JP5157247B2 - 電力半導体装置 - Google Patents

電力半導体装置 Download PDF

Info

Publication number
JP5157247B2
JP5157247B2 JP2007130957A JP2007130957A JP5157247B2 JP 5157247 B2 JP5157247 B2 JP 5157247B2 JP 2007130957 A JP2007130957 A JP 2007130957A JP 2007130957 A JP2007130957 A JP 2007130957A JP 5157247 B2 JP5157247 B2 JP 5157247B2
Authority
JP
Japan
Prior art keywords
switching element
voltage
diffusion layer
back surface
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007130957A
Other languages
English (en)
Other versions
JP2008135682A (ja
Inventor
幸央 安田
厚信 河本
伸介 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007130957A priority Critical patent/JP5157247B2/ja
Priority to US11/870,133 priority patent/US7910949B2/en
Priority to DE200710050868 priority patent/DE102007050868B4/de
Priority to KR1020070109338A priority patent/KR100962525B1/ko
Priority to CN2007101851608A priority patent/CN101174619B/zh
Publication of JP2008135682A publication Critical patent/JP2008135682A/ja
Application granted granted Critical
Publication of JP5157247B2 publication Critical patent/JP5157247B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • H01L2924/13034Silicon Controlled Rectifier [SCR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、電力半導体装置に関し、特に集積回路の性能及び集積度を向上させることができ、放熱性を損なうことなくスイッチング素子と集積回路の一体化を実現することができる電力半導体装置に関するものである。
モータの動作を制御するには、モータ内に設けられたコイルに流れる電流の量や方向を変化させることが必要である。このような誘導性負荷に流れる電流の制御には、スイッチング素子が用いられる。スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間をオン・オフする。制御回路は、スイッチング素子の制御電極に電圧又は電流信号を与えて、スイッチング素子のオン・オフを制御する。このようなスイッチング素子を複数組み合わせることにより、ブリッジ回路などが構成される。
スイッチング素子に所定値以上の電流が流れた場合や、第1,第2主電極間に所定値以上の電圧が加わった場合には、その際に発生する電力損失や、半導体接合部の絶縁破壊などにより、致命的な破壊を受ける場合がある。そうするとモータなどの駆動が正常に行えなくなる。これを防止するため、制御回路にはスイッチング素子の破壊を防止する保護機能が設けられる(例えば、特許文献1参照)。
スイッチング素子の保護機能を実現するためには、スイッチング素子の状態を検出する回路と、検出された信号を処理する回路が必要となる。制御回路は、一般的に、複数のスイッチング素子が搭載されている箇所から一定の距離をおいた箇所に集中的に配置される。これに対して、スイッチング素子を保護する回路は、スイッチング素子の近傍に設置されることが望ましい。
近年、図28に示すように、スイッチング素子部201と、スイッチング素子を保護する回路素子部202とを同一基板内に構成した保護機能付きスイッチング素子が実用化されている。この電力半導体装置を製造するためには、スイッチング素子部201を形成する工程とは別に、回路素子部202を形成する工程を行う必要がある。しかし、スイッチング素子部の形成工程は回路素子部202にとって不要であり、回路素子部の形成工程はスイッチング素子部201にとって不要である。そこで、両工程の共通化が一般的に行われており、共通化比率が高いほど無駄な工程が少なくなる。しかし、共通化を図るために最も好ましい不純物濃度や拡散深さなどの製造条件を変えざるを得ない場合もある。このため、共通化率が高いほど性能面での犠牲が大きくなる。
ただし、スイッチング素子部で駆動する電流が少ない装置においては、製品全体を小型化することが求められるため、上述した無駄な工程で生じる製造コストの増加を相殺させやすい。一方、スイッチング素子部で駆動する電流が大きい装置では、スイッチング素子のオン時における電力損失の問題が大きいため、スイッチング素子の性能を優先させる傾向が強い。
また、スイッチング素子の電力損失を小さくするためには、スイッチング素子のサイズを大きくして電気抵抗を低減させることが効果的である。しかし、大きなスイッチング素子に小さな回路素子部を形成する場合、スイッチング素子部にとっての回路素子部の形成工程の無駄が大きくなり、装置全体の製造コストが上昇し、スイッチング素子に回路素子を内蔵するメリットが薄れてしまう。
そこで、図29に示すように、スイッチング素子203の表面に、スイッチング素子203を保護する集積回路素子204をチップ・オン・チップで接着し、両者をワイヤボンディングした電力半導体装置が実用化されている。このようにスイッチング素子203と集積回路素子204を別チップで構成することにより、集積回路素子204の形成工程は、スイッチング素子203の形成工程に影響されることなく、回路素子の性能及び集積度の向上に重点を置いたものに最適化できる。従って、集積回路の性能及び集積度を向上させることができる。
特開2004−96318号公報
図29の電力半導体装置では、スイッチング素子203上に集積回路素子204を搭載する場所を確保する必要がある。駆動する電流が小さい小容量のスイッチング素子であれば、チップ上の素子数が少ないため、外部電極への引き出し配線が占める割合が小さい。従って、スイッチング素子203上において集積回路素子204を搭載する場所を比較的確保しやすい。
一方、大容量のスイッチング素子の場合、スイッチング素子の第1,第2主電極間の電気抵抗をできる限り低くし、電力損失を低減させる必要がある。そこで、通常、スイッチング素子の第2主電極に多数のワイヤを接続している。従って、大容量のスイッチング素子の表面部には、小容量のスイッチング素子のような空スペースが存在しない。よって、スイッチング素子と集積回路の一体化を実現することができない。
また、大容量のスイッチング素子の場合には、素子の裏面側だけでなく表面側の放熱性も重要となってくる。従って、スイッチング素子203を薄くすることが重要である。しかし、スイッチング素子203上に集積回路素子204を搭載すると、素子が分厚くなってしまい、放熱性が損なわれる。
本発明は上記課題を解決するためになされたもので、その目的は、集積回路の性能及び集積度を向上させることができ、放熱性を損なうことなくスイッチング素子と集積回路の一体化を実現することができる電力半導体装置を提供することである。
本発明に係る電力半導体装置は、導電板と、導電板上に搭載され、電気的に接続されたスイッチング素子と、スイッチング素子と離間して導電板上に搭載され、電気的に接続された集積回路とを備え、スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、集積回路は、スイッチング素子のオン・オフを制御する制御回路と、集積回路の裏面の電圧を検出する裏面電圧検出素子と、前記裏面電圧検出素子の出力電圧が所定電圧より高い期間が所定期間を超えた場合にオフ信号を出力する比較回路と、前記比較回路からオフ信号が出力されると前記スイッチング素子をオフさせる論理回路とを有する。本発明のその他の特徴については、以下において詳細に説明する。
本発明によれば、集積回路の性能及び集積度を向上させることができ、放熱性を損なうことなくスイッチング素子と集積回路の一体化を実現することができる。
実施の形態1.
図1は、本発明の実施の形態1に係る電力半導体装置を示す側面図であり、図2はその平面図であり、図3はその回路図である。
スイッチング素子1は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフする。スイッチング素子1としては、バイポーラトランジスタ、絶縁ゲート型バイポーラトランジスタ(IGBT: Insulated Gate Bipolar Transistor)又はパワーMOSFET(Metal Oxided Semiconductor Field Effect Transistor)などが用いられる。第1主電極はコレクタ又はドレインに相当し、第2主電極はエミッタ又はソースに相当し、制御電極はベース又はゲートに相当する。ここではスイッチング素子1としてIGBTを用いた場合について説明する。
スイッチング素子1は、半田等の導電性接合部材2を介して導電板3上に搭載されている。スイッチング素子1のコレクタはチップ下面にあり、導電板3に電気的に接続されている。
裏面高耐圧集積回路4(集積回路)は、導電性接合部材2を介して導電板3上に搭載されている。ただし、裏面高耐圧集積回路4は、導電板3上においてスイッチング素子1の近傍に配置されているが、スイッチング素子1と離間している。裏面高耐圧集積回路4の裏面電極(後述)が導電板3に電気的に接続されている。裏面高耐圧集積回路4の表面には、スイッチング素子1のオン・オフを制御する制御回路などの回路素子が形成されている。
スイッチング素子1のエミッタはチップ上面にあり、ワイヤ5によりリード端子6に接続されている。スイッチング素子1のコレクタ及び裏面高耐圧集積回路4の裏面電極は、導電板3を介してリード端子7に接続されている。裏面高耐圧集積回路4の制御入力端子8aはリード端子9に接続されている。そして、スイッチング素子1のゲートはチップ上面にあり、裏面高耐圧集積回路4の制御出力端子8bはチップ上面にあり、両者はワイヤ5により接続されている。裏面高耐圧集積回路4の端子8c〜8fは、それぞれスイッチング素子1のコレクタ、エミッタ、電源Vcc及び接地点GNDに接続されている。また、これらのスイッチング素子1、導電板3、裏面高耐圧集積回路4、ワイヤ5等はモールド樹脂10により封止されている。
裏面高耐圧集積回路4の表面と裏面の間の耐圧は、スイッチング素子1の表面と裏面の間の耐圧よりも大きくなるように構成されている。これにより、裏面高耐圧集積回路4の表面と裏面の間に、スイッチング素子1のエミッタ−コレクタ間の耐圧よりも大きい電圧が印加されても、裏面高耐圧集積回路4の表面に設けられた回路素子は正常に動作することができる。従って、裏面高耐圧集積回路4の回路素子は、チップ裏面から導電板3と信号のやり取りをしながら正常に動作することができる。
なお、裏面高耐圧集積回路4の表面と裏面の間の耐圧が、スイッチング素子1の表面と裏面の間の耐圧より小さい場合であっても、電力半導体装置としての動作範囲を裏面高耐圧集積回路4の耐圧以下に制限するようにして使用するか、詳細は省くが、高耐圧に対する保護機構を設けるなどすれば支障は無い。
図4は、本発明の実施の形態1に係る裏面高耐圧集積回路を示す断面斜視図である。p型半導体層11上にn型半導体層12が設けられている。このn型半導体層12の表面にp型拡散層13が設けられている。p型拡散層13の一部にn型拡散層14が設けられている。n型拡散層14の表面にゲート絶縁膜を介してp型トランジスタのゲート15が設けられている。p型拡散層13の表面にゲート絶縁膜を介してn型トランジスタのゲート16が設けられている。p型トランジスタのゲート15の両側にはp型拡散層17,18が設けられ、n型トランジスタのゲート16の両側にはn型拡散層19,20が設けられている。
p型半導体層11の下面に裏面電極21が設けられている。この裏面電極21が導電板3と接触する。また、裏面電極21は図3の端子8cに相当する。なお、裏面電極21には600V程度の電圧が印加されるが、裏面高耐圧集積回路4の表面の回路素子は8V程度で動作している。
ここで、通常の集積回路では、様々な箇所に形成される寄生ダイオードの誤動作を防止するため、基板の裏面電位を0Vとし、表面電位がエミッタ電位を基準として数10ボルト程度の範囲となるように構成される。このような通常の集積回路を導電板3上に搭載すると、集積回路の裏面から表面方向に寄生ダイオードを経由した電流が流れる。そして、IGBTをオフさせた際に集積回路の裏面から表面方向に過大な電流が流れ、負荷に流れる電流制御が正常に行えないだけでなく、集積回路が破壊される。
これに対し、本実施の形態に係る裏面高耐圧集積回路4では、基板の裏面電位を表面電位よりも高くして使用する。なお、この裏面高耐圧集積回路4において、裏面電位と表面電位が逆転しても、裏面側にp型半導体層11を設け、表面側にn型半導体層12を設けているため、表面から裏面には電流が流れない。従って、裏面高耐圧集積回路4の様々な箇所に設けられた寄生ダイオードの誤動作を防止することができる。
また、裏面高耐圧集積回路4では、基板の裏面の電位とチップ端面の電位はほぼ同等である。そして、裏面及びチップ端面と表面に設けられた回路素子との間には高電圧が印加される。そこで、スイッチング素子1と同様に回路素子を保護するために、n型半導体層12の表面にはp型拡散層13を囲むようにp型拡散層からなるガードリング22が設けられている。さらに、その外側を囲むようにn型拡散層23が設けられている。
本実施の形態では、裏面高耐圧集積回路4とスイッチング素子1を別チップに形成して導電板3上にそれぞれ搭載している。このため、裏面高耐圧集積回路4の形成工程は、スイッチング素子1の形成工程に影響されることなく、回路素子の性能及び集積度の向上に重点を置いたものに最適化できる。従って、集積回路の性能及び集積度を向上させることができる。
また、スイッチング素子1が搭載される導電板3は、スイッチング素子1を外部と電気的に接続するだけでなく、スイッチング素子1上で発生する熱を放熱するヒートシンクとしても機能する。そして、従来のようにスイッチング素子1上に集積回路を搭載するのではなく、導電板3上にスイッチング素子1と裏面高耐圧集積回路4をそれぞれ搭載することで、素子を薄くすることができる。従って、放熱性を損なうことなくスイッチング素子と集積回路の一体化を実現することができる。
なお、放熱を効果的に行うために導電板3の厚さを厚くすることが考えられる。しかし、導電板3の平面方向への熱伝導も、放熱に大きく影響する。従って、放熱性を向上させるために、導電板3の全体の面積を、スイッチング素子1が搭載されている面積よりも十分に大きくする必要がある。
また、裏面高耐圧集積回路4は、導電板3上においスイッチング素子1の近傍に搭載されているため、導電板3を介してスイッチング素子1と熱的に強く結合している。従って、スイッチング素子1の異常加熱状態を検出して保護動作を行う過熱保護回路を裏面高耐圧集積回路4に形成した場合、この過熱保護回路は温度の検出精度が得やすいという利点がある。
実施の形態2.
本発明の実施の形態2に係る電力半導体装置について図面を参照しながら説明する。ここでは、実施の形態1と異なる点を中心に説明する。
図5は、本発明の実施の形態2に係る電力半導体装置を示す側面図であり、図6はその上面図である。フリーホイールダイオード24が、スイッチング素子1及び裏面高耐圧集積回路4と離間して、半田等の導電性接合部材2を介して導電板3上に搭載されている。
図7は、本発明の実施の形態2に係る電力半導体装置を示す回路図である。フリーホイールダイオード24のアノードがスイッチング素子1のエミッタと接続され、フリーホイールダイオード24のカソードがスイッチング素子1のコレクタと接続されている。即ち、フリーホイールダイオード24は、スイッチング素子1と並列に接続されている。その他の構成については、実施の形態1と同様である。
ここで、スイッチング素子1としてパワーMOSFETを用いた場合、ドレインとソースとの間に寄生ダイオードが存在する。この寄生ダイオードを経由して電流が流れることで、ソースに対してドレインに負電圧が発生するのが抑制される。一方、スイッチング素子1としてIGBTを用いた場合は、このような寄生ダイオードが存在しない。そこで、本実施の形態では、それぞれのスイッチング素子1に対してフリーホイールダイオード24を個別に設けている。
図8は、複数のスイッチング素子を用いて構成したブリッジ回路を示す回路図である。ブリッジ回路は、複数のスイッチング素子1a〜1dと、それぞれのスイッチング素子1a〜1dに対して設けられた裏面高耐圧集積回路4a〜4d及びフリーホイールダイオード24a〜24dと、誘導負荷25と、電源26とを有する。
スイッチング素子1a,1dがオンし、スイッチング素子1b,1cがオフしている間は、誘導負荷25を経由する電流は、電流経路27に沿って流れる。そして、スイッチング素子1a,1dをオフさせると、誘導負荷25に蓄積されたエネルギーが放出されるため、スイッチング素子1a,1dのエミッタに対してコレクタに負電圧が発生する。この場合、裏面高耐圧集積回路4a,4dの裏面と表面の電位が逆転し、裏面高耐圧集積回路4a,4dの表面側から裏面側に電流が流れることが懸念される。しかし、スイッチング素子1a,1dに並列に設けられたフリーホイールダイオード24a,24dにより、誘導負荷25の蓄積エネルギーが放出されて、上記負電圧を抑制することができる。
実施の形態3.
負荷の短絡やスイッチング素子の制御の異常などにより負荷が短絡した場合、スイッチング素子に過大な電力損失が発生し、異常な熱が発生して素子が破壊される場合がある。従って、短絡状態を検出した後は、速やかにスイッチング素子をオフさせる必要がある。そこで、本実施の形態3では、裏面高耐圧集積回路に裏面電圧検出素子を設け、スイッチング素子1のコレクタ電圧を検出する。この構成について以下に説明する。
図9は、本発明の実施の形態3に係る裏面高耐圧集積回路を示す断面図である。裏面電圧検出素子31と他の回路素子が、接合分離技術を用いて同一基板上に形成されている。裏面電圧検出素子31は、スイッチング素子1ほどの性能は要求されない。このため、裏面高耐圧集積回路4の形成工程は、裏面電圧検出素子31の性能を落としてでも回路素子の性能及び集積度の向上に重点を置いたものに最適化できる。従って、回路素子の性能及び集積度を向上させることができる。
p型半導体層11は裏面電極21を介して導電板3に電気的に接続されている。このp型半導体層11上にn型半導体層12が設けられている。n型半導体層12の表面に、第1p型拡散層32が設けられている。第1p型拡散層32の一部に第1n型拡散層33が設けられている。n型半導体層12と第1n型拡散層33との間に挟まれた第1p型拡散層32の表面にゲート酸化膜を介してゲート34が設けられている。この第1p型拡散層32、第1n型拡散層33及びゲート34から、絶縁ゲートバイポーラトランジスタ35(nチャネル型のDMOS(Double diffused Metal Oxide Semiconductor)トランジスタとも言う)が構成されている。第1p型拡散層32及び第1n型拡散層33はスイッチング素子1のエミッタに接続されている。
n型半導体層12の表面において、絶縁ゲートバイポーラトランジスタ35と離間して、第2p型拡散層36が設けられている。第2p型拡散層36の表面に、第2n型拡散層37が設けられている。また、ツェナーダイオード38のカソードが第2p型拡散層36に接続され、アノードが接地されている。また、第2n型拡散層37と接地点との間に抵抗39が設けられ、両者の接続点は出力端子40に接続されている。このツェナーダイオード38及び抵抗39は、絶縁ゲートバイポーラトランジスタ35等と同一基板上に形成される。
p型半導体層11、n型半導体層12及び第2p型拡散層36によりPNPトランジスタ41が構成されている。また、n型半導体層12、第2p型拡散層36及び第2n型拡散層37によりNPNトランジスタ42が構成されている。
ゲート34に正の電圧を印加すると、、絶縁ゲートバイポーラトランジスタ35がオンし、第1p型拡散層32の表面にチャネルが形成される。そして、n型半導体層12から、絶縁ゲートバイポーラトランジスタ35に電流が流れる。この電流は、PNPトランジスタ41のベース電流となってPNPトランジスタ41を駆動し、駆動されたPNPトランジスタ41にコレクタ電流が発生する。このコレクタ電流は、NPNトランジスタ42のベース電流となり、NPNトランジスタ42を駆動する。
NPNトランジスタ42のベース電流は増幅され、PNPトランジスタ41のベース電流を更に増加させる。即ち、正帰還がかかるサイリスタが構成されている。絶縁ゲートバイポーラトランジスタ35をオンさせると、このサイリスタは動作する。一方、絶縁ゲートバイポーラトランジスタ35をオフさせると、このサイリスタは、基板内部の少数キャリア消滅後に停止する。
絶縁ゲートバイポーラトランジスタ35がオンすると、第2n型拡散層37の電圧が、裏面電圧検出素子31の出力電圧として出力端子40から出力される。この出力電圧は、裏面高耐圧集積回路4に設けられた他の回路素子に入力される。
この出力電圧をそのまま回路素子に入力すると、過大な電流が流れて回路素子を破壊する可能性がある。しかし、ツェナーダイオード38によりNPNトランジスタ42のベース電圧が一定レベル以上に上昇しない。従って、サイリスタの正帰還を抑制して、裏面電圧検出素子31の出力電圧を抑制することができる。これにより、出力端子40の電圧がベース電圧以下の時には、出力端子40の電圧は、スイッチング素子1をオンさせた際のコレクタ電圧にほぼ等しい電圧となる。
図10は、本発明の実施の形態3に係る電力半導体装置を示す回路図である。裏面高耐圧集積回路4は、上述した裏面電圧検出素子31と、コンパレータ51,52と、積分回路53と、ラッチ回路54と、論理回路55とを有している。
コンパレータ51(比較回路)は、裏面電圧検出素子31の出力端子40から出力される出力電圧が所定電圧V1よりも大きい場合にHIGH(オフ信号)を出力する。積分回路53は、コンパレータ51の出力電圧の論理値を積分する。コンパレータ52は、積分回路53の出力電圧が所定電圧V2よりも高い場合にHIGHを出力する。このように積分回路53を用いることで、裏面電圧検出素子31の出力電圧が所定電圧V1よりも大きくなる期間が所定時間より長くなったことを検出することができる。
ラッチ回路54は、外部からリード端子9を介して入力された制御信号に応じてコンパレータ52の出力電圧をラッチする。即ち、ラッチ回路54は、コンパレータ52の出力電圧がHIGHの時にHIGHを出力し、制御信号がLOWになるまで論理を保持する。
論理回路55は、外部から入力された制御信号がHIGHで、かつラッチ回路54の出力電圧がLOWのときにのみ、HIGHを出力する。この場合に、スイッチング素子1と裏面電圧検出素子31に内蔵された、絶縁ゲートバイポーラトランジスタ35がオンする。言い換えると、論理回路55は、裏面電圧検出素子31の出力電圧が所定電圧より大きい場合、外部から入力された制御信号に関わらず、スイッチング素子1をオフさせる。
図11(a)〜(f)は、正常な状態における図10の回路各部のタイミングチャートである。正常な状態では、図11(c)に示すように、スイッチング素子1がオンするとコレクタ−エミッタ間電圧が低下する。このため、図11(d)に示すように、裏面電圧検出素子31の出力電圧は、スイッチング素子1がオフからオンに切り替わった極めて短い時間だけ高くなる。従って、図11(e)に示すように、積分回路53の出力電圧は、所定電圧V2よりも低い電圧となる。
図12(a)〜(f)は、負荷が短絡した状態における図10の回路各部の動作波形を示す図である。負荷が短絡した状態では電流が流れても電圧降下が発生しにくいため、図12(c)に示すように、コレクタ−エミッタ間電圧が低下しにくい。このため、図12(d)に示すように、裏面電圧検出素子31の出力電圧はスイッチング素子1がオンの期間中、高くなり、所定電圧V1を超える期間も長くなる。従って、図12(e)に示すように、積分回路53の出力電圧は高くなる。そして、積分回路53の出力電圧が所定電圧V2を超えると、コンパレータ52の出力電圧がHIGHとなり、これがラッチ回路54に入力される。これにより、図12(f)に示すように、ラッチ回路54の出力電圧はHIGHとなり、制御信号がLOWとなるまでHIGHを保持する。ラッチ回路54の出力電圧がHIGHとなると論理回路55の出力電圧はLOWとなり、スイッチング素子1はオフとなる。
ここで、正常な状態では、スイッチング素子1をオンさせてから一定時間経過後には負荷に十分な電流が流れ、スイッチング素子1のコレクタ−エミッタ間電圧が低下し、飽和状態になる。しかし、負荷が短絡した状態では、一定時間経過してもコレクタ−エミッタ間電圧は低下せず、スイッチング素子1は、自身のもつ能力に相当する電流を流す。そこで、本実施の形態に係る裏面高耐圧集積回路4は、裏面電圧検出素子31の出力電圧が所定電圧V1よりも大きくなる期間が所定時間より長くなった場合には短絡状態であるとみなして、スイッチング素子1をオフさせる。これにより、スイッチング素子1を保護することができる。
実施の形態4.
本発明の実施の形態4に係る電力半導体装置について図面を参照しながら説明する。ここでは、実施の形態3と異なる点を中心に説明する。
図13は、本発明の実施の形態4に係る電力半導体装置を示す回路図である。コンパレータ51(第1比較回路)は、裏面電圧検出素子31の出力電圧が所定電圧V1よりも大きい場合にHIGH(低下信号)を出力する。NMOSトランジスタ56(電圧低下回路)のゲートはコンパレータ51の出力に接続され、ドレインは抵抗57を介してスイッチング素子1のゲートに接続され、ソースは接地されている。論理回路55の出力端は抵抗58を介してスイッチング素子1のゲートに接続されている。
裏面電圧検出素子31の出力電圧が所定電圧V1よりも大きい場合に、NMOSトランジスタ56はオンする。この場合、抵抗57,58の抵抗分圧により、スイッチング素子1のゲート電圧は、論理回路55の出力電圧よりも低くなる。これにより、スイッチング素子1に過剰な電圧が印加されるのを防ぐことができる。
スイッチング素子1の内部に、スイッチング素子1と同様の構造を有する小型の電流センス素子59(電流センス手段)が設けられている。この電流センス素子59は、スイッチング素子1に流れる電流の大きさに比例して微少電流を流す。裏面高耐圧集積回路4には、電流センス素子59から出力された電流を電圧に変換するための抵抗60(変換手段)が設けられている。
コンパレータ61(第2比較回路)は、抵抗60の出力電圧が所定電圧V3よりも大きい場合にHIGH(オフ信号)を出力する。積分回路53は、コンパレータ61の出力電圧の論理値を積分する。コンパレータ52は、積分回路53の出力電圧が所定電圧V4よりも高い場合にHIGHを出力する。このように積分回路53を用いることで、抵抗60の出力電圧が所定電圧V3よりも大きくなる期間が所定時間より長くなったことを検出することができる。
ラッチ回路54は、外部からリード端子9を介して入力された制御信号に応じてコンパレータ52の出力電圧をラッチする。即ち、ラッチ回路54は、コンパレータ52の出力電圧がHIGHの時にHIGHを出力し、制御信号がLOWになるまで論理を保持する。
論理回路55は、外部から入力された制御信号がHIGHで、かつラッチ回路54の出力電圧がLOWのときにのみ、HIGHを出力する。この場合に、スイッチング素子1と裏面電圧検出素子31に内蔵された、絶縁ゲートバイポーラトランジスタ35がオンする。言い換えると、論理回路55は、抵抗60の出力電圧が所定電圧より大きい場合、外部から入力された制御信号に関わらず、スイッチング素子1をオフさせる。
以上の構成により、電流センス素子59によりスイッチング素子1に流れる電流を検出し、所定値以上の過大な電流が所定時間以上流れた場合に、負荷が短絡状態であるとしてスイッチング素子1をオフさせる。これにより、スイッチング素子1に過剰な電流が流れるのを防ぐことができる。
IGBTではコレクタ・エミッタ間電圧が高く、コレクタ電流が大きい場合に過大な電力損失が発生して破壊しやすくなる。これに対し、本実施の形態では、電流と電圧の両面で保護をかけることができるため、より安全性が高まる。
図14(a)〜(h)は、正常な状態における図13の回路各部のタイミングチャートである。図14(a)〜(e)の波形は、実施の形態3で示した図11(a)〜(e)の波形と同様である。
図14(f)に示すように、正常な状態では、コンパレータ51の出力電圧はスイッチング素子1がオフからオンに切り替わってから極めて短い間HIGHとなる。この期間、NMOSトランジスタ56はオン状態となる。そして、図14(g)に示すように、スイッチング素子1のゲート電圧は、スイッチング素子1がオフからオンに切り替わった直後は低く制限される。これにより、図14(h)に示すように、スイッチング素子1のコレクタ電流が低く制限される。その後、コンパレータ51の出力電圧がLOWになるとNMOSトランジスタ56はオフとなる。そして、スイッチング素子1のゲート電圧が上昇し、スイッチング素子1のコレクタ電流は大きくなる。
図15(a)〜(h)は、負荷が短絡した状態における図13の回路各部のタイミングチャートである。図15(a)〜(e)の波形は、実施の形態3で示した図12(a)〜(e)の波形と同様である。
図15(f)に示すように、負荷が短絡した状態では、コンパレータ51の出力電圧はスイッチング素子1がオンの間中HIGHとなる。この期間、NMOSトランジスタ56はオン状態となる。そして、図15(g)に示すように、スイッチング素子1のゲート電圧は、スイッチング素子1がオンの間中低くなる。そして、図15(h)に示すように、実施の形態3と同様に、積分回路53の出力電圧が所定電圧V2に到達した時点でスイッチング素子1がオフとなる。
以上説明したように、本実施の形態では、コンパレータ51及びNMOSトランジスタ56を設けたことで、負荷が短絡した状態においてスイッチング素子1のゲート電圧を正常な状態よりも低く抑えることができる。このため、過剰なコレクタ電流が流れてスイッチング素子1が破壊されるのを防ぐことができる。これにより、スイッチング素子1をオンさせてから、センス電流を測定して行う保護動作によりオフさせるまでの期間を長くできる。従って、誤検出によりスイッチング素子1をオフさせるのを防ぐことができる。
実施の形態5.
図16は、本発明の実施の形態5に係るスイッチング素子を示す断面図である。p型半導体層62上にn型半導体層63が設けられている。n型半導体層63の表面にp型拡散層64が設けられている。p型拡散層64の一部にn型拡散層65が設けられている。n型半導体層63とn型拡散層65との間に挟まれたp型拡散層64の表面にゲート酸化膜を介してゲート66が設けられている。p型半導体層62の下面には裏面電極70が設けられている。p型拡散層64は接地抵抗67に接続されている。スイッチング素子1としてこのようなIGBTを用いた場合、PNPトランジスタ68及びNPNトランジスタ69により寄生サイリスタが構成される。
短絡状態では正常な状態よりも大きな電流が流れるため、スイッチング素子1を急激に遮断すると、スイッチング素子1のMOSFET部のチャネルが急激に消失する。そして、スイッチング素子1の近傍にあるキャリアの行き場がなくなってスイッチング素子1に流れ込む。これに起因する電圧降下により寄生サイリスタが誤動作して素子がラッチアップ破壊される可能性がある。
そこで、本実施の形態では、裏面高耐圧集積回路4に、スイッチング素子1を遮断する際の遮断速度を切り替える切り替え回路を設けている。この切り替え回路により、裏面高耐圧集積回路4は、スイッチング素子1をオフさせる保護動作を行う際に、スイッチング素子1の遮断速度を通常動作時よりも遅くする。具体的には、スイッチング素子1を遮断する遮断回路として、保護動作時には、通常動作時に用いる遮断回路よりも駆動能力の小さい遮断回路を用いる。なお、保護動作として、例えば実施の形態4に係る過電流検出回路の保護動作を用いる。
図17は、本発明の実施の形態5に係る電力半導体装置の保護動作を行う際のスイッチング素子の電流波形を示した図である。保護動作において遮断速度を遅くすることにより、遮断時のスイッチング素子に流れる電流は点線Aに示すようになる。
上記のように保護動作時におけるスイッチング素子1の遮断速度を遅くすることにより、スイッチング素子がラッチアップ破壊されるのを防ぐことができる。
実施の形態6.
実施の形態2では、フリーホイールダイオード24をスイッチング素子1に並列に接続することで、複数のスイッチング素子を組み合わせてブリッジ回路を構成した場合にコレクタに加わる負電圧を抑制していた。しかし、フリーホイールダイオード24を用いて誘導負荷に電流が流れるようにした状態で、電流の方向が切り替わった場合、ダイオードの持つ動作遅れの影響により、スイッチング素子1のコレクタに過大な電圧が発生する場合がある。
また、スイッチング素子のコレクタ−ゲート間にツェナーダイオードを設けて、コレクタに加わる過大なサージを吸収させる場合、ゲートに接続された制御回路がスイッチング素子をオフさせようという働きに逆らって、スイッチング素子をオンさせる。このため、制御回路の動作に逆らう分の電流がツェナーダイオードに流れる。しかし、大容量スイッチング素子を駆動する制御回路は電流駆動能力が高く、ツェナーダイオードに流れる電流も大きくなるため、スイッチング素子上に設けられたツェナーダイオードは、過大な電流が流れることにより破壊される。
これを回避するため、通常は大容量のコンデンサや抵抗などを用いたスナバ回路を設けてサージを吸収するようにしている。しかし、サージの発生抑制のためにスナバ回路のコンデンサ容量を大きくすると、充放電時に流れる電流が増大し、電力損失が大きくなるという問題がある。
図18は、本発明の実施の形態6に係る電力半導体装置を示す回路図である。裏面高耐圧集積回路4は、スイッチング素子1と裏面電圧検出素子31との間に接続された高耐圧のツェナーダイオード71と、制御回路72とを有している。制御回路72は、外部からリード端子9に入力された制御信号に応じてスイッチング素子1を駆動する。
制御回路72は、裏面電圧検出素子31で検出された裏面電圧が所定電圧より高いと、スイッチング素子1をオンさせる(以下、アクティブクランプ動作という)。これにより、スイッチング素子のゲートに加わる過大な過渡電圧(サージ)を吸収することができる。そして、スナバコンデンサの容量の低減、部品点数の削減、電力損失低減を実現することができる。
なお、大電流用のスイッチング素子1を用いた場合、制御回路72が駆動する電流は大きい。このため、制御回路72とスイッチング素子1の間の配線に存在するわずかな誘導成分の影響を受け、裏面電圧検出素子31は正確な電圧検出を行うことができない。しかし、裏面高耐圧集積回路4を導電板3上においてスイッチング素子1の近傍に配置することにより、制御回路72とスイッチング素子1の間隔を狭めることができる。これにより、裏面電圧検出素子31は正確な電圧検出を行うことができる。
実施の形態7.
大電流用のスイッチング素子ではゲート容量が大きいため、オフ状態からオン状態に切り替える際に過渡的に過大な電流を供給する必要がある。そこで、本実施の形態7では、裏面高耐圧集積回路に設けられた裏面電圧検出素子を用いて、コレクタからゲート電圧を上昇させる充電電流を取り出す。この構成について以下に詳細に説明する。
図19は、本発明の実施の形態7に係る電力半導体装置を示す回路図である。裏面電圧検出素子31の出力端子40とスイッチング素子1のゲートとの間に抵抗73が設けられている。そして、裏面電圧検出素子31は、スイッチング素子1がオフ状態からオン状態になる際に、出力端子40から抵抗73を介してスイッチング素子1のゲートに充電電流を供給する。
裏面電圧検出素子31は、スイッチング素子1がオンして飽和電圧に達すると、十分な電流を供給できなくなる。従って、裏面電圧検出素子31は、スイッチング素子1がオフ状態からオン状態に移行する際にコレクタ−エミッタ間電圧が高いときにのみ、スイッチング素子1のゲートに充電電流を与えることができる。このように裏面電圧検出素子31を用いてスイッチング素子1に充電電流を供給することにより、電源の能力を削減し、制御回路の能力を削減することができる。
また、裏面電圧検出素子31の出力端子40と接地点との間に遮断用トランジスタ74が設けられ、裏面電圧検出素子31のNPNトランジスタ42のベースと接地点との間に遮断用トランジスタ75が設けられている。制御回路72が遮断用トランジスタ74,75を制御することで、スイッチング素子1に過剰な電圧が供給されるのを防ぐことができる。
実施の形態8.
スイッチング素子を複数組み合わせてブリッジ回路を構成する場合、高電位側のスイッチング素子の駆動を行うためには、スイッチング素子のエミッタを基準電位とした電源回路を用いるのが一般的である。この場合、電源トランスなどを用いて高電位側に電流を供給し、整流回路や平滑コンデンサなどにより直流電圧を発生させる。本実施の形態8に係る電力半導体装置は、このような高電位側の電源回路を削減することができる。この構成について以下に詳細に説明する。
図20は、本発明の実施の形態8に係る電力半導体装置を示す回路図である。この図20の電力半導体装置は、図8のブリッジ回路の高電位側に用いられる。コンデンサ81の一端は、スイッチング素子1のエミッタに接続されている。電源82は、抵抗83及び高耐圧ダイオード84を介して、コンデンサ81の他端に接続され、コンデンサ81を充電する。この電源82は、低電位側スイッチング素子のエミッタを基準にした低電位側の電源回路である。
ブリッジ回路の低電位側のスイッチング素子をオンさせると、高電位側のスイッチング素子1のエミッタ電位は、低電位側のスイッチング素子のコレクタ−エミッタ間電圧相当に低くなり、電源82よりも低い電圧となる。このため、高耐圧ダイオード84が順方向バイアスされ、抵抗83を介してコンデンサ81に電荷が蓄積される。
一方、低電位側のスイッチング素子がオフで高電位側のスイッチング素子1がオンのときには、スイッチング素子1のエミッタ電位はコレクタ電位に近くなり、ブリッジ回路の電源電圧に近い電圧となる。このときには電源82よりもスイッチング素子1のエミッタの方が高い電位となるため、高耐圧ダイオード84は逆バイアスされて電流は流れない。このように低電位側のスイッチング素子が定期的にオンすることで、高電位側のスイッチング素子1のエミッタ電圧が低下してコンデンサ81が充電される。
裏面高耐圧集積回路4は、スイッチング素子1のゲートに接続された制御回路72と、入力端子A,B,Cとを有する。コンデンサ81の他端は、入力端子Aを介して裏面高耐圧集積回路4内の端子86に接続されている。端子86と接地点との間にツェナーダイオード87が設けられている。
入力端子Bと制御回路72との接続点に、抵抗88を介して端子86が接続されている。また、入力端子Cと制御回路72との接続点に、抵抗89を介して端子86が接続されている。これにより、入力端子B,Cはいずれもコンデンサ81に充電された電圧にプルアップされる。入力端子B,Cは、それぞれ外部の高耐圧トランジスタ90,91に接続されている。
制御回路72は、入力端子B,Cを経由して電流を外部から吸い出して抵抗88,89での電圧降下を検出する。そして、制御回路72は、入力端子B,Cの一方に信号が加わった場合にはオン動作に切り替えを行い、他方に信号が加わった場合にはオフ動作に切り替える。なお、制御回路72は上記動作の状態を保持するためにラッチ回路を有する。
このように制御回路72は、コンデンサ81に蓄積された電荷により動作し、スイッチング素子1のオン・オフを制御する。即ち、コンデンサ81に蓄積された電荷を、制御回路72を動作する電源の代わりに用いる。これにより、高電位側の電源回路を削減することができる。
実施の形態9.
本実施の形態9に係る電力半導体装置について説明する。ここでは、実施の形態8と異なる点を中心に説明する。
図21は、本発明の実施の形態9に係る電力半導体装置を示す回路図である。裏面高耐圧集積回路4には、実施の形態3で示した裏面電圧検出素子31が設けられている。この裏面電圧検出素子31は、スイッチング素子1のコレクタ及びコンデンサ81に接続されている。
比較回路92の第1入力端子は端子E、抵抗83及び高耐圧ダイオード84を介して電源82に接続され、第2入力端子はコンデンサ81の他端に接続されている。比較回路92は、第2入力端子の電圧が第1入力端子の電圧よりも低いと、裏面電圧検出素子31を駆動させる。そうすると、裏面電圧検出素子31を介してスイッチング素子1のコレクタからコンデンサ81の他端に電流が供給され、コンデンサ81が充電される。
これにより、コンデンサ81を充電するために必要な電流を、比較回路92側から供給する必要がなくなる。従って、比較回路92側に設ける素子の電流能力を低くすることができる。また、充電に要する時間も短くすることができ、負荷の駆動開始までの待ち時間を短くすることができる。
実施の形態10.
本実施の形態10に係る電力半導体装置について説明する。ここでは、実施の形態8と異なる点を中心に説明する。
図22は、本発明の実施の形態10に係る電力半導体装置を示す回路図である。制御回路72は、タイマー回路(図示しない)を有し、外部から入力された入力信号の長さが所定時間以上の場合は、その入力信号が入力された後にスイッチング素子1のオン・オフ動作を切り替える。これにより、スイッチング素子のオン・オフ動作の制御を安定に行うことができる。
また、制御回路72を外部制御する端子が端子Bの1個のみとなり、実施の形態8と比較して外部制御の端子を減らすことができる。従って、本実施の形態10によれば、オン・オフを制御する入力信号線を1本とすることができ、配線に必要なコストを削減できる。
実施の形態11.
本実施の形態11に係る電力半導体装置について説明する。ここでは、実施の形態10と異なる点を中心に説明する。
制御回路72は、それぞれ第1の時間と第1の時間よりも長い第2の時間を基準とする2種類のタイマー回路(図示しない)を有する。そして、制御回路72は、入力信号の長さが第1の時間未満の場合は、スイッチング素子1のオン・オフ動作を切り替えない。また、制御回路72は、入力信号の長さが第1の時間以上かつ第2の時間未満の場合は、その入力信号が入力された後にスイッチング素子1をオフ動作からオン動作に切り替える。また、制御回路72は、入力信号の長さが第2の時間以上の場合は、その入力信号が入力された後にスイッチング素子1をオン動作からオフ動作に切り替える。
このように入力信号の長さの基準を2段階に設定しているため、スイッチング素子のオン・オフ動作の制御を実施の形態10よりも安定に行うことができる。
実施の形態12.
本実施の形態12の電力半導体装置について説明する。ここでは、実施の形態11と異なる点を中心に説明する。
図23は、本発明の実施の形態12に係る電力半導体装置を示す回路図である。制御回路72は、スイッチング素子1をオフさせる保護回路(図示しない)を有している。制御回路72は、スイッチング素子1をオフさせる保護動作に入ると、所定の信号を外部に出力する。高耐圧ダイオード84と高耐圧トランジスタ90との接続点に、信号異常検出回路93が接続されている。この信号異常検出回路93は、制御回路72が出力した所定の信号を検出する。これにより、制御回路72が保護動作に入ったか否かを裏面高耐圧集積回路4の外部から検出することができる。
また、裏面高耐圧集積回路4は、自励発振回路94(発振回路)と遮断トランジスタ95とを更に備える。自励発振回路94は、制御回路72に入力された入力信号の長さが実施の形態11で示した第1の時間未満の場合に所定の発振周波数の信号を出力する。遮断トランジスタ95は、制御回路72の入力端子と接地点との間に設けられ、自励発振回路94の出力電圧に同期してオンし、制御回路72に入力される入力信号の電圧を繰り返し引き下げる。
外部制御側において、制御回路72の入力端子の電圧に短時間の繰り返しパルス信号が発生していることが検出された場合には、該当するスイッチング素子1で異常が発生したと判断することができ、故障箇所の診断が可能となる。なお、制御回路72が有する複数の保護機能の何れが働いて停止したかを識別するためには、自励発振回路94の発振周波数を保護機能の数だけ準備し、外部制御側で発振周波数を検出すればよい。
実施の形態13.
本実施の形態13に係る電力半導体装置について説明する。ここでは、実施の形態2と異なる点を中心に説明する。
実施の形態2では、誘導負荷に蓄えられるエネルギーによるスイッチング素子1のコレクタ−エミッタ間の負電圧抑制のため、フリーホイールダイオードを設けている。これに対して本実施の形態13では、フリーホイールダイオードの代わりに、パワーMOSFETを用いる。即ち、パワーMOSFETが、スイッチング素子1及び裏面高耐圧集積回路4と離間して導電板3上に搭載されている。
図24は、本発明の実施の形態13に係る電力半導体装置を示す回路図である。パワーMOSFET96は、スイッチング素子1に並列に接続されている。なお、パワーMOSFET96のソース・ドレイン間に寄生ダイオード97が発生している。この場合、スイッチング素子1としてIGBTを用いる。裏面高耐圧集積回路4は、パワーMOSFET96及びスイッチング素子1を駆動する制御回路72を有する。制御回路72は、スイッチング素子1の出力電圧を検出し、この出力電圧が負電位である場合にパワーMOSFET96を駆動する。
上記構成により、寄生ダイオード97を経由して流れる電流経路に加えて、パワーMOSFET96のチャネル部分にも電流が流れる。このため、通常のダイオードよりも低い電圧降下で電流を流すことができる。従って、実施の形態2よりもさらに電力損失を低減させることができる。
実施の形態14.
これまで説明した実施の形態では、裏面電圧検出素子は、裏面電圧が非常に高い電圧まで上昇するにも関わらず、低い電圧の素子表面において裏面電圧を検出するものであった。これに対して本実施の形態14では、裏面電圧検出素子は、基本的に裏面電圧が高電圧になる領域まで追随し、表面に高い電圧を発生させるようにしたものである。
図25は、本発明の実施の形態14に係る電力半導体装置を示す回路図である。裏面高耐圧集積回路4は、実施の形態3で示した裏面電圧検出素子31と、抵抗分圧回路101とを有する。抵抗分圧回路101は、裏面電圧検出素子31と接地点との間に接続された抵抗102,103と、抵抗102と抵抗103との接続点に接続された電圧検出素子104とを有する。そして、抵抗分圧回路101は、裏面電圧検出素子31の出力電圧を分圧する。スイッチング素子1のコレクタ電圧は、裏面電圧検出素子31及び抵抗分圧回路101を介して出力される。抵抗分圧回路101の出力はスイッチング素子1のコレクタ−エミッタ間電圧に比例するため、この電圧信号を外部に出力することにより母線電圧の検出が可能となる。
図26は、本発明の実施の形態14に係る抵抗分圧回路の抵抗を示す断面図であり、図27はその上面図である。素子の表面部には高電圧領域が発生するため、通常のスイッチング素子と同様に、基板内部の空乏層の広がりを適正化するガードリング22が設けられている。p型拡散層105の表面にn型拡散層106が設けられている。このn型拡散層106に接続されるように、基板上にアルミ配線107が設けられている。
抵抗102,103は、裏面高耐圧集積回路4の表面に回路素子形成時にポリシリコン(多結晶シリコン)などの材料を用いて形成する。これにより、高精度の抵抗分圧を構成することができる。そして、抵抗102,103は、電圧検出素子104の中央部(高電圧領域)から、外周部(低電圧領域)に向かってスパイラル状に形成する。これにより、抵抗102,103を効果的に配置して、その抵抗値を高くすることができる。
本発明の実施の形態1に係る電力半導体装置を示す側面図である。 本発明の実施の形態1に係る電力半導体装置を示す平面図である。 本発明の実施の形態1に係る電力半導体装置を示す回路図である。 本発明の実施の形態1に係る裏面高耐圧集積回路を示す断面斜視図である。 本発明の実施の形態2に係る電力半導体装置を示す側面図である。 本発明の実施の形態2に係る電力半導体装置を示す上面図である。 本発明の実施の形態2に係る電力半導体装置を示す回路図である。 複数のスイッチング素子を用いて構成したブリッジ回路を示す回路図である。 本発明の実施の形態3に係る裏面高耐圧集積回路を示す断面図である。 本発明の実施の形態3に係る電力半導体装置を示す回路図である。 正常な状態における図10の回路各部のタイミングチャートである。 負荷が短絡した状態における図10の回路各部のタイミングチャートである。 本発明の実施の形態4に係る電力半導体装置を示す回路図である。 正常な状態における図13の回路各部のタイミングチャートである。 負荷が短絡した状態における図13の回路各部のタイミングチャートである。 本発明の実施の形態5に係るスイッチング素子を示す断面図である。 本発明の実施の形態5に係る電力半導体装置の保護動作を行う際のスイッチング素子の電流波形を示した図である。 本発明の実施の形態6に係る電力半導体装置を示す回路図である。 本発明の実施の形態7に係る電力半導体装置を示す回路図である。 本発明の実施の形態8に係る電力半導体装置を示す回路図である。 本発明の実施の形態9に係る電力半導体装置を示す回路図である。 本発明の実施の形態10に係る電力半導体装置を示す回路図である。 本発明の実施の形態12に係る電力半導体装置を示す回路図である。 本発明の実施の形態13に係る電力半導体装置を示す回路図である。 本発明の実施の形態14に係る電力半導体装置を示す回路図である。 本発明の実施の形態14に係る抵抗分圧回路の抵抗を示す断面図である。 本発明の実施の形態14に係る抵抗分圧回路の抵抗を示す上面図である。 従来の電力半導体装置を示す断面図である。 従来の電力半導体装置を示す側面図である。
符号の説明
1 スイッチング素子
3 導電板
4 裏面高耐圧集積回路(集積回路)
11 p型半導体層
12 n型半導体層
24 フリーホイールダイオード
31 裏面電圧検出素子
32 第1p型拡散層
33 第1n型拡散層
34 ゲート
35 絶縁ゲートバイポーラトランジスタ
36 第2p型拡散層
37 第2n型拡散層
38 ツェナーダイオード
40 出力端子
41 PNPトランジスタ
42 NPNトランジスタ
51 コンパレータ(比較回路,第1比較回路)
55 論理回路
56 NMOSトランジスタ(電圧低下回路)
59 電流センス素子(電流センス手段)
60 抵抗(変換手段)
61 コンパレータ(第2比較回路)
73 抵抗
81 コンデンサ
82 電源
72 制御回路
94 自励発振回路(発振回路)
95 遮断トランジスタ
96 パワーMOSFET
101 抵抗分圧回路

Claims (16)

  1. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、
    前記スイッチング素子のオン・オフを制御する制御回路と、
    前記集積回路の裏面の電圧を検出する裏面電圧検出素子と、
    前記裏面電圧検出素子の出力電圧が所定電圧より高い期間が所定期間を超えた場合にオフ信号を出力する比較回路と、
    前記比較回路からオフ信号が出力されると前記スイッチング素子をオフさせる論理回路とを有することを特徴とする電力半導体装置。
  2. 前記スイッチング素子及び前記集積回路と離間して前記導電板上に搭載され、前記スイッチング素子に並列に接続されたフリーホイールダイオードを更に有することを特徴とする請求項1に記載の電力半導体装置。
  3. 前記裏面電圧検出素子は、
    前記導電板に電気的に接続されたp型半導体層と、
    前記p型半導体層上に設けられたn型半導体層と、
    前記n型半導体層の表面に設けられた第1p型拡散層と、前記第1p型拡散層の一部に設けられた第1n型拡散層と、前記n型半導体層と前記第1n型拡散層との間に挟まれた前記第1p型拡散層の表面にゲート酸化膜を介して設けられたゲートとを有する絶縁ゲートバイポーラトランジスタと、
    前記n型半導体層の表面に、前記絶縁ゲートバイポーラトランジスタと離間して設けられた第2p型拡散層と、
    前記第2p型拡散層の表面に設けられた第2n型拡散層とを備え、
    前記p型半導体層、前記n型半導体層及び前記第2p型拡散層によりPNPトランジスタが構成され、
    前記n型半導体層、前記第2p型拡散層及び前記第2n型拡散層によりNPNトランジスタが構成され、
    前記絶縁ゲートバイポーラトランジスタがオンすると、前記絶縁ゲートバイポーラトランジスタに流れる電流が前記PNPトランジスタのベース電流となって前記PNPトランジスタを駆動し、駆動された前記PNPトランジスタのコレクタ電流が前記NPNトランジスタのベース電流となって前記NPNトランジスタを駆動し、前記裏面電圧検出素子は前記第2n型拡散層の電圧を出力電圧として出力することを特徴とする請求項1又は2に記載の電力半導体装置。
  4. 前記裏面電圧検出素子は、前記第2p型拡散層にカソードが接続され、アノードが接地されたツェナーダイオードを更に有することを特徴とする請求項3に記載の電力半導体装置。
  5. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、
    前記スイッチング素子のオン・オフを制御する制御回路と、
    前記集積回路の裏面の電圧を検出する裏面電圧検出素子と、
    前記裏面電圧検出素子の出力電圧が所定電圧より高いと低下信号を出力する第1比較回路と、
    前記第1比較回路から低下信号が出力されると前記スイッチング素子の制御電極の電圧を低下させる電圧低下回路とを有することを特徴とする電力半導体装置。
  6. 前記スイッチング素子に流れる電流の大きさに比例して微少電流を流す電流センス手段を更に備え、
    前記集積回路は、
    前記電流センス手段から出力された電流を電圧に変換する変換手段と、
    前記変換手段の出力電圧が所定電圧より高いとオフ信号を出力する第2比較回路と、
    前記第2比較回路からオフ信号が出力されると前記スイッチング素子をオフさせる論理回路とを有することを特徴とする請求項5に記載の電力半導体装置。
  7. 前記集積回路は、前記スイッチング素子をオフさせる保護動作を行う際に、前記スイッチング素子の遮断速度を通常動作時よりも遅くすることを特徴とする請求項3又は4に記載の電力半導体装置。
  8. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、前記スイッチング素子のオン・オフを制御する制御回路と、前記集積回路の裏面の電圧を検出する裏面電圧検出素子とを有し、
    前記制御回路は、前記裏面電圧検出素子の出力電圧が所定電圧より高いと、前記スイッチング素子をオンさせることを特徴とする電力半導体装置。
  9. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、
    前記スイッチング素子のオン・オフを制御する制御回路と、
    前記集積回路の裏面の電圧を検出する裏面電圧検出素子と、
    前記裏面電圧検出素子の出力端子と前記スイッチング素子の制御電極との間に設けられた抵抗とを有し
    前記裏面電圧検出素子は、前記スイッチング素子がオフ状態からオン状態になる際に、前記抵抗を介して前記スイッチング素子の制御電極に電流を供給することを特徴とする電力半導体装置。
  10. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路と、
    一端が前記スイッチング素子の第2主電極に接続されたコンデンサと、
    前記コンデンサの他端に接続され、前記コンデンサを充電する電源とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、前記スイッチング素子のオン・オフを制御する制御回路と、前記集積回路の裏面の電圧を検出する裏面電圧検出素子とを有し、
    前記裏面電圧検出素子は、
    前記導電板に電気的に接続されたp型半導体層と、
    前記p型半導体層上に設けられたn型半導体層と、
    前記n型半導体層の表面に設けられた第1p型拡散層と、前記第1p型拡散層の一部に設けられた第1n型拡散層と、前記n型半導体層と前記第1n型拡散層との間に挟まれた前記第1p型拡散層の表面にゲート酸化膜を介して設けられたゲートとを有する絶縁ゲートバイポーラトランジスタと、
    前記n型半導体層の表面に、前記絶縁ゲートバイポーラトランジスタと離間して設けられた第2p型拡散層と、
    前記第2p型拡散層の表面に設けられた第2n型拡散層とを備え、
    前記p型半導体層、前記n型半導体層及び前記第2p型拡散層によりPNPトランジスタが構成され、
    前記n型半導体層、前記第2p型拡散層及び前記第2n型拡散層によりNPNトランジスタが構成され、
    前記絶縁ゲートバイポーラトランジスタがオンすると、前記絶縁ゲートバイポーラトランジスタに流れる電流が前記PNPトランジスタのベース電流となって前記PNPトランジスタを駆動し、駆動された前記PNPトランジスタのコレクタ電流が前記NPNトランジスタのベース電流となって前記NPNトランジスタを駆動し、前記裏面電圧検出素子は前記第2n型拡散層の電圧を出力電圧として出力し、
    前記制御回路は、前記コンデンサに蓄積された電荷により動作することを特徴とする電力半導体装置。
  11. 前記裏面電圧検出素子を介して前記スイッチング素子の第1主電極から前記コンデンサの他端に電流が供給されることを特徴とする請求項10に記載の電力半導体装置。
  12. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、前記スイッチング素子のオン・オフを制御する制御回路と、前記集積回路の裏面の電圧を検出する裏面電圧検出素子とを有し、
    前記制御回路は、外部から入力された入力信号の長さが所定時間以上の場合は、前記入力信号が入力された後に前記スイッチング素子のオン動作・オフ動作を切り替えることを特徴とする電力半導体装置。
  13. 前記制御回路は、前記入力信号の長さが第1の時間以上かつ第2の時間未満の場合は前記スイッチング素子をオフ動作からオン動作に切り替え、前記入力信号の長さが前記第2の時間以上の場合は前記スイッチング素子をオン動作からオフ動作に切り替えることを特徴とする請求項12に記載の電力半導体装置。
  14. 前記集積回路は、
    前記入力信号の長さが前記第1の時間未満の場合に所定の発振周波数の信号を出力する前記発振回路と、
    前記発振回路の出力電圧に同期して前記制御回路に入力される前記入力信号の電圧を引き下げる遮断トランジスタとを更に備えることを特徴とする請求項13に記載の電力半導体装置。
  15. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路と、
    前記スイッチング素子及び前記集積回路と離間して前記導電板上に搭載され、前記スイッチング素子に並列に接続されたパワーMOSFETとを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、前記スイッチング素子のオン・オフを制御する制御回路と、前記集積回路の裏面の電圧を検出する裏面電圧検出素子とを有し、
    前記制御回路は、前記スイッチング素子の出力電圧を検出し、前記出力電圧が負電位である場合に前記パワーMOSFETを駆動させることを特徴とする電力半導体装置。
  16. 導電板と、
    前記導電板上に搭載され、電気的に接続されたスイッチング素子と、
    前記スイッチング素子と離間して前記導電板上に搭載され、電気的に接続された集積回路とを備え、
    前記スイッチング素子は、制御電極に入力される制御信号に応答して第1,第2主電極間の接続をオン・オフし、
    前記集積回路は、前記スイッチング素子のオン・オフを制御する制御回路と、前記集積回路の裏面の電圧を検出する裏面電圧検出素子とを有し、
    前記裏面電圧検出素子は、
    前記導電板に電気的に接続されたp型半導体層と、
    前記p型半導体層上に設けられたn型半導体層と、
    前記n型半導体層の表面に設けられた第1p型拡散層と、前記第1p型拡散層の一部に設けられた第1n型拡散層と、前記n型半導体層と前記第1n型拡散層との間に挟まれた前記第1p型拡散層の表面にゲート酸化膜を介して設けられたゲートとを有する絶縁ゲートバイポーラトランジスタと、
    前記n型半導体層の表面に、前記絶縁ゲートバイポーラトランジスタと離間して設けられた第2p型拡散層と、
    前記第2p型拡散層の表面に設けられた第2n型拡散層とを備え、
    前記p型半導体層、前記n型半導体層及び前記第2p型拡散層によりPNPトランジスタが構成され、
    前記n型半導体層、前記第2p型拡散層及び前記第2n型拡散層によりNPNトランジスタが構成され、
    前記絶縁ゲートバイポーラトランジスタがオンすると、前記絶縁ゲートバイポーラトランジスタに流れる電流が前記PNPトランジスタのベース電流となって前記PNPトランジスタを駆動し、駆動された前記PNPトランジスタのコレクタ電流が前記NPNトランジスタのベース電流となって前記NPNトランジスタを駆動し、前記裏面電圧検出素子は前記第2n型拡散層の電圧を出力電圧として出力し、
    前記集積回路は、前記裏面電圧検出素子の出力電圧を分圧する抵抗分圧回路を更に有し、
    前記スイッチング素子の出力電圧は、前記裏面電圧検出素子及び前記抵抗分圧回路を介して出力されることを特徴とする電力半導体装置。
JP2007130957A 2006-10-30 2007-05-16 電力半導体装置 Active JP5157247B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007130957A JP5157247B2 (ja) 2006-10-30 2007-05-16 電力半導体装置
US11/870,133 US7910949B2 (en) 2006-10-30 2007-10-10 Power semiconductor device
DE200710050868 DE102007050868B4 (de) 2006-10-30 2007-10-24 Leistungshalbleitervorrichtung
KR1020070109338A KR100962525B1 (ko) 2006-10-30 2007-10-30 전력 반도체 장치
CN2007101851608A CN101174619B (zh) 2006-10-30 2007-10-30 功率半导体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006294074 2006-10-30
JP2006294074 2006-10-30
JP2007130957A JP5157247B2 (ja) 2006-10-30 2007-05-16 電力半導体装置

Publications (2)

Publication Number Publication Date
JP2008135682A JP2008135682A (ja) 2008-06-12
JP5157247B2 true JP5157247B2 (ja) 2013-03-06

Family

ID=39265144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130957A Active JP5157247B2 (ja) 2006-10-30 2007-05-16 電力半導体装置

Country Status (5)

Country Link
US (1) US7910949B2 (ja)
JP (1) JP5157247B2 (ja)
KR (1) KR100962525B1 (ja)
CN (1) CN101174619B (ja)
DE (1) DE102007050868B4 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423378B2 (ja) 2009-12-15 2014-02-19 三菱電機株式会社 イグナイタ用電力半導体装置
JP5423377B2 (ja) * 2009-12-15 2014-02-19 三菱電機株式会社 イグナイタ用電力半導体装置
JP2013149779A (ja) * 2012-01-19 2013-08-01 Semiconductor Components Industries Llc 半導体装置
WO2015029159A1 (ja) * 2013-08-28 2015-03-05 三菱電機株式会社 半導体装置
DE102013114438A1 (de) 2013-12-19 2015-06-25 Karlsruher Institut für Technologie Leistungselektronikmodul und Verfahren zur Herstellung eines Leistungselektronikmoduls
JP6270549B2 (ja) * 2014-03-06 2018-01-31 株式会社 日立パワーデバイス 半導体装置およびそれを用いるモータ並びに空調機
RU2549206C1 (ru) * 2014-03-12 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Автономный инвертор напряжения
JP6541223B2 (ja) * 2015-01-16 2019-07-10 新日本無線株式会社 半導体装置
JP6524929B2 (ja) * 2016-01-27 2019-06-05 株式会社デンソー 電力変換装置
JP6450699B2 (ja) * 2016-03-29 2019-01-09 日立ジョンソンコントロールズ空調株式会社 電力変換装置
DE102017002573B4 (de) 2017-03-16 2019-07-04 Infineon Technologies Ag Überspannungsschutz
JP6946783B2 (ja) * 2017-06-30 2021-10-06 富士電機株式会社 半導体装置および半導体モジュール
CN108962885A (zh) * 2018-07-27 2018-12-07 广州华微电子有限公司 一种带检测与保护功能的半导体功率器件
KR102638883B1 (ko) * 2021-11-26 2024-02-22 한국전자기술연구원 전력반도체 보호 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429921B2 (ja) * 1995-10-26 2003-07-28 三菱電機株式会社 半導体装置
JP3114966B2 (ja) * 1997-07-22 2000-12-04 シャープ株式会社 直流安定化電源装置
JPH11233712A (ja) 1998-02-12 1999-08-27 Hitachi Ltd 半導体装置及びその製法とそれを使った電気機器
US6242890B1 (en) * 1998-06-09 2001-06-05 Seiko Instruments Inc. Charge/discharge control circuit and chargeable electric power source apparatus
JP3707942B2 (ja) * 1998-12-17 2005-10-19 三菱電機株式会社 半導体装置とそれを用いた半導体回路
US6798061B2 (en) * 1999-11-15 2004-09-28 Koninklijke Philips Electronics N.V. Multiple semiconductor chip (multi-chip) module for use in power applications
JP2002157027A (ja) * 2000-11-20 2002-05-31 Mitsubishi Electric Corp 電力変換装置及び半導体装置
EP1221718A1 (en) * 2001-01-08 2002-07-10 STMicroelectronics S.r.l. Integrated power device with improved efficiency and reduced overall dimensions
US6734497B2 (en) * 2001-02-02 2004-05-11 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor, semiconductor device, method of manufacturing insulated-gate bipolar transistor, and method of manufacturing semiconductor device
TW585015B (en) * 2001-06-28 2004-04-21 Sanyo Electric Co Hybrid integrated circuit device and method for manufacturing same
JP3886876B2 (ja) * 2002-01-17 2007-02-28 三菱電機株式会社 電力用半導体素子の駆動回路
JP2004096318A (ja) * 2002-08-30 2004-03-25 Mitsubishi Electric Corp 電力用半導体装置
JP4223375B2 (ja) * 2003-11-14 2009-02-12 三菱電機株式会社 半導体装置
JP2005159111A (ja) * 2003-11-27 2005-06-16 Matsushita Electric Ind Co Ltd マルチチップ型半導体装置
JP5011748B2 (ja) * 2006-02-24 2012-08-29 株式会社デンソー 半導体装置
JP2008035609A (ja) * 2006-07-28 2008-02-14 Sharp Corp スイッチング電源回路
JP4957183B2 (ja) * 2006-10-30 2012-06-20 三菱電機株式会社 裏面高耐圧集積回路を用いた半導体装置

Also Published As

Publication number Publication date
KR20080039280A (ko) 2008-05-07
DE102007050868B4 (de) 2014-07-03
CN101174619A (zh) 2008-05-07
JP2008135682A (ja) 2008-06-12
CN101174619B (zh) 2010-06-02
US20080100147A1 (en) 2008-05-01
DE102007050868A1 (de) 2008-05-08
US7910949B2 (en) 2011-03-22
KR100962525B1 (ko) 2010-06-14

Similar Documents

Publication Publication Date Title
JP5157247B2 (ja) 電力半導体装置
CN107924872B (zh) 绝缘栅半导体装置
JP5280410B2 (ja) 半導体装置、スナバデバイス
US7800174B2 (en) Power semiconductor switching-device and semiconductor power module using the device
JP2000012780A (ja) 半導体スナバ装置及び半導体装置
JP6190204B2 (ja) 半導体装置
JP2014130909A (ja) 電力用半導体装置
JP2008042950A (ja) 電力変換装置
US6181186B1 (en) Power transistor with over-current protection controller
KR101444082B1 (ko) 반도체장치
KR100503938B1 (ko) 반도체장치
JP2015119521A (ja) 半導体装置及びスイッチング回路
JP3182848B2 (ja) 半導体装置
US11515868B2 (en) Electronic circuit and semiconductor module
JPH10145206A (ja) 半導体装置の保護回路
JP7508906B2 (ja) 電子回路及び半導体モジュール
JP6168899B2 (ja) パワーモジュール
KR102377401B1 (ko) 전력 반도체 소자의 쇼트 서킷 검출 장치 및 전력 반도체 시스템
JP4106804B2 (ja) 集積回路用保護装置
JP3284809B2 (ja) 大容量半導体装置
JP2023046512A (ja) 半導体装置
JPH04335560A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5157247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250