WO2018230588A1 - 細胞封入デバイス - Google Patents

細胞封入デバイス Download PDF

Info

Publication number
WO2018230588A1
WO2018230588A1 PCT/JP2018/022509 JP2018022509W WO2018230588A1 WO 2018230588 A1 WO2018230588 A1 WO 2018230588A1 JP 2018022509 W JP2018022509 W JP 2018022509W WO 2018230588 A1 WO2018230588 A1 WO 2018230588A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
capsule
oxygen permeable
permeable membrane
Prior art date
Application number
PCT/JP2018/022509
Other languages
English (en)
French (fr)
Inventor
岩田 博夫
Original Assignee
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社 filed Critical 武田薬品工業株式会社
Priority to JP2019525472A priority Critical patent/JPWO2018230588A1/ja
Priority to US16/622,567 priority patent/US20200208093A1/en
Priority to EP18817507.9A priority patent/EP3640318A4/en
Publication of WO2018230588A1 publication Critical patent/WO2018230588A1/ja
Priority to IL271385A priority patent/IL271385A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • C12M37/04Seals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin

Definitions

  • the present invention relates to a cell encapsulation device and a manufacturing method thereof. [Background of the invention]
  • transplanted cells can be transplanted to a target site in the body with minimal invasiveness.
  • the cell-encapsulated device has an advantage that the transplanted cells can be reliably and easily removed together with the device when the transplanted cells need to be taken out of the body.
  • Patent Document 1 discloses an embedded assembly in which a pore-sized porous boundary capable of isolating transplanted cells from the immune response of the host tissue is formed between the host tissue and the transplanted cells in the chamber.
  • This device has one chamber for holding cells, and has a flat shape as a whole, and the chamber is a “flat plate” that is thin in the vertical direction and wide in the horizontal direction (Patent Document 1). FIG. 8 and FIG. 9).
  • Patent Document 2 discloses an assembly for cell encapsulation including at least one chamber for encapsulating transplanted cells, in which the first adhesive portion at the peripheral edge and the volume of the chamber are effective.
  • An assembly includes a second adhesive portion that decreases the device surface area but increases the device surface area (see Patent Document 2, Claim 16).
  • This device also has a flat shape as a whole, and the chamber is a “flat plate” that is thin in the vertical direction and wide in the horizontal direction (see Patent Document 2, FIG. 1). See also Non-Patent Document 1 for devices consisting of flat chambers.
  • Patent Document 3 states that “a three-dimensional cell encapsulation assembly including at least two cell chambers for encapsulating living cells and a cell-free region along a long axis separating the cell chambers, A 3D cell encapsulation assembly in which the region bends to form a fold, said fold reducing the effective area of the assembly compared to an assembly without a fold, thereby forming a 3D cell encapsulation device " It is disclosed (see Patent Document 3 and Claim 1). In this device, each chamber is a “flat plate type”. However, the flat chambers are arranged by being connected by a fold so that the entire device has a “blade type” shape (Patent Document 3). 3, FIG. 7, 7, 15, 20, 57, 62).
  • the cell encapsulation device it is desirable to encapsulate more cells, that is, larger cell masses, in the device in order to enhance the therapeutic effect.
  • the transplanted cells in order for the transplanted cells to function in the living body, it is necessary to supply sufficient oxygen to the cells in the device at the transplanted portion. Necrosis due to lack of oxygen is likely to occur.
  • the main object of the present invention is to provide a cell encapsulation device capable of encapsulating a larger cell mass as a result of sufficient oxygen being supplied to the cells in the transplanted part.
  • the present invention provides the following [1] to [17].
  • [1] A cell encapsulating device in which a plurality of capsule-like structures in which at least a part of an outer shell is formed of an oxygen permeable membrane and cells are encapsulated therein are arranged in a two-dimensional direction on the same plane.
  • [2] The cell encapsulation device according to [1], wherein the oxygen permeable membrane is a porous membrane or a hydrogel membrane.
  • a method for producing a cell-encapsulated device [11] The method for producing a cell-encapsulated device according to [10], wherein the oxygen permeable membrane is a porous membrane or a hydrogel membrane.
  • substantially or “essentially” means 90% or more of the reference value, preferably 95%, 96%, 97%, 98%, or 99% or more. Indicates the value of. For example, “substantially the same” or “essentially the same” means that the identity with the reference value is 90% or more, preferably 95%, 96%, 97%, 98%, or 99% or more. Means “substantially free of” or “essentially free of” means that it does not contain more than 5% of a specific substance or is undetectable. It means that there is.
  • Consisting of (consist (s) of or consistent of) means to include and be limited to any element following the phrase.
  • the phrase “consisting of” indicates that the listed elements are required or required and that other elements are substantially absent.
  • Consisting essentially of means including any element following the phrase and being limited to other elements that do not affect the activity or action specified in this disclosure for that element. .
  • the phrase “consisting essentially of” requires that the listed elements are required or required, but other elements are optional and affect the activity or action of the listed elements. Depending on whether or not, it may be present or not present.
  • ex vivo is generally used to indicate an experiment or measurement performed in a living tissue in an artificial environment outside the living body, such as a cultured tissue or a cultured cell.
  • the tissue or cells used may be frozen for storage or later thawed for in vitro processing.
  • in vitro is used when conducting tissue culture experiments of living cells or tissues for several days or more, but “in vitro” is used interchangeably with “ex vivo” There is also.
  • the term “in vivo” is generally used to refer to a phenomenon that occurs in vivo, such as cell proliferation.
  • culture refers to maintaining, proliferating (growing), and / or differentiating cells in an in vitro environment. “Culturing” means allowing cells to persist, proliferate (grow) and / or differentiate outside a tissue or body, eg, in a cell culture dish or flask.
  • a cell encapsulating device capable of encapsulating a larger cell mass is provided by supplying sufficient oxygen to the cells in the transplanted part.
  • FIG. 1st embodiment of the cell encapsulation device of this invention It is a figure which shows 1st embodiment of the cell encapsulation device of this invention.
  • (A) is a top perspective view and a partially enlarged sectional view
  • (B) is a sectional view. It is a figure which shows 2nd embodiment of the cell enclosure device of this invention. It is a figure which shows 3rd embodiment of the cell enclosure device of this invention. It is a figure which shows 4th embodiment of the cell enclosure device of this invention.
  • (A) is a top perspective view
  • (B) is a sectional view. It is a figure which shows 1st embodiment of the manufacturing method of the cell enclosure device of this invention. It is a figure which shows the modification of the manufacturing method of the cell enclosure device which concerns on 1st embodiment.
  • FIG. 1 shows a first embodiment of the cell encapsulation device of the present invention.
  • the cell encapsulation device 11 includes a plurality of capsule-like structures 21 arranged in a two-dimensional direction on the same plane.
  • the capsule-like structure means a structure having a spherical or substantially spherical outer shell or a hemispherical or substantially hemispherical outer shell and having a space (a lumen) in the outer shell.
  • substantially spherical means that the ratio of the diameter in any one direction of the structure to the diameter in the direction perpendicular thereto is 0.7 to 1.3, particularly 0.8 to 1.2.
  • the substantially hemispherical shape is one of two structures obtained by cutting a spherical or substantially spherical structure along an arbitrary plane.
  • the capsule-like structure 21 is composed of a spherical or substantially spherical outer shell 31, and has a lumen 41 in the outer shell 31.
  • the outer diameter of the outer shell 31 and the inner diameter of the lumen 41 mean the respective major diameters.
  • the capsule-like structure may be hemispherical or substantially hemispherical as shown in FIG.
  • the spherical shape, the substantially spherical shape, the hemispherical shape, and the substantially hemispherical shape are collectively referred to simply as “substantially spherical”.
  • the lumen of the capsule-like structure may be a sealed space that is isolated from the space outside the device by an outer shell.
  • the capsule-like structure may be such that the lumen communicates with another adjacent capsule-like structure (see FIGS. 7 and 8 described later).
  • the outer shell 31 of the capsule-like structure 21 forms the outer shape of the capsule structure 21, and at least a part thereof is formed of an oxygen permeable membrane.
  • oxygen is supplied to the cells enclosed in the lumen 41 through the oxygen permeable membrane in the transplanted part.
  • the oxygen permeable membrane needs to be at least permeable to oxygen, and is necessary for the non-oxygen gas and cell survival unless the cells enclosed in the lumen 41 leak out of the device of the present invention. It may be permeable to nutrients.
  • the oxygen permeable membrane is permeable to a substance produced by cells enclosed in the lumen 41. Thereby, the substance produced by the cells enclosed in the lumen 41 is released to the transplanted part through the oxygen permeable membrane.
  • gases other than oxygen include carbon dioxide and nitrogen.
  • nutrient substances necessary for cell survival include sugars, amino acids, lipids, vitamins and minerals.
  • the oxygen permeable membrane functions as a partition wall between the cells enclosed in the lumen 41 and the host cells, it does not allow the host cells, preferably the host antibodies, to pass therethrough. It is necessary to This can prevent the transplanted cells from being eliminated or inactivated by the immune response from the host cells.
  • the oxygen permeable membrane may be a porous membrane.
  • the pore size of the porous membrane is 10 to 5000 nm, preferably 50 to 1000 nm, more preferably 100 to 500 nm because of its permeability to oxygen, nutrients, and cell-producing substances. It is preferable that the plurality of pores of the oxygen permeable membrane are uniformly dispersed on the oxygen permeable membrane so that the necessary amounts of oxygen, nutrients and cell-producing substances can be permeated as a whole.
  • the material of the porous membrane includes thermoplastic materials (polyvinylidene fluoride, acrylonitrile-vinyl chloride copolymer, polyvinyl chloride, nylon, polysulfone, polyethersulfone, ethylene vinyl alcohol copolymer, polyester polymer alloy). , Polypropylene, stretched polypropylene, ion-tracked polyester and ion-tracked polycarbonate), and materials having no thermoplasticity (stretched polytetrafluoroethylene (EPTFE), regenerated cellulose, cellulose acetate, cellulose mixed ester, and the like).
  • thermoplastic materials polyvinylidene fluoride, acrylonitrile-vinyl chloride copolymer, polyvinyl chloride, nylon, polysulfone, polyethersulfone, ethylene vinyl alcohol copolymer, polyester polymer alloy.
  • the oxygen permeable membrane may be a hydrogel membrane that swells with water.
  • Hydrogel membrane materials include natural polymers such as agarose, alginic acid, hyaluronic acid, cellulose, gelatin, polyvinyl alcohol, polyacrylamide, polyacrylic acid, polymethacrylic acid, polyisopropylacrylamide, poly-2-hydroxyethyl methacrylate, poly Examples thereof include chemical and physical cross-linked products of synthetic polymers such as 2-hydroxyethyl acrylate and polyvinylpyrrolidone, and copolymers of the respective monomers.
  • a commercially available product may be used as the oxygen permeable membrane, or it may be prepared from a solution (oxygen permeable membrane forming solution) that forms an oxygen permeable membrane by solidifying by a method known per se.
  • Cells are enclosed in the lumen 41.
  • the cells include cells (such as pancreatic beta cells and progenitor cells thereof) that secrete physiologically active molecules such as hormones (insulin, etc.) and cytokines.
  • These cells may be ex vivo cells isolated from a donor or may be cells cultured in vitro.
  • the cells cultured in vitro are, for example, embryonic stem cells (ES cells), pluripotent stem cells such as induced pluripotent stem cells, or multipotent stem cells such as mesenchymal stem cells (multipotent stem cells) cell), or a cell derived from these.
  • ES cells embryonic stem cells
  • pluripotent stem cells such as induced pluripotent stem cells
  • multipotent stem cells such as mesenchymal stem cells (multipotent stem cells) cell
  • pluripotent stem cell means embryonic stem cells (ES cells) and similar pluripotency, that is, various tissues of the living body (endoderm, mesoderm, ectoderm) All) refers to cells that have the potential to differentiate. Examples of cells having pluripotency similar to those of ES cells include “artificial pluripotent stem cells” (sometimes referred to as “iPS cells” in this specification).
  • ES cells various mouse ES cell lines established by inGenious targeting laboratory, RIKEN (RIKEN), etc. can be used for mouse ES cells.
  • RIKEN RIKEN
  • human ES cell lines established by Thomson et al., US NIH, RIKEN, Kyoto University and Cellartis are available.
  • human ES cell lines include NIH CHB-1 to CHB-12, RUES1, RUES2, HUES1 to HUES28, WisCell Research H1 and H9, RIKEN KhES-1 and KhES- Two strains, KhES-3 strain, KhES-4 strain, KhES-5 strain, SSES1 strain, SSES2 strain, SSES3 strain, etc. can be used.
  • “Artificial pluripotent stem cell” refers to a cell obtained by reprogramming a mammalian somatic cell or undifferentiated stem cell by introducing a specific factor (nuclear reprogramming factor).
  • IPS was established by Yamanaka et al. By introducing four factors, Oct3 / 4, Sox2, Klf4, and c-Myc, into mouse fibroblasts.
  • iPS cells derived from human cells established by introducing similar four factors into human fibroblasts (Takahashi K, Yamanaka S., et al.
  • Nanog-iPS cells (Okita, K., Ichisaka, T., etc.) established after selection of Nanog expression after introduction of the above four factors. , and Yamanaka, S. (2007). Nature 448, 313-317.), iPS cells prepared by a method without c-Myc (Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26 , 101-106), iPS cells established by introducing 6 factors by the virus-free method (Okita K et al. Nat. Methods 2011 May; 8 (5): 409-12, Okita K et al. Stem Cells. 31 (3): 458-66.) Can also be used.
  • an induced pluripotent stem cell established by introducing four factors of OCT3 / 4, SOX2, NANOG, and LIN28 prepared by Thomson et al. (Yu J., Thomson JA. Et al., Science (2007) 318: 1917-1920.), Induced pluripotent stem cells made by Daley et al. (Park IH, Daley GQ. Et al., Nature (2007) 451: 141-146), induced pluripotent stem cells made by Sakurada et al. (Japanese Patent Laid-Open No. 2008-307007) can also be used.
  • iPS cell lines established by NIH, RIKEN, Kyoto University and others.
  • RIKEN HiPS-RIKEN-1A strain if it is a human iPS cell line, RIKEN HiPS-RIKEN-1A strain, HiPS-RIKEN-2A strain, HiPS-RIKEN-12A strain, Nips-B2 strain, Kyoto University 253G1 strain, 201B7 strain, 409B2 strain, Examples include 454E2, 606A1, 610B1, and 648A1 strains.
  • Mesenchymal stem cells are multipotent stem cells that can differentiate into mesenchymal systems including osteoblasts, muscle cells, chondrocytes, and adipocytes.
  • the mesenchymal stem cell may be a cell isolated from a living tissue, or may be a cell derived from an ES cell or an iPS cell. Markers specific for mesenchymal stem cells include, for example,ieriios Karantalis and Joshua M. Hare, Circ Res. 2015 April 10; 116 (8): 1413-1430, and Imran Ullah, et al., Biosci.ciRep. 2015), 35 / art: e00191, etc., but is not limited thereto.
  • the cells encapsulated in the lumen 31 may be one type or two or more types.
  • the cells enclosed in the lumen 31 may be one or two or more cells. When two or more cells are encapsulated, even if they are dispersed cells, the aggregated cell mass It may be.
  • the substances produced by these cells include physiologically active substances such as hormones such as insulin, glucagon, growth hormone, paratolumon and steroids; neurotransmitters such as dopamine, serotonin, adrenaline and noradrenaline.
  • the diameter (inner diameter) d of the lumen 41 of the capsule-like structure 21 is ⁇ ( ⁇ / (2 + ⁇ ) ⁇ 1/2 r s00 or less (where “r s00 ” is a spherical cell mass in the living body).
  • the thickness t may be 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the outer diameter D of the capsule-like structure 21 is defined by the inner diameter d of the lumen 41 and the thickness t of the outer shell 31.
  • the capsule-like structures 21 are arranged in a two-dimensional direction on the same plane.
  • the number of the capsule-like structures 21 is not particularly limited, and can be arbitrarily set according to the type of transplanted cell, the transplant site, the purpose of transplant, and the like.
  • the number of arrangement is, for example, 10 to 100,000 in the vertical direction ⁇ 10 to 10,000 in the horizontal direction, preferably 100 to 10,000 in the vertical direction ⁇ 10 to 10,000 in the horizontal direction, more preferably 100 to 1000 in the vertical direction ⁇ 100 to 10,000 in the horizontal direction.
  • the arrangement of the capsule-like structures 21 in the cell-encapsulated device according to the present invention does not exclude a 1 ⁇ vertical arrangement (an arrangement in a one-dimensional direction).
  • the capsule-shaped structure 21 can be arranged also in a three-dimensional direction by arranging the cell encapsulation devices 11 in a stacked manner.
  • the arrangement of the capsule-like structures 21 in the cell-encapsulated device according to the present invention is not particularly limited as long as the body fluid flow around the individual capsule-like structures 21 is ensured and the oxygen concentration is maintained in the transplanted part.
  • the capsule-like structures are densely arranged so that the distance between them is minimized. And may be arranged. That is, the capsule-like structures 21 are preferably arranged in the closest packing as shown in FIG. 3, but may be arranged at a distance W from each other as shown in FIG. May have a planar region between the capsule structures 21.
  • the capsule-like structure according to the present invention has a substantially spherical outer shape, oxygen can be efficiently supplied from the outside to the lumen in the transplanted portion.
  • oxygen can be efficiently supplied from the outside to the lumen in the transplanted portion.
  • the thickness of the membrane used for encapsulation there is no limit to the thickness of the membrane used for encapsulation, and necrosis of cells or cell masses (or part of the cell masses) enclosed in the lumen Expected to be less likely to occur. Therefore, in the cell-encapsulated device according to the present invention, it is not necessary to use a thin and strong oxygen-permeable membrane that is generally difficult to obtain, and the degree of freedom in membrane selection is greatly improved.
  • the capsule-like structures are arranged with an independent substantially spherical outer shape without being fused with each other's curved surfaces. It is preferable. However, the union between the capsule-like structures is not completely excluded, and the capsule-like structures may be in contact with each other at a point or in a small area. In this embodiment, the lumens of the capsule structure may or may not communicate with each other.
  • the cell encapsulation device obtained by the present invention is useful as a cell medicine by encapsulating cells in a body containing cells or encapsulating cells after transplantation.
  • a medicine containing cells such as pancreatic beta cells and progenitor cells thereof
  • physiologically active molecules such as hormones (insulin, etc.) and cytokines
  • type 1 diabetes, type 2 diabetes, etc. can do.
  • the first embodiment of the method for producing a cell-encapsulated device of the present invention includes the following steps (I-2) (AI-3), and optionally further includes steps (I-1) (I-4).
  • (I-1) A step of forming a plurality of recesses arranged in a two-dimensional direction on the oxygen permeable membrane.
  • (I-2) A step of introducing cells into the recess.
  • (I-3) A step of bonding the concave surfaces of the oxygen permeable membrane so that the positions of the concave portions coincide with each other to form capsule-like structures arranged in a two-dimensional direction on the same plane.
  • I-4) A step of growing the cells in the capsule structure.
  • (I-1) Recess Formation Step In this step, a plurality of recesses 211 (see FIG. C) arranged in a two-dimensional direction are formed on the two oxygen permeable membranes 51 and 61, respectively.
  • the recess 211 has a shape corresponding to the outer shell 31 of the capsule-like structure 21 (see FIG. E), and its size can be appropriately set in consideration of the diameter (inner diameter) of the lumen 41 of the capsule-like structure 21. .
  • a male mold K1 and a female mold K2 having a shape corresponding to the recess 211 are prepared (see FIG. A).
  • An oxygen permeable film 51 made of a thermoplastic material such as ion tracked polycarbonate is molded by a heat setting method using a male mold K1 and a female mold K2 (see FIG. B).
  • another oxygen permeable membrane 61 is also formed.
  • the thicknesses of the oxygen permeable membranes 51 and 61 can be appropriately set in consideration of the thickness of the outer shell 31 of the capsule structure 21.
  • membranes 51 and 61 use a plasticizer etc. as a material suitably. In addition, it is molded by the heat setting method.
  • the molded oxygen permeable membranes 51 and 61 may be sterilized as necessary.
  • the introduction of the cell C is performed, for example, by arranging the recessed surfaces of the oxygen permeable membranes 51 and 61 so as to face each other and forming a bag shape, inserting an introduction tube 71 into a space formed between the two, and then suspending the cell suspension.
  • the method of introducing can be adopted.
  • a discharge pipe 81 for discharging the cell suspension from the space formed between the oxygen permeable membranes 51 and 61 is preferably inserted on the opposite side of the introduction pipe 71.
  • the proliferation of the cells C can be performed, for example, by immersing the cell encapsulation device obtained after the bonding step in a culture solution suitable for the proliferation of the cells C and placing it in an atmosphere suitable for the cell proliferation. As the cells proliferate, cell folds of cells C are formed in the lumen 41.
  • the cell culture can be performed by applying conventionally known conditions according to the cell type.
  • the method described in Non-Patent Document 2 can be employed for culturing pancreatic progenitor cells.
  • differentiation induction may be performed on the cell C before or after proliferation.
  • Differentiation induction can be performed by applying conventionally known conditions according to the types of the starting cells and differentiated cells.
  • the method described in Non-Patent Document 2 can be employed for induction of differentiation from pancreatic progenitor cells to pancreatic beta cells.
  • FIG. 6 is a modification of the method for manufacturing the cell-encapsulated device according to the first embodiment described above, and is different from the above-described method only in the recess forming step (I-1).
  • a vacuum forming method may be used instead of the above heat setting method.
  • the vacuum molding can naturally be performed by using only the female mold K2 and pressing the oxygen permeable membrane 51 on the vacuum mold 51 under vacuum.
  • the oxygen permeable membranes 51 and 61 When using a porous membrane as the oxygen permeable membranes 51 and 61 in order to enhance the molding effect under vacuum conditions, even if the pores are temporarily blocked by applying a removable polymer or a solution thereof to the membrane, Good. After molding, the polymer is removed from the membrane using a solvent.
  • the polymer include polyvinyl alcohol.
  • the second embodiment of the method for producing a cell-encapsulated device of the present invention includes the following steps (II-2) and (AII-3), and optionally further includes steps (II-1) and (II-4).
  • (II-1) A step of forming a plurality of recesses arranged in a two-dimensional direction on the oxygen permeable membrane.
  • (II-2) A step of forming a capsule-like structure in which the recesses are partially sealed, arranged in a two-dimensional direction on the same plane, and communicated with each other.
  • II-3) A step of introducing cells into the capsule structure
  • II-4) A step of growing the cells in the capsule structure.
  • (II-1) Recess Formation Step In this step, a plurality of recesses arranged in a two-dimensional direction are formed on the two oxygen permeable membranes 51 and 61, respectively.
  • the recess forming step (I-1) of the manufacturing method I described above the recess 211 is formed by separately applying the male mold K1 and the female mold K2 to each of the oxygen permeable films 51 and 61.
  • the resin mold K3 is used to form recesses in both the oxygen permeable membranes 51 and 61 at once.
  • a resin mold K3 having a shape corresponding to the recess is prepared (see FIG. A).
  • the resin mold K3 has a shape corresponding to the communication path 213 between the capsule-like structures 21 described later.
  • Heat setting or vacuum forming is performed with the resin mold 3 positioned between the oxygen permeable membranes 51 and 61 to form recesses in the oxygen permeable membranes 51 and 61 (see FIG. B).
  • An introduction tube 71 for introducing a solvent and a cell suspension for dissolving the resin type K3 is inserted between the conductive membranes 51 and 61, and the resin type K3 and the cell suspension dissolved on the opposite side of the introduction tube 71 are inserted. It is preferable to insert a discharge pipe 81 for discharging the liquid.
  • the thicknesses of the oxygen permeable membranes 51 and 61 can be appropriately set in consideration of the thickness of the outer shell 31 of the capsule structure 21.
  • the oxygen-permeable membranes 51 and 61 after molding may be sterilized as necessary.
  • the capsule-like structure 21 having the lumen 41 is obtained. It is done.
  • a solvent for example, polystyrene, methyl methacrylate and polycarbonate are used as the material of the resin mold K3.
  • the solvent toluene, benzene, chloroform or the like is used.
  • a capsule-like structure 21 in which the inner cavities 41 are communicated with each other via the communication path 213 is obtained by bonding the concave surfaces of the two except for the communication path 213 (see FIG. C).
  • the capsule-like structure 21 communicates with another capsule-like structure 21 adjacent only through the communication path 213, and the other part is sealed (see also FIG. 8).
  • the lower limit of the inner diameter of the communication path 213 is not particularly limited as long as the cell suspension introduced in the next cell introduction step (II-3) can flow.
  • the lower limit value of the inner diameter of the communication path 213 is, for example, about 10 to 30 ⁇ m, which is equivalent to the cell diameter.
  • the outer surface area of the capsule-like structure 21 (FIG. 8B, symbol S 1 ). area to be used for connection of the communication passage 213 of the (same numeral references S 2) proportion of is set to be 20% or less.
  • the ratio is preferably 15% or less or 10% or less, more preferably 5% or less or 3% or less, and particularly preferably 2% or 1% or less.
  • the resin mold K3 is used to form recesses in both the oxygen permeable membranes 51 and 61 one by one, and the alignment of the recesses when forming the capsule structure 21 is not necessary.
  • the concave surfaces of the oxygen permeable membranes 51 and 61 formed separately are bonded together with the positions of the concave portions being matched and excluding the portion of the communication path 213. It is naturally possible to form the capsule-like structure 21.
  • the introduction tube 71 is inserted to inject the cell suspension, and the lumens 41 of the capsule structures 21 are filled with the cell suspension via the communication path 213. . Excess cell suspension is finally discharged out of the device from the discharge tube 81. After the introduction of the cell C, the introduction tube 71 and the discharge tube 81 may be removed.
  • (II-4) Cell Proliferation Step the cells C are grown in the lumen 41 of the capsule structure 21 as necessary. This step can be performed in the same manner as the cell growth step (I-4) of production method I.
  • the third embodiment of the method for producing a cell-encapsulated device of the present invention includes the following steps (III-1) (III-2) (III-3).
  • III-1) A step of arranging a plurality of capsule-like structures in which at least a part of the outer shell is formed of an oxygen permeable membrane and enclosing cells therein in a two-dimensional direction on the same plane.
  • III-2) A step of bringing a base material coated with an oxygen permeable film forming solution into contact with a plurality of arranged capsule structures.
  • III-3) A step of solidifying the oxygen permeable film forming solution.
  • (III-1) Arranging Step In this step, a plurality of capsule-like structures 22 in which at least a part of the outer shell 32 is formed of an oxygen permeable membrane and cells or cell aggregates C are encapsulated therein are arranged on the same plane. Are arranged in a two-dimensional direction.
  • the capsule-like structure 22 is produced according to a known method (Non-Patent Document 3) (see FIG. A).
  • the outer shell 32 is preferably a hydrogel film, and the material is a natural polymer such as agarose, sodium alginate, hyaluronic acid, cellulose, gelatin, polyvinyl alcohol or polyacrylamide having a functional group that is cross-linked by light irradiation.
  • the capsule-like structures 22 obtained in this way are arranged in a two-dimensional direction on a plastic or metal guide plate S1 (see FIG. B). At this time, a groove or a recess may be provided in the guide plate S1, and the capsule-like structures 22 may be arranged in the groove or the recess.
  • a base material S2 coated with an oxygen permeable film forming solution G on the surface is prepared (see FIG. C).
  • a nylon membrane, a polyester membrane, a polyimide membrane, or the like may be used, and the material and thickness thereof are not limited.
  • the same material as the outer shell 32 of the capsule structure 22 for the oxygen permeable film forming solution G is preferable to use the same material as the outer shell 32 of the capsule structure 22 for the oxygen permeable film forming solution G. That is, it is preferable to use an agarose gel solution when the outer shell 32 is made of an agarose gel, and to use a sodium alginate solution when the outer shell 32 is made of an alginate gel.
  • the base material S2 is laminated on the capsule structure 22 arranged on the base material S2 with the application surface of the oxygen permeable film forming solution G facing down (see FIG. D).
  • the capsule-like structures 22 may be directly arranged on the base material S2 coated with the oxygen permeable film forming solution G on the surface without using the guide plate S1.
  • (III-3) Solidification Step the oxygen permeable film forming solution G is solidified.
  • the oxygen permeable film forming solution G is solidified to become the oxygen permeable film 51 and is fixed to the capsule structure 24.
  • the oxygen permeable membrane 51 is separated from the guide plate S1 together with the capsule structure 22 as necessary (see FIG. E).
  • the capsule-like structures 22 are arranged directly on the base material S2 coated with the gel solution G on the surface, separation from the guide plate S1 is not necessary.
  • the oxygen permeable film forming solution G is solidified by, for example, reducing the temperature in the case of an agarose gel solution, or by immersing it in a calcium chloride or barium chloride solution in the case of an alginate gel solution, or by crosslinking with light irradiation or the like.
  • the irradiation can be performed by light irradiation.
  • the cell encapsulation device can be obtained by peeling the substrate S2 from the oxygen permeable membrane 51.
  • the fourth embodiment of the method for producing a cell-encapsulated device of the present invention includes the following steps (IV-1) (IV-3) (IV-4), and optionally further includes a step (IV-2).
  • IV-1) A step of accommodating cells in a plurality of recesses arranged in a two-dimensional direction on a substrate and separated from each other by partition walls.
  • IV-2) growing the cell in the recess;
  • IV-3) A step of introducing an oxygen permeable film forming solution onto the recess forming surface of the substrate.
  • IV-4) A step of solidifying the oxygen permeable membrane forming solution and separating the oxygen permeable membrane together with the cells from the substrate.
  • (IV-1) Cell accommodation step In this step, the cells C are accommodated in the plurality of recesses 212 arranged in a two-dimensional direction on the guide plate S2 and separated from each other by the partition walls (see FIG. A).
  • the guide plate S2 is a plastic or metal substrate provided with a recess 211 that can accommodate cells C.
  • the guide plate S2 is preferably one that can directly use the cells C accommodated in the recesses 212 for the next cell growth step.
  • a general-purpose U-bottom petri dish can be used.
  • the recess 212 has a shape corresponding to the outer shell of the capsule-like structure 21 (see FIG. D), and the size thereof can be appropriately set in consideration of the outer diameter of the capsule-like structure 21.
  • the proliferation of the cells C can be performed, for example, by filling the recess 212 with the culture medium M and then placing the guide plate S2 in an atmosphere suitable for cell proliferation. Due to the proliferation of the cells, cell folds of the cells C are formed in the recesses 211.
  • the maximum diameter of the obtained cell sputum corresponds to the diameter of the lumen of the capsule-like structure 21 of the obtained cell encapsulation device.
  • differentiation induction may be performed on the cells C before or after proliferation.
  • the specific method for inducing differentiation is as described above.
  • the oxygen permeable film forming solution G it is preferable to use the same material as the material of the outer shell of the capsule structure 21. That is, it is preferable to use an agarose gel solution when the outer shell is made of an agarose gel and to use an alginate gel solution when the outer shell is made of an alginate gel.
  • the specific gravity of the oxygen-permeable film-forming solution G is determined according to the specific gravity of the cell C or its aggregates. Specifically, the specific gravity of the oxygen permeable film forming solution G is adjusted to be substantially the same as the specific gravity of the cell tub so that the cell tub can float in the introduced oxygen permeable film forming solution G. . It is preferable to penetrate the guide plate S1 and promote the suspension of the cell soot in the oxygen permeable film forming solution G.
  • the introduction amount of the oxygen permeable film forming solution G is determined based on the outer diameter of the capsule structure 21 and the thickness of the oxygen permeable film 51 obtained by solidifying the oxygen permeable film forming solution G (capsule structure 21 Can be set as appropriate in consideration of the thickness of a part of the outer shell of the material.
  • the oxygen permeable film forming solution G is solidified by, for example, reducing the temperature in the case of an agarose gel solution, or by immersing it in a calcium chloride or barium chloride solution in the case of an alginate gel solution, or by crosslinking with light irradiation or the like.
  • the irradiation can be performed by light irradiation.
  • a void (dead sky) can be formed between the cell capsule encapsulated in the capsule-like structure and the oxygen permeable membrane. Absent. Therefore, there is no fear of inhibiting the oxygen supply to the cells due to the voids that are problematic when voids are generated, and sufficient oxygen can be supplied to the cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cell Biology (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

移植部において細胞に十分な酸素が供給され、そのためにより大きな細胞塊を封入し得る細胞封入デバイスとして、外殻の少なくとも一部が酸素透過性膜で形成され、内部に細胞が封入された複数のカプセル状構造体が、同一平面上の2次元方向に配列された細胞封入デバイスを提供する。

Description

細胞封入デバイス
 本発明は、細胞封入デバイス及びその製造方法に関する。
[発明の背景]
 移植細胞を封入した細胞移植治療用デバイスが開発されている。細胞封入デバイスによれば、低侵襲かつ簡便に体内の目的部位に移植細胞を移植できる。また、細胞封入デバイスは、移植細胞を体外に取り出す必要が生じた場合に、デバイスごと移植細胞を確実かつ簡便に除去できるという利点を有する。
 特許文献1には、宿主組織とチャンバー内の移植細胞との間に、宿主組織の免疫応答から移植細胞を隔離することが可能なポアサイズの多孔質の境界を形成した埋め込みアセンブリーが開示されている(特許文献1、請求項1参照)。このデバイスは、細胞を保持するための1つのチャンバーを有し、全体は平らな形状であって、該チャンバーは鉛直方向に薄く水平方向に幅広な「平板型」とされている(特許文献1、図8、図9参照)。また、特許文献2には、移植細胞をカプセル化するための少なくとも1つのチャンバーを含む、細胞カプセル化用アセンブリであって、周辺端部の第一の接着部、および、前記チャンバーの体積を効果的に減少させるがデバイス表面積を増加させる第二の接着部、を含む、アセンブリが開示されている(特許文献2、請求項16参照)。このデバイスも、全体は平らな形状であって、チャンバーは鉛直方向に薄く水平方向に幅広な「平板型」とされている(特許文献2、図1参照)。平板型チャンバ―からなるデバイスについては、非特許文献1も参照。
 特許文献3には、「生細胞を封入するための少なくとも2つの細胞チャンバーと、前記細胞チャンバー同士を隔てる長軸に沿った無細胞領域とを含む、3次元細胞封入アセンブリーであって、無細胞領域が屈曲してフォールドを形成し、前記フォールドが、フォールドを伴わないアセンブリーと比較して、アセンブリーの実効面積を減少させ、これにより3次元細胞封入デバイスを形成する、3次元細胞封入アセンブリー」が開示されている(特許文献3、請求項1参照)。このデバイスにおいては個々のチャンバーは「平板型」とされているが、平板型のチャンバーがフォールドによって接続されて配列することによって、デバイス全体は「すだれ型」の形状とされている(特許文献3、図3,7,15,20,57,62参照)。
 細胞封入デバイスでは、治療効果を高めるために、より多くの細胞、すなわちより大きな細胞塊をデバイス内に封入することが望ましい。一方で、移植細胞を生体内で機能させるため、移植部においてデバイス内の細胞に十分な酸素が供給されることが必要であるが、封入される細胞塊が大きくなるほど、細胞塊の中心部で酸素の不足による壊死が生じやすくなる。酸素の供給を促進するために、多孔質膜等に膜厚を薄くすることも考えられるが、この場合には十分なデバイスの強度を維持するのが困難になる。
特開平08-507949号公報 特表2012-508584号公報 特表2016-512022号公報
Ohgawara H, et. al., "Membrane immunoisolation of a diffusion chamber for bioartificial pancreas", Artif. Organs, 1998, 22(9):788-94 Rezania A, et. Al., "Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells", Nat. Biotechnol., 2014, 32(11):1121-33 Iwata H, et. al., Agarose for a bioartificial pancreas., J. Biomed. Mater. Res., 1992, 26(7):967-77
 本発明は、移植部において細胞に十分な酸素が供給され、その結果、より大きな細胞塊を封入し得る細胞封入デバイスを提供することを主な目的とする。
 上記課題解決のため、本発明は、以下の[1]~[17]を提供する。
[1] 外殻の少なくとも一部が酸素透過性膜で形成され、内部に細胞が封入された複数のカプセル状構造体が、同一平面上の2次元方向に配列された細胞封入デバイス。
[2] 前記酸素透過性膜が、多孔質膜又はハイドロゲル膜である、[1]の細胞封入デバイス。
[3] 前記細胞は、生理活性分子の分泌細胞である、[1]又は[2]の細胞封入デバイス。
[4] 酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程と、
前記凹部を一部封止し、同一平面上の2次元方向に配列され、互いの内腔が連通されたカプセル状構造体を形成する工程と、
前記カプセル状構造体に細胞を導入する工程と、を含む、細胞封入デバイスの製造方法。
[5] 酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程と、
前記凹部に細胞を導入する工程と、
前記酸素透過性膜の陥凹面を、前記凹部の位置を一致させて貼り合せ、同一平面上の2次元方向に配列されたカプセル状構造体を形成する工程と、を含む、細胞封入デバイスの製造方法。
[6] 酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程と、
前記凹部に細胞を導入する工程と、
前記酸素透過性膜の陥凹面を、前記凹部の位置を一致させて貼り合せ、同一平面上の2次元方向に配列されたカプセル状構造体を形成する工程と、
前記細胞を前記カプセル状構造体内で増殖させる工程と、を含む、細胞封入デバイスの製造方法。
[7] 前記酸素透過性膜に前記凹部をヒートセット法又は真空成型法により形成する、[4]~[6]のいずれかの細胞封入デバイスの製造方法。
[8] 前記酸素透過性膜が、多孔質膜またはハイドロゲル膜である、[4]~[7]のいずれかの細胞封入デバイスの製造方法。
[9] 前記細胞が、生理活性分子の分泌細胞である、[4]~[8]のいずれかの細胞封入デバイスの製造方法。
[10] 外殻の少なくとも一部が酸素透過性膜で形成され、内部に細胞が封入された複数のカプセル状構造体を同一平面上の2次元方向に配列させる工程と、
配列させた複数のカプセル状構造体に、酸素透過性膜形成溶液を塗布した基材を接触させる工程と、
前記酸素透過性膜形成溶液を固化する工程と、を含む、細胞封入デバイスの製造方法。
[11] 前記酸素透過性膜が、多孔質膜またはハイドロゲル膜である、[10]の細胞封入デバイスの製造方法。
[12] 前記細胞が、生理活性分子の分泌細胞である、[10]又は[11]の細胞封入デバイスの製造方法。
[13] 基板上に2次元方向に配列され、隔壁により互いに分離された複数の凹部内に細胞を収容する工程と、
前記基板の凹部形成面上に、酸素透過性膜形成溶液を導入する工程と、
前記酸素透過性膜形成溶液を固化し、前記基板から酸素透過性膜を前記細胞とともに分離する工程と、を含む、細胞封入デバイスの製造方法。
[14] 基板上に2次元方向に配列され、隔壁により互いに分離された複数の凹部内に細胞を収容する工程と、
前記凹部内で前記細胞を増殖させる工程と、
前記基板の凹部形成面上に、酸素透過性膜形成溶液を導入する工程と、
前記酸素透過性膜形成溶液を固化し、前記基板から酸素透過性膜を前記細胞とともに分離する工程と、を含む、細胞封入デバイスの製造方法。
[15] 前記酸素透過性膜形成溶液の比重が、前記細胞あるいはその凝集塊の比重に応じて決定される、[13]又は[14]の細胞封入デバイスの製造方法。
[16] 前記細胞が、生理活性分子の分泌細胞である、[13]~[15]のいずれかの細胞封入デバイスの製造方法。
[17] [1]~[3]の細胞封入デバイスを含む医薬。
 本明細書において、「実質的に(substantially)」又は「本質的に(essentially)」とは、基準値の90%以上、好ましくは95%、96%、97%、98%、又は99%以上の値であることを示す。例えば、「実質的に同一」又は「本質的に同一」とは、基準値との同一性が90%以上、好ましくは95%、96%、97%、98%、又は99%以上であることを意味し、「実質的に含まない(substantially free of)」又は「本質的に含まない(essentially free of)」とは、特定の物質を5%を超えて含まないこと、又は検出不可能であることを意味する。
 本明細書において、「~を含む(comprise(s)又はcomprising)」とは、その語句に続く要素の包含を示すがこれに限定されないことを意味する。したがって、その語句に続く要素の包含は示唆するが、他の任意の要素の除外は示唆しない。
 本明細書において、「~からなる(consist(s) of又はconsisting of)」とは、その語句に続くあらゆる要素を包含し、かつ、これに限定されることを意味する。したがって、「~からなる」という語句は、列挙された要素が要求されるか又は必須であり、他の要素は実質的に存在しないことを示す。「~から本質的になる」とは、その語句に続く任意の要素を包含し、かつ、その要素について本開示で特定された活性又は作用に影響しない他の要素に限定されることを意味する。したがって、「~から本質的になる」という語句は、列挙された要素が要求されるか又は必須であるが、他の要素は任意選択であり、それらが列挙された要素の活性又は作用に影響を及ぼすかどうかに応じて、存在させる場合もあり、存在させない場合もあることを示す。
 本明細書において、「エクスビボ(ex vivo)」とは、一般に、培養組織や培養細胞など、生体外の人工的な環境において生組織中で行われた実験又は測定を示すために使用される。使用される組織又は細胞は、保存のために凍結されてもよく、後に生体外処理のために解凍されたものでもよい。数日以上続けて、生細胞又は生組織の組織培養実験を行う場合は、「インビトロ(in vitro)」という用語が使用されるが、「インビトロ」は、「エクスビボ」と互換的に用いられる場合もある。これに対し、「インビボ(in vivo)」という用語は、一般に、細胞の増殖など、生体内で起きる現象を指すために使用される。
 本明細書において、「培養」とは、細胞をインビトロ環境において維持し、増殖させ(成長させ)、かつ/又は分化させることを指す。「培養する」とは、組織外又は体外で、例えば、細胞培養ディッシュ又はフラスコ中で細胞を持続させ、増殖させ(成長させ)、かつ/又は分化させることを意味する。
 本発明により、移植部において細胞に十分な酸素が供給され、その結果、より大きな細胞塊を封入し得る細胞封入デバイスが提供される。
本発明の細胞封入デバイスの第一実施形態を示す図である。(A)は上面斜視図と一部拡大断面図、(B)は断面図である。 本発明の細胞封入デバイスの第二実施形態を示す図である。 本発明の細胞封入デバイスの第三実施形態を示す図である。 本発明の細胞封入デバイスの第四実施形態を示す図である。(A)は上面斜視図、(B)は断面図である。 本発明の細胞封入デバイスの製造方法の第一実施形態を示す図である。 第一実施形態に係る細胞封入デバイスの製造方法の変形例を示す図である。 本発明に係る細胞封入デバイスの製造方法の第二実施形態を示す図である。 カプセル状構造体間を接続する連通路の構成を示す図である。 本発明の細胞封入デバイスの製造方法の第三実施形態を示す図である。 本発明の細胞封入デバイスの製造方法の第四実施形態を示す図である。
 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
1.細胞封入デバイス
 図1に、本発明の細胞封入デバイスの第一実施形態を示す。細胞封入デバイス11は、複数のカプセル状構造体21が、同一平面上の2次元方向に配列されてなる。
 本発明においてカプセル状構造体とは、球形又は略球形の外殻あるいは半球形又は略半球形の外殻からなり、該外殻内に空間(内腔)を有する構造体を意味する。
 略球形とは、構造体の任意の一方向における直径と、これに直交する方向の直径との比が0.7~1.3、特に0.8~1.2であることを意味する。また、略半球形とは、球形又は略球形の構造体を任意の一平面で切断してえられる2つの構造体のいずれかである。
 細胞封入デバイス11においては、カプセル状構造体21は、球形又は略球形の外殻31からなるものとされており、外殻31内に内腔41を有する。本明細書において、カプセル状構造体21が略球形を有する場合、外殻31の外径および内腔41の内径は、それぞれの長径を意味する。
 本発明に係る細胞封入デバイスにおいて、カプセル状構造体は、図2に示すように、半球形又は略半球形であってもよい。以下、球形、略球形、半球形及び略半球形を総称して、単に「略球形」とも記載するものとする。
 カプセル状構造体の内腔は、外殻によりデバイス外部の空間と隔絶された密封空間であってよい。あるいは、カプセル状構造体は、隣接する他のカプセル状構造体と内腔が連通し合うものであってもよい(後述の図7,図8参照)。
 カプセル状構造体21の外殻31は、カプセル構造体21の外形をなすものであり、少なくともその一部が酸素透過性膜で形成される。これによって、移植部において、内腔41に封入された細胞に酸素性透過膜を通じて酸素が供給される。酸素透過性膜は、少なくとも酸素に対する透過性を有することが必要であり、内腔41に封入された細胞が本発明のデバイス外に漏出しない限り、酸素以外のガス、及び細胞の生存に必要な栄養質に対しても透過性を有していてもよい。さらに、酸素透過性膜は、内腔41に封入された細胞が産生する物質に対する透過性を有する。これによって、内腔41に封入された細胞が産生する物質が酸素性透過膜を通じて移植部に放出される。
 酸素以外のガスとしては、二酸化炭素及び窒素等が挙げられる。
 また、細胞の生存に必要な栄養物質としては、糖、アミノ酸、脂質、ビタミン及びミネラル等が挙げられる。
 一方で、酸素透過性膜は、内腔41に封入された細胞と宿主の細胞との隔壁として機能するために、宿主の細胞、好ましくはこれに加えて宿主の抗体、を通過させないものとされる必要がある。これによって、移植細胞が宿主細胞からの免疫応答によって排除されたり、不活化されたりするのを回避しえる。
 酸素透過性膜は、多孔質膜であってよい。
 多孔質膜のポアサイズは、酸素、栄養質及び細胞産生物質に対する透過性のため、10~5000nm、好ましくは50~1000nm、より好ましくは100~500nmとされる。酸素透過性膜が有する複数の孔は、全体として酸素、栄養質及び細胞産生物質の必要量を透過できるように酸素透過性膜上に均一に分散して存在していることが好ましい。
 多孔質膜の素材としては、熱可塑性を有する材料(ポリフッ化ビニリデン、アクリロニトリル-塩化ビニル共重合体、ポリ塩化ビニル、ナイロン、ポリスルホン、ポリエーテルスルホン、エチレンビニルアルルコール共重合体、ポリエステル系ポリマーアロイ、ポリプロピレン、延伸ポリプロピレン、イオントラックドポリエステル及びイオントラックドポリカーボネート)、及び熱可塑性を有しない材料(延伸ポリテトラフルオロエチレン(EPTFE)、再生セルロース、セルロースアセテート及びセルロース混合エステル等)が挙げられる。
 また、酸素透過性膜は、水により膨潤するハイドロゲル膜であってもよい。
 ハイドロゲル膜の素材として、アガロース、アルギン酸、ヒアルロン酸、セルロース、ゼラチン等の天然高分子、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリイソプロピルアクリルアミド、ポリ2-ヒドロキシエイチルメタクリレート、ポリ2-ヒドロキシエイチルアクリレート及びポロビニルピロリドン、並びにそれぞれのモノマーの共重合体等の合成高分子の化学的また物理的架橋体等が挙げられる。
 酸素透過性膜は市販品を用いてもよいし、自体公知の方法で、固化することによって酸素透過性膜を形成する溶液(酸素透過性膜形成溶液)から調製することもできる。
 内腔41には、細胞が封入される。細胞としては、ホルモン(インスリン等)及びサイトカインなどの生理活性分子を分泌する細胞(例えば膵ベータ細胞およびその前駆細胞等)が挙げられる。
 これらの細胞は、ドナーから分離されたex vivoの細胞であってよく、またin vitroで培養された細胞であってもよい。in vitroで培養された細胞とは、例えば胚性幹細胞(ES細胞)、人工多能性幹細胞等の多能性幹細胞(pluripotent stem cell)あるいは間葉系幹細胞等の多分化能性幹細胞(multipotent stem cell)であってよく、またこれらから分化誘導された細胞であってよい。
 ここで、「多能性幹細胞(pluripotent stem cell)」とは、胚性幹細胞(ES細胞)及びこれと同様の分化多能性、すなわち生体の様々な組織(内胚葉、中胚葉、外胚葉の全て)に分化する能力を潜在的に有する細胞を指す。ES細胞と同様の分化多能性を有する細胞としては、「人工多能性幹細胞」(本明細書中、「iPS細胞」と称することもある)が挙げられる。
 「ES細胞」としては、マウスES細胞であれば、inGenious targeting laboratory社、理研(理化学研究所)等が樹立した各種マウスES細胞株が利用可能であり、ヒトES細胞であれば、米国ウイスコンシン大Thomsonら、米国NIH、理研、京都大学、Cellartis社が樹立した各種ヒトES細胞株が利用可能である。たとえば、ヒトES細胞株としては、NIHのCHB-1~CHB-12株、RUES1株、RUES2株、HUES1~HUES28株等、WisCell ResearchのH1株、H9株、理研のKhES-1株、KhES-2株、KhES-3株、KhES-4株、KhES-5株、SSES1株、SSES2株、SSES3株等を利用することができる。
 「人工多能性幹細胞」とは、哺乳動物体細胞又は未分化幹細胞に、特定の因子(核初期化因子)を導入して再プログラミングすることにより得られる細胞を指す。現在、「人工多能性幹細胞」にはさまざまなものがあり、山中らにより、マウス線維芽細胞にOct3/4・Sox2・Klf4・c-Mycの4因子を導入することにより、樹立されたiPS細胞(Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676)のほか、同様の4因子をヒト線維芽細胞に導入して樹立されたヒト細胞由来のiPS細胞(Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.)、上記4因子導入後、Nanogの発現を指標として選別し、樹立したNanog-iPS細胞(Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Nature 448, 313-317.)、c-Mycを含まない方法で作製されたiPS細胞(Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101 - 106)、ウイルスフリー法で6因子を導入して樹立されたiPS細胞(Okita K et al. Nat. Methods 2011 May;8(5):409-12, Okita K et al. Stem Cells. 31(3):458-66.)も用いることができる。また、Thomsonらにより作製されたOCT3/4・SOX2・NANOG・LIN28の4因子を導入して樹立された人工多能性幹細胞(Yu J., Thomson JA. et al., Science (2007) 318: 1917-1920.)、Daleyらにより作製された人工多能性幹細胞(Park IH, Daley GQ. et al., Nature (2007) 451: 141-146)、桜田らにより作製された人工多能性幹細胞(特開2008-307007号)等も用いることができる。
 このほか、公開されているすべての論文(例えば、Shi Y., Ding S., et al., Cell Stem Cell, (2008) Vol3, Issue 5,568-574;、Kim JB., Scholer HR., et al., Nature, (2008) 454, 646-650;Huangfu D., Melton, DA., et al., Nature Biotechnology, (2008) 26, No 7, 795-797)、あるいは特許(例えば、特開2008-307007号、特開2008-283972号、US2008-2336610、US2009-047263、WO2007-069666、WO2008-118220、WO2008-124133、WO2008-151058、WO2009-006930、WO2009-006997、WO2009-007852)に記載されている当該分野で公知の人工多能性幹細胞のいずれも用いることができる。
 容易に入手可能な人工多能性細胞株としては、NIH、理研、京都大学等が樹立した各種iPS細胞株がある。例えば、ヒトiPS細胞株であれば、理研のHiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株、京都大学の253G1株、201B7株、409B2株、454E2株、606A1株、610B1株、648A1株等が挙げられる。
 「間葉系幹細胞(Mesenchymal Stem Cell)」とは、骨芽細胞、筋細胞、軟骨細胞、及び脂肪細胞を含めた間葉系に分化しうる多分化能性幹細胞(multipotent stem cell)である。本発明において、間葉系幹細胞は生体組織から単離された細胞であってもよいし、ES細胞やiPS細胞に由来する細胞であってもよい。間葉系幹細胞に特異的なマーカーは、例えば、Vasileios Karantalis and Joshua M. Hare, Circ Res. 2015 April 10; 116(8): 1413-1430、及びImran Ullah, et al., Biosci. Rep. (2015), 35/art:e00191等に記載されているが、これらに限定されない。
 内腔31に封入される細胞は、1種類又は2種類以上であってよい。また、内腔31に封入される細胞は、1個あるいは2個以上の細胞であってよく、2個以上の細胞が封入される場合それらは分散された細胞であっても、凝集した細胞塊であってもよい。
 これらの細胞が産生する物質としては、インスリン、グルカゴン、成長ホルモン、パラトルモン及びステロイドなどのホルモン;ドーパミン、セロトニン、アドレナリン及びノルアドレナリン等の神経伝達物質;などの生理活性物質が挙げられる。
 カプセル状構造体21の内腔41の径(内径)dは、{(ρ/(2+ρ)}1/2rs00以下(ここで「rs00」は、球状の細胞塊を生体内にそのまま移植したときに細胞の壊死を生じない細胞塊の最大半径を意味し、「ρ」は、細胞塊内の酸素核酸定数(D0)と酸素透過性膜(外殻31)内の酸素核酸定数(D1)との比(D1/D0)を意味する)とされる。
 内腔41の内径dが上記数値範囲であれば、外殻31の厚さtは何ら制限されるものではない。例えば、厚さtは、0.1μm以上であってよく、好ましくは1μm以上、より好ましくは10μm以上とされ得る。
 カプセル状構造体21の外径Dは、内腔41の内径dと外殻31の厚さtによって規定される。
 カプセル状構造体21は、同一平面上の2次元方向に配列される。
 カプセル状構造体21の配設数は、特に限定されず、移植細胞の種類、移植部位及び移植の目的等に応じて任意に設定されえる。
 配設数は、例えば縦10~100000個×横10~10000個、好ましくは縦100~10000個×横10~10000個、より好ましくは縦100~1000個×横100~10000個とされる。
 ただし、本発明に係る細胞封入デバイスにおけるカプセル状構造体21の配列態様から、縦1個×横複数個の配列(一次元方向での配列)を排除するものではない。また、細胞封入デバイス11を複数積み重ねて配置することで、カプセル状構造体21を3次元方向にも配列させ得る。本発明に係る細胞封入デバイスにおけるカプセル状構造体21の配列態様は、移植部において個々のカプセル状構造体21の周囲の体液の流れが確保され、酸素濃度が維持される限りにおいて特に制限されない。
 本発明においては、同一平面上により多数のカプセル状構造体を配列させるため、カプセル状構造体は互いの距離が最小となるように密に配列されることが好ましいが、互いに所定の距離をおいて配列されていてもよい。すなわち、カプセル状構造体21は、図3に示すように最密充填で配置されることが好ましいが、図4に示すように互いに距離Wをおいて配列されていてもよく、細胞封入デバイス11は各カプセル状構造体21間に平面領域を有していてもよい。
 本発明に係るカプセル状構造体は、略球形の外形を有することによって、移植部において外部から内腔への酸素供給が効率的に行われえるため、従来の細胞封入デバイスが備える細胞塊が平板状に封入された「平板型」あるいは「スダレ型」のチャンバーと異なり封入に用いる膜の厚さに制限がなく、内腔に封入した細胞または細胞塊(もしくは細胞塊の一部)の壊死が生じにくいことが期待できる。したがって、本発明に係る細胞封入デバイスでは、一般的に入手が困難である薄くかつ丈夫な酸素透過性膜を用いる必要がなく、膜選択の自由度が飛躍的向上する。
 移植部において外部から内腔への酸素供給が効率的に行われるようするため、カプセル状構造体は互いの曲面同士で癒合することなく、それぞれが独立した略球形の外形を有して配列されていることが好ましい。ただし、カプセル状構造体同志の癒合は完全に排除されるものではなく、カプセル状構造体は互いに点であるいは小面積で接触していてもよいものとする。また、この実施形態において、カプセル状構造体の内腔同士は連通していてもよいし、していなくてもよい。
 本発明により得られた細胞封入デバイスは、細胞を含んだ状態で体内に移植、もしくは移植後に細胞を封入することで、細胞医薬として有用である。特に、ホルモン(インスリン等)及びサイトカインなどの生理活性分子を分泌する細胞(例えば膵ベータ細胞およびその前駆細胞等)を含む医薬として、糖尿病(1型糖尿病、2型糖尿病等)等の治療に使用することができる。
2.細胞封入デバイスの製造方法
(1)製造方法I
 本発明の細胞封入デバイスの製造方法の第一実施形態は、以下の工程(I-2)(AI-3)を含み、場合によってさらに工程(I-1)(I-4)を含むものである。
(I-1)酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程。
(I-2)前記凹部に細胞を導入する工程。
(I-3)前記酸素透過性膜の陥凹面を、前記凹部の位置を一致させて貼り合せ、同一平面上の2次元方向に配列されたカプセル状構造体を形成する工程。
(I-4)前記細胞を前記カプセル状構造体内で増殖させる工程。
 以下、図5を参照して、各工程を順に説明する。
(I-1)凹部形成工程
 本工程では、2枚の酸素透過性膜51,61上にそれぞれ2次元方向に配列された複数の凹部211(図C参照)を形成する。凹部211はカプセル状構造体21(図E参照)の外殻31に応じた形状を有し、そのサイズはカプセル状構造体21の内腔41の径(内径)を考慮して適宜設定されえる。
 具体的には、まず、凹部211に対応する形状を有するオス型金型K1とメス型金型K2を用意する(図A参照)。次に、ポリフッ化ビニリデン、アクリロニトリル-塩化ビニル共重合体、ポリ塩化ビニル、ナイロン、ポリスルホン、ポリエーテルスルホン、エチレンビニルアルルコール共重合体、ポリエステル系ポリマーアロイ、ポリプロピレン、延伸ポリプロピレン、イオントラックドポリエステル及びイオントラックドポリカーボネート等の熱可塑性材料からなる酸素透過性膜51をオス型金型K1とメス型金型K2を用いたヒートセット法により成形する(図B参照)。同様に、もう一枚の酸素透過性膜61も成形する。金型型から分離した成形後の酸素透過性膜51、61を図Cに示す。この際、酸素透過性膜51,61の厚さは、カプセル状構造体21の外殻31の厚さを考慮して適宜設定されえる。なお、酸素透過性膜51,61として、延伸ポリテトラフルオロエチレン(EPTFE)、再生セルロース、セルロースアセテート及びセルロース混合エステル等の熱可塑性を有しない材料を用いる場合には、適宜可塑剤などを材料に加えヒートセット法により成形する。
 成形後の酸素透過性膜51、61は、必要に応じて、滅菌処理を行ってもよい。
(I-2)細胞導入工程
 本工程では、酸素透過性膜51,61の一方の凹部211に細胞Cを導入する(図D参照)。
 細胞Cの導入は、例えば、酸素透過性膜51,61の陥凹面を対向させて配置して袋状とし、両者の間に形成される空間に導入管71を挿入して、細胞懸濁液を導入する方法を採用できる。導入管71の対側には、酸素透過性膜51,61の間に形成される空間から細胞懸濁液を排出するための排出管81を挿入することが好ましい。
(I-3)貼り合せ工程
 本工程では、酸素透過性膜51,61の陥凹面を、互いの凹部211の位置を一致させて貼り合せる。これによって、凹部211を封止し、同一平面上の2次元方向に配列されたカプセル状構造体21を形成し、細胞封入デバイスを得る(図E参照)。この際、導入管71及び排出管81は抜去されてよい。
(I-4)細胞増殖工程
 本工程では、必要に応じて、細胞Cをカプセル状構造体21の内腔41内で増殖させる。
 細胞Cの増殖は、例えば、貼り合せ工程後に得られた細胞封入デバイスを、細胞Cの増殖に適した培養液に浸漬し、細胞増殖に適した雰囲気下におくことにより行うことができる。細胞の増殖により、内腔41内に細胞Cの細胞隗が形成される。
 細胞の培養は、細胞の種類に応じて従来公知の条件を適用して行うことができる。例えば、膵前駆細胞の培養は、非特許文献2に記載の方法を採用できる。
 本工程では、必要に応じて、さらに増殖前あるいは増殖後の細胞Cに対して分化誘導を行ってもよい。
 分化誘導は、出発細胞及び分化細胞の種類に応じて従来公知の条件を適用して行うことができる。例えば膵前駆細胞から膵ベータ細胞への分化誘導は、非特許文献2に記載の方法を採用できる。
 図6は、上述の第一実施形態に係る細胞封入デバイスの製造方法の変形例であり、凹部形成工程(I-1)でのみ上述の方法と異なっている。本発明において、凹部形成工程(I-1)では、上述のヒートセット法に替えて真空成型法を用いてもよい。
 具体的には、図6に示す製造方法では、凹部形成工程(I-1)において、上述したオス型金型K1のみを用い、オス型金型K1上に酸素透過性膜51を位置させ(図A参照)、これらを真空下におくことによりオス型金型K1に酸素透過膜51を圧着させて、酸素透過性膜51に凹部211を形成する(図B参照)。なお、真空成型は、メス型金型K2のみを用いて、真空下でこれに酸素透過膜51を圧着させて行うことも当然に可能である。
 真空条件下での成形効果を高めるため、酸素透過性膜51,61として多孔質膜を用いる場合には、膜に除去可能な高分子又はその溶液を塗布することで孔を一時的に塞いでもよい。成型後、溶剤を用いて膜から高分子を除去する。
 高分子としては、例えば、ポリビニルアルコールが挙げられる。
 (2)製造方法II
 本発明の細胞封入デバイスの製造方法の第二実施形態は、以下の工程(II-2)(AII-3)を含み、場合によってさらに工程(II-1)(II-4)を含むものである。
(II-1)酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程。
(II-2)前記凹部を一部封止し、同一平面上の2次元方向に配列され、互いの内腔が連通されたカプセル状構造体を形成する工程。
(II-3)前記カプセル状構造体に細胞を導入する工程
(II-4)前記細胞を前記カプセル状構造体内で増殖させる工程。
 以下、図7を参照して、各工程を順に説明する。
(II-1)凹部形成工程
 本工程では、2枚の酸素透過性膜51,61上にそれぞれ2次元方向に配列された複数の凹部を形成する。上述の製造方法Iの凹部形成工程(I-1)では、酸素透過性膜51,61のそれぞれに対して別々にオス型金型K1及びメス型金型K2を適用して凹部211を形成する態様を説明したが、本工程では樹脂型K3を用いて酸素透過性膜51,61の両方にいちどきに凹部を形成する。
 具体的には、まず、凹部に対応する形状を有する樹脂型K3を用意する(図A参照)。樹脂型K3は、凹部に対応する形状に加えて、後述するカプセル状構造体21同士の連通路213に対応する形状を有する。
 酸素透過性膜51,61の間に樹脂型3を位置させた状態でヒートセット又は真空成型を行って、酸素透過性膜51,61に凹部を成形する(図B参照)この際、酸素透過性膜51,61の間には、樹脂型K3を溶解する溶媒及び細胞懸濁液を導入するための導入管71を挿入し、導入管71の対側に溶解した樹脂型K3及び細胞懸濁液を排出するための排出管81を挿入することが好ましい。
 酸素透過性膜51,61の厚さは、カプセル状構造体21の外殻31の厚さを考慮して適宜設定され得る。成形後の酸素透過性膜51、61は、必要に応じて、滅菌処理を行ってもよい。
(II-2)封止工程
 本工程では、凹部を一部封止し、同一平面上の2次元方向に配列され、互いの内腔41が連通されたカプセル状構造体21を形成する。
 前記工程(II-1)後の酸素透過性膜51,61及び樹脂型3を、溶剤に浸漬して樹脂型3を溶解、除去することによって、内腔41を有するカプセル状構造体21が得られる。溶剤による除去を可能とするため、樹脂型K3の材質には、例えば、ポリスチレン、メタクリル酸メチル及びポリカーボネイトなどが用いられる。溶剤には、トルエン、ベンゼン及びクロロホルムなどが用いられる。
 樹脂型K3を除去後の酸素透過性膜51,61は、樹脂型3の形状に由来してカプセル状構造体21同士の連通路213に対応する形状を有しているので(図C参照)。両者のの陥凹面を連通路213の部分を除いて貼り合せることで、互いの内腔41が連通路213を介して連通されたカプセル状構造体21が得えられる(図C参照)。カプセル状構造体21は、連通路213を介してのみ隣接する他のカプセル状構造体21と連通しており、他の部分は封止されている(図8も参照)。
 連通路213の内径は、次の細胞導入工程(II-3)において導入される細胞懸濁液が流通可能な限りにおいてその下限値は特に限定されない。連通路213の内径の下限値は、例えば、細胞の直径と同等の10~30μm程度である。一方、連通路213の内径の上限値(及びこれに依存して決定される連通路213の外径)に関しては、カプセル状構造体21の外表面面積(図8(B)、符号S)のうち連通路213の接続に供される面積(同、符号S参照)の占める割合が20%以下となるように設定される。同割合は、好ましくは15%以下又は10%以下、より好ましくは5%以下又は3%以下、特に好ましくは2%又は1%以下とされる。連通路213の内径の上限値を上記範囲とすることで、カプセル状構造体21が移植部において体液と十分に接触し、内腔41への酸素供給が維持される。カプセル状構造体21と連通路213を同一の酸素透過性膜で形成する場合、連通路213の外径は、酸素透過性膜の膜厚をLμmとして「2L + (10~30)」μmになる。
 ここでは、樹脂型K3を用いて酸素透過性膜51,61の両方にいちどきに凹部を形成し、カプセル状構造体21の形成時の凹部の位置合わせを不要とする態様を説明した。しかし、上述の製造方法Iで説明したように、別々に成形した酸素透過性膜51,61の陥凹面を、凹部の位置を一致させてかつ連通路213の部分を除いて、貼り合せることによりカプセル状構造体21を形成することも当然に可能である。
(II-3)細胞導入工程
 本工程では、カプセル状構造体21に細胞Cを導入する(図D参照)。
 細胞Cの導入は、導入管71を挿入して細胞懸濁液を注入し、連通路213を介して各カプセル状構造体21の内腔41に細胞懸濁液を満たしていく方法を採用できる。過剰な細胞懸濁液は、最終的に排出管81からデバイス外へ排出される。細胞Cの導入後、導入管71及び排出管81は抜去されてよい。
(II-4)細胞増殖工程
 本工程では、必要に応じて、細胞Cをカプセル状構造体21の内腔41内で増殖させる。本工程は、製造方法Iの細胞増殖工程(I-4)と同様にして行うことができる。
(3)製造方法III
 本発明の細胞封入デバイスの製造方法の第三実施形態は、以下の工程(III-1)(III-2)(III-3)を含むものである。
(III-1)外殻の少なくとも一部が酸素透過性膜で形成され、内部に細胞が封入された複数のカプセル状構造体を同一平面上の2次元方向に配列させる工程。
(III-2)配列させた複数のカプセル状構造体に、酸素透過性膜形成溶液を塗布した基材を接触させる工程。
(III-3)前記酸素透過性膜形成溶液を固化する工程。
 以下、図9を参照して、各工程を順に説明する。
(III-1)配列工程
 本工程は、外殻32の少なくとも一部が酸素透過性膜で形成され、内部に細胞または細胞凝集体Cが封入された複数のカプセル状構造体22を同一平面上の2次元方向に配列させる。
 まず、カプセル状構造体22を、公知の手法(非特許文献3)に従って作製する(図A参照)。
 外殻32はハイドロゲル膜であることが好ましく、その素材としてはアガロース、アルギン酸ナトリウム、ヒアルロン酸、セルロース、ゼラチン等の天然高分子、光照射などで架橋する官能基を導入したポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリイソプロピルアクリルアミド、ポリ2-ヒドロキシエイチルメタクリレート、ポリ2-ヒドロキシエイチルアクリレート及びポロビニルピロリドン、並びにそれぞれのモノマーの共重合体等の合成高分子の架橋体等が挙げられる。
 このようにして得たカプセル状構造体22を、プラスチック製や金属製のガイド板S1上に2次元方向に並べる(図B参照)。この際、ガイド板S1に溝あるいは凹みを設けて、当該溝あるいは凹みにカプセル状構造体22をはめ込むようにして並べるとよい。
(III-2)基材積層工程
 本工程では、配列させた複数のカプセル状構造体22に、酸素透過性膜形成溶液Gを塗布した基材S2を接触させる。
 まず、酸素透過性膜形成溶液Gを表面に塗布した基材S2を用意する(図C参照)。
 基材S2には、ナイロンメンブレン、ポリエステルメンブレン及びポリイミドメンブランなどを用いればよく、その材質や厚みは限定されない。
 酸素透過性膜形成溶液Gには、カプセル状構造体22の外殻32と同じ材料を用いることが好ましい。すなわち、外殻32がアガロースゲルからなる場合にはアガロースゲル溶液を用い、外殻32がアルギン酸ゲルからなる場合にはアルギン酸ナトリウム溶液を用いることが好ましい。
 次に、基材S2を、酸素透過性膜形成溶液Gの塗布面を下にして、基材S2上に配列させたカプセル状構造体22に積層する(図D参照)。なお、ガイド板S1を用いることなく、酸素透過性膜形成溶液Gを表面に塗布した基材S2上に直接カプセル状構造体22を並べてもよい。
(III-3)固化工程
 本工程では、酸素透過性膜形成溶液Gを固化させる。酸素透過性膜形成溶液Gは、固化して酸素透過性膜51となり、カプセル状構造体24に固着する。固化後、必要に応じてガイド板S1から酸素透過性膜51をカプセル状構造体22とともに分離する(図E参照)。ゲル溶液Gを表面に塗布した基材S2上に直接カプセル状構造体22を並べる場合には、ガイド板S1からの分離は不要である。
 酸素透過性膜形成溶液Gの固化は、例えばアガロースゲル溶液の場合は温度を下げることにより、またアルギン酸ゲル溶液の場合には塩化カルシウムまたは塩化バリウム溶液に浸漬することまたは光照射などで架橋する官能基を導入したポリビニルアルコールなどを用いた場合には光照射により行うことができる。
 最後に、酸素透過性膜51から基材S2を剥離することで細胞封入デバイスを得ることができる。
(4)製造方法IV
 本発明の細胞封入デバイスの製造方法の第四実施形態は、以下の工程(IV-1)(IV-3)(IV-4)を含み、場合によってさらに工程(IV-2)を含むものである。
(IV-1)基板上に2次元方向に配列され、隔壁により互いに分離された複数の凹部内に細胞を収容する工程。
(IV-2)前記凹部内で前記細胞を増殖させる工程と、
(IV-3)前記基板の凹部形成面上に、酸素透過性膜形成溶液を導入する工程。
(IV-4)前記酸素透過性膜形成溶液を固化し、前記基板から酸素透過性膜を前記細胞とともに分離する工程。
 以下、図10を参照して、各工程を順に説明する。
(IV-1)細胞収容工程
 本工程では、ガイド板S2上に2次元方向に配列され、隔壁により互いに分離された複数の凹部212内にそれぞれ細胞Cを収容する(図A参照)。
 ガイド板S2には、プラスチック製や金属製の基板に、細胞Cを収容可能な凹部211を設けたものである。ガイド板S2としては、凹部212に収容した細胞Cをそのまま次の細胞増殖工程に供することができるものが好ましく、例えば汎用のU底シャーレを用いることができる。
 凹部212は、カプセル状構造体21(図D参照)の外殻に応じた形状を有し、そのサイズはカプセル状構造体21の外径を考慮して適宜設定されえる。
(IV-2)細胞増殖工程
 本工程では、必要に応じて、凹部212内で細胞Cを増殖させる(図B参照)。
 細胞Cの増殖は、例えば、凹部212に培養液Mに満たした後、ガイド板S2を細胞増殖に適した雰囲気下におくことにより行うことができる。細胞の増殖により、凹部211内に細胞Cの細胞隗が形成される。得られた細胞隗の最大直径は、得られる細胞封入デバイスのカプセル状構造体21の内腔の径に相当する。
 本工程では、必要に応じて、さらに増殖前あるいは増殖後の細胞Cに対して分化誘導を行ってもよい。分化誘導の具体的な方法は上述のとおりである。
(IV-3)膜形成溶液導入工程
 本工程では、ガイド板S2の凹部212の形成面上に、酸素透過性膜形成溶液Gを導入する(図C参照)。前工程で用いた培養液Mは、酸素透過性膜形成溶液Gに置換される。
 酸素透過性膜形成溶液Gには、カプセル状構造体21の外殻の材料と同じものを用いることが好ましい。すなわち、外殻がアガロースゲルからなる場合にはアガロースゲル溶液を用い、外殻がアルギン酸ゲルからなる場合にはアルギン酸ゲル溶液を用いることが好ましい。
 酸素透過性膜形成溶液Gの比重は、細胞C又はその凝集隗の比重に応じて決定される。具体的には、導入された酸素透過性膜形成溶液G中に細胞隗が浮遊できるように、酸素透過性膜形成溶液Gの比重は細胞隗の比重と実質的に同一なるように調整される。ガイド板S1を浸透し、酸素透過性膜形成溶液G中への細胞隗の浮遊を促すことが好ましい。
 酸素透過性膜形成溶液Gの導入量は、カプセル状構造体21の外径、及び、酸素透過性膜形成溶液Gを固化して得られる酸素透過性膜51の厚さ(カプセル状構造体21の外殻の一部の厚さに相当)を考慮して適宜設定されえる。
(IV-4)膜溶液固化・分離工程
 本工程では、酸素透過性膜形成溶液Gを固化し、ガイド板S2から酸素透過性膜51を細胞Cとともに分離する(図D参照)。
 酸素透過性膜形成溶液Gの固化は、例えばアガロースゲル溶液の場合は温度を下げることにより、またアルギン酸ゲル溶液の場合には塩化カルシウムまたは塩化バリウム溶液に浸漬することまたは光照射などで架橋する官能基を導入したポリビニルアルコールなどを用いた場合には光照射により行うことができる。
 最後に、酸素透過性膜51をガイド板S2から分離することにより、カプセル状構造体21が同一平面上の2次元方向に配列された細胞封入デバイスを得る。
 以上に説明した本発明に係る細胞封入デバイスの製造方法I~IVによれば、カプセル状構造体において内部に封入された細胞隗と酸素透過性膜との間に空隙(死空)ができることがない。したがって、空隙が生じた場合に問題となる空隙による細胞への酸素供給阻害のおそれがなく、細胞に十分な酸素を供給し得る。
11:細胞封入デバイス
21、22:カプセル状構造体
211,212:凹部
213:連通路
31,32:外殻
41:内腔
51,61:酸素透過性膜
71:導入管
81:排出管
C:細胞
G:酸素透過性膜形成溶液
K1:オス型金型
K2:メス型金型
K3:樹脂型
M:培養液
S1,S2:ガイド板
S2:基材

 

Claims (5)

  1.  外殻の少なくとも一部が酸素透過性膜で形成され、内部に細胞が封入された複数のカプセル状構造体が、同一平面上の2次元方向に配列された細胞封入デバイス。
  2.  酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程と、
    前記凹部を一部封止し、同一平面上の2次元方向に配列され、互いの内腔が連通されたカプセル状構造体を形成する工程と、
    前記カプセル状構造体に細胞を導入する工程と、を含む、細胞封入デバイスの製造方法。
  3.  酸素透過性膜上に2次元方向に配列された複数の凹部を形成する工程と、
    前記凹部に細胞を導入する工程と、
    前記酸素透過性膜の陥凹面を、前記凹部の位置を一致させて貼り合せ、同一平面上の2次元方向に配列されたカプセル状構造体を形成する工程と、を含む、細胞封入デバイスの製造方法。
  4.  外殻の少なくとも一部が酸素透過性膜で形成され、内部に細胞が封入された複数のカプセル状構造体を同一平面上の2次元方向に配列させる工程と、
    配列させた複数のカプセル状構造体に、酸素透過性膜形成溶液を塗布した基材を接触させる工程と、
    前記酸素透過性膜形成溶液を固化する工程と、を含む、細胞封入デバイスの製造方法。
  5.  基板上に2次元方向に配列され、隔壁により互いに分離された複数の凹部内に細胞を収容する工程と、
    基板の凹部形成面上に、酸素透過性膜形成溶液を導入する工程と、
    前記酸素透過性膜形成溶液を固化し、前記基板から酸素透過性膜を前記細胞とともに分離する工程と、を含む、細胞封入デバイスの製造方法。

     
PCT/JP2018/022509 2017-06-14 2018-06-13 細胞封入デバイス WO2018230588A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019525472A JPWO2018230588A1 (ja) 2017-06-14 2018-06-13 細胞封入デバイス
US16/622,567 US20200208093A1 (en) 2017-06-14 2018-06-13 Cell-sealing device
EP18817507.9A EP3640318A4 (en) 2017-06-14 2018-06-13 CELL SEALING DEVICE
IL271385A IL271385A (en) 2017-06-14 2019-12-12 Install a cell seal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116832 2017-06-14
JP2017116832 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230588A1 true WO2018230588A1 (ja) 2018-12-20

Family

ID=64659604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022509 WO2018230588A1 (ja) 2017-06-14 2018-06-13 細胞封入デバイス

Country Status (5)

Country Link
US (1) US20200208093A1 (ja)
EP (1) EP3640318A4 (ja)
JP (1) JPWO2018230588A1 (ja)
IL (1) IL271385A (ja)
WO (1) WO2018230588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471398B2 (en) 2017-06-14 2022-10-18 Vertex Pharmaceuticals Incorporated Devices and methods for delivering therapeutics

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507949A (ja) 1994-01-11 1996-08-27 バクスター、インターナショナル、インコーポレイテッド ポート付きの組織埋め込みシステム及びその使用方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
US20080233610A1 (en) 2007-03-23 2008-09-25 Thomson James A Somatic cell reprogramming
WO2008118220A2 (en) 2006-11-28 2008-10-02 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US20090047263A1 (en) 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
JP2012508584A (ja) 2008-11-14 2012-04-12 ヴィアサイト,インコーポレイテッド ヒト多能性幹細胞由来膵臓細胞のカプセル化
JP2012172055A (ja) * 2011-02-21 2012-09-10 Chiba Univ ハイドロゲル基材の作製方法および細胞集塊の形成方法
JP2016512022A (ja) 2013-03-07 2016-04-25 ヴィアサイト インコーポレイテッド 3次元大収容力細胞封入デバイスアセンブリー
JP2016516827A (ja) * 2013-04-24 2016-06-09 ネステク ソシエテ アノニム カプセル化デバイス
WO2017073625A1 (ja) * 2015-10-30 2017-05-04 国立大学法人横浜国立大学 再生毛包原基の集合体の製造方法、毛包組織含有シート、及び毛包組織含有シートの製造方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507949A (ja) 1994-01-11 1996-08-27 バクスター、インターナショナル、インコーポレイテッド ポート付きの組織埋め込みシステム及びその使用方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2008283972A (ja) 2005-12-13 2008-11-27 Kyoto Univ 誘導多能性幹細胞の製造方法
US20090047263A1 (en) 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
WO2008118220A2 (en) 2006-11-28 2008-10-02 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
US20080233610A1 (en) 2007-03-23 2008-09-25 Thomson James A Somatic cell reprogramming
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
WO2009006930A1 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
WO2009006997A1 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc. Human pluripotent stem cells and their medical use
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
JP2012508584A (ja) 2008-11-14 2012-04-12 ヴィアサイト,インコーポレイテッド ヒト多能性幹細胞由来膵臓細胞のカプセル化
JP2014159477A (ja) * 2008-11-14 2014-09-04 Viacyte Inc ヒト多能性幹細胞由来膵臓細胞のカプセル化
JP2012172055A (ja) * 2011-02-21 2012-09-10 Chiba Univ ハイドロゲル基材の作製方法および細胞集塊の形成方法
JP2016512022A (ja) 2013-03-07 2016-04-25 ヴィアサイト インコーポレイテッド 3次元大収容力細胞封入デバイスアセンブリー
JP2016516827A (ja) * 2013-04-24 2016-06-09 ネステク ソシエテ アノニム カプセル化デバイス
WO2017073625A1 (ja) * 2015-10-30 2017-05-04 国立大学法人横浜国立大学 再生毛包原基の集合体の製造方法、毛包組織含有シート、及び毛包組織含有シートの製造方法

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
HUANGFU D.MELTON, DA. ET AL., NATURE BIOTECHNOLOGY, vol. 26, no. 7, 2008, pages 795 - 797
IMRAN ULLAH ET AL., BIOSCI. REP., vol. 35, 2015, pages e00191
IWATA H: "Agarose for a bioartificial pancreas", J. BIOMED. MATER. RES., vol. 26, no. 7, 1992, pages 967 - 77, XP001012761, DOI: 10.1002/jbm.820260711
JIANG, L. Y. ET AL.: "Investigating design principles of micropatterned encapsulation systems containing high-density microtissue arrays", SCIENCE CHINA LIFE SCIENCES, vol. 57, no. 2, 16 January 2014 (2014-01-16), pages 221 - 231, XP035710892, Retrieved from the Internet <URL:doi:10.1007/s11427-014-4609-2> *
KANG, A . ET AL.: "Cell encapsulation via microtechnologies", BIOMATERIALS, vol. 35, no. 9, 15 January 2014 (2014-01-15), pages 2651 - 2663, XP028829045, Retrieved from the Internet <URL:doi:10.1016/j.biomaterials.2013.12.073> *
KIM JB.SCHOLER HR. ET AL., NATURE, vol. 454, 2008, pages 646 - 650
LEE, B. R. ET AL.: "In situ formation and collagen- alginate composite encapsulation of pancreatic islet spheroids", BIOMATERIALS, vol. 33, no. 3, 3 November 2011 (2011-11-03), pages 837 - 845, XP055368475, Retrieved from the Internet <URL:doi:10.1016/j.biomaterials.2011.10.014> *
OHGAWARA H: "Membrane immunoisolation of a diffusion chamber for bioartificial pancreas", ARTIF. ORGANS, vol. 22, no. 9, 1998, pages 788 - 94
OKITA K ET AL., NAT. METHODS, vol. 8, no. 5, May 2011 (2011-05-01), pages 409 - 12
OKITA K ET AL., STEM CELLS, vol. 31, no. 3, pages 458 - 66
OKITA, K.ICHISAKA, T.YAMANAKA, S., NATURE, vol. 451, 2007, pages 141 - 146
PARK, Y. G. ET AL.: "Microencapsulation of islets and model beads with a thin alginate-Ba2+ gel layer using centrifugation", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 9, no. 10-11, 4 December 1998 (1998-12-04), pages 734 - 739, XP055563267, Retrieved from the Internet <URL:https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<734::AID-PAT803>3.0.CO;2-J> *
REZANIA A: "Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells", NAT. BIOTECHNOL., vol. 32, no. 11, 2014, pages 1121 - 33, XP055200937, DOI: 10.1038/nbt.3033
See also references of EP3640318A4
SHI Y.DING S. ET AL., CELL STEM CELL, vol. 3, no. 5, 2008, pages 568 - 574
TAKAHASHI KYAMANAKA S. ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI KYAMANAKA S., CELL, vol. 126, 2006, pages 663 - 676
VASILEIOS KARANTALISJOSHUA M. HARE, CIRC RES., vol. 116, no. 8, 10 April 2015 (2015-04-10), pages 1413 - 1430
YU J.THOMSON JA. ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471398B2 (en) 2017-06-14 2022-10-18 Vertex Pharmaceuticals Incorporated Devices and methods for delivering therapeutics

Also Published As

Publication number Publication date
JPWO2018230588A1 (ja) 2020-04-16
EP3640318A4 (en) 2021-03-17
IL271385A (en) 2020-01-30
EP3640318A1 (en) 2020-04-22
US20200208093A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
EP2610335B1 (en) Dried hydrogel, dried vitrigel film, and processes for producing these
CN108149342B (zh) 基于微流控技术的复合空腔微纤维的制备方法
JP2016077229A (ja) ファイバ状基材、3次元細胞構造体及びその製造方法、並びに3次元細胞構造体の培養方法
EP4159838A1 (en) Mass production method of uniform size cell aggregate
US20220306981A1 (en) Erythrocyte removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and method for collecting mononuclear cells
CN112055600A (zh) 用于制备中空3d细胞组织结构的模具和方法
WO2002000775A1 (fr) Polymere biocompatible a structure tridimensionnelle a cellules communicantes, procede de preparation et application en medecine et en chirurgie
JP2014060991A (ja) 多孔質中空糸の内腔を用いる幹細胞の培養方法
WO2018230588A1 (ja) 細胞封入デバイス
JPS63196286A (ja) 細胞培養用基材
KR20180091986A (ko) 산소 투과도 조절이 가능한 3차원 세포배양 칩
WO2018155607A1 (ja) 細胞処理装置、浮遊培養器、及び幹細胞の誘導方法
JP2003533220A (ja) 毛管膜を有するリアクタモジュール
EP4056673A1 (en) Cell culture device
JP2015223108A (ja) 細胞培養チャンバーとその製造方法、細胞培養チャンバーを利用した細胞培養方法および細胞培養キット
WO2020262354A1 (ja) 細胞培養器及び細胞培養装置
EP2948542A1 (en) Engineered physical alignment of stem cell-derived cardiomyocytes
JP6384054B2 (ja) 細胞積層体を製造するための細胞培養容器
WO2020095974A1 (ja) 移植片及びその使用
JP2016007207A (ja) iPS細胞の大量培養方法
CN110721345A (zh) 一种包载细胞的超薄空腔复合微纤维材料的制备方法
WO2018070441A1 (ja) 培養細胞構造体の製造方法
KR20210015024A (ko) 3차원 세포 배양 용기의 제조방법
JP2004147552A (ja) 細胞培養方法
Ikeuchi et al. Centrifugal imprinting during vitrification (CIV) of collagen hydrogel for highly biocompatible 3D membrane scaffold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018817507

Country of ref document: EP

Effective date: 20200114