JP4774064B2 - A/d変換回路及び固体撮像装置 - Google Patents

A/d変換回路及び固体撮像装置 Download PDF

Info

Publication number
JP4774064B2
JP4774064B2 JP2008027689A JP2008027689A JP4774064B2 JP 4774064 B2 JP4774064 B2 JP 4774064B2 JP 2008027689 A JP2008027689 A JP 2008027689A JP 2008027689 A JP2008027689 A JP 2008027689A JP 4774064 B2 JP4774064 B2 JP 4774064B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
conversion
input
conversion process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008027689A
Other languages
English (en)
Other versions
JP2009188815A (ja
Inventor
幸三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008027689A priority Critical patent/JP4774064B2/ja
Priority to KR1020107013358A priority patent/KR101161277B1/ko
Priority to US12/865,604 priority patent/US8354630B2/en
Priority to CN200980104454.0A priority patent/CN101939917B/zh
Priority to PCT/JP2009/051534 priority patent/WO2009099003A1/ja
Publication of JP2009188815A publication Critical patent/JP2009188815A/ja
Application granted granted Critical
Publication of JP4774064B2 publication Critical patent/JP4774064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/144Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in a single stage, i.e. recirculation type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、アナログ信号をデジタル信号に変換するA/D変換回路、特に、光信号を電気信号に変換する固体撮像素子の複数をマトリクス状に配設してなる固体撮像装置において、固体撮像素子と同一チップ上に搭載される列並列型A/D変換回路に関する。
CMOSイメージセンサやCCDセンサ、近赤外イメージセンサ、遠赤外イメージセンサ等、光電変換等により光信号を電気信号に変換する固体撮像素子(単位画素)の複数をマトリクス状に配設してなる固体撮像素子群を備える固体撮像装置には、同一チップ上に、アナログ回路やデジタル回路等を搭載したものがある。
固体撮像素子群と同一チップ上に搭載される回路としては、例えば、固体撮像素子群の列毎にA/D変換部が設けられ、1行単位で画素の読み出し処理を行う列並列型A/D変換回路がある。列並列型A/D変換回路は、1行単位で読み出しが可能であるため、列並列型ではない従来のA/D変換器と比較して読み出し速度を高速化し、或いは、低い動作周波数で列並列型ではない従来のA/D変換回路と同程度の読み出し速度を維持でき、消費電力を低減できる。
一般的な列並列型A/D変換回路としては、例えば、固体撮像素子から出力されるアナログ電圧信号をデジタルデータに変換する変換処理時に、電圧値が単調増加する基準電圧(ランプ電圧)を生成するランプ電圧生成回路と、ランプ電圧の電圧変化に応じて計数したデジタル値を出力するカウンタ回路を備え、カウンタ回路のカウント動作と同期してアナログ電圧信号を基準電圧信号と比較し、比較結果が反転したときのカウンタ値を画素データとして記憶する列並列型A/D変換回路がある(例えば、特許文献1参照)。
特許文献1に記載の列並列型A/D変換回路を備えた固体撮像装置の構成について、図10を基に簡単に説明する。ここで、図10は、特許文献1に記載の列並列型A/D変換回路を備えた固体撮像装置の部分的な概略構成例を示している。尚、図10に示す列並列型A/D変換回路では、分解能(ビット数で規定)が10ビットである場合を想定している。
より具体的には、特許文献1に記載の固体撮像装置1000は、図10に示すように、光信号をアナログ電圧信号Vpixに変換する固体撮像素子PIXij(i=1〜m、j=1〜n)の複数をマトリクス状に配設してなる固体撮像素子群IPDと、読み出し処理時に読み出し対象行を選択する垂直デコーダVDと、アナログ電圧信号Vpixをデジタルデータに変換する変換処理時に後述するカウンタ回路1040のカウンタ値に応じて電圧値が段階的に増加するランプ電圧Vrを生成するランプ電圧生成回路1020と、ランプ電圧Vrの電圧値の増加開始時からカウント動作を開始するカウンタ回路1040と、読み出し処理時に読み出し対象列を選択する水平デコーダHDと、アナログ電圧信号Vpixとランプ電圧Vrの大小を比較し、比較結果を示す信号Vcp’を出力する変換回路1101が、固体撮像素子群IPDの列毎に各別に設けられた変換回路群1100と、固体撮像素子群IPDの列毎に各別に記憶回路1051が設けられたデジタルメモリ1050を備えている。尚、列並列型A/D変換回路ADCは、ランプ電圧生成回路1020、カウンタ回路1040、変換回路群1100、及び、デジタルメモリ1050で構成されている。
変換回路1101は、入力端にスイッチ回路1102を介してアナログ電気信号Vpixが入力される容量素子1105と、スイッチ回路1102と容量素子1105を接続する中間ノードに出力端が接続され、入力端にスイッチ回路1103を介してランプ電圧Vrが入力される容量素子1104と、入力端子に容量素子1105の出力端が接続され、入力端子の電圧値と所定の閾値電圧値を比較するインバータ回路で構成される電圧比較回路1106と、電圧比較回路1106の入力端子と出力端子を短絡するスイッチ回路1107を備えて構成されている。
以下、固体撮像装置1000における列並列型A/D変換回路ADCの動作について図11及び図12を基に説明する。
ここで、図11は、図10に示す固体撮像装置1000の列並列型A/D変換回路ADCを構成する変換回路1101の入出力電圧信号の波形及び各スイッチ回路SW1’〜SW3’の動作状態を示している。また、図12は、変換処理の実行時におけるランプ電圧Vr及びアナログ電圧信号Vpix、カウンタ回路1040の夫々の値の関係を示している。尚、図12は、列並列型A/D変換回路ADCの分解能が4ビットであり、カウンタ回路1040が、期間Trcに2=16回のカウントアップ動作を行い、カウンタアップ動作に伴ってランプ電圧Vrの電圧値が単位増加量ずつ段階的に増加するように構成されている場合について示している。また、図12において、SW1’はスイッチ回路1102の状態を、SW2’はスイッチ回路1103の状態を、SW3’はスイッチ回路1107の状態を示している。
時間t0において撮像処理が開始されると、先ず、時間t1において、初期化処理が開始される。初期化処理では、固体撮像素子PIXijのリセットレベルの電圧Vrstのサンプリングを行う。
具体的には、時間t1では、図11に示すように、固体撮像素子PIXijから出力される被変換アナログ電圧信号Vpixの電圧値は、リセットレベルの電圧Vrstとなっており、ランプ電圧Vrの電圧値は、初期レベルの電圧Vr0となっている。時間t1において初期化処理が開始されると、列並列型A/D変換回路ADCの変換回路1101は、スイッチ回路1102及びスイッチ回路1107をオン状態にし、スイッチ回路1103をオフ状態にする。これにより、容量素子1105(C1’)の入力端に固体撮像素子PIXijのリセットレベルの電圧Vrstが入力され、電圧比較回路1106の入力端子と出力端子が短絡されて、容量素子1105(C1’)の出力端に電圧比較回路1106の反転レベルVthが入力される。これにより、電圧比較回路1106の反転レベルの特性ばらつきがキャンセルされる(オートゼロ技術)。その後、時間t2において、スイッチ回路1107をオフ状態にすると、固体撮像素子PIXijのリセットレベルの電圧Vrstと電圧比較回路1106の反転レベルVthの差分電圧が容量素子1105(C1’)に保持され、初期化処理が終了する。
時間t3では、画像取り込み処理における固体撮像素子PIXijのシグナルレベルVsigのサンプリング処理を開始する。
具体的には、時間t3では、固体撮像素子PIXijから電圧値が電圧Vsigの被変換アナログ電圧信号Vpixが出力され、容量素子1105(C1’)の入力端に入力される。更に、時間t3において、スイッチ回路1103(SW2’)をオン状態にし、初期レベルVr0のランプ電圧Vrを容量素子1104(C2’)の入力端に入力する。時間t4では、固体撮像素子PIXijのシグナルレベルVsigのサンプリング処理を終了する。時間t4において、スイッチ回路1102(SW1’)をオフ状態にすると、被変換アナログ電圧信号VpixのシグナルレベルVsigとランプ電圧Vrの初期レベルVr0の差分電圧が容量素子1104(C2’)に保持される。
時間t5では、差分電圧Vaをデジタルデータに変換する変換処理を開始し、ランプ電圧Vrをクロック信号CLKに同期して段階的に増加させると共に、ランプ電圧Vrの増加に応じてカウンタ回路1040のカウンタ値を1ずつ増加させる。
より詳細には、図12に示すように、差分電圧Vaの電圧値は、カウンタ値“1000”に対応するランプ電圧Vrの電圧値とカウンタ値“1001”に対応するランプ電圧Vrの電圧値の間となっている。カウンタ回路1040は、“0000”から順次1ずつカウントアップし、時間t6において、カウンタ値が“1000”から“1001”となったときに、電圧比較回路1106から出力される信号Vcp’の値がHレベルからLレベルに変化(反転)する。信号Vcp’の値が反転すると、記憶回路1051はカウンタ回路1040のカウンタ値、図12では“1001”を記憶する。その後、時間t7において、変換処理を終了する。
以下、数1及び数2は、上記特許文献1に記載の列並列型A/D変換回路ADCにおいて、電圧比較回路1106の入力電圧Vinについて、比較回路1106の反転レベルVth、固体撮像素子PIXijの初期レベルVrst、撮像動作時の固体撮像素子PIXijの信号レベルVsig、ランプ電圧Vrの初期レベルVr0を用いて示している。
[数1]
Vin=Vr+(Vsig−Vr0)+(Vth−Vrst)
[数2]
Vin−Vth
=Vr−{Vr0+(Vrst−Vsig)}
従って、数1、数2及び図11より、電圧比較回路1106の出力変化時、即ち、Vin−Vth=0となるときのランプ電圧Vrは、以下の数3で表される。
[数3]
Vr=Vr0+(Vrst−Vsig)=Vr0+Va
(但し、Vin−Vth=0)
尚、上記特許文献1に記載の列並列型A/D変換回路ADCの場合、被変換アナログ電圧信号VpixをデジタルデータD[(z−1):0](zはデジタルデータのビット数)に変換する変換処理には、2ステップ、即ち、一般的に、1ステップが1クロックであるため、2クロック分の時間が必要となる。具体的には、デジタルデータのビット数z=10の場合、210=1024クロック分の時間が必要となる。
ところで、近年、例えば、列並列型A/D変換回路が搭載される固体撮像装置には、高解像度化や分解能の高精度化が求められており、列並列型A/D変換回路の処理時間を短縮するための様々な技術が提案されている。
列並列型A/D変換回路の処理時間を短縮するための技術としては、例えば、デジタルデータを上位ビットと下位ビットに分割し、被変換アナログ電圧信号を上位ビットのビット数に応じた上位ビット変換用分解能でデジタルデータに変換する第1変換処理と、第1変換処理の変換結果に相当する電圧値と被変換アナログ電圧信号の電圧値の差分電圧値を下位ビットのビット数に応じた下位ビット変換用分解能でデジタルデータに変換する第2変換処理の2段階の変換処理でデジタルデータに変換するサブレンジング方式がある。
以下、従来の一般的なサブレンジング方式のA/D変換回路の動作の概念について、図8及び図9を用いて説明する。ここで、図8は、一般的なサブレンジング方式のA/D変換回路における被変換アナログ電圧信号Vpixと、第1変換処理で求めた上位ビットに対応する電圧値と、差分電圧値Vdifと、デジタルデータに対応する電圧値との関係を示している。図9は、第1変換処理で用いる第1ランプ電圧Vrcと第2変換処理で用いる第2ランプ電圧Vrfの構成を示している。尚、図8及び図9では、説明のために、デジタルデータを4ビット構成とし、上位2ビットを求める第1変換処理と下位2ビットを求める第2変換処理を実行する場合について示している。また、図8に示す電圧Verは、A/D変換処理時の量子化誤差である。
図8及び図9に示すように、第1変換処理では、上位2ビットを求めるために、2ビットの分解能に応じた分割数4で被変換アナログ電圧信号Vpixの電圧幅Vfsを分割した第1変化量ΔV1ずつ単調増加するランプ電圧Vrcを用いる。図8及び図9では、被変換アナログ電圧信号Vpixがカウンタ回路のデジタル値“01”と“10”の間であり、カウンタ回路(図10では、カウンタ回路1040に相当)のデジタル値が“10”に切り替わるときに電圧比較回路(図10では、電圧比較回路1106に相当)の出力値が反転する。このときのカウンタ値“10”が上位ビットの値となり、このときの差分電圧値Vdifが、第2変換処理の処理対象として保持される。
図8及び図9に示すように、第2変換処理では、下位2ビットを求めるために、2ビットの分解能に応じた分割数4で第1変化量ΔV1を分割した第2変化量ΔV2ずつ単調減少するランプ電圧Vrfを用いる。図8及び図9では、差分電圧値Vdifがカウンタ回路のデジタル値“10”と“01”の間であり、カウンタ回路のカウンタ値が“01”に切り替わるときに電圧比較回路の出力値が反転する。このときのカウンタ値“01”が下位ビットの値となり、これにより、デジタルデータD[(z−1):0]=“1001”が求められる。
サブレンジング方式の列並列型A/D変換回路としては、例えば、図13に示すように、被変換アナログ電圧信号Vpixを保持するサンプリングホールド回路(以下、適宜「S/H回路」と略称する)2001、被変換アナログ電圧信号Vpixとランプ電圧Vr(=上位ビット変換用ランプ電圧Vrc)を比較するコンパレータ2002、被変換アナログ電圧信号Vpixとランプ電圧Vrcの差分電圧値を出力する差分検出回路2004、差分検出回路2004から出力される電圧値を保持するS/H回路2005、コンパレータ2002の出力変化時にS/H回路2005を制御して差分電圧値を保持させる機能を備えるロジック回路2003、ランプ電圧Vrcの電圧幅を1/Kに調整したランプ電圧Vrfを生成する減衰回路2006、ランプ電圧VrfとS/H回路2005に保持された電圧を比較するコンパレータ2007、及び、コンパレータ2007の出力信号に基づいて、上位ビットの値に相当するカウンタ回路の値を保持するタイミングを規定する信号Vcp_l’を生成するロジック回路2008を有する変換回路2000を備えた差分検出回路内蔵型の列並列型A/D変換回路がある(例えば、特許文献2参照)。
尚、上記特許文献2に記載の列並列型A/D変換回路の場合、例えば、デジタルデータのビット数を10、上位ビットのビット数を5、下位ビットのビット数を5とすると、第1変換処理に2=32クロック分の時間が必要となり、第2変換処理に2=32クロック分の時間が必要となるため、32+32=64クロック分の時間が必要となる。従って、上述したように、被変換アナログ電圧信号を1段階の変換処理でデジタルデータに変換する特許文献1に記載の列並列型A/D変換回路が1024クロック分の時間を必要とするのに対し、サブレンジング方式を採用した特許文献2に記載の列並列型A/D変換回路では、変換処理に64クロック分の時間しか必要とせず、処理時間を大幅に短縮することができる。
他のサブレンジング方式の列並列型A/D変換回路としては、図14に示すように、被変換アナログ電圧信号Vpixを保持するS/H回路3001と、被変換アナログ電圧信号Vpixを参照電圧と比較する比較回路3005と、変換後のデジタルデータの上位ビットを求める第1変換処理の実行時に、ランプ電圧Vrcを比較回路3005に入力するスイッチ回路3002と、第1変換処理後に未変換ビットを求める第2変換処理の実行時に、ランプ電圧Vrfを参照電圧として比較回路3005に入力する容量素子3003と、第1変換処理における比較回路3005の出力変化時に、参照電圧の電圧値を保持するための容量素子3004及び容量素子3003と、第1変換処理における比較回路3005の出力変化時に、容量素子3004にランプ電圧Vrcを保持するための制御信号を生成するロジック回路3006を備えて構成された容量比使用型の列並列型A/D変換回路がある(例えば、特許文献3参照)。
上記特許文献3に記載の列並列型A/D変換回路は、第1変換処理時、S/H回路3001を介して比較回路3005に被変換アナログ電圧信号Vpixを入力し、スイッチ回路3002をオン状態にしてランプ電圧Vrcを入力する。尚、ランプ電圧Vrcの構成は、図8及び図9に示すランプ電圧Vrcと同じである。ランプ電圧Vrcが段階的に単調増加し、比較回路3005の出力が反転すると、ロジック回路3006からの制御信号により、スイッチ回路3002がオフ状態となり、容量素子3004にランプ電圧Vrcが保持される。このとき、図示しないが、カウンタ回路のデジタル値がデジタルデータの上位ビットの値として記憶回路に記憶される。第2変換処理では、段階的に単調減少するランプ電圧Vrfを入力する。比較回路3005の出力が反転すると、図示しないが、カウンタ回路のデジタル値がデジタルデータの下位ビットの値として記憶回路に記憶される。尚、ランプ電圧Vrfの構成は、図8及び図9に示すランプ電圧Vrfと同じである。
上記特許文献3に記載の列並列型A/D変換回路は、図14に示すように、1つのS/H回路、2つの容量素子、及び、スイッチ回路で構成されるため、回路規模を小さくすることができる。
更に他のサブレンジング方式の列並列型A/D変換回路としては、図15に示すように、被変換アナログ電圧信号Vpix及び参照電圧VDE1、VDE2の入力を受け付ける入力回路4010と、第1変換処理時に入力回路4010から出力される参照電圧VDE1を、第2変換処理時に入力回路4010から出力される参照電圧VDE2を積分する積分回路4020と、積分回路4020の出力電圧と参照電圧Vrefを比較する比較回路4030と、第1変換処理における比較回路4030の出力変化時に積分回路4020の電圧レベルを保持するための制御信号を生成するロジック回路4040を備えて構成された積分回路内蔵型の列並列型A/D変換回路がある(例えば、特許文献4参照)。また、図16は、上記特許文献4に記載の積分回路内蔵型の列並列型A/D変換回路の変形例を示しており、動作原理は図15に示す積分回路内蔵型の列並列型A/D変換回路と同じである。
上記特許文献4に記載の列並列型A/D変換回路は、特許文献2及び特許文献3のように単調増加するランプ電圧Vrc及び単調減少するランプ電圧Vrfを用いずに、参照電圧VDE1(特許文献2及び特許文献3の第1変化量ΔV1に相当)及び参照電圧VDE2(特許文献2及び特許文献3の第2変化量ΔV2に相当)を積分回路4020によって積分することで、被変換アナログ電圧信号Vpixと比較するための各上位ビットに対応する電圧及び各下位ビットに対応する電圧を生成する構成となっている。
上記特許文献4に記載の列並列型A/D変換回路は、第1変換処理の実行前に、スイッチ回路4012をオン状態に、スイッチ回路4014をオフ状態にして、積分回路4020に被変換アナログ電圧信号Vpixを取り込む。第1変換処理では、スイッチ回路4012をオフ状態に、スイッチ回路4013を参照電圧VDE1側に接続した後にスイッチ回路4014をオン状態にすることにより、参照電圧VDE1を積分する(傾きが比較的大きい第1ランプ電圧Vrcに相当)。比較回路4030の出力値が反転すると、このときのカウンタ回路(図示せず)のデジタル値を上位ビットの値として記憶し、ロジック回路4040から出力される制御信号によってスイッチ回路4014がオフ状態となる。これにより、積分回路4020に差分電圧値Vdifが保持される。第2変換処理では、スイッチ回路4013を参照電圧VDE12側に接続した後にスイッチ回路4014をオン状態することにより、参照電圧VDE2を積分する(傾きが第1ランプ電圧Vrcより緩やかな第2ランプ電圧Vrfに相当)。比較回路4030の出力値が反転すると、このときのカウンタ回路(図示せず)のデジタル値を下位ビットの値として記憶し、第2変換処理を終了する。
上述したように、特許文献2乃至特許文献4に記載のサブレンジング方式を採用した列並列型A/D変換回路では、被変換アナログ電圧信号を2段階の変換処理でデジタルデータに変換することから、変換処理にかかるステップ数を大幅に低減でき、変換処理の高速化を図ることができる。
特開2000−286706号公報 特開平11−168383号公報 特開2002−232291号公報 特開2005−348325号公報
しかしながら、特許文献2に記載の列並列型A/D変換回路では、比較的回路面積の大きい比較回路を2つ用いているため、変換回路の回路規模が大きくなる。また、特許文献4に記載の列並列型A/D変換回路では、比較的回路面積の大きい積分回路を用いているため、変換回路の回路規模が大きくなる。特に、固体撮像装置に搭載される列並列型A/D変換回路の場合、近年の固体撮像装置の高解像度化により画素数(固体撮像素子数)が非常に大きくなっており、これに伴って、固体撮像装置に構築される変換回路の数が非常に多くなり、回路規模が相当増大することになるという問題があった。更に、近年、固体撮像装置を構成する固体撮像素子のユニット面積が縮小化し、画素ピッチが小さくなってきており、A/D変換回路についても、小さい画素ピッチに合わせて配置するために、回路規模を小さくすることが求められている。
これに対し、特許文献3に記載の列並列型A/D変換回路では、比較的回路面積の小さい1つのS/H回路と2つの容量素子を用いて構成されているため、変換回路の回路規模の増大を押さえることができる。しかし、特許文献3に記載の列並列型A/D変換回路では、2つの容量素子の特性(容量比)がばらついた場合、容量素子を介さずにコンパレータ3005に入力される第1ランプ電圧Vrcと、容量素子を介してコンパレータ3005に入力される第2ランプ電圧Vrfの間でばらつきが生じる可能性が極めて高いという問題があった。列並列型A/D変換回路が固体撮像装置に搭載されている場合、第1ランプ電圧Vrcと第2ランプ電圧Vrfの間のばらつきは、ノイズとなり、画質を低下させる可能性がある。具体的には、固体撮像素子によって撮像された画像上では、縦線上の列間ばらつきとなる。尚、画質の低下を防止する観点から、容量比のばらつきを押さえるために2つの容量素子の容量を大きくすると、回路規模が増大するという問題がある。
尚、特許文献2に記載の列並列型A/D変換回路では、差分検出回路や減衰回路等の特性がばらついた場合、上位ビットを求める第1変換処理に用いる第1ランプ電圧Vrcと、下位ビットを求める第2変換処理に用いる第2ランプ電圧Vrfとの間でばらつきが生じる場合があるという問題があった。列並列型A/D変換回路が固体撮像装置に搭載されている場合、第1ランプ電圧Vrcと第2ランプ電圧Vrfの間のばらつきは、ノイズとなり、画質を低下させる可能性がある。具体的には、固体撮像素子によって撮像された画像上では、縦線上の列間ばらつきとなる。
また、図15に示す特許文献4に記載の列並列型A/D変換回路では、被変換アナログ電圧信号Vpixが、S/H回路4011及びスイッチ回路4012を介して、積分回路4020の出力ノードに直接入力される構成であることから、積分回路4020を構成する抵抗素子4021、増幅回路4022及び容量素子4023のばらつきの影響を受け、画質を低下させる可能性があるという問題がある。尚、図16に示す特許文献4に記載の列並列型A/D変換回路では、被変換アナログ電圧信号Vpixが、S/H回路5011及びスイッチ回路5013を介して、積分回路5020の入力ノードに入力される構成となっているため、積分回路5020を構成する抵抗素子5021、増幅回路5022及び容量素子5023のばらつきを効果的にキャンセルできる。但し、図16の場合、積分回路5020において被変換アナログ電圧信号Vpixを積分する時間が新たに必要となるため、高速化が十分に図れないという問題があった。
近年、固体撮像装置には、A/D変換回路の変換処理速度の向上と共に、特性バラツキに起因する画質低下の防止(変換精度の低下防止)、及び、回路規模の低減が求められている。しかし、上述したように、特許文献2〜特許文献4に記載の列並列型A/D変換回路は、何れも、変換精度の低下防止と回路規模の低減の両方を実現することは困難となっている。
本発明は上記の問題に鑑みてなされたものであり、その目的は、特性のバラツキに起因する変換精度の低下防止、及び、回路規模の増大防止の両方をより効果的に実現することができるサブレンジング方式のA/D変換回路を提供する点にある。更に、特性のバラツキに起因する変換精度の低下防止、及び、回路規模の増大防止の両方をより効果的に実現することができるサブレンジング方式のA/D変換回路を備えた固体撮像装置を提供する。
上記目的を達成するための本発明に係るA/D変換回路は、第1容量素子と、出力端が前記第1容量素子の入力端に接続された第2容量素子と、出力端が前記第2容量素子の入力端に接続された第3容量素子と、入力端子に前記第1容量素子の出力端が接続され、前記入力端子の電圧値と所定の閾値電圧値を比較する電圧比較回路と、前記第1容量素子と前記第2容量素子の間の第1中間ノードに、外部入力された被変換アナログ電圧信号を入力する第1入力回路と、前記第2容量素子と前記第3容量素子の間の第2中間ノードに、前記被変換アナログ電圧信号を変換した後のデジタルデータの内、最上位ビットを含む連続した一部ビットの値を求める第1変換処理のための第1参照電圧を入力する第2入力回路と、前記第3容量素子の入力端に、前記第1変換処理終了後に前記デジタルデータの未変換ビットの値を求める第2変換処理のための第2参照電圧を入力する第3入力回路と、前記第1変換処理における前記電圧比較回路の出力変化時に、前記第3容量素子に前記第1参照電圧の電圧値を保持するための制御信号を生成する制御回路と、少なくとも前記第1変換処理の実行期間に、電圧値が段階的に単調変化する第1ランプ電圧を生成し、前記第1参照電圧として出力する第1ランプ電圧生成回路と、少なくとも前記第2変換処理の実行期間に、電圧値が段階的または連続的に単調変化する第2ランプ電圧を生成し、前記第2参照電圧として出力する第2ランプ電圧生成回路と、前記第1ランプ電圧の電圧変化及び前記第2ランプ電圧の電圧変化に応じて計数したデジタル値を出力するカウンタ回路と、前記デジタル値を前記電圧比較回路の出力変化時に記憶する記憶回路と、を備えることを第1の特徴とする。
上記特徴の本発明に係るA/D変換回路は、前記第1入力回路が、前記被変換アナログ電圧信号の前記第1中間ノードへの入力可否を設定するための第1スイッチ回路を備え、前記第1変換処理における前記カウンタ回路の計数開始前の所定期間に、前記第1スイッチ回路をオン状態にし、前記第2入力回路が、前記第1参照電圧の前記第2中間ノードへの入力可否を設定するための第2スイッチ回路を備え、前記第1変換処理時に前記第2スイッチ回路をオン状態にし、前記第3入力回路が、前記第2参照電圧の前記第3容量素子への入力可否を設定するための第3スイッチ回路を備え、前記制御信号に基づいて、前記電圧比較回路の出力変化時から前記第2変換処理の開始時までの間、前記第3スイッチ回路をオフ状態にするように構成されていることを第2の特徴とする。
上記第1の特徴の本発明に係るA/D変換回路は、前記第1入力回路が、前記被変換アナログ電圧信号の前記第1中間ノードへの入力可否を設定するための第1スイッチ回路を備え、前記第1変換処理における前記カウンタ回路の計数開始前の所定期間に、前記第1スイッチ回路をオン状態にし、前記第2入力回路が、前記第2容量素子と前記第3容量素子の間の電気的接続を制御するために、前記第2中間ノードを前記第2容量素子側の第1分割ノードと前記第3容量素子側の第2分割ノードに分割する第4スイッチ回路と、前記第1参照電圧の前記第1分割ノードへの入力可否を設定するための第2スイッチ回路と、前記第1参照電圧または前記第1参照電圧に相当する電圧を第3参照電圧とし、前記第3参照電圧の前記第2分割ノードへの入力可否を設定するための第5スイッチ回路と、を備え、前記第1変換処理時に前記第2スイッチ回路をオン状態にし、更に、前記第1変換処理時に第4スイッチ回路をオフ状態に、前記制御信号に基づいて、前記第1変換処理における前記カウンタ回路の計数開始時から前記電圧比較回路の出力変化時までの間、前記第5スイッチ回路をオン状態に制御して、前記第3容量素子に前記電圧比較回路の出力変化時の前記第1参照電圧値の電圧値を保持するように構成され、前記第3入力回路が、前記第2参照電圧を前記第3容量素子の入力端子に直接入力するように構成されていることを第3の特徴とする。
上記何れかの特徴の本発明に係るA/D変換回路は、前記第2ランプ電圧生成回路が、前記第2変換処理時において、前記第1変換処理時における前記第1ランプ電圧の電圧変化方向とは逆の電圧変化方向を有する前記第2ランプ電圧を生成することを第4の特徴とする。
上記何れかの特徴の本発明に係るA/D変換回路は、前記電圧比較回路が、インバータ回路と、前記インバータ回路の入力端子と出力端子を短絡するための第6スイッチ回路を備え、前記第1入力回路による前記被変換アナログ電圧信号の前記第1中間ノードへの入力前に、前記第6スイッチ回路により所定の初期化期間、前記インバータ回路を短絡し初期化することを第5の特徴とする。
上記何れかの特徴の本発明に係るA/D変換回路は、前記制御回路が、前記第1変換処理において、前記第3容量素子に入力される前記第1ランプ電圧の電圧変化時から、前記第1ランプ電圧の電圧変化に応じて変化する前記第3容量素子の入力端及び出力端の電圧値が安定するまでの間に、前記制御信号によって制御される前記スイッチ回路の状態が切り替わらないように、前記制御信号の出力タイミングを制御することを第6の特徴とする。
上記何れかの特徴の本発明に係るA/D変換回路は、前記第1ランプ電圧が、前記デジタルデータのビット数に応じて予め設定された第1分解能に応じた分解数で前記被変換アナログ電圧信号の電圧幅を分割した第1変化量ずつ、段階的に単調変化するように構成されており、前記第2ランプ電圧が、対応するビット数の値と前記第1分解能に対応するビット数の値の和が前記デジタルデータのビット数の値となるように規定された第2分解能に応じた分解数で前記第1変化量を分割した第2変化量ずつ、段階的に単調変化するように構成されていることを第7の特徴とする。
上記第1〜第6の特徴の本発明に係るA/D変換回路は、前記第1ランプ電圧が、前記被変換アナログ電圧信号を変換した後のデジタルデータのビット数に応じて予め設定された第1分解能に応じた分解数で前記被変換アナログ電圧信号の電圧幅を分割した第1変化量ずつ、段階的に単調変化するように構成されており、前記第2ランプ電圧が、連続的に単調変化するように構成されていることを第8の特徴とする。
上記何れかの特徴の本発明に係るA/D変換回路は、前記第2ランプ電圧生成回路が、前記第2変換処理の実行期間に加え、前記第2変換処理直前の一定期間及び前記第2変換処理直後の一定期間の何れか一方または両方を含む期間に、前記第2ランプ電圧を生成し出力するように構成されていることを第9の特徴とする。
上記目的を達成するための本発明に係る固体撮像装置は、光信号を電気信号に変換する固体撮像素子の複数をマトリクス状に配設してなる固体撮像素子群と、前記固体撮像素子群の列毎に各別に対応して設けられた、上記第1〜第9の特徴のA/D変換回路を構成する前記第1容量素子、前記第2容量素子、前記第3容量素子、前記電圧比較回路、前記第1入力回路、前記第2入力回路、前記第3入力回路、前記制御回路、及び、前記記憶回路の複数と、前記固体撮像素子群に共通して設けられた、上記第1〜第9の特徴のA/D変換回路を構成する前記第1ランプ電圧生成回路、前記第2ランプ電圧生成回路、及び、カウンタ回路と、を同一チップ上に備えることを特徴とする。
上記特徴のA/D変換回路によれば、比較的回路面積の小さい3つの容量素子と、インバータ回路等の比較的回路面積の小さい論理回路で構成される電圧比較回路でサブレンジング方式のA/D変換回路を実現できるので、回路面積の増大を押さえることができる。また、上記特徴のA/D変換器は、電圧比較回路の反転レベルの特性ばらつきをキャンセルするオートゼロ技術を用いつつ、第1容量素子、第2容量素子及び第3容量素子を差分電圧の保持に用いていることから、第1容量素子、第2容量素子及び第3容量素子の容量値の絶対値のばらつきがA/D変換結果に直接的に影響しない構成となっている。従って、回路上のばらつきに起因した変換精度の低下を効果的に抑制できる。本発明の変換精度の低下を効果的に防止できるので、本発明が固体撮像装置に適用された場合には、撮像画像に画質上のノイズが発生するのをより効果的に防止できる。本発明の変換精度の低下を効果的に防止できるので、本発明が固体撮像装置に適用された場合には、撮像画像に画質上のノイズが発生するのをより効果的に防止できる。即ち、上記特徴のA/D変換回路によれば、変換精度の低下防止、及び、回路規模の増大防止の両方を効果的に実現できる。
また、上記第4の特徴のA/D変換回路によれば、第1ランプ電圧の電圧変化方向とは逆の電圧変化方向を有する第2ランプ電圧を生成するので、第1変換処理後の第3容量素子を直接第2変換処理で用いることが可能になり、本発明に係るA/D変換回路を比較的簡単な回路構成で実現することが可能になる。
上記第5の特徴のA/D変換回路によれば、電圧比較回路を比較的回路面積の小さいインバータ回路とスイッチ回路で構成するので、簡単な構成で電圧比較回路を実現でき、更に、回路規模の増大を押さえることができる。
上記第6の特徴のA/D変換回路によれば、第1変換処理において、第1ランプ電圧の電圧変化時から第3容量素子の入力端及び出力端の電圧が安定するまでの間に、制御信号によって制御されるスイッチ回路の状態が切り替わらないように構成したので、第1変換処理において、第3容量素子の入力端または出力端の電圧を十分にセトリングさせることができ、第3容量素子において第1ランプ電圧の電圧値が安定した状態で電圧を保持することが可能になる。これにより、回路に起因したばらつきを効果的に低減することが可能になる。また、上記第6の特徴のA/D変換回路が固体撮像装置に適用される場合には、ノイズによる画質の低下を効果的に防止することが可能になる。
上記第8の特徴のA/D変換回路によれば、第2ランプ電圧が、連続的に単調変化するように構成されており、電圧比較回路の出力変化時に、第3容量素子に第1ランプ電圧を保持する第1処理の場合には、一定期間安定して同じ電圧値となる第1ランプ電圧を用い、第2ランプ電圧の保持を行わない第2変換処理の場合には、単調増加性が優れた第2ランプ電圧を用いる。これにより、第2変換処理において、カウンタ回路の周波数を向上させることが可能になり、比較的容易にビット解像度を高精度化することができる。
上記第9の特徴のA/D変換回路によれば、第2ランプ電圧生成回路が、第2変換処理の実行期間に加え、第2変換処理直前の一定期間及び第2変換処理直後の一定期間の何れか一方または両方を含む期間に第2ランプ電圧を生成するように構成したので、例えば、第2変換処理で用いる被変換アナログ電圧信号の差分電圧と、第1変換処理における電圧比較回路の出力変化時の第1ランプ電圧の差が非常に小さい場合、或いは、差分電圧の値が第1変化量の値と略等しい場合に、差分電圧にオフセット電圧が生じ、第2処理において、電圧比較回路が差分電圧を検出できない等の問題をより効果的に回避することが可能になる。
上記特徴の固体撮像装置によれば、上記第1〜第10の特徴のA/D変換回路を用いて構成するので、比較的フレームレートを高速にできるサブレンジング方式のA/D変換回路を用いながら、A/D変換回路に係る回路面積の増大を押さえることができ、且つ、トランジスタ素子や容量素子の特性のばらつきに起因するノイズの発生を効果的に防止でき、ノイズの発生に起因する変換精度の低下を効果的に防止できる。更に、上記特徴の固体撮像装置によれば、A/D変換回路におけるノイズの発生を効果的に防止できるので、例えば、撮像画像に縦線状のノイズが生じる等、撮像画像の画質低下をより効果的に防止できる。
以下、本発明に係るA/D変換回路及び固体撮像装置(以下、適宜「本発明回路」、「本発明装置」と略称する)の実施形態を図面に基づいて説明する。
〈第1実施形態〉
本発明回路及び本発明装置の第1実施形態について、図1〜図3を基に説明する。
先ず、本発明回路及び本発明装置の構成について、図1及び図2を基に説明する。ここで、図1は、本発明回路100Aを搭載した本発明装置1Aの概略構成例を示しており、図2は、本実施形態の本発明回路100Aの概略構成例を示している。
尚、本発明回路100Aは、被変換アナログ電圧信号Vpixを変換した後のデジタルデータの内、最上位ビットを含む連続した一部ビットの値を求める第1変換処理と、第1変換処理終了後にデジタルデータの未変換ビットの値を求める第2変換処理の2段階の変換処理を実行するサブレンジング方式のA/D変換回路である。尚、本実施形態では、簡単のために、被変換アナログ電圧信号Vpixを変換した後のデジタルデータが4ビット(=2)構成である場合を想定しており、第1変換処理では上位2ビットを、第2変換処理では下位2ビットを変換する。上位ビットと下位ビットの分割方法は任意であるが、変換処理時間の短縮の観点から、上位ビットのビット数と下位ビットのビット数の差が最小となるように設定することが望ましい。
本発明装置1Aは、図1に示すように、光信号をアナログ電圧信号Vpixに変換する固体撮像素子PIXij(i=1〜m、j=1〜n)の複数をマトリクス状に配設してなる固体撮像素子群IPDと、固体撮像素子群IPDの列毎に各別に対応して設けられたA/D変換ユニット10の複数と、固体撮像素子群IPDの列毎に各別に対応して設けられた記憶回路50と、固体撮像素子群IPDに共通して設けられた第1変換処理で用いる第1ランプ電圧Vrcを生成する第1ランプ電圧生成回路21と、第2変換処理で用いる第2ランプ電圧Vrfを生成する第2ランプ電圧生成回路22と、A/D変換ユニット10で用いる各種クロック信号や制御信号を生成する制御信号生成回路30と、第1ランプ電圧Vrcの電圧変化及び第2ランプ電圧Vrfの電圧変化に応じて計数したデジタル値を出力するカウンタ回路40と、読み出し処理時に読み出し対象行を選択する垂直デコーダVDと、読み出し処理時に読み出し対象列を選択する水平デコーダHDと、を同一チップ上に備えて構成されている。
具体的には、本発明回路100Aは、図1及び図2に示すように、A/D変換ユニット10、記憶回路50、第1ランプ電圧生成回路21、第2ランプ電圧生成回路22、制御信号生成回路30、及び、カウンタ回路40で構成されている。
A/D変換ユニット10は、図2に示すように、第1容量素子C1と、出力端が第1容量素子C1の入力端に接続された第2容量素子C2と、出力端が第2容量素子C2の入力端に接続された第3容量素子C3と、入力端子に第1容量素子C1の出力端が接続され、入力端子の電圧値と所定の閾値電圧値Vthを比較する電圧比較回路CMPと、第1容量素子C1と第2容量素子C2の間の第1中間ノードN1に、外部入力された被変換アナログ電圧信号Vpixを入力する第1入力回路と、第2容量素子C2と第3容量素子C3の間の第2中間ノードN2に、第1変換処理のための第1参照電圧を入力する第2入力回路と、第3容量素子C3の入力端に、第2変換処理のための第2参照電圧を入力する第3入力回路と、第1変換処理における電圧比較回路CMPの出力変化時に、第3容量素子C3に第1参照電圧の電圧値を保持するための制御信号Vctlを生成する制御回路12を備えて構成されている。
より詳細には、第1入力回路は、被変換アナログ電圧信号Vpixの第1中間ノードN1への入力可否を設定するためのスイッチ回路SW1を備え、第1変換処理におけるカウンタ回路40の計数開始前の所定期間に、スイッチ回路SW1をオン状態にするように構成されている。
第2入力回路は、第1参照電圧の第2中間ノードN2への入力可否を設定するためのスイッチ回路SW2を備え、第1変換処理時にスイッチ回路SW2をオン状態にするように構成されている。
第3入力回路は、第2参照電圧の第3容量素子C3への入力可否を設定するためのスイッチ回路SW3を備え、第3中間ノードN3により、第3容量素子C3の入力端とスイッチ回路SW3が接続されている。第3入力回路は、制御信号Vctlに基づいて、電圧比較回路CMPの出力変化時から第2変換処理の開始時までの間、スイッチ回路SW3をオフ状態にするように構成されている。
電圧比較回路CMPは、インバータ回路と、インバータ回路の入力端子と出力端子を短絡するためのスイッチ回路SW6を備え、第1入力回路による被変換アナログ電圧信号Vpixの第1中間ノードN1への入力前に、スイッチ回路SW6により所定の初期化期間、インバータ回路を短絡し初期化する。
制御回路12は、図2に示すように、否定論理積回路123から出力される電圧比較回路CMPの出力信号Vcpの反転信号と、第1変換処理の実行期間であることを示す外部入力信号C_PHとの否定論理積を演算する否定論理積回路122と、否定論理積回路122からの出力信号を、外部入力されるクロック信号SCLKの立ち上がりでラッチし出力するDフリップフロップ回路(DFF回路)121とを備えて構成されている。尚、本実施形態では、後述する第1ランプ電圧生成回路21において第1ランプ電圧Vrcを生成するのに用いられるクロック信号CLKに対し、クロック信号SCLKは、周波数は同じであるが、容量素子C3の入力端及び出力端の電圧のセトリング時間を考慮して、3/4周期後にずれた位相に設定されている。これにより、第1変換処理において、第1ランプ電圧Vrcが安定している期間にスイッチ回路SW3を切り替えることが可能になる。
第1ランプ電圧生成回路21は、クロック信号CLKに同期して、少なくとも第1変換処理の実行期間に、電圧値が段階的に単調変化する第1ランプ電圧Vrcを生成し、第1参照電圧として出力する。より詳細には、第1ランプ電圧Vrcは、デジタルデータのビット数に応じて予め設定された第1分解能R1に応じた分解数で被変換アナログ電圧信号Vpixの電圧幅を分割した第1変化量ΔV1ずつ、段階的に単調変化するように構成されている。
より具体的には、本実施形態では、第1変換処理で上位2ビットを変換することから、第1分解能R1を2ビットに設定する。この場合、第1分解能R1に応じた分解数は、2R1=2=4となり、被変換アナログ電圧信号Vpixの電圧幅を、4分割した電圧値が第1変化量ΔV1となる(即ち、第1変化量ΔV1×4が被変換アナログ電圧信号Vpixの電圧幅に等しくなる)。
尚、本実施形態では、後述する図3に示すように、被変換アナログ電圧信号Vpixの画像取り込み時の電圧値が被変換アナログ電圧信号Vpixのリセットレベルより低くなる場合を想定しているため、第1ランプ電圧Vrcが段階的に単調増加する場合を想定して説明するが、被変換アナログ電圧信号Vpixや他の回路の構成等によっては段階的に単調減少するように構成しても良い。
第2ランプ電圧生成回路22は、クロック信号CLKに同期して、少なくとも第2変換処理の実行期間に、電圧値が段階的に単調変化する第2ランプ電圧Vrfを生成し、第2参照電圧として出力する。より詳細には、第2ランプ電圧Vrfは、対応するビット数の値R2と第1分解能R1に対応するビット数の値の和がデジタルデータのビット数の値となるように規定された第2分解能R2に応じた分解数で第1変化量ΔV1を分割した第2変化量ΔV2ずつ、段階的に単調変化するように構成されている。
より具体的には、第2分解能R2は、デジタルデータのビット数=第1分解能のビット数R1+第2分解能のビット数R2となるように設定されている。本実施形態では、上述したように、デジタルデータのビット数が4、第1分解能R1が2ビットに設定されているので、第2分解能R2は、2ビットとなる。従って、第2分解能R2に応じた分解数は、2R2=2=4となり、第2変化量ΔV2=第1変化量ΔV1/4となる。
尚、本実施形態では、第2変換処理における第2ランプ電圧Vrfの電圧変化方向は、第1変換処理時における第1ランプ電圧Vrcの電圧変化方向とは逆となるように構成されている。即ち、本実施形態では、第2ランプ電圧Vrfは、後述する図3に示すように、第2変換処理時に段階的に単調減少するように構成されている。尚、第1ランプ電圧Vrcが単調減少するように構成されている場合や回路構成によっては、単調増加するように構成しても良い。
制御信号生成回路30は、A/D変換ユニット10で用いる各種クロック信号や制御信号、具体的には、図3に示すクロック信号CLK、クロック信号SCLK、第1変換処理の実行期間であることを示す信号C_PHを生成する。更に、制御信号生成回路30は、スイッチ回路SW6、SW3、SW2のオン状態及びオフ状態の切り替えを制御するための制御信号を生成する。
記憶回路50は、固体撮像素子群IPDの列毎に、上位ビット用記憶領域51と下位ビット用記憶領域52を備えて構成されており、第1変換処理時におけるA/D変換ユニット10の出力変化時に、カウンタ回路40から出力されるデジタル値を上位ビット用記憶領域51に、第2変換処理時におけるA/D変換ユニット10の出力変化時に、カウンタ回路40から出力されるデジタル値を下位ビット用記憶領域52に、夫々記憶する。
より詳細には、本実施形態では、電圧比較回路CMPの出力レベルがHレベルからLレベルに遷移したときに上位ビット用記憶領域51にカウンタ回路40から出力されるデジタル値Cuを記憶し、電圧比較回路CMPの出力レベルがLレベルからHレベルに遷移したときに下位ビット用記憶領域52にカウンタ回路40から出力されるデジタル値Clを記憶する。このように構成すれば、記憶回路50の上位ビット用記憶領域51及び下位ビット用記憶領域52にカウンタ値を記憶する際に、複雑な制御回路12を必要とせず、回路構成を簡素化できる。
次に、本発明回路100A及び本発明装置1Aの動作について、図3を基に説明する。ここで、図3は、本実施形態の本発明回路100Aにおける各信号波形及び内部状態を示している。
時間t0において撮像処理が開始されると、本発明装置1Aは、先ず、時間t1において、本発明回路100Aを構成する各回路を初期化する初期化処理が開始される。初期化処理では、固体撮像素子PIXijのリセットレベルの電圧Vrstのサンプリングを行う。
具体的には、時間t1では、図3に示すように、固体撮像素子PIXijから出力される被変換アナログ電圧信号Vpixの電圧値はリセットレベルVrst、第1ランプ電圧Vrcの電圧値は初期レベルVrc0、第2ランプ電圧Vrfの電圧値は初期レベルVrf0となっている。また、スイッチ回路SW1、SW2、SW6はオフ状態、スイッチ回路SW3はオン状態となっている。
時間t1において、初期化処理が開始されると、スイッチ回路SW6をオン状態にして電圧比較回路CMPの入力端子と出力端子を短絡することにより、容量素子C1の出力端に、電圧比較回路CMPの反転レベルVthの電圧が入力される。更に、時間t1において、スイッチ回路SW1をオン状態にすることにより、容量素子C1の入力端(第1中間ノードN1)に、垂直デコーダVDによって選択された読み出し対象行の固体撮像素子PIXから出力されるリセットレベルVrstの電圧信号が入力される。
尚、このときの第3中間ノードN3の電圧レベルは、図3に示すように、スイッチ回路SW3がオン状態であることから、スイッチ回路SW3を介して入力される第2ランプ電圧Vrfと同じ電圧レベル、即ち、初期レベルVrf0となる。
続いて、時間t2では、スイッチ回路SW6をオフ状態にして、電圧比較回路CMPの短絡を解除することにより、容量素子C1に、リセットレベルVrstと電圧比較回路CMPの反転レベルVthとの差分電圧が保持され、初期化処理が終了する。その後、固体撮像素子PIXの撮像動作により、撮像対象の光量に応じた画素レベルVsig(本実施形態の固体撮像素子PIXでは、電圧Vsig<電圧Vrst)の被変換アナログ電圧信号Vpixが固体撮像素子PIXから出力される。ここで、被変換アナログ電圧信号Vpixの画素レベルVsigとリセットレベルVrstとの差分電圧Va((Vsig−Vrst)の絶対値)が、第1変換処理の処理対象となる。
時間t3では、画像取り込み処理における固体撮像素子PIXijのシグナルレベルVsigのサンプリング処理を開始する。
具体的には、時間t3において、スイッチ回路SW1をオン状態に維持し、スイッチ回路SW2をオン状態にする。これにより、容量素子C2の入力端(第2中間ノードN2)に、初期レベルVrc0の第1ランプ電圧Vrcが入力され、容量素子C2の出力端(第1中間ノードN1)に、画素レベルVsigの被変換アナログ電圧信号Vpixが入力される。
時間t4において、スイッチ回路SW1をオフ状態にすることにより、容量素子C2に、時間t4における第1ランプ電圧Vrcの電圧値(初期レベルVrc0)と被変換アナログ電圧信号Vpixの電圧値(画素レベルVsig)の差分電圧が保持され、固体撮像素子PIXijのシグナルレベルVsigのサンプリング処理が終了する。
時間t5において、第1変換処理の実行期間を示す外部入力信号C_PHがHレベルになると、上位ビットの値を求める第1変換処理と第2変換処理で用いる電圧を保持するサンプリングホールド処理を開始する。第1変換処理では、第1ランプ電圧生成回路21は、本発明装置1Aのクロック信号CLKに同期して、第1変化量ΔV1ずつ段階的に単調増加する第1ランプ電圧Vrcを生成する。カウンタ回路40は、クロック信号CLKに同期して、ランプ電圧の増加に応じて、0から1ずつ値を加算し、演算結果のデジタル値Cu[(x−1):0](xは上位ビットのビット数、本実施形態では2)を出力する。尚、第1ランプ電圧Vrcの電圧レベルVrck(k=Cu)は、初期レベルVrc0に第1変化量ΔV1×カウンタ値Cuを加算した値(Vrc0+ΔV1×Cu)となる。
尚、このとき、第2中間ノードN2は、図2に示すように、第1ランプ電圧Vrcの初期レベルVrc0となっている。更に、時間t5においてスイッチ回路SW2がオン状態であるため、時間t5以降、第2中間ノードN2には直接的に第1ランプ電圧Vrcが入力されることとなり、図3に示すように、第1ランプ電圧Vrcが上昇する毎に、第2中間ノードN2の電圧レベルも上昇する。尚、図2に示すように、スイッチ回路SW2のオン抵抗により、第2中間ノードN2の電圧波形は、第1ランプ電圧Vrcの電圧波形に対し鈍った波形になることから、第2中間ノードN2の電圧のセトリング時間を考慮して、スイッチ回路SW2のオン抵抗を設計する。
更に、第3中間ノードN3は、図2に示すように、第3容量素子C3及びスイッチ回路SW2を介して第1ランプ電圧Vrcが入力される構成となっており、第3容量素子C3の容量性カップリングにより、図3に示すように、第1ランプ電圧Vrcが上昇する毎に、瞬間的に電圧レベルが上昇する。その後、スイッチ回路SW3のオン抵抗と第3容量素子C3のRC時定数に応じて、第3中間ノードN3の電圧レベルが本来の電圧レベルVrf0に戻る。尚、第3容量素子C3の容量は、熱ノイズであるkT/Cノイズ(k:ボルツマン定数、T:絶対温度、C:容量値)によるランダムばらつきと、本発明回路100Aに要求される分解能(画質精度)、被変換アナログ電圧信号Vpixの電圧幅(フルレンジ、第1変化量ΔV1×4)に基づいて設定する。更に、スイッチ回路SW3のオン抵抗は、第3容量素子C3の容量と、第3中間ノードN3の電圧レベルが瞬間的な上昇から本来の電圧レベルVrf0に戻るまでのセトリング時間を考慮して設計する。
時間t6において、第1ランプ電圧Vrcの電圧レベルVrck(k=Cu)が、第1ランプ電圧Vrcの初期電圧レベルVrc0に差分電圧Vaを加算した値より大きくなると、即ち、容量素子C1の出力端の電圧レベルが電圧比較回路CMPの反転レベルVthより高くなると、電圧比較回路CMPの出力信号Vcpの出力レベルがHレベルからLレベルに反転する。このときのカウンタ値Cuが上位ビットの変換結果となり、上位ビット用記憶領域51に記憶される。尚、図3では、1つのA/D変換ユニット10について示しているが、電圧比較回路CMPの出力信号Vcpのレベルが反転する時間は、固体撮像素子PIX毎に異なる。
ここで、数4及び数5は、本発明回路100Aにおいて、第1変換処理における電圧比較回路CMPの入力電圧Vinについて、電圧比較回路CMPの閾値電圧値Vth、固体撮像素子PIXijの初期レベルVrst、撮像動作時の固体撮像素子PIXijの画素レベルVsig、第1ランプ電圧Vrcの初期レベルVrc0を用いて示している。
[数4]
Vin=Vrc+(Vsig−Vrc0)+(Vth−Vrst)
[数5]
Vin−Vth=Vrc−{Vrc0+(Vrst−Vsig)}
従って、数4、数5及び図3より、第1変換処理において、電圧比較回路CMPの出力変化時における第1ランプ電圧Vrcは、以下の数6で表される。尚、数6に示す第1ランプ電圧Vrcは、定常期間における電圧レベルだけでなく、立ち上がり時の瞬間的な電圧レベルを含んで示している。
[数6]
Vrc=Vrc0+(Vrst−Vsig)=Vrc0+Va
(但し、Vin−Vth=0)
電圧比較回路CMPの出力信号Vcpの出力レベルが反転すると、制御回路12では、制御信号生成回路30から出力されるクロック信号SCLKの立ち上がり(時間t7)で、スイッチ回路SW3をオフ状態にするための制御信号Vctlを出力する。より詳細には、電圧比較回路CMPの出力信号Vcpの出力レベルが反転する前は、電圧比較回路CMPの出力信号VcpがHレベルであり、外部入力信号C_PHがHレベルであることから、否定論理積回路122の出力信号はHレベルとなっている。電圧比較回路CMPの出力信号Vcpの出力レベルが反転すると、電圧比較回路CMPの出力信号VcpがLレベルとなることから、否定論理積回路122の出力信号はLレベルになる。これにより、時間t7において、DFF回路121から、クロック信号SCLKの立ち上がりでスイッチ回路SW3をオン状態からオフ状態にする制御信号Vctlが出力される。尚、クロック信号SCLKは、第1ランプ電圧Vrcの電圧変化時にスイッチ回路SW3が切り替わらないように、位相が、第1ランプ電圧生成回路21のクロック信号CLKとは異なる位相、ここでは、容量素子C3の入力端及び出力端の電圧のセトリング時間を考慮して、3/4周期後にずれた位相に設定されている。これにより、スイッチ回路SW3を、第1ランプ電圧Vrcが安定している期間に切り替えることが可能になる。
ここで、時間t6では、図3に示すように、容量素子C3の入力端には第2ランプ電圧Vrfの初期レベルVrf0が、容量素子C3の出力端には第1ランプ電圧Vrcの電圧レベルVrckが入力されている。時間t7において、スイッチ回路SW3がオフ状態になることにより、容量素子C3に、第1ランプ電圧Vrcの電圧レベルVrckと第2ランプ電圧Vrfの初期レベルVrf0の差分電圧Vrck−Vrf0が保持される。
時間t8において、第1変換処理の実行期間を示す外部入力信号C_PHがLレベルになると、第1ランプ電圧Vrcの入力可否を設定するスイッチ回路SW2をオフ状態にして第1変換処理を終了する。尚、時間t8において外部入力信号C_PHがLレベルに変化したことにより、制御回路12では、否定論理積回路122の出力レベルがLレベルからHレベルに遷移し、次のクロック信号SCLKの立ち上がり(時間t9)で、DFF回路121から、スイッチ回路SW3をオフ状態からオン状態にする制御信号Vctlが出力される。
時間t9において、クロック信号SCLKの立ち上がりに同期してスイッチ回路SW3がオン状態になると、第2変換処理を開始する。第2変換処理では、第2ランプ電圧生成回路22は、本発明装置1Aのクロック信号CLKに同期して、第2変化量ΔV2ずつ段階的に単調減少する第2ランプ電圧Vrfを生成する。カウンタ回路40は、クロック信号CLKに同期して、下位ビットの最大値から1ずつ値を減算し、演算結果のデジタル値Cl[(y−1):0](yは下位ビットのビット数、本実施形態では2)を出力する。ここで、本実施形態では、下位ビットが2ビットに設定されており、0〜3の値をとるため、下位ビットの最大値は3となる。尚、第2ランプ電圧Vrfの電圧レベルVrfh(h=Cl)は、初期レベルVrf0から第2変化量ΔV2×カウンタ値Clを減算した値Vrf0−ΔV2×Clとなる。
尚、時間t9において、スイッチ回路SW3がオン状態に切り替わったとき、第3中間ノードN3は、図2に示すように、スイッチ回路SW3を介して第2ランプ電圧Vrfが入力される構成となる。従って、このときの第3中間ノードN3の電圧レベルは、第2ランプ電圧Vrfの初期レベルVrf0となる。時間t9以降、スイッチ回路SW3がオン状態の間、第3中間ノードN3の電圧レベルは、第2ランプ電圧Vrfの電圧レベルと同じになる。
また、時間t9において、スイッチ回路SW3がオン状態に切り替わったとき、第2中間ノードN2の電圧レベルは、第3中間ノード(Vrf0)との間で電圧差が保持されるので、図3に示すように、電圧レベルVrckに落ち着くことになる。第2変換処理が開始され、スイッチ回路SW3を介して段階的に単調減少する第2ランプ電圧Vrfが入力されると、第2中間ノードN2の電圧レベルは、第2ランプ電圧Vrfと同様に、第2変化量ΔV2ずつ、単調減少する。
時間t10になると、電圧比較回路CMPに入力される信号の電圧レベルが閾値電圧値Vthより小さくなり、電圧比較回路CMPの出力がLレベルからHレベルに遷移する。このときのカウンタ値Cl[(y−1):0](yは下位ビットのビット数、本実施形態では2)が下位ビットの変換結果となり、下位ビット用記憶領域52に記憶される。尚、第1変換処理の場合と同様に、第2変換処理において電圧比較回路CMPの出力信号Vcpのレベルが反転する時間は、固体撮像素子PIX毎に異なる。
ここで、数7及び数8は、本発明回路100Aにおいて、第2変換処理における電圧比較回路CMPの入力電圧Vinについて、電圧比較回路CMPの閾値電圧値Vth、固体撮像素子PIXijの初期レベルVrst、撮像動作時の固体撮像素子PIXijの画素レベルVsig、第2ランプ電圧Vrfの初期レベルVrf0、第1ランプ電圧Vrcの初期レベルVrc0を用いて示している。尚、電圧レベルVrckは、第1変換処理における電圧比較回路CMPの出力変化後の第1ランプ電圧Vrcの定常期間における電圧レベルである。
[数7]
Vin
=Vrf+(Vrck−Vrf0)+(Vsig−Vrc0)+(Vth−Vrst)
[数8]
Vin−Vth
=Vrf−{Vrf0+(Vrst−Vsig)−(Vrck−Vrc0)}
=Vrf−{Vrf0−ΔV}
(ΔV=(Vrst−Vsig)−(Vrck−Vrc0)=Va−ΔVrc)
従って、数7、数8及び図3より、第2変換処理における電圧比較回路CMPの出力変化時、即ち、Vin−Vth=0となるときの第2ランプ電圧Vrfは、以下の数9で表される。尚、電圧レベルVrfは、第2ランプ電圧Vrfの定常期間における電圧レベルだけでなく、立ち上がり時の瞬間的な電圧レベルを含むものとする。
[数9]
Vrf=Vrf0−ΔV
(但し、Vin−Vth)
〈第2実施形態〉
本発明回路及び本発明装置の第2実施形態について、図4〜図6を基に説明する。尚、本実施形態では、上記第1実施形態とは、A/D変換ユニット及び第1ランプ電圧生成回路の構成が異なる場合について説明する。
先ず、本発明回路及び本発明装置の構成について、図4及び図5を基に説明する。ここで、図4は、本実施形態における本発明回路100Bを搭載した本発明装置1Bの概略構成例を示しており、図5は、本実施形態の本発明回路100Bの概略構成例を示している。
本発明装置1Bは、図4に示すように、第1実施形態と同様に、固体撮像素子PIXij(i=1〜m、j=1〜n)の複数をマトリクス状に配設してなる固体撮像素子群IPDと、固体撮像素子群IPDの列毎に各別に対応して設けられたA/D変換ユニット60の複数と、記憶回路50と、固体撮像素子群IPDに共通して設けられた第1ランプ電圧生成回路23と、第2ランプ電圧生成回路22と、制御信号生成回路30と、カウンタ回路40と、垂直デコーダVDと、水平デコーダHDと、を同一チップ上に備えて構成されている。尚、固体撮像素子群IPD、記憶回路50、第2ランプ電圧生成回路22、制御信号生成回路30、カウンタ回路40、垂直デコーダVD及び水平デコーダHDの構成は、上記第1実施形態と同じである。
本実施形態の本発明回路100Bは、上位ビットの値を求める第1変換処理と下位ビットの値を求める第2変換処理の2段階の変換処理を実行するサブレンジング方式のA/D変換回路であり、上記第1実施形態と同様に、図4及び図5に示すように、A/D変換ユニット60、記憶回路50、第1ランプ電圧生成回路23、第2ランプ電圧生成回路22、制御信号生成回路30、及び、カウンタ回路40で構成されている。
本実施形態のA/D変換ユニット60は、図5に示すように、第1容量素子C1と、出力端が第1容量素子C1の入力端に接続された第2容量素子C2と、出力端が第2容量素子C2の入力端に接続された第3容量素子C3と、入力端子に第1容量素子C1の出力端が接続され、入力端子の電圧値と所定の閾値電圧値Vthを比較する電圧比較回路CMPと、第1容量素子C1と第2容量素子C2の間の第1中間ノードN1に、外部入力された被変換アナログ電圧信号Vpixを入力する第1入力回路と、第2容量素子C2と第3容量素子C3の間の第2中間ノードN2に、第1変換処理のための第1参照電圧を入力する第2入力回路と、第3容量素子C3の入力端に、第2変換処理のための第2参照電圧を入力する第3入力回路と、第1変換処理における電圧比較回路CMPの出力変化時に、第3容量素子C3に第1参照電圧の電圧値を保持するための制御信号Vctlを生成する制御回路62を備えて構成されている。尚、本実施形態の第1容量素子C1、第2容量素子C2、第3容量素子C3、電圧比較回路CMP、及び、第1入力回路の構成は、上記第1実施形態と同じである。
本実施形態の第2入力回路は、第2容量素子C2と第3容量素子C3の間の電気的接続を制御するために、第2中間ノードN2を第2容量素子C2側の第1分割ノードND1と第3容量素子C3側の第2分割ノードND2に分割するスイッチ回路SW4と、第1参照電圧の第1分割ノードND1への入力可否を設定するためのスイッチ回路SW2と、第1参照電圧または第1参照電圧に相当する電圧を第3参照電圧とし、第3参照電圧の第2分割ノードND2への入力可否を設定するためのスイッチ回路SW5と、を備えて構成されている。
また、本実施形態の第2入力回路は、第1変換処理時にスイッチ回路SW2をオン状態にし、更に、第1変換処理時にスイッチ回路SW4をオフ状態に、制御信号Vctlに基づいて、第1変換処理におけるカウンタ回路40の計数開始時から電圧比較回路CMPの出力変化時までの間、スイッチ回路SW5をオン状態に制御して、第3容量素子C3に電圧比較回路CMPの出力変化時の第1参照電圧値の電圧値を保持するように構成されている。
尚、上記第1実施形態では、下位ビットを求める第2変換処理の変換対象となる電圧値を第3容量素子C3に保持する際、第3容量素子C3が第1変換処理を実行する回路と電気的に接続された状態となっているのに対し、本実施形態では、第2入力回路が、スイッチ回路SW4とスイッチ回路SW5を備え、下位ビットを求める第2変換処理の変換対象となる電圧値を第3容量素子C3に保持する際、第3容量素子C3が、第1変換処理を実行する回路と分離される構成となっている。従って、本実施形態では、第1変換処理において、第3容量素子C3が他の回路と分離されているので、スイッチ回路SW5をオフ状態にする際に発生するグリッチノイズが他の回路に伝搬することがなく、本発明装置1Bの撮像画像の画質低下を効果的に防止できる。
第3入力回路は、本実施形態では、第2参照電圧を第3容量素子C3の入力端子に直接入力するように構成されている。
本実施形態の制御回路62は、図5に示すように、電圧比較回路CMPの出力信号Vcpと、第1変換処理の実行期間であることを示す外部入力信号C_PHとの否定論理積を演算する否定論理積回路622と、否定論理積回路622からの出力信号を、外部入力されるクロック信号SCLKの立ち上がりでラッチし出力するDフリップフロップ回路(DFF回路)621とを備えて構成されている。尚、上記第1実施形態と同様に、後述する第1ランプ電圧生成回路23において第3参照電圧Vrc’を生成するのに用いられるクロック信号CLKに対し、クロック信号SCLKは、周波数は同じであるが、容量素子C3の入力端及び出力端の電圧のセトリング時間を考慮して、3/4周期後にずれた位相に設定されている。これにより、第1変換処理において、第3ランプ電圧Vrc’が安定している期間にスイッチ回路SW5を切り替えることが可能になる。
第1ランプ電圧生成回路23は、本実施形態では、クロック信号CLKに同期して、第1ランプ電圧Vrcと、第1ランプ電圧Vrcと同じ電圧を第3参照電圧Vrc’として出力する。
次に、本発明回路100B及び本発明装置1Bの動作について、図6を基に説明する。ここで、図6は、本実施形態の本発明回路100Bにおける各信号波形及び内部状態を示している。
本実施形態では、初期状態において、被変換アナログ電圧信号Vpixの電圧値はリセットレベルVrst、第1ランプ電圧Vrcの電圧値は初期レベルVrc0、第2ランプ電圧Vrfの電圧値は初期レベルVrf0となっている。また、スイッチ回路SW1、SW2、SW4、SW5、SW6はオフ状態となっている。
尚、被変換アナログ電圧信号Vpix、クロック信号CLK、クロック信号SCLK、信号C_PH、第1ランプ電圧Vrc、第2ランプ電圧Vrfの信号波形の構成は上記第1実施形態と同じである。更に、スイッチ回路SW1、スイッチ回路SW2、スイッチ回路SW6の動作は上記第1実施形態と同じである。従って、第1変換処理の実行開始時間t5までの本発明回路100Bの動作は、上記第1実施形態と同じであり、時間t5において、容量素子C1に、読み出し対象の固体撮像素子PIXのリセットレベルVrstと電圧比較回路CMPの反転レベルVthとの差分電圧が保持され、容量素子C2に、第1ランプ電圧Vrcの初期レベルVrc0と被変換アナログ電圧信号Vpixの画素レベルVsigの差分電圧が保持された状態となっている。
時間t5において、第1変換処理の実行期間を示す外部入力信号C_PHがHレベルになると、上位ビットの値を求める第1変換処理と第2変換処理で用いる電圧を保持するサンプリングホールド処理を開始する。本実施形態では、上記第1実施形態と同様に、第1変換処理において、第1ランプ電圧生成回路23が、クロック信号CLKに同期して、第1変化量ΔV1ずつ段階的に単調増加する第1ランプ電圧Vrcを生成する。更に、上記第1実施形態と同様に、カウンタ回路40は、クロック信号CLKに同期して、ランプ電圧の増加に応じて、0から1ずつ値を加算し、演算結果のデジタル値Cu[(x−1):0](xは上位ビットのビット数、本実施形態では2)を出力する。
図6に示すように、時間t5において、外部入力信号C_PHがHレベルになると、制御回路62において、否定論理積回路622に入力される電圧比較回路CMPの出力信号Vcpと外部入力信号C_PHが共にHレベルとなり、否定論理積回路622の出力レベルがHレベルからLレベルに遷移する。これにより、次のクロック信号SCLKの立ち上がり時(時間t11)に、制御回路62のDFF回路621から出力される制御信号Vctlの出力レベルが切り替わり、スイッチ回路SW5がオン状態となる。
ここで、本実施形態の第1変換処理では、スイッチ回路SW5がオン状態に、スイッチ回路SW4がオフ状態となることで、第2容量素子C2と第3容量素子C3が電気的に分離された状態で、第2容量素子C2に第1参照電圧Vrcが、第3容量素子C3の出力端に第3参照電圧Vrc’が、入力端に第2参照電圧Vrfが入力される構成となる。これにより、第1変換処理に係る動作と、第2変換処理で用いる電圧を保持するサンプリングホールド処理に係る動作とが互いに影響するのを防止することができる。
尚、時間t11においてスイッチ回路SW5がオン状態に切り替わることにより、図6に示すように、第2分割ノードND2が第3参照電圧Vrc’の初期レベルVrc0’となる。更に、第2分割ノードND2の電圧レベルは、第3参照電圧Vrc’が上昇する毎に上昇する。尚、図6に示すように、スイッチ回路SW5のオン抵抗と容量素子C3の容量値により、第2分割ノードND2の電圧波形は、第1ランプ電圧Vrcの電圧波形に対し鈍った波形になることから、第2分割ノードND2の電圧のセトリング時間を考慮して、スイッチ回路SW5のオン抵抗と容量素子C3の容量値を設計する。
また、時間t5において、第1分割ノードND1は、第1ランプ電圧Vrcがスイッチ回路SW2を介して入力されているため、第1ランプ電圧Vrcの初期レベルVrc0となっている。更に、第1変換処理では、スイッチ回路SW2はオン状態に維持されるため、第1ランプ電圧Vrcが上昇する毎に第1分割ノードND1の電圧レベルも上昇する。尚、図6に示すように、スイッチ回路SW2のオン抵抗により、第1分割ノードND1の電圧波形は、第1ランプ電圧Vrcの電圧波形に対し鈍った波形になることから、第2分割ノードND1の電圧のセトリング時間を考慮して、スイッチ回路SW2のオン抵抗を設計する。第1変換処理では、スイッチ回路SW4により第1分割ノードND1(第2容量素子C2の入力端)と第2分割ノードND2(第3容量素子C3の出力端)が電気的に分離しているので、第1分割ノードND1及び第2分割ノードND2が互いに与える影響を低減できる。
時間t6において、第1ランプ電圧Vrcの電圧レベルVrck、即ち、容量素子C1の出力端の電圧レベルが、電圧比較回路CMPの反転レベルVthより高くなると、電圧比較回路CMPの出力信号Vcpの出力レベルがHレベルからLレベルに反転する。このときのカウンタ値Cuが上位ビットの変換結果となり、上位ビット用記憶領域51に記憶される。尚、図6では、1つのA/D変換ユニット60について示しているが、電圧比較回路CMPの出力信号Vcpのレベルが反転する時間は、固体撮像素子PIX毎に異なる。
電圧比較回路CMPの出力信号Vcpの出力レベルが反転してLレベルになると、制御回路62では、否定論理積回路622の出力レベルがHレベルとなり、DFF回路621から、次のクロック信号SCLKの立ち上がり(時間t7)で、スイッチ回路SW5をオフ状態にするための制御信号Vctlを出力する。ここで、時間t6では、図6に示すように、容量素子C3の入力端には第2ランプ電圧Vrfの初期レベルVrf0が、容量素子C3の出力端には第3参照電圧Vrc’の電圧レベルVrckが入力されている。スイッチ回路SW5がオフ状態になることにより、容量素子C3に、第3参照電圧Vrc’の電圧レベルVrckと第2ランプ電圧Vrfの初期レベルVrf0の差分電圧Vrck−Vrf0が保持される。
時間t8において、第1変換処理の実行期間を示す外部入力信号C_PHがLレベルになると、第1ランプ電圧Vrcの入力可否を設定するスイッチ回路SW2をオフ状態にして第1変換処理を終了する。
続いて、時間t12において、第2変換処理のためにスイッチ回路SW4をオン状態にし、その後、第2変換処理を開始する。第2変換処理では、第2ランプ電圧生成回路22が、クロック信号CLKに同期して、第2変化量ΔV2ずつ段階的に単調減少する第2ランプ電圧Vrfを生成する。カウンタ回路40は、クロック信号CLKに同期して、下位ビットの最大値(ここでは3)から1ずつ値を減算し、演算結果のデジタル値Cl[(y−1):0](yは下位ビットのビット数、本実施形態では2)を出力する。尚、第2ランプ電圧Vrfの電圧レベルVrfh(h=Cl)は、初期レベルVrf0から第2変化量ΔV2×カウンタ値Cuを減算した値Vrf0−ΔV2×Clとなる。
尚、時間t12において、スイッチ回路SW4がオン状態に切り替わったとき、第2中間ノードN2の第1分割ノードND1と第2分割ノードND2が短絡され電気的に接続される。従って、図6に示すように、時間t12以降、第1分割ノードND1と第2分割ノードND2の電圧レベルは同じになる。第2変換処理では、スイッチ回路SW2がオフ状態に、スイッチ回路SW4がオン状態となるため、第1分割ノードND1及び第2分割ノードND2は、第3容量素子C3に入力される第2ランプ電圧Vrfが下降する毎に第1分割ノードND1及び第2分割ノードND2の電圧レベルも下降する。
時間t10になると、電圧比較回路CMPに入力される信号の電圧レベルが閾値電圧値Vthより小さくなり、電圧比較回路CMPの出力がLレベルからHレベルに遷移する。このときのカウンタ値Cl[(y−1):0](yは下位ビットのビット数、本実施形態では2)が下位ビットの変換結果となり、下位ビット用記憶領域52に記憶される。尚、第1変換処理の場合と同様に、第2変換処理において電圧比較回路CMPの出力信号Vcpのレベルが反転する時間は、固体撮像素子PIX毎に異なる。
ところで、本実施形態では、A/D変換ユニット60において、第1変換処理で用いる第1ランプ電圧Vrcと、第2変換処理で用いる電圧を生成するための第3参照電圧Vrc’が同じ電圧レベルであることが望ましい。しかし、仮に、第1ランプ電圧Vrcに対し第3参照電圧Vrc’にオフセット電圧Ve(=Vrc0’−Vrc0)が生じた場合でも、第3参照電圧Vrc’は全てのA/D変換ユニット60に共通して入力されているため、第1変換処理及び第2変換処理において変換結果に誤差が生じる場合があるが、全A/D変換ユニット60に共通して誤差が生じるため、画面全体に現われるオフセット成分となるので視覚的にはノイズとして認識されない。
以下、数10及び数11は、本発明回路100Bにおいて、オフセット電圧Veを考慮した場合の第2変換処理における電圧比較回路CMPの入力電圧Vinについて示している。尚、電圧レベルVrck’は、第1変換処理における電圧比較回路CMPの出力変化後の第3参照電圧Vrc’の定常期間の電圧レベルである。また、電圧レベルVrc0’は、第3参照電圧Vrc’の初期電圧レベルである。
[数10]
Vin
=Vrf+(Vrck’−Vrf0)+(Vsig−Vrc0)+(Vth−Vrst)
[数11]
Vin−Vth
=Vrf−{Vrf0+(Vrst−Vsig)−(Vrck’−Vrc0)}
=Vrf−{Vrf0−((Vrck−Vrc0)−(Vrst−Vsig))−(Vrc0’−Vrc0)}
従って、数11及び図6より、本発明回路100Bの第2変換処理において、オフセット電圧Veが生じた場合における電圧比較回路CMPの出力変化時の第2ランプ電圧Vrfは、以下の数12で表される。尚、ΔV=(Vrck−Vrc0)−(Vrst−Vsig)=ΔVrc−Va、オフセット電圧Ve=Vrc0’−Vrc0である。
[数12]
Vrf
=Vrf0−{(Vrck−Vrc0)−(Vrst−Vsig)}−(Vrc0’−Vrc0)
=Vrf0−ΔV−Ve
尚、本実施形態では、第1ランプ電圧生成回路23が、第1参照電圧としての第1ランプ電圧Vrcと、第3参照電圧としての第1ランプ電圧Vrcを出力するように構成したが、これに限るものではない。例えば、第1参照電圧及び第3参照電圧として、同じ第1ランプ電圧Vrcを用いる場合には、上記第1実施形態と同じ構成の第1ランプ電圧生成回路23を用い、A/D変換ユニット60内において、第1参照電圧Vrcを分岐させてスイッチ回路SW2及びスイッチ回路SW5に入力するように構成しても良い。尚、第1ランプ電圧生成回路23を、第1参照電圧としての第1ランプ電圧Vrcと第3参照電圧としての第1ランプ電圧Vrcを夫々電気的に分離されたノードに出力する構成にすることにより、第1ランプ電圧Vrcと第3参照電圧Vrc’のノイズが干渉し合うのを防止できる。
〈第3実施形態〉
本発明回路及び本発明装置の第3実施形態について、図7(b)を基に説明する。尚、本実施形態では、上記第1実施形態及び第2実施形態とは、第2ランプ電圧Vrfの構成が異なる場合について説明する。ここで、図7(b)は本実施形態の第2ランプ電圧Vrfの構成を、図7(a)は、本実施形態の第2ランプ電圧Vrfの比較対象として、上記第1実施形態及び第2実施形態における第2ランプ電圧Vrfを示している。
先ず、本発明回路100A及び本発明装置1の構成について、図面を基に簡単に説明する。本発明装置1は、図1に示すように、第1実施形態と同様に、固体撮像素子群IPDと、固体撮像素子群IPDの列毎に各別に対応して設けられたA/D変換ユニット10の複数と、記憶回路50と、固体撮像素子群IPDに共通して設けられた第1ランプ電圧生成回路21と、第2ランプ電圧生成回路22と、制御信号生成回路30と、カウンタ回路40と、垂直デコーダVDと、水平デコーダHDと、を同一チップ上に備えて構成されている。尚、本実施形態では、第2ランプ電圧生成回路22を除く本発明装置1の各構成、具体的には、固体撮像素子群IPD、A/D変換ユニット10、記憶回路50、第1ランプ電圧生成回路21、制御信号生成回路30、カウンタ回路40、垂直デコーダVD及び水平デコーダHDの構成は、上記第1実施形態と同じである。尚、本実施形態では、第2ランプ電圧生成回路22を除く本発明装置1の各構成が第1実施形態と同じである場合を想定して説明するが、第2実施形態と同じ構成としても良い。
本実施形態の本発明回路100Aは、上記第1及び第2実施形態と同様に、上位ビットの値を求める第1変換処理と下位ビットの値を求める第2変換処理の2段階の変換処理を実行するサブレンジング方式のA/D変換回路であり、上記第1実施形態と同様に、図4及び図5に示すように、A/D変換ユニット10、記憶回路50、第1ランプ電圧生成回路21、第2ランプ電圧生成回路22、制御信号生成回路30、及び、カウンタ回路40で構成されている。
本実施形態の第2ランプ電圧生成回路22では、第2ランプ電圧Vrfの連続して段階的に電圧値が単調変化する期間、図7(b)では、時間t21〜時間t24の間の期間における第2変化量ΔV2の合計(=ΔV2×8)が、第1変化量ΔV1(=ΔV2×4)より大きくなるように設定されており、第2変換処理の実行期間(図7(b)の時間t22〜時間t23の間の期間)に加え、第2変換処理直前の一定期間(図7(b)の時間t21〜時間t22の間の期間)及び第2変換処理直後の一定期間(図7(b)の時間t23〜時間t24の間の期間)を含む期間に、第2ランプ電圧Vrfを生成し出力するように構成されている。
より具体的には、本実施形態の第2ランプ電圧生成回路22は、図7(b)に示すように、初期レベルVrf0より第2変化量ΔV2の2つ分高い電圧レベルから、初期レベルVrf0から第1変化量ΔV1下降した電圧レベルから更に、第2変化量ΔV2の2つ分低い電圧レベルまで、第2変化量ΔV2ずつ単調減少する第2ランプ電圧Vrfを生成する。尚、第2ランプ電圧Vrfの連続して段階的に単調変化する期間(時間t21〜時間t24)における電圧幅は、本実施形態では、ΔV2×2+ΔV1+ΔV2×2=ΔV2×8としたが、任意に設定可能である。
第2ランプ電圧Vrfをこのように構成することにより、第2変換処理において、被変換アナログ電圧信号VpixのリセットレベルVrstと画素レベルVsigの差分電圧Vaと、第1変換処理における電圧比較回路CMPの出力変化時に保持される電圧レベルVrckとの差分電圧ΔVの値が非常に小さい場合や負の電圧(Va>Vrck)になる場合、或いは、第2ランプ電圧の第2変換処理の実行期間(時間t22〜時間t23)における変化量(フルスケール)よりも差分電圧ΔVが大きい場合に、通常では、第2変換処理の検出結果が得られる時間t22から時間t23の間に電圧比較回路CMPの入力レベルが閾値電圧値Vthに到達せずに出力レベルが反転しない場合でも、時間t21から時間t24の間では電圧比較回路CMPの入力レベルが閾値電圧値Vthに到達できるので、変換精度の低下をより効果的に防止できる。
〈第4実施形態〉
本発明回路及び本発明装置の第4実施形態について、図7(c)を基に説明する。尚、本実施形態では、上記第1〜第3実施形態とは、第2ランプ電圧Vrfの構成が異なる場合について説明する。ここで、図7(c)は本実施形態の第2ランプ電圧Vrfの構成を、図7(a)は、本実施形態の第2ランプ電圧Vrfの比較対象として、上記第1実施形態及び第2実施形態における第2ランプ電圧Vrfを示している。
先ず、本発明回路100A及び本発明装置1の構成について、図面を基に簡単に説明する。本発明装置1は、図1に示すように、第1実施形態と同様に、固体撮像素子群IPDと、固体撮像素子群IPDの列毎に各別に対応して設けられたA/D変換ユニット10の複数と、記憶回路50と、固体撮像素子群IPDに共通して設けられた第1ランプ電圧生成回路21と、第2ランプ電圧生成回路22と、制御信号生成回路30と、カウンタ回路40と、垂直デコーダVDと、水平デコーダHDと、を同一チップ上に備えて構成されている。尚、本実施形態では、第2ランプ電圧生成回路22を除く本発明装置1の各構成、具体的には、固体撮像素子群IPD、A/D変換ユニット10、記憶回路50、第1ランプ電圧生成回路21、制御信号生成回路30、カウンタ回路40、垂直デコーダVD及び水平デコーダHDの構成は、上記第1実施形態と同じである。尚、本実施形態では、第2ランプ電圧生成回路22を除く本発明装置1の各構成が第1実施形態と同じである場合を想定して説明するが、第2実施形態と同じ構成としても良い。
本実施形態の本発明回路100Aは、上記第1及び第2実施形態と同様に、上位ビットの値を求める第1変換処理と下位ビットの値を求める第2変換処理の2段階の変換処理を実行するサブレンジング方式のA/D変換回路であり、上記第1実施形態と同様に、図4及び図5に示すように、A/D変換ユニット10、記憶回路50、第1ランプ電圧生成回路21、第2ランプ電圧生成回路22、制御信号生成回路30、及び、カウンタ回路40で構成されている。
本実施形態の第2ランプ電圧生成回路22は、連続的に単調変化する第2ランプ電圧Vrfを生成するように構成されている。また、本実施形態では、第2変換処理の実行期間(図7(c)の時間t22〜時間t23の間の期間)に加え、第2変換処理直前の一定期間(図7(c)の時間t21〜時間t22の間の期間)及び第2変換処理直後の一定期間(図7(c)の時間t23〜時間t24の間の期間)を含む期間に、第2ランプ電圧Vrfを生成し出力するように構成されている。
より具体的には、本実施形態の第2ランプ電圧生成回路22は、図7(c)に示すように、初期レベルVrf0より第2変化量ΔV2の2つ分高い電圧レベルから、初期レベルVrf0から第1変化量ΔV1下降した電圧レベルから更に、第2変化量ΔV2の2つ分低い電圧レベルまで、連続的に単調変化する第2ランプ電圧Vrfを生成する。尚、本実施形態では、図7(c)に示すように、第2変換処理直前の一定期間及び第2変換処理後の一定期間の夫々に、ΔV2×2の第2ランプ電圧を生成するように構成しているが、第2ランプ電圧の変化量は任意に設定可能である。同様に、第2ランプ電圧Vrfの連続して単調変化する期間(時間t21〜時間t24)における電圧幅は、本実施形態では、ΔV2×2+ΔV1+ΔV2×2=ΔV2×8としたが、任意に設定可能である。
第2ランプ電圧Vrfを連続的に単調変化するように構成することにより、第2ランプ電圧Vrfの線形性をより良好に担保できる。第2ランプ電圧Vrfの線形性が優れていることで、第2変換処理において、分解能を非常に高く設定する必要がある場合に、変換精度を良好に維持できる。尚、第1ランプ電圧Vrcについては、上位ビットの値を求める第1変換処理だけでなく、第2変換処理で用いる電圧を保持するサンプリングホールド処理の両方で用いられるため、段階的に単調変化する構成であることが望ましい。
〈別実施形態〉
〈1〉上記第1〜第4実施形態では、第1変換処理と第2変換処理とで同じ周波数のクロック信号CLK及びクロック信号SCLを用いる場合について説明したが、第2変換処理において、第1変換処理に用いたクロック信号より高速なクロック信号を用いるように構成しても良い。
尚、上述したように、第1ランプ電圧(第3参照電圧)は、上位ビットの値を求める第1変換処理と、第2変換処理で用いる電圧を保持するサンプリングホールド処理で用いるように構成されており、サンプリングホールド処理で用いられる容量素子C3の入力端及び出力端の電圧のセトリング時間等を考慮して、第1ランプ電圧を生成するクロック信号の周波数が決定される。これに対し、第2ランプ電圧は、下位ビットの値を求める第2変換処理に用いられるものであり、第1ランプ電圧のようなサンプリングホールド処理には利用されない。このため、第2ランプ電圧を生成するクロック信号については、サンプリングホールド処理における容量素子C3の入力端及び出力端の電圧のセトリング時間等を考慮する必要がなく、第1ランプ電圧に比べ、周波数を速く設定することが可能になる。第2ランプ電圧を生成するクロック信号の周波数を、第1ランプ電圧を生成するクロック信号の周波数より速く設定すれば、第2変換処理の実行期間を短くすることができ、これによって、本発明回路及び本発明装置のA/D変換処理全体で処理時間を短縮できる。
〈2〉上記第1〜第4実施形態では、記憶回路50を、電圧比較回路CMPの出力レベルがHレベルからLレベルに遷移したときに上位ビット用記憶領域51にカウンタ回路40から出力されるデジタル値Cuを記憶し、電圧比較回路CMPの出力レベルがLレベルからHレベルに遷移したときに下位ビット用記憶領域52にカウンタ回路40から出力されるデジタル値Clを記憶するように構成したが、これに限るものではない。
電圧比較回路CMPの出力レベルがLレベルからHレベルに遷移したときに上位ビット用記憶領域51にカウンタ回路40から出力されるデジタル値Cuを記憶し、電圧比較回路CMPの出力レベルがHレベルからLレベルに遷移したときに下位ビット用記憶領域52にカウンタ回路40から出力されるデジタル値Clを記憶するように構成しても良い。
また、記憶回路50は、例えば、1行分のデジタルデータを記憶可能な記憶領域を備える1つの記憶回路を設け、当該記憶回路の記憶領域を分割し、列毎の上位ビット用記憶領域51及び下位ビット用記憶領域52に夫々割り当てて用いるように構成しても良い。また、複数の記憶回路の記憶領域を組み合わせて、列毎の上位ビット用記憶領域51を構成するように構成しても良いし、同様に、複数の記憶回路の記憶領域を組み合わせて、列毎の下位ビット用記憶領域52に割り当てて用いるように構成しても良い。
本発明に係る固体撮像装置の第1実施形態における概略構成例を示す概略部分ブロック図 本発明に係るA/D変換回路の第1実施形態における概略構成例を示す概略回路図 本発明に係るA/D変換回路の第1実施形態における各端子の波形を示す概略波形図 本発明に係る固体撮像装置の第1実施形態における概略構成例を示す概略部分ブロック図 本発明に係るA/D変換回路の第2実施形態における概略構成例を示す概略回路図 本発明に係るA/D変換回路の第2実施形態における各端子の波形を示す概略波形図 本発明に係るA/D変換回路の別実施形態における第2ランプ電圧の概略電圧波形例を示す概略波形図 一般的なサブレンジング方式の列並列型A/D変換回路の各電圧の関係を示す説明図 一般的なサブレンジング方式の列並列型A/D変換回路で用いるランプ電圧の概略構成例を示す波形図 従来技術に係る固体撮像装置の概略構成例を示す概略部分回路図 従来技術に係る列並列型A/D変換回路における信号波形及び内部状態を示す波形図 従来技術に係る列並列型A/D変換回路で用いるランプ電圧の概略構成例を示す波形図 従来技術に係る差分検出回路内蔵型のサブレンジング方式の列並列型A/D変換回路の部分概略構成例を示す概略部分回路図 従来技術に係る容量比使用型のサブレンジング方式の列並列型A/D変換回路の部分概略構成例を示す概略部分回路図 従来技術に係る積分回路内蔵型のサブレンジング方式の列並列型A/D変換回路の部分概略構成例を示す概略部分回路図 従来技術に係る積分回路内蔵型のサブレンジング方式の列並列型A/D変換回路の部分概略構成例を示す概略部分回路図
符号の説明
1 本発明に係る固体撮像装置
1A 本発明に係る固体撮像装置
1B 本発明に係る固体撮像装置
10 A/D変換ユニット
12 制御回路
20 ランプ電圧生成回路
21 第1ランプ電圧生成回路
22 第2ランプ電圧生成回路
23 第1ランプ電圧生成回路
30 制御信号生成回路
40 カウンタ回路
50 記憶回路
51 上位ビット用記憶領域
52 下位ビット用記憶領域
60 A/D変換ユニット
62 制御回路
100 本発明に係るA/D変換回路
200 本発明に係るA/D変換回路
121 Dフリップフロップ回路
122 否定論理積回路
123 インバータ回路
621 Dフリップフロップ回路
622 否定論理積回路
IPD 固体撮像素子群
PIX 固体撮像素子
HD 水平デコーダ
VD 垂直デコーダ
C1 第1容量素子
C2 第2容量素子
C3 第3容量素子
N1 第1中間ノード
N2 第2中間ノード
N3 第3中間ノード
ND1 第1分割ノード
ND2 第2分割ノード
CMP 電圧比較回路
SW1 第1スイッチ回路
SW2 第2スイッチ回路
SW3 第3スイッチ回路
SW4 第4スイッチ回路
SW5 第5スイッチ回路
SW6 第6スイッチ回路

Claims (10)

  1. 第1容量素子と、
    出力端が前記第1容量素子の入力端に接続された第2容量素子と、
    出力端が前記第2容量素子の入力端に接続された第3容量素子と、
    入力端子に前記第1容量素子の出力端が接続され、前記入力端子の電圧値と所定の閾値電圧値を比較する電圧比較回路と、
    前記第1容量素子と前記第2容量素子の間の第1中間ノードに、外部入力された被変換アナログ電圧信号を入力する第1入力回路と、
    前記第2容量素子と前記第3容量素子の間の第2中間ノードに、前記被変換アナログ電圧信号を変換した後のデジタルデータの内、最上位ビットを含む連続した一部ビットの値を求める第1変換処理のための第1参照電圧を入力する第2入力回路と、
    前記第3容量素子の入力端に、前記第1変換処理終了後に前記デジタルデータの未変換ビットの値を求める第2変換処理のための第2参照電圧を入力する第3入力回路と、
    前記第1変換処理における前記電圧比較回路の出力変化時に、前記第3容量素子に前記第1参照電圧の電圧値を保持するための制御信号を生成する制御回路と、
    少なくとも前記第1変換処理の実行期間に、電圧値が段階的に単調変化する第1ランプ電圧を生成し、前記第1参照電圧として出力する第1ランプ電圧生成回路と、
    少なくとも前記第2変換処理の実行期間に、電圧値が段階的または連続的に単調変化する第2ランプ電圧を生成し、前記第2参照電圧として出力する第2ランプ電圧生成回路と、
    前記第1ランプ電圧の電圧変化及び前記第2ランプ電圧の電圧変化に応じて計数したデジタル値を出力するカウンタ回路と、
    前記デジタル値を前記電圧比較回路の出力変化時に記憶する記憶回路と、を備えることを特徴とするA/D変換回路。
  2. 前記第1入力回路が、前記被変換アナログ電圧信号の前記第1中間ノードへの入力可否を設定するための第1スイッチ回路を備え、前記第1変換処理における前記カウンタ回路の計数開始前の所定期間に、前記第1スイッチ回路をオン状態にし、
    前記第2入力回路が、前記第1参照電圧の前記第2中間ノードへの入力可否を設定するための第2スイッチ回路を備え、前記第1変換処理時に前記第2スイッチ回路をオン状態にし、
    前記第3入力回路が、前記第2参照電圧の前記第3容量素子への入力可否を設定するための第3スイッチ回路を備え、前記制御信号に基づいて、前記電圧比較回路の出力変化時から前記第2変換処理の開始時までの間、前記第3スイッチ回路をオフ状態にするように構成されていることを特徴とする請求項1に記載のA/D変換回路。
  3. 前記第1入力回路が、前記被変換アナログ電圧信号の前記第1中間ノードへの入力可否を設定するための第1スイッチ回路を備え、前記第1変換処理における前記カウンタ回路の計数開始前の所定期間に、前記第1スイッチ回路をオン状態にし、
    前記第2入力回路が、前記第2容量素子と前記第3容量素子の間の電気的接続を制御するために、前記第2中間ノードを前記第2容量素子側の第1分割ノードと前記第3容量素子側の第2分割ノードに分割する第4スイッチ回路と、前記第1参照電圧の前記第1分割ノードへの入力可否を設定するための第2スイッチ回路と、前記第1参照電圧または前記第1参照電圧に相当する電圧を第3参照電圧とし、前記第3参照電圧の前記第2分割ノードへの入力可否を設定するための第5スイッチ回路と、を備え、
    前記第1変換処理時に前記第2スイッチ回路をオン状態にし、更に、前記第1変換処理時に第4スイッチ回路をオフ状態に、前記制御信号に基づいて、前記第1変換処理における前記カウンタ回路の計数開始時から前記電圧比較回路の出力変化時までの間、前記第5スイッチ回路をオン状態に制御して、前記第3容量素子に前記電圧比較回路の出力変化時の前記第1参照電圧値の電圧値を保持するように構成され、
    前記第3入力回路が、前記第2参照電圧を前記第3容量素子の入力端子に直接入力するように構成されていることを特徴とする請求項1に記載のA/D変換回路。
  4. 前記第2ランプ電圧生成回路が、前記第2変換処理時において、前記第1変換処理時における前記第1ランプ電圧の電圧変化方向とは逆の電圧変化方向を有する前記第2ランプ電圧を生成することを特徴とする請求項1〜3の何れか1項に記載のA/D変換回路。
  5. 前記電圧比較回路が、インバータ回路と、前記インバータ回路の入力端子と出力端子を短絡するための第6スイッチ回路を備え、前記第1入力回路による前記被変換アナログ電圧信号の前記第1中間ノードへの入力前に、前記第6スイッチ回路により所定の初期化期間、前記インバータ回路を短絡し初期化することを特徴とする請求項1〜4の何れか1項に記載のA/D変換回路。
  6. 前記制御回路が、前記第1変換処理において、前記第3容量素子に入力される前記第1ランプ電圧の電圧変化時から、前記第1ランプ電圧の電圧変化に応じて変化する前記第3容量素子の入力端及び出力端の電圧値が安定するまでの間に、前記制御信号によって制御される前記スイッチ回路の状態が切り替わらないように、前記制御信号の出力タイミングを制御することを特徴とする請求項1〜5の何れか1項に記載のA/D変換回路。
  7. 前記第1ランプ電圧が、前記デジタルデータのビット数に応じて予め設定された第1分解能に応じた分解数で前記被変換アナログ電圧信号の電圧幅を分割した第1変化量ずつ、段階的に単調変化するように構成されており、
    前記第2ランプ電圧が、対応するビット数の値と前記第1分解能に対応するビット数の値の和が前記デジタルデータのビット数の値となるように規定された第2分解能に応じた分解数で前記第1変化量を分割した第2変化量ずつ、段階的に単調変化するように構成されていることを特徴とする請求項1〜6の何れか1項に記載のA/D変換回路。
  8. 前記第1ランプ電圧が、前記デジタルデータのビット数に応じて予め設定された第1分解能に応じた分解数で前記被変換アナログ電圧信号の電圧幅を分割した第1変化量ずつ、段階的に単調変化するように構成されており、
    前記第2ランプ電圧が、連続的に単調変化するように構成されていることを特徴とする請求項1〜6の何れか1項に記載のA/D変換回路。
  9. 前記第2ランプ電圧生成回路が、前記第2変換処理の実行期間に加え、前記第2変換処理直前の一定期間及び前記第2変換処理直後の一定期間の何れか一方または両方を含む期間に、前記第2ランプ電圧を生成し出力するように構成されていることを特徴とする請求項1〜8の何れか1項に記載のA/D変換回路。
  10. 光信号を電気信号に変換する固体撮像素子の複数をマトリクス状に配設してなる固体撮像素子群と、
    前記固体撮像素子群の列毎に各別に対応して設けられた、請求項1〜9の何れか1項に記載のA/D変換回路を構成する前記第1容量素子、前記第2容量素子、前記第3容量素子、前記電圧比較回路、前記第1入力回路、前記第2入力回路、前記第3入力回路、前記制御回路、及び、前記記憶回路の複数と、
    前記固体撮像素子群に共通して設けられた、請求項1〜9の何れか1項に記載のA/D変換回路を構成する前記第1ランプ電圧生成回路、前記第2ランプ電圧生成回路、及び、カウンタ回路と、を同一チップ上に備えることを特徴とする固体撮像装置。
JP2008027689A 2008-02-07 2008-02-07 A/d変換回路及び固体撮像装置 Active JP4774064B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008027689A JP4774064B2 (ja) 2008-02-07 2008-02-07 A/d変換回路及び固体撮像装置
KR1020107013358A KR101161277B1 (ko) 2008-02-07 2009-01-30 A/d 변환 회로 및 고체 촬상 장치
US12/865,604 US8354630B2 (en) 2008-02-07 2009-01-30 A/D converter circuit and solid-state imaging device having series-connected capacitative elements with plural input circuits
CN200980104454.0A CN101939917B (zh) 2008-02-07 2009-01-30 A/d转换电路及固体摄像装置
PCT/JP2009/051534 WO2009099003A1 (ja) 2008-02-07 2009-01-30 A/d変換回路及び固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027689A JP4774064B2 (ja) 2008-02-07 2008-02-07 A/d変換回路及び固体撮像装置

Publications (2)

Publication Number Publication Date
JP2009188815A JP2009188815A (ja) 2009-08-20
JP4774064B2 true JP4774064B2 (ja) 2011-09-14

Family

ID=40952078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027689A Active JP4774064B2 (ja) 2008-02-07 2008-02-07 A/d変換回路及び固体撮像装置

Country Status (5)

Country Link
US (1) US8354630B2 (ja)
JP (1) JP4774064B2 (ja)
KR (1) KR101161277B1 (ja)
CN (1) CN101939917B (ja)
WO (1) WO2009099003A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148831B2 (en) * 2003-10-27 2006-12-12 Micron Technology, Inc. Variable quantization ADC for image sensors
JP5332041B2 (ja) * 2009-03-13 2013-11-06 ルネサスエレクトロニクス株式会社 固体撮像装置
JP2010268080A (ja) * 2009-05-12 2010-11-25 Canon Inc 固体撮像装置
CN102334293B (zh) * 2009-09-11 2014-12-10 松下电器产业株式会社 模拟/数字变换器、图像传感器系统、照相机装置
JP2011114785A (ja) * 2009-11-30 2011-06-09 Renesas Electronics Corp 固体撮像装置
JP5741978B2 (ja) * 2010-09-30 2015-07-01 アナロジック コーポレイション 放射線撮影システム用のデータ取得器、取得する方法、ランプ信号生成器を補正する方法、補正を実行するためのコンピュータ読み取り可能な媒体
JP5808162B2 (ja) 2011-06-23 2015-11-10 キヤノン株式会社 撮像素子、撮像装置及び撮像素子の駆動方法
JP5734121B2 (ja) * 2011-07-15 2015-06-10 ルネサスエレクトロニクス株式会社 固体撮像装置
WO2013023141A2 (en) * 2011-08-11 2013-02-14 California Institute Of Technology Mixed linear/square-root encoded single slope ramp provides a fast, low noise analog to digital converter with very high linearity for focal plane arrays
JP5915105B2 (ja) * 2011-11-14 2016-05-11 株式会社ソシオネクスト データ転送システム、受信回路、及び受信方法
TWI530183B (zh) * 2011-12-08 2016-04-11 Sony Corp An imaging element, a control method, and an imaging device
JP5500660B2 (ja) * 2012-01-23 2014-05-21 国立大学法人東北大学 固体撮像装置
JP2013179479A (ja) * 2012-02-28 2013-09-09 Nikon Corp 固体撮像装置及びこれを用いた電子カメラ
JP6151530B2 (ja) * 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 イメージセンサ、カメラ、及び監視システム
US8830361B2 (en) 2012-04-12 2014-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method of reducing column fixed pattern noise
JP6097574B2 (ja) * 2013-01-25 2017-03-15 キヤノン株式会社 撮像装置、その駆動方法、及び撮像システム
JP6188451B2 (ja) * 2013-06-27 2017-08-30 オリンパス株式会社 アナログデジタル変換器および固体撮像装置
KR102135684B1 (ko) 2013-07-24 2020-07-20 삼성전자주식회사 카운터 회로, 이를 포함하는 아날로그-디지털 컨버터, 이미지 센서 및 이를 이용하는 상관 이중 샘플링 방법
TWI631854B (zh) * 2013-08-05 2018-08-01 日商新力股份有限公司 Conversion device, imaging device, electronic device, conversion method
JP2015037206A (ja) * 2013-08-12 2015-02-23 キヤノン株式会社 撮像装置
JP2015100042A (ja) * 2013-11-19 2015-05-28 株式会社東芝 ノイズ除去装置、および撮像装置
JP6413235B2 (ja) * 2013-12-06 2018-10-31 株式会社ニコン 撮像素子および撮像装置
JP6362328B2 (ja) * 2013-12-26 2018-07-25 キヤノン株式会社 固体撮像装置及びその駆動方法
JP6545541B2 (ja) * 2014-06-25 2019-07-17 株式会社半導体エネルギー研究所 撮像装置、監視装置、及び電子機器
US9247162B2 (en) * 2014-06-27 2016-01-26 Omnivision Technologies, Inc. System and method for digital correlated double sampling in an image sensor
KR102170619B1 (ko) 2014-07-03 2020-10-28 삼성전자주식회사 이미지 센서와 이를 포함하는 장치
JP2016144151A (ja) * 2015-02-04 2016-08-08 キヤノン株式会社 固体撮像装置の駆動方法、固体撮像装置およびカメラ
KR102332942B1 (ko) * 2015-11-27 2021-12-01 에스케이하이닉스 주식회사 전력 소모 감소를 위한 카운팅 장치 및 그를 이용한 아날로그-디지털 변환 장치와 씨모스 이미지 센서
US9722824B2 (en) * 2015-12-30 2017-08-01 Texas Instruments Incorporated Embedded clock in communication system
KR102446723B1 (ko) * 2016-01-29 2022-09-27 에스케이하이닉스 주식회사 이미지 센싱 장치 및 그의 구동 방법
CN108702156B (zh) * 2016-03-25 2021-12-17 富士胶片株式会社 模拟/数字转换装置及其控制方法
KR102503213B1 (ko) 2016-04-05 2023-02-23 삼성전자 주식회사 세틀링 타임을 감소시키는 cds 회로, 이를 포함하는 이미지 센서
US9774811B1 (en) * 2016-09-27 2017-09-26 Omnivision Technologies, Inc. Ramp signal generator for double ramp analog to digital converter
CN109150185A (zh) * 2017-06-19 2019-01-04 比亚迪股份有限公司 模数转换电路和列并行模数转换器
JP6871815B2 (ja) * 2017-06-30 2021-05-12 キヤノン株式会社 撮像装置及びその駆動方法
KR102651380B1 (ko) * 2018-03-08 2024-03-27 에스케이하이닉스 주식회사 이미지 센싱 장치 및 그 이미지 센싱 장치의 구동 방법
KR102570526B1 (ko) * 2018-04-06 2023-08-28 에스케이하이닉스 주식회사 이미지 센싱 장치
KR20210042087A (ko) 2018-08-07 2021-04-16 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자, 촬상 장치 및 고체 촬상 소자의 제어 방법
CN109151293B (zh) * 2018-11-02 2020-10-27 思特威(上海)电子科技有限公司 具有增益补偿的hdr图像传感器、读出电路及方法
KR102695388B1 (ko) 2019-02-12 2024-08-19 삼성전자주식회사 디지털 픽셀을 포함하는 이미지 센서
JP7370767B2 (ja) * 2019-08-28 2023-10-30 キヤノン株式会社 Ad変換回路、光電変換装置、光電変換システム、移動体
US11240458B2 (en) * 2020-06-12 2022-02-01 Omnivision Technologies, Inc. Image sensor with capacitor randomization for column gain
CN115499607B (zh) * 2022-09-20 2024-07-23 西安理工大学 基于差动斜坡与tdc的两步式高速adc电路
CN117147955B (zh) * 2023-10-31 2024-01-05 北京励芯泰思特测试技术有限公司 一种电压测量电路及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696527A (en) * 1979-12-29 1981-08-04 Advantest Corp Analog-digital converter
US5194865A (en) * 1991-12-06 1993-03-16 Interbold Analog-to-digital converter circuit having automatic range control
JP3141832B2 (ja) * 1997-12-03 2001-03-07 日本電気株式会社 A/d変換器及びこれを用いたa/d変換装置
JP3357858B2 (ja) 1999-03-30 2002-12-16 株式会社東芝 アナログデジタル変換器
JP3507800B2 (ja) * 2001-02-02 2004-03-15 有限会社リニアセル・デザイン アナログ−デジタル変換器及びこれを用いたイメージセンサ
JP4928069B2 (ja) 2004-06-07 2012-05-09 キヤノン株式会社 撮像装置及び撮像システム
KR100716736B1 (ko) * 2005-05-18 2007-05-14 삼성전자주식회사 서브 샘플링 모드에서 고 프레임 레이트를 지원하는 칼럼아날로그-디지털 변환 장치 및 그 방법

Also Published As

Publication number Publication date
CN101939917B (zh) 2013-07-31
KR101161277B1 (ko) 2012-07-02
KR20100093568A (ko) 2010-08-25
JP2009188815A (ja) 2009-08-20
US20110001039A1 (en) 2011-01-06
WO2009099003A1 (ja) 2009-08-13
US8354630B2 (en) 2013-01-15
CN101939917A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4774064B2 (ja) A/d変換回路及び固体撮像装置
JP5449290B2 (ja) ランプ信号出力回路、アナログデジタル変換回路、撮像装置、ランプ信号出力回路の駆動方法
JP4325681B2 (ja) 固体撮像装置、撮像装置
JP4524652B2 (ja) Ad変換装置並びに半導体装置
JP4682750B2 (ja) Da変換装置
JP5332041B2 (ja) 固体撮像装置
JP6478467B2 (ja) 撮像装置、撮像装置の駆動方法、撮像システム
US20150303937A1 (en) Analog-digital converting device and method and image sensor including the same
US20150288904A1 (en) Solid-state image pickup device with plurality of converters
US20110292261A1 (en) Analog-to-digital converter and devices including the same
KR102086777B1 (ko) 2-스텝 구조 및 차동 멀티 램핑 업/다운 신호를 적용하여 싱글 슬로프 기법으로 구현한 이미지 센서, 이의 동작 방법, 및 상기 이미지 센서를 포함하는 장치들
US20130214127A1 (en) Photoelectric conversion apparatus, method for driving the same, and photoelectric conversion system
JP2009200931A (ja) 固体撮像装置、半導体集積回路装置、および信号処理方法
KR101191054B1 (ko) 오프셋 전압 보정 기능을 가지는 아날로그-디지털 변환기
JP2010103913A (ja) A/d変換器、及びそれを備えた固体撮像装置
US8797410B2 (en) Image pickup apparatus, image pickup system, and method for driving image pickup apparatus
KR20060042006A (ko) 히스테리시스 회로를 설치한 비교기 및 ad 변환 회로
US9848154B2 (en) Comparator with correlated double sampling scheme and operating method thereof
US10728483B2 (en) Comparator with correlated double sampling scheme, CMOS image sensor including the same, and operating method thereof
US9467159B1 (en) Analog-to-digital converting device and related calibration method and calibration module
KR102431230B1 (ko) 저잡음 싱글-슬롭 비교 장치 및 그에 따른 아날로그-디지털 변환 장치와 씨모스 이미지 센서
JP5721489B2 (ja) Ad変換回路、光電変換装置、撮像システム、およびad変換回路の駆動方法
CN107613230A (zh) 高分辨率大动态范围数字化读出装置及其读出方法
JPWO2009131018A1 (ja) イメージセンサー用a/d変換器
JP6666043B2 (ja) 撮像装置及び撮像システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4774064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250