JP4106804B2 - 集積回路用保護装置 - Google Patents

集積回路用保護装置 Download PDF

Info

Publication number
JP4106804B2
JP4106804B2 JP10799499A JP10799499A JP4106804B2 JP 4106804 B2 JP4106804 B2 JP 4106804B2 JP 10799499 A JP10799499 A JP 10799499A JP 10799499 A JP10799499 A JP 10799499A JP 4106804 B2 JP4106804 B2 JP 4106804B2
Authority
JP
Japan
Prior art keywords
transistor
integrated circuit
semiconductor integrated
diode
external signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10799499A
Other languages
English (en)
Other versions
JP2000299434A (ja
Inventor
淳一 永田
伴  博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10799499A priority Critical patent/JP4106804B2/ja
Publication of JP2000299434A publication Critical patent/JP2000299434A/ja
Application granted granted Critical
Publication of JP4106804B2 publication Critical patent/JP4106804B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、外部信号端子に静電気などのノイズが印加された場合に、半導体集積回路が破壊されないように保護するための集積回路用保護装置に関する。
【0002】
【発明が解決しようとする課題】
このような集積回路用保護装置の従来技術として、例えば、図9に示すように、特開昭59−181722号公報や特開平3−154374号公報に開示されているものがある。図9において、半導体集積回路の入力端子1には、NPN型のトランジスタ2のコレクタ−エミッタを介してグランドに接続されており、トランジスタ2のベースとエミッタとの間には抵抗3が接続されている。また、入力端子1とグランドとの間には、ダイオード4が逆方向に接続されている。
【0003】
そして、入力端子1に静電気などにより正極性のサージ電圧が印加されると、トランジスタ2におけるコレクタ−ベース間の接合がブレークダウンし、電流の一部は抵抗3を介してグランドに流れ、その他の電流はベースを介してエミッタからグランドへと流れる。また、入力端子1に負極性のサージ電圧が印加された場合は、ダイオード4がオンすることで半導体集積回路は保護される。
【0004】
しかしながら、このような保護装置においては、正極性のサージ電圧が印加された場合には、トランジスタ2をブレークダウンさせることで半導体集積回路を保護するため、入力端子1に繋がる半導体集積回路の耐圧は、トランジスタ2よりも高くなれければならない。従って、半導体集積回路のチップサイズが増加するという問題がある。
【0005】
また、これら保護装置を形成するプロセスとしては、接合分離工程を用いている。そのため、トランジスタ2をブレークダウンさせた場合に流れる電流は、保護装置が形成されている半導体基板を介して他の回路素子へと流れ込むおそれがあり、場合によっては、回路の誤動作やラッチアップが発生することも考えられる。
【0006】
本発明は上記事情に鑑みてなされたものであり、その目的は、半導体集積回路のチップサイズを増加させたり、保護動作によって流れた電流が他の回路素子に影響を及ぼすことを防止できる集積回路用保護装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の集積回路用保護装置によれば、半導体集積回路の外部信号端子に静電気などによって正極性のサージ電圧が印加されると、外部信号端子とグランドとの間には、コレクタとベースとの間に存在する寄生容量及びベースとエミッタとの間に接続される抵抗を介した経路で電流が流れる。すると、トランジスタにもベース電流が流れてオンとなるので、外部信号端子とグランドとの間が導通する。その結果、外部信号端子からトランジスタを介してグランドへと至る経路により電流が流れる。また、外部信号端子に負極性のサージ電圧が印加された場合には、グランドからダイオードを介して外部信号端子側へと負の電流が流れる。
【0008】
従って、半導体集積回路を、正,負何れの極性を有するサージ電圧からも保護することができる。そして、これらのトランジスタ及びダイオードは半導体基板上において島状に絶縁分離された状態で一体に形成されるので、上記保護動作において流れた電流が半導体基板を介して他の回路素子に流れ込むことを抑制し、誤動作やラッチアップなどの発生を確実に防止することができる。
また、トランジスタの耐圧を、半導体集積回路の耐圧よりも高くなるように設定する。この場合、トランジスタは、サージ電圧の印加によって接合がブレークダウンするよりも、接合部分に形成されている寄生容量を介して電流が流れることでオンする傾向がより強くなる。即ち、このように動作する傾向を高めることで、逆に言えば、半導体集積回路側の耐圧を相対的に低く設定することが可能となり、半導体集積回路のチップサイズをより小さくすることができる。
【0009】
請求項2記載の集積回路用保護装置によれば、半導体集積回路の外部信号端子に静電気などによって負極性のサージ電圧が印加されると、電源端子と外部信号端子との間には、コレクタとベースとの間に存在する寄生容量及びベースとエミッタとの間に接続される抵抗を介した経路で電流が流れる。すると、トランジスタにもベース電流が流れてオンとなるので、電源端子と外部信号端子との間が導通する。その結果、電源端子からトランジスタを介して外部信号端子へと至る経路により電流が流れる。また、外部信号端子に正極性のサージ電圧が印加された場合には、外部信号端子からダイオードを介して電源側に電流が流れる。
【0010】
従って、請求項1と同様に、半導体集積回路を、正,負何れの極性を有するサージ電圧からも保護することができる。そして、これらのトランジスタ及びダイオードは半導体基板上において島状に絶縁分離された状態で一体に形成されるので、請求項1と同様に、上記保護動作において流れた電流が半導体基板を介して他の回路素子に流れ込むことを防止することができる。
また、トランジスタの耐圧を、半導体集積回路の耐圧よりも高くなるように設定する。この場合、トランジスタは、サージ電圧の印加によって接合がブレークダウンするよりも、接合部分に形成されている寄生容量を介して電流が流れることでオンする傾向がより強くなる。即ち、このように動作する傾向を高めることで、逆に言えば、半導体集積回路側の耐圧を相対的に低く設定することが可能となり、半導体集積回路のチップサイズをより小さくすることができる。
【0014】
請求項記載の集積回路用保護装置によれば、半導体集積回路の外部信号端子に静電気などによって正極性のサージ電圧が印加されると、外部信号端子とグランドとの間には、コレクタとベースとの間に存在する寄生容量及びベースとエミッタとの間に接続される抵抗を介した経路で電流が流れる。すると、トランジスタにもベース電流が流れてオンとなるので、外部信号端子とグランドとの間が導通する。その結果、外部信号端子からトランジスタを介してグランドへと至る経路により電流が流れる。また、外部信号端子に負極性のサージ電圧が印加された場合には、グランドからダイオードを介して外部信号端子側へと負の電流が流れる。
従って、半導体集積回路を、正,負何れの極性を有するサージ電圧からも保護することができる。そして、これらのトランジスタ及びダイオードは半導体基板上に絶縁分離された状態で一体に形成されるので、上記保護動作において流れた電流が半導体基板を介して他の回路素子に流れ込むことを抑制し、誤動作やラッチアップなどの発生を確実に防止することができる。
また、トランジスタに対して並列に接続されるツェナーダイオードを備えるので、トランジスタ等と併せて保護機能を一層高めることができる。
請求項4記載の集積回路用保護装置によれば、半導体集積回路の外部信号端子に静電気などによって負極性のサージ電圧が印加されると、電源端子と外部信号端子との間には、コレクタとベースとの間に存在する寄生容量及びベースとエミッタとの間に接続される抵抗を介した経路で電流が流れる。すると、トランジスタにもベース電流が流れてオンとなるので、電源端子と外部信号端子との間が導通する。その結果、電源端子からトランジスタを介して外部信号端子へと至る経路により電流が流れる。また、外部信号端子に正極性のサージ電圧が印加された場合には、外部信号端子からダイオードを介して電源側に電流が流れる。
従って、請求項1と同様に、半導体集積回路を、正,負何れの極性を有するサージ電圧からも保護することができる。そして、これらのトランジスタ及びダイオードは半導体基板上に絶縁分離された状態で一体に形成されるので、請求項1と同様に、上記保護動作において流れた電流が半導体基板を介して他の回路素子に流れ込むことを防止することができる。
また、トランジスタに対して並列に接続されるツェナーダイオードを備えるので、トランジスタ等と併せて保護機能を一層高めることができる。
【0015】
請求項記載の集積回路用保護装置によれば、ツェナーダイオードのツェナー電圧を半導体集積回路の耐圧よりも低くなるように設定する。即ち、ツェナーダイオードは、サージ電圧が印加されてからツェナー降伏が生じるまでの時間が比較的遅いため、先にトランジスタが保護動作を開始することになる。従って、ツェナー電圧を低く設定することで、トランジスタの動作開始後に続いてツェナー降伏をスムーズに発生させることができ、両者の保護動作の連携を適切に行うことで総じて半導体集積回路の保護機能を高めることができる。
【0016】
請求項記載の集積回路用保護装置によれば、トランジスタ及びツェナーダイオードを、半導体基板上に、半導体集積回路の外部信号端子,トランジスタ,ツェナーダイオード及び半導体集積回路の順序で配置するので、各素子間を電気的に接続する例えばアルミニュウムからなる配線などが有する抵抗分が作用することによって、サージ電圧に対する耐量をより向上させることができる。
【0017】
【発明の実施の形態】
(第1実施例)
以下、本発明の第1実施例について図1乃至図4を参照して説明する。電気的構成を示す図1において、NチャネルMOSFET(以下、単にFETと称す)11は、半導体集積回路の出力段に配置されており、そのドレインは、半導体集積回路の出力端子(外部信号端子)12となっている。FET11は、LDMOS(Lateral Double-diffused MOS:横型二重拡散MOSトランジスタ) として構成されている。そして、出力端子12は、負荷13を介して電源端子14に接続されており、FET11のソースはグランド15に接続されている。
【0018】
また、FET11のドレインとゲートとの間には、ダイオード16(順),ツェナーダイオード17a及び17b(逆)の直列回路が接続されている。これらのダイオードは、FET11がオンからオフに切り替わった場合に、負荷13が有するインダクタンスによって発生する遅れ電流をゲートへとバイパスさせることで、FET11を保護するために設けられている。尚、FET11,ダイオード16,ツェナーダイオード17a及び17bは、半導体集積回路を構成している。
【0019】
FET11は、半導体集積回路の図示しない駆動制御回路によってハイレベルのゲート信号が与えられるとオン状態となり、電源端子14,負荷13,FET11及びグランド15の経路でシンク電流を流すことで負荷13を駆動するようになっている。
【0020】
一方、出力端子12には、NPN型のトランジスタ18のコレクタが接続されており、トランジスタ18のエミッタはグランド15に接続されている。また、トランジスタ18のベース−エミッタ間には抵抗19が接続されており、コレクタ−エミッタ間には、ダイオード20が逆並列に接続されている。
【0021】
図2は、図1の集積回路用保護装置を半導体基板21に形成した場合の模式的な平面図(a)及び断面図(b)である。この図2において、例えば、SOI(Silicon On Insulator)基板などからなる半導体基板21は、例えばP型シリコン基板からなるベース基板22上に、絶縁分離用のシリコン酸化膜(SiO)23を介して単結晶シリコン層24が設けられている。この単結晶シリコン層24には、枠状をなす絶縁用トレンチ25によって絶縁分離された島状の形成領域26に、集積回路用保護装置が形成されている。尚、絶縁用トレンチ25は、シリコン酸化膜27及びポリシリコン28によって埋め戻されている。
【0022】
形成領域26において、単結晶シリコン層24の内、シリコン酸化膜23に接する下層領域にはN拡散層29があり、その上層はN拡散層30となっている。枠状のP拡散層からなるPウェル31は、形成領域26の再外周に配置されている。そのPウェル31の内周部には、P拡散層からなるPウェル32が比較的広い略矩形の領域として形成されていると共に、N拡散層からなるNウェル33が比較的狭い略矩形の領域として形成されている。Pウェル32の内部には、N拡散層からなるNウェル34が矩形の領域として形成されている。また、Nウェル33の拡散深さは、N拡散層29に達するように設定されている。
【0023】
そして、Nウェル33,Pウェル32及びNウェル34が、トランジスタ18のコレクタ(C),ベース(B)及びエミッタ(E)に夫々対応している。また、Pウェル31及びNウェル33は、ダイオード20のアノード(A)及びカソード(K)に夫々対応している。
【0024】
また、トランジスタ18のコレクタたるNウェル33は出力端子12と、エミッタたるNウェル34はグランド15と、ベースたるPウェル32及びNウェル34は抵抗19(半導体基板21の図示しない領域に形成されている)と、図示しないアルミニュウム配線を介して夫々接続されている。尚、トランジスタ18の耐圧は、半導体集積回路の耐圧よりも高くなるように(例えば、2倍程度)各半導体領域の不純物濃度が設定されている。
【0025】
ここで、Nウェル33には、サージ電圧が出力端子12を介して直接印加されるため、領域のコーナー部分33aは、電界が集中することを避けるために所謂“面取り”を施した形状をなすように形成されている。または、コーナー部分33aを所謂Rを付けるように形成しても良い。
【0026】
次に、本実施例の作用について図3及び図4をも参照して説明する。トランジスタ18のベースは、抵抗19を介してグランド15に接続されているため、FET11のオンオフにかかわらず通常はオフ状態である。ここで、トランジスタ18の耐圧は、半導体集積回路の耐圧よりも高くなるように設定されているので、FET11がオンからオフに切り替わった場合に負荷13に流れている負荷電流の減少時間をより短縮することができるという効果もある。
【0027】
以降は、出力端子12にサージ電圧が印加された場合について説明する。
(1)出力端子12に正極性のサージ電圧が印加された場合
例えば、ESD(Electric Static Discharge: 静電気放電) によって、出力端子12に正極性のサージ電圧が印加された場合を想定する。すると、出力端子12の電位は急激に上昇する。一般に、トランジスタ18のコレクタ−ベース間には、図1において破線で示すように寄生容量35が存在している(その容量分のほとんどは、Pウェル32−Nウェル33のPN接合容量である)。従って、出力端子12の電位が急激に上昇すると、寄生容量35及び抵抗19の経路を介してグランド15へと電流が流れる。
【0028】
すると、トランジスタ18のベース電位が上昇し、ベース電流が流れることによりトランジスタ18がオンとなり、トランジスタ18は、ベース電流のhFE倍のコレクタ電流をエミッタを介してグランド15へと流す。従って、図3に示すように、本来破線で示すレベルで出力端子12に印加されるサージ電圧を、実線で示すレベルのように減少させることができる。
【0029】
(2)出力端子12に負極性のサージ電圧が印加された場合
この場合は、グランド15からダイオード20を介して出力端子12へと負の電流が流れる経路が形成される。また、FET11がパワーMOSFETである場合は、ソース−ドレイン間に寄生ダイオードが形成されているため、グランド15からその寄生ダイオードを介しても負の電流が流れる。加えて、出力端子12の電位が−Vf (Vf :PN接合の順方向降下電圧)に低下すると、トランジスタ18のベース−コレクタ間が順バイアスされ、トランジスタ18が逆方向のNPNトランジスタとしてオン状態となり、グランド15から出力端子12へと負の電流を流す。
【0030】
これらの作用によって、図4に示すように、本来破線で示すレベルで出力端子12に印加される負極性のサージ電圧を、実線で示すレベルのように減少させることができる。
【0031】
以上のように本実施例によれば、半導体集積回路の出力端子12とグランド15との間に、ベース−エミッタ間を抵抗19が接続されたトランジスタ18を配置すると共に、そのトランジスタ18に対して逆並列にダイオード20を接続した。従って、出力端子12に正極性のサージ電圧が印加された場合には、トランジスタ18がオンしてグランド15に電流を流し、負極性のサージ電圧が印加された場合には、ダイオード20を介してグランド15から出力端子12に負の電流を流すことで半導体集積回路を保護することができる(ロウサイド保護)。
【0032】
そして、トランジスタ18及びダイオード20を、半導体基板21上において絶縁用トレンチ25により絶縁分離された島状の形成領域26に形成したので、保護装置が動作したことによってグランド15に流入またはグランド15から流出した電流が、半導体基板21を介して他の回路素子に流れ込むことを抑制し得て、誤動作やラッチアップなどが発生することを確実に防止できる。
【0033】
また、本実施例によれば、トランジスタ18の耐圧を、半導体集積回路の耐圧よりも高くなるように設定したことで、サージ電圧が印加された場合に、トランジスタ18が接合部分に形成されている寄生容量35を介して流れる電流によってオンする傾向をより強めることで、換言すれば半導体集積回路側の耐圧を相対的に低く設定することができ、チップサイズの増加を抑制することができる。加えて、半導体集積回路のFET11がオンからオフに切り替わった場合に、負荷13に流れている負荷電流の減少時間をより短縮することができる。
【0034】
更に、本実施例によれば、ダイオード20を、トランジスタ18のコレクタを構成する半導体領域であるNウェル33と、トランジスタ18の外周部に形成され、Nウェル33とは逆の伝導型を有する半導体領域であるPウェル31との接合により構成したので、ダイオード20をトランジスタ18と一体にして効率良く形成することができる。また、Pウェル31を、トランジスタ18が形成されている領域の外周部を取り囲むように形成したので、ダイオード20の電流容量がより大きくなり、ダイオード20による保護機能を高めることができる。
【0035】
(第2実施例)
図5及び図6は、本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し以下異なる部分についてのみ説明する。電気的構成を示す図5において、第2実施例では、出力端子12とグランド15との間に、ツェナーダイオード36が接続されている。
【0036】
また、図6は、FET11,トランジスタ18(及びダイオード20),ツェナーダイオード36等を半導体基板21上に形成した場合の、各素子の配置を概略的に示す平面図である。即ち、図6中左端側から右方向にかけて、出力端子12となるパッド,トランジスタ18(及びダイオード20),ツェナーダイオード36,FET11の順で配置されている。尚、ツェナーダイオード36のツェナー電圧は、半導体集積回路の耐圧よりも低くなるように設定されている。
【0037】
従って、出力端子12に正極性のサージ電圧が印加された場合は、第1実施例のように、電位が急激に上昇する過渡的な初期状態においてはトランジスタ18がオンするのが速いため、そのトランジスタ18によって電流経路が形成される。そして、トランジスタ18がオンした後は、ツェナーダイオード36も作用してグランド15へと電流を流す。
【0038】
そして、図6では図示しないが、実際には図5に示すように、出力端子12とトランジスタ18との間,トランジスタ18とツェナーダイオード36との間,ツェナーダイオード36とFET11との間を夫々アルミニュウム配線37a,37b,37cで接続することになる。これらの配線37a〜37cは、例えば数十mΩ程度の抵抗分を有しているので、これらの抵抗分が出力端子12に印加されたサージ電圧をダンピングすることになり、サージ電圧に対する耐量を一層向上させることができる。
【0039】
以上のように第2実施例によれば、保護装置にツェナーダイオード36を加えると共に、半導体基板21上における各素子の配置を最適化することによって、総体的にサージ電圧に対する耐量を向上させることができる。
【0040】
(第3実施例)
図7は、本発明の第3実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し以下異なる部分についてのみ説明する。第3実施例は、第1実施例におけるNPN型のトランジスタ18を、PNP型のトランジスタ38に置き換えたものである。即ち、トランジスタ38のエミッタは、出力端子12に接続されており、コレクタはグランド15に接続されている。そして、エミッタ−ベース間には、抵抗39が接続されている。また、トランジスタ38のエミッタ−コレクタ間には、ダイオード40が逆並列に接続されている。
【0041】
以上のように構成された第3実施例によれば、出力端子12に正極性のサージ電圧が印加されると、抵抗39を介してトランジスタ38のベース電位が上昇し、トランジスタ38のベース−コレクタ間に存在する浮遊容量41を介してベースからコレクタへと電流が流れる。すると、ベース電流が流れてトランジスタ38がオンすることによりエミッタからコレクタ,グランド15へと電流が流れてサージ電圧は吸収される。
【0042】
また、出力端子12に負極性のサージ電圧が印加された場合には、第1実施例と同様に、グランド15からダイオード40を介して出力端子へ負の電流が流れ、サージ電圧が吸収される。従って、第1実施例と同様の効果が得られる。
【0043】
(第4実施例)
図8は、本発明の第4実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し以下異なる部分についてのみ説明する。第4実施例では、FET11のドレインは電源端子14に接続されており、ソースは出力端子(外部信号端子)42及び負荷43を介してグランド15に接続されている。
【0044】
この場合、FET11は、自身がオンすることにより、出力端子42とグランド15との間に接続されている負荷43に対してソース電流を供給するようにドライブするようになっている。そして、FET11のソース−ドレイン間には、第1実施例と同様に、コレクタ−ベース間に抵抗19が接続されたトランジスタ18と、ダイオード20とが接続されている。
【0045】
第4実施例における保護装置の機能は、第1実施例の場合とサージ電圧の極性を逆にした場合に応じて作用する。
即ち、出力端子12に負極性のサージ電圧が印加されると、出力端子42の電位が急激に下降し、トランジスタ18のコレクタ−ベース間に存在する寄生容量35及び抵抗19の経路を介してエミッタへと電流が流れる。すると、トランジスタ18のベース電位が上昇し、ベース電流が流れることによりトランジスタ18がオンとなり、コレクタ電流がエミッタへと流れてサージ電圧は吸収される。また、出力端子42に正極性のサージ電圧が印加されると、ダイオード20を介して電源端子14側に電流が流れてサージ電圧は吸収される。
【0046】
従って、以上のように構成された第4実施例によれば、出力段においてFET11が負荷43に対してソース電流を供給するようにドライブを行う構成の半導体集積回路についても、第1実施例と同様に保護(ハイサイド保護)することが可能である。
【0047】
本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、次のような変形または拡張が可能である。
ェナーダイオード36のツェナー電圧、必ずしも半導体集積回路の耐圧より低く設定する必要はない。
第3及び第4実施例においても、第1実施例と同様ツェナーダイオードを設けても良い。
第4実施例のようにハイサイド保護を行う場合にも、トランジスタにPNP型のものを用いても良い。
【0048】
半導体集積回路の出力段に配置される素子は、NチャネルMOSFET11に限ることなく、その他のMOSFETやトランジスタなどでも良い。
Pウェル31は、必ずしもトランジスタ18が形成されている領域の外周部を取り囲むように形成する必要はない。
ダイオードは、必ずしもトランジスタと一体に形成する必要はなく、独立した素子として構成しても良い。
保護装置を配置する半導体集積回路の外部信号端子としては、出力端子12,42に限らず、入力端子或いは入出力端子に配置しても良い。
【図面の簡単な説明】
【図1】本発明の第1実施例における集積回路用保護装置の電気的構成を示す図
【図2】(a)は、集積回路用保護装置を半導体基板に形成した場合の模式的な平面図、(b)は模式的な断面図
【図3】半導体集積回路の出力端子に正極性のサージ電圧が印加された場合の波形を示す図
【図4】半導体集積回路の出力端子に負極性のサージ電圧が印加された場合の波形を示す図
【図5】本発明の第2実施例を示す図1相当図
【図6】保護装置及びFETなどを半導体基板上に形成した場合の模式的な平面図
【図7】本発明の第3施例を示す図1相当図
【図8】本発明の第4施例を示す図1相当図
【図9】従来技術を示す図1相当図
【符号の説明】
11はNチャネルMOSFET(半導体集積回路装置)、12は出力端子(外部信号端子)、15はグランド、16はダイオード(半導体集積回路装置)、17a及び17bはツェナーダイオード(半導体集積回路装置)、18はトランジスタ、19は抵抗、20はダイオード、21は半導体基板、25は絶縁用トレンチ、26は形成領域、31はPウェル(半導体領域)、33はNウェル(半導体領域)、36はツェナーダイオード、38はトランジスタ、39は抵抗、40はダイオード、42は出力端子(外部信号端子)を示す。

Claims (6)

  1. オン状態になることにより半導体集積回路の外部信号端子とグランドとの間を導通させるトランジスタと、
    このトランジスタのベースとエミッタとの間に接続される抵抗と、
    前記トランジスタに対して逆並列に接続されるダイオードとを備え、
    前記トランジスタ及びダイオードは、半導体基板上において島状に絶縁分離された状態で一体に形成され
    前記トランジスタの耐圧は、前記半導体集積回路の耐圧よりも高くなるように設定されていることを特徴とする集積回路用保護装置。
  2. オン状態になることにより電源端子と半導体集積回路の外部信号端子との間を導通させるトランジスタと、
    このトランジスタのベースとエミッタとの間に接続される抵抗と、
    前記トランジスタに対して逆並列に接続されるダイオードとを備え、
    前記トランジスタ及びダイオードは、半導体基板上において島状に絶縁分離された状態で一体に形成され
    前記トランジスタの耐圧は、前記半導体集積回路の耐圧よりも高くなるように設定されていることを特徴とする集積回路用保護装置。
  3. オン状態になることにより半導体集積回路の外部信号端子とグランドとの間を導通させるトランジスタと、
    このトランジスタのベースとエミッタとの間に接続される抵抗と、
    前記トランジスタに対して逆並列に接続されるダイオードとを備え、
    前記トランジスタ及びダイオードは、半導体基板上に絶縁分離された状態で一体に形成され、
    前記トランジスタに対して並列に接続されるツェナーダイオードを具備したことを特徴とする集積回路用保護装置。
  4. オン状態になることにより電源端子と半導体集積回路の外部信号端子との間を導通させるトランジスタと、
    このトランジスタのベースとエミッタとの間に接続される抵抗と、
    前記トランジスタに対して逆並列に接続されるダイオードとを備え、
    前記トランジスタ及びダイオードは、半導体基板上に絶縁分離された状態で一体に形成され、
    前記トランジスタに対して並列に接続されるツェナーダイオードを具備したことを特徴とする集積回路用保護装置。
  5. 前記ツェナーダイオードのツェナー電圧は、前記半導体集積回路の耐圧よりも低くなるように設定されていることを特徴とする請求項3又は4記載の集積回路用保護装置。
  6. 前記トランジスタ及びツェナーダイオードは、前記半導体基板上に、前記半導体集積回路の外部信号端子,トランジスタ,ツェナーダイオード及び半導体集積回路の順序で配置されていることを特徴とする請求項5記載の集積回路用保護装置。
JP10799499A 1999-04-15 1999-04-15 集積回路用保護装置 Expired - Fee Related JP4106804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10799499A JP4106804B2 (ja) 1999-04-15 1999-04-15 集積回路用保護装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10799499A JP4106804B2 (ja) 1999-04-15 1999-04-15 集積回路用保護装置

Publications (2)

Publication Number Publication Date
JP2000299434A JP2000299434A (ja) 2000-10-24
JP4106804B2 true JP4106804B2 (ja) 2008-06-25

Family

ID=14473300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10799499A Expired - Fee Related JP4106804B2 (ja) 1999-04-15 1999-04-15 集積回路用保護装置

Country Status (1)

Country Link
JP (1) JP4106804B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353985A (ja) * 2004-06-14 2005-12-22 Denso Corp 半導体装置

Also Published As

Publication number Publication date
JP2000299434A (ja) 2000-10-24

Similar Documents

Publication Publication Date Title
US7812402B2 (en) Semiconductor device
US9412732B2 (en) Semiconductor device
KR100789308B1 (ko) 반도체장치
US8237225B2 (en) Semiconductor device for electrostatic discharge protection
US6861711B2 (en) Thick gate oxide transistor and electrostatic discharge protection utilizing thick gate oxide transistors
US10135445B2 (en) Semiconductor integrated circuit device
US9893065B2 (en) Semiconductor integrated circuit
JP3139223B2 (ja) 半導体装置及びその製造方法
JP2004247400A (ja) 半導体装置
JP3183020B2 (ja) 保護回路を内蔵した絶縁ゲート型半導体装置
US10217765B2 (en) Semiconductor integrated circuit
JP3444263B2 (ja) 制御回路内蔵絶縁ゲート半導体装置
JP3665367B2 (ja) 半導体装置
JP3559075B2 (ja) Cmos技術の集積電子回路用の極性反転保護装置
US20080224547A1 (en) Reverse voltage protected integrated circuit arrangement
US6809393B1 (en) Level shifter
US6707653B2 (en) Semiconductor controlled rectifier for use in electrostatic discharge protection circuit
JP4106804B2 (ja) 集積回路用保護装置
JP2007227697A (ja) 半導体装置および半導体集積装置
JP4945948B2 (ja) 半導体装置
JP4821086B2 (ja) 半導体装置
JPH044755B2 (ja)
JP4368014B2 (ja) シュミット回路
JPH10107168A (ja) 半導体集積回路
JP2005328035A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees