WO2011021706A1 - 角膜移植用シート - Google Patents

角膜移植用シート Download PDF

Info

Publication number
WO2011021706A1
WO2011021706A1 PCT/JP2010/064125 JP2010064125W WO2011021706A1 WO 2011021706 A1 WO2011021706 A1 WO 2011021706A1 JP 2010064125 W JP2010064125 W JP 2010064125W WO 2011021706 A1 WO2011021706 A1 WO 2011021706A1
Authority
WO
WIPO (PCT)
Prior art keywords
corneal
sheet
gelatin hydrogel
gelatin
cells
Prior art date
Application number
PCT/JP2010/064125
Other languages
English (en)
French (fr)
Inventor
幸二 西田
竜平 林
渡邉 亮
田畑 泰彦
Original Assignee
国立大学法人東北大学
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 国立大学法人京都大学 filed Critical 国立大学法人東北大学
Priority to US13/391,530 priority Critical patent/US20120282318A1/en
Priority to JP2011527722A priority patent/JP5709015B2/ja
Priority to EP10810047.0A priority patent/EP2468312A4/en
Publication of WO2011021706A1 publication Critical patent/WO2011021706A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3808Endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the present invention relates to a corneal transplant sheet using a gelatin hydrogel as a support. More specifically, the present invention relates to a highly transparent corneal transplant sheet prepared by culturing corneal endothelial cells on gelatin hydrogel.
  • the cornea is composed of five layers from the outside: a corneal epithelial layer, a Bowman membrane, a parenchymal corneal layer, a Descemet's membrane, and a corneal endothelial layer.
  • the innermost corneal endothelium layer is a single cell layer, taking in substances necessary for the cornea from the anterior aqueous humor, draining the corneal water into the anterior aqueous humor, keeping the corneal thickness constant, Maintains corneal transparency.
  • the number of corneal endothelial cells decreases, water drainage becomes insufficient, which causes corneal opacity and corneal endothelial diseases such as bullous keratopathy. Since human corneal endothelial cells do not proliferate in vivo, once they are damaged, there is no method other than transplantation for the fundamental treatment.
  • DSEK Decemet stripping endothelial keratoplasty
  • cultured cells are usually detached and collected from the culture vessel by treatment with an enzyme such as trypsin or chemicals, but the desmosome structure is destroyed by the treatment, and the engraftment, strength, and function of the cell sheet after transplantation There is also a problem that remarkably decreases.
  • an enzyme such as trypsin or chemicals
  • the inventors have developed a culture corneal endothelial cell sheet transplantation method using a culture dish to which a temperature-responsive polymer whose hydration power changes within a temperature range of 0-80 ° C. is used. .
  • the cell sheet can be recovered simply by lowering the temperature without using an enzyme, and has been experimentally successfully transplanted to a rabbit cornea.
  • Patent Literature 1 and Non-Patent Literature 1 are examples of a carrier.
  • Non-patent Document 2 a method of using atelocollagen as a carrier for transplanting cultured corneal endothelial cells is also known.
  • atelocollagen has poor bioadhesiveness and biodegradability and falls off the endothelial surface after transplantation and remains in the anterior chamber.
  • the endothelial cells are stimulated as a result and the density thereof is reduced.
  • Non-patent Document 3 a method has been reported in which cultured corneal endothelial cells are placed on a gelatin disk processed into a cylindrical shape and transplanted together with the disk (Non-patent Document 3), but the gelatin disk has a thickness of about 800 ⁇ m and takes time to biodegrade. In addition, there is concern about the occurrence of inflammation due to degradation.
  • a method in which cells and tissues are cultured on a biodegradable culture support and transplanted directly to the affected area together with the support. It is also known to use a water-soluble polymer such as polyvinyl alcohol or a hydrogel such as collagen as a constituent material of the support (Patent Document 2).
  • Gelatin hydrogel is a hydrogel obtained by forming crosslinks between gelatin molecules by thermal reaction or the like, and has an excellent sustained release effect in addition to high bioabsorbability and biocompatibility. Therefore, utilization as cytokines such as bFGF and BMP and sustained-release bases of poorly water-soluble drugs (Patent Documents 3 to 5 and the like) has been reported. However, it has not been known so far that gelatin hydrogel is used for corneal cell culture as a carrier for transplantation of corneal endothelium.
  • the substrate for transplantation used for corneal transplantation requires the requirement of transparency.
  • An object of the present invention is to determine the best base material for corneal endothelium transplantation that satisfies these conditions, and to provide a corneal transplantation sheet that can be applied as it is to an affected part using the base material.
  • a material satisfying the following conditions As a transplant base material used for corneal transplantation and selected gelatin hydrogel.
  • gelatin was processed into a sheet shape and subjected to crosslinking treatment to produce a gelatin hydrogel sheet, and corneal endothelial cells were cultured using this as a support. Furthermore, this sheet was transplanted to the anterior segment of a bullous keratosis model mouse, and its degradability and therapeutic effect were evaluated. As a result, it was confirmed that the corneal transplant sheet using gelatin hydrogel as a support showed high cell engraftment and transparency, and the progress after transplantation was very good. That is, the present invention relates to a corneal transplant sheet comprising corneal endothelial cells in gelatin hydrogel.
  • the thickness of the gelatin hydrogel is preferably 10 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the water content of the gelatin hydrogel is preferably 92 to 99%, more preferably 95 to 98%.
  • the corneal endothelial cells used are ZO-1 or Na + / K + -ATPase positive cells.
  • the gelatin hydrogel used in the present invention is prepared by subjecting gelatin to a heat crosslinking treatment.
  • Gelatin hydrogel is degraded in vivo after transplantation, and the degradation rate can be adjusted by the degree of crosslinking and the like. That is, the gelatin hydrogel may be adjusted so that it degrades and disappears in vivo within 1 to 6 months after transplantation, or it is adjusted so that it engrafts in the real tissue without biodegrading for more than one year. Also good.
  • the corneal endothelial cell used in the present invention is preferably prepared from a patient-derived cell.
  • the corneal transplant sheet of the present invention can be obtained by seeding and culturing corneal endothelial cells on a gelatin hydrogel sheet coated with collagen.
  • the coating of the collagen is performed by a method of applying the collagen solution to the sheet surface, not a conventional method of immersing in a collagen solution.
  • the cell adhesiveness and barrier function of the sheet are remarkably improved.
  • the temperature, humidity, and time during the coating process There are no particular limitations on the temperature, humidity, and time during the coating process.
  • the collagen solution concentration and type are not limited.
  • corneal endothelial cells are seeded and cultured on a gelatin hydrogel sheet coated with collagen, and the gelatin hydrogel sheet containing corneal endothelial cells is formed on or after the seventh day after the corneal endothelial cells become confluent. It is obtained by peeling from the culture vessel.
  • the cell density in the gelatin hydrogel in the obtained corneal transplant sheet is 2000 cells / mm 2 or more, preferably 2500 cells / mm 2 or more, more preferably 3000 cells / mm 2 or more.
  • the gelatin hydrogel used in the present invention has appropriate strength and excellent transparency, and when used as a transplant carrier, the strength and operability of the corneal transplant sheet are significantly improved. Moreover, since gelatin hydrogel is decomposed
  • FIG. 1 shows photographic images comparing the transparency of gelatin hydrogel sheets and atelocollagen sheets.
  • FIG. 2 shows the evaluation results of the mechanical properties of the gelatin hydrogel sheet and the atelocollagen sheet (A: strength against tensile test of each sheet (from the graph left, 48 hr, 24 hr, 12 hr, atelo collagen, 6 hr), B: each sheet Strength against tensile test, C: break point in tensile test of each sheet, D: elastic modulus (Elastic modulus) of each sheet.
  • FIG. 3 shows the substance permeability test results of atelocollagen and gelatin hydrogel sheets (A: albumin, B: glucose).
  • FIG. 1 shows photographic images comparing the transparency of gelatin hydrogel sheets and atelocollagen sheets.
  • FIG. 2 shows the evaluation results of the mechanical properties of the gelatin hydrogel sheet and the atelocollagen sheet (A: strength against tensile test of each sheet (from the graph left, 48 h
  • FIG. 4 shows the evaluation results of cell adhesion (phase contrast microscopic image) and barrier function improvement (ZO-1 expression) due to different coating methods on gelatin hydrogel sheets cultured with corneal endothelial cells (from the left, ( a) Phase contrast microscopic image (Day 1), (b) ZO-1 immunofluorescence staining (Day 10); A: Sheet immersed in 0.15 mg / ml collagen solution (conventional method), B: 3.0 mg / ml collagen Sheet coated with solution, C: atelocollagen (comparative control)).
  • FIG. 5 shows the evaluation results of the transparency of gelatin hydrogel sheets cultured with corneal endothelial cells (left: atelocollagen, right: gelatin hydrogel sheet).
  • FIG. 6 shows evaluation of corneal endothelial cells cultured on a gelatin hydrogel sheet (A: Na + / K + -ATPase and ZO-1 expression analysis (immunostaining image), B: HE staining image, C: scanning microscope Image, each scale represents 200 ⁇ m).
  • FIG. 7 shows HE-stained images of gelatin hydrogel sheets before (a) transplantation and after (b) transplantation in the rabbit anterior chamber (each scale shows 200 ⁇ m).
  • FIG. 8 shows (a) 7 days after transplantation and (b) 21 days after transplantation of the corneal thickness of a cultured corneal endothelial cell sheet using a gelatin hydrogel sheet for a rabbit bullous keratopathy model. Results of comparison between eyes and normal eyes are shown.
  • FIG. 9 shows a HE-stained image (A) and a DiI-stained image (B) of 21 after transplantation of a cultured corneal endothelial cell sheet using a gelatin hydrogel sheet for a rabbit vesicular keratopathy model.
  • the right figure is an enlarged view of the box part of the left figure.
  • “Gelatin hydrogel” is a gelatin reaction between gelatin molecules by applying chemical reaction, thermal dehydration treatment, radiation, ultraviolet rays, electron beam irradiation, etc. to gelatin. It is a hydrogel obtained by forming a crosslink.
  • gelatin means denatured collagen that is irreversibly changed to a water-soluble protein by cleavage of salt bonds or hydrogen bonds between peptide chains of collagen by acid or alkali, or enzymatic treatment.
  • the gelatin used in the present invention may be either acidic gelatin or basic gelatin.
  • “acidic gelatin” means gelatin having an isoelectric point prepared by alkali treatment of collagen and having an isoelectric point of less than 7.0 and not less than 2.0, preferably not more than 6.5 and not less than 4.0, more preferably 5. 5 or more and 4.5 or more are intended.
  • the “basic gelatin” is gelatin having an isoelectric point of 7.0 or more and 13.0 or less prepared by acid treatment of collagen, preferably 7.5 or more and 10.0 or less, more preferably 8.5 or more. Less than 9.5 is contemplated.
  • IEP Nitta Gelatin's sample isoelectric point
  • Nitta Gelatin's sample IEP 9.0 or the like can be used as basic gelatin. can do.
  • gelatin is used is appropriately selected according to the medicinal component to be blended and the use.
  • bFGF has an IEP of 4.6, so acidic gelatin is used when blending such drugs.
  • basic gelatin is used when a protein drug having an IEP of 7 or less is blended.
  • the degree of crosslinking of gelatin can be appropriately selected according to the desired level of biodegradability, moisture content, and bioabsorbability.
  • the cross-linking may be any part of the collagen constituting the gelatin, but it is particularly preferable to cross-link the carboxyl group and the hydroxyl group, the carboxyl group and the ⁇ -amino group, or the ⁇ -amino group.
  • the composite has the desired mechanical strength properties.
  • the degradation rate (remaining period) in the living body can also be controlled by the introduction rate of crosslinking.
  • concentration of gelatin and the crosslinking agent and the crosslinking time increase, the degree of crosslinking of the hydrogel increases and the bioabsorbability decreases.
  • Cross-linking of gelatin is performed by methods such as thermal reaction (thermal dehydration, etc.), cross-linking by chemical methods using cross-linking agents and condensing agents, and cross-linking by physical methods using gamma rays, ultraviolet rays, electron beams, etc. Can do.
  • examples of the crosslinking agent used include aldehyde-based crosslinking agents such as glutaraldehyde and formaldehyde; isocyanate-based crosslinking agents such as hexamethylene diisocyanate; 1-ethyl-3- (3-dimethylaminopropyl) Examples thereof include carbozide-based crosslinking agents such as carbodiimide hydrochloride; polyepoxy-based crosslinking agents such as ethylene glycol diethyl ether; transglutaminase and the like.
  • the amount of the crosslinking agent to be added is appropriately set depending on the crosslinking agent to be used.
  • the degree of crosslinking can be appropriately selected according to the desired water content, that is, the level of bioabsorbability of the hydrogel.
  • the preferred range of the gelatin and cross-linking agent concentration when preparing the hydrogel is a gelatin concentration of 1 to 20 w / w% and a cross-linking agent concentration of 0.01 to 1 w / w%. is there.
  • the crosslinking reaction conditions are not particularly limited, and can be carried out, for example, at 0 to 40 ° C., preferably 25 to 30 ° C., for 1 to 48 hours, preferably 12 to 24 hours.
  • Crosslinking may be performed by any method, but in the present invention, it is preferable to perform thermal crosslinking (thermal dehydration treatment or the like). This is because, when chemical crosslinking is performed, the crosslinking agent may remain in the hydrogel, or depending on the conditions, only the hydrogel surface may be crosslinked and uniform crosslinking may not be possible. On the other hand, in the case of thermal cross-linking, uniform cross-linking is formed throughout the gelatin hydrogel, and the desired biodegradability is achieved.
  • thermal crosslinking uniform cross-linking is formed throughout the gelatin hydrogel, and the desired biodegradability is achieved.
  • the crosslinking is formed by a thermal reaction, specifically, it can be carried out under a vacuum condition at 140 ° C. to 160 ° C. under conditions ranging from 6 hours to 72 hours. It is possible to control the degradation rate (remaining period) in the body.
  • gelatin hydrogel prepared by vacuum heating at 160 ° C. and 0.01 Torr for 72 hours was used.
  • the degradability of gelatin hydrogel can be adjusted by the degree of crosslinking and the thickness of the sheet. Degradability can be controlled within the range of 14 days to 1 year or more in an animal body, for example, the anterior eye segment. In the present invention, if the degradability is too early, it cannot play a role as a scaffold for corneal endothelial cells, and corneal endothelial cell engraftment is considered to be poor. Accordingly, the degradability is preferably set to 14 days to 6 months, particularly about 1 to 3 months. Alternatively, if the gelatin hydrogel has a good engraftment property and does not drop off, the degradation time may be set to a period in which almost no biodegradation occurs for one year or longer.
  • the degree of crosslinking of gelatin can be evaluated using the water content as an index.
  • the water content is the weight percent of water in the hydrogel relative to the weight of the swollen hydrogel. If the water content is large, the degree of crosslinking of the hydrogel is low and it is easily decomposed.
  • the water content showing preferable decomposability is about 92 to 99 w / w%, and more preferably about 95 to 98 w / w%.
  • the gelatin hydrogel sheet of the present invention can be molded into any shape, but is molded on the sheet in the present invention for application to a carrier for transplanting cultured corneal endothelial cells.
  • the thickness of the sheet is preferably about 10 to 200 ⁇ m, more preferably about 30 to 100 ⁇ m, considering application to corneal endothelial transplantation.
  • gelatin hydrogel of the present invention has excellent transparency, and its transparency is much higher than atelocollagen or the like conventionally used as a carrier. Moreover, gelatin hydrogel can maintain its transparency even after application to the affected area.
  • the corneal endothelial cell used in the present invention includes cells contained in the corneal endothelial cell layer, and includes corneal endothelial stem cells and corneal endothelial progenitor cells. .
  • the corneal endothelial cell may be a donor other than a patient, for example, a corneal endothelium of a human imported eye bank cornea, or a corneal endothelial cell derived from a patient receiving a transplant.
  • corneal endothelial cells do not proliferate in vivo as described above, so it is technically possible to collect corneal endothelial cells from healthy patient eyes However, it is difficult in practice.
  • Corneal endothelial cells induced to differentiate from stem cells Corneal endothelial cells are corneal endothelial cells, tissue stem cells other than corneal endothelial stem cells or embryonic stem cells (ES cells), and corneal endothelial cells derived from induced pluripotent stem cells. May be.
  • the method for preparing corneal endothelial stem cells and induced pluripotent stem cells to be used is not particularly limited, but is preferably a cell derived from a patient who needs treatment.
  • Artificial pluripotent stem cells are cells that have been reprogrammed (initialized) to have the same differentiation pluripotency as ES cells by introducing specific factors into mammalian somatic cells or undifferentiated stem cells.
  • “Artificial pluripotent stem cells” were first established by Yamanaka et al. By introducing four factors Oct3 / 4, Sox2, Klf4, and c-Myc into mouse fibroblasts.
  • IPS cells induced Pluripotent Stem Cell
  • iPS cells established by introducing similar four factors into human fibroblasts (Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.), Furthermore, iPS cells (Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101-106) produced by a method not containing c-Myc can also be used.
  • an artificial pluripotent stem cell (Yu J., Thomson JA. Et al., Produced by introducing 4 genes of OCT3 / 4, SOX2, NANOG, and LIN28 into human fibroblasts by Thomson et al. Of University of Wisconsin. Science (2007) 318: 1917-1920.), Daley et al. Of Harvard University, and introduced artificial genes produced by introducing 6 genes of OCT3 / 4, SOX2, KLF4, C-MYC, hTERT, SV40 large T into skin cells.
  • Ability stem cells (Park IH, Daley GQ.
  • artificial pluripotent stem cells (Shi Y., Ding S., et al., Cell Stem Cell, (2008)) produced by introducing OCT3 / 4, KLF4, low molecular weight compounds into mouse neural progenitor cells, etc. Vol3, Issue 5, 568-574), induced pluripotent stem cells (Kim JB., Produced by introducing OCT3 / 4, KLF4 into mouse neural stem cells endogenously expressing SOX2, C-MYC.
  • Induction of differentiation of corneal endothelial cells from tissue stem cells, ES cells, or induced pluripotent stem cells may be direct, or may be indirect via neural crest cells or corneal parenchymal stem cells. That is, tissue stem cells, ES cells, and induced pluripotent stem cells are once induced to differentiate into neural crest cells or corneal parenchymal stem cells, and further differentiated from these neural crest cells or corneal parenchymal stem cells with TGFb2 or the like according to a known technique. Endothelial cells are induced (Japanese Patent Application No. 2008-123562).
  • the SDIA method is a method of inducing differentiation of neural crest cells from ES cells by using mouse-derived stromal cells (PA6 cells) as feeder cells (Kawasaki, H., Sasai, Y. et al. (2000). ) Neuron 28, 31-40., Kawasaki, H., Sasai, Y. et al. (2002) Proc. Natl. Acad. Sci. USA 99, 1580-1585, Mizuseki, K., Sasai, Y. et al.
  • PA6 cells mouse-derived stromal cells
  • SFEB Serum-free Floating culture of Embryoid Body-like aggregates
  • the corneal transplant sheet of the present invention is coated with the aforementioned gelatin hydrogel sheet with collagen (type I or type IV) and seeded with corneal endothelial cells and cultured. It is produced by this.
  • Collagen coating on gelatin hydrogel is performed for the purpose of improving cell adhesion and corneal endothelial function.
  • the collagen used is preferably type I or type IV, and is preferably atelocollagen from which antigenicity has been removed.
  • Collagen coding can be performed by diluting collagen 10 times with dilute hydrochloric acid (pH 3.0), spreading thinly on gelatin hydrogel, and drying according to a conventional method.
  • the coated sheet is preferably washed with Phosphate-Buffered Salines (PBS) (Invitrogen) before use.
  • PBS Phosphate-Buffered Salines
  • composition of the aqueous solution can be used in any kinds of things.
  • the coating of collagen is performed by a method of applying (coating) the collagen solution to the sheet surface, not by a conventional method of immersing in a collagen solution.
  • the cell adhesiveness and barrier function of the sheet are remarkably improved.
  • the coated sheet is dried to fix the coated collagen in the vicinity of the gelatin sheet surface. This fixation to the surface is important for cell adhesion and function expression. Without coating, it is thought that cell adhesion and endothelial function are reduced, so that it is desirable to carry out coating.
  • a medium usually used for culturing adherent cells can be performed using a medium usually used for culturing adherent cells.
  • a medium usually used for culturing adherent cells For example, DMEM medium, BME medium, ⁇ MEM medium, Dulbecco MEM medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, RPMI medium 16, RPM medium 16 Any medium that can be used for culturing animal cells, such as Fischer's medium, McCoy's medium, Williams E medium, and mixed medium thereof, can be used.
  • nutrient sources include serum, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), glycerol, glucose, fructose, sucrose, lactose, honey, starch, dextrin and other carbon sources, Fatty acids, fats and oils, lecithins, alcohols and other hydrocarbons, ammonium sulfate, ammonium nitrate, ammonium chloride, urea, sodium nitrate and other nitrogen sources, salt, potassium salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts Inorganic salts such as monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like.
  • bFGF basic fibroblast growth factor
  • EGF epidermal growth factor
  • glycerol glucose
  • amino acid reducing agents such as pyruvic acid and ⁇ -mercaptoethanol, serum substitutes, etc.
  • serum substitutes include albumin (for example, lipid-rich albumin), transferrin, fatty acid, insulin, collagen precursor, trace element, ⁇ -mercaptoethanol or 3 ′ thiol glycerol, commercially available Knockout Serum Replacement (KSR), and Chemically.
  • KSR Knockout Serum Replacement
  • the pH of the medium obtained by blending these components is in the range of 5.5 to 9.0, preferably 6.0 to 8.0, and more preferably 6.5 to 7.5.
  • the gelatin hydrogel comprising 3.3 culture conditions the above medium, the seeding density of the corneal endothelial cells 500 ⁇ 4500cells / mm 2, preferably seeded with a seeding density of 1500 ⁇ 3500cells / mm 2, 36 °C ⁇ 38 °C,
  • the culture is preferably performed at 36.5 ° C. to 37.5 ° C. under the conditions of 1% to 25% O 2 and 1% to 15% CO 2 .
  • the number of culture days is at least 3 days, preferably 7 days or more after the cells are confluent.
  • the cell density in the finally obtained gelatin hydrogel is 2000 cells / mm 2 or more, preferably 2500 cells / mm 2 or more, more preferably 3000 cells / mm 2 or more.
  • Corneal Transplant Sheet Since the corneal transplant sheet of the present invention uses gelatin hydrogel as a support, the strength and operability of the corneal endothelial cell layer having a thickness of only about 10 ⁇ m are remarkably improved. Corneal endothelial cells on the sheet express a tight junction protein ZO-1 that exhibits a barrier function, and the adhesion of the cells to the sheet is good. Since the sheet can be peeled off from the culture vessel without applying an enzyme treatment such as trypsin or dispase, the desmosome structure of the cells is maintained, and the original structure and strength of the corneal endothelial cell layer are maintained.
  • an enzyme treatment such as trypsin or dispase
  • the corneal transplant sheet of the present invention has much higher transparency than the conventionally known corneal transplant sheet using atelocollagen as a support. Is maintained after transplantation.
  • the corneal transplant sheet of the present invention can contain a medicinal component as necessary.
  • medicinal components include antitumor agents, antibacterial agents, anti-inflammatory agents, antiviral agents, anti-AIDS agents, low molecular drugs such as hormones, bioactive peptides and proteins containing bone morphogenetic or bone growth factors , Glycoproteins, polysaccharides, nucleic acids and the like.
  • These medicinal ingredients may be natural substances or synthetically produced substances.
  • epidermal growth factor EGF
  • fibroblast growth factor FGF
  • platelet-derived growth factor PDGF
  • HGF hepatocyte growth factor
  • TGF insulin-like growth factor
  • BGF-2, BMP-4, BMP-5, BMP-6, BMP-7 (OP-1) and BMP-8 (OP-2) and other bone growth factors such as IGF
  • BMP Forming protein
  • GDNF glial-induced neurotrophic factor
  • NF neurotrophic factor
  • PRP platelet rich plasma
  • Anticancer drugs such as ifosfamide, antibiotics such as streptomycin, gentamicin, gatifloxacin, atorvastatin (ato Cholesterol lowering agents such as vastatin, pravastatin, simvastatin, lidocaine, protamine sulfate, sodium iodohypurate, iodosulfopro
  • the time when the gelatin hydrogel is impregnated with the above-mentioned medicinal component can be before culturing corneal endothelial cells on the gel, during culturing, or before or after preparing the transplantation sheet.
  • the compounding ratio of the medicinal component to the gelatin hydrogel is preferably about 5 times or less by molar ratio. More preferably, the molar ratio is about 5 to about 1/10 4 times.
  • This impregnation operation is usually completed at 4 to 37 ° C. for 15 minutes to 1 hour, preferably at 4 to 25 ° C. for 15 to 30 minutes, during which time the gelatin hydrogel swells with a solution containing a medicinal component, It is combined with the gel by physicochemical interaction and fixed in the hydrogel.
  • the medicinal component and gelatin hydrogel can be bonded between the functional group of the drug or the metal and the functional group on the hydrogel. It is considered that a coordination bond of is involved alone or in combination.
  • the medicinal component is gradually released to the outside of the sheet as the gelatin hydrogel is decomposed in vivo and the gelatin molecules are water-solubilized.
  • This release rate is determined by the degree of degradation and absorption in the living body of the gelatin hydrogel used, and the degree and stability of the bond strength between the medicinal ingredient and the gelatin hydrogel in the complex.
  • the degree of degradation and absorption of gelatin hydrogel in the living body can be adjusted by adjusting the degree of crosslinking during the preparation of the hydrogel.
  • the gelatin hydrogel when a negatively charged substance such as nucleic acid is used as the medicinal component, the gelatin hydrogel is positively charged so that a stable complex of the medicinal component and the gelatin hydrogel is formed. It is preferable.
  • a stable gelatin hydrogel complex is formed by a strong bond (ionic bond) between the negative charge of the medicinal component and the positive charge of the gelatin hydrogel.
  • it can be cationized by previously introducing an amino group or the like into the gelatin hydrogel. This increases the binding force between the gelatin hydrogel and the medicinal component, and a more stable gelatin hydrogel complex can be formed.
  • the medicinal component is a substance having a positive charge
  • a stable complex of the medicinal component and gelatin hydrogel is formed, and gelatin is anionized into an interaction.
  • the medicinal component interacts with gelatin and is stably complexed and fixed in the hydrogel.
  • the cationization step is not particularly limited as long as it is a method capable of introducing a functional group that can be cationized under physiological conditions, but a 1, 2 or tertiary amino group or ammonium group is added to the hydroxyl group or carboxyl group of gelatin. A method of introducing under mild conditions is preferred.
  • alkyldiamines such as ethylenediamine, N, N-dimethyl-1,3-diaminopropane, trimethylammonium acetohydrazide, spermine, spermidine, diethylamide chloride, and the like can be used with various condensing agents such as 1-ethyl-3- (3 -Dimethylaminopropyl) carbodiimide hydrochloride, cyanuric chloride, N, N'-carbodiimidazole, cyanogen bromide, diepoxy compound, tosyl chloride, diethyltriamine-N, N, N ', N ", N" -pentane
  • dianhydride compounds such as an acid dianhydride, a trisyl chloride, etc.
  • the method of reacting ethylenediamine is preferred because it is simple and versatile.
  • the medicinal component-containing corneal transplant sheet has a sustained release effect and a stabilizing effect of the medicinal component, and thus can release the medicinal component over a long period of time in a controlled direction at a desired site. Therefore, the action of the medicinal component is effectively exhibited within the lesion site.
  • corneal transplant recipients There are 1 million corneal transplant recipients worldwide, and tens of thousands in Japan. Among them, bullous keratopathy patients caused by corneal endothelium disorders account for about 80% of all corneal transplant diseases. Since the corneal endothelium does not regenerate once damaged, there is currently no effective treatment method other than corneal transplantation.
  • the corneal transplant sheet of the present invention has a simple manufacturing method, excellent operability, engraftment, and degradability, and also has a sustained drug release effect as described above. If a patient-derived corneal endothelial cell is used, the problem of rejection is avoided and the corneal endothelium can be rapidly regenerated. Furthermore, since gelatin hydrogel also has a function of slowly releasing medicinal ingredients, it can also contain a medicinal ingredient having biological activity and release it for a necessary period of time to further promote the healing of the disease.
  • Example 1 Preparation of gelatin hydrogel sheet Extracted from collagen by pork skin or cow bone by alkali treatment (molecular weight 98,000 isoelectric point 5.0). A 10 WT% aqueous solution of gelatin was prepared. This was poured into a plastic petri dish and left at room temperature for several days to evaporate water and obtain a gelatin sheet. This was subjected to thermal dehydration treatment at 160 ° C. and 0.01 Torr for 72 hours to chemically crosslink between gelatin molecules. The obtained gelatin sheet had a water content of 97% and a thickness of 100 ⁇ m. The thickness can be adjusted from 30 ⁇ m to depending on the purpose.
  • Substance permeability The substance permeability of the gelatin hydrogel sheet (48 hours cross-linked) was compared with that of the atelocollagen sheet. The substance permeability was evaluated by determining the diffusion coefficient for albumin and glucose according to a conventional method.
  • the gelatin hydrogel sheet showed significantly higher albumin permeability than the atelocollagen sheet.
  • the gelatin hydrogel sheet was equivalent to the atelocollagen sheet for glucose permeability. From this, the gelatin hydrogel sheet was considered useful as a carrier sheet.
  • Example 2 Cell culture on gelatin hydrogel sheet Preparation of Corneal Endothelial Cells
  • a cornea piece was prepared from a rabbit eyeball and the Descemet's membrane was peeled off. Descemet's membrane was incubated with 0.25% Trypsin-EDTA at 37 ° C. for 10 minutes to isolate cells.
  • the cell mass was suspended in the same medium.
  • the gelatin hydrogel sheet prepared in Example 1 was coated with collagen type I or type IV (Nitta gelatin).
  • a 3.0 mg / ml collagen solution stock solution (pH 3.0) is directly applied onto the gelatin hydrogel sheet prepared in Example 1 using a cell scraper or the like, and diluted 10-fold with dilute hydrochloric acid.
  • Coating was performed by immersing a gelatin hydrogel sheet in the collagen solution thus prepared, and allowing it to stand for 30 minutes or more in a clean bench.
  • the coated sheet was washed 3 times with Phosphate-Buffered Salines (PBS) (Invitrogen) before use.
  • PBS Phosphate-Buffered Salines
  • corneal endothelial cells isolated from Descemet's membrane were seeded at a seeding density of 1.5 to 4.5 ⁇ 10 3 cells / mm 2 , 37 ° C., 10% CO 2 , containing serum used in the previous section. For 14 days. For comparison, corneal endothelial cells were seeded and cultured on atelocollagen under the same conditions.
  • Example 3 Rabbit anterior chamber transplantation of gelatin hydrogel sheet (examination of biodegradability) After the rabbit lens extraction (ultrasonic emulsification), the Descemet's membrane was peeled off. Thereafter, only the gelatin hydrogel sheet punched with 8 mm trepan was transplanted into the anterior chamber.
  • Example 4 Transplantation of cultured corneal endothelial cell sheet using gelatin hydrogel sheet to rabbit bullous keratopathy model Rabbit-derived corneal endothelial cells were cultured on gelatin hydrogel and transplanted based on the method of Example 2 A cultured corneal endothelial cell sheet was prepared. The prepared cultured corneal endothelial cell sheet was transplanted into a rabbit bullous keratopathy model from which the corneal endothelium had been completely removed. After transplantation, corneal thickness measurement and anterior ocular segment observation using a pachymeter were performed.
  • HE staining FIG. 9A
  • DiI staining FIG. 9B
  • the corneal transplant sheet using the gelatin hydrogel of the present invention as a support can be transplanted without impairing the function and form of the endothelial cells.
  • the sheet for corneal transplantation of the present invention is excellent in transparency after transplantation and engraftment in tissue. Moreover, the biodegradation rate in the living body can be adjusted according to the production conditions, and there is no problem such as an inflammatory reaction.
  • gelatin hydrogel as a material has already been used clinically. Therefore, it is extremely useful as a treatment method for corneal endothelial disease as an alternative to conventional full-thickness corneal transplantation. Since the number of patients with bullous keratopathy and the like that are the target of treatment using the corneal transplant sheet of the present invention is expected to reach tens of thousands of years in Japan, the treatment method is highly valuable for commercialization.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Urology & Nephrology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、コラーゲンでコーティングをしたゼラチンハイドロゲル上に、角膜内皮細胞を播種して培養することにより得られる、ゼラチンハイドロゲルに角膜内皮細胞を含んでなる角膜移植用シートに関する。本発明のシートは、生体適合性や生体内分解性に加えて、高い透明性を有するため、角膜移植用シートとして極めて有用である。

Description

角膜移植用シート
 本発明は、ゼラチンハイドロゲルを支持体とする角膜移植用シートに関する。より詳細には、ゼラチンハイドロゲル上で角膜内皮細胞を培養して作成される、透明性の高い角膜移植用シートに関する。
 角膜は、外側から、角膜上皮層、ボーマン膜、実質角膜層、デスメ膜、角膜内皮層の5層からなる。このうち一番内側に存在する角膜内皮層は単一の細胞層で、角膜に必要な物質を前房水から取り込むとともに、角膜の水分を前房水へ排出して角膜厚を一定に保ち、角膜の透明性を維持する。角膜内皮細胞数が低下すると、水分排出が不十分になり、角膜混濁や、水疱性角膜症等の角膜内皮疾患の原因となる。ヒト角膜内皮細胞は生体内においては増殖しないため、一度損傷を受けると、その根本的な治療は移植以外に方法がない。
 従来、角膜内皮疾患に関しては、全層角膜移植術が行われているが、絶対的なドナー不足と移植後の拒絶反応という問題がある。これに対し、ヒト輸入アイバンク角膜の角膜内皮(一部実質を含む)を採取し、疾患眼に移植する方法(Descemet stripping endothelial keratoplasty;DSEK)が知られている。DSEKでは、角膜内皮細胞を移植するため、全層角膜移植に比較して拒絶反応は軽減されるが、拒絶反応やドナー不足の問題を根本的に解決することはできない。
 一方、研究段階ではあるが、患者自身の角膜内皮細胞を用いた治療法も開発されている。この方法では、健眼角膜輪部細胞を増殖させて大量の角膜内皮細胞を得ることが可能であるため、前述したドナー不足の問題は解決しうる。しかし、通常培養角膜内皮細胞は単層で、細胞同士の結合もあまり強くないため、これをそのまま移植に用いることは操作性や強度の点で困難を伴う。また、培養した細胞は通常トリプシン等の酵素や化学薬品処理することによって培養容器から剥離・回収されるが、その処理によりデスモソーム構造が壊され、移植後の細胞シートの生着性や強度、機能が著しく低下するという問題もある。
 上記の問題に対し、発明者らは、0−80℃の温度範囲内で水和力が変化する温度応答性ポリマーを結合した培養皿を用いた培養角膜内皮細胞シート移植法を開発している。この方法では、酵素を用いずに温度を下げるだけで細胞シートを回収可能で、実験的に家兎角膜への移植に成功している。(特許文献1及び非特許文献1)。しかしながら、この方法はキャリアを用いないため、回収した培養角膜内皮細胞のハンドリングが困難であり、実際に臨床応用することは困難であるといった問題ある。
 また、動物実験段階ではあるが、アテロコラーゲンを培養角膜内皮細胞の移植用キャリアとして使用する方法も知られている(非特許文献2)。しかし、アテロコラーゲンの生体接着性及び生体分解性は良好でなく、移植後に内皮面から脱落し前房内に残留することが報告されている。このことから、結果として内皮細胞を刺激し、その密度低下の原因となることが懸念される。また、円柱状に加工したゼラチンディスクに培養角膜内皮細胞をのせ、ディスクごと移植する方法も報告されている(非特許文献3)が、ゼラチンディスクは厚さが約800μmで生分解に時間がかかり、また分解による炎症の惹起も懸念される。
 再生医療の組織工学においては、生体内分解性の培養支持体上で細胞や組織を培養し、支持体とともに患部にそのまま移植する方法が知られている。その支持体の構成材料として、ポリビニルアルコール等の水溶性高分子やコラーゲン等のハイドロゲルを利用することも知られている(特許文献2)。ゼラチンハイドロゲルは、熱反応等によりゼラチン分子間に架橋を形成させて得られるハイドロゲルで、高い生体吸収性と生体適合性に加えて、優れた徐放効果を有する。そのため、bFGFやBMP等のサイトカインや水難溶性薬物の徐放性基材(特許文献3~5など)としての利用が報告されている。しかしながら、ゼラチンハイドロゲルを角膜内皮移植用キャリアとして角膜細胞の培養に用いることはこれまで知られていない。
WO2004/073761 特開2002−186847号 特開2004−203829号 特開2007−332106号 特開2008−137975号
Ide T,et al.,Biomaterials,2006 Feb.,27(4):607−614 Koizumi N.,et.al.,Invest.Ophthalmol Vis.Sci.,2007 Oct.,48(10):4519−26 Hsiue GH et al.,Transplantation.2006 Feb.,15;81(3):473−6.
 角膜移植に用いられる移植用基材には、生体適合性や生体内分解性に加えて、透明性という要件が必要となる。本発明の課題は、これらの条件を満たす最良の角膜内皮移植用基材を決定し、これを用いて患部にそのまま適用可能な角膜移植用シートを提供することにある。
 発明者らは、角膜移植に用いられる移植用基材として、以下の条件を満たす素材を探索し、ゼラチンハイドロゲルを選択した。
1)培養角膜内皮細胞を移植する際に内皮細胞のもつ機能・形態を損なうことなく移植することが可能。
2)実質への生着性が良好でありシートの脱落が起きない、又は、速やかに生分解されるためシートが前房内に脱落しないため移植した角膜内皮への傷害も起きない。
3)移植後の透明性・生体適合性も良好であり、炎症反応等が無く、角膜透明性も維持されている。
 そして、ゼラチンをシート状に加工し、架橋処理を行ってゼラチンハイドロゲルシートを作製し、これを支持体として角膜内皮細胞を培養した。さらに、このシートを水疱性角膜症モデルマウスの前眼部に移植し、その分解性と治療効果を評価した。その結果、ゼラチンハイドロゲルを支持体とした角膜移植用シートは、高い細胞の生着性と透明性を示し、移植後の経過もきわめて良好であることが確認された。
 すなわち、本発明は、ゼラチンハイドロゲルに角膜内皮細胞を含んでなる角膜移植用シートに関する。
 本発明の角膜移植用シートにおいて、ゼラチンハイドロゲルの厚さは、好ましくは10~200μm、より好ましくは30~100μmである。
 また、ゼラチンハイドロゲルの含水率は、好ましくは92~99%、より好ましくは95~98%である。さらに、用いられる角膜内皮細胞はZO−1もしくはNa/K−ATPase陽性の細胞である。
 本発明で用いられるゼラチンハイドロゲルは、ゼラチンを加熱架橋処理して作製されたものである。ゼラチンハイドロゲルは、移植後生体内で分解されるが、その分解速度は架橋度等によって調整が可能である。すなわち、ゼラチンハイドロゲルが、移植後、1~6ヶ月に生体内で分解消失するように調整してもよいし、1年以上生分解することなく、実質組織に生着するように調整してもよい。
 本発明で用いられる角膜内皮細胞は、患者由来の細胞から調製されたものであることが好ましい。
 本発明の角膜移植用シートは、コラーゲンでコーティングをしたゼラチンハイドロゲルシート上に、角膜内皮細胞を播種して培養することにより得られる。
 ここで、コラーゲンのコーティングは、従来のコラーゲン溶液に浸漬する方法ではなく、コラーゲン溶液をシート表面に塗布する方法により行う。この方法でコーティングすることにより、シートの細胞接着性とバリア機能が格段に改善される。コーティング処理時の温度、湿度、時間については、特に限定されるものではない。また、コラーゲン溶液濃度と種類についても同様に限定されるものではない。
 具体的には、コラーゲンでコーティングをしたゼラチンハイドロゲルシート上に、角膜内皮細胞を播種して培養し、角膜内皮細胞がコンフルエントになってから7日目以降に、角膜内皮細胞を含むゼラチンハイドロゲルシートを培養容器から剥離することにより得られる。前述のとおり、得られた角膜移植用シートにおけるゼラチンハイドロゲル内の細胞密度は、2000cells/mm以上、好ましくは2500cells/mm以上、より好ましくは3000cells/mm以上である。
 培養角膜内皮細胞は単層であるため移植時のハンドリングが困難であり、安定した移植結果を得るには強度と透明性を有した支持体(キャリア)が必要である。本発明で用いられるゼラチンハイドロゲルは、適切な強度、優れた透明性を有し、移植用キャリアとして用いることにより角膜移植用シートの強度と操作性を格段に向上させる。また、ゼラチンハイドロゲルは生体内で分解され、残存することがないため、これによる角膜内皮障害の心配がなく、移植後早期に角膜透明性が回復する。さらに、ゼラチンハイドロゲルはすでに臨床使用されている材料であるため、これを用いた本発明の角膜移植用シートは、安全に臨床使用に供することができる。
図1は、ゼラチンハイドロゲルシート及びアテロコラーゲンシートの透明性を比較した写真像を示す。 図2は、ゼラチンハイドロゲルシート及びアテロコラーゲンシートの力学特性の評価結果を示す(A:各シートの引っ張り試験に対する強度(グラフ左から、48hr,24hr,12hr,atelo collagen,6hr)、B:各シートの引っ張り試験に対する強度、C:各シートの引っ張り試験におけるブレークポイント(break point)、D:各シートの弾性係数(Elastic modulus))。 図3は、アテロコラーゲンおよびゼラチンハイドロゲルシートの物質透過性試験結果を示す(A:アルブミン、B:グルコース)。 図4は、角膜内皮細胞を培養したゼラチンハイドロゲルシート上へのコーティング法の違いによる細胞接着性(位相差顕微鏡像)とバリア機能改善(ZO−1発現)の評価結果を示す(左から、(a)位相差顕微鏡像(Day1)、(b)ZO−1免疫蛍光染色(Day10);、A:0.15mg/mlコラーゲン溶液に浸漬したシート(従来法)、B:3.0mg/mlコラーゲン溶液を塗布したシート、C:アテロコラーゲン(比較対照))。 図5は、角膜内皮細胞を培養したゼラチンハイドロゲルシートの透明度の評価結果を示す(左:アテロコラーゲン、右:ゼラチンハイドロゲルシート)。 図6は、ゼラチンハイドロゲルシート上で培養した角膜内皮細胞の評価を示す(A:Na/K−ATPaseおよびZO−1発現解析(免疫染色像)、B:HE染色像、C:走査顕微鏡像、各スケールは200μmを示す)。 図7は、ゼラチンハイドロゲルシートの(a)移植前及び(b)家兎前房内移植後のHE染色像を示す(各スケールは200μmを示す)。 図8は、家兎水疱性角膜症モデルに対する、ゼラチンハイドロゲルシートを用いた培養角膜内皮細胞シートの、(a)移植後7日及び(b)移植後21日の角膜厚を移植眼、非移植眼、正常眼で比較した結果を示す。 図9は、家兎水疱性角膜症モデルに対するゼラチンハイドロゲルシートを用いた培養角膜内皮細胞シートの、移植後21のHE染色像(A)及びDiI染色像(B)を示す。右図は左図box部の拡大図。
 本明細書は、本願の優先権の基礎である特願2009−190415号の明細書に記載された内容を包含する。
1.セラチンハイドロゲル
1.1 ゼラチンハイドロゲルとは
 本発明にかかる「ゼラチンハイドロゲル」とは、ゼラチンに化学反応、熱脱水処理、放射線、紫外線、あるいは電子線照射等を与えることによりゼラチン分子間に架橋を形成させて得られるハイドロゲルのことである。
 ここで「ゼラチン」とは、酸又はアルカリ、あるいは酵素処理等によりコラーゲンのペプチド連鎖間の塩類結合や水素結合が開裂して、非可逆的に水溶性蛋白質に変化した変性コラーゲンを意味する。
 本発明で用いられるゼラチンは、酸性ゼラチン及び塩基性ゼラチンのいずれであってもよい。本明細書において「酸性ゼラチン」とは、コラーゲンをアルカリ処理して調製した等電点が7.0未満2.0以上のゼラチン、好ましくは6.5以下4.0以上、より好ましくは5.5以下4.5以上のものが意図される。また「塩基性ゼラチン」とは、コラーゲンを酸処理して調製した等電点が7.0以上13.0以下のゼラチン、好ましくは7.5以上10.0以下、より好ましくは8.5以上9.5以下のものが意図される。たとえば、「酸性ゼラチン」としては、新田ゼラチン社の試料等電点(IEP)5.0等を使用することができ、塩基性ゼラチンとしては同じく新田ゼラチン社の試料IEP9.0等を使用することができる。
 いずれのゼラチンを用いるかは、配合する薬効成分や用途に応じて適宜選択される。たとえば、bFGFはIEPが4.6であるため、こうした薬剤を配合する場合には酸性ゼラチンが用いられる。一方、IEPが7以下のタンパク質薬剤を配合する場合には、塩基性ゼラチンが用いられる。
1.2 ゼラチンの架橋
 ゼラチンの架橋度は、所望の生体内分解性や含水率、生体吸収性のレベルに応じて適宜選択することができる。架橋は、ゼラチンを構成するコラーゲンのどの部分を架橋するものであってもよいが、特にカルボキシル基と水酸基、カルボキシル基とε−アミノ基、ε−アミノ基同士を架橋することが好ましい。こうして架橋を導入することにより、複合体は所望の機械的強度特性を有するようになる。また、架橋の導入率によって、生体内での分解速度(残存期間)も制御することができる。一般に、ゼラチン及び架橋剤の濃度、架橋時間が増大するとともにハイドロゲルの架橋度は増加し、生体吸収性は低くなる。
 ゼラチンの架橋は、熱反応(熱脱水処理等)、架橋剤や縮合剤を用いた化学的手法による架橋、γ線、紫外線、電子線等を用いた物理的手法による架橋などの方法で行うことができる。化学的架橋の場合、用いられる架橋剤としては、例えば、グルタールアルデヒド、ホルムアルデヒド等のアルデヒド系架橋剤;ヘキサメチレンジイソシアネート等のイソシアネート系架橋剤;1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩等のカルボジド系架橋剤;エチレングリコールジエチルエーテル等のポリエポキシ系架橋剤;トランスグルタミナーゼ等が挙げられ、添加する架橋剤の量は、用いる架橋剤によって適宜設定される。架橋度は、所望の含水率、すなわちハイドロゲルの生体吸収性のレベルに応じて適宜選択することができる。生体吸収性高分子としてゼラチンを用いる場合、ハイドロゲルを調製する際のゼラチンと架橋剤の濃度の好ましい範囲は、ゼラチン濃度1~20w/w%、架橋剤濃度0.01~1w/w%である。架橋反応条件は特に制限はないが、例えば、0~40℃、好ましくは25~30℃で、1~48時間、好ましくは12~24時間で行うことができる。一般に、ゼラチン及び架橋剤の濃度、架橋時間が増大するとともにハイドロゲルの架橋度は増加し、生体吸収性は低くなる。含水率と架橋剤の量については、特開2004−203829号に記載されている。
 架橋は、いずれの方法で行ってもよいが、本発明においては熱架橋(熱脱水処理等)を施すことが好ましい。化学架橋を行うと架橋剤がハイドロゲル内に残存したり、条件によってはハイドロゲル表面のみ架橋されて均一な架橋ができない可能性があるからである。これに対し、熱架橋の場合、ゼラチンハイドロゲル全体に均一な架橋が形成され、所望の生体内分解性が達成される。
 熱反応により架橋を形成させる場合、具体的には、真空状態下で140℃~160℃にて、6時間から72時間の範囲の条件で行うことができ、その条件設定によりゼラチンハイドロゲルの生体内での分解速度(残存期間)を制御することが可能である。本発明の実施例では、160℃、0.01Torrで72時間真空加熱して作製したゼラチンハイドロゲルを用いた。
1.3 生体内分解性
 ゼラチンハイドロゲルの分解性は、前述した架橋度とシートの厚さによって調整することができる。分解性は動物体内、例えば前眼部であれば、14日~1年以上の範囲でコントロールが可能である。本発明では分解性が早すぎると角膜内皮細胞の足場としての役割が果たせず、角膜内皮細胞の生着が不良になると考えられる。そこで分解性としては14日~6ヶ月、特に1~3ヶ月程度で設定することが好ましい。又は、ゼラチンハイドロゲルの実質への生着性が良好であり脱落が起きなければ、分解時間を1年以上のほぼ生分解が起きない期間に設定することも考えられる。
 ゼラチンの架橋度は含水率を指標として評価することができる。含水率とは膨潤ハイドロゲルの重量に対するハイドロゲル中の水の重量パーセントである。含水率が大きければハイドロゲルの架橋度は低くなり、分解されやすくなる。好ましい分解性を示す含水率としては約92~99w/w%であり、さらに好ましいものとしては、約95~98w/w%のものが挙げられる。
1.4 ゼラチンハイドロゲルの形状
 本発明のゼラチンハイドロゲルシートはいずれの形状にも成型可能であるが、培養角膜内皮細胞移植用キャリアへの適用のため、本発明においてはシート上に成型する。シートの厚さは、角膜内皮移植への適用を考慮すると、10~200μm程度が好ましく、30~100μm程度がより好ましい。
1.5 ゼラチンハイドロゲルの透明度
 本発明のゼラチンハイドロゲルは、優れた透明性を有し、従来キャリアとして用いられているアテロコラーゲン等に比較して、その透明度は格段に高い。また、ゼラチンハイドロゲルは、患部に適用後においても、その透明性を維持しうる。
2.角膜内皮細胞
2.1 ドナーあるいは患者由来の角膜内皮細胞
 本発明で用いられる角膜内皮細胞は、角膜内皮細胞層に含まれる細胞を包括したものであり、角膜内皮幹細胞、角膜内皮前駆細胞をも含む。また角膜内皮細胞は、患者以外のドナー、例えばヒト輸入アイバンク角膜の角膜内皮を用いてもよいし、移植を受ける患者由来の角膜内皮細胞を用いてもよい。拒絶反応を防止する点では患者由来の細胞を用いることが望ましいが、前述のように角膜内皮細胞は生体内では増殖しないため、患者健常眼から角膜内皮細胞を採取することは技術的には可能であるが、現実的には困難である。
2.2 幹細胞から分化誘導した角膜内皮細胞
 角膜内皮細胞は、角膜内皮幹細胞、角膜内皮幹細胞以外の組織幹細胞あるいは胚性幹細胞(ES細胞)、人工多能性幹細胞から誘導された角膜内皮細胞を利用してもよい。用いられる角膜内皮幹細胞や人工多能性幹細胞の調製方法は特に限定されないが、治療を必要とする患者自身に由来する細胞であることが好ましい。
 人工多能性幹細胞とは、哺乳動物体細胞又は未分化幹細胞に、特定の因子を導入することにより、ES細胞と同様の分化多能性を有するように再プログラミング(初期化)された細胞を言う。「人工多能性幹細胞」は、Yamanakaらにより、マウス線維芽細胞にOct3/4・Sox2・Klf4・c−Mycの4因子を導入することにより、初めて樹立され「iPS細胞(induced Pluripotent Stem Cell)」と命名された(Takahashi K,Yamanaka S.,Cell,(2006)126:663−676)。このiPS細胞のほか、同様の4因子をヒト線維芽細胞に導入することにより樹立されたヒトiPS細胞(Takahashi K,Yamanaka S.,et al.Cell,(2007)131:861−872.)、さらにc−Mycを含まない方法で作製されたiPS細胞(Nakagawa M,Yamanaka S.,et al.Nature Biotechnology,(2008)26,101−106)も用いることができる。
 また、Wisconsin大学のThomsonらによって、OCT3/4,SOX2,NANOG,LIN28の4遺伝子をヒト線維芽細胞に導入して作製された人工多能性幹細胞(Yu J.,Thomson JA.et al.,Science(2007)318:1917−1920.)、Harvard大学のDaleyらにより、皮膚細胞にOCT3/4,SOX2,KLF4,C−MYC,hTERT,SV40 large Tの6遺伝子を導入して作製した人工多能性幹細胞(Park IH,Daley GQ.et al.,Nature(2007)451:141−146)、Sakuradaらによって、出生後の組織に存在する未分化幹細胞を細胞源として、Oct3/4、Sox2、Klf4及びc−Myc等を導入することで、誘導された人工多能性幹細胞(特開2008−307007)も用いることができる。
 このほか、OCT3/4,KLF4,低分子化合物をマウス神経前駆細胞等に導入して作製された人工多能性幹細胞(Shi Y.,Ding S.,et al.,Cell Stem Cell,(2008)Vol3,Issue 5,568−574,)、SOX2,C−MYCを内因性に発現しているマウス神経幹細胞にOCT3/4,KLF4を導入して作製された人工多能性幹細胞(Kim JB.,Scholer HR.,et al.,Nature,(2008)454,646−650)、C−MYCを用いることなく、Dnmt阻害剤やHDAC阻害剤を利用して作製された人工多能性幹細胞(Huangfu D.,Melton,DA.,et al.,Nature Biotechnology,(2008)26,No 7,795−797)、あるいは、公開されているすべての特許:特開2008−307007号、特開2008−283972号、US2008−2336610、US2009−047263、WO2007−069666、WO2008−118220、WO2008−124133、WO2008−151058、WO2009−006930、WO2009−006997、WO2009−007852に記載の人工多能性幹細胞のいずれをも用いることができる。
 組織幹細胞やES細胞、人工多能性幹細胞からの角膜内皮細胞の分化誘導は、直接であってもよいが、神経堤細胞や角膜実質幹細胞を介した間接的なものであってもよい。すなわち、組織幹細胞やES細胞、人工多能性幹細胞をいったん神経堤細胞や角膜実質幹細胞に分化誘導し、この神経堤細胞や角膜実質幹細胞からさらに、公知技術に従ってTGFb2等で分化誘導することで角膜内皮細胞を誘導する(特願2008−123562)。
 ES細胞から神経堤細胞を誘導する方法としては、SasaiやMizusekiらによって報告されたSDIA(Stromal cell−derived inducing activity)法が知られている。SDIA法はマウス由来の間質細胞(PA6細胞)をフィーダー細胞として利用することで、ES細胞から神経堤細胞を分化誘導する方法である(Kawasaki,H.,Sasai,Y.et al.(2000)Neuron 28,31−40.、Kawasaki,H.,Sasai,Y.et al.(2002)Proc.Natl.Acad.Sci.USA 99,1580−1585、Mizuseki,K.,Sasai,Y.et al.(2003)Proc.Natl.Acad.Sci.USA 100,5828−5833)。このほか、ES細胞から神経堤細胞を誘導する方法としては、ST2細胞を用いる方法(Motohashi T et al.Stem Cells,2007;25:402−10.)や、MS−5細胞を用いる方法(Lee G et al.Nat Biotechnol.2007;25:1468−75.)も知られている。
 また、ES細胞や人工多能性幹細胞から神経堤細胞を誘導する方法としては、発明者によるSFEB法を改変した分化誘導方法(投稿中)もある。SFEB(Serum−free Floating culture of Embryoid Body−like aggregates)法は、フィーダー細胞の非存在下で、特別な無血清培養液と浮遊凝集塊培養を組み合わせることで、マウスES細胞から神経細胞を誘導する方法である(Watanabe K et al.Nature Neuroscience 2005;8:288−96)。
3.ゼラチンハイドロゲル上での角膜内皮細胞の培養
 本発明の角膜移植用シートは、前述のゼラチンハイドロゲルシートをコラーゲン(タイプIあるいはタイプIV)でコーティングし、その上に角膜内皮細胞を播種して培養する
ことにより作製される。
3.1 コラーゲンコーティング
 ゼラチンハイドロゲル上へのコラーゲンのコーティングは、細胞接着性及び角膜内皮機能の改善を目的として行う。用いるコラーゲンはタイプIあるいはタイプIVが好ましく、抗原性を除去したアテロコラーゲンであることが好ましい。コラーゲンコーディングは、常法にしたがって、コラーゲンを希塩酸(pH3.0)で10倍希釈しゼラチンハイドロゲル上に薄く塗り広げ、乾燥させることで実施できる。コーティングしたシートは、使用前にPhosphate−Buffered Salines(PBS)(Invitrogen)で洗浄することが好ましい。
 コラーゲンの代わりに、ラミニン、血清、FNC coating Mix(Athena Enzyme Systems)等の細胞接着性をもつタンパク質、ペプチド、糖タンパク質などを単独あるいは混合して用いることもできる。コーティング時の濃度は10−4~10mg/mlであり、水溶液の組成はどんな種類のものでも用いることができる。
 ここで、コラーゲンのコーティングは、従来のコラーゲン溶液に浸漬する方法ではなく、コラーゲン溶液をシート表面に塗布する(塗りつける)方法により行う。この方法でコーティングすることにより、シートの細胞接着性とバリア機能が格段に改善される。コーティングしたシートは、乾燥することによってコーティングしたコラーゲンがゼラチンシート表面近傍に固定される。この表面への固定が、細胞の接着と機能発現に重要である。コーティングをしない場合、細胞接着や内皮機能が低下すると考えられるため、コーティングを実施することが望ましい。
3.2 培地
 ゼラチンハイドロゲルシート上での培養は、接着細胞の培養に通常用いられる培地を用いて行うことができる。例えば、DMEM培地、BME培地、α MEM培地、Dulbecco MEM培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、McCoy’s培地、ウイリアムスE培地、及びこれらの混合培地など、動物細胞の培養に用いることのできる培地であればいずれも用いることができる。
 これらを基本培地に、角膜内皮細胞の維持増殖に必要な各種栄養源や分化誘導に必要な各成分を適宜添加してもよい。
 例えば、栄養源としては、血清、塩基性線維芽細胞成長因子(bFGF)、上皮成長因子(EGF)、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、また、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウム及び硫酸マンガン、各種ビタミン類、アミノ酸類等を含むことができる。
 その他必要に応じて、ピルビン酸、βメルカプトエタノール等のアミノ酸還元剤、血清代替物等を添加することができる。なお血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン)、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、βメルカプトエタノール又は3’チオールグリセロール、市販のKnockout Serum Replacement(KSR)、Chemically−defined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)が挙げられる。
 これらの成分を配合して得られる培地のpHは5.5~9.0、好ましくは6.0~8.0、より好ましくは6.5~7.5の範囲である。
3.3 培養条件
 上記の培地を含むゼラチンハイドロゲルに、角膜内皮細胞を500~4500cells/mmの播種密度、好ましくは1500~3500cells/mmの播種密度で播種し、36℃~38℃、好ましくは36.5℃~37.5℃で、1%~25%O、1%~15%COの条件下で培養する。培養日数は、細胞がコンフルエントになってから少なくとも3日以上、好ましくは7日以上であることがよい。最終的に得られるゼラチンハイドロゲル内の細胞密度は、2000cells/mm以上、好ましくは2500cells/mm以上、より好ましくは3000cells/mm以上である。
4.角膜移植用シート
 本発明の角膜移植用シートは、ゼラチンハイドロゲルを支持体としているため、単層で厚さ10μm程度しかない角膜内皮細胞層の強度と操作性を格段に向上させる。シート上の角膜内皮細胞は、バリア機能を示すタイトジャンクションタンパクZO−1を発現し、細胞のシートへの接着性は良好である。シートは、トリプシンやディスパーゼ等の酵素処理を施すことなく培養容器から剥離可能であるため、細胞のデスモソーム構造が維持され、角膜内皮細胞層本来の構造と強度が維持される。
 またゼラチンハイドロゲルは透明性が非常に高いため、本発明の角膜移植用シートは、従来公知のアテロコラーゲンを支持体とした角膜移植用シートに比較して、その透明度が格段に高く、その透明性は移植後も維持される。
 本発明の角膜移植用シートは、必要に応じて薬効成分を含有することができる。そのような薬効成分としては、例えば、抗腫瘍剤、抗菌剤、抗炎症剤、抗ウイルス剤、抗エイズ剤、ホルモンなどの低分子薬物、骨形成因子又は骨成長因子を含む生理活性ペプチド、蛋白質、糖蛋白質、多糖類、核酸等が挙げられる。これらの薬効成分は天然から得られる物質でも合成により製造される物質でもよい。
 具体的には、上皮成長因子(EGF)、線維芽細胞成長因子(FGF)、血小板由来成長因子(PDGF)、肝細胞成長因子(HGF)、トランスフォーミング成長因子(TGF)、インスリン様増殖因子(IGF)、などの細胞増殖因子、特に骨再生に関してはBMP−2、BMP−4、BMP−5、BMP−6、BMP−7(OP−1)及びBMP−8(OP−2)等の骨形成タンパク質(BMP)、グリア誘導神経栄養因子(GDNF)、神経栄養因子(NF)、歯科臨床でひろく用いられている多数の細胞増殖因子を含む多血小板血漿(PRP)、インターフェロン、インターロイキン−2、イフォスファミドなどの抗がん剤、ストレプトマイシン、ゲンタマイシン、ガチフロキサシンなどの抗生物質、アトルバスタチン(atorvastatin)、プラバスタチン(pravastatin)、シンバスタチン(simvastatin)のようなコレステロール低下剤、リドカイン、硫酸プロタミン、ヨウ化ヒプル酸ナトリウム、ヨウ化スルホプロモフタレイン、ヘパリンナトリウム、ブドウ糖、ノルエピネフリン、デキストラン、チオペンタールナトリウム、クロム酸ナトリウム注、キシリトール、塩酸プロカイン、塩酸テトラカイン、塩化ツボクラリン、塩化スキサメトニウム、無晶性インシュリン亜鉛、亜硝酸アミル、アジマリン等が例示される。
 上記薬効成分をゼラチンハイドロゲルに含浸させる時期は、当該ゲル上で角膜内皮細胞を培養前、培養最中、もしくは移植用シートを調製する前でも後でも可能である。ゼラチンハイドロゲルに対する薬効成分の配合比は、モル比で約5倍量以下であることが好ましい。さらに好ましくは、約5~約1/10倍量のモル比である。この含浸操作は、通常、4~37℃で15分間~1時間、好ましくは4~25℃で15~30分間で終了し、その間にゼラチンハイドロゲルは薬効成分を含む溶液で膨潤し、ゼラチンハイドロゲルと物理化学的相互作用によって複合化され、ハイドロゲル内に固定される。薬効成分とゼラチンハイドロゲルとの結合には、クーロン力、水酸結合力、疎水性相互作用などの物理学的相互作用の他、薬物の官能基又は金属とハイドロゲル上の官能基との間の配位結合などが単独あるいは複合的に関与していると考えられる。
 薬効成分は、ゼラチンハイドロゲルが生体内で分解されゼラチン分子が水可溶化されるに従ってシート外部へと徐々に放出される。この放出速度は、使用するゼラチンハイドロゲルの生体における分解及び吸収の程度、ならびに複合体内での薬効成分とゼラチンハイドロゲルとの結合の強さの程度及び安定性により決定される。ゼラチンハイドロゲルの生体における分解及び吸収の程度は、ハイドロゲル作製時における架橋の程度を調節することにより調節することができる。
 本発明において、例えば薬効成分として核酸等の負に荷電した物質を用いる場合には、薬効成分とゼラチンハイドロゲルとの安定な複合体が形成されるよう、ゼラチンハイドロゲルが正に荷電していることが好ましい。薬効成分の有する負の電荷と、ゼラチンハイドロゲルの有する正の電荷とが強力に結合(イオン結合)することによって安定なゼラチンハイドロゲル複合体が形成される。ゼラチンハイドロゲルを正に荷電させるためには、ゼラチンハイドロゲルに予めアミノ基等を導入することによってカチオン化することができる。このことにより、ゼラチンハイドロゲルと薬効成分との結合力が増し、より安定したゼラチンハイドロゲル複合体を形成することができる。逆に、薬効成分が正電荷をもつ物質の場合には、薬効成分とゼラチンハイドロゲルとの安定な複合体が形成されるようになり、ゼラチンを相互作用にアニオン化する。これにより薬効成分がゼラチンと相互作用して、安定にハイドロゲル内に複合化固定される。このように、薬効成分の化学性質、物性にあわせて相互作用できるようにゼラチンを化合誘導体化、あるいは修飾することによって、異なる薬効成分をゼラチンハイドロゲルから徐放化することができる。
 カチオン化の工程は、生理条件下でカチオン化する官能基を導入し得る方法であれば特に限定されないが、ゼラチンの有する水酸基あるいはカルボキシル基等に1、2又は3級のアミノ基又はアンモニウム基を温和な条件下で導入する方法が好ましい。例えばエチレンジアミン、N,N−ジメチル−1,3−ジアミノプロパン等のアルキルジアミンや、トリメチルアンモニウムアセトヒドラジド、スペルミン、スペルミジン又はジエチルアミド塩化物等を、種々の縮合剤、例えば1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、塩化シアヌル、N,N’−カルボジイミダゾール、臭化シアン、ジエポキシ化合物、トシルクロライド、ジエチルトリアミン−N,N,N’,N’’,N’’−ペンタン酸ジ無水物等のジ無水物化合物、トリシルクロリド等を用いて反応させる方法がある。中でもエチレンジアミンを反応させる方法が簡便且つ汎用性があり好適である。
 薬効成分含有角膜移植用シートは、薬効成分の徐放性効果と安定化効果を持つため、所望の部位において薬効成分を制御された方向性をもって長時間にわたって放出することができる。そのため、薬効成分の作用が病巣部位内で効果的に発揮される。
 角膜移植対象者は世界で100万人、国内において数万人いるとされ、その中でも角膜内皮の障害により生じる水疱性角膜症患者は角膜移植対象疾患全体の約80%を占めている。角膜内皮は一度障害を受けると再生しないため、現在角膜移植以外に有効な治療方法は存在しない。
 以上のとおり、本発明の角膜移植用シートは、製造方法が簡便で、操作性、生着性、分解性に優れ、前述のとおり薬剤徐放効果も有している。角膜内皮細胞として、患者由来のものを用いれば、拒絶反応の問題も回避され、迅速に角膜内皮の再生を図ることが可能となる。さらに、ゼラチンハイドロゲルには薬効成分を徐放させる機能も有するため、生物活性をもつ薬効成分を含有させて、これを必要な期間放出させ、疾患の治癒をさらに促進することもできる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:ゼラチンハイドロゲルシートの作製
 豚皮もしくは牛骨よりアルカリ処理によってコラーゲンから抽出した(分子量98,000等電点5.0)。ゼラチンの10WT%水溶液を調整した。これをプラスチックシャーレに流し込み室温で数日放置することで水を蒸発させ、ゼラチンシートを得た。これを160℃0.01Torrで72時間熱脱水処理を行い、ゼラチン分子間を化学架橋した。得られたゼラチンシートは、含水率97%、厚さ:100μm、であった。なお、厚さは目的に応じて、30μm~で調整可能である。
(1)透明度
 上記のようにして調製したゼラチンハイドロゲルシート(48時間架橋)と、アテロコラーゲンシート(株式会社高研)の透明度を目視で比較した(図1)。さらに、ゼラチンハイドロゲルシートの架橋時間を変えて(6~48時間)、その光透過率を比較した。表1に示すように、いずれの架橋時間においても、ゼラチンハイドロゲルの光透過率はアテロコラーゲンより高かった。
Figure JPOXMLDOC01-appb-T000001
(2)力学的特性
 ゼラチンハイドロゲルシートの力学特性をアテロコラーゲンと比較評価した。
 架橋時間の異なる(6~48時間架橋)ゼラチンハイドロゲルシート、及びアテロコラーゲンシートの引っ張り試験に対する強度(図2A及びB)とブレークポイント(図2C)を測定するとともに、弾性係数(Elastic modulus)を算出した(図2D)。
 ゼラチンハイドロゲルシートは架橋時間依存的に引っ張り強度が増加し、逆に弾性係数は低下する傾向が認められた。また、ゼラチンハイドロゲルシートは、いずれの架橋時間についても、アテロコラーゲンと同等かそれ以上の強度及び弾性を有することが確認された。
(3)物質透過性
 ゼラチンハイドロゲルシート(48時間架橋)の物質透過性をアテロコラーゲンシートと比較評価した。物質透過性は、常法にしたがいアルブミンとグルコースに対する拡散係数を求めることで評価した。
 ゼラチンハイドロゲルシートはアテロコラーゲンシートに比較して、有意に高いアルブミン透過性を示した。一方、グルコース透過性に対しては、ゼラチンハイドロゲルシートはアテロコラーゲンシートと同等であった。このことから、ゼラチンハイドロゲルシートはキャリアシートして有用であると考えられた。
実施例2:ゼラチンハイドロゲルシート上での細胞培養
1.角膜内皮細胞の調製
 家兎眼球より強角膜片を作成し、デスメ膜を剥離した。デスメ膜は、0.25%Trypsin−EDTAと37℃10分インキュベートして、細胞を単離した。2ng/ml bFGF(R&D systems)及び10%血清(Japan bio serum)入りのDMEM培地(Low glucose、日研生物医学研究所)を添加し、300g x 5min遠心分離し、上清を吸引し、残った細胞塊を同様の培地に懸濁させた。
2.角膜内皮細胞の培養及びコーティング条件の検討
 実施例1で調製したゼラチンハイドロゲルシートをコラーゲンタイプIもしくはタイプIV(新田ゼラチン)にてコーティングした。コーティング方法としては、3.0mg/mlコラーゲン溶液原液(pH3.0)を、実施例1で作製したゼラチンハイドロゲルシート上に、セルスクレイパー等を用いて直接塗布する方法と、希塩酸で10倍に希釈したコラーゲン溶液中にゼラチンハイドロゲルシートを浸漬する方法で、ともにクリーンベンチ内で30分以上置き静置させることでコーティングした。コーティングしたシートは、使用前にPhosphate−Buffered Salines(PBS)(Invitrogen)で3回洗浄した。
 このシート上にデスメ膜より単離された角膜内皮細胞を播種密度1.5~4.5×10cells/mmにて播種し、37℃、10%CO、前項で用いた血清入りの内皮培養培地を用いて14日間培養した。比較として、アテロコラーゲン上に同様の条件で角膜内皮細胞を播種して培養した。
 コラーゲン溶液を直接塗布したゼラチンハイドロゲルシートとコラーゲン溶液に浸漬したゼラチンハイドロゲルシートについて、シート上への細胞接着性を評価した。細胞播種翌日の内皮細胞の形態を位相差顕微鏡で観察すると、コラーゲン溶液原液を塗布したシートにおいては大部分の内皮細胞が接着しているのに対して、10倍希釈コラーゲン溶液中に浸漬したシートの場合では、接着細胞が明らかに少なかった(図4A−(a)及びB−(a))。また、培養10日後の培養細胞を位相差顕微鏡により観察するとともに、ZO−1抗体(Zymed)及びNa/K−ATPase抗体を用いた免疫蛍光染色を実施した。その結果、コラーゲン溶液原液を塗布したシートにおいては、細胞間においてタイトジャンクションタンパクZO−1および内皮マーカーであるNa/K−ATPaseの明瞭な発現が観察された(図4B−(b)及び(c))。比較対象のアテロコラーゲンシート上では、コラーゲン溶液原液を塗布したゼラチンシート同様に、明瞭なZO−1発現が認められた(図4C−(b))。このことから、ゼラチンハイドロゲルシートにコラーゲン溶液原液を塗布することにより、アテロコラーゲンと同様の細胞接着性及び機能発現が認められると考えられた。
3.角膜内皮細胞シートの評価
 コラーゲンを塗布したゼラチンハイドロゲルを支持体として培養した角膜内皮細胞シートと、アテロコラーゲンを支持体として培養した角膜内皮細胞シートの透明度を目視で比較した。培養後のアテロコラーゲンは白濁し、透明性が低下しているのに比較して、ゼラチンハイドロゲルシートは培養による透明性の低下は認められなかった(図5)。
 ゼラチンハイドロゲル上に培養した角膜内皮細胞は内皮ポンプマーカーNa/K−ATPase(図6A)およびタイトジャンクションマーカーであるZO−1(図6B)を発現していた。また走査顕微鏡観察により、内皮細胞に特有の微絨毛が細胞表面に観察された(図6C)。以上のことからゼラチンハイドロゲルシートは角膜内皮細胞の足場として正常な生育をサポートすることが示された。
実施例3:ゼラチンハイドロゲルシートの家兎前房内移植(生分解性の検討)
 家兎水晶体摘出術(超音波乳化吸引術)後、デスメ膜を剥離した。その後8mmトレパンにて打ち抜いたゼラチンハイドロゲルシートのみを前房内に移植した。
(1)眼表面観察像
 移植後28日目では、前房内に移植したシートの透明性及び角膜透明性は共に保たれており、虹彩が透見可能であった。また、炎症や浮腫等も認められなかった。
(2)移植後のゼラチンハイドロゲルシート
 術後28日目にて安楽死させ、眼球摘出後10%中性緩衝ホルマリン液にて化学固定を行った。その後ヘマトキシリン&エオジン染色により角膜組織を観察した(図7(a)移植前、(b)移植後)。角膜組織とゼラチンハイドロゲルシートは良好に接着しており、ゼラチンハイドロゲルによる炎症細胞の遊走・浸潤は認められず、角膜透明性も良好であった。移植前ゼラチンハイドロゲルシートの厚さは約192.7±3.2μm(N=9)であったのに対して、移植後28日目では163.8μm(N=9)に減少し、良好な分解性が確認された。
実施例4:ゼラチンハイドロゲルシートを用いた培養角膜内皮細胞シートの家兎水疱性角膜症モデルへの移植
 実施例2の方法に基づき、家兎由来角膜内皮細胞をゼラチンハイドロゲル上で培養し、移植用の培養角膜内皮細胞シートを作製した。作製した培養角膜内皮細胞シートを、角膜内皮を完全に除去した家兎水疱性角膜症モデルに移植を行った。移植後、パキメーターを用いた角膜厚測定及び前眼部観察を行った。
(1)眼表面観察像
 移植後28日目では、前房内に移植したシートの透明性及び角膜透明性は共に良好で、虹彩が透見可能である。前眼部スリット観察により炎症や浮腫等は認められず、またシートの脱落も認められなかった。
(2)移植後7日及び21日における移植眼、非移植眼、正常眼の角膜厚
 移植後7日及び21日における移植眼、非移植眼、正常眼の角膜厚を比較した結果、ゼラチンシートをキャリアに用いて移植した培養角膜内皮細胞は、術後21日において機能しており、角膜厚及び透明性の改善が認められた(図8)。
 別に、移植後21日における眼球を摘出し、HE染色(図9A)及びDiI染色(図9B)を実施した。HE染色では、切片作製時にゼラチンシートが実質部より剥離したが、実質との接着部分においては炎症細胞の集積は認められなかった(右図は左図のbox部の拡大図)。DiI染色では、ゼラチンシート上にDiI陽性の移植した培養内皮細胞が残存していることが確認された。
 本発明のゼラチンハイドロゲルを支持体とする角膜移植用シートは、内皮細胞のもつ機能・形態を損なうことなく移植することが可能である。本発明の角膜移植用シートは移植後の透明性、組織への生着が良好である。また、作製条件により生体内での生分解速度を調整可能であり、炎症反応等の問題もない。さらに素材であるゼラチンハイドロゲルは既に臨床使用されているものである。したがって、従来の全層角膜移植術に代わる角膜内皮疾患の治療法として極めて有用である。本発明の角膜移植用シートを用いた治療法の対象となる水疱性角膜症等の患者は、国内でも年間数万に達すると予想されるため、その治療法は事業化する価値も高い。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。

Claims (16)

  1.  ゼラチンハイドロゲルに角膜内皮細胞を含んでなる、角膜移植用シート。
  2.  ゼラチンハイドロゲルが、厚さ10~200μmである、請求項1に記載の角膜移植用シート。
  3.  ゼラチンハイドロゲルが、厚さ30~100μmである、請求項1又は2に記載の角膜移植用シート。
  4.  ゼラチンハイドロゲルの含水率が92~99%である、請求項1~3のいずれか1項に記載の角膜移植用シート。
  5.  ゼラチンハイドロゲル内の細胞密度が2000cells/mm以上である、請求項1~4のいずれか1項に記載の角膜移植用シート。
  6.  ZO−1陽性の角膜内皮細胞を含む、請求項1~5のいずれか1項に記載の角膜移植用シート。
  7.  ゼラチンハイドロゲルが、ゼラチンを加熱架橋処理して作製されたものである、請求項1~6のいずれか1項に記載の角膜移植用シート。
  8.  ゼラチンハイドロゲルが、移植後生体内で分解されることを特徴とする、請求項1~7のいずれか1項に記載の角膜移植用シート。
  9.  ゼラチンハイドロゲルが、移植後、1~6ヶ月に生体内で分解消失することを特徴とする、請求項1~8のいずれか1項に記載の角膜移植用シート。
  10.  ゼラチンハイドロゲルが、生分解せずに実質組織に生着することを特徴とする、請求項1~8のいずれか1項に記載の角膜移植用シート。
  11.  角膜内皮細胞が患者由来の細胞である、請求項1~10のいずれか1項に記載の角膜移植用シート。
  12.  コラーゲンでコーティングをしたゼラチンハイドロゲルシート上に、角膜内皮細胞を播種して培養することにより得られる、請求項1~11のいずれか1項に記載の角膜移植用シート。
  13.  コラーゲンでコーティングをしたゼラチンハイドロゲルシート上に、角膜内皮細胞を播種して培養することを特徴とする、角膜移植用シートの製造方法。
  14.  コラーゲンをゼラチンハイドロゲルシート表面上に塗布する工程を含む、請求項13に記載の方法。
  15.  角膜内皮細胞がコンフルエントになってから7日目以降に、角膜内皮細胞を含むゼラチンハイドロゲルシートを培養容器から剥離することを特徴とする、請求項13又は14に記載の方法。
  16.  得られた角膜移植用シートにおけるゼラチンハイドロゲル内の細胞密度が2000cells/mm以上であることを特徴とする、請求項13~15のいずれか1項に記載の方法。
PCT/JP2010/064125 2009-08-19 2010-08-16 角膜移植用シート WO2011021706A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/391,530 US20120282318A1 (en) 2009-08-19 2010-08-16 Sheet for corneal transplants
JP2011527722A JP5709015B2 (ja) 2009-08-19 2010-08-16 角膜移植用シート
EP10810047.0A EP2468312A4 (en) 2009-08-19 2010-08-16 SHEET FOR KERATOPLASTIES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009190415 2009-08-19
JP2009-190415 2009-08-19

Publications (1)

Publication Number Publication Date
WO2011021706A1 true WO2011021706A1 (ja) 2011-02-24

Family

ID=43607154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064125 WO2011021706A1 (ja) 2009-08-19 2010-08-16 角膜移植用シート

Country Status (4)

Country Link
US (1) US20120282318A1 (ja)
EP (1) EP2468312A4 (ja)
JP (1) JP5709015B2 (ja)
WO (1) WO2011021706A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194084A (ja) * 2012-03-16 2013-09-30 Kawamura Institute Of Chemical Research 有機無機複合ヒドロゲル
JP2013215562A (ja) * 2012-03-12 2013-10-24 Fujifilm Corp 組織修復材の製造方法
JP2013226166A (ja) * 2012-04-24 2013-11-07 Gunze Ltd 生体吸収性癒着防止材料
WO2014104366A1 (ja) 2012-12-27 2014-07-03 新田ゼラチン株式会社 ヒト角膜内皮細胞シート
WO2014141877A1 (ja) * 2013-03-12 2014-09-18 富士フイルム株式会社 組織修復材
JP2015035978A (ja) * 2013-08-13 2015-02-23 独立行政法人農業生物資源研究所 ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体、細胞シート、およびガラス化後のハイドロゲル膜の製造装置
KR20160040288A (ko) * 2013-08-06 2016-04-12 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 전안부 조직의 제조 방법
WO2017183655A1 (ja) * 2016-04-20 2017-10-26 京都府公立大学法人 培養上皮シートの製造方法
RU2646804C1 (ru) * 2016-12-28 2018-03-07 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Офтальмологическое средство для регенерации роговицы глаза
JP2018512930A (ja) * 2015-03-26 2018-05-24 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 人工デスメ膜
JP2020525232A (ja) * 2017-07-03 2020-08-27 ビスコファン,エセ.アー 生物組織を再生するためのパッチおよびそれを製造する方法
JPWO2021065395A1 (ja) * 2019-10-01 2021-04-08

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2716200T3 (es) 2011-12-06 2019-06-11 Astellas Inst For Regenerative Medicine Método de diferenciación dirigida que produce células endoteliales corneales
IL269671B2 (en) * 2019-09-25 2024-01-01 Precise Bio Inc Endothelial keratoplasty implant and methods for its preparation
EP4056206A1 (en) * 2021-03-11 2022-09-14 Precise Bio Inc. Artificial endothelial keratoplasty graft and methods of preparation thereof
KR102442292B1 (ko) * 2021-10-12 2022-09-13 한국과학기술원 코팅층을 포함하는 하이드로겔 및 이의 제조방법

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186847A (ja) 2000-12-19 2002-07-02 National Institute Of Agrobiological Sciences ハイドロゲルの製造方法および細胞培養支持体
JP2004203829A (ja) 2002-12-26 2004-07-22 Medgel Corp Bmpを含有する徐放性製剤
WO2004073761A1 (ja) 2003-02-20 2004-09-02 Cellseed Inc. 再生角膜内皮細胞シート、製造方法及びその利用方法
WO2007043255A1 (ja) * 2005-09-13 2007-04-19 Arblast Co., Ltd. 培養角膜内皮シート及びその作製方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007083685A1 (ja) * 2006-01-19 2007-07-26 Senju Pharmaceutical Co., Ltd. 生体内で細胞増殖可能な角膜内皮製剤
JP2007332106A (ja) 2006-06-16 2007-12-27 Okayama Univ 骨形成用徐放性医薬組成物
JP2008123562A (ja) 2008-02-22 2008-05-29 Casio Comput Co Ltd コード読み取り装置
JP2008137975A (ja) 2006-12-05 2008-06-19 Medgel Corp 水難溶性物質の徐放製剤
US20080233610A1 (en) 2007-03-23 2008-09-25 Thomson James A Somatic cell reprogramming
WO2008118220A2 (en) 2006-11-28 2008-10-02 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US20090047263A1 (en) 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
JP2009190415A (ja) 1998-12-14 2009-08-27 Eastman Kodak Co インクジェットプリンタのための液滴発生器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108428A (en) * 1988-03-02 1992-04-28 Minnesota Mining And Manufacturing Company Corneal implants and manufacture and use thereof
US5962324A (en) * 1988-06-30 1999-10-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Three dimensional optic tissue culture and process
US5836313A (en) * 1993-02-08 1998-11-17 Massachusetts Institute Of Technology Methods for making composite hydrogels for corneal prostheses
US6786926B2 (en) * 2001-11-09 2004-09-07 Minu, L.L.C. Method and apparatus for alignment of intracorneal inlay
US7569222B2 (en) * 2002-11-18 2009-08-04 Woerly Stephane Hydrogel membrane composition and use thereof
US20060287721A1 (en) * 2004-10-05 2006-12-21 David Myung Artificial cornea
US20090222086A1 (en) * 2005-10-12 2009-09-03 Ge Ming Lui Resorbable Cornea Button
US20080050423A1 (en) * 2006-08-23 2008-02-28 National Tsing Hua University Biopolymer-bioengineered cell sheet construct

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190415A (ja) 1998-12-14 2009-08-27 Eastman Kodak Co インクジェットプリンタのための液滴発生器
JP2002186847A (ja) 2000-12-19 2002-07-02 National Institute Of Agrobiological Sciences ハイドロゲルの製造方法および細胞培養支持体
JP2004203829A (ja) 2002-12-26 2004-07-22 Medgel Corp Bmpを含有する徐放性製剤
WO2004073761A1 (ja) 2003-02-20 2004-09-02 Cellseed Inc. 再生角膜内皮細胞シート、製造方法及びその利用方法
WO2007043255A1 (ja) * 2005-09-13 2007-04-19 Arblast Co., Ltd. 培養角膜内皮シート及びその作製方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
US20090047263A1 (en) 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
JP2008283972A (ja) 2005-12-13 2008-11-27 Kyoto Univ 誘導多能性幹細胞の製造方法
WO2007083685A1 (ja) * 2006-01-19 2007-07-26 Senju Pharmaceutical Co., Ltd. 生体内で細胞増殖可能な角膜内皮製剤
JP2007332106A (ja) 2006-06-16 2007-12-27 Okayama Univ 骨形成用徐放性医薬組成物
WO2008118220A2 (en) 2006-11-28 2008-10-02 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
JP2008137975A (ja) 2006-12-05 2008-06-19 Medgel Corp 水難溶性物質の徐放製剤
US20080233610A1 (en) 2007-03-23 2008-09-25 Thomson James A Somatic cell reprogramming
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
WO2009006930A1 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009006997A1 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc. Human pluripotent stem cells and their medical use
JP2008123562A (ja) 2008-02-22 2008-05-29 Casio Comput Co Ltd コード読み取り装置

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
HSIUE GH ET AL., TRANSPLANTATION, vol. 81, no. 3, 15 February 2006 (2006-02-15), pages 473 - 476
HUANGFU D.; MELTON, DA. ET AL., NATURE BIOTECHNOLOGY, vol. 26, no. 7, 2008, pages 795 - 797
IDE T ET AL., BIOMATERIALS, vol. 27, no. 4, February 2006 (2006-02-01), pages 607 - 514
KAWASAKI, H.; SASAI, Y. ET AL., NEURON, vol. 28, 2000, pages 31 - 40
KAWASAKI, H.; SASAI, Y. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 1580 - 1585
KIM JB.; SCHOLER HR. ET AL., NATURE, vol. 454, 2008, pages 646 - 650
KOIZUMI N., INVEST. OPHTHALMOL VIS. SCI., vol. 48, no. 10, October 2007 (2007-10-01), pages 4519 - 4526
LAI J.Y. ET AL: "Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy", BIOMACROMOLECULES, vol. 7, no. 6, 2006, pages 1836 - 1844, XP008152810 *
LEE G ET AL., NAT BIOTECHNOL., vol. 25, 2007, pages 1468 - 1475
MIZUSEKI, K.; SASAI, Y. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 5828 - 5833
MOTOHASHI T ET AL., STEM CELLS, vol. 25, 2007, pages 402 - 410
NAKAGAWA M; YAMANAKA S. ET AL., NATURE BIOTECHNOLOGY, vol. 26, 2008, pages 101 - 106
PARK IH; DALEY GQ ET AL., NATURE, vol. 451, 2007, pages 141 - 146
See also references of EP2468312A4
SHI Y.; DING S., CELL STEM CELL, vol. 3, no. 5, 2008, pages 568 - 574
TAKAHASHI K; YAMANAKA S. ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI K; YAMANAKA S., CELL, vol. 126, 2006
WATANABE K ET AL., NATURE NEUROSCIENCE, vol. 8, 2005, pages 288 - 296
YU J.; THOMSON JA. ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215562A (ja) * 2012-03-12 2013-10-24 Fujifilm Corp 組織修復材の製造方法
JP2013194084A (ja) * 2012-03-16 2013-09-30 Kawamura Institute Of Chemical Research 有機無機複合ヒドロゲル
JP2013226166A (ja) * 2012-04-24 2013-11-07 Gunze Ltd 生体吸収性癒着防止材料
WO2014104366A1 (ja) 2012-12-27 2014-07-03 新田ゼラチン株式会社 ヒト角膜内皮細胞シート
JP5946046B2 (ja) * 2012-12-27 2016-07-05 新田ゼラチン株式会社 ヒト角膜内皮細胞シート
JPWO2014141877A1 (ja) * 2013-03-12 2017-02-16 富士フイルム株式会社 組織修復材
WO2014141877A1 (ja) * 2013-03-12 2014-09-18 富士フイルム株式会社 組織修復材
CN105025941A (zh) * 2013-03-12 2015-11-04 富士胶片株式会社 组织修复材料
EP2952214A4 (en) * 2013-03-12 2016-03-30 Fujifilm Corp FABRIC REPAIR MATERIAL
US10960106B2 (en) 2013-03-12 2021-03-30 Fujifilm Corporation Tissue repair material
JP5981025B2 (ja) * 2013-03-12 2016-08-31 富士フイルム株式会社 組織修復材
KR102297580B1 (ko) 2013-08-06 2021-09-03 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 전안부 조직의 제조 방법
KR20160040288A (ko) * 2013-08-06 2016-04-12 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 전안부 조직의 제조 방법
US11274277B2 (en) 2013-08-06 2022-03-15 Riken Method for producing anterior eye segment tissue
JP2015035978A (ja) * 2013-08-13 2015-02-23 独立行政法人農業生物資源研究所 ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体、細胞シート、およびガラス化後のハイドロゲル膜の製造装置
US11504225B2 (en) 2015-03-26 2022-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Artificial Descemet construct
JP2018512930A (ja) * 2015-03-26 2018-05-24 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 人工デスメ膜
US11479754B2 (en) 2016-04-20 2022-10-25 Kyoto Prefectural Public University Corporation Method for producing cultivated epithelial cell sheet
JPWO2017183655A1 (ja) * 2016-04-20 2019-02-21 京都府公立大学法人 培養上皮シートの製造方法
JP7024974B2 (ja) 2016-04-20 2022-02-24 京都府公立大学法人 培養上皮シートの製造方法
CN109312301A (zh) * 2016-04-20 2019-02-05 京都府公立大学法人 用于制备培养上皮细胞片的方法
WO2017183655A1 (ja) * 2016-04-20 2017-10-26 京都府公立大学法人 培養上皮シートの製造方法
RU2646804C1 (ru) * 2016-12-28 2018-03-07 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Офтальмологическое средство для регенерации роговицы глаза
JP2020525232A (ja) * 2017-07-03 2020-08-27 ビスコファン,エセ.アー 生物組織を再生するためのパッチおよびそれを製造する方法
JP7216029B2 (ja) 2017-07-03 2023-01-31 ビスコファン,エセ.アー 生物組織を再生するためのパッチおよびそれを製造する方法
JPWO2021065395A1 (ja) * 2019-10-01 2021-04-08
WO2021065395A1 (ja) * 2019-10-01 2021-04-08 国立大学法人大阪大学 フィブリンシートの製造方法
JP7222567B2 (ja) 2019-10-01 2023-02-15 国立大学法人大阪大学 フィブリンシートの製造方法

Also Published As

Publication number Publication date
JP5709015B2 (ja) 2015-04-30
US20120282318A1 (en) 2012-11-08
EP2468312A4 (en) 2014-05-14
EP2468312A1 (en) 2012-06-27
JPWO2011021706A1 (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5709015B2 (ja) 角膜移植用シート
Anjum et al. Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure
EP2157983B1 (fr) Support collagenique modifie par greffage covalent de molecules d'adhesion
US10434216B2 (en) Ultra-thin film silk fibroin/collagen composite implant and manufacturing method therefor
EP3057624A1 (en) Regenerative prostheses as alternatives to donor corneas for transplantation
Shi et al. Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing
Sun et al. Construction and evaluation of collagen-based corneal grafts using polycaprolactone to improve tension stress
JP2024038337A (ja) 神経再生、骨形成、及び血管新生を刺激するためのヒドロゲル
Mishan et al. Potential of a novel scaffold composed of human platelet lysate and fibrin for human corneal endothelial cells
Bosch et al. Design of functional biomaterials as substrates for corneal endothelium tissue engineering
Millesi et al. Systematic comparison of commercial hydrogels revealed that a synergy of laminin and strain-stiffening promotes directed migration of neural cells
KR20160140494A (ko) 각막 탈세포화 세포외 기질을 함유하는 각막 유래 세포의 지지체 및 이를 포함하는 인공 각막 시트
JP2004283371A (ja) 医用材料
JP2003126236A (ja) 損傷された眼球組織の再生のための生分解性高分子から製造された多孔性支持体
US20230069065A1 (en) Novel corneal tissues and methods of making the same
Zhang et al. Chicken utricle stromal cell-derived decellularized extracellular matrix coated nanofibrous scaffolds promote auditory cell production
US20210015974A1 (en) Biodegradable polymeric film including extracellular matrix and use thereof
Kim et al. Recent advances in tissue-engineered corneal regeneration
CN111407922B (zh) 黒磷组合物、含黒磷组合物的生物材料及制备方法和应用
CN111214703B (zh) 一种iPS来源心肌细胞复合补片及其制备和应用
RU2464987C1 (ru) Способ получения резорбируемой полилактидной матрицы для культивирования и имплантации клеток, предназначенных для заживления ран
WO2019221639A1 (ru) Способ производства коллаген-ламининового матрикса для заживления язв, ожогов и ран кожи человека
Shved et al. Interaction of cultured skin cells with the polylactide matrix coved with different collagen structural isoforms
Zhang et al. Exploration of 2D and 2.5 D conformational designs applied on epoxide/collagen-based integrative biointerfaces with device/tissue heterogeneous affinity
Ra’oh et al. Recent Approaches of Collagen Biomatrix Modification as a Corneal Biomatrix and its Cellular Interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527722

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010810047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010810047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391530

Country of ref document: US