine, 7 _ ⁇ X ⁇ — /3—
- the hedgehog signal inhibitor is cyclopamine, Hachijo 9944, 081 1 ⁇ 1 58, 081 1 ⁇ 1 61, Zielvin, 381 1 ⁇ 1 1 1, 3 8 1 ⁇ 1 1 2 1, Li 1 8666-8, Veratramine, Bismodegib, ⁇ Li "1 6 1 4 1 4, mouth botonikinin,
- Item 9 The culture in the step (3) is performed in the presence of at least one selected from the group consisting of a hypoxia mimetic compound, a statin compound and retinoic acid. The method described in the section.
- Item 10 The method according to any one of Items 1 to 9, which comprises a step of culturing undifferentiated Ca 3 cells without using feeder cells before the step (1).
- step (1) is, by a suspension of undifferentiated Ka ⁇ 3 cells in the cell density of 1.5 ⁇ 10 5 to 3.5 10 5 Rei_61 / 1111 arranged in a culture vessel and cultured Done, The method according to any one of items 1 to 10.
- the step (2) is performed using a culture container having at least one well, and the step (3) includes the mesodermal cells obtained in the step (2).
- Item 13 The culture in the step (1) is performed in the presence of a ROCK inhibitor, and the culture in the above steps (2) and (3) is performed in the presence of retinoic acid.
- Item 14 A human iPSC-derived osteoblast mass having a ferret diameter of 1 to
- Item 15 The cell aggregate according to Item 14 obtained by the method described in any one of Items 1 to 13.
- FIG. 1 A method for inducing mouse iPS cells into an osteoblast mass.
- An embryoid body was induced from mouse iPS cells by using a micro space-shaped low-adhesion plate Elplasia (registered trademark) (Kuraray, Japan) having a plurality of recesses on the bottom surface of the well to prepare an osteoblast mass.
- ELpLasia registered trademark
- FIG. 2 Upper row: Phase-contrast micrograph of mouse iPS cells seeded on each Elp400, Elp500, and Elp900 and cultured in ES medium for 2 days. Bottom: Enlarged photo of one recess in each Elp400, Elp500, Elp900 in the middle.
- FIG. 4 Life and death of cells in the iPS cell cluster.
- Live cell/dead cell simultaneous staining kit (LIVE/DEAD® Viabi I i ty/) at the start (0 days) and 14 days (14 days) after induction of osteoblast differentiation using Elp400, Elp500, and Elp900 Cytotoxicity Kit). Green cells are live cells and red cells are dead cells.
- FIG. 6 Cells after 35 days induction of osteoblast differentiation using Elp400, Elp500, and Elp900 Hematoxylin and eosin (HE) staining of clot sections and double staining of von Kossa and methylene blue.
- HE Hematoxylin and eosin
- FIG. 9 Induction of osteoblasts and mesodermal cells with Elp500, followed by induction of osteoblast differentiation for 30 to 90 days. von Kossa and methylene blue of cell mass section of human iPS cell mass. Double stained image.
- Embryoid body and mesoderm using Elp500 Human iPS cell mass after induction of osteoblast differentiation for 60 days, and undifferentiated marker gene (Nanog) in undifferentiated human iPS cells immediately before embryoid body culture, mesodermal (mesenchymal) Lineage stem cells) ⁇ osteoblast precursor cell marker genes (Brachyury, Runx2, Osterix) and osteoblast-specific genes (Collagen 1a1, Osteocalcin) are analyzed by real-time RT-PCR method (n 3) ).
- FIG. 12 Component analysis of human iPS cell-derived osteoblast masses using FTIR.
- FTIR analysis was performed after drying the human iPS cell mass that had been induced to differentiate into embryoid bodies and mesodermal cells using Elp500 and then induced osteoblast differentiation for 0 to 60 days.
- Human lyophilized bone (FDBA) was used as a comparative control.
- the arrows indicate the FTIR spectrum peaks (Am I, Amll, P0 4 3 -, C0 3 2 -) of the original bone tissue.
- FIG. 15 Implantation of (A) human iPS cell-derived freeze-dried osteoblast mass or (B) human freeze-dried bone (FDBA) into a bone defect with a diameter of 5 mm prepared on a rat skull. HE-stained image and micro-CT image after 4 weeks.
- FIG. 16 shows a microspace culture container 1 according to an exemplary embodiment of the present invention.
- Fig. 17 A cross-sectional view of a plane including the dotted line A_B in Fig. 16 and perpendicular to the microspace culture container 1 is shown.
- FIG. 18 An enlarged view of region 4 on bottom surface 2 in Fig. 16 is shown.
- FIG. 19 A cross-sectional view of the region 4 shown in Fig. 18 is shown.
- FIG. 20 An enlarged view of a region 4 in the embodiment where the shape of the recess 6 is a regular hexagon is shown.
- FIG. 21 A schematic view showing an embodiment in which one cell mass is accommodated in each recess in the microspace culture container 1.
- FIG. 22 An outline of the seesaw-type bioreactor used in the examples is shown.
- FIG. 23 shows a schematic diagram of a culture flask that can be used in shake culture.
- FIG. 24 A method for inducing human iPS cells into an osteoblast mass and a condition setting for examining the number of cells used.
- FIG. 25 The number of cell clusters formed per flask on day 30 of induction of osteoblast differentiation is shown.
- Number of seeded cells Number of cells seeded in 1 well of a 24-well Elplasia (registered trademark) culture plate in the process of forming embryoid bodies.
- Well Number of wells of mesodermal cell culture transferred to 1 flask at the start of the osteoblast differentiation induction process.
- Number of seeded cells Number of cells seeded in 1 well of a 24-well £ 41 33 _ 13 (registered trademark) culture plate in the step of forming embryoid bodies.
- Wells the number of mesodermal cell culture wells transferred to one flask at the start of the osteoblast differentiation induction step.
- Number of seeded cells Number of cells seeded in one well of a 24-well Elplasia (registered trademark) culture plate in the step of forming embryoid bodies.
- Well The number of wells in mesodermal cell culture transferred to one flask at the start of the osteoblast differentiation induction step.
- FIG. 28 HE-stained image of cell mass 30 days after osteoblast differentiation was induced under each condition (each line) ⁇ 0 2020/175592 8 ⁇ (: 17 2020 /007876
- FIG. 1 Staining images of the osteoblastic mass with and without retinoic acid (left column) and FIG. 2 is a double-stained image of methylene blue and methylene blue (right column).
- FIG. 2 is a double-stained image of methylene blue and methylene blue (right column).
- the present invention is a.
- the steps (1) and (2) are carried out using a culture vessel having a bottom surface and an annular side wall standing upright from the bottom surface, the bottom surface having a plurality of recesses provided independently of each other.
- non-adherent culture means culture in a state in which cell adhesion to the bottom surface and the like (for example, bottom surface and wall surface) of the culture container is suppressed.
- non-adhesive culture includes shaking culture, non-adhesive culture vessels in which cell adhesion to the bottom surface of the culture vessel is suppressed (for example, non-adhesive culture dishes, non-adhesive wells, non-adhesive cells).
- the non-adhesive culture container a phospholipid gel, a hydrogel, a container subjected to a low-adhesion surface treatment by microfabrication, or the like can be used.
- the shaking culture may use the above non-adhesive culture container or a non-adhesive culture container.
- the method is not particularly limited, but for example, it can be carried out using a seesaw-type bioreactor as shown in FIG.
- the inclination angle of the shaking culture is not particularly limited, but is preferably 1 ° to 40 °, more preferably 5 ° to 35 °, and further preferably 10 ° to 30 ° with respect to the horizontal direction.
- the amplitude of shaking culture is not particularly limited, but may be, for example, about 0.1 to 200.
- the shaking cycle is not particularly limited, but may be, for example, about 0.01 to 1.000.
- the tilt angle is 10° and the amplitude is 5.5.
- the width of the table on which the culture flask is placed is not particularly limited, and for example, those having a range of 20 to 5001, 30 to 40, etc. can be used.
- the table culture flask is not particularly limited
- cell concentration at the start of the culture but are not limited to, 9 " ⁇ ⁇ zvt h ⁇ V & 0, 2. in the case of using a ⁇ hundred! 2 culture flask, 1 X 1 0 2 ⁇
- the present invention comprises the step of inducing differentiation into the above germ layer cells (step (1)) and the step of inducing differentiation into the above mesodermal cells (step (2)) in a bottom surface and a circular shape standing from the bottom surface. And a side wall, and the bottom surface of the culture container has a plurality of recesses provided independently of each other.
- a culture vessel having a bottom surface and an annular side wall standing upright from the bottom surface and having a plurality of recesses provided on the bottom surface independently of each other may be referred to as a microspace culture vessel.
- culture using a microspace culture vessel may be referred to as microspace culture.
- FIG. 16 shows a microscopic space culture container 1 in a typical embodiment of the present invention.
- the microscopic space culture vessel 1 includes a bottom surface 2 and an annular side wall 3 standing upright from the bottom surface. Therefore, it can be said that the microscopic space culture container 1 is provided with the well 5 including the bottom surface 2 and the annular side wall 3 provided upright from the bottom surface.
- the ring-shaped side wall 3 is not limited to the one having an opening and a bottom having a substantially circular shape as shown in FIG. Trapezoid, etc.)), pentagon, hexagon, etc.).
- Fig. 17 shows a cross-sectional view of a plane including the dotted line _ _ in Fig. 16 and perpendicular to the microspace culture container 1.
- the material forming the wall surface and the material forming the bottom surface are different as in the preferred embodiment shown in FIG. 17 (in the case of FIG. 17, a material whose bottom surface is transparent and whose wall surface is not transparent (for example, black)
- an enlarged view of region 4 on bottom surface 2 in Fig. 16 is shown in Fig. 18.
- the microscopic space culture is shown in the region 4 shown in Fig. 18, including the dotted line.
- a cross-sectional view taken along a plane perpendicular to the substantially flat surface that constitutes the container 1 is shown in Fig. 19.
- the bottom surface 2 of the microscopic space culture container 1 in Fig. 16 is provided independently of each other. It also has a plurality of recesses 6.
- the recesses formed on the bottom surface of the microscopic space culture container (and the wells of the microscopic space culture container) may be referred to as microwells or microwells.
- the shape of the recess 6 is not particularly limited as long as it has a bottom surface, and the shape of the opening 7 is a substantially shape (for example, a circle as shown in FIG. 18), a polygon (a triangle, a quadrangle).
- the opening 7 is a portion formed by connecting the highest points of the side walls 9 in one concave portion 6 (in the case of FIG. 19, the opening constitutes the main body of the microspace culture container 1). Parallel to the substantially flat surface).
- the recess 6 forms a fine space for culturing cells.
- the circular phase in at least one of the plurality of recesses 6 (preferably 80% or more of the number of recesses 6, more preferably 90% or more, typically all) ⁇ 2020/175592 1 1 ⁇ (: 170? 2020 /007876
- the diameter is preferably 200 to 900, more preferably 400 to 1001, and further preferably 450 to 5500.1.
- the equivalent circle diameter means a diameter of an inscribed circle of a plane figure constituted by a point where a plane parallel to a substantially plane formed by the microspace culture container 1 and a side wall 9 intersect ( For example, when the plane figure is a regular hexagon, the equivalent circle diameter is as shown in Fig. 20).
- the equivalent circle diameter in the present invention is The maximum value shall be shown.
- Fig. 19 shows a cross-sectional view of a plane perpendicular to the substantially flat surface that is formed by the microscopic space culture container 1 including the above.
- the concave portion 6 may have a bottom surface 8 having a curved surface shape (for example, a round bottom) as shown in FIG. 19 or may be flat.
- the side wall 9 may be parallel as shown in FIG. 19 or may be tapered (for example, tapered with a wide opening side and a narrow bottom side).
- the depth of at least one of the plurality of recesses 6 is preferably 200 to 10 It is 0.001, more preferably 300 to 800, and even more preferably 400 to 700.
- the depth of the recess 6 means the opening of the bottom surface of the recess. The distance from the farthest position from the part to the opening is shown.
- the volume of the space defined by the recess 6 (the space defined by the opening 7, the bottom surface 8 and the side wall 9) is not particularly limited, but there is one recess 6, and preferably ⁇ . . 0 2 ⁇ . 5 5_Rei_1 3, more preferably 0.0 4 ⁇ . 3 5_Rei_1 111 3, more preferably ⁇ . 0 7 ⁇ . 1 5_Rei_1 111 3 is there. It is preferable that at least one of the plurality of recesses 6 (preferably 80% or more, more preferably 90% or more, typically all of the number of recesses 6) constitutes a space having the above-mentioned volume.
- the recess is preferably sized so that 1 to 2 (preferably 1) 3 cell aggregates can be accommodated in each recess. ⁇ 0 2020/175592 12 ⁇ (: 170? 2020 /007876
- the material forming the microscopic space culture vessel 1 is not particularly limited, and examples thereof include acrylic resin, polystyrene resin, acrylic-styrene resin, polycarbonate resin, melamine resin, polyglycolic acid, polylactic acid. , Polyester resin, polyimide, polyvinyl alcohol resin, ethylene ⁇ vinyl alcohol resin, thermoplastic elastomer, vinyl chloride resin, silicone resin, and combinations thereof.
- the culture using the microspace culture container 1 is typically performed by static culture. Therefore, it is preferable that at least a part of these is non-cell-adhesive so that cells or cell aggregates do not adhere to the bottom surface 2 and/or the side wall 3, especially the bottom surface 2 of the microscopic space culture container 1.
- the method for making the wall surface non-cell-adhesive is not particularly limited, but for example, a method of applying a cell non-adhesive to form a hydrophilic phase on at least a part of the wall surface can be considered.
- Examples of cell non-adhesives include those containing hydrophilic polymers such as polyethylene glycol, polymers having a betaine structure, phospholipid-containing polymers, and polyhydroxyethyl (meth)acrylate polymers.
- the microscopic space culture container 1 is not limited to a rectangular plate as shown in FIG. 16 and may be, for example, a circular plate or the like.
- the 3 cells used as a raw material cells produced by introducing a nuclear reprogramming substance into somatic cells can be used.
- the cells include cells derived from mammals such as sheep, mice, rats, monkeys, dogs, pigs, cows, cats, goats, sheep, rabbits, guinea pigs, and hamsters. ⁇ 0 2020/175592 13 ⁇ (: 170? 2020 /007876
- It is preferably derived from human, mouse, rat, monkey, dog, etc., and more preferably derived from human or mouse.
- the somatic cells that can be used as a starting material for the production of I 3 cells may be any cells other than the proliferating cells, and examples thereof include oral mucosal cells (eg, gingival fibroblasts, fin mucosa).
- Fibroblasts gingival epithelial cells, mucous epithelial cells, etc.
- keratinizing epithelial cells eg, keratinized epidermal cells, etc.
- mucosal epithelial cells eg, epithelial cells of the tongue surface layer
- exocrine gland epithelial cells eg Eg, mammary gland cells, etc., hormone-secreting cells (eg, adrenal medulla cells, etc.), cells for metabolism and storage (eg, hepatocytes, etc.
- luminal epithelial cells that make up the interface eg, type I alveoli
- luminal epithelial cells of inner chain ducts eg, vascular endothelial cells, etc.
- ciliated cells with transporting ability eg, airway epithelial cells, etc.
- extracellular matrix secreting cells eg, fibroblasts) Etc.
- contractile cells eg smooth muscle cells, etc.
- the degree of differentiation of cells is not particularly limited, and it may be an undifferentiated progenitor cell (including somatic stem cells) or a terminally differentiated mature cell. can do.
- undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
- the "nuclear reprogramming substance” is a substance (group) capable of inducing 3 cells from somatic cells, and a proteinaceous factor or a nucleic acid encoding the same (which is incorporated into a vector Form)), or any substance such as a low molecular weight compound.
- the nuclear reprogramming substance is a proteinaceous factor or a nucleic acid encoding the same, the following combinations are preferably exemplified (in the following, only the names of proteinaceous factors are described).
- GLIS1, GLI S2, GLIS3, etc. members of the GLIS family (for example, GLIS1, GLI S2, GLIS3, etc., and preferably GLIS1 (GLIS fami ly zinc finger 1) W ⁇ 20 1 (See 0/0984 1 9, WO 20 1 1/1 0253 1)
- IRX family members eg IRX1, IRX2
- IRX3, IRX4, IRX5, IRX6 and the like, and preferably IRX6 (iroquois homeob ox protein 6) can be mentioned. (See WO 20 0/0984 1 9)
- a combination which does not correspond to the above [1]-[28] but includes all the constituent elements in any of them and further includes any other substance is also included in the "nuclear initial stage" in the present invention. It can be included in the category of "chemical substance".
- a condition in which the somatic cell targeted for nuclear reprogramming endogenously expresses some of the components of any of the above [1]-[28] at a sufficient level for nuclear reprogramming Below, a combination of only the remaining constituents excluding the constituent can also be included in the category of “nuclear reprogramming substance” in the present invention.
- At least one selected from 0ct3/4, Sox2, Klf4, c-Myc, Nanog, Lin28, and SV40LT preferably two or more, and more preferably three.
- the above is mentioned as an example of a preferable nuclear reprogramming substance.
- human cDNA sequence information for GLIS family members, IRX family members, PTX family members, and DM B1 can be obtained by referring to NCB I accession numbers shown in Table 2 below. ..
- the amino acid sequence has 90% or more, preferably 95% or more, more preferably 98% or more, particularly preferably 99% or more identity, and 1 ⁇ 1 to 4 alternative factors.
- the nucleic acid encoding the same As a natural or artificial mutant protein having a nuclear reprogramming ability equivalent to that of the wild-type protein and a nucleic acid encoding the same, the nucleic acid encoding the same! It can be used as a nuclear reprogramming substance to replace ⁇ 44.
- the obtained 0.8 is inserted into an appropriate expression vector and introduced into a host cell, and the cell is cultured. It can be prepared by recovering the recombinant proteinaceous factor from the resulting culture.
- the obtained cDNA is inserted into a viral vector, a plasmid vector, an episomal vector, etc. to construct an expression vector. It is used in the chemical conversion process.
- iPSC cells were used as C40R F 51, H H LA as an index of differentiation resistance.
- a strain in which these factors are not significantly expressed may be selected using factors such as 1, ABH D 12 B, Z N F 54 1 (see WO 201 3/01 4929).
- the iPS cells for example, the humoral factors necessary for cell survival, proliferation, maintenance of undifferentiated state, etc. are supplied and cultured together with feeder cells which are scaffolds for cell adhesion. Before the induction of embryoid body formation, feeder cells can be appropriately removed and used. In another embodiment of the present invention, the iPS cells are cultured without using feeder cells from the viewpoint of promoting the production efficiency of the osteoblast mass (a larger number of osteoblast masses can be obtained). Is more preferable than the above method using feeder cells.
- This step is performed by non-adherently culturing these undifferentiated iPS cells in the liquid medium used for inducing the formation of embryoid bodies using the above-mentioned microscopic space culture vessel.
- a medium for primate ES/i PS cell culture can be appropriately used.
- the ES cell culture medium may be simply referred to as ES medium.
- the medium for primate ES/i PS cell culture include REPR ⁇ CELL, RCH EMD001: Biological Industries, Nutri System; fhe mo Fisherbcientific, E ssential 6 Me dium; Ajinomoto Stock Association StemFit AK02N medium or Stem FI ex medium produced by the company.
- a growth factor such as FG F (F ibroblastgr ow thfact 0 rs) may be added to such a medium. These growth factors can be used alone or in combination of two or more.
- the medium may optionally contain additives that can be used during cell culture of stem cells and the like.
- additives include fetal bovine serum (fetalb ⁇ V ineserum), amino acids (eg L_glutamine, etc.), ROCK inhibitors (eg Y-27632), antibiotics (eg penicillin). , Streptomycin, amphotericin B, etc.).
- a ROCK inhibitor or the like as an additive.
- the embryoid body forming step of step (1) is intended to be continued until the formation of embryoid bodies without substantially causing mesodermal cell induction. Therefore, typically, a medium containing no inducer for mesodermal cells is used as the medium used in step (1).
- this step comprises
- the suspension of S cells is placed in the recess of the culture vessel and held.
- the number of undifferentiated iPS cells in the suspension when placed in the recess of the culture vessel is not limited, but from the viewpoint of promoting the production efficiency of the osteoblast mass, for example, the cell concentration is 0.5X10 5 ⁇ 7.5X10 5 ceUs/nU is preferable, and 15X10 5 to 3.5X 10 5 ceUs/nU is more preferable.
- the above-mentioned preferable cell concentration is typically shown as a value when 2 m I of cell suspension is added per well, as in the case of the experimental example.
- the number of undifferentiated i PS cells added per well in placing in a recess of the culture vessel without limitation, from the viewpoint of manufacturing efficiency promotion of osteoblast cell mass, e.g., 1X10 5 ⁇ 15X10 5 Cells are preferred, and 3X10 5 to 7X10 5 cells are more preferred.
- the preferred number of undifferentiated iPS cells is typically the microwell of 24 wells used in Experimental Example 3. Narrow space shape low adhesion plate [E Ip traditionally a (registered trademark) (Corning, Catalog No. 4441: micro well size diameter 500 Mm, depth 400 fjim s concave number 554 ⁇ 580 pcs/well)] plate size Is shown as the value when is used.
- the number of undifferentiated iPS cells to be placed per one recess when placed in the recess of the culture container is not limited, but from the viewpoint of promoting the production efficiency of the osteoblast mass, for example, 100 to 300 ceUs is preferable, and 500 to 1200 ceUs is more preferable.
- the culture time in this step is, for example, preferably about 0.5 to 3.5 days, more preferably 0.625 to 2.5 days, and further preferably 0.875 to 1.25 days.
- the culture time in this step is, for example, preferably about 12 to 84 hours, more preferably about 15 to 60 hours, and further preferably about 21 to 30 hours.
- the culture temperature in this step is not particularly limited, and is preferably 30 to 42 ° C, more preferably 35 to 39 ° C, for example.
- Culture in this step is preferably carried out in an atmosphere of 3-1 0% C_ ⁇ 2.
- the culture in this step (1) uses a microspace culture container, in order to maintain the state in which the cells or cell clusters are arranged in the wells of the microspace culture container, typically, This process is performed by static culture
- the method of the present invention includes a step of non-adherently culturing the embryoid body of iPS cells obtained in the above step (1) to induce differentiation of iPS cells into mesodermal cells.
- a medium suitable for inducing differentiation of mesodermal cells can be appropriately used.
- examples of such a medium include DMEM medium; Nacalai Tesque, DMEM/F 12 medium; Ther mo F i she r S c i e n t i f i c, N e u r o b a s a I me d i u m medium;
- T her mo F isher Scientific, RPMI 1640 medium; T her mo F isher Scientific, S tem I ine (registered trademark) ⁇ Hematopoietic stem cell growth medium; S igma a_A ldr Examples include those manufactured by ich. These media may be used alone or in combination of two or more.
- the medium used in this step preferably contains a Wnt signal activator.
- the Wnt signal activator is not particularly limited, but for example, CHIR 9902 1, 6-bromoindynebin-3'-oxime [6-bromonidnirubinn-3'
- Wn t signal activators may be used alone or in combination of two or more.
- the amount thereof is not particularly limited, but the final concentration in the medium used in this step is, for example, preferably 0.01 to 10 MM, more preferably 0.1 to 5 MM.
- the blending amount is not particularly limited, but the final concentration in the medium used in this step is, for example, preferably 1 to 100 MM, and 10 to 50 MM. MM is more preferred.
- the medium used in this step preferably contains a hedgehog signal inhibitor.
- Hedgehog signal inhibitors include, but are not limited to, cyclopamine, AY 994 4, GANT 58, GANT 61, diervine, SANT-1, SANT-2, U 18666 A, veratramine, bismodegib (V is mo degib ), C u r-6 1 4 1 4, Lobotnikinin (R obotnikinin), JK 184, HPI 14 and the like are mentioned, and cyclopamine and the like are preferable.
- These Hedgehog signal inhibitors may be used alone or in combination of two or more.
- the amount thereof is not particularly limited, but the final concentration in the medium used in this step is, for example, 1 to 100 MM, preferably 1 to 1 O MM. Is more preferable.
- the present invention cultivates in ES medium for 2 days, and further adds retinoic acid. Based on the new finding that the shape of the cell mass becomes a hollow bag in the method of culturing for 2 days and culturing in the osteoblast differentiation induction medium, further improvement is required to solve this problem. It was completed by. Therefore, a method of performing a culture step using a medium containing only retinoic acid as a component capable of inducing differentiation into mesoderm after the step of inducing embryoid body formation is excluded from the method of the present invention.
- the medium may optionally be mixed with additives that can be used in cell culture.
- additives include fetal bovine serum (fet albovin e se r u m ), amino acids (for example, L-glutamine, etc.), and antibiotics (for example, penicillin, streptomycin, amphotericin B, etc.).
- a commercially available cell culture supplement or the like may be added to the medium as an additive used for cell culture.
- Such supplements include N— 2 S upple me nt; T her mo F isher Scientific, B— 27 supple me nt; T her mo F isherbeientific, Insulin, T ransferrin, S elenium Solution; T her mo F isher Scientific, Wn t 3 a; R&D Systems, A cti vin A; R & DS ystems, BMP4; Peprotech.
- These supplements may be used alone or in combination of two or more.
- the method of the present invention is a method for producing a cell mass of osteoblasts. Therefore, the step of inducing differentiation of the mesodermal cells is also performed by non-adhesion culture.
- the culture in this step (2) uses a fine space culture vessel, it is typical to maintain the state in which the cells or cell clusters are arranged in the wells of the fine space culture vessel. In this case, this step is performed by static culture.
- this step is performed by placing and holding the above-mentioned medium containing the embryoid body obtained in the above step (1) in the recess of the culture container.
- the culture time in this step is, for example, preferably 0.125 to 10 days, more preferably 1 to 8 days, and further preferably 3 to 6 days.
- the culture time in this step is, for example, preferably about 3 to 240 hours, more preferably about 24 to 192 hours, and even more preferably about 72 to 144 hours.
- the culture temperature in this step is not particularly limited, and is preferably 30 to 42 ° C, more preferably 35 to 39°C, for example. Culturing in this step is preferably performed in an atmosphere of 3 to 10% CO.
- the method of the present invention includes a step of non-adherently culturing the mesodermal cells of the iPS cells obtained in the above step (2) to induce differentiation into osteoblasts.
- a medium suitable for inducing differentiation into osteoblasts can be appropriately used.
- a medium suitable for inducing differentiation into osteoblasts include DMEM medium (eg, Nacalai Tesque, sodium pyruvate-free DMEM medium, etc.); a MEM medium (eg, Nacalai Tesque, aMEM medium) and the like. These media may be used alone or in combination of two or more. ⁇ 0 2020/175592 24 ⁇ (: 170? 2020 /007876
- the medium may contain an agent for promoting the induction of differentiation into osteoblasts and the like.
- osteoblast differentiation induction promoters include ascorbic acid, /3-glycerophosphate, dexamethasone, 81 ⁇ -2, hydrocortisone hemisuccinate, and retinoic acid (eg, 31% 3 _retinoic acid). ..
- the ascorbic acid may be ascorbic acid-2-phosphoric acid or a salt thereof.
- hydrocortisone hemisuccinate may be used instead of or in addition to dexamethasone.
- These osteoblast differentiation induction promoters may be used alone or in combination of two or more.
- the amount thereof is not particularly limited, but as the final concentration in the medium used in this step, for example, 50 to 300! ⁇ /1 is preferable. 50 to 200! ⁇ /1 is more preferable.
- the blending amount is not particularly limited, but as the final concentration in the medium used in this step, for example, 1 to 100 1 Is more preferable.
- the blending amount is not particularly limited, but the final concentration in the medium used in this step is preferably, for example, 0.011 to 10 ! ⁇ /1, and 0.01 to 1.0! ⁇ /1 is more preferable.
- the amount to be added is not particularly limited, but as the final concentration in the medium used in this step, for example, 0.01-1 to 10 ! ⁇ /1 is preferable, and 0.1- 5 ! ⁇ /1 is more preferable.
- the medium in this step further contains a hypoxia mimetic compound.
- hypoxia mimetic compounds include, for example:
- hypoxia mimetic compounds may be used alone or in combination of two or more.
- the medium in this step further contains a statin compound.
- statin compounds include atorvastatin, fluvastatin, simvastatin, lovastatin, pitavastatin, bravastatin, rosuvastatin and the like. These stars The tin compounds may be used alone or in combination of two or more.
- the medium may optionally be mixed with additives that can be used in cell culture.
- additives include fetal bovine serum (fet albovin e se r u m ), amino acids (for example, L-glutamine, etc.), and antibiotics (for example, penicillin, streptomycin, amphotericin B, etc.).
- the method of the present invention is a method for producing a cell mass of osteoblasts. Therefore, the step of inducing differentiation of the mesodermal cells is also performed by non-adhesion culture. Specific examples of the non-adhesion culture include those described above. In this step (induction of differentiation into osteoblasts), shaking culture or the like is preferable from the viewpoint of promoting differentiation by mechanical stimulation.
- this step is performed by suspending the mesodermal cells of the iPS cells obtained in the above step (2) in the culture medium, for example, Place in a 25 cm 2 low-adhesion flask (Greiner bio-one, growth area) and culture.
- the amount of mesodermal cells of the iPS cells in the medium at the start of the culture in the step (3) is not limited, but from the viewpoint of promoting the production efficiency of the osteoblast mass, for example, medium 10 It is preferable to add the mesodermal cells contained in the culture solution for 1 to 10 wells of the culture container used for the culture in step (2) per m I, and to add 1 to 5 wells of the above culture container.
- mesodermal cells are added, for example, it is more preferable to add mesodermal cells for 2 to 4 wells of the culture container.
- the preferable amount of the mesodermal cells of the above iPS cells is typically a 24-well microscopic space low adhesion plate [E Ip traditionallya (registered trademark) (Corning, Catalog No. 4441: used in Experimental Example 3). Fine well size Diameter 500 Depth 400 Number of recesses: 554 to 580/well)] The values are shown when using a plate with the dimensions.
- mesodermal cells contained in the culture solution of 580 to 5800 recesses of the culture vessel used for the culture in the step (2) and to add 580 to 2900 mesodermal cells of the recesses. It is more preferable to add the mesoderm cells for the depressions of 1160 to 2320. ⁇ 0 2020/175592 26 ⁇ (: 170? 2020 /007876
- the suspension of mesodermal cells obtained in the step (2) using the 24-well culture vessel described above is 2 to 201 minutes, preferably 2 to 10111 minutes, and more preferably 4 to 10 minutes. It is preferable to carry out step (3) by transferring 8111 mesoderm cell suspension into a low-adhesion flask for 25 2 and replacing with 10 I of the osteoblast differentiation induction medium. Is.
- the culture time in this step is, for example, preferably about 1 to 90 days, more preferably about 7 to 60 days, and further preferably about 21 to 50 days.
- culture time in this step for example, about 24 to 2160 hours is preferable, about 1688 to 1440 hours is more preferable, and about 5104 to 1200 hours is more preferable. preferable.
- Culture temperature in this step is not particularly limited, for example, preferably 3 0 to 4 2 ° ⁇ , more preferably 3. 5 to 3 9 ° ⁇ . Culture in this step is preferably carried out in an atmosphere of 3-1 0% hundred 2.
- an osteoblast clump having a high degree of calcification can be obtained due to the above structural characteristics. Furthermore, as described above, according to the present invention, it is possible to obtain an osteoblast mass having a high bone regenerating ability. Therefore, for example, by using the osteoblast mass obtained by the present invention as a raw material, subjecting it to an appropriate inactivation treatment, and then implanting it in a bone defect, a new generation is made to fill such a defect (void).
- the present invention is very useful because it can form bone.
- the present invention provides a method for promoting calcification of I 3 cell-derived osteoblasts (or cell clusters), a method for improving osteoinduction ability of 3 cell-derived osteoblasts (or cell clusters), and self-organization into bone. Also provided are embodiments such as a method of inducing stimulation (spatial environment around cells) to the 3 cells in culture.
- the culture vessel, materials and various conditions in these methods are the same as described above.
- a diameter of ⁇ By carrying out the method of the present invention using human 3 cells as a raw material, a diameter of ⁇ . It is possible to obtain an osteoblast mass. Human ⁇ The osteoblast mass derived from the above has not been reported so far, and it is a novel osteoblast mass. In addition, the osteoblast mass having the diameter as described above is ⁇ 0 2020/175592 27 ⁇ (: 170? 2020/007876
- the diameter of the osteoblast mass is preferably in the range of 0.5 to 5111, more preferably in the range of 1 to 401101, and even more preferably in the range of 1 to 31111.
- the present invention provides a step of producing an osteoblast mass from 3 cells by the method described above, and a step of inactivating the osteoblast mass.
- a method for producing a bone regenerating agent which comprises:
- the method of the present invention includes the step of inactivating the osteoblast mass obtained in the above step.
- the method of inactivation is not particularly limited, and examples thereof include freeze-drying, heat treatment, high-pressure treatment, acid or alkali solution treatment, high-pressure steam sterilization, radiation sterilization, gas sterilization, and electromagnetic treatment.
- the conditions for lyophilization are not particularly limited, and known methods can be used.
- pre-freezing may be performed before freeze-drying.
- the pre-freezing temperature is not particularly limited, but is preferably about 120 to 112 ° .
- the freeze-drying temperature is not particularly limited, but is preferably about 1100 to 15 ° .
- the freeze-drying pressure is not particularly limited, and is, for example, preferably 6003 or less, more preferably 503 or less.
- Specific freeze-drying conditions include, for example, a method in which the temperature is fixed at 110 ° and the atmospheric pressure is gradually lowered to 5 to 203 at the start of freeze-drying.
- a bone regenerating agent having a high degree of calcification and a high bone regenerating ability can be obtained.
- the present invention also provides a bone regenerating agent obtained by the above production method.
- iPS cell line established from mouse gingival fibroblasts [PLoS ONE, 5 (9): e 12743, 2010] was used.
- the mouse iPS cells were treated with ES medium (15% fetal bovine serum (Gibco/Life Technologies, Grand Island, NY, USA)), 2 mM L-Glutamine (Wako Pure Chemical Industries, Osaka), 1 X 10 -4 M nonessential.
- the incubator used was a microspace-shaped low-adhesion plate ELpLasia (registered trademark) (Kurar ay, Japan) having microcavities of different concave sizes (Fig. 1) on the bottom of each well of a 6-well plate:
- osteoblast differentiation induction medium (15% FBS (Gibco/Life Technologies) % 0.1 yu,M dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), 10 mM /S-G) Lyserophosphate (Sigma-Aldrich) and 50 yu,g/ml ascorbic acid-2-phosphate (Sigma-Aldrich), 1% Antibiotic-Antimycotic (100 units/ml penicillin, 100 yu-g/ml streptomycin, 250 ng /ml amphotericin B (Gibco/Life Technologies)-containing a-MEM medium (Nacalai Tesque)] and cultured for a maximum of 35 days Half of the medium was exchanged every 2 days. The time when the culture was started in the culture medium was defined as “0th day of osteoblast differentiation induction”.
- iPS cell suspension was added to wells of each fine space size, and cell mass size (ferret diameter) after 5 days of culture (0 day of osteoblast differentiation induction) was calculated using Image J image analysis software. did.
- the average ferret diameters of the ELp400 group, ELp500 group, and ELp900 group samples cultured in each microspace were about 187.6, 242.5, and 328.8 Mm, respectively, and the size of the E Lp500 and E Lp900 groups was E Lp400. It was significantly larger than that of the group.
- the size of cell clusters in the ELp400 and ELp500 groups gradually increased during 35 days after the transfer to the osteoblast differentiation induction medium.
- the cell mass size in the ELp900 group increased until 28 days after induction, but decreased over 35 days (Fig. 3: left).
- the life and death of cells in the cell mass of each group was determined by the simultaneous staining of live cells/dead cells (LIVE/DEAD (registered trademark) Viabi Ii ty/Cytotoxicity Kit, Molecular Probes/Thermo Fisher Scientific, Eugene, OR , USA).
- LIVE/DEAD registered trademark
- Viabi Ii ty/Cytotoxicity Kit Molecular Probes/Thermo Fisher Scientific, Eugene, OR , USA.
- many red cells showing dead cells were observed in the Elp400 and Elp900 groups 14 days after the induction of osteoblast differentiation.
- the central part of the cell mass of the Elp900 group showed a red color, and an image in which most of the cells inside the cell mass were dead was observed.
- the cell mass of the ELp500 group is From the start of induction to 14 days after induction, it consisted of green cells showing live cells, and almost no red dead cells were observed (Fig. 4).
- SYBR Green real-time RT-PCR method for expression of osteoblast-specific marker genotype (Runx2, Osterix, Collagen 1a1, Bone sia loprote in s Osteopont in, Osteocalcin) in cell mass of each group 10 days after induction of osteoblast differentiation (Thunderbird (registered trademark) SYBR (registered trademark) qPCR Mix, T0Y0B0) was used for analysis.
- the nucleotide sequences of the primers used for the SYBR Green real-time PCR-PCR method are as follows. 18s rRNA was used as an internal standard.
- Runx2 forward primer 5'-CGGGCTACCTGCCATCAC -3' Runx2 reverse prime r: 5'-GGCCAGAGGCAGAAGTCAGA -3' Osterix forward primer: 5'-CTCGTCT GACTGCCTGCCTAG -3' Osterix reverse primer: 5'-GCGTGGATGCCTGCCTTGTA -3' Collagen 1a1 forward : 5'-TGTCCCAACCCCCAAAGAC -3' Collage n 1a1 reverse primer: 5'-CCCTCGACTCCTACATCTTCTGA -3' Osteocalcin fo rward primer: 5'-CCGGGAGCAGTGTGAGCTTA -3' Osteocalcin reverse prime r :5'-CCGGGAGCAGTGTGAGCTTA -3' Osteopont 5'-TCT CCTTGCGCCACAGAATG -3' Osteopont in reverse primer: 5'-TCCTTAGACTCACC GCTCTT -3' Bone sia loprote in forward primer: 5'-
- a human dermal fibroblast-derived iPS cell line (409B2: RIKEN BRC CELL BANK) was used.
- SNLP76.7-4 cells (provided by Dr. Allan Bradley, Sanger Institut, UK) were used as feeder cells.
- SNLP76.7-4 feeder cells were seeded on a 10 cm cell culture plate (treated with 0.1% gelatin) and 7% fetal bovine serum (FBS: Japan Bioseal, Lot # J BS-011501) % 2 mM L- Glutamine (Thermo Fisher Scientific) % 50 U penic iUin, 50 yu, g/ml streptomycin (Thermo Fisher Scientific)-containing DMEM medium (sodium pyruvate-free: Nacalai Tesque)] was used for culturing. The medium was replaced every 2 days.
- SNLP76.7-4 feeder cells were treated with 12 yu_g/ml of Mitomycin C (Nacalai Tesque) for 2.5 hours, and 1.5 x 10 6 cells were added to a 10 cm cell culture plate (0.1% gelatin coated). Seeded at the concentration of individual / dish .. IPS cells were seeded on the SNLP76.7-4 feeder cells, and cultured using Primates ES Medium (ES medium: REPROCELL) containing 4 ng/ml human basic FGF (REPROCELL). The medium was replaced every other day.
- ES medium REPROCELL
- REPROCELL human basic FGF
- Fig. 7 shows the method for producing an osteoblast mass from human iPS cells.
- i PS cells were washed with phosphate-buffered saline (PBS), added with 1 ml of CTK solution (0.25% trypsin, 0.1 mg/ml collagenase IV, 10 mM CaCL2, 20% KSR), and incubated at 37 °C. After treating for 1 minute, the CTK solution was removed by suction, and 1 ml of PBS was added. PBS was removed, and only feeder cells detached from the culture plate were removed by suction as much as possible. After that, the adherent iPS cells remaining in the culture plate were recovered using 4 ml of ES medium.
- PBS phosphate-buffered saline
- a group was used in which embryoid body culture and mesoderm induction were performed using low adhesion culture dishes (Nunc Non-Treated MuUidishes, Thermo Fisher Scientific) without using ELp500.
- ES medium was replaced with 2 ml of mesodermal differentiation induction medium (2% B-27 Supple merit (Thermo Fisher Scientific), 1% N-2 Supplement (Thermo Fisher Scientific) % 30 fxU CHIR 99021 (Wako Pure Chemical Industries, Ltd.), 5 yLtM eye lopamine (Enzo Life science)-containing DMEM/F12 (Thermo Fisher Scientific) and Neurobasal medium (Thermo Fisher Scientific :1:1 mixed medium), and replaced the medium, Culture was performed for 5 days. The medium was replaced every 2 days.
- osteoblastic differentiation induction medium [15% FBS (Thermo Fisher Scientific) % 0.1 yu,M dexamethasone (Sigma Aldrich), 10 mM /S-glycerophosphate (Sigma Aldrich) And 50 yu,g/ml ascorbic acid-2-phosphate (Sigma Aldrich) % 100 un i ts/ml penicillin, 100 yu,g/ml streptomycin, 250 ng/m I amphotericin B (Thermo Fisher Scientific) DMEM medium (not containing sodium pyruvate: Nacalai Tesque, Kyoto)] Suspend in 10 ml, and use a low-attachment flask (Greiner bio-one, growth area: 25 cm 2 ) in a seesaw-type bioreactor (10° tilt) , Cycle 0.33 Hz, table width
- osteoblast differentiation 30 days after induction of osteoblast differentiation, expression of genes specific for osteoblast differentiation (Osterix, Collagen 1a1, Runx2, Osteocalcin) was confirmed by SYBR Green real-time RT-PCR (Thunderbird (registered trademark) SYBR (registered trademark) qPCR). Mix, T0Y0B0).
- Runx2 forward primer 5'-CAGACCAGCAGCACTCCAT A-3' Runx2 reverse prime r: 5'-CAGCGTCAACACCATCATTC-3'
- Osterix forward primer 5'-AAGCTGATCT GGTGGTGCAT-3
- Osterix reverse primer 5, -GACTCCACAAAGGGCATGAT-3
- Co L lagen 1a1 forward primer 5'-GTGCTAAAGGTGCCAATGGT-3' Collagen 1a1 reverse primer: 5'-CTCCTCGCTTTCCTTCCTCTCT-3
- Osteoccalcin forward primer 5'-CACTCCTCGCCCTATTGGC-3'
- Osteocalcin reverse primer 5'-CCCTCCTGC TTGGACACAAAG-3'
- Nanog forward primer 5'-AACTGGCCGAAGAATAGCAA-3' Na nog reverse primer: 5'-TGCACCAGGTCTGAGTGTTC-3'
- Brachury forward primer 5'-CAGTCAGTACCCCAGCCTGT-3' Brachury reverse primer: 5'
- the obtained sample was subjected to HE staining, double staining with von Kossa and methylene blue, and histochemical observation was performed.
- FT-IR Fourier transform infrared spectroscopy
- All iPS cell clusters were collected, fixed with 10% neutral buffered formalin solution, washed with distilled water, and then subjected to stepwise dehydration with ethanol (30%, 70%, 90%, 100%). After exchanging fresh ethanol (100%) again, it was allowed to stand in a dryer at 37 ° C for 12 hours.
- FT-IR analysis was performed on the dried cell sample using the potassium bromide (KBr) plate method.
- FT-IR measurement device FT/IR-6300ST (JASCO) was used. Scan range: 650 ⁇ 4000 cnr 1 , Resolution: 2 cm- 1 Infrared absorption spectrum pattern was accumulated 1000 times. Analyzed.
- the number of osteoblast masses on day 30 was calculated from 80% confluent iPS cells by the method described in 2.2. to 2.4. above. As a result, 5.7 ⁇ 0.77 cells were obtained when the low-adhesion culture dish was used, while 46.2 ⁇ 8.8 cells were obtained when ELp500 was used. By using ELp500 to produce embryoid bodies, production efficiency was improved. It became clear that it would rise significantly (Fig. 8).
- ELp500 was used to induce embryoid bodies and mesodermal cells, and then osteoblast differentiation was induced for 30 days.
- a section sample was prepared from the human iPS cell mass and double stained with von Kossa and methylen blue. It was As a result of histological observation, a partial calcification image was observed inside the cell mass 30 days after the induction of osteoblast differentiation (Fig. 9, upper panel). In addition, when the osteoblast differentiation induction period was carried out for 60 days and 90 days, the calcification sites inside the cell mass increased (Fig. 9, middle and lower rows).
- osteoblast-specific marker genes Runx2, SP7, Collagen 1a1, and osteoca lc in of the cell mass produced using ELp500 on the 30th day of induction of osteoblast differentiation were used in low-adhesion culture dishes. Expression was significantly higher than that of (Fig. 10).
- Undifferentiated marker gene (Nanog), mesodermal (mesenchymal stem cell) to osteoblast precursor cell in the process of inducing differentiation of human iPS cells into embryoid bodies, mesoderm, and osteoblasts (Fig. 7) Expression of marker genes (Brachyury, Runx2, Osterix) and osteoblast-specific genes (Collagen 1a1, Osteocalcin) were analyzed by real-time RT-PCR (Fig. 11). As a result, it was highly expressed in iPS cells before embryoid body culture. ⁇ 0 2020/175592 36 ⁇ (: 170? 2020 /007876
- Co Uagen 181, 036 0 031 0_ gene increased over time until 60 days after induction of differentiation. Induction of embryoid bodies and mesodermal cells using £ ⁇ 500, followed by induction of osteoblast differentiation for 0 to 60 days, dried human cell aggregates, and analyzed the components using Dosimetry analysis. It was As a result, in the human cell sample that had induced osteoblast differentiation for 30 days or longer, it was confirmed that the bone tissue (human lyophilized bone) was close to the original bone tissue (a peak of 3 ⁇ 4 spectrum). (Fig. 12).
- the induction of osteoblast differentiation was performed for 3 to 30 days.
- the cell mass group after 30 days of induction was 0.66. Cell aggregates of various sizes showing ferret diameters in the range were observed (Fig. 138).
- the cell mass group 30 days after the induction of osteoblast differentiation was analyzed to have a diameter of 0.5 to less than 11 ä,
- This freeze-dried osteoblast mass or human freeze-dried bone 08 8) was prepared on a rat skull as a comparison.
- the histological image was observed by staining the tissue section.As a result, the bone defect was blocked by the formation of new bone and A bone remodeling image with a cement line was observed around the cell mass.
- an image was observed in which the bone defect was completely occluded by new bone that was continuous with the surrounding existing bone (Fig. 158).
- FDBA was surrounded by immature fibrous tissue, and no mature new bone was formed.
- a human skin fibroblast-derived iPS cell line (409B2: RIKEN BRC CELL BA NK) was used.
- SNLP76.7-4 feeder cells were used in the same culture method as in Experiment 2, and after treatment with Mitomycin C, human iPS cells were seeded on the cells and contained 4 ng/ml human basic FGF (REPROCELL). The cells were cultured using Primates ES Medium (ES medium: REPROC ELL). The medium was changed every day. [0106] 3.3. Human iPS cell culture in a feeder cell-free environment
- Fig. 24 shows the method of producing an osteoblast mass from human iPS cells.
- the incubator includes a 24-well micro-spaced low adhesion plate Elplasia® (Corning, Cat # 4441: micro-well size diameter 500 The depth was 400 gm and the number of recesses was 554 to 580/well).
- Condition 0 Add 2 ml of the cell suspension cultured on feeder cells (condition 0) and the cell suspension of conditions 1 to 3 prepared in a feeder cell-free environment to each well of the above culture plate.
- the number of cells was set as follows. [0110] Condition 0 12.5X10 5 cells/well
- the condition 0 was ES medium (REPROCELL), and the conditions 1 to 3 were ES medium (StemFit medium).
- the culture was carried out for 1 day to induce the formation of embryoid bodies.
- the medium was changed under the same conditions as in Experiment 2 for medium-inducing mesodermal differentiation inducing medium (2% B-27 Supplement (Thermo Fisher Scientific), 1% N-2 Supp leme nt (Thermo Fisher Scientific ) % 30 fxU CHIR 99021 (Wako Pure Chemical Industries), 5 yLtM cyc lopamine (Enzo Life science) in DMEM/F12 (Thermo Fisher Scientific) and Neurobasal medium (Thermo Fisher Scientific) 1:1 mixed medium) And cultured for 5 days. Half of the medium was replaced once every two days.
- the cell mass contained in the number of wells shown in the following conditions A to D was removed from the ELpLasia (registered trademark) plate under each condition, and the low-adhesion flask (Greiner bio-one, growth area) was used. : 25 cm 2 ).
- condition 0 For the group cultured on feeder cells (condition 0), cells of 8 wells of Elplasia (registered trademark) plate were transferred to 1 flask (condition 0 + condition A).
- the medium in each flask was an osteoblast differentiation induction medium (15% FBS (Gibco/Life Technologies), 0 1 yotM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA).
- osteoblast differentiation induction day 0 The time point when the culture was started in the osteoblast differentiation induction medium was defined as “osteoblast differentiation induction day 0”.
- the number of cell clusters formed per cell was 56, whereas in the feeder-free culture, the number of seeded cells was 12.5 10 5 0 6 [/well (condition 1), 8 wells/ 1 flask group (condition 1 10 Condition 8) 100 wells, 4 wells/flask group (condition 1 10 conditions 93 wells, seeded cells 6.25 x 10 5 cells/well (condition 2) 8 wells/flask group (conditions 20 Condition 8): 139 cells, 4 wells/flask group (condition 20: 103 cells, seeded cells: 3.
- condition 3 8 wells/flask group: 103 cells (conditions) 30 conditions 8), 4 wells/flask group 1 12 cells (conditions 30 conditions, 2 wells/flask group 1 condition (conditions 30 conditions ⁇ were 126 cells.
- feeder cells in these conditions In the free culture group, although the number of cells used in the embryoid body formation step and the osteoblast differentiation induction step was similar to or smaller than that in the feeder culture group (condition ⁇ + condition 8), the formed osteoblast mass was formed. The number of seeds increased significantly (Fig. 25).
- the ferret diameter of the cell mass in the feeder culture group tended to be larger than that in the feeder cell-free culture group.
- the expression of the osteoblast-specific marker genes ([ ⁇ 2 and ⁇ 3 60031 ⁇ _) in the cell mass of the feeder-free culture group was found in the feeder culture group (condition 0-10 condition 8).
- the tendency tended to be higher than that of the cell mass of.
- the number of seeded cells cultured in a feeder-free environment was 6.25 x 10 5 cells/well (condition 2) and 3. 125 x 10 5 cells/well (condition 3).
- all conditions 8 to ⁇ in the osteoblast differentiation induction process ⁇ 0 2020/175592 42 ⁇ (: 170? 2020 /007876
- condition 2 the number of seeded cells in the feeder cell-free culture was 6.25 10 5 cells/well (condition 2), compared to the cell mass of the feeder culture group (condition 0 to condition 8), and 8 wells.
- condition 20 conditions 8 4 wells / 1 flask group (conditions 20 conditions, seed cell number 3.125 XI 0 5 cells / well (condition 3) 8 wells / 1 flask group ( Condition 30-Condition 8), 4 wells / 1 flask group (Conditions 30 conditions, 2 wells / 1 flask group (Conditions 30 conditions ⁇ )
- the cell mass of condition ⁇ has a significantly larger internal calcification range and osteoblasts. A more mature image of the cell mass was shown (Fig. 28).
- an osteoblast mass could be efficiently produced from a small number of cells.
- human cells cultured in a feeder-free environment per well during the embryoid body formation process 6.25 X 10 5 Seed and further transfer culture medium containing 8 or 4 mesodermal cells to one flask to carry out the osteoblast differentiation induction step and during the embryoid body formation step.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Transplantation (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Botany (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Developmental Biology & Embryology (AREA)
- Rheumatology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(1)未分化iPS細胞を非接着培養して、胚様体の形成を誘導する工程、(2)上記工程(1)で得られたiPS細胞の胚様体を非接着培養して、iPS細胞の中胚葉系細胞への分化を誘導する工程、及び (3)上記工程(2)で得られたiPS細胞の中胚葉系細胞を非接着培養して、骨芽細胞への分化を誘導する工程 を含むiPS細胞から骨芽細胞塊を製造する方法であって、 該工程(1)及び(2)が、底面と該底面から立設された環状の側壁とを備え、該底面が、互いに独立して設けられた複数の凹部を有する培養容器を用いて行われる、方法。
Description
明 細 書
発明の名称 : i PS細胞を用いた骨芽細胞塊の作製法
技術分野
[0001] [関連出願の相互参照]
本出願は、 201 9年2月 26日に出願された、 日本国特許出願第 201 9-033277号明細書 (その開示全体が参照により本明細書中に援用さ れる) に基づく優先権を主張する。 本発明は、 i PS細胞を用いた骨芽細胞 塊の作製法に関する。
背景技術
[0002] 骨腫瘍摘出、 粉砕骨折、 関節リウマチの固定に伴う骨欠損、 顎堤吸収等に より失われた骨の欠損部等に対して、 これらを補うための人工骨 ·骨補填材 料の需要は非常に高まっている。
[0003] 現在、 臨床で人工骨 ·骨補填材料として使用されている、 ハイ ドロキシア パタイ ト等の非吸収性材料、 及び/ S -第 3リン酸カルシウム等の吸収性材料 は、 自家骨と比較して骨誘導性に欠ける等の問題があり、 外科的処置の予後 が必ずしも良くなかった。 また、 次世代型として開発推進が望まれている人 エ骨と BMP (B o n e Mo r p h o g e n e t i c P r o t e i n) 等の成長因子タンパク質とを組み合わせたハイブリツ ド人工骨 ·骨補填材は 、 骨組織再生に重要な 「細胞外基質」 がないため、 十分な骨再生効果を得る ことができなかった。
[0004] かかる状況の下、 本発明者は、 幹細胞を原料とし、 不活化細胞塊を含み、 前記不活化細胞塊が少なくとも石灰化物及び細胞外基質を含むことを特徴と する骨再生剤を作製することに成功している (特許文献 1、 2) 。
先行技術文献
特許文献
[0005] 特許文献 1 : W0201 5/064705
特許文献 2 : W0201 8/1 81 960
非特許文献
[0006] 非特許文献 1 : Stem Ce U Reports Vo l. 2, 751 -760, June 3, 2014
発明の概要
発明が解決しようとする課題
[0007] 本発明は、 i P S細胞を原料として、 骨再生能が高い骨芽細胞塊を得るこ とができる、 新規な骨芽細胞塊製造方法を提供することを課題とする。 課題を解決するための手段
[0008] 本発明者らは、 上記状況の下、 鋭意検討した結果、 未分化 i P S細胞を原 料に用い、 胚様体形成誘導工程、 中胚葉系細胞への分化誘導工程、 及び骨芽 細胞への分化誘導工程を含む骨芽細胞塊の製造方法において、 ( 1) 胚様体 形成誘導工程及び (2) 中胚葉系細胞への分化誘導工程に微細空間培養を利 用することによって、 意外にも、 骨再生能が非常に高い骨芽細胞塊を得るこ とを見出した。 本発明者らは、 当該新たな知見に基づき、 培養条件等をさら に精査し、 本発明を完成させた。
[0009] 従って、 本発明は以下の項に示す方法、 骨芽細胞塊等を提供する :
項 1 . ( 1) 未分化 i P S細胞を非接着培養して、 胚様体の形成を誘導す る工程、
(2) 上記工程 (1) で得られた i P S細胞の胚様体を非接着培養して、 i P S細胞の中胚葉系細胞への分化を誘導する工程、 及び
(3) 上記工程 (2) で得られた i P S細胞の中胚葉系細胞を非接着培養し て、 骨芽細胞への分化を誘導する工程を含む i P S細胞から骨芽細胞塊を製 造する方法であって、
該工程 (1) 及び (2) が、 底面と該底面から立設された環状の側壁とを備 え、 該底面が、 互いに独立して設けられた複数の凹部を有する培養容器を用 いて行われる、 方法。
[0010] 項 2 . 前記複数の凹部の少なくとも 1個における円相当直径が 2 0 0〜 9
0 0 M mでありかつ深さが 2 0 0〜 1 0 0 0 M mである、 項 1 に記載の方法
\¥02020/175592 3 卩(:170? 2020 /007876
[0011] 項 3. 前記複数の凹部の開口部の形状が略円形である、 項 1又は 2に記載 の方法。
[0012] 項 4. 前記丨 3細胞がヒト 丨 3細胞又はマウス丨 3細胞である、 項
1〜 3のいずれか一項に記載の方法。
[0013] 項 5. 前記工程 ( 1) における培養時間が〇. 625~3. 5日間である 、 項 4に記載の方法。
[0014] 項 6. 前記工程 (2) における培養が、 Wn Iシグナル活性化剤及びへッ ジホッグシグナル阻害剤からなる群より選択される少なくとも一種の存在下 で行われる、 項 1〜 5のいずれか 1項に記載の方法。
[0015] 項 7. 前記 n Iシグナル活性化剤が、
6—ブロモ インディルビンー 3’ 一オキシム、 ケンパウロン、 36-2 1 6763, 3 < !_ 2001、 デオキシコール酸、 \^/八丫一3 1 6606、 3〇一693 868、 リシニン、 7 _〇 X〇— /3—シトステロール、 丨 1\/1_ 1 2、 \-\ LY 78及びレチノイン酸からなる群より選択される少なくとも一種である、 項 6に記載の方法。
[0016] 項 8. 前記ヘッジホッグシグナル阻害剤が、 シクロパミン、 八丫9944 、 〇八1\1丁 58、 〇八1\1丁 6 1、 ジエルビン、 3八1\1丁一 1、 3八1\1丁一2 、 リ 1 8666八、 ベラトラミン、 ビスモデギブ、 〇リ 「一 6 1 4 1 4、 口 ボトニキニン、
とも一種である、 項 6又は 7に記載の方法。
[0017] 項 9. 前記工程 (3) における培養が、 低酸素模倣化合物、 スタチン化合 物及びレチノイン酸からなる群より選択される少なくとも一種の存在下で行 われる、 項 1〜 8のいずれか 1項に記載の方法。
[0018] 項 1 〇. 前記工程 (1) の前に、 フィーダー細胞を用いずに未分化丨 3 細胞を培養する工程を含む、 項 1〜 9のいずれか 1項に記載の方法。
[0019] 項 1 1. 前記工程 (1) が、 細胞濃度1.5\105〜3.5 105 〇61 /1111の未分 化丨 3細胞の懸濁液を培養容器に配置し、 培養することにより行われる、
項 1〜 1 0のいずれか 1項に記載の方法。
[0020] 項 1 2. 前記工程 (2) が少なくとも 1個のウェルを有する培養容器を用 いて行われ、 かつ工程 (3) が、 前記工程 (2) で得られた中胚葉系細胞を 含む 1〜 1 〇ウェル分の培養液を培養容器に配置し、 培養することにより行 われる、 項 1〜 1 1のいずれか 1項に記載の方法。
[0021] 項 1 3. 前記工程 (1) における培養が ROCK阻害剤の存在下で行われ、 前 記工程 (2) 及び工程 (3) における培養がレチノイン酸の存在下で行われ る、 項 1〜 1 2のいずれか 1項に記載の方法。
[0022] 項 1 4. ヒト i P S細胞由来の骨芽細胞塊であって、 フェレツ ト径が 1〜
4 mmである、 細胞塊。
[0023] 項 1 5. 項 1 4に記載の細胞塊であって、 項 1〜 1 3のいずれか 1項に記 載の方法により得られる、 細胞塊。
発明の効果
[0024] 本発明によれば、 i PS細胞を原料として、 骨再生能が高い骨芽細胞塊を 得ることができる、 新規な骨芽細胞塊製造方法を提供することができる。 図面の簡単な説明
[0025] [図 1]マウス i PS細胞の骨芽細胞塊への誘導方法。 ウェル底面に複数の凹部 を有する微細空間形状低接着プレート Elplasia (登録商標) (Kuraray, Japa n) を用いてマウス i PS細胞から胚様体を誘導し、 骨芽細胞塊を作製した。 凹開口部の直径が異なる ELpLasia (登録商標) (400
: Elp400% 500
: Elp500, 900M1H : Elp900) を用い、 その違いが骨芽細胞塊の誘導に及ぼす 影響を検討した。
[図 2]上段:マウス i P S細胞を各 Elp400、 Elp500、 Elp900に播種し、 ES培地 にて 2日間培養後の位相差顕微鏡写真。 下段:中段の各 Elp400、 Elp500、 Elp9 00における 1個の凹部を拡大した写真。
[図 3]左図: Elp400、 Elp500、 E lp900を用いた骨芽細胞分化誘導期間 (0〜 35 日) における i PS細胞塊のフェレツ ト径 (n=3, *P<0.01 : ANOVA with Tukey s multiple-comparison test) 。 右図:同期間の Elp400、 Elp500、 E lp900
における代表的な i PS細胞塊の写真。
[図 4] i P S細胞塊における細胞の生死。 Elp400、 Elp500、 Elp900を用いた骨 芽細胞分化誘導開始時 (0日) および 14日後 (14日) に生細胞/死細胞同時染 色キッ ト (LIVE/DEAD (登録商標) Viabi I i ty/Cytotoxici ty Kit) を用いて 検討した。 緑色が生細胞、 赤色が死細胞を示す。
[図 5]Elp400、 Elp500、 Elp900を用いた骨芽細胞分化誘導 10日後の細胞塊にお ける骨芽細胞特異的マーカー遺伝子 (Runx2、 Osterix、 Collagen 1a1、 Bone s i a loprote i n、 Osteopont i n、 Osteocalcin) 発現のリアルタイム RT-PCR解析 (n=3, *P<0.05: ANOVA with Tukey’ s multiple-comparison test) 〇 [図 6]Elp400、 Elp500、 E lp900を用いた骨芽細胞分化誘導 35日後の細胞塊切片 のへマトキシリン及びエオシン (HE) 染色および von Kossaとメチレンブルー の二重染色像。
[図 7]ヒト i PS細胞の骨芽細胞塊への誘導方法。 ウエル底面に直径 500 Mm の複数凹部を有する微細空間形状低接着プレート ELpLasia (登録商標) (Elp 500) を用いてヒト i PS細胞から胚様体、 中胚葉を誘導し、 骨芽細胞塊を作 製した。 比較対照として、 Elplasia (登録商標) を使用せずに、 通常の低接 着性培養皿を用いた場合を設定した。
[図 8]ヒト i P S細胞を低接着培養皿あるいは ELp500を用いて胚様体、 中胚葉 系細胞に誘導した後に、 骨芽細胞分化誘導を 30日間行い、 培養フラスコ内に おける細胞塊の数を計測した。 ELp500を用いることで, ヒト i PS細胞から 骨芽細胞塊の作製効率が約 9倍上昇した (n=5) 。
[図 9]Elp500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化誘 導を 30〜 90日間行ったヒト i P S細胞塊の細胞塊切片の von Kossaとメチレン ブルーの二重染色像。
[図 10]通常の低接着性培養皿 (低接着培養皿) あるいは Elp500 (Elplasia ( 登録商標) ) を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化 誘導を 30日間行ったヒト i PS細胞塊、 及び胚様体培養直前の未分化ヒト i PS細胞 (未分化 iPS細胞) における骨芽細胞特異的マーカー遺伝子 (Runx2
、 Osterix、 Collagen 1a1、 Osteocalcin) 発現のリアルタイム RT-PCR解析 (n =3, *P<0.05: ANOVA with Tukey’ s multiple-comparison test) 〇 [図 11]Elp500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化 誘導を 60日間行ったヒト i PS細胞塊、 および胚様体培養直前の未分化ヒト i PS細胞における未分化マーカー遺伝子 (Nanog) 、 中胚葉 (間葉系幹細胞 ) 〜骨芽細胞前駆細胞マーカー遺伝子 (Brachyury、 Runx2、 Osterix) 、 骨芽 細胞特異的遺伝子 (Collagen 1a1、 Osteocalcin) の発現をリアルタイム RT-P CR法で解析した結果を示す (n=3) 。
[図 12]FTIRを用いたヒト i PS細胞由来骨芽細胞塊の成分解析。 Elp500を用 いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化誘導を 0〜 60日間行 ったヒト i PS細胞塊を乾燥後に FTIR解析を行った。 比較対照として、 ヒト 凍結乾燥骨 (FDBA) を用いた。 矢印は、 本来の骨組織がもつ FTIRスペクトル のピーク (Am I、 Amll、 P04 3-、 C03 2-) を示す。
[図 13] (A) Elp500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞 分化誘導を 3〜 30日間行ったヒト i PS細胞塊のフェレッ ト径 (n=25) 。 骨芽 細胞分化誘導 30日後には、 フェレッ ト径が約 0.5〜 3 Mmの様々なサイズの細 胞塊を認めた (挿入写真) 。 (B) 骨芽細胞分化誘導 30日後の細胞塊群を、 フ ェレッ ト径 0.5〜 1 mm未満、 1〜 2 mm未満、 2〜 3 mmのサイズに分け、 各群の代 表的な細胞塊切片の HE染色像 (左列図) 及び von Kossaとメチレンブルーの二 重染色像 (右列図) を示す。 細胞塊のサイズが大きい方がより著明な石灰化 を示している。
[図 14]Elp500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化 誘導を 120日間行ったヒト i PS細胞塊の写真 (A) およびこれを凍結乾燥し た後の写真 (B) 。
[図 15]ラッ ト頭蓋骨に作製した直径 5 mmの骨欠損部に (A) 図 1 4のヒト i P S細胞由来凍結乾燥骨芽細胞塊あるいは (B) ヒト凍結乾燥骨 (FDBA) を埋植 した 4週後の HE染色像およびマイクロ CT撮影画像。
[図 16]本発明の典型的な実施形態における微細空間培養容器 1 を示す。
[図 17]図 1 6中の点線 A _Bを含み当該微細空間培養容器 1 に垂直な面の断 面図を示す。
[図 18]図 1 6中の底面 2における領域 4の拡大図を示す。
[図 19]図 1 8に示す領域 4の断面図を示す。
[図 20]凹部 6の形状が正六角形である実施形態における領域 4の拡大図を示 す。
[図 21]微細空間培養容器 1 における凹部 1個あたり 1個の細胞塊がおさまる 実施形態を示す概略図を示す。
[図 22]実施例で用いたシーソー型バイオリアクターの概要を示す。
[図 23]振盪培養で用い得る培養フラスコの概略図を示す。
[図 24]ヒト iPS細胞の骨芽細胞塊への誘導方法および、 使用細胞数の検討にお ける条件設定を示す。
[図 25]骨芽細胞分化誘導 30日目の、 1フラスコあたりに形成した細胞塊の個数 を示す。 播種細胞数;胚様体の形成工程において 24ウェル Elplasia (登録 商標) 培養プレートの 1ゥェルに播種した細胞数。 ゥェル;骨芽細胞分化誘導 工程を開始するにあたり、 1フラスコに移した中胚葉細胞培養のウェル数。
[図 26]骨芽細胞分化誘導 30日目の細胞塊のフェレッ ト径 (n=10) を示す。 播 種細胞数;胚様体の形成工程において 24ウェル£4133_13 (登録商標) 培養 プレートの 1ウェルに播種した細胞数。 ウェル;骨芽細胞分化誘導工程を開始 するにあたり、 1フラスコに移した中胚葉細胞培養のウェル数。
[図 27]骨芽細胞分化誘導 0日目、 30日目の細胞塊における骨芽細胞特異的マー 力一遺伝子 (Runx2及び Osteoca lc in) 発現のリアルタイム RT-PCR解析の結果 を示す (n=3, *P<0.05: ANOVA with Tukey’ s multiple-comparison test)
。 異なる文字間で有意差あり。 播種細胞数;胚様体の形成工程において 24 ウェル Elplasia (登録商標) 培養プレートの 1ウェルに播種した細胞数。 ウェ ル;骨芽細胞分化誘導工程を開始するにあたり、 1フラスコに移した中胚葉細 胞培養のゥェル数。
[図 28]各条件で骨芽細胞分化誘導を行った 30日後の細胞塊の HE染色像 (各条
\¥0 2020/175592 8 卩(:17 2020 /007876
件における左列図) および とメチレンブルーの二重染色像 (各条件 における右列図) を示す。 播種細胞数;胚様体の形成工程において 2 4ウエ
(登録商標) 培養プレートの 1ウエルに播種した細胞数。 1〜 8ウ エル;骨芽細胞分化誘導工程を開始するにあたり、 1フラスコに移した中胚葉 細胞培養のゥエル数を示す。
細胞を用いた骨芽細胞 塊の作製において、 中胚葉分化誘導培地及び骨芽細胞分化誘導培地に、 1
レチノイン酸を添加した場合と添加しなかった場合の骨芽細胞塊の 染色像 (左列図) および
とメチレンブルーの二重染色像 (右列図) を示す 発明を実施するための形態
[0026] 骨芽細胞塊の製诰方法
本発明は
(1) 未分化丨 ? 3細胞を非接着培養して、 胚様体の形成を誘導する工程、
(2) 上記工程 (1) で得られた丨 3細胞の胚様体を非接着培養して、 丨 3細胞の中胚葉系細胞への分化を誘導する工程、 及び
(3) 上記工程 (2) で得られた丨 3細胞の中胚葉系細胞を非接着培養し て、 骨芽細胞への分化を誘導する工程
を含む丨 3細胞から骨芽細胞塊を製造する方法であって、
該工程 (1) 及び (2) が、 底面と該底面から立設された環状の側壁とを備 え、 該底面が、 互いに独立して設けられた複数の凹部を有する培養容器を用 いて行われる、 方法
を提供する。
[0027] 本発明において、 非接着培養とは、 培養容器の底面等 (例えば、 底面及び 壁面) への細胞の接着が抑制された状態での培養を意味する。 本発明におい て、 非接着培養には、 振盪培養、 培養容器の底面等への細胞の接着が抑制さ れた非接着性培養容器 (例えば、 非接着性培養皿、 非接着性ゥエル、 非接着 性フラスコ、 三次元培養プレート、 細胞塊作製容器等) を用いた静置培養等
\¥02020/175592 9 卩(:170? 2020 /007876
が含まれる。 非接着性培養容器としては、 リン脂質ゲル、 ハイ ドロゲル、 微 細加工等で低接着表面処理を行った容器等を用いることができる。 また、 本 発明において、 振盪培養には、 上記非接着性培養容器を用いてもよいし、 非 接着性でない培養容器を用いてもよい。 振盪培養をする場合、 その方法は特 に限定されないが、 例えば、 図 22に示されるようなシーソー型バイオリア クターを用いて行うことができる。 また、 振盪培養の傾斜角は、 特に限定さ れないが、 水平方向に対して、 1 ° 〜 40° が好ましく、 5° 〜 35° がよ り好ましく、 1 0° 〜 30° がさらに好ましい。 振盪培養の振幅は、 特に限 定されないが、 例えば、 〇. 1〜 20〇 程度であってもよい。 振盪の周期 は、 特に限定されないが、 例えば、 0. 01 ~ 1. 〇〇 程度であってもよ い。 図 22では、 傾斜角は 1 0° であり、 振幅は 5. 5〇 である。 培養フ ラスコをのせるテーブル (シーソー型バイオリアクターの部材) の横幅は特 に限定されず、 例えば、 20〜 50〇〇1、 30〜 40〇 等の範囲のものを 使用することができる。 テーブル培養フラスコとしては、 特に限定されない
盪培養を行う場合、 培養開始時の細胞濃度は、 特に限定されないが、 9 「〇 \zvt h ^ V & 0, 2. ^ 〇〇! 2培養フラスコを用いた場合には、 1 X 1 02〜
1 X 1 〇8〇 6 I I 3/フラスコ程度が好ましく、 1 X 1 06〜 7 X 1 0606 I I 3/フラスコ程度がより好ましい。
[0028] 微細空間 (マイクロ空間) 培善容器
本発明は、 上記胚葉系細胞への分化誘導工程 (工程 (1) ) 及び上記中胚 葉系細胞への分化誘導工程 (工程 (2) ) を、 底面と該底面から立設された 環状の側壁とを備え、 該底面が、 互いに独立して設けられた複数の凹部を有 する培養容器で行うことを特徴とする。 本発明において、 底面と該底面から 立設された環状の側壁とを備え、 該底面が、 互いに独立して設けられた複数 の凹部を有する培養容器を微細空間培養容器と示すこともある。 同様に、 微 細空間培養容器を用いた培養を微細空間培養と示すこともある。
\¥0 2020/175592 10 卩(:170? 2020 /007876
[0029] 以下、 図面を用いて、 本発明の典型的な実施形態を説明する。 まず図 1 6 に、 本発明の典型的な実施形態における微細空間培養容器 1 を示す。 当該微 細空間培養容器 1は、 底面 2と該底面から立設された環状の側壁 3とを備え る。 従って、 当該微細空間培養容器 1は、 底面 2と該底面から立設された環 状の側壁 3とから構成されるウェル 5を備えているということもできる。 環 状の側壁 3は図 1 6に示すような開口部及び底面が略円形状のものに限られ ず、 例えば、 多角形 (三角形、 四角形 (例えば、 正方形、 長方形等の矩形、 平行四辺形、 台形等) ) 、 五角形、 六角形等) のものであってもよい。
[0030] 図 1 6中の点線 _巳を含み当該微細空間培養容器 1 に垂直な面の断面図 を図 1 7として示す。 尚、 図 1 7に示す好ましい実施形態のように壁面を構 成する材料と底面を構成する材料とが異なって (図 1 7の場合、 底面が透明 で、 壁面が透明でない素材 (例えば、 黒色等に着色されている) いてもよい 。 また、 図 1 6中の底面 2における領域 4の拡大図を図 1 8に示す。 また、 図 1 8に示す領域 4において点線 を含み当該微細空間培養容器 1が構成 する略平面に垂直な面による断面図を図 1 9として示す。 図 1 8に示すよう に、 図 1 6中の微細空間培養容器 1の底面 2は、 互いに独立して設けられた 複数の凹部 6を有する。 尚、 本明細書において微細空間培養容器 (及び微細 空間培養容器が備えるウェル) の底面に形成された凹部を微細ウェルあるい はマイクロウェルと表記することもある。 本発明において、 凹部 6の形状は 、 底面を有する形状である限り、 特に限定されず、 開口部 7の形状が略形 ( 例えば、 図 1 8に示すような円形) 、 多角形 (三角形、 四角形 (例えば、 正 方形、 長方形等の矩形、 平行四辺形、 台形等) ) 、 五角形、 六角形等) であ るもの等が挙げられる。 本発明において、 開口部 7とは、 1個の凹部 6にお ける側壁 9の最も高い点をつなぐことにより形成される部分 (図 1 9の場合 、 開口部は微細空間培養容器 1本体が構成する略平面と平行となる) を意味 する。 本発明において、 凹部 6は細胞を培養するための微細な空間を形成す る。 本発明において、 複数の凹部 6の少なくとも 1個 (好ましくは凹部 6の 個数の 8割以上、 より好ましくは 9割以上、 典型的には全て) における円相
\¥0 2020/175592 1 1 卩(:170? 2020 /007876
当直径丨 は、 好ましくは 2 0 0〜 9 0 0 であり、 より好ましくは 4 0 0 〜 1 0 0 〇1であり、 さらに好ましくは 4 5〇〜 5 5 0 〇1である。 本発明 において円相当直径丨 とは、 当該微細空間培養容器 1が構成する略平面に平 行な面と側壁 9とが交わる点により構成される平面図形の内接円の直径を意 味する (例えば、 当該平面図形が正六角形の場合の円相当直径丨 は図 2 0に 示す通り) 。 「微細空間培養容器 1が構成する略平面に平行な面と側壁 9と が交わる点により構成される平面図形」 が凹部の深さに応じて異なる場合、 本発明において円相当直径丨 はそれらのうち最大値を示すものとする。
[0031 ]
を含み当該微細空間培養容器 1が構成する略平 面に垂直な面の断面図を図 1 9に示す。 本発明において、 凹部 6は、 底面 8 が図 1 9に示すように曲面状 (例えば、 丸底) になっていてもよいし、 平坦 であってよい。 また、 側壁 9は図 1 9に示すように平行であってもよいし、 テーパー状 (例えば、 開口部側が広く底面側が狭いテーパー状) であっても よい。 本発明において、 複数の凹部 6の少なくとも 1個 (好ましくは凹部 6 の個数の 8割以上、 より好ましくは 9割以上、 典型的には全て) の深さ は 、 好ましくは 2 0 0〜 1 0 0 0 〇1であり、 より好ましくは 3 0 0〜 8 0 0 であり、 さらに好ましくは 4 0 0〜 7 0 0 〇1である。 本発明において 、 凹部の開口部 7を構成する面と底面 8を構成する面とが平行でない場合及 び/又は底面が曲面である場合、 凹部 6の深さとは、 当該凹部の底面のうち 開口部から最も遠い位置から開口部までの距離を示す。
[0032] 本発明においては、 凹部 6が構成する空間 (開口部 7、 底面 8及び側壁 9 により区切られる空間) の体積は、 特に限定されないが、 凹部 6は 1つあた り、 好ましくは〇. 0 2〜〇. 5 5〇1 3であり、 より好ましくは〇. 0 4〜 〇. 3 5〇1 111 3であり、 さらに好ましくは〇. 0 7〜〇. 1 5〇1 111 3である。 複数の凹部 6の少なくとも 1個 (好ましくは凹部 6の個数の 8割以上、 より 好ましくは 9割以上、 典型的には全て) が、 上記体積の空間を構成すること が好ましい。 本発明においては、 凹部は、 当該凹部 1個あたり、 1〜 2個 ( 好ましくは 1個) の丨 3細胞塊がおさまるような寸法であることが好まし
\¥0 2020/175592 12 卩(:170? 2020 /007876
い (例えば、 図 2 1) 。
[0033] 微細空間培養容器 1 を構成する材料としては特に限定されず、 例えば、 ア クリル系樹脂、 ポリスチレン系樹脂、 アクリル ·スチレン系樹脂、 ポリカー ボネート系樹脂、 メラミン樹脂、 ポリグリコール酸、 ポリ乳酸、 ポリエステ ル系樹脂、 ポリイミ ド、 ポリビニルアルコール系樹脂、 エチレン · ビニルア ルコール系樹脂、 熱可塑性エラストマー、 塩化ビニル系樹脂、 シリコン樹脂 、 これらの組み合わせ等の樹脂により製造されたものが挙げられる。
[0034] 上記凹部中に細胞又は細胞塊が配置された状態を維持しつつ培養を行うた め、 微細空間培養容器 1 を用いた培養は典型的には静置培養により行われる 。 従って、 微細空間培養容器 1の底面 2及び/又は側壁 3、 特に底面 2に細 胞又は細胞塊が接着しないように、 これらの少なくとも一部が、 細胞非接着 性であることが好ましい。 壁面を細胞非接着性とするための方法としては特 に限定されないが、 例えば、 細胞非接着剤を適用して壁面の少なくとも一部 に親水性の相を形成する方法等が考えられる。 細胞非接着剤としては、 例え ば、 ポリエチレングリコール、 ベタイン構造を有するポリマー、 リン脂質含 有ポリマー、 ポリヒドロキシエチル (メタ) アクリレートポリマー等の親水 性ポリマーを含むものが挙げられる。
[0035] 以上、 典型的な実施形態を示す図面を用いて本発明を説明したが、 本発明 は、 当該図面に表わされる培養用基を用いるものに限定されない。 例えば、 微細空間培養容器 1は、 図 1 6に示すような矩形のプレートに限られず、 例 えば、 円形のプレートなどであってもよい。
[0036] (1) 胚様体形成の誘導
本発明の方法は、 未分化丨 ? 3細胞を非接着培養して、 胚様体の形成を誘 導する工程を含む。
[0037] 原料として用いる 丨 3細胞としては、 体細胞に核初期化物質を導入する ことにより作製されたものを用いることができる。
細胞としては、 ヒ 卜、 マウス、 ラッ ト、 サル、 イヌ、 ブタ、 ウシ、 ネコ、 ヤギ、 ヒツジ、 ウサ ギ、 モルモッ ト、 ハムスター等の哺乳動物に由来するものが挙げられるが、
\¥0 2020/175592 13 卩(:170? 2020 /007876
好ましくはヒト、 マウス、 ラツ ト、 サル、 イヌ等、 より好ましくはヒト又は マウスに由来するものである。
[0038] I 3細胞作製のための出発材料として用いることのできる体細胞は、 生 殖細胞以外のいかなる細胞であってもよく、 例えば、 口腔粘膜細胞 (例、 歯 肉線維芽細胞、 頰粘膜線維芽細胞、 歯肉上皮細胞、 頰粘膜上皮細胞等) 、 角 質化する上皮細胞 (例、 角質化表皮細胞等) 、 粘膜上皮細胞 (例、 舌表層の 上皮細胞等) 、 外分泌腺上皮細胞 (例、 乳腺細胞等) 、 ホルモン分泌細胞 ( 例、 副腎髄質細胞等) 、 代謝 ·貯蔵用の細胞 (例、 肝細胞等) 、 境界面を構 成する内腔上皮細胞 (例、 I型肺胞細胞等) 、 内鎖管の内腔上皮細胞 (例、 血管内皮細胞等) 、 運搬能をもつ繊毛のある細胞 (例、 気道上皮細胞等) 、 細胞外マトリックス分泌用細胞 (例、 線維芽細胞等) 、 収縮性細胞 (例、 平 滑筋細胞等) 、 血液と免疫系の細胞 (例、 丁リンパ球等) 、 感覚に関する細 胞 (例、 桿細胞等) 、 自律神経系ニューロン (例、 コリン作動性ニューロン 等) 、 感覚器と末梢ニューロンの支持細胞 (例、 随伴細胞等) 、 中枢神経系 の神経細胞とグリア細胞 (例、 星状グリア細胞等) 、 色素細胞 (例、 網膜色 素上皮細胞等) 、 及びそれらの前駆細胞 (組織前駆細胞等) 等が挙げられる 。 細胞の分化の程度に特に制限はなく、 未分化な前駆細胞 (体性幹細胞も含 む) であっても、 最終分化した成熟細胞であっても、 同様に本発明における 体細胞の起源として使用することができる。 ここで未分化な前駆細胞として は、 例えば神経幹細胞、 造血幹細胞、 間葉系幹細胞、 歯髄幹細胞等の組織幹 細胞 (体性幹細胞) が挙げられる。
[0039] 本発明において 「核初期化物質」 とは、 体細胞から 丨 3細胞を誘導する ことができる物質 (群) であれば、 タンパク性因子又はそれをコードする核 酸 (ベクターに組み込まれた形態を含む) 、 あるいは低分子化合物等のいか なる物質から構成されてもよい。 核初期化物質がタンパク性因子又はそれを コードする核酸の場合、 好ましくは以下の組み合わせが例示される (以下に おいては、 タンパク性因子の名称のみを記載する) 。
[1 ] 0〇士3/4, 1< 1干4, 0-1^0
[2] 0ct3/4, K lf4, c-Myc, Sox2 (ここで、 Sox2は Sox1, Sox3, Sox15, Sox17 又は Sox18で置換可能である。 また、 IUf4は IUf1, IUf2又は IUf5で置換可能で ある。 さらに、 c-Mycは T58A (活性型変異体) , N-Myc, L-Mycで置換可能であ る。 )
[3] 0ct3/4, Klf4, c-Myc, Sox2, Fbx15, Nanog, Eras, ECAT15-2, Tell, (3 -eaten in (活性型変異体 S33Y)
[4] 0ct3/4, Klf4, c-Myc, Sox2, TERT, SV40 Large T antigen (以下、 SV40 LT)
[5] 0ct3/4, Klf4, c-Myc, Sox2, TERT, HPV16 E6
[6] 0ct3/4, Klf4, c-Myc, Sox2, TERT, HPV16 E7
[7] 0ct3/4, Klf4, c-Myc, Sox2, TERT, HPV6 E6, HPV16 E7
[8] 0ct3/4, Klf4, c-Myc, Sox2, TERT, Bmi l (以上、 WO 2007/069
666を参照 (但し、 上記 [2)の組み合わせにおいて、 Sox2から Sox18への置 換、 IUf4から IUf1もしくは IUf5への置換については、 Nature Biotechnology,
26, 101-106 (2008)を参照) 。 「0ct3/4, Klf4, c-Myc, Sox2j の組み合わ せについては、 Cell, 126, 663-676 (2006)、 Cell, 131, 861-872 (2007) 等 も参照。 「〇ct3/4, Klf2 (又は IUf5) , c-Myc, Sox2j の組み合わせについて は、 Nat. Cell Biol., 11, 197-203 (2009)も参照。 「0ct3/4, Klf4, c-Myc, Sox2, hTERT, SV40LTJ の組み合わせについては、 Nature, 451, 141-146 (2 008)も参照。 )
[9] 0ct3/4, K lf4, Sox2 (Nature Biotechnology, 26, 101-106 (2008)を参 照)
[10] 0ct3/4, Sox2, Nanog, Lin28 (Science, 318, 1917-1920 (2007)を参照
)
[11] 0(^3/4, 50x2, 门〇9, !_丨门28, ^巳 , 340!_丁 士㊀!! 〇6118, 26, 1998- 2005 (2008)を参照)
0-603を参照)
[13] 0ct3/4, Klf4, c-Myc, Sox2, SV40LT (Stem Cells, 26, 1998-2005 (20 08)も参照) [14] 0ct3/4, Klf4 (Nature 454:646-650 (2008)、 Cell Stem Ce U, 2 = 525-528 (2008))を参照)
[15] 0ct3/4, c-Myc (Nature 454:646-650 (2008)を参照)
[16] 0ct3/4, Sox2 (Nature, 451, 141-146 (2008), WO 2008 / 1 1 8 820を参照)
[17] 0ct3/4, Sox2, Nanog (WO 2008/ 1 1 8820を参照)
[18] 0ct3/4, Sox2, Lin28 (WO 2008/ 1 1 8820を参照)
[19] 0ct3/4, Sox2, c-Myc, Esrrb (ここで、 Essrrbは Esrrgで置換可能であ る。 Nat. Cell Biol., 11, 197-203 (2009) を参照)
[20] 0ct3/4, Sox2, Esrrb (Nat. Cell Biol., 11, 197-203 (2009) を参照)
[21] 0ct3/4, Klf4, L-Myc
[22] 0ct3/4, Nanog
[23] 0ct3/4
[24] 0ct3/4, K lf4, c-Myc, Sox2, Nanog, Lin28, SV40LT (Science, 324: 7 97-801 (2009)を参照)
[25] 0ct3/4, Klf4, Sox2, GLISファミリーのメンバー (例えば、 GLIS1、 GLI S2、 GLIS3等が挙げられ、 好適には、 GLIS1 (GLIS fami ly zinc finger 1) が 挙げられる。 W〇 20 1 0/0984 1 9, WO 20 1 1 / 1 0253 1 を 参照)
[26] 0ct3/4, Klf4, Sox2, IRXファミリーのメンバー (例えば、 IRX1、 IRX2
、 IRX3、 IRX4、 IRX5、 IRX6等が挙げられ、 好適には、 IRX6 (iroquois homeob ox protein 6) が挙げられる。 WO 20 1 0/0984 1 9を参照)
[27] 0ct3/4, Klf4, Sox2, PTXファミリーのメンバー (例えば、 PITX1、 PITX 2、 PITX3等が挙げられ、 好適には、 PITX2 (paired- like homeodomai n transc ription factor 2) が挙げられ、 PITX2には 3つのアイソフォーム ( i s o f o r m s a, b及び c ) が知られており、 いずれのアイソフォームも用 いられ得るが、 i s o f o r m bが特に好ましい。 WO 20 1 0/098
4 1 9を参照)
[28] 0ct3/4, Klf4, Sox2, DMRTB1(DMRT-like fami ly B with pro line-rich C-terminal 1, WO 201 0/0984 1 9を参照)
[0040] 上記 [1]-[28]において、 0ct3/4に代えて他の Octファミリーのメンバー、 例 えば 0ct1A、 0ct6等を用いることもできる。 また、 Sox2 (又は Sox1、 Sox3、 So x15、 Sox17、 Sox18) に代えて他の Soxファミリーのメンバー、 例えば Sox7等 を用いることもできる。 さらに、 Un28に代えて他の Linファミリーのメンバ _、 例えば Lin28b等を用いることもできる。
[0041] また、 上記 [1]-[28]には該当しないが、 それらのいずれかにおける構成要 素をすべて含み、 且つ任意の他の物質をさらに含む組み合わせも、 本発明に おける 「核初期化物質」 の範疇に含まれ得る。 また、 核初期化の対象となる 体細胞が上記 [1]-[28]のいずれかにおける構成要素の一部を、 核初期化のた めに十分なレベルで内在的に発現している条件下にあっては、 当該構成要素 を除いた残りの構成要素のみの組み合わせもまた、 本発明における 「核初期 化物質」 の範疇に含まれ得る。
[0042] これらの組み合わせの中で、 0ct3/4, Sox2, K lf4, c-Myc, Nanog, Lin28及 び SV40LTから選択される少なくとも 1つ、 好ましくは 2つ以上、 より好まし くは 3つ以上が、 好ましい核初期化物質の例として挙げられる。
[0043] 上記の各核初期化物質のヒト c D N A配列情報は、 W 02007/069
666又は W〇 201 0/0984 1 9に記載の N C B I a c c e s s i o n n u m b e r sを参照することにより取得することができ (Nanogは当 該公報中では 「ECAT4」 との名称で記載されている。 なお、 Lin28、 Lin28b、 E srrb、 Esrrg及び L-Mycのヒト c D N A配列情報は、 それぞれ下記表 1記載の NCB I a c c e s s i o n n u m b e r sを参照することにより取得 できる。 ) 、 当業者は容易にこれらの cDNAを単離することができる。
[0044]
[表 1]
[0045] また、 GLISファミリーのメンバー、 IRXファミリーのメンバー、 PTXファミ リーのメンバー、 DM叮 B1のヒト c D N A配列情報は、 それぞれ下記表 2に記 載の NCB I a c c e s s i o n n u m b e r sを参照することにより 取得できる。
[0046] [表 2]
[0047] また、 上記の各アミノ酸配列と 90 %以上、 好ましくは 95 %以上、 より 好ましくは 98%以上、 特に好ましくは 99%以上の同一性を有し、 且つ 1<1干 4の代替因子として野生型タンパク質と同等の核初期化能力を有する天然もし くは人工の変異タンパク質及びそれをコードする核酸も、 本発明の! <44を代 替する核初期化物質として利用することができる。
[0048] 核初期化物質としてタンパク性因子自体を用いる場合には、 得られた〇 0 八を適当な発現べクターに挿入して宿主細胞に導入し、 該細胞を培養して
得られる培養物から組換えタンパク性因子を回収することにより調製するこ とができる。 一方、 核初期化物質としてタンパク性因子をコードする核酸を 用いる場合、 得られた c DNAを、 ウイルスべクター、 プラスミ ドベクター 、 エピゾーマルべクター等に挿入して発現べクターを構築し、 核初期化工程 に供される。
[0049] 核初期化物質の体細胞への導入は、 特許文献 1 (W 0201 5/6470
5) 等、 本発明の属する技術分野において用いられている方法を適宜使用す ることができる。
[0050] また、 i P S細胞は、 分化抵抗性の指標として C40R F 5 1、 H H LA
1、 ABH D 1 2 B、 Z N F 54 1等の因子を用い、 これらの因子が有意に 発現しない株を選抜したものであってもよい (WO 201 3/01 4929 参照) 。
[0051] また、 i PS細胞としては、 例えば、 細胞の生存、 増殖、 未分化性維持等 に必要な液性因子を供給し、 かつ細胞接着の足場となるフィーダー細胞と共 に培養しておき、 胚様体形成誘導の前に適宜、 フィーダー細胞を適宜除去し たものを用いることができる。 本発明の別の実施形態においては、 骨芽細胞 塊の作製効率を促進する (より多くの数の骨芽細胞塊を得ることができる) 観点から、 フィーダー細胞を用いずに i PS細胞を培養することが、 フィー ダー細胞を用いる上記方法より好ましい。
[0052] 本工程は、 これらの未分化 i PS細胞を、 前述した微細空間培養容器を用 い、 胚様体の形成を誘導するために用いられる液体培地中で非接着培養する ことにより行うことができる。
[0053] 培地としては、 霊長類 ES/ i PS細胞培養用の培地を適宜使用すること ができる。 本発明において E S細胞培養用の培地を単に E S培地と示すこと もある。 霊長類 ES/ i P S細胞培養用の培地としては、 例えば、 R E P R 〇 C E L L社製、 RCH EMD001 : B i o l o g i c a l I n d u s t r i e s社製、 N u t r i S t e m ; f h e mo F i s h e r b c i e n t i f i c社製、 E s s e n t i a l 6 Me d i u m ;味の素株式会
社製、 StemFit AK02N培地あるいは S t e m F I e x培地等が挙げられる。 かかる培地には、 FG F (F i b r o b l a s t g r ow t h f a c t 〇 r s) 等の成長因子を配合してもよい。 これらの成長因子は、 1種単独で 、 又は 2種以上を組み合わせて用いることができる。 また、 培地には、 任意 選択で、 幹細胞等の細胞培養の際に用い得る添加剤を配合してもよい。 かか る添加剤の具体例としては、 例えば、 牛胎児血清 (f e t a l b〇 V i n e s e r u m) 、 アミノ酸 (例えば、 L_グルタミン等) 、 ROCK阻害剤 ( 例えば、 Y-27632) 、 抗生物質 (例えば、 ペニシリン、 ストレプトマイシン、 アムホテリシン B等) が挙げられる。 本発明においては、 添加剤として ROCK 阻害剤等を使用することが好ましい。 本工程により、 非特許文献 1のように 未分化の i PS細胞を直接、 中胚葉系細胞誘導培地で培養するのではなく、 未分化の i PS細胞を一旦、 胚様体に成長させておくことにより、 次の中胚 葉系細胞に誘導する段階での細胞死を抑制することができる。 従って、 本発 明の方法においては、 工程 (1) の胚様体形成工程は、 中胚葉系細胞誘導を 実質的に生じさせずに、 胚様体の形成まででとどめることを意図する。 従っ て、 典型的には、 工程 (1) で用いる培地として、 中胚葉系細胞への誘導剤 を含まない培地が用いられる。
[0054] 本発明の典型的な実施形態において、 本工程は、 上記培地に未分化の i P
S細胞を懸濁したものを前記培養容器の凹部に配置、 保持することにより行 う。 培養容器の凹部に配置する際の懸濁液中の未分化の i PS細胞の数は限 定されないが、 骨芽細胞塊の作製効率促進の観点から、 例えば、 細胞濃度は 0 .5X105〜 7.5X105 ceUs/nUが好ましく、 1 5X 105〜 3.5X 105 ceUs/nUがより 好ましい。 上記好ましい細胞濃度は、 典型的には、 実験例と同様に、 1 ウエ ルあたり 2 m Iの細胞懸濁液を加える場合の値として示す。 また、 培養容器 の凹部に配置する際の 1 ウエルあたりに添加する未分化の i PS細胞の数は 、 限定されないが、 骨芽細胞塊の作製効率促進の観点から、 例えば、 1X105〜 15X105 cellsが好ましく、 3X105〜 7X105 cellsがより好ましい。 上記未分化 の i PS細胞の好ましい数は、 典型的には、 実験例 3で用いた 24ウエルの微
細空間形状低接着プレート [E Ip Iasi a (登録商標) (Corning , カタログ番 号 4441 :微細ウエルサイズ直径 500 Mm、 深さ 400 fjims 凹数 554〜 580個/ウ エル) ] の寸法のプレートを用いた場合の値として示す。 また、 培養容器の 凹部に配置する際の 1つの凹部あたりに配置する未分化の i PS細胞の数は 、 限定されないが、 骨芽細胞塊の作製効率促進の観点から、 例えば、 100〜 30 00 ceUsが好ましく、 500〜 1200 ceUsがより好ましい。 本工程における培養 時間としては、 例えば、 約〇. 5〜 3. 5日間が好ましく、 0. 625〜 2 . 5日間がより好ましく、 0. 875~ 1. 25日間がより好ましい。 また 、 本工程における培養時間としては、 例えば、 約 1 2〜 84時間が好ましく 、 約 1 5〜 60時間がより好ましく、 約 2 1〜 30時間がより好ましい。 本 工程の培養時間を上記範囲とすることにより、 最終的な骨芽細胞塊を袋状で ない中実な形状で得ることができるため好ましい。 本工程における培養温度 は特に限定されず、 例えば、 30〜 42 °Cが好ましく、 35〜 39 °Cがより 好ましい。 本工程における培養は、 3〜 1 0%C〇2の雰囲気下で行うことが 好ましい。 本発明において、 本工程 (1) における培養は微細空間培養容器 を用いるものであるので、 細胞又は細胞塊が微細空間培養容器のウエル中に 配置された状態を維持するため、 典型的には、 本工程は静置培養により行う
[0055] (2) 中肝葉系細胞への分化誘導
本発明の方法は、 上記工程 (1) で得られた i PS細胞の胚様体を非接着 培養して、 i PS細胞の中胚葉系細胞への分化を誘導する工程を含む。
[0056] 当該工程に用いる培地としては、 中胚葉系細胞の分化誘導に適した培地を 適宜使用することができる。 かかる培地としては、 例えば、 DMEM培地; ナカライテスク社製、 DMEM/F 1 2培地; T h e r mo F i s h e r S c i e n t i f i c社製、 N e u r o b a s a I me d i u m培地;
T h e r mo F i s h e r S c i e n t i f i c社製、 R P M I 1 6 40培地; T h e r mo F i s h e r S c i e n t i f i c社製、 S t e m I i n e (登録商標) 丨 丨造血幹細胞増殖培地; S i g m a_A l d r
i c h社製等が挙げられる。 これらの培地は、 1種単独で用いても、 2種以 上を組み合わせてもよい。
[0057] 本工程に用いる培地には、 中胚葉への分化誘導を促進する観点から、 Wn tシグナル活性化剤を配合することが好ましい。 Wn tシグナル活性化剤と しては、 特に限定されないが、 例えば、 CH I R 9902 1、 6—ブロモイ ンデイルビンー 3’ ーオキシム [6— b r omo i n d i r u b i n— 3’
— o x i me (B l 〇) ] 、 ケンパウロン (Ke n p a u l l o n e) 、 S B- 2 1 6763、 S KL 2001、 デオキシコール酸 (d e o x y c h o l i e a c i d) 、 WAY- 3 1 6606、 NSC- 693868、 リ シニン ( r i c i n i n e) 、 7— o x o— /S— s i t o s t e r o l ( 7 -O X O-/S- S i t o s t e r o I ) I M- 1 2、 H LY 78、 レチ ノイン酸 (例えば、 aU-trans-レチノイン酸 (富士フイルム和光純薬社製) 等) 等が挙げられ、 C H 丨 R 9902 1等が好ましい。 これらの Wn tシグ ナル活性化剤は、 1種単独で用いても、 2種以上を組み合わせてもよい。 本 発明の好ましい実施形態において、 レチノイン酸と、 レチノイン酸以外の W n tシグナル活性化剤とを組み合わせて用いることが好ましい。 レチノイン 酸を配合する場合、 その配合量は特に限定されないが、 本工程で用いる培地 中での最終濃度として、 例えば、 0. 01〜 1 〇MMが好ましく、 0. 1〜 5 MMがより好ましい。
[0058] Wn tシグナル活性化剤を配合する場合、 その配合量は特に限定されない が、 本工程で用いる培地中での最終濃度として、 例えば、 1〜 1 00 MMが 好ましく、 1 0〜 5〇MMがより好ましい。
[0059] 本工程に用いる培地には、 中胚葉への分化誘導を促進する観点から、 へッ ジホッグシグナル阻害剤を配合することが好ましい。 へッジホッグシグナル 阻害剤としては、 特に限定されないが、 例えば、 シクロパミン、 A Y 994 4、 GANT 58、 GANT 6 1、 ジエルビン、 SANT- 1、 SANT- 2、 U 1 8666 A、 ベラトラミン、 ビスモデギブ (V i s mo d e g i b ) 、 C u r-6 1 4 1 4、 ロボトニキニン (R o b o t n i k i n i n) 、
J K 1 84、 H P 丨 一4等が挙げられ、 シクロパミン等が好ましい。 これら のへッジホッグシグナル阻害剤は、 1種単独で用いても、 2種以上を組み合 わせてもよい。
[0060] ヘッジホッグシグナル阻害剤を配合する場合、 その配合量は特に限定され ないが、 本工程で用いる培地中での最終濃度として、 例えば、 1〜 1 00 M Mが好ましく、 1〜 1 O MMがより好ましい。
[0061 ] 本発明においては、 これらの W n tシグナル活性化剤及び、 へッジホッグ シグナル阻害剤を両方用いることが好ましい。
[0062] 尚、 前述の 「課題を解決するための手段」 に記載したように、 本発明は、 特許文献 1 に記載の方法に従い、 E S培地での 2日間の培養、 さらにレチノ イン酸を加えて 2日間の培養を行い、 骨芽細胞分化誘導培地で培養する方法 では、 細胞塊の形状は中空の袋状となってしまうという新たな知見に基づき 、 かかる課題を解決すべくさらに改良することにより完成されたものである 。 従って、 胚様体形成の誘導工程の後に、 中胚葉への分化を誘導し得る成分 としてレチノイン酸のみを配合した培地を用いた培養工程を行う方法は、 本 発明の方法から除かれる。
[0063] また、 培地には、 任意選択で、 細胞培養の際に用い得る添加剤を配合して もよい。 かかる添加剤の具体例としては、 例えば、 牛胎児血清 (f e t a l b o v i n e s e r u m) 、 アミノ酸 (例えば、 L—グルタミン等) 、 抗生物質 (例えば、 ペニシリン、 ストレプトマイシン、 アムホテリシン B等 ) が挙げられる。
[0064] また、 培地には、 細胞培養に用いる添加剤として、 市販の細胞培養用サブ リメント等を添加しても良い。 かかるサプリメントとしては、 N— 2 S u p p l e me n t ; T h e r mo F i s h e r S c i e n t i f i c社 製、 B— 27 s u p p l e me n t ; T h e r mo F i s h e r b e i e n t i f i c社製、 I n s u l i n, T r a n s f e r r i n, S e l e n i u m S o l u t i o n ; T h e r mo F i s h e r S c i e n t i f i c社製、 Wn t 3 a ; R&D S y s t e m s社製、 A c t i
v i n A ; R & D S y s t e m s社製、 BMP4 ; P e p r o t e c h 社製が挙げられる。 これらのサプリメントは、 1種単独で用いても、 2種以 上を組み合わせてもよい。 前述した (1) 胚様体形成の誘導工程と後述する (3) 骨芽細胞の分化誘導工程との間に上記中胚葉系細胞の分化誘導工程を 行うことで、 特にヒト i PS細胞を原料として用いた場合でも、 中実な細胞 塊を得ることができる。
[0065] 本発明の方法は、 骨芽細胞の細胞塊を製造するための方法である。 従って 、 本中胚葉系細胞分化誘導工程も、 非接着培養により行われる。 本発明にお いて、 本工程 (2) における培養は微細空間培養容器を用いるものであるの で、 細胞又は細胞塊が微細空間培養容器のウエル中に配置された状態を維持 するため、 典型的には、 本工程は静置培養により行う。
[0066] 本発明の典型的な実施形態において、 本工程は、 上記工程 (1) で得られ た胚様体を含む上記培地を前記培養容器の凹部に配置、 保持することにより 行う。 本工程における培養時間としては、 例えば、 0. 1 25〜 1 0日間が 好ましく、 1〜 8日間がより好ましく、 3〜 6日間がより好ましい。 また、 本工程における培養時間としては、 例えば、 約 3〜 240時間が好ましく、 約 24〜 1 92時間がより好ましく、 約 72〜 1 44時間がより好ましい。 本工程における培養温度は特に限定されず、 例えば、 30〜 42 °Cが好まし く、 35〜 39°Cがより好ましい。 本工程における培養は、 3〜 1 0%C〇 の雰囲気下で行うことが好ましい。
[0067] (3) 骨芽細胞への分化誘導
本発明の方法は、 上記工程 (2) で得られた i PS細胞の中胚葉系細胞を 非接着培養して、 骨芽細胞への分化を誘導する工程を含む。
[0068] 当該工程に用いる培地としては、 骨芽細胞への分化誘導に適した培地を適 宜使用することができる。 かかる培地としては、 例えば、 DMEM培地 (例えば 、 ナカライテスク社製、 sodium pyruvate非含有 DMEM培地等) ; a MEM培地 ( 例えば、 ナカライテスク社製 aMEM培地) 等が挙げられる。 これらの培地は、 1種単独で用いても、 2種以上を組み合わせてもよい。
\¥0 2020/175592 24 卩(:170? 2020 /007876
[0069] 本工程において、 培地には、 骨芽細胞への分化誘導促進剤等を配合しても よい。 骨芽細胞への分化誘導促進剤としては、 例えば、 アスコルビン酸、 / 3 - グリセロリン酸、 デキサメタゾン、 81^-2、 へミコハク酸ヒドロコルチゾン、 レチノイン酸 (例えば 31卜 3 _レチノイン酸) 等が挙げられる。 アスコル ビン酸は、 アスコルビン酸- 2 -リン酸又はその塩であってもよい。 また、 分化 誘導剤として、 デキサメタゾンに代えて、 又はこれに加えて、 へミコハク酸 ヒドロコルチゾンを用いてもよい。 これらの骨芽細胞への分化誘導促進剤は 、 1種単独で用いても、 2種以上を組み合わせてもよい。
[0070] アスコルビン酸を配合する場合、 その配合量は特に限定されないが、 本エ 程で用いる培地中での最終濃度として、 例えば、 5 0〜 3 0 0 !\/1が好まし く、 1 5 0〜 2 0 0 !\/1がより好ましい。
グリセロリン酸を配合する場合 、 その配合量は特に限定されないが、 本工程で用いる培地中での最終濃度と して、 例えば、 1〜 1 0 0〇1 1\/1が好ましく、
がより好ましい。 デキサメタゾンを配合する場合、 その配合量は特に限定されないが、 本工程 で用いる培地中での最終濃度として、 例えば、 0 . 0 0 1〜 1 0 !\/1が好ま しく、 〇. 0 1 ~ 1 . 0 !\/1がより好ましい。 レチノイン酸を配合する場合 、 その配合量は特に限定されないが、 本工程で用いる培地中での最終濃度と して、 例えば、 〇. 0 1〜 1 0 !\/1が好ましく、 〇. 1〜 5 !\/1がより好ま しい。
6 (0〇0 I 2) 等が挙げられる。 これらの低酸素模倣化合物は、 1種単独 で用いても、 2種以上を組み合わせてもよい。
[0072] 骨芽細胞の石灰化の観点から、 本工程における培地には、 スタチン化合物 をさらに配合することが好ましい。 スタチン化合物としては、 例えば、 アト ルバスタチン、 フルバスタチン、 シンバスタチン、 ロバスタチン、 ピタバス タチン、 ブラバスタチン及びロスバスタチン等が挙げられる。 これらのスタ
チン化合物は、 1種単独で用いても、 2種以上を組み合わせてもよい。
[0073] また、 培地には、 任意選択で、 細胞培養の際に用い得る添加剤を配合して もよい。 かかる添加剤の具体例としては、 例えば、 牛胎児血清 (f e t a l b o v i n e s e r u m) 、 アミノ酸 (例えば、 L—グルタミン等) 、 抗生物質 (例えば、 ペニシリン、 ストレプトマイシン、 アムホテリシン B等 ) が挙げられる。
[0074] 本発明の方法は、 骨芽細胞の細胞塊を製造するための方法である。 従って 、 本中胚葉系細胞分化誘導工程も、 非接着培養により行われる。 非接着培養 の具体的な態様としては、 前述したものが挙げられる。 本工程 (骨芽細胞へ の分化誘導) においては、 機械刺激による分化促進の観点から、 振盪培養等 が好ましい。
[0075] 本発明の典型的な実施形態において、 本工程は、 上記工程 (2) で得られ た i PS細胞の中胚葉系細胞を上記培地中に懸濁したものを培養容器、 例え ば、 25 cm2低接着性フラスコ (Greiner bio-one, growth area) に配置し、 培 養することにより行う。 本発明において、 上記工程 (3) の培養開始時点で の培地中の i P S細胞の中胚葉系細胞の量は限定されないが、 骨芽細胞塊の 作製効率促進の観点から、 例えば、 培地 1 〇m Iあたりに、 工程 (2) の培 養に用いた培養容器の 1〜 1 〇ウエル分の培養液に含まれる中胚葉系細胞を 添加することが好ましく、 上記培養容器の 1〜 5ウエル分の中胚葉系細胞を 添加することがより好ましく、 例えば、 上記培養容器の 2〜 4ウエル分の中 胚葉系細胞を添加することがより好ましい。 上記 i PS細胞の中胚葉系細胞 の好ましい量は、 典型的には、 実験例 3で用いた 24ウエルの微細空間形状低 接着プレート [E Ip Iasi a (登録商標) (Corning, カタログ番号 4441 :微細 ウエルサイズ直径 500
深さ 400
凹数 554〜 580個/ウエル) ] の寸法 のプレートを用いた場合の値として示す。 また、 工程 (2) の培養に用いた 培養容器の凹部 580〜 5800個分の培養液に含まれる中胚葉系細胞を添 加することが好ましく、 凹部 580〜 2900個分の中胚葉系細胞を添加す ることがより好ましく、 凹部 1 1 60〜 2320個分の中胚葉系細胞を添加
\¥0 2020/175592 26 卩(:170? 2020 /007876
することがより好ましい。 同様の趣旨から、 工程 (2) で上記 24ウエル培養 容器を用いて得られた中胚葉系細胞の懸濁液 2〜 2〇 1分、 好ましくは 2 〜 1 0111丨分、 より好ましくは 4〜 8111丨分の中胚葉系細胞懸濁液を 25 2低接 着性フラスコ内に移し、 上記骨芽細胞への分化誘導培地 1 〇 I に交換する ことで、 工程 (3) を行うことが好適である。 本工程における培養時間とし ては、 例えば、 約 1〜 9 0日間が好ましく、 約 7〜 6 0日間がより好ましく 、 約 2 1〜 5 0日間がより好ましい。 また、 本工程における培養時間として は、 例えば、 約 2 4〜 2 1 6 0時間が好ましく、 約 1 6 8〜 1 4 4 0時間が より好ましく、 約 5 0 4〜 1 2 0 0時間がより好ましい。 本工程における培 養温度は特に限定されず、 例えば、 3 0〜 4 2 °〇が好ましく、 3 5〜 3 9 °〇 がより好ましい。 本工程における培養は、 3〜 1 0 %〇〇2の雰囲気下で行う ことが好ましい。
[0076] 本発明によれば、 上記構成上の特徴に起因して、 石灰化度が高い骨芽細胞 塊を獲ることができる。 さらに、 前述したように本発明によれば、 骨再生能 が高い骨芽細胞塊を得ることができる。 そのため、 例えば、 本発明により獲 られた骨芽細胞塊を原料として用い、 適宜不活化処理に供した後、 骨の欠損 部に埋植することにより、 かかる欠損部 (空隙) を埋める程に新生骨を形成 することができるため、 本発明は非常に有用である。 従って、 本発明は、 I 3細胞由来骨芽細胞 (又は細胞塊) の石灰化促進方法、 丨 3細胞由来骨 芽細胞 (又は細胞塊) の骨誘導能向上方法、 骨への自己組織化を誘導する刺 激 (細胞周囲の空間環境) を培養中の丨 3細胞に与える方法といった実施 形態も提供する。 これらの方法における、 培養容器、 材料及び各種条件は前 述と同様である。
[0077] 骨芽細胞塊
ヒト 丨 3細胞を原料に用いて本発明の方法を実施することにより、 直径 が〇.
である、 骨芽細胞塊を得ることができる。 ヒト 丨
由来の骨芽細胞塊であって、 かかる寸法のものはこれまで報告が無く、 新規 の骨芽細胞塊である。 また、 上記のような直径を有する骨芽細胞塊は、 骨再
\¥0 2020/175592 27 卩(:170? 2020 /007876
生能が高いため非常に有用である。 当該骨芽細胞塊の直径は、 〇. 5〜5 111の範囲が好ましく、 1〜 4 01 01の範囲がより好ましく、 1〜3〇1 111の範囲 が更に好ましい。
[0078] 骨再生剤の製造方法
本発明は、 前述した方法により 丨 3細胞から骨芽細胞塊を製造する工程 、 及び当該骨芽細胞塊を不活化処理する工程
を含む、 骨再生剤の製造方法も提供する。
[0079] 骨芽細胞塊を製造する工程に用いる原料の丨 3細胞について、 及び骨芽 細胞塊を製造する工程において必要な処理等については前述した通りである
[0080] 本発明の方法は、 上記工程により得られた骨芽細胞塊を不活化処理するエ 程を含む。
[0081 ] 不活性化の方法は、 特に限定されないが、 例えば、 凍結乾燥、 加熱処理、 高圧処理、 酸又はアルカリ溶液処理、 高圧蒸気滅菌、 放射線滅菌、 ガス滅菌 、 電磁波処理等が挙げられる。 凍結乾燥について、 条件は特に限定されず、 公知の方法を使用できる。 また、 例えば、 凍結乾燥の前に、 予備凍結を行っ てもよい。 予備凍結の温度は、 特に限定されないが、 例えば、 約一 2 0〜一 1 2 °〇が好ましい。 凍結乾燥温度は、 特に限定されないが、 約一 1 0 0〜一 5 °〇が好ましい。 また、 凍結乾燥圧力は、 特に限定されず、 例えば、 6 0 0 3以下が好ましく、 5 0 3以下がより好ましい。 具体的な凍結乾燥条件 としては、 例えば、 温度を一 1 〇°〇に固定して凍結乾燥開始と同時に気圧を 徐々に 5〜 2 0 3まで下げていく方法が挙げられる。 本発明によれば、 石 灰化度が高く、 骨再生能の高い骨再生剤を得ることができる。 一実施形態に おいて本発明は上記製造方法により得られる骨再生剤も提供する。
[0082] 以下に、 実施例及び比較例を挙げて本発明をより具体的に説明するが、 本 発明はこれらに限定されない。
実施例
[0083] 実験 1 : I 3細胞を骨芽細胞塊に誘導する辛谪微細空間サイズの搮索
《方法》
1.1.マウス i PS細胞の培善
実験には、 マウス歯肉線維芽細胞から樹立された i PS細胞株 [PLoS ONE, 5 (9): e 12743, 2010〕 を用いた。 このマウス i PS細胞を、 ES培地 〔15%ウ シ胎児血清 (Gibco/Life Technologies, Grand Island, NY, USA) 、 2 mM L- Glutamine (和光純薬、 大阪) 、 1 X 10-4 M nonessential am i no acids (Lif e Technologies, Grand Island, NY, USA) 、 1 X 10-4 M 2-mercaptoethano l (Life Technologies, Grand Island, NY, USA) 、 50 U penicillin^ 50 yu,g /ml streptomycin (和光純薬) 含有 Dulbecco’ s modified Eagle’ s medium 培地 (DMEM : 4.5 g/L glucose含有、 sodium pyruvate非含有;ナカライテスク 、 京都)〕 を用い、 mitomycin Cで処理した SNLP76.7-4フイーダー細胞上で i P S細胞塊として維持 ·培養した。
[0084] 1.2.微細空間形状低掊着プレートを用いたマウス i PS細胞の骨芽細胞塊 の作製 上記で培養したマウス i P S細胞塊を 1 mM EDTA含有 0.25%トリプシ ン (和光純薬) 処理によりシングルセルにし、 ES培地を用いて調整した細胞 懸濁液 (3.9X106 ce Us/ml) を実験に供した。 本実験において、 マウス i P S細胞から骨芽細胞塊を作製した方法を図 1 に示す。
[0085] 培養器には、 6ウエルプレートの各ウエル底面に異なる凹状サイズの微細空 間 (図 1 )を有する微細空間形状低接着プレート ELpLasia (登録商標) (Kurar ay, Japan) を用いた:
Elp400; Cat. #RB 400 560 NA 6 :直径 400 fjims 深さ 560
Elp500; Ca t. #RB 500 700 NA 6 :直径 500 fjims 深さ 700
Elp900; Cat. #RB 900 7
[0086] 培養 2日後にウエル中の培地を、 1 yotM a U trans retinoic acid (RA; 和 光純薬)含有 ES培地に交換し、 さらに 3日間培養した。
その後、 骨芽細胞分化誘導培地 〔15% FBS (Gibco/Life Technologies) % 0.1 yu,M デキサメタゾン (Sigma-Aldr ich, St. Louis, MO, USA) 、 10 mM /S-グ
リセロリン酸 (Sigma-Aldr ich) および 50 yu,g/ml アスコルビン酸- 2-リン酸 (Sigma-Aldrich) 、 1% Antibiotic-Antimycotic (100 units/ml ペニシリン , 100 yu-g/ml ストレプトマイシン、 250 ng/ml アンホテリシン B (Gibco/Lif e Technologies) 含有 a-MEM培地 (ナカライテスク) 〕 に交換し、 最大 35 日間培養した。 培地の半分量の交換を 2日おきに行った。 骨芽細胞分化誘導培 地で培養を開始した時点を “骨芽細胞分化誘導 0日目” とした。
[0087] 《結果》
1.3.微細空間直径が骨芽細胞塊のサイズに及ぼす影響
i PS細胞懸濁液を、 各微細空間サイズのウェルに添加し、 培養 5日後 (骨 芽細胞分化誘導 0日目) の細胞塊サイズ (フェレッ ト径) を Image J画像解析 ソフトウェアを用いて算出した。 その結果、 各微細空間で培養した ELp400群 、 ELp500群、 ELp900群の試料におけるフェレ径の平均値は、 それぞれ約 187.6 、 242.5、 328.8 Mmであり、 E Lp500群および E Lp900群のサイズは E Lp400群のも のよりも有意に大きかった。 骨芽細胞分化誘導培地に移行した後の 35日の間 、 ELp400群および ELp500群における細胞塊のサイズは徐々に増加した。 一方 、 ELp900群における細胞塊サイズは誘導 28日まで増加したが、 35日にかけて 減少した(図 3 :左)。
[0088] 骨芽細胞分化誘導における各群の細胞塊を位相差顕微鏡下で観察した結果 、 Elp400群および Elp900群の細胞塊は、 誘導 21日目から 28日目にかけて徐々 に輪郭がスムースでなくなり、 崩れていく様子が観察された。 一方、 Elp500 群の細胞塊は、 誘導 35日後まで崩れることなく細胞塊として存在していた(図 3 :右)。
[0089] 各群の細胞塊における細胞の生死を、 生細胞/死細胞同時染色キッ ト (LIVE /DEAD (登録商標) Viabi I i ty/Cytotoxici ty Kit, Molecular Probes/Thermo Fisher Scientific, Eugene, OR, USA) を用いて検討した。 その結果、 骨芽 細胞分化誘導 14日後の Elp400群および Elp900群では、 死細胞を示す赤色の細 胞を多く認めた。 特に、 Elp900群の細胞塊の中心部は赤色を示し、 細胞塊内 部のほとんどの細胞が死んでいる像を認めた。 一方、 ELp500群の細胞塊は、
誘導開始時から誘導 14日後まで、 生細胞を示す緑色の細胞で構成されており 、 赤色の死細胞はほとんど認めなかった(図 4)。
[0090] 1.4.微細空間直径が細胞塊の骨芽細胞分化に及ぼす影響
骨芽細胞分化誘導 10日後の各群の細胞塊における骨芽細胞特異的マーカー 遺伝于 (Runx2、 Osterix、 Collagen 1a1、 Bone s i a loprote i ns Osteopont i n 、 Osteocalcin) の発現を SYBR Greenリアルタイム RT-PCR法 (Thunderbi rd ( 登録商標) SYBR (登録商標) qPCR Mix、 T0Y0B0) で解析した。 SYBR Green リアルタイム叮 -PCR法に用いたプライマーの塩基配列は以下の通りである。 内部標準には 18s rRNAを利用した。
Runx2 forward primer: 5’ - CGGGCTACCTGCCATCAC -3’ Runx2 reverse prime r: 5’ - GGCCAGAGGCAGAAGTCAGA -3’ Osterix forward primer: 5’ - CTCGTCT GACTGCCTGCCTAG -3’ Osterix reverse primer: 5' - GCGTGGATGCCTGCCTTGTA -3’ Collagen 1a1 forward primer: 5’ - TGTCCCAACCCCCAAAGAC -3' Collage n 1a1 reverse primer: 5' - CCCTCGACTCCTACATCTTCTGA -3' Osteocalcin fo rward primer: 5’ - CCGGGAGCAGTGTGAGCTTA -3’ Osteocalcin reverse prime r : 5’ - CCGGGAGCAGTGTGAGCTTA -3’ Osteopont i n forward primer: 5' - TCT CCTTGCGCCACAGAATG -3' Osteopont i n reverse primer: 5' - TCCTTAGACTCACC GCTCTT -3’ Bone s i a loprote i n forward primer: 5’ - CGGAGGAGACAACGGAGAA G -3’ Bone s i a loprote i n reverse primer: 5’ - GTAAGTGTCGCCACGAGGCT -3 ’ 18s rRNA forward primer: 5, - GTAACCCGTTGAACCCCATT -3, 18s rRNA rev erse primer: 5, - CCATCCAATCGGTAGTAGCG -3,
その結果、 ELp500群におけるこれら全ての遺伝子の発現は、 ELp400群およ び E L p900群と比較して有意に高かった(図 5)。
[0091] さらに、 骨芽細胞分化誘導 35日後の各群の細胞塊から切片を作製し、 HE染 色、 あるいは von Kossaとメチレンブルーの二重染色を施し、 組織学的観察を 行った。
HE染色の結果、 E Lp400群および E Lp900群におけるほとんどの細胞の核は失わ れて死んでおり、 細胞塊が崩れかけている像が観察された。 一方、 ELp500群
の細胞塊では、 層状の細胞構造体の形成を認め、 外層では骨芽細胞が骨様の 組織を形成している像が観察された。 フォンコッサとメチレンブルーの二重 染色の結果、 Elp400群および Elp900群では、 細胞塊の全体に黒く染まった石 灰化を認めるものの、 細胞成分を認めない脆く崩れそうな像を呈し、 細胞死 を伴う石灰化が生じた可能性が示唆された。 一方、 ELp500群では、 細胞構造 体の内層に石灰化を伴う豊富な細胞外基質を認め、 外層にも部分的に石灰化 を伴う骨様組織の形成を認めた(図 6)。
[0092] 1.5.実験 1のまとめ
以上の結果より、 直径 500 Mmの凹を有する微細空間形状低接着プレート EL P Iasi a (登録商標) (Elp500) を用いることで、 マウス i PS細胞から効率 的に三次元的な骨芽細胞塊の作製が可能となることが明らかとなった。 また 、 直径 400 Mmあるいは 900 Mmの凹を有する ELp400あるいは ELp900を用いた 場合には、 マウス i PS細胞から生きた細胞を含む骨芽細胞塊の作製は困難 であることが示された。
[0093] 実験 2 : M状微細空間 (EIP500) がヒト i P S細胞の骨芽細胞塊誘導に及 ぼす影響 《方法》
2.1.ヒト i P S細胞の培善
実験には、 ヒト皮膚線維芽細胞由来 i P S細胞株 (409B2 : RIKEN BRC CELL BANK社) を用いた。 フィーダー細胞には、 SNLP76.7-4細胞 (英国 Sanger Ins t i tuteの Dr. Allan Brad leyより供与) を用いた。
SNLP76.7-4フィーダー細胞を、 10 cm細胞培養プレート (0.1%ゼラチンコート 処理) に播種し、 7% ウシ胎仔血清 (FBS :ジャパンバイオシーラム, Lot # J BS-011501) % 2 mM L-Glutamine (Thermo Fisher Scientific) % 50 U pen i c iUin、 50 yu,g/m l streptomycin (Thermo Fisher Scientific) 含有 DMEM培地 (sodium pyruvate非含有:ナカライテスク) 〕 を用いて培養した。 培地交換 は 2日おきに行った。 i P S細胞の培養前に SNLP76.7-4フィーダー細胞を 12 yu_g/mlの Mitomycin C (ナカライテスク) で 2.5時間処理し、 10 cm細胞培養プ レート (0.1% ゼラチンコート処理) に 1.5 X 106個/ dishの濃度で播種した
。 この SNLP76.7-4フィーダー細胞上に i P S細胞を播種し、 4 ng/ml human b asic FGF (REPROCELL) 含有の Primates ES Medium (ES培地: REPROCELL) を 用いて培養した。 培地交換は 1日おきに行った。
本実験において、 ヒト i P S細胞から骨芽細胞塊を作製した方法を図 7に示 す。
[0094] 2.2. 胚様体の形成
i P S細胞をリン酸緩衝生理食塩水 (PBS) で洗浄し、 1 mlの CTK溶液 (0.2 5% trypsin, 0.1 mg/ml collagenase IV, 10 mMCaCL2, 20% KSR) を添加して 37°Cで 1分間処理した後に、 CTK溶液を吸引除去し、 PBSを 1 ml添加した。 PBS を除去し、 培養プレートから剥離したフィーダー細胞のみを可及的に吸引除 去した。 その後、 培養プレートに残存している接着 i P S細胞を、 4 mlの ES 培地を用いて回収した。 この細胞懸濁液 (懸濁液中の i P S細胞の数: 6.25 X105 ce Us/ml) の 2 mlを、 24ウエルプレートの各ウエル底面に直径 500Mmの 凹部 (1ウエルあたり 554〜 580個) を有する微細空間形状低接着プレート ELpL as i a (登録商標) (Elp500 : Kuraray, Cat. # RB 500 700 NA24) の 1ウエルに 移し (1ウエルあたりに配置した i P S細胞の数: 12.5X105 cells) , 1日間 培養することにより胚様体の形成を誘導した。 対照として、 ELp500を使用せ ずに、 低接着性培養皿 (Nunc Non-T reated MuUidishes、 Thermo Fisher Sc i entific) を用いて胚様体培養および中胚葉誘導を行った群を設定した。
[0095] 2.3. 中胚葉細胞への分化誘導
胚様体形成 1日後に、 ES培地を 2 mlの中胚葉分化誘導培地 〔2% B-27 Supple merit (Thermo Fisher Scientific) 、 1% N-2 Supplement (Thermo Fisher Sc ientific) % 30 fxU CHIR 99021 (和光純薬) 、 5 yLtM eye lopami ne (Enzo Lif e science) 含有 DMEM/F12 (Thermo Fisher Scientific) と Neurobasal med i u m (Thermo Fisher Sc i ent i f i c) の 1 : 1混合培地〕 に培地交換し、 5日間培養 を行った。 培地交換は 2日おきに行った。
[0096] 2.4. 骨芽細胞への分化誘導
中胚葉分化誘導後、 £^13813 (登録商標) から 8ウエル分 (培養液 1 6 «11
分) の細胞塊を取り出し, 骨芽細胞分化誘導培地 〔15% FBS (Thermo Fisher Sc i ent i f i c) % 0.1 yu,M デキサメタゾン (Sigma Aldrich) 、 10 mM /S-グリ セロリン酸 (Sigma Aldr ich) および 50 yu,g/ml アスコルビン酸- 2-リン酸 (S igma Aldrich) % 100 un i ts/m l ペニシリン, 100 yu,g/m l ストレプトマイシ ン、 250 ng/m I アンホテリシン B (Thermo Fisher Scientific) 含有 DMEM培地 (sodium pyruvate非含有:ナカライテスク, 京都) 〕 10 mlに懸濁し、 低接 着性フラスコ (Greiner bio-one, growth area: 25 cm2) を用いて、 シーソー 型バイオリアクター (10° 傾斜, 周期 0.33Hz, テーブルの横幅 32c m、 振幅 5 .5 cm) (BC-700 : BIO CRAFT) 上で振盪しながら、 最大 30日間低接着培養し た。 培地交換は、 7日おきに行った。
[0097] 2.5. 骨芽細胞への分化誘導の評価
骨芽細胞分化誘導 30日後、 骨芽細胞分化に特異的な遺伝子 (Osterix, Coll agen 1a1、 Runx2、 Osteocalcin) の発現を SYBR Greenリアルタイム RT-PCR法 (Thunderbird (登録商標) SYBR (登録商標) qPCR Mix、 T0Y0B0) で解析し た。
また、 骨芽細胞分化誘導 60日後までの未分化マーカー遺伝子 (Nanog) 、 骨芽 細胞前駆細胞マーカー遺伝子 (Brachyury、 Runx2) 、 骨芽細胞マーカー遺伝 子 (Osterix、 Collagen 1a1、 Osteocalcin) の発現を SYBR Greenリアルタイ ム RT-PCR法 (Thunderbird (登録商標) ) SYBR (登録商標) qPCR Mix、 TOYOB 0) で解析した。 SYBR Green リアルタイム叮 -PCR法に用いたプライマーの塩 基配列は以下の通りである。 また、 内部標準として GAPDHを利用した。
Runx2 forward primer: 5' -CAGACCAGCAGCACTCCAT A-3' Runx2 reverse prime r: 5’ -CAGCGTCAACACCATCATTC-3’ Osterix forward primer: 5’ -AAGCTGATCT GGTGGTGCAT-3, Osterix reverse primer: 5, -GACTCCACAAAGGGCATGAT-3, Co L lagen 1a1 forward primer: 5’ -GTGCTAAAGGTGCCAATGGT-3’ Collagen 1a1 re verse primer: 5' -CTCCTCGCTTTCCTTCCTCT-3, Osteocalcin forward primer: 5’ -CACTCCTCGCCCTATTGGC-3’ Osteocalcin reverse primer: 5’ -CCCTCCTGC TTGGACACAAAG-3’ Nanog forward primer: 5’ - AACTGGCCGAAGAATAGCAA-3’ Na
nog reverse primer: 5’ - TGCACCAGGTCTGAGTGTTC-3’ Brachury forward pri mer: 5’ -CAGTCAGTACCCCAGCCTGT-3’ Brachury reverse primer: 5’ -ACTGGCT GTCCACGATGTCT-3’ GAPDH forward primer: 5’ -GAAGGTGAAGGTCGGAGTCA-3’ GA PDH reverse primer: 5' -GAAGATGGTGATGGGATTTC-3,
さらに、 得られた試料に HE染色、 von Kossaとメチレンブルーの二重染色を施 し、 組織化学的観察を行った。
また、 i P S細胞塊の成分解析をフーリエ変換型赤外分光 (Fourier Transfo rm- InfraRed : FT-IR) 解析を用いて行った。 i P S細胞塊をすべて回収し、 10%中性緩衝ホルマリン液で固定し、 蒸留水で洗浄した後、 エタノール (30% , 70%, 90%, 100%) で段階脱水を行った。 再度新しいエタノール (100%) を 交換した後に、 乾燥機中に 37°Cで 12時間静置した。 乾燥した細胞試料に臭化 カリウム (KBr) プレート法用いて FT-IR解析を行った。 解析には、 FT-IR測定 装置: FT/IR-6300ST (日本分光) を用いて、 スキャン範囲: 650〜 4000 cnr1、 分解能: 2 cm- 1で積算 1000回の赤外線吸収スぺクトルパターンを解析した。
[0098] 2.6. i P S細胞由夹骨補埴材の作製
骨芽細胞分化誘導 120日後の骨芽細胞塊を PBSで洗浄した後に、 10 mlの PBS に 4°Cで一晚浸潰した翌日、 骨芽細胞塊を取り出して 6 cm細胞培養皿に移し、 -80°Cの冷凍庫内で一晚の予備凍結を行った。 その後, 皿を凍結乾燥機 (VD-2 50R ;タイテック) に設置し、 一晚の凍結乾燥を行うことで不活化し、 i PS 細胞由来骨補填材とした。 骨補填材の入っている皿に蓋を被せてシールで密 閉し、 防湿庫 (ガラス製デシケーター) 内で保管した。
[0099] 2.7. ラッ ト頭蓋骨欠損モデルへの移植
10週齢の SDラッ ト (Slc:SD : 日本エスエルシー株式会社) に全身麻酔を施 した後、 頭皮を剥離して骨膜弁を形成し、 頭蓋骨矢状縫合の左右に直径 5 mm の欠損を形成した。 頭蓋骨欠損の形成には、 動物手術用エンジンおよびトレ フィンバー (インプラテックス, 東京) を用い、 注水下にて行った。 凍結乾 燥を行った i PS細胞塊を頭蓋骨欠損部に埋植し、 骨膜で被覆して頭皮を縫 合した。 その後、 ラッ トを特定病原体未感染の条件のもと、 飲水および接触
が自由な状態で飼育した。
[0100] 《結果》
2.8. 骨芽細胞塊の作製効率
10 cm細胞培養プレート中で、 80%コンフルエントの i PS細胞から、 上記 2.2. 〜 2.4. に記載の方法によって得られた骨芽細胞分化誘導 30日目の骨芽 細胞塊の数を計算した。 その結果、 低接着性培養皿を用いた場合は 5.7±0.77 個に対し、 ELp500を用いた場合は, 46.2±8.8個となり、 ELp500を使用して胚 様体を作製することで、 作製効率が著しく上昇することが明らかとなった ( 図 8) 〇
[0101] 2.9. Elp500を用いて作製した三次元骨芽細胞塊の評価
ELp500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化誘導 を 30日間行ったヒト i PS細胞塊から切片標本を作成し、 von Kossaとメチレ ンブルーの二重染色を行った。 組織学的観察の結果、 骨芽細胞分化誘導 30日 後では、 細胞塊の内部に部分的な石灰化像を認めた (図 9上段) 。 また、 骨 芽細胞分化誘導期間を 60日、 90日行った場合、 細胞塊の内部の石灰化部位は 増加した (図 9中段、 下段) 。 一方、 低接着培養皿を用いて胚様体、 中胚葉 系細胞に誘導した後に、 骨芽細胞分化誘導を 30日間行ったヒト i PS細胞塊 には石灰化を認めず、 骨芽細胞分化誘導 60日後に部分的な石灰化像を認める に至った。 したがって、 ELp500を用いることで、 ヒト i PS細胞塊が石灰化 に至る期間を短縮できることが明らかとなった。
また、 骨芽細胞分化誘導 30日目の ELp500を使用して作製した細胞塊の骨芽細 胞特異的マーカー遺伝子 Runx2、 SP7、 Collagen 1a1、 osteoca lc inは, 低接着 性培養皿を用いた場合に比べて有意に高い発現を認めた (図 1 〇) 。
ヒト i PS細胞を胚様体、 中胚葉、 骨芽細胞へ分化誘導する過程 (図 7) に おける、 未分化マーカー遺伝子 (Nanog) 、 中胚葉 (間葉系幹細胞) 〜骨芽細 胞前駆細胞を示すマーカー遺伝子 (Brachyury、 Runx2、 Osterix) 、 骨芽細胞 特異的遺伝子 (Collagen 1a1、 Osteocalcin) の発現をリアルタイム RT-PCR法 で解析した (図 1 1) 。 その結果、 胚様体培養前の i PS細胞に高発現して
\¥0 2020/175592 36 卩(:170? 2020 /007876
いた 9の発現は、 中胚葉誘導によって著明に減少し、 誘導 5日目までにほ とんど消失した。
[^ 2、 〇3士6「’I X遺伝子の発現は、 中胚葉誘導後 から骨芽細胞分化誘導初期にかけて発現のピークを認め、 その後、
Co Uagen 181、 〇3 6〇〇31〇_ 遺伝子の発現は分化誘導 60日後まで経時的に上昇 した。 £ ^500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化 誘導を 0〜 60日間行ったヒト 丨 3細胞塊を乾燥後に、 ド了 解析を用いて成分 分析を行った。 その結果、 骨芽細胞分化誘導を 30日以上行ったヒト 丨 9 3細 胞塊試料には、 本来の骨組織 (ヒト凍結乾燥骨) に近いド丁1(¾スペクトルのピ —クを認めた (図 1 2) 。
£ 1卩500を用いて胚様体、 中胚葉系細胞に誘導した後に、 骨芽細胞分化誘導を 3 〜 30日間行ったヒト 丨 3細胞塊のフェレッ ト径を測定した結果、 骨芽細胞 分化誘導 30日後の細胞塊群には、 0. 66
の範囲のフェレッ ト径 を示す様々なサイズの細胞塊を認めた (図 1 3八) 。 これら骨芽細胞分化誘 導 30日後の細胞塊群を、 フヱレッ ト径によって 0. 5〜 1 1ä未満、
、 2〜 3 111111のサイズに分け、 切片作製の上、
染色を用いて石灰化の 程度を評価した結果、 2〜 3 1^11の細胞塊が最も著明に石灰化を示し (図 1 3巳 ) 、 細胞塊のサイズが大きいほど成熟した骨芽細胞塊を形成していることが 示唆された。
[0102] 2. 10. 1〇500を用いて作製した骨芽細胞塊の骨再牛能の評価
骨芽細胞分化誘導 120日目の 500を使用して作製した細胞塊を 2. 6.に記載 の方法によって凍結乾燥処理した (図 1 4) 。
この凍結乾燥骨芽細胞塊あるいは比較対象としてヒト凍結乾燥骨 08八) を ラッ ト頭蓋骨に作製した直径 5
の骨欠損部に埋植した。 丨 3細胞由来凍 結乾燥骨芽細胞塊を埋植 4週間後、 組織切片の 染色から組織像を観察した結 果、 骨欠損は新生骨の形成によって塞がれており、 埋植した骨芽細胞塊の周 囲にはセメントラインを伴う骨リモデリング像を認めた。 また、 マイクロ 解析の結果、 骨欠損部が周囲の既存骨と連続した新生骨によって完全に塞が れている像が観察された (図 1 5八) 。
—方、 FDBAの埋植 4週間後の HE染色像では、 FDBAは未熟な線維性の組織に囲ま れており、 成熟した新生骨の形成を認めなかった。 また、 マイクロ CT解析に おいて
も、 欠損部位にはほとんど骨新生を認めず、 欠損はほぼそのまま存在してい た (図 1 5 B) 。
[0103] 2.11. まとめ
以上より、 ヒト i PS細胞から三次元的な骨芽細胞塊を作製する際、 胚様 体、 中胚葉系細胞に誘導する過程において、 凹状微細空間、 特に特定の凹状 サイズをもつ E L P500を用いることで、 通常の低接着培養皿を用いた場合と比 較して、 その作製効率を時間的にも量的にも上昇させるだけでなく、 より成 熟した骨芽細胞塊を誘導できることが明らかとなった。 また、 この過程で作 製された細胞塊の中でも、 骨芽細胞分化誘導 30日目にフェレツ ト径が 2〜 3 mm のサイズの細胞塊では特に石灰化が進んでおり、 より成熟した骨芽細胞塊で あることが示唆された。 さらに、 凍結乾燥したヒト i PS細胞由来骨芽細胞 塊は、 既存の骨補填材 (FDBA) と比較して優れた骨再生能を示すことから、 骨欠損部の再生を促進する骨補填材として応用が可能であることが示された
[0104] 実験 3 : フイーダー細胞フリー璟堉における iPS細胞培善が骨芽細胞塊形成 に及ぼす影響
《方法》
3.1.ヒト iPS細胞
実験には、 ヒト皮膚線維芽細胞由来 iPS細胞株 (409B2 : RIKEN BRC CELL BA NK社) を用いた。
[0105] 3.2.ヒト iPS細胞のフイーダー細胞上での培善 (フイーダー使用群)
フイーダー細胞には SNLP76.7-4フイーダー細胞を実験 2と同様の培養方法 で用い、 Mitomycin C処理後にこの細胞の上にヒト i PS細胞を播種し、 4 ng/ml human basic FGF (REPROCELL) 含有の Primates ES Medium (ES培地: REPROC ELL) を用いて培養した。 培地交換は毎日行った。
[0106] 3.3.フィーダー細胞フリー環境下におけるヒト iPS細胞培善
フィーダー細胞上で維持培養していたヒト iPS細胞コロニーを、 StemFit ( 登録商標) AK02N培地 (ES培地:味の素株式会社) に 10 MM Y- 27632 (和光純 薬) を添加した培養液に回収し、 ラミニン; i Matrix-511 si Ik (nippi) でコ —ティングした 10 cm細胞培養プレートに 8.0X 104個/ dishの濃度で播種した 。 翌日、 ES培地に交換し、 維持 ·培養することでフィーダー細胞フリー培養 とした。 培地交換は 2日に 1回行った。
[0107] 3.4.微細空間形状低掊着プレートを用いたヒト i PS細胞の骨芽細胞塊の作製
本実験において、 ヒト iPS細胞から骨芽細胞塊を作製した方法を図 24に示 す。
[0108] 3.4.1.胚様体の形成誘導
培養器には、 24ウエルの微細空間形状低接着プレート Elplasia (登録商標 ) (Corning, Cat # 4441 :微細ウエルサイズ直径 500
深さ 400 gm、 凹 数 554〜 580個/ウエル) を用いた。
フィーダー細胞上で培養したヒト iPS細胞は、 実験 2の方法に従い、 ES培地 ( REPROCELL) を用いて細胞懸濁液とし (懸濁液中の i P S細胞の数: 6.25X105 ceUs/ml) 、 上記 E Ip Iasi a (登録商標) プレート 1ウエルあたりの播種細胞 数が 12.5X105 細胞となるように 1ウエルあたり 2 mlを添加した (フィーダー 使用群:条件 0) 。
フィーダー細胞フリー環境下で培養したヒト iPS細胞コロニーについては、 Tr ypleSelect (Thermo Fisher Scientific) 処理によりシングルセルにし、 ES 培地 (StemFit培地) にて以下の 3条件の細胞懸濁液を調整した。
[0109] 条件 1 6.25X 105 ce Us/ml
条件 2 3.125X105 cells/ml
条件 3 1.563X105 cells/ml
フィーダー細胞上で培養した細胞懸濁液 (条件 0) 及びフィーダー細胞フリー 環境下で調整した条件 1〜 3の細胞懸濁液を、 上記培養プレートの各ウエル に 2 ml添加し、 1ウエルあたりの細胞数を以下とした。
[0110] 条件 0 12.5X105 cells/ウエル
条件 1 12.5X105 cells/ウエル
条件 2 6.25X105 cells/ウエル
条件 3 3.125X105 ceUs/ウエル
条件 0は ES培地 (REPROCELL) 、 条件 1〜 3は ES培地 (StemFit培地) を用いて 1日培養することにより胚様体の形成を誘導した。
[0111] 3.4.2.中胚葉細胞への分化誘導
胚葉体培養 1日後、 各条件について実験 2と同様に、 培地を中胚葉分化誘導 培地 〔2% B-27 Supplement (Thermo Fisher Sc i ent i f i c) 、 1% N-2 Supp leme nt (Thermo Fisher Scientific) % 30 fxU CHIR 99021 (和光純薬) 、 5 yLtM c yc lopami ne (Enzo Life science) 含有 DMEM/F12 (Thermo Fisher Scientific ) と Neurobasal medium (Thermo Fisher Scientific) の 1 : 1混合培地〕 に交 換し、 5日間培養した。 培地の半分量の交換を 2日に 1回行った。
[0112] 3.4.3.骨芽細胞への分化誘導
5日間の中胚葉分化誘導後、 各条件における ELpLasia (登録商標) プレート から、 以下の条件 A〜 Dに示すウエル数に含まれる細胞塊を取り出し、 低接着 性フラスコ (Greiner bio-one, growth area: 25 cm2) へ移した。
[0113] 条件 A 8ウエル/ 1フラスコ (培養液 16 ml分)
条件 B 4ウエル/ 1フラスコ (培養液 8 ml分)
条件 C 2ウエル/ 1フラスコ (培養液 4 ml分)
条件 D 1ウエル/ 1フラスコ (培養液 2 ml分)
フィーダー細胞上で培養した群 (条件 0) ついては、 Elplasia (登録商標) プ レート 8ウエル分の細胞を 1フラスコに移した (条件 0 +条件 A) 。
各フラスコ中の培地を骨芽細胞分化誘導培地 〔15% FBS (Gibco/Life Techno I og i es) 、 0 1 yotM デキサメタゾン (Sigma-Aldr ich, St. Louis, MO, USA)
、 10 mM /S-グリセロリン酸 (Sigma-Aldr ich) % 50 yu,g/m l アスコルビン酸- 2 -リン酉愛 (Sigma-Aldr ich) 及び 1 % Antibiotic-Antimycotic (100 un i ts/m l ペニシリン, 100 ^g/ml ストレプトマイシン、 250 ng/ml アンホテリシン B
\¥0 2020/175592 40 卩(:170? 2020 /007876
含有《-1^11/1培地 (ナカライテスク) 〕 10 1111に交換し、 シーソー型バイオリア クター (10° 傾斜, 周期 0. 33 , テーブルの横幅 32〇 、 振幅 5. 5 〇11) (80 -700 : 810 〇^ド丁) 上で振盪しながら、 30日間培養した。
培地の半分量の交換を 3日に 1回行った。 骨芽細胞分化誘導培地で培養を開始 した時点を “骨芽細胞分化誘導 0日目” とした。
[01 14] 3. 5.骨芽細胞への分化誘導の評価
骨芽細胞分化誘導 30日後、 各条件群の細胞塊の個数をカウントし、 大きさ (フェレッ ト径) を 1111396」画像解析ソフトウェア ( (登録商標) 1\11 を用 いて算出した。
また、 骨芽細胞分化誘導 30日後の各群の細胞塊における骨芽細胞特異的マー 力一遺伝子
の発現を 3丫8(¾ 0「66 リアルタイム -卩〇 法 (Thunderbird (登録商標) 3丫8(¾ (登録商標)
1^14、 了0丫080) で解 析した。 内部標準としてGAPDHを用いた。 プライマーは実験 2と同様のものを 用いた。
骨芽細胞分化誘導 30日後の各群の細胞塊から切片を作製し、 染色、 あるい とメチレンブルーの二重染色を施し、 組織化学的観察を行った。
[01 15] 3. 6.誘導培地へのレチノイン醅添加が骨芽細胞塊の形成に及ぼす影響
上記フィーダー細胞フリー環境下のヒト 細胞を用いた実験系において、 上記 3. 4.
培地) に、 1 0
また、 上記 3. 4. 2における中胚葉分化誘導培地及 び 3. 4. 3における骨芽細胞分化誘導培地に、 1
レチノイン酸(和光純薬)を 添加し、 条件 2及び条件 8で骨芽細胞塊の形成を誘導し、 骨芽細胞への分化誘 導 30日後の細胞塊の石灰化及び成熟度を、 染色ならびに
ンブルーの二重染色により評価した。
《結果》
3. 7. 細胞のフィ _ダ_細胞フリー培善及び播種細胞数が骨芽細胞塊の形 成数に及ぼす影響
骨芽細胞分化誘導 30日後、 フィーダー培養群 (条件 0十条件八) では 1フラス
\¥0 2020/175592 41 卩(:170? 2020 /007876
コあたりに形成した細胞塊は 56個であったのに対し、 フイーダー細胞フリー 培養では播種細胞数 12. 5 105 〇6 [ /ウェル (条件 1) の 8ウェル/ 1フラスコ 群 (条件 1 十条件八) が 100個、 4ウェル/ 1フラスコ群 (条件 1 十条件 が 93 個、 播種細胞数 6. 25 X 105細胞/ウェル (条件 2) の 8ウェル/ 1フラスコ群 (条 件 2十条件八) が 139個、 4ウェル/ 1フラスコ群 (条件 2十条件 が 103個、 播 種細胞数 3. 125 105細胞/ウェル (条件 3) の 8ウェル/ 1フラスコ群が 103個 ( 条件 3十条件八) 、 4ウェル/ 1フラスコ群が 1 12個 (条件 3十条件 、 2ウェル /1フラスコ群 (条件 3十条件〇 が 126個であった。 つまり、 これら条件にお けるフイーダー細胞フリー培養群では、 胚様体の形成工程及び骨芽細胞分化 誘導工程において使用した細胞数はフイーダー培養群 (条件 ø +条件八) より も同様あるいは少ないにもかかわらず、 形成した骨芽細胞塊の個数が著明に 増加した (図 2 5) 。
[01 16] 3. 8. 細胞のフイ _ダ_細胞フリ _培善及び播種細胞数が骨芽細胞塊の大 きさに及ぼす影響
骨芽細胞分化誘導 30日後、 フイーダー培養群における細胞塊のフェレッ ト 径は、 フイーダー細胞フリー培養群におけるフェレッ ト径よりも大きい傾向 にあった。 _方、 フイーダー培養群よりもフイーダー細胞フリー培養群の播 種細胞数 6. 25 X 105細胞/ゥェル群 (条件 2) 及び播種細胞数 3. 125 X I 05細胞/ ウェル群 (条件 3) の方が、 サイズのばらつきが小さく、 より均一であった (図 2 6) 0
[01 17] 3. 9. 細胞のフイ _ダ_細胞フリ _培善及び播種細胞数が細胞塊の骨芽細 胞分化に及ぼす影響
骨芽細胞分化誘導 30日後、 フイーダー細胞フリー培養群の細胞塊における 骨芽細胞特異的マーカー遺伝子 ([^ 2及び〇3 60031〇_ ) の発現は、 フイー ダー培養群 (条件 0十条件八) の細胞塊と比較して高い傾向を示した。 特に、 胚様体の形成工程において、 フイーダー細胞フリー環境で培養した 細胞の 播種細胞数が 6. 25 X 105細胞/ゥェル (条件 2) 及び 3. 125 X 105細胞/ゥェル ( 条件 3) の群においては、 骨芽細胞分化誘導工程における条件八〜〇すべてに
\¥0 2020/175592 42 卩(:170? 2020 /007876
おいてこれら遺伝子発現の著明な増加を認めた (図 2 7) 。
[01 18] 3. 10. 細胞のフィ _ダ_細胞フリー培善及び播種細胞数が骨芽細胞塊の 石灰化に及ぼす影響
骨芽細胞分化誘導 30日後、 フィーダー培養群 (条件 0十条件八) の細胞塊と 比較して、 フィーダー細胞フリー培養の播種細胞数 6. 25 105細胞/ゥエル (条 件 2) の 8ウエル/ 1フラスコ群 (条件 2十条件八) 、 4ウエル/ 1フラスコ群 (条 件 2十条件 、 播種細胞数 3. 125 X I 05細胞/ゥエル (条件 3) の 8ゥエル/ 1フ ラスコ群 (条件 3十条件八) 、 4ウエル/ 1フラスコ群 (条件 3十条件 、 2ウ エル/ 1フラスコ群 (条件 3十条件〇 の細胞塊の方が内部の石灰化範囲が顕著 に大きく、 骨芽細胞塊として、 より成熟した像を示した (図 2 8) 。
[01 19] 3. 1 1 .誘導培地へのレチノイン酸添加が 細胞の骨芽細胞塊の形成に及ぼ す影響
フィーダー細胞フリー環境下の 細胞を用いた骨芽細胞塊の作製において 、 胚葉体培養における 培地に 10
丫-27632を、 中胚葉分化誘導培地およ び骨芽細胞分化誘導培地に 1
レチノイン酸を添加することで、 骨芽細胞 誘導 30日後の細胞塊内部および外層には著明な石灰化を認め、 これらを添加 していない場合よりも、 より成熟した一様の骨様組織が得られた (図 2 9)
[0120] 3. 12.まとめ
ヒト 細胞を増殖させる段階でフイーダー培養ではなくフイーダー細胞フ リー培養にすることで、 少ない細胞数から効率的に骨芽細胞塊を作製できた 。 特に、 胚様体の形成工程において 1 ウエルあたりにフイーダー細胞フリー の環境で培養を行ったヒト 細胞 6. 25 X 105
を播種し、 さらに、 ウエ ル 8あるいは 4個分の中胚葉系細胞を含む培養液を 1個のフラスコに移して骨 芽細胞分化誘導工程を行った場合及び、 胚様体の形成工程において 1 ウエル あたりにフイーダー細胞フリーの環境で培養を行ったヒト
125 X 105 を播種し、 さらに、 ウエル 8、 4、 あるいは 2個分の中胚葉系細胞を含む 培養液を 1個のフラスコに移して骨芽細胞分化誘導工程を行った場合に、 よ
\¥0 2020/175592 43 卩(:17 2020 /007876 り多くの数の骨芽細胞塊を得ることができただけでなく、 より成熟した骨芽 細胞塊を得ることができた。
Claims
[請求項 1] (1) 未分化 i PS細胞を非接着培養して、 胚様体の形成を誘導する 工程、
(2) 上記工程 (1) で得られた i PS細胞の胚様体を非接着培養し て、 i PS細胞の中胚葉系細胞への分化を誘導する工程、 及び
(3) 上記工程 (2) で得られた i PS細胞の中胚葉系細胞を非接着 培養して、 骨芽細胞への分化を誘導する工程
を含む i PS細胞から骨芽細胞塊を製造する方法であって、 該工程 (1) 及び (2) が、 底面と該底面から立設された環状の側壁 とを備え、 該底面が、 互いに独立して設けられた複数の凹部を有する 培養容器を用いて行われる、 方法。
[請求項 2] 前記複数の凹部の少なくとも 1個における円相当直径が 200〜 90
0 M mでありかつ深さが 200〜 1 000 mである、 請求項 1に記 載の方法。
[請求項 3] 前記複数の凹部の開口部の形状が略円形である、 請求項 1 に記載の方 法。
[請求項 4] 前記 i P S細胞がヒト i P S細胞又はマウス i P S細胞である、 請求 項 1 に記載の方法。
[請求項 5] 前記工程 ( 1) における培養時間が 0. 625〜 3. 5日間である、 請求項 4に記載の方法。
[請求項 6] 前記工程 ( 2) における培養が、 W n tシグナル活性化剤及びヘッジ ホッグシグナル阻害剤からなる群より選択される少なくとも一種の存 在下で行われる、 請求項 1 に記載の方法。
[請求項 7] 前記 Wn tシグナル活性化剤が、 C H I R 9902 1、 6—ブロモイ ンデイルビンー 3’ 一オキシム、 ケンパウロン、 S B- 2 1 6763 、 S K L 2001、 デオキシコール酸、 WAY- 3 1 6606、 NS C— 693868、 リシニン、 7—〇 X〇— /S—シトステロール、 I M- 1 2、 H LY 78、 及びレチノイン酸からなる群より選択される
\¥0 2020/175592 45 卩(:170? 2020 /007876
少なくとも一種である、 請求項 6に記載の方法。
[請求項 8] 前記へッジホッグシグナル阻害剤が、 シクロパミン、 八丫9 9 4 4、 〇八1\1丁 5 8、 〇八1\1丁 6 1、 ジエルビン、 3八1\1丁一 1、 3八1\1丁 — 2、 リ 1 8 6 6 6八、 ベラトラミン、 ビスモデギブ、 〇リ 「一 6 1 4 1 4、 ロボトニキニン、
選択される少なくとも一種である、 請求項 6に記載の方法。
[請求項 9] 前記工程 (3) における培養が、 低酸素模倣化合物及びスタチン化合 物からなる群より選択される少なくとも一種の存在下で行われる、 請 求項 1 に記載の方法。
3細胞の懸濁液を培養容器に配置し、 培養することにより行われる 、 請求項 1 〇に記載の方法。
[請求項 12] 前記工程 (2) が少なくとも 1個のウエルを有する培養容器を用いて 行われ、 かつ工程 (3) が、 前記工程 (2) で得られた中胚葉系細胞 を含む 1〜 1 0ウヱル分の培養液を培養容器に配置し、 培養すること により行われる、 請求項 1 1 に記載の方法。
[請求項 13] 前記工程 (1) における培養が 阻害剤の存在下で行われ、 前記 工程 (2) 及び工程 (3) における培養がレチノイン酸の存在下で行 われる、 請求項 1 に記載の方法。
[請求項 14] 請求項 1 に記載の方法により得られる骨芽細胞塊であって、 ヒト 丨
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080031485.4A CN113728093A (zh) | 2019-02-26 | 2020-02-26 | 使用iPS细胞生产成骨细胞构建体的方法 |
US17/433,934 US20220145255A1 (en) | 2019-02-26 | 2020-02-26 | Method for producing osteoblast cluster using ips cells |
JP2021502348A JPWO2020175592A1 (ja) | 2019-02-26 | 2020-02-26 | |
EP20763776.0A EP3933033A4 (en) | 2019-02-26 | 2020-02-26 | METHOD FOR PRODUCING AN AGGREGATE OF OSTEOBLASTS USING HUMAN IPS CELLS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-033277 | 2019-02-26 | ||
JP2019033277 | 2019-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020175592A1 true WO2020175592A1 (ja) | 2020-09-03 |
Family
ID=72240115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/007876 WO2020175592A1 (ja) | 2019-02-26 | 2020-02-26 | iPS細胞を用いた骨芽細胞塊の作製法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220145255A1 (ja) |
EP (1) | EP3933033A4 (ja) |
JP (1) | JPWO2020175592A1 (ja) |
CN (1) | CN113728093A (ja) |
WO (1) | WO2020175592A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
WO2011102531A1 (en) | 2010-02-16 | 2011-08-25 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
WO2013014929A1 (en) | 2011-07-25 | 2013-01-31 | Kyoto University | Method for screening induced pluripotent stem cells |
WO2015064705A1 (ja) | 2013-10-31 | 2015-05-07 | 国立大学法人大阪大学 | 骨再生剤 |
WO2018181960A1 (ja) * | 2017-03-30 | 2018-10-04 | 国立大学法人東北大学 | ヒトiPS細胞を用いた骨芽細胞塊の作製法 |
WO2018194161A1 (ja) * | 2017-04-20 | 2018-10-25 | 国立大学法人東北大学 | 振盪浮遊培養を用いた間葉系幹細胞の未分化性維持方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070015588A (ko) * | 2004-05-07 | 2007-02-05 | 위스콘신 얼럼나이 리서어치 화운데이션 | 배아 줄기 세포로부터 중간엽 줄기 세포를 형성하는 방법 |
EP2799538A4 (en) * | 2011-12-27 | 2015-06-03 | Univ Osaka | DIFFERENTIATION INDUCTION METHOD FOR PREVENTING TUMORIGENE TRANSFORMATION OF INDUCED PLURIPOTENT STEM CELLS (SPI) |
EP3006553B1 (en) * | 2013-06-07 | 2020-09-02 | Corning Incorporated | Culture vessel and culture method |
KR102527308B1 (ko) * | 2014-10-29 | 2023-04-28 | 코닝 인코포레이티드 | 3d 세포 응집체의 생성 및 배양을 위한 장치 및 방법 |
JPWO2019009419A1 (ja) * | 2017-07-07 | 2020-07-30 | 学校法人慶應義塾 | 脱分化誘導剤及びその使用 |
-
2020
- 2020-02-26 US US17/433,934 patent/US20220145255A1/en active Pending
- 2020-02-26 JP JP2021502348A patent/JPWO2020175592A1/ja active Pending
- 2020-02-26 EP EP20763776.0A patent/EP3933033A4/en active Pending
- 2020-02-26 CN CN202080031485.4A patent/CN113728093A/zh active Pending
- 2020-02-26 WO PCT/JP2020/007876 patent/WO2020175592A1/ja active Search and Examination
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
WO2011102531A1 (en) | 2010-02-16 | 2011-08-25 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
WO2013014929A1 (en) | 2011-07-25 | 2013-01-31 | Kyoto University | Method for screening induced pluripotent stem cells |
WO2015064705A1 (ja) | 2013-10-31 | 2015-05-07 | 国立大学法人大阪大学 | 骨再生剤 |
WO2018181960A1 (ja) * | 2017-03-30 | 2018-10-04 | 国立大学法人東北大学 | ヒトiPS細胞を用いた骨芽細胞塊の作製法 |
WO2018194161A1 (ja) * | 2017-04-20 | 2018-10-25 | 国立大学法人東北大学 | 振盪浮遊培養を用いた間葉系幹細胞の未分化性維持方法 |
Non-Patent Citations (13)
Title |
---|
CELL RESEARCH, 2008, pages 600 - 603 |
CELL STEM CELL, vol. 2, 2008, pages 525 - 528 |
CELL, vol. 126, 2006, pages 663 - 676 |
CELL, vol. 131, 2007, pages 861 - 872 |
HOSODA, MASAYA: "Elplasia for Better Cell Structure control", REGENERATIVE MEDICINE, vol. 15, no. 2, 2016, pages 171 - 175, XP035998482 * |
NAT. CELL BIOL., vol. 11, 2009, pages 197 - 203 |
NATURE BIOTECHNOLOGY, vol. 26, 2008, pages 101 - 106 |
NATURE, vol. 454, 2008, pages 646 - 650 |
OKAWA, H. ET AL.: "Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells", STEM CELLS INTERNATIONAL, vol. 6240794, 2016, pages 1 - 11, XP055734485, Retrieved from the Internet <URL:https://doi.org/10.1155/2016/6240794> * |
SCIENCE, vol. 318, 2007, pages 1917 - 1920 |
SCIENCE, vol. 324, 2009, pages 797 - 801 |
STEM CELL REPORTS, vol. 2, 3 June 2014 (2014-06-03), pages 751 - 760 |
STEM CELLS, vol. 26, 2008, pages 1998 - 2005 |
Also Published As
Publication number | Publication date |
---|---|
EP3933033A1 (en) | 2022-01-05 |
JPWO2020175592A1 (ja) | 2020-09-03 |
US20220145255A1 (en) | 2022-05-12 |
CN113728093A (zh) | 2021-11-30 |
EP3933033A4 (en) | 2022-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vats et al. | Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment | |
Zhang et al. | The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7 | |
Toh et al. | Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine | |
Zhang et al. | Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration | |
Scheller et al. | Tissue engineering: state of the art in oral rehabilitation | |
Olkowski et al. | Biocompatibility, osteo-compatibility and mechanical evaluations of novel PLDLLA/TcP scaffolds | |
Zhou et al. | Substrate compliance directs the osteogenic lineages of stem cells from the human apical papilla via the processes of mechanosensing and mechanotransduction | |
Zhao et al. | Chondrogenesis by bone marrow‐derived mesenchymal stem cells grown in chondrocyte‐conditioned medium for auricular reconstruction | |
US20140356336A1 (en) | Method for inducing differentiation enabling tumorigenesis of ips cells to be suppressed | |
JP2008503281A (ja) | 幹細胞の使用、組織工学の方法、歯組織の使用、及び生物学的代用歯 | |
EP2644695B1 (en) | Cultured cartilage tissue material | |
JP2021530965A (ja) | ヒト誘導万能幹細胞から軟骨細胞のペレットを製造する方法およびその用途 | |
Izumi et al. | Tissue engineered oral mucosa | |
JP4748222B2 (ja) | 軟骨細胞調製方法 | |
Hsiao et al. | Application of dental stem cells in three-dimensional tissue regeneration | |
WO2020175592A1 (ja) | iPS細胞を用いた骨芽細胞塊の作製法 | |
Gadjanski | Mimetic hierarchical approaches for osteochondral tissue engineering | |
JP7102004B2 (ja) | ヒトiPS細胞を用いた骨芽細胞塊の作製法 | |
JP6525282B2 (ja) | 骨分化能を有する脂肪由来幹細胞シート及びその作製方法 | |
WO2021071875A1 (en) | Chondrogenic human mesenchymal stem cell (msc) sheets | |
WO2019189947A1 (ja) | ヒト臍帯由来間葉系幹細胞から骨芽細胞の製造を目的としたアクチン重合阻害剤による分化誘導技術 | |
JP6874953B2 (ja) | ヒトiPS細胞から、ヒト歯原性上皮細胞やヒト歯原性間葉細胞を製造する方法 | |
WO2006082854A1 (ja) | 移植用軟骨細胞調製物の製造方法 | |
US20230287318A1 (en) | Methods for producing mature adipocytes and methods of use thereof | |
van Osch et al. | Cells for Cartilage Regeneration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20763776 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2021502348 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020763776 Country of ref document: EP Effective date: 20210927 |