JP4276510B2 - 半導体記憶装置とその製造方法 - Google Patents

半導体記憶装置とその製造方法 Download PDF

Info

Publication number
JP4276510B2
JP4276510B2 JP2003344689A JP2003344689A JP4276510B2 JP 4276510 B2 JP4276510 B2 JP 4276510B2 JP 2003344689 A JP2003344689 A JP 2003344689A JP 2003344689 A JP2003344689 A JP 2003344689A JP 4276510 B2 JP4276510 B2 JP 4276510B2
Authority
JP
Japan
Prior art keywords
region
insulating film
element isolation
gate insulating
isolation trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003344689A
Other languages
English (en)
Other versions
JP2005116551A (ja
Inventor
田 晃 合
口 充 宏 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003344689A priority Critical patent/JP4276510B2/ja
Priority to TW093129638A priority patent/TWI278101B/zh
Priority to US10/954,238 priority patent/US20050093047A1/en
Priority to KR1020040078463A priority patent/KR100677801B1/ko
Publication of JP2005116551A publication Critical patent/JP2005116551A/ja
Application granted granted Critical
Publication of JP4276510B2 publication Critical patent/JP4276510B2/ja
Priority to US12/498,149 priority patent/US7919389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Description

本発明は、半導体記憶装置とその製造方法に係り、特に、不揮発性メモリセルの高密度化と高耐圧化を両立させた装置とその製造方法に関する。
電気的に書き込み消去可能な不揮発性の半導体記憶装置の一種として、シリコン窒化膜中に電荷をトラップさせることでデータを記憶する、いわゆるMONOS(金属‐酸化シリコン膜‐窒化シリコン膜‐酸化シリコン膜‐半導体)型メモリセルが知られている。MONOS型メモリは浮遊ゲート型メモリと比較して低電圧で書き込み、消去が可能であり、また、積層ゲート構造が必要な浮遊ゲート型メモリセルに対して、単層ゲート構造のMONOS型メモリセルはゲートのアスペクト比が小さいために、素子の微細化に適しているという特徴がある(例えば、特許文献1参照)。
この文献に示された半導体記憶装置は、図41の平面図に示すように、MONOS型トランジスタで構成されるメモリセル1の他に、MOS型トランジスタによるロジック回路を構成する周辺回路部2を有する。周辺回路部2は、更に、薄膜のゲート酸化膜を有する低電圧系トランジスタと、厚膜のゲート酸化膜を有する高電圧系トランジスタとで構成される。
図42は、図41に示されたメモリセル1の、第一の例の等価回路図を示すものであり、特にAND型の構成を例示するものである。
図42において示すように、メモリセル1は、マトリクス状に配置されるトランジスタM01、M02、M03、・・・、M11、M22、M33、・・・、M153により構成される。各トランジスタは周知のMONOS構造をなし、それぞれのゲートに浮遊ゲートによる電荷蓄積層を備え、EEPROMとしての機能が付与されている。
さて、このような基本構造を有するメモリセル1には、複数本のデータ選択のためのワード線WL0、WL1、WL2、WL3〜WL14、WL15が接続される。そして、ワード線WL0は、トランジスタM01、M02、M03の各制御ゲートに接続され、ワード線WL1は、トランジスタM11、M12、M13の各制御ゲートに接続され、以下同様にワード線WL15まで、それぞれ対応するトランジスタの各制御ゲートに接続される。
なお、トランジスタM01、M11、M21〜M151は、並列に配置されるが、それぞれの一端(ドレイン)は、選択トランジスタSS1を介してデータ転送線であるビット線BL1に接続され、それぞれの他端(ソース)は、選択トランジスタGS1を介して共通ソース線SLに接続される。同様にして、トランジスタM02、M12、M22〜M152は、並列に配置され、それぞれの一端は、選択トランジスタSS2を介してビット線BL2に接続され、それぞれの他端は、選択トランジスタGS2を介して共通ソース線SLに接続される。トランジスタM02、M12、M22〜M152についても同様である。
以上のような構成を通じて、いわゆるAND型のメモリセル1が構成される。なお、その動作については、良く知られるところであるので、説明を省略する。
図43は、図41に示されたメモリセル1の、第二の例の等価回路図を示すものであり、特にNOR型の構成を例示するものである。
図43において示すように、メモリセル1は、マトリクス状に配置されるトランジスタM01、M02、・・・、M11、M12、・・・、M22により構成される。各トランジスタは周知のMONOS構造をなし、それぞれのゲートに浮遊ゲートによる電荷蓄積層を備え、EEPROMとしての機能が付与されている。
さて、このような基本構造を有するメモリセル1には、複数本のデータ選択線であるワード線WL0、WL1、WL2、・・・が接続される。そして、ワード線WL0は、トランジスタM01、M02の各制御ゲートに接続され、データ選択線WL1は、トランジスタM11、M12の各制御ゲートに接続され、以下同様に、それぞれ対応するトランジスタの各制御ゲートに接続される。
なお、トランジスタM01、M11、M21のそれぞれの一端(ドレイン)は、データ転送線であるビット線BL1に接続され、それぞれの他端(ソース)は、共通ソース線SLに接続される。
以上のような構成を通じて、いわゆるNOR型のメモリセル1が構成される。なお、その動作については、良く知られるところであるので、説明を省略する。
図44は、図41に示されたメモリセル1の、第三の例の等価回路図を示すものであり、特にVirtuaL Ground Array型の構成を例示するものである。
図44において示すように、メモリセル1は、マトリクス状に配置されるトランジスタM(m)、M(m)’、M(m+1)、M(m+1)’・・・により構成される。各トランジスタは周知のMONOS構造をなし、それぞれのゲートに浮遊ゲートによる電荷蓄積層を備え、EEPROMとしての機能が付与されている。
さて、このような基本構造を有するメモリセル1には、複数本のデータ選択線であるワード線WL(m)、WL(m+1)、・・・が接続される。そして、ワード線W(m)は、トランジスタM(m)、M(m)’・・・の各制御ゲートに接続され、ワード線WL(m+1)は、トランジスタM(m+1)、M(m+1)’・・・の各制御ゲートに接続される。
なお、トランジスタM(m)、M(m+1)又はM(m)’、M(m+1)’は、並列に配置されるが、それぞれの一端(ドレイン)は、選択トランジスタSS2を介して、データ転送線であるビット線BL(n)に接続され、それぞれの他端(ソース)は、選択トランジスタSS1、SS3を介して、ビット線BL(n+1)に接続される。
以上のような構成を通じて、いわゆるVirtuaL Ground Array型のメモリセル1が構成される。なお、その動作については、良く知られるところであるので、説明を省略する。
図45は、図41に示されたメモリセル1の、第四の例の等価回路図を示すものであり、特に図41のメモリセル1として一般的に知られるNAND型EEPROMを採用した場合を例示するものである。
図45において示すように、メモリセル1の一バンドル分を構成するMOS型トランジスタM0、M1、M2、M3、・・・、M14、M15は直列接続される。各トランジスタは周知のMONOS構造で、電荷蓄積電極を有するMISトランジスタからなる不揮発性メモリ機能が付与されている。各トランジスタM0〜M15のゲート電極、つまり制御ゲートにはワード線を構成するデータ選択線WL0〜WL15が接続される。また、各トランジスタM0〜M15のバックゲートにはウェル電位WeLLが与えられる。
直列接続されるトランジスタM0〜M15の一端のトランジスタM0は、選択トランジスタS1を介してビット線BLに接続され、他端のトランジスタM15は、選択トランジスタS2を介してソース線SLに接続される。なお、選択トランジスタS1のゲートにはSSL信号線が接続され、選択トランジスタS2のゲートにはGSL信号線が接続される。
ここでメモリセル1には、SSL信号線およびGSL信号線が接続されるが、これらのブロック選択線は、ひとつのブロックには少なくとも1本あれば良く、例えば高密度化のために、データ選択線WL0〜WL15と同一方向に形成される。
以上のような構成を通じて、いわゆるNANDセルブロックが構成されるが、その動作や構成等については、良く知られるところであるので、説明を省略する。
図46は、図45に示すような構成のメモリセル1を有する半導体記憶装置の部分平面図パターンを示すもので、セル構造を判り易く示すために、制御ゲート電極よりも下の構造のみを示している。
図46からわかるように、メモリセル1は、図中で上下方向に走る複数のビット線BLが形成されている。このビット線BLの厚さ方向の下側には、図中横方向に走る複数のワード線WL0〜WL15が配置されている。各ワード線WL0〜WL15の間には、ビット線BLの下以外の部分に素子分離領域7が形成され、ソース・ドレイン領域8が絶縁分離されている。またビット線BLのSSL信号線に隣接したソース・ドレイン領域8には、ビット線コンタクト4が形成されており、ビット線BLのGSL信号線に隣接した領域には、接地電位が与えられるソース線コンタクト3が接続されている。
図47は、従来の半導体記憶装置の断面図を示すもので、図46のA−A’線で得た断面を(A)に、B−B’線で得た断面を(B)にそれぞれ示すと共に、図41の周辺回路部2の断面を(C)、(D)にそれぞれ示す。なお、図47(A)はメモリセル1のゲート断面に相当し、同図(B)は、メモリセル1の素子分離断面に相当する。また、(C)は周辺回路部2の低電圧トランジスタ領域に対応し、(D)は周辺回路部2の高電圧トランジスタ領域に相当する。
図47(A)、(B)において示すように、メモリセル1領域では、P型基板9の上にN型ウェル10が形成され、N型ウェル10の上には、例えば、ボロンまたはインジウムなどの不純物濃度が1014〜1019(cm−3)のP型ウェル11が形成されている。つまり、メモリセル1部においては、P型基板9の上に、N型ウェル10、P型ウェル11を形成して、基板26が構成される。
メモリセル1の領域では、この基板26のソース・ドレイン領域8に挟まれる領域に、例えば、0.5〜10nmの厚さのシリコン酸化膜またはオキシナイトライド膜によるトンネル絶縁膜12が第1の絶縁膜として形成されている。
更に、トンネル絶縁膜12の上には、例えば、シリコン窒化膜からなる電荷蓄積層13が3〜50nmの厚さで形成されている。
この上に、例えば、シリコン酸化膜またはオキシナイトライド膜からなるブロック絶縁膜14を形成する。
以上のようにして、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14の積層構造から成るONO膜15が形成される。
続いて、ONO膜15の上には、例えば、リンが1×1019〜1×1021(cm−3)の範囲で不純物が添加されたポリシリコン層ならなる第一ゲート電極18が10〜500nmの厚さで形成されている。
その上に、例えば、WSi、NiSi、MoSi、TiSi、CoSiなどの金属の裏打層を1〜500nmの厚さで形成し、第二ゲート電極19を構成する。
更に、その上に、シリコン酸化膜またはシリコン窒化膜等のマスク絶縁膜20が、10〜300nmの厚さで形成される。
以上のようにして形成されるゲート領域では、トランジスタの側壁に側壁絶縁膜37が配置される。
更に、その上に、バリア絶縁膜21、層間絶縁膜22が積層され、層間絶縁膜22の上にビット線BLが配置される。ビット線BLとソース・ドレイン領域8の間は、ビット線コンタクト4によって接続される。
メモリセル1領域においては、P型ウェル11はN型ウェル10によってP型基板9とは分離されているため、P型ウェル11には、P型基板9と独立して電圧を印加することができる。このような構造は、メモリ消去時の昇圧回路の負荷を軽減し、消費電力を抑制するために望ましい。
一方、図47(C)に示すように、周辺回路部2の低電圧系トランジスタ領域(LV領域)では、P型基板9の上にP型ウェル11を形成して、基板26が構成される。
低電圧トランジスタ領域では、この基板26のソース・ドレイン領域8に挟まれる領域に、例えば、0.5〜10nmの厚さのシリコン酸化膜またはオキシナイトライド膜によるゲート絶縁膜16が形成される。その上には、ポリシリコン層ならなる10〜500nmの厚さの第一ゲート電極18が形成されている。
その上に、例えば、WSi、NiSi、MoSi、TiSi、CoSiなどの金属の裏打層を1〜500nmの厚さで形成し、第二ゲート電極19を構成する。
更に、その上に、シリコン酸化膜またはシリコン窒化膜等のマスク絶縁膜20が、10〜300nmの厚さで形成される。
以上のようにして形成されるトランジスタの側壁には側壁絶縁膜37が配置される。
更に、その上に、バリア絶縁膜21、層間絶縁膜22が積層され、層間絶縁膜22の上に信号線24が配置される。信号線24とソース・ドレイン領域8の間は、コンタクト25によって接続される。
また、図47(D)に示すように、高電圧系トランジスタ領域(HV領域)では、P型基板9の上の、ソース・ドレイン領域8に挟まれる領域に、例えば、10〜50nmの厚さのシリコン酸化膜またはオキシナイトライド膜によるゲート絶縁膜17が形成される。更に、その上には、ポリシリコン層からなる10〜500nmの厚さの第一ゲート電極18が形成されている。
その上に、例えば、WSi、NiSi、MoSi、TiSi、CoSiなどの金属の裏打層を1〜500nmの厚さで形成し、第二ゲート電極19を構成する。
更に、その上に、シリコン酸化膜またはシリコン窒化膜等のマスク絶縁膜20が、10〜300nmの厚さで形成される。
以上のようにして形成されるトランジスタの側壁には側壁絶縁膜37が配置される。
更に、その上に、バリア絶縁膜21、層間絶縁膜22が積層され、層間絶縁膜22の上に信号線24が配置される。信号線24とソース・ドレイン領域8の間は、コンタクト25によって接続される。
なお、低電圧トランジスタ領域におけるゲート絶縁膜16の厚さと、高電圧トランジスタ領域におけるゲート絶縁膜17の厚さを比較すると、高電圧トランジスタ領域の方が厚いが、これは耐圧を得るためである。
なお、図47(B)、(C)、(D)に示すように、メモリセル1の素子分離領域および周辺回路部2の低電圧トランジスタ領域、高電圧トランジスタ領域には、素子分離のために、STI溝(トレンチ溝)が素子分離溝6、23として形成される。
また、図47(D)に示すように、高電圧トランジスタ領域の素子分離溝23の底部には、不純物によるP型領域27が形成されるが、P型領域27の不純物濃度は、P型基板9よりも高濃度であることが、素子分離耐圧を高める上では望ましい。
図47の(B)、(C)から明らかなように、メモリセル1の領域および周辺回路部2の低電圧トランジスタ領域においては、比較的深いトレンチ溝により、比較的深い素子分離溝6が形成される。
一方、図47(D)から明らかなように、周辺回路部2の高電圧トランジスタ領域においては、比較的浅いトレンチ溝により、比較的浅い素子分離溝23が形成される。
続いて、以上のような構成を有する従来の半導体記憶装置の製造方法について、図48−図50の断面図に基づいて、順を追って説明する。
ちなみに、図48−図50の、それぞれ(A)、(B)、(C)、(D)は、図47の(A)、(B)、(C)、(D)に示した領域に対応する。
なお、図48−図50では、説明を簡単にするために、P型基板9の上の、N型ウェル10やP型ウェル11、素子分離溝23の底部のP型領域27は図示せず、これらをまとめて基板26として示す。
先ず、図示はしないが、基板26の上に、5nmから15nmの犠牲酸化膜を形成した後、必要に応じて、メモリセル1および周辺回路部2のウェルやチャンネル不純物の注入を行い、基板26の基本構成を作る。
続いて、犠牲酸化膜を剥離し、基板26の上、全体に周辺回路部2の高電圧トランジスタ領域におけるゲート絶縁膜17となるシリコン酸化膜またはシリコン窒化膜を形成する。ここでゲート絶縁膜17は、後の工程で膜厚が変動することを見込んで、最終的に狙いの膜厚となるように、例えば400nm程度の膜厚に調整しておく。
続いて、高電圧トランジスタ領域をレジストで覆ってメモリセル領域および低電圧トランジスタ領域でゲート絶縁膜17を剥離する。その結果、高電圧トランジスタ領域においてゲート絶縁膜17が残る。
引き続き、レジストを剥離し、MONOSメモリセルのトンネル絶縁膜12として、例えば0.5nm〜5nmの厚さからなるシリコン酸化膜またはシリコン窒化膜を形成する。更に、その上に、シリコン酸化膜やシリコン窒化膜、HfO、Ta、TiO、Al等の絶縁膜を堆積し、電荷蓄積層13を形成する。
この上に、1nm〜20nmのシリコン酸化膜またはシリコン窒化膜のブロック絶縁膜14を形成する。
以上のような工程を経て、メモリセル領域および低電圧トランジスタ領域においては、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14の三層構造から成るONO膜15が、高電圧トランジスタ領域においてはゲート絶縁膜17、電荷蓄積層13、ブロック絶縁膜14から成るONO膜15がそれぞれ形成されることになる。
続いて、素子分離領域の埋め込み材を平坦化するCMP法のストッパ膜30として、例えば、10nm〜500nm程度のシリコン窒化膜を堆積する。更に、その上に、素子分離領域の異方性エッチングのマスク材31として、例えば、10nmから500nmのシリコン酸化膜を堆積する。
以上のような工程を経て、図48(A)〜(D)に示すような各領域の断面が得られるが、図からも明らかなように、高電圧トランジスタ領域のゲート絶縁膜17の膜厚は、ゲート領域や素子分離領域および低電圧トランジスタ領域のトンネル絶縁膜12の膜厚に比較して、厚い。このため、高電圧トランジスタ領域におけるマスク材31の上表面の高さは、他の領域におけるマスク材31の上表面の高さに比較して、高い。
続いて、図49に示すように、フォトリソグラフィにより、図示しないレジストをパターンニングして、マスク材31を異方性エッチング加工し、続いて、ストッパ膜30を加工する。
更に引き続いて、図50(3)に示すように、更に、異方性エッチングにより、ブロック絶縁膜14、電荷蓄積層13、トンネル絶縁膜12、ゲート絶縁膜17、P型ウェル11を所望の深さまでエッチング加工して、素子分離領域および低電圧トランジスタ領域における素子分離溝6、および高電圧トランジスタ領域における素子分離溝23、としてトレンチを形成する。
この際に、図50(B)、(C)および(D)に示すように、高電圧トランジスタ領域では、ゲート絶縁膜17の膜厚が、素子分離領域や低電圧トランジスタ領域のトンネル絶縁膜12の膜厚よりも厚いために、その厚みの追加分に対応して、高電圧トランジスタ領域における素子分離溝23の深さは、素子分離領域および低電圧トランジスタ領域における素子分離溝6の深さよりも浅い。
なお、図48−図50(A)、(B)に示すメモリセル1の領域におけるトランジスタの大きさは、図48−図50(C)、(D)に示す周辺回路2の領域におけるトランジスタの大きさに対して、比較的小さいため、素子分離溝6の幅や間隔は小さく形成されている。
以上述べたような工程に加えて、更に、従来技術として引用した特開2002‐313967号公報に示されるのと同様の工程を経て、図47の断面図に示されるような半導体記憶装置を得る。
以上のような工程を経て、図47に示すような半導体記憶装置を製造するが、一般に、素子分離耐圧を高く保つためには、素子分離溝6、23は深いことが望ましい。ちなみに、ここで素子分離溝の深さは、基板26の上面の高さから、素子分離溝6、23の底面までの距離と定義する。つまり、高電圧トランジスタ領域では、耐圧を高めるために、素子分離溝23は深い方が望ましい。
一方、メモリ領域では、大容量化のためには、素子の高密度化や素子の高精細化が大きな課題であり、素子分離溝6は、その幅、間隔共に狭く形成する必要がある。その際に、製造を容易にし、歩留まりを向上させるためには、素子分離溝6、23は浅い方が良い。これはトレンチ溝が深いと、トレンチ溝を埋め込む時の、埋め込みアスペクト比が大きくなり、良好な埋め込み特性を実現するのが困難になるためである。
これに対して、従来の半導体記憶装置とその製造方法によれば、高電圧トランジスタ領域における素子分離溝23の深さは、メモリセル領域や低電圧トランジスタ領域の素子分離溝6の深さよりも浅く形成されている。
特開2002−313967号公報
従来の半導体記憶装置とその製造方法は、以上述べたように構成されていたため、以下に列挙するような問題点がある。
高電圧トランジスタ領域において、素子分離耐圧を高く保つためには、深く形成されることが望ましいとされる、素子分離溝23が、他の領域に比較して浅く形成されている。つまり、耐圧を高めるのが困難な構成となっている。
一方、メモリ領域では、製造歩留まりを向上させるためには、浅く形成されることが望ましいとされる、素子分離溝6が、比較的深く形成されている。つまり、歩留まり向上が困難な構成となっている。
また、周辺回路部2でも、低電圧トランジスタ領域では、扱う電圧が低いため、素子分離溝6を構成するトレンチ溝は、特に深い必要はなく、歩留まりを落としてまで、深い素子分離溝6とする必要はない。
つまり、従来の半導体記憶装置とその製造方法では、歩留まり向上のためには浅い方が望ましいメモリセル1領域におけるトレンチ溝が、深く形成されてしまい、素子分離耐圧を高めるためには深い方が望ましい周辺回路部2の高電圧トランジスタ領域におけるトレンチ溝が、逆に浅く形成されてしまうと言う、相反する問題点がある。
従って、本発明の目的は、上記のような従来技術の問題点を解消し、メモリセル領域においては歩留まり向上のためにトレンチ溝を浅く形成し、周辺回路部の高電圧トランジスタ領域においては素子分離耐圧を高めるためにトレンチ溝を深く形成した半導体記憶装置とその製造方法を提供することにある。
上記目的を達成するために、本発明は、
半導体基板上に形成された、
ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
前記第1のゲート絶縁膜の上に形成された第1の導電体膜と、
前記第2のゲート絶縁膜の上に形成された第1の導電体膜と、
を備え、
前記第1の領域と前記第2の領域の境界は素子分離トレンチが形成され、前記素子分離トレンチは、前記第1の領域に形成された第1の導電体膜の側面と接して形成され、また、前記素子分離トレンチは、前記第2の領域に形成された第1の導電体膜の側面と接して形成され、前記第1の領域に接した素子分離トレンチの、前記半導体基板表面からの深さは、前記第2の領域に接した素子分離トレンチの、前記半導体基板表面からの深さより浅く設定したことを特徴とする半導体装置を提供するものである。
上記目的を達成するために、本発明は、
半導体基板上に形成された、
ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは別で且つ前記第2のゲート絶縁膜よりも薄い膜厚の第3のゲート絶縁膜を用いた、複数のトランジスタが形成された第3の領域と、
前記第1のゲート絶縁膜の上に形成された第1の導電体膜と、
前記第2のゲート絶縁膜の上に形成された第1の導電体膜と、
を備え、
前記第1の領域と前記第2の領域の境界は第1の素子分離トレンチが形成され、前記第1の素子分離トレンチは、前記第1の領域に形成された第1の導電体膜の側面と接して形成され、また、前記第1の素子分離トレンチは、前記第2の領域に形成された第1の導電体膜の側面と接して形成され、前記第1の領域に接した第1の素子分離トレンチの、前記半導体基板表面からの深さは、前記第2の領域に接した第1の素子分離トレンチの、前記半導体基板表面からの深さより浅く、
前記第1の領域に形成された第1の素子分離トレンチの、半導体基板表面からの深さを、前記第3の領域に形成された第2の素子分離トレンチの、前記半導体基板表面からの深さと実質的に等しく設定した
ことを特徴とする半導体装置を提供するものである。
上記目的を達成するために、本発明は、
半導体基板上に形成された、
ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは別で且つ前記第2のゲート絶縁膜よりも薄い膜厚の第3のゲート絶縁膜を用いた、複数のトランジスタが形成された第3の領域と
を備え、
前記第1の領域と前記第2の領域の境界は第1の素子分離トレンチが形成され、
前記第1の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さを、
前記第2の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さよりも浅く、
前記第3の領域に形成された第2の素子分離トレンチの、前記半導体基板表面からの深さと実質的に等しく設定し、
前記メモリセルトランジスタと、前記第2の領域におけるトランジスタと、前記第3の領域におけるトランジスタのそれぞれにおけるゲート電極を、
それぞれのゲート絶縁膜上に配置された下側の第1ゲート電極と、第1ゲート電極上に電気的に接続されて配置され上側の第2ゲート電極の2層のものとして構成し、
前記第2ゲート電極は、
前記第1の領域と前記第2の領域においては、前記第1の素子分離トレンチ上面に接して配置され、
前記第3の領域においては、前記第2の素子分離トレンチの上面に、前記第1ゲート電極を介して配置されている
ことを特徴とする半導体装置を提供するものである。
上記目的を達成するために、本発明は、
半導体基板上に形成された、
ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
を備えた半導体装置の製造方法であって、
前記第2の領域の前記半導体基板をエッチングして第2の素子分離トレンチを形成する際には、前記第1の領域では、前記電荷蓄積絶縁膜をエッチングストッパとして機能させることによって前記半導体基板がエッチングされないようにした、ある工程を有し、
前記ある工程の後に、
前記第1の領域の、前記電荷蓄積絶縁膜を含む前記第1のゲート絶縁膜と前記半導体基板をエッチングして、第1の素子分離トレンチを形成するとともに、
このとき同時に前記第2の領域の前記半導体基板をもエッチングして、前記第2の素子分離トレンチをさらに深くエッチングし、
前記第1の領域に形成された前記第1の素子分離トレンチの、前記半導体基板の表面からの深さを前記第2の領域に形成された前記第2の素子分離トレンチの、前記半導体基板の表面からの深さより浅くなるようにした
ことを特徴とする半導体装置の製造方法を提供するものである。
上記目的を達成するために、本発明は、
半導体基板上に形成された、
ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
ゲート絶縁膜として、前記電荷蓄積絶縁膜とは別で且つ前記第2のゲート絶縁膜よりも薄い膜厚の第3のゲート絶縁膜を用いた、複数のトランジスタが形成された第3の領域と
を備え、
前記第1の領域及び前記第3の領域に形成された素子分離トレンチの、前記半導体基板の表面からの深さを前記第2の領域に形成された素子分離トレンチの、前記半導体基板の表面からの深さより浅く設定した
半導体装置の製造方法であって、
前記第1及び第3の領域においては、前記半導体基板上に、少なくとも前記第1のゲート絶縁膜とその上に形成されたゲート電極を配置し、
前記第2の領域においては、前記半導体基板上に、少なくとも前記第2のゲート絶縁膜とその上に形成されたゲート電極を配置し、
この状態において、前記第2の領域の前記半導体基板をエッチングして第2の素子分離トレンチを形成する際には、前記第1及び第3の領域においては前記電荷蓄積絶縁膜をエッチングストッパとして機能させることによって前記半導体基板がエッチングされないようにし、前記第1及び第3の領域の前記電荷蓄積絶縁膜を含む前記第1のゲート絶縁膜と前記半導体基板をエッチングして、それぞれ第1及び第3の素子分離トレンチを形成するとともに、このとき同時に前記第2の領域の前記半導体基板をもエッチングして、前記第2の素子分離トレンチをさらに深くエッチングして、前記第1及び第3の領域に形成された前記第1及び第3の素子分離トレンチの、前記半導体基板の表面からの深さを前記第2の領域に形成された前記第2の素子分離トレンチの、前記半導体基板の表面からの深さより浅くなるようにする
ことを特徴とする半導体装置の製造方法を提供するものである。
以上述べたように、本発明によれば、高電圧トランジスタ領域や低電圧トランジスタ領域とメモリセル領域を混載する半導体記憶装置において、高電圧トランジスタ領域と低電圧トランジスタ領域の少なくとも高電圧トランジスタ領域では素子分離溝を深く形成して、素子分離性能と耐圧を向上させ、メモリセル領域では、素子分離溝を浅く形成することにより、高密度化、高性能化、高製造歩留まり化を実現できるような半導体記憶装置の構造と、その製造方法を得ることができる。
以下、図面を参照しながら、本発明の実施の形態について説明する。
実施形態1
図1は本発明の実施形態1に係る、半導体記憶装置の断面図であり、(A)はメモリセル領域のゲート断面(図46のAA’断面に相当)を、(B)はメモリセル領域の素子分離領域断面(図46のBB’断面に相当)を、(C))は周辺回路部の低電圧トランジスタ領域(LV領域)の断面を、(D)は周辺回路部の高電圧トランジスタ領域(HV領域)の断面を、それぞれ示すものである。
なお、図1の構成の、図47の構成と異なる点は、(B)、(C)、(D)に示すように、メモリセル領域の素子分離領域に形成されている素子分離溝6の深さや周辺回路部の低電圧トランジスタ領域に形成されている素子分離溝6の深さと比較して、周辺回路部の高電圧トランジスタ領域に形成されている素子分離溝23の深さが、深く形成されている点にある。
つまり、図1の(B)、(C)に示すように、メモリセル1の領域および周辺回路部2の低電圧トランジスタ領域においては、トレンチ溝により、比較的浅い素子分離溝6が形成される。
一方、図1(D)に示すように、周辺回路部2の高電圧トランジスタ領域においては、トレンチ溝により、比較的深い素子分離溝23が形成される。
つまり、実施形態1の半導体記憶装置によれば、高電圧トランジスタ領域において、素子分離耐圧を高く保つためには、深く形成されることが望ましいとされる、素子分離溝23が、他の領域に比較して深く形成されている。つまり、耐圧を高めるのに適した構成となっている。
加えて、実施形態1の半導体記憶装置によれば、メモリ領域では、製造歩留まりを向上させるためには、浅く形成されることが望ましいとされる、素子分離溝6が、高電圧トランジスタ領域に比較して、浅く形成されている。つまり、メモリセルの高精細化、大容量化の際に、製造を容易にし、歩留まりを向上させるのに適した構成となっている。
また、周辺回路部2でも、低電圧トランジスタ領域では、扱う電圧が低いなりに、対応して素子分離溝6を構成するトレンチ溝は浅くなっており、無用に歩留まりを落とさないで済むような合理的な構成となっている。
加えて、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域の、金属裏打ち層としての第一ゲート電極18、第二ゲート電極19、マスク絶縁膜20は、全て同層に形成されることから、工程の簡略化に適した構造となっている。
つまり、本発明の実施形態1の半導体記憶装置によれば、歩留まり向上のためには浅い方が望ましいとされるメモリセル1の領域におけるトレンチ溝が、浅く形成され、素子分離耐圧を高めるためには深い方が望ましいとされる周辺回路部2の高電圧トランジスタ領域におけるトレンチ溝は、深く形成されているので、製造が容易で、歩留まりが高く、また素子分離耐圧が高く性能の優れた半導体記憶装置を実現することができる。
続いて、本発明の実施形態1に係る、半導体記憶装置の製造方法について、図2−図23の断面図に基づいて、順を追って説明する。
ちなみに、図2−図23の、それぞれ(A)、(B)、(C)、(D)は、図1の(A)、(B)、(C)、(D)に示した領域に対応する。
なお、図2−図23では、説明を簡単にするために、P型基板9の上の、N型ウェル10やP型ウェル11、素子分離溝23の底部のP型領域27は図示せず、これらをまとめて基板26として示す。
先ず、図2に示すように、予め不純物としてボロンを1014〜1019(cm−3)の濃度で含むP型のシリコン基板上に、図示はしないが、1〜100nmの犠牲酸化膜を形成した後、レジストを塗布し、リソグラフィを行い、例えば、リン、砒素、アンチモンなどのイオンを、例えば30〜1500KeVの加速エネルギー、1×1011〜1×1015(cm−2)のドーズ量で注入して、メモリセル領域にN型ウェルを形成する。
また、メモリセル領域および低電圧トランジスタ領域には、例えば、ボロンを100〜1000KeVの加速エネルギー、1×1011〜1×1015(cm−2)のドーズ量で注入してP型ウェルを形成する。
更に、レジストを塗布した後、リソグラフィを行い、メモリセル領域および高電圧トランジスタ領域に、ボロンやインジウム等の不純物を、1×1011〜1×1014(cm−2)のドーズ量で、チャンネルイオンとして注入する。
続いて、犠牲酸化膜を剥離した後に、基板26の上に、MONOSのメモリセル領域におけるトンネル絶縁膜12となるシリコン酸化膜またはオキシナイトライド膜を0.5〜10nmの厚さで形成する。
その上から、電荷蓄積層13となる、3〜50nmの厚さのシリコン窒化膜を形成する。
更に、その上に、ブロック絶縁膜14となる、3〜30nmの厚さのシリコン酸化膜またはオキシナイトライド膜を形成する。
以上のような工程を経て、ゲート酸化膜となる、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14から成る、ONO膜15を形成する。
次に、連続して、ONO膜15の上に、第一ゲート電極18となるアモルファスシリコンまたはポリシリコンを10〜500nmの厚さで前面に堆積する。
なお、第一ゲート電極18を構成するシリコン膜は、不純物を添加しない膜であることが望ましいが、たとえばリンが1×1019〜1×1021(cm−3)の範囲で不純物が添加されたポリシリコン膜を堆積しても良い。
次に、図3に示すように、高電圧トランジスタ領域を除く領域において、レジスト28をかけ、続いて、図4に示すように、リソグラフィと等方性または異方性エッチングによって、第一ゲート電極18およびONO膜15を除去する。エッチング終了後は、レジスト28も除去する。
続いて、図5に示すように、高電圧トランジスタ領域のゲート絶縁膜17となる酸化膜またはオキシナイトライド膜を10〜500nmの厚さで形成し、更に、高電圧トランジスタ領域の第一ゲート電極18となるポリシリコンまたはアモルファスシリコンを10〜500nmの厚さで堆積する。
ここで堆積するシリコン膜の厚さは、ONO膜15に堆積したシリコン膜と同じ厚さでも良いし、メモリセル領域や低電圧トランジスタ領域に先に堆積した第一ゲート電極18の高さと、高電圧トランジスタ領域に新たに堆積した第一ゲート電極18の高さが同じになるようにしても良い。
なお、高電圧トランジスタ領域で、基板26の上に、ゲート絶縁膜17および第一ゲート電極18を堆積するのに伴い、メモリセル領域や低電圧トランジスタ領域の第一ゲート電極18の上にも、同じように、酸化膜やシリコン膜が形成される。
引き続き、図6に示すように、高電圧トランジスタ領域において、レジスト29をかけ、図7に示すように、リソグラフィと等方性または異方性エッチングにより、メモリセル領域および低電圧トランジスタ領域における酸化膜やシリコン膜を除去する。
以上のような工程を経て、ONO膜15とゲート絶縁膜17を作り分け、それぞれの上に、第一ゲート電極18を積層した構造を得る。なお、このような構造に至る工程は、以上に限定されるものではなく、例えば、先に、ONO膜15をゲート絶縁膜17を作り分けしておいて、その上に、第一ゲート電極18を堆積するようにしても良く、最終的に、図7に示すように、基板26の上において、メモリセル領域や低電圧トランジスタ領域では、ONO膜15と第一ゲート電極18の積層構造ができ、高電圧トランジスタ領域では、ゲート絶縁膜17と第一ゲート電極18の積層構造ができれば良い。
次に、図8に示すように、シリコン窒化膜などの第一の絶縁膜30とシリコン酸化膜などの第二の絶縁膜31を、それぞれ10〜200nm程度の厚さでウェハ全面に堆積する。
続いて、図9に示すように、リソグラフィと異方性エッチングによって、第一の絶縁膜30と第二の絶縁膜31と、第一ゲート電極18となるポリシリコン膜を加工する。なお、図9でエッチングを開始するが、このとき、エッチングマスクは、メモリセル1(A)、(B)及びLV領域(C)においては、ゲート絶縁膜絶縁膜(ONO膜15)上の、メモリトランジスタの電極材料(18)によって構成したマスク体を用いているといえる。また、HV領域(D)においては、厚いゲート酸化膜(17)上の電極材料(18)によって構成したマスク体を用いているといえる。
これに続いて、図10に示すように、メモリセル領域および低電圧トランジスタ領域のブロック絶縁膜14と、高電圧トランジスタ領域のゲート絶縁膜17を、第一の絶縁膜30、第二の絶縁膜31をマスクとして、異方性エッチングにより加工する。このとき、メモリセル領域および低電圧トランジスタ領域において、シリコン窒化膜の電荷蓄積絶縁膜である電荷蓄積層13が残るようにする。
更に、図11に示すように、シリコン窒化膜に対して選択性をもつエッチング条件で、第一の絶縁膜30と第二の絶縁膜31をマスクとして、異方性エッチングを施すことによって、高電圧トランジスタ領域のシリコン基板を10〜100nm程度の深さまでエッチングして、素子分離溝の段差部32を形成する。このときのエッチング条件は、基板26のエッチングレートが、電荷蓄積層13のエッチングレートの10倍以上となるような条件を選択することが望ましい。このようなエッチング条件を採用することにより、フォトリソグラフィを用いることなく、高電圧トランジスタ領域に十分な深さの素子分離溝のための段差部32を形成することができる。
続いて、図12に示すように、異方性エッチングによって、第一の絶縁膜30と第二の絶縁膜31をマスクとして、メモリセル領域および低電圧トランジスタ領域の電荷蓄積層13およびトンネル絶縁膜12をエッチングする。このとき、基板26に対して選択性の低いエッチング条件を用いることで、高電圧トランジスタ領域における基板26もエッチングされる。その結果、メモリセル領域および低電圧トランジスタ領域においては、基板26が露出し、一方、高電圧トランジスタ領域においては、素子分離溝の段差部32が更に5〜50nm程度大きくなる。
次に、図13に示すように、第一の絶縁膜30と第二の絶縁膜31をマスクとする異方性エッチングにより、基板26をエッチングして、メモリセル領域および低電圧トランジスタ領域に30〜500nmの深さの素子分離溝6を形成する。このとき、高電圧トランジスタ領域においては、予め素子分離溝のための段差部32が形成されていたため、素子分離溝6よりも10〜150nm程度深さの大きな素子分離溝23が形成される。
この後、図14に示すように、素子分離溝6および素子分離溝23を、シリコン酸化膜などの絶縁材33で埋め込み、CMP(ChemicaL MechanicaL PoLishing)等の方法で平坦化する。このとき、第二の絶縁膜31はCMPで除去され、第一の絶縁膜30がCMPのエッチングストッパとして機能する。
なお、このCMPに先立ち、図5で示すように、メモリセル領域や低電圧トランジスタ領域において、ONO膜15の上に形成される第一ゲート電極18の高さと、高電圧トランジスタ領域において、ゲート絶縁膜17の上に形成される第一ゲート電極18の高さを揃えておけば、素子分離溝6、23の深さが、領域毎に異なる場合でも、エッチングストッパとなる第一の絶縁膜30の高さが、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域の全ての領域で同一となるため、CMPでの加工が容易となり、歩留まりを向上させることが可能となる。
続いて、図15に示すように、ウェットエッチング等の方法で、第一の絶縁膜30を除去することにより、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域の全ての領域で、第一ゲート電極18が露出する。
次に、図16に示すように、フォトリソグラフィにより、メモリセル領域と高電圧トランジスタ領域をレジスト34で覆い、低電圧トランジスタ領域を開口する。
その後、図17に示すように、異方性エッチングまたは等方性エッチングを用いて、低電圧トランジスタ領域の第一ゲート電極18とONO膜15を除去し、レジスト34を剥離する。このとき、低電圧トランジスタ領域の素子分離溝6の埋め込み材である絶縁材33の上部も同時にエッチングされるため、メモリセル領域や高電圧トランジスタ領域の素子分離溝6、23に比較して、低電圧トランジスタ領域の素子分離溝6は、その上面の高さが低くなる。ここで、素子分離高さは、基板26の高さと、素子分離埋め込み材である絶縁材33の上面の高さで定義する。
続いて、図18に示すように、厚さ0.5から15nmの範囲のシリコン酸化膜からなる低電圧トランジスタ領域用のゲート絶縁膜16を形成し、その上に、ポリシリコン層からなる10〜500nmの厚さのゲート電極材35を堆積する。このとき、メモリセル領域と高電圧トランジスタ領域にも、ゲート絶縁膜16とゲート電極材35が形成される。
次に、図19に示すように、フォトリソグラフィによって、低電圧トランジスタ領域をレジスト36で覆い、異方性エッチングまたは等方性エッチングにより、図20に示すように、メモリセル領域と高電圧トランジスタ領域に形成された、ゲート絶縁膜16とゲート電極材35を除去する。
ちなみに、メモリセル領域と高電圧トランジスタ領域では、第一ゲート電極18が素子分離溝6、23の絶縁材33の上には配置されていないのに対して、低電圧トランジスタ領域では、素子分離溝6の絶縁材33の上に、ゲート電極材35が配置されている。これは、低電圧トランジスタ領域のみ、素子分離溝6に絶縁材33を埋め込んだ後に、ゲート絶縁膜16とゲート電極材35を形成したためである。このようにして形成したゲート電極材35が、低電圧トランジスタ領域における第一ゲート電極18として機能することになる。
なお、低電圧トランジスタ領域のゲート電極材35の膜厚は、メモリセル領域や高電圧トランジスタ領域の第一ゲート電極18の膜厚と同じにしても良いし、第一ゲート電極18の上面と、ゲート電極材35の上面が同じになるようにしても良い。前者の場合は、第一ゲート電極18やゲート電極材35を加工する時のエッチング量が、メモリセル領域や高電圧トランジスタ領域と同じになるため、ゲート加工の時の加工マージンを向上させる効果があり、後者の場合は、基板26の面から見たトランジスタのゲート電極の高さが、メモリセル領域や高電圧トランジスタ領域と同じになるため、層間絶縁膜を堆積したときの高さのばらつきが小さくなり、コンタクト配線の歩留まりを高くできる効果がある。
以降、ゲート電極材35を、低電圧トランジスタ領域における第一ゲート電極18と呼ぶことにする。
続いて、図21に示すように、例えば、WSi、NiSi、MoSi、TiSi、CoSiなどの金属の裏打層を1〜500nmの厚さで形成し、第二ゲート電極19を構成する。更に、その上に、シリコン酸化膜またはシリコン窒化膜のマスク絶縁膜20を10〜300nmの厚さで形成する。
以上のような工程を経た結果、メモリセル領域と高電圧トランジスタ領域では、素子分離溝6、23の絶縁材33の上に、第二ゲート電極19が直接接触するのに対して、低電圧トランジスタ領域では、素子分離溝6の絶縁材33の上に、第一ゲート電極18を介して第二ゲート電極19が配置されることになる。
次に、図22に示すように、フォトリソグラフィと異方性エッチングによって、第一ゲート電極18、第二ゲート電極19、マスク絶縁膜20を加工して、各トランジスタのゲート構造を作る。
これに続いて、図23に示すように、トランジスタの側壁絶縁膜37とソース・ドレイン領域8を形成した後に、各トランジスタをバリア絶縁膜21で覆い、その上に、層間絶縁膜22を堆積する。続いて、層間絶縁膜22を平坦化した後に、メモリセル領域では、ビット線コンタクト4、低電圧トランジスタ領域、高電圧トランジスタ領域ではコンタクト25を形成し、それぞれのコンタクトに接続する形で、メモリセル領域では金属性のビット線BLを、低電圧トランジスタ領域、高電圧トランジスタ領域では金属性の信号線24をそれぞれ配線する。
以上のような工程の後に、パッシベーション膜を堆積する等して、最終的な不揮発性の半導体記憶装置を完成する。
なお、前述の図20、図21の工程においては、この中で、低電圧トランジスタ領域においてのみ、素子分離溝6を充填する絶縁材33の上に、第一ゲート電極18(35)が配置されるが、その場合の効果について、説明する。
図24は、各トランジスタ領域の、ゲートコンタクトプラグの状態を示す断面図であり、(a)、(b)、(c)はそれぞれメモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域を示すものである。
図24において示すように、ゲートからはゲートコンタクトプラグ43により配線が引き出され、層間絶縁膜22の上に形成されたゲート配線44と接続されている。なお、同図において、第一ゲート電極18と第二ゲート電極19の間を素子分離上面39、第二ゲート電極19とマスク絶縁膜20の間をゲート電極上面38、層間絶縁膜22の上面を層間膜上面40とする。また、メモリセル領域においては、層間膜上面40とゲート電極上面38の間の距離つまりゲートコンタクトエッチング深さをL1、層間膜上面40と素子分離上面39の間の距離をL4とする。一方、低電圧トランジスタ領域においては、層間膜上面40とゲート電極上面38の間の距離をL2、層間膜上面40と素子分離上面39の間の距離をL5とする。加えて、高電圧トランジスタ領域においては、層間膜上面40とゲート電極上面38の間の距離をL3、層間膜上面40と素子分離上面39の間の距離をL6とする。
ゲートコンタクトプラグ43は、各トランジスタの素子分離領域において、ゲート電極である第二ゲート電極19と接続されている。従って、それぞれの領域において、ゲートコンタクトプラグ43を形成するためのコンタクトホール形成時のエッチング量は、層間膜上面40と素子分離上面39の間の距離L1、L2、L3を反映する。
なお、この段階で、低電圧トランジスタ領域の素子分離上面39は、他の領域の素子分離上面39よりも低い位置にあるため、素子分離上面39から層間膜上面40の間の距離L5は、他の領域の距離L4、L6に比較して長い。しかしながら、低電圧トランジスタ領域にのみ配置された第一ゲート電極18の厚みが、素子分離上面39の高さの差を相殺するため、各領域における実際のコンタクトエッチング量である、距離L1、L2、L3は、略々同じにすることができる。このため、ゲートコンタクトプラグ43を形成するためのコンタクトホール形成時の加工マージンが広がり、製造時の歩留まり向上に効果的である。
以上述べたような工程を経て、図1に示す、本発明の実施形態1の半導体記憶装置を得ることができる。
その結果、メモリセル領域においては、素子分離溝6を埋め込む時のアスペクト比が大きくなるため、良好な埋め込み特性を得ることができるため、歩留まりを向上させることができる。
また、高電圧トランジスタ領域では、素子分離溝23が深いために、素子分離耐圧を改善することが可能で、デバイスを高性能化することが可能である。
つまり、実施形態1によれば、メモリセル領域における素子分離溝6の埋め込み特性と、高電圧トランジスタ領域における素子分離耐圧とを、同時に向上させることができる。
加えて、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14の3層構造で、比較的薄いONO膜15をゲート絶縁膜として有するメモリセル領域と同じように、比較的薄いゲート絶縁膜16を有する低電圧トランジスタ領域の素子分離溝6の深さが、比較的厚いゲート絶縁膜17を有する高電圧トランジスタ領域の素子分離溝23よりも浅く、メモリセル領域の素子分離溝6と実質的に同じであることから、低電圧トランジスタ領域においても素子分離溝6の良好な埋め込み特性を得ることができる。
一方、比較的薄いゲート絶縁膜16を有する低電圧トランジスタ領域の素子分離溝6の高さは、比較的薄いONO膜15をゲート絶縁膜として用いるメモリセル領域の素子分離溝6や比較的厚いゲート絶縁膜17を有する高電圧トランジスタ領域の素子分離溝23の高よりも低い。このため、低電圧トランジスタ領域においては、素子領域と素子分離領域の段差が小さく、従って、図2(20)に示すように、工程の中で、第一ゲート電極18(35)を堆積した時の、段差を小さくすることができる。このため、第一ゲート電極18を異方性エッチングする時に、低電圧トランジスタ領域におけるエッチングレートの均一性を高く保つことができる。
一般に、低電圧トランジスタ領域では、ゲート絶縁膜16が、高電圧トランジスタ領域に比較して薄いため、エッチングの均一性が悪いと、エッチングレートが大きな部分で、ゲート絶縁膜16がエッチング除去され、このため基板26までがエッチングされてしまうことが少なくない。このため、トランジスタの性能および製造時の歩留まり悪化を引き起こすことが多い。しかし、本実施形態1によれば、低電圧トランジスタ領域で、素子分離溝6の高さを低くすることで、第一ゲート電極18のエッチング加工の均一性を向上させることが可能となるので、低電圧トランジスタ領域の高性能化および製造時の高歩留まりを実現することができる。
また、実施形態1の構造を実現するための、製造方法によれば、高電圧トランジスタ領域の基板26を異方性エッチングして素子分離溝23を形成するときに、メモリセル領域において、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14から成るONO膜15をエッチングストッパ膜として用いることで、メモリセル領域において基板26がエッチングされることを防止し、次に、ONO膜15を除去した後に、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域のそれぞれの領域において基板26をエッチングして、素子分離溝6、23を形成するような工程としたため、フォトリソグラフィを用いることなく、メモリセル領域や低電圧トランジスタ領域の素子分離溝6を、高電圧トランジスタ領域の素子分離溝23よりも浅く形成することが可能となり、低コストでの製造が可能となる。加えて、低電圧トランジスタ領域においても、メモリセル領域と同様に、浅い素子分離溝6を形成することが可能になるため、メモリセル領域と同様の良好な埋め込み特性を実現できる。
また、本実施形態1の製造方法においては、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域の各領域で、素子分離溝6、23を、第一ゲート電極18に対して、自己整合的に形成し、素子分離溝6、23を絶縁材33によって埋め込んだ後に、低電圧トランジスタ領域のONO膜15と第一ゲート電極18のみを除去し、その後、ゲート絶縁膜16とゲート電極材35(後に、第一ゲート電極18と称する)を形成している。このとき、メモリセル領域や高電圧トランジスタ領域のONO膜15、ゲート絶縁膜17、第一ゲート電極18は除去せずに残しておく。また、低電圧トランジスタ領域のチャンネル不純物は、素子分離溝6を形成した後に注入している。
このような製造方法を適用することにより、メモリセル領域および高電圧トランジスタ領域では、素子分離端での電界集中に起因する特性ばらつきを無くす事が可能となる。更に、素子を高信頼性かつ高密度に形成することが可能となる。同時に、低電圧トランジスタ領域のトランジスタでは、チャンネル不純物プロファイルを急峻にして、ショートチャンネル特性に起因するトランジスタの性能劣化を回避することができる。つまり、低電圧トランジスタは高電圧トランジスタに比較して、ゲート長が短いため、ショートチャンネル特性を改善する効果が大きい。
なお、上記の半導体記憶装置の製造方法においては、素子分離溝6の深さと、素子分離溝23の深さの差は、10nmから150nmの範囲に設定するのが望ましい。
また、素子分離溝6の深さと、素子分離溝23の深さの差は、ONO膜15の膜厚以上となるように設定しても良い。
また、本実施形態1の半導体記憶装置の製造方法は、従来技術として例示した特開2002−313967号公報に示された方法と異なり、メモリセル領域と高電圧トランジスタ領域の第一ゲート電極18を、素子分離溝6、23の形成前の段階の、ONO膜15やゲート絶縁膜17の形成後に連続して堆積するため、ONO膜15やゲート絶縁膜17が不純物によって汚染される懸念が無く、素子を高信頼化する上で有効である。
実施形態2
図25は、本発明の実施形態2の半導体記憶装置の断面図であり、同図(A)はメモリセル領域のゲート断面、同図(B)はメモリセル領域の素子分離断面、同図(C)は低電圧トランジスタ領域、同図(D)は高電圧トランジスタ領域の断面をそれぞれ示すものである。
図4の構成の、図1の構成で示した実施形態1との違いは、図25(A)に示した、メモリセル領域のゲート断面にある。
実施形態1においては、メモリセル領域のトランジスタについては、記憶用のトランジスタも、これらを選択制御するためのトランジスタも、同じMONOS構造とする場合を例示したが、本実施形態2においては、メモリセル領域のトランジスタについて、情報を記憶するための記憶領域41とセルを選択するための制御領域42に分けて、記憶領域41においては、実施形態1のメモリセル領域のトランジスタと同じMONOS構造とし、制御領域42においては、図25(C)に示す、低電圧トランジスタ領域と同じMOS構造としている。
つまり制御領域42においては、トランジスタは記憶機能を必要とせず、低電圧トランジスタ領域のトランジスタと同じくスイッチング機能だけを必要とするため、この部分だけ、低電圧トランジスタ領域と同じ構造にすることができる。
なお、制御領域42のトランジスタの形成に当たっては、実施形態1で低電圧トランジスタ領域を構成した場合と全く同じ工程が適用される。このため、メモリセル領域においても、制御領域42に限っては、トランジスタにはONO膜15に代わってゲート絶縁膜16が適用され、第一ゲート電極18の形成過程も低電圧トランジスタ領域の場合と同じとなる。従って、素子分離溝6の深さおよび高さは、低電圧トランジスタ領域におけるものと同じになるため、低電圧トランジスタ領域において得られた効果が、メモリセル領域の制御領域42に配置される選択トランジスタにも波及する。
実施形態3
図26は、本発明の、実施形態3の半導体記憶装置の断面図である。図26の構成の、図1の構成と異なる点は、低電圧トランジスタ領域における素子分離溝6の深さが、メモリセル領域における素子分離溝6の深さよりも、深く、高電圧トランジスタ領域における素子分離溝23と略同じ深さであることである。
つまり、実施形態3の半導体記憶装置によれば、高電圧トランジスタ領域および低電圧トランジスタ領域において、素子分離耐圧を高く保つためには、深く形成されることが望ましいとされる、素子分離溝6、23が、メモリセル領域に比較して深く形成されている。つまり、耐圧を高めるのに適した構成となっている。
加えて、実施形態3の半導体記憶装置によれば、メモリ領域では、製造歩留まりを向上させるためには、浅く形成されることが望ましいとされる、素子分離溝6が、低電圧トランジスタ領域や高電圧トランジスタ領域に比較して、浅く形成されている。つまり、メモリセルの高精細化、大容量化の際に、製造を容易にし、歩留まりを向上させるのに適した構成となっている。
つまり、本発明の実施形態3の半導体記憶装置によれば、歩留まり向上のためには浅い方が望ましいとされるメモリセル領域におけるトレンチ溝が、浅く形成され、素子分離耐圧を高めるためには深い方が望ましいとされる周辺回路部の低電圧トランジスタ領域や高電圧トランジスタ領域におけるトレンチ溝は、深く形成されているので、製造が容易で、歩留まりが高く、また素子分離耐圧が高く性能の優れた半導体記憶装置を実現することができる。
続いて、本発明の実施形態3に係る、半導体記憶装置の製造方法について、図27−図38の断面図に基づいて、順を追って説明する。
ちなみに、図27−図38の、それぞれ(A)、(B)、(C)、(D)は、図26の(A)、(B)、(C)、(D)に示した領域に対応する。
なお、図27−図38では、説明を簡単にするために、実施形態1を説明した際に用いた図1に図示されている、P型基板9の上の、N型ウェル10やP型ウェル11、素子分離溝23の底部のP型領域27は図示せず、これらをまとめて基板26として示す。
先ず、図27に示すように、予め不純物としてボロンを1014〜1019(cm−3)の濃度で含むP型のシリコン基板上に、図示はしないが、1〜100nmの犠牲酸化膜を形成した後、レジストを塗布し、リソグラフィを行い、例えば、リン、砒素、アンチモンなどのイオンを、例えば30〜1500KeVの加速エネルギー、1×1011〜1×1015(cm−2)のドーズ量で注入して、メモリセル領域にN型ウェルを形成する。
また、メモリセル領域および低電圧トランジスタ領域には、例えば、ボロンを100〜1000KeVの加速エネルギー、1×1011〜1×1015(cm−2)のドーズ量で注入してP型ウェルを形成する。
更に、レジストを塗布した後、リソグラフィを行い、メモリセル領域および高電圧トランジスタ領域に、ボロンやインジウム等の不純物を、1×1011〜1×1014(cm−2)のドーズ量で、チャンネルイオンとして注入する。
続いて、犠牲酸化膜を剥離した後に、メモリセル領域の基板26の上に、MONOSのメモリセルのトンネル絶縁膜12となるシリコン酸化膜またはオキシナイトライド膜を0.5〜10nmの厚さで形成する。
その上から、電荷蓄積層13となる、3〜50nmの厚さのシリコン窒化膜を形成する。
更に、その上に、ブロック絶縁膜14となる、3〜30nmの厚さのシリコン酸化膜またはオキシナイトライド膜を形成する。
以上のような工程を経て、ゲート酸化膜となる、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14から成る、ONO膜15を形成する。
一方、低電圧トランジスタ領域においては、厚さ0.5nmの範囲のシリコン酸化膜またはオキシナイトライド膜を堆積して、ゲート絶縁膜16を形成し、高電圧トランジスタ領域においては、酸化膜またはオキシナイトライド膜を10〜50nmの厚さで堆積して、ゲート絶縁膜17を形成する。
また、それぞれの絶縁膜であるONO膜15、ゲート絶縁膜16、17の上には、ゲート電極材となるアモルファスシリコンまたはポリシリコンを10〜500nmの厚さで全面に堆積する。
ちなみに、第一ゲート電極18となるシリコン膜は、後の工程で不純物を注入して異なる導電型のゲート電極を作り分けることを考えると、この段階では不純物を添加しない膜であることが望ましいが、例えば、不純物として、リンを1×1019〜1×1021(cm−3)の範囲で添加されたポリシリコンであっても良い。また、第一ゲート電極18の膜厚は、全ての領域で同じ膜厚となるようにしても良いが、ONO膜15に第一ゲート電極18の膜厚加えたメモリセル領域の合計膜厚と、ゲート絶縁膜16に第一ゲート電極18の膜厚を加えた低電圧トランジスタ領域の合計膜厚と、ゲート絶縁膜17に第一ゲート電極18の膜厚を加えた高電圧トランジスタ領域の合計膜厚の少なくともふたつが同じとなるようにしても良い。
続いて、図28に示すように、全面にシリコン窒化膜などの第一の絶縁膜30とシリコン酸化膜などの第二の絶縁膜31をそれぞれ10〜200nm程度の厚さでウェハ全面に堆積する。
続いて、図29に示すように、リソグラフィと異方性エッチングによって、第一の絶縁膜30と第二の絶縁膜31と、第一ゲート電極18となるポリシリコン膜を加工する。
これに続いて、図30に示すように、メモリセル領域のブロック絶縁膜14と、低電圧トランジスタ領域のゲート絶縁膜16、高電圧トランジスタ領域のゲート絶縁膜17を、第一の絶縁膜30、第二の絶縁膜31を異方性エッチングにより加工する。このとき、メモリセル領域において、シリコン窒化膜の電荷蓄積絶縁膜である電荷蓄積層13が残るようにする。
更に、図31に示すように、シリコン窒化膜に対して選択性をもつエッチング条件で、第一の絶縁膜30と第二の絶縁膜31をマスクとして、異方性エッチングを施すことによって、高電圧トランジスタ領域のシリコン基板を10〜100nm程度の深さまでエッチングして、素子分離溝の段差部32を形成する。このときのエッチング条件は、基板26のエッチングレートが、電荷蓄積層13のエッチングレートの10倍以上となるような条件を選択することが望ましい。このようなエッチング条件を採用することにより、フォトリソグラフィを用いることなく、低電圧トランジスタ領域および高電圧トランジスタ領域に十分な深さの素子分離溝のための段差部32を形成することができる。
続いて、図32に示すように、異方性エッチングによって、第一の絶縁膜30と第二の絶縁膜31をマスクとして、メモリセル領域の電荷蓄積層13およびトンネル絶縁膜12をエッチングする。このとき、基板26に対して選択性の低いエッチング条件を用いることで、低電圧トランジスタ領域と高電圧トランジスタ領域における基板26もエッチングされる。その結果、メモリセル領域および低電圧トランジスタ領域においては、基板26が露出し、一方、低電圧トランジスタ領域や高電圧トランジスタ領域においては、素子分離溝の段差部32が更に5〜50nm程度大きくなる。
次に、図33に示すように、第一の絶縁膜30と第二の絶縁膜31をマスクとする異方性エッチングにより、基板26をエッチングして、メモリセル領域に30〜500nmの深さの素子分離溝6を形成する。このとき、低電圧トランジスタ領域や高電圧トランジスタ領域においては、予め素子分離溝のための段差部32が形成されていたため、メモリセル領域の素子分離溝6よりも10〜150nm程度深さの大きな素子分離溝6、23が形成される。
この後、図34に示すように、素子分離溝6および素子分離溝23を、シリコン酸化膜などの絶縁材33で埋め込み、CMP等の方法で平坦化する。このとき、第二の絶縁膜31はCMPで除去され、第一の絶縁膜30がCMPのエッチングストッパとして機能する。
なお、このCMPに先立ち、図27で示すように、メモリセル領域において、ONO膜15の上に形成される第一ゲート電極18の高さと、低電圧トランジスタ領域や高電圧トランジスタ領域において、ゲート絶縁膜17の上に形成される第一ゲート電極18の高さを揃えておけば、素子分離溝6、23の深さが、領域毎に異なる場合でも、エッチングストッパとなる第一の絶縁膜30の高さが、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域の全ての領域で同一となるため、CMPでの加工が容易となり、歩留まりを向上させることが可能となる。
続いて、図35に示すように、ウェットエッチング等の方法で、第一の絶縁膜30を除去することにより、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域の全ての領域で、第一ゲート電極18が露出する。
次に、図36に示すように、例えば、WSi、NiSi、MoSi、TiSi、CoSiなどの金属の裏打層を1〜500nmの厚さで形成し、第二ゲート電極19を構成する。更に、その上に、シリコン酸化膜またはシリコン窒化膜のマスク絶縁膜20を10〜300nmの厚さで形成する。
次に、図37に示すように、フォトリソグラフィと異方性エッチングによって、第一ゲート電極18、第二ゲート電極19、マスク絶縁膜20を加工して、各トランジスタのゲート構造を作る。
これに続いて、図38に示すように、トランジスタの側壁絶縁膜37とソース・ドレイン領域8を形成した後に、各トランジスタをバリア絶縁膜21で覆い、その上に、層間絶縁膜22を堆積する。続いて、層間絶縁膜22を平坦化した後に、メモリセル領域では、ビット線コンタクト4、低電圧トランジスタ領域、高電圧トランジスタ領域ではコンタクト25を形成し、それぞれのコンタクトに接続する形で、メモリセル領域では金属性のビット線BLを、低電圧トランジスタ領域、高電圧トランジスタ領域では金属性の信号線24をそれぞれ配線する。
以上のような工程の後に、パッシベーション膜を堆積する等して、図5に示す、本発明の実施形態3の半導体記憶装置を完成する。
その結果、メモリセル領域においては、素子分離溝6を埋め込む時のアスペクト比が大きくなるため、良好な埋め込み特性を得ることができるため、歩留まりを向上させることができる。
また、低電圧トランジスタ領域や高電圧トランジスタ領域では、素子分離溝23が深いために、素子分離耐圧を改善することが可能で、デバイスを高性能化することが可能である。
つまり、実施形態3によれば、メモリセル領域における素子分離溝6の埋め込み特性と、低電圧トランジスタ領域や高電圧トランジスタ領域における素子分離耐圧とを、同時に向上させることができる。つまり、メモリセル領域における素子分離溝6の埋め込み性を、低電圧トランジスタ領域や高電圧トランジスタ領域のトランジスタ耐圧を損ねることに向上することができる。
また、比較的薄いONO膜15をゲート絶縁膜とするメモリセル領域の素子分離溝6の溝深さが、比較的薄いゲート絶縁膜16を有する低電圧トランジスタ領域の素子分離溝6や、比較的厚いゲート絶縁膜17を有する高電圧トランジスタ領域の素子分離溝23よりも浅いにも関わらず、それぞれの素子分離溝6、23の絶縁材33の埋め込み高さが、各領域で実質的に同じであるため、ウェハ全面において、素子分離高さを実質的に揃えることが可能となり、ゲート電極加工等の後工程での加工ばらつきを低減し、歩留まりを向上させることができる。
また、実施形態3の構造を実現するための、製造方法によれば、低電圧トランジスタ領域や高電圧トランジスタ領域の基板26を異方性エッチングして素子分離溝6、23を形成するときに、メモリセル領域において、トンネル絶縁膜12、電荷蓄積層13、ブロック絶縁膜14から成るONO膜15をエッチングストッパ膜として用いることで、メモリセル領域において基板26がエッチングされることを防止し、次に、ONO膜15を除去した後に、メモリセル領域、低電圧トランジスタ領域、高電圧トランジスタ領域のそれぞれの領域において基板26をエッチングして、素子分離溝6、23を形成するような工程としたため、フォトリソグラフィを用いることなく、メモリセル領域の素子分離溝6を、低電圧トランジスタ領域や高電圧トランジスタ領域の素子分離溝6、23よりも浅く形成することが可能となり、低コストでの製造ができる。また、低電圧トランジスタ領域においても、高電圧トランジスタ領域と同様に、深い素子分離溝6を形成することが可能となり、高電圧トランジスタ領域と同様の良好な耐圧特性と素子分離性能を実現することができる。
なお、上記の半導体記憶装置の製造方法においては、素子分離溝6の深さと、素子分離溝23の深さの差は、10nmから150nmの範囲に設定するのが望ましい。
また、素子分離溝6の深さと、素子分離溝23の深さの差は、ONO膜15の膜厚以上となるように設定しても良い。
実施形態4
図39は、本発明の実施形態4の半導体記憶装置の断面図であり、同図(a)は断面構造、(b)は製造工程の一部を示す断面図である。なお、各図において、(A)はメモリセル領域のゲート断面(AA’断面相当)、同図(B)はメモリセル領域の素子分離断面(BB’断面相当)、同図(C)は低電圧トランジスタ領域(LV領域)、同図(D)は高電圧トランジスタ領域(HV領域)の断面をそれぞれ示すものである。
図39の構成の、図26の構成で示した実施形態3との違いは、図39の(A)に示した、メモリセル領域のゲート断面にある。
実施形態3においては、メモリセル領域のトランジスタについては、記憶用のトランジスタも、これらを選択制御するためのトランジスタも、同じMONOS構造とする場合を例示したが、本実施形態4においては、メモリセル領域のトランジスタについて、情報を記憶するための記憶領域41とセルを選択するための制御領域42に分けて、記憶領域41においては、実施形態1のメモリセル領域のトランジスタと同じMONOS構造とし、制御領域42においては、図39(a)の(C)に示す、低電圧トランジスタ領域と同じMOS構造としている。
つまり制御領域42においては、トランジスタは記憶機能を必要とせず、低電圧トランジスタ領域のトランジスタと同じくスイッチング機能だけを必要とするため、この部分だけ、低電圧トランジスタ領域と同じ構造にすることができる。
なお、制御領域42のトランジスタの形成に当たっては、図40の(A)に示すように、メモリセル領域においては、制御領域42に限り、トランジスタにはONO膜15に代わって、低電圧トランジスタ領域と同じ、ゲート絶縁膜16を適用し、工程的にも、低電圧トランジスタ領域と同じ工程を適用する。その結果、素子分離溝6の深さおよび高さは、低電圧トランジスタ領域におけるものと同じになるため、低電圧トランジスタ領域において得られる効果が、メモリセル領域の制御領域42に配置される選択トランジスタについても波及する。
なお、上記各実施形態は、図45に回路例を示したNAND型EEPROMを例にとって説明したが、実施の形態は、これに限定されるものではなく、図42に示すような、AND型EEPROM、図43に示すような、NOR型EEPROM、図44に示すようなVirtual Ground Array型のEEPROMにも適用可能なことはもちろんである。
以上、説明したように本発明では、深さの異なる素子分離溝を、ゲート絶縁膜であるONOとSiOの境界に対して、自己整合的に形成することに特徴がある。
これについて説明する。
図51および図52は、メモリセル領域と高耐圧Tr領域の境界部を図示したものである。簡単のため、素子領域(半導体基板)と素子分離溝のみを図示している。
素子領域は、たとえば、トランジスタのチャネルまたはガードリングなどである。
図51は、メモリセル領域と周辺回路領域の素子分離溝の深さをリソグラフィを用いて作り分けた場合の平面図および断面図である。この場合、メモリセル領域と高電圧Tr領域のゲート絶縁膜を作り分けるためのリソグラフィと、素子分離溝の深さを作り分けるためのリソグラフィは別々に行う。したがって、ゲート絶縁膜境界と素子分離深さ境界との間に合わせズレが生じる。その結果、図51の断面図に示すように、境界部の素子分離溝に2箇所の段差が形成される。
このように、素子分離溝の深さをリソグラフィによって作り分けた場合、工程数が増加することに加えて、境界部の素子分離溝の面積が大きくなってしまう問題がある。
図52は本発明の実施例1〜4で説明したように、素子分離溝の深さを、ゲート絶縁膜の作りわけ境界に対して自己整合的に形成した場合である。この場合、素子分離溝深さ作りわけの境界とゲート絶縁膜作りわけの境界は一致するため、境界部の素子分離溝には段差は一箇所しか形成されない。
したがって、素子分離溝の深さを、ゲート絶縁膜の作りわけ境界に対して自己整合的に形成した場合には、素子分離深さの作りわけのためのリソグラフィ工程を省略できることに加えて、境界部の素子分離溝の面積を削減する効果がある。
また、上記各実施形態では、同一の半導体基板上に、電荷蓄積絶縁膜を有するメモリセルと、その周辺回路を構成するトランジスタを配置した、不揮発性半導体記憶装置を例にとって説明したが、例えば、シリコン窒化膜をゲート絶縁膜とするトランジスタと、シリコン酸化膜をゲート絶縁膜とするトランジスタが、同一の半導体基板上に形成され、シリコン窒化膜のトランジスタの素子分離溝を、シリコン酸化膜のトランジスタの素子分離溝よりも浅く形成したい場合にも有効に適用し得るものである。
また、上記各実施形態では、メモリセルのゲート絶縁膜としてシリコン窒化膜を用いた場合を示したが、実施の形態はこれに限らない。周辺回路Trのゲート絶縁膜であるシリコン酸化膜に対してエッチング選択比を有する膜であれば、上記実施形態で述べたものと同様の効果を得ることが出来る。たとえば、電荷蓄積層として、HfOやAl、Ta、TiO等を用いても良い。
本発明の、実施形態1の半導体記憶装置の断面図である。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造方法を説明するための工程断面図の1つである。 本発明の、実施形態1の半導体記憶装置の製造工程における特性を説明するための断面図である。 本発明の、実施形態2の半導体記憶装置の断面図である。 本発明の、実施形態3の半導体記憶装置の断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態3の半導体記憶装置の製造方法を説明するための断面図である。 本発明の、実施形態4の半導体記憶装置の構造と製造方法を説明するための工程断面図の1つである。 本発明の、実施形態4の半導体記憶装置の構造と製造方法を説明するための工程断面図の1つである。 従来のNOMOS型の半導体記憶装置の一例を示す平面図である。 図41に示したメモリセル部の、第一の構成例であるAND型の構成を示す等価回路図である。 図41に示したメモリセル部の、第二の構成例であるNOR型の構成を示す等価回路図である。 図41に示したメモリセル部の、第三の構成例であるVirtual Ground Array型の構成を示す等価回路図である。 図41に示したメモリセル部の、第四の構成例であるNAND型の構成を示す部分等価回路図である。 図45に示すような構成のメモリセル1を有する半導体記憶装置の部分平面図である。 従来の半導体記憶装置の断面図である。 従来の半導体記憶装置の製造工程を説明するための工程断面図の1つである。 従来の半導体記憶装置の製造工程を説明するための工程断面図の1つである。 従来の半導体記憶装置の製造工程を説明するための工程断面図の1つである。 工程の1つとしてリソグラフィ工程を用いて形成したメモリ領域と高耐圧Tr領域の境界部の要部における平面図と断面図とを互いに関連づけして示した図である。 工程の1つとして自己整合的な工程を用いて形成したメモリ領域と高耐圧Tr領域の境界部の要部における平面図と断面図とを互いに関連づけして示した図である。
符号の説明
1 メモリセル
2 周辺回路部
3 ソース線コンタクト
4 ビット線コンタクト
5 NANDセルブロック
6、23 素子分離溝
7 素子分離領域
8 ソース・ドレイン領域
9 P型基板
10 N型ウェル
11 P型ウェル
12 トンネル絶縁膜
13 電荷蓄積層
14 ブロック絶縁膜
15 ONO膜
16、17 ゲート絶縁膜
18 第一ゲート電極
19 第二ゲート電極
20 マスク絶縁膜
21 バリア絶縁膜
22 層間絶縁膜
24 信号線
25 コンタクト
26 基板
27 P型領域
28、29、34、36 レジスト
30 第一の絶縁膜
31 第二の絶縁膜
32 段差部
33 絶縁材
35 ゲート電極材
37 側壁絶縁膜
38 ゲート電極上面
39 素子分離上面
40 層間膜上面
41 記憶領域
42 制御領域
43 ゲートコンタクトプラグ
44 ゲート配線

Claims (11)

  1. 半導体基板上に形成された、
    ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
    前記第1のゲート絶縁膜の上に形成された第1の導電体膜と、
    前記第2のゲート絶縁膜の上に形成された第1の導電体膜と、
    を備え、
    前記第1の領域と前記第2の領域の境界は素子分離トレンチが形成され、前記素子分離トレンチは、前記第1の領域に形成された第1の導電体膜の側面と接して形成され、また、前記素子分離トレンチは、前記第2の領域に形成された第1の導電体膜の側面と接して形成され、前記第1の領域に接した素子分離トレンチの、前記半導体基板表面からの深さは、前記第2の領域に接した素子分離トレンチの、前記半導体基板表面からの深さより浅く設定した
    ことを特徴とする半導体装置。
  2. 前記第1の領域に形成された前記素子分離トレンチの、前記半導体基板表面からの深さと、
    前記第2の領域に形成された前記素子分離トレンチの、前記半導体基板表面からの深さとの差を、
    10nm以上150nm以下の範囲に設定した
    ことを特徴とする請求項1に記載の半導体装置。
  3. 前記第1の領域に形成された前記素子分離トレンチの、前記半導体基板表面からの深さと、
    前記第2の領域に形成された前記素子分離トレンチの、前記半導体基板表面からの深さの差を、
    前記電荷蓄積絶縁膜の膜厚よりも大きいものに設定した
    ことを特徴とする請求項1に記載の半導体装置。
  4. 半導体基板上に形成された、
    ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは別で且つ前記第2のゲート絶縁膜よりも薄い膜厚の第3のゲート絶縁膜を用いた、複数のトランジスタが形成された第3の領域と 前記第1のゲート絶縁膜の上に形成された第1の導電体膜と、
    前記第2のゲート絶縁膜の上に形成された第1の導電体膜と、
    を備え、
    前記第1の領域と前記第2の領域の境界は第1の素子分離トレンチが形成され、前記第1の素子分離トレンチは、前記第1の領域に形成された第1の導電体膜の側面と接して形成され、また、前記第1の素子分離トレンチは、前記第2の領域に形成された第1の導電体膜の側面と接して形成され、前記第1の領域に接した第1の素子分離トレンチの、前記半導体基板表面からの深さは、前記第2の領域に接した第1の素子分離トレンチの、前記半導体基板表面からの深さより浅く、
    前記第1の領域に形成された第1の素子分離トレンチの、半導体基板表面からの深さを、前記第3の領域に形成された第2の素子分離トレンチの、前記半導体基板表面からの深さと実質的に等しく設定した
    ことを特徴とする半導体装置。
  5. 半導体基板上に形成された、
    ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは別で且つ前記第2のゲート絶縁膜よりも薄い膜厚の第3のゲート絶縁膜を用いた、複数のトランジスタが形成された第3の領域と
    を備え、
    前記第1の領域と前記第2の領域の境界は第1の素子分離トレンチが形成され、
    前記第1の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さを、
    前記第2の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さよりも浅く、
    前記第3の領域に形成された第2の素子分離トレンチの、前記半導体基板表面からの深さと実質的に等しく設定し、
    前記メモリセルトランジスタと、前記第2の領域におけるトランジスタと、前記第3の領域におけるトランジスタのそれぞれにおけるゲート電極を、
    それぞれのゲート絶縁膜上に配置された下側の第1ゲート電極と、第1ゲート電極上に電気的に接続されて配置され上側の第2ゲート電極の2層のものとして構成し、
    前記第2ゲート電極は、
    前記第1の領域と前記第2の領域においては、前記第1の素子分離トレンチ上面に接して配置され、
    前記第3の領域においては、前記第2の素子分離トレンチの上面に、前記第1ゲート電極を介して配置されている
    ことを特徴とする半導体装置。
  6. 前記第1の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さと、
    前記第2の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さとの差を、
    10nm以上150nm以下の範囲に設定した
    ことを特徴とする請求項4または請求項5に記載の半導体装置。
  7. 前記第1の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さと、
    前記第2の領域に形成された前記第1の素子分離トレンチの、前記半導体基板表面からの深さの差を、
    前記電荷蓄積絶縁膜の膜厚よりも大きいものに設定した
    ことを特徴とする請求項4または請求項5に記載の半導体装置。
  8. 半導体基板上に形成された、
    ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
    を備えた半導体装置の製造方法であって、
    前記第2の領域の前記半導体基板をエッチングして第2の素子分離トレンチを形成する際には、前記第1の領域では、前記電荷蓄積絶縁膜をエッチングストッパとして機能させることによって前記半導体基板がエッチングされないようにした、ある工程を有し、
    前記ある工程の後に、
    前記第1の領域の、前記電荷蓄積絶縁膜を含む前記第1のゲート絶縁膜と前記半導体基板をエッチングして、第1の素子分離トレンチを形成するとともに、
    このとき同時に前記第2の領域の前記半導体基板をもエッチングして、前記第2の素子分離トレンチをさらに深くエッチングし、
    前記第1の領域に形成された前記第1の素子分離トレンチの、前記半導体基板の表面からの深さを前記第2の領域に形成された前記第2の素子分離トレンチの、前記半導体基板の表面からの深さより浅くなるようにした
    ことを特徴とする半導体装置の製造方法。
  9. 半導体基板上に形成された、
    ゲート絶縁膜として、少なくとも電荷蓄積絶縁膜を含む積層構造の第1のゲート絶縁膜を用いた、複数のメモリセルトランジスタが形成された第1の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは異なる第2のゲート絶縁膜を用いた、複数のトランジスタが形成された第2の領域と、
    ゲート絶縁膜として、前記電荷蓄積絶縁膜とは別で且つ前記第2のゲート絶縁膜よりも薄い膜厚の第3のゲート絶縁膜を用いた、複数のトランジスタが形成された第3の領域と
    を備え、
    前記第1の領域及び前記第3の領域に形成された素子分離トレンチの、前記半導体基板の表面からの深さを前記第2の領域に形成された素子分離トレンチの、前記半導体基板の表面からの深さより浅く設定した
    半導体装置の製造方法であって、
    前記第1及び第3の領域においては、前記半導体基板上に、少なくとも前記第1のゲート絶縁膜とその上に形成されたゲート電極を配置し、
    前記第2の領域においては、前記半導体基板上に、少なくとも前記第2のゲート絶縁膜とその上に形成されたゲート電極を配置し、
    この状態において、前記第2の領域の前記半導体基板をエッチングして第2の素子分離トレンチを形成する際には、前記第及び第3の領域においては前記電荷蓄積絶縁膜をエッチングストッパとして機能させることによって前記半導体基板がエッチングされないようにし、前記第1及び第3の領域の前記電荷蓄積絶縁膜を含む前記第のゲート絶縁膜と前記半導体基板をエッチングして、それぞれ第1及び第3の素子分離トレンチを形成するとともに、このとき同時に前記第2の領域の前記半導体基板をもエッチングして、前記第2の素子分離トレンチをさらに深くエッチングして、前記第1及び第の領域に形成された前記第1及び第の素子分離トレンチの、前記半導体基板の表面からの深さを前記第2の領域に形成された前記第2の素子分離トレンチの、前記半導体基板の表面からの深さより浅くなるようにする
    ことを特徴とする半導体装置の製造方法。
  10. 前記素子分離トレンチを、絶縁体によって埋め込んだ後、
    前記第3の領域に形成された前記第1のゲート絶縁膜および前記ゲート電極を除去する
    ことを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記第1のゲート絶縁膜および前記ゲート電極を除去した後、
    少なくとも前記第3の領域の前記半導体基板上に、前記第3のゲート絶縁膜を形成する
    ことを特徴とする請求項10に記載の半導体装置の製造方法。
JP2003344689A 2003-10-02 2003-10-02 半導体記憶装置とその製造方法 Expired - Fee Related JP4276510B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003344689A JP4276510B2 (ja) 2003-10-02 2003-10-02 半導体記憶装置とその製造方法
TW093129638A TWI278101B (en) 2003-10-02 2004-09-30 Semiconductor memory device and method of manufacturing the same
US10/954,238 US20050093047A1 (en) 2003-10-02 2004-10-01 Semiconductor memory device and method of manufacturing the same
KR1020040078463A KR100677801B1 (ko) 2003-10-02 2004-10-01 반도체 기억 장치와 그 제조 방법
US12/498,149 US7919389B2 (en) 2003-10-02 2009-07-06 Semiconductor memory device that is resistant to high voltages and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344689A JP4276510B2 (ja) 2003-10-02 2003-10-02 半導体記憶装置とその製造方法

Publications (2)

Publication Number Publication Date
JP2005116551A JP2005116551A (ja) 2005-04-28
JP4276510B2 true JP4276510B2 (ja) 2009-06-10

Family

ID=34538241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344689A Expired - Fee Related JP4276510B2 (ja) 2003-10-02 2003-10-02 半導体記憶装置とその製造方法

Country Status (4)

Country Link
US (2) US20050093047A1 (ja)
JP (1) JP4276510B2 (ja)
KR (1) KR100677801B1 (ja)
TW (1) TWI278101B (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116974A (ja) * 2003-10-10 2005-04-28 Seiko Epson Corp 半導体装置の製造方法
KR100578131B1 (ko) 2003-10-28 2006-05-10 삼성전자주식회사 비휘발성 기억 소자 및 그 형성 방법
JP4566086B2 (ja) * 2005-03-31 2010-10-20 富士通セミコンダクター株式会社 半導体装置の製造方法
KR100684899B1 (ko) * 2005-05-18 2007-02-20 삼성전자주식회사 비휘발성 기억 장치
JP4309872B2 (ja) * 2005-06-17 2009-08-05 株式会社東芝 不揮発性半導体記憶装置およびその製造方法
JP4316540B2 (ja) * 2005-06-24 2009-08-19 株式会社東芝 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
US7427548B2 (en) * 2005-06-29 2008-09-23 Infineon Technologies Ag Method for producing charge-trapping memory cell arrays
US7348256B2 (en) * 2005-07-25 2008-03-25 Atmel Corporation Methods of forming reduced electric field DMOS using self-aligned trench isolation
JP5032056B2 (ja) * 2005-07-25 2012-09-26 株式会社東芝 不揮発性半導体メモリ装置の製造方法
JP4791799B2 (ja) * 2005-11-07 2011-10-12 株式会社東芝 半導体記憶装置及びその製造方法
KR100771517B1 (ko) 2006-02-17 2007-10-30 삼성전자주식회사 칩 사이즈를 줄일 수 있는 플래시 메모리 장치
US7884440B2 (en) * 2006-04-26 2011-02-08 Magnachip Semiconductor, Ltd. Semiconductor integrated circuit
JP2008016636A (ja) * 2006-07-06 2008-01-24 Nec Electronics Corp 半導体装置およびその製造方法
KR100822806B1 (ko) * 2006-10-20 2008-04-18 삼성전자주식회사 비휘발성 메모리 장치 및 그 형성 방법
JP2008109042A (ja) * 2006-10-27 2008-05-08 Toshiba Corp 半導体記憶装置及びその製造方法
US20080150011A1 (en) * 2006-12-21 2008-06-26 Spansion Llc Integrated circuit system with memory system
CN102664168A (zh) * 2007-03-22 2012-09-12 海力士半导体有限公司 非易失性存储装置及其制造方法
US7955960B2 (en) * 2007-03-22 2011-06-07 Hynix Semiconductor Inc. Nonvolatile memory device and method of fabricating the same
US8530952B2 (en) * 2007-08-23 2013-09-10 Micron Technology, Inc. Systems, methods and devices for a memory having a buried select line
JP2009054956A (ja) 2007-08-29 2009-03-12 Toshiba Corp 半導体メモリ
JP2009071168A (ja) * 2007-09-14 2009-04-02 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
DE102007045058B4 (de) * 2007-09-20 2015-07-02 Qimonda Ag Verfahren zum Herstellen einer integrierten Schaltung einschließlich verschiedener Typen von Gate-Stacks in ersten und zweiten Bereichen
US8072072B2 (en) * 2007-09-20 2011-12-06 Qimonda Ag Integrated circuit including different types of gate stacks, corresponding intermediate integrated circuit structure and corresponding integrated circuit
JP2009206492A (ja) * 2008-01-31 2009-09-10 Toshiba Corp 半導体装置
JP2009206355A (ja) 2008-02-28 2009-09-10 Toshiba Corp 不揮発性半導体メモリ及び不揮発性半導体メモリの製造方法
CN101587863B (zh) * 2008-05-23 2011-03-23 中芯国际集成电路制造(上海)有限公司 用于基于sonos的快闪存储的多晶硅栅极蚀刻方法和器件
JP2010027656A (ja) * 2008-07-15 2010-02-04 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2010056391A (ja) * 2008-08-29 2010-03-11 Toshiba Corp 半導体装置およびその製造方法
KR20100085651A (ko) * 2009-01-21 2010-07-29 주식회사 하이닉스반도체 플래시 메모리 소자 및 그 제조방법
JP2011044503A (ja) 2009-08-19 2011-03-03 Sharp Corp 半導体装置の製造方法、及び、半導体装置
KR20110117326A (ko) * 2010-04-21 2011-10-27 매그나칩 반도체 유한회사 반도체 장치 및 그 제조방법
KR20130019242A (ko) * 2011-08-16 2013-02-26 에스케이하이닉스 주식회사 반도체 소자 및 그 제조방법
KR20140032238A (ko) * 2012-09-06 2014-03-14 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9219059B2 (en) 2012-09-26 2015-12-22 International Business Machines Corporation Semiconductor structure with integrated passive structures
CN103943571B (zh) * 2013-01-21 2017-04-05 华邦电子股份有限公司 非易失性存储器的制造方法
US8921924B2 (en) * 2013-03-20 2014-12-30 Kabushiki Kaisha Toshiba Semiconductor memory device
US9269766B2 (en) * 2013-09-20 2016-02-23 Globalfoundries Singapore Pte. Ltd. Guard ring for memory array
JP2015118972A (ja) * 2013-12-17 2015-06-25 シナプティクス・ディスプレイ・デバイス合同会社 半導体装置の製造方法
US9659953B2 (en) * 2014-07-07 2017-05-23 Taiwan Semiconductor Manufacturing Co., Ltd. HKMG high voltage CMOS for embedded non-volatile memory
CN105244350A (zh) * 2014-07-11 2016-01-13 联咏科技股份有限公司 驱动装置的集成电路及其制作方法
US9362125B2 (en) * 2014-08-07 2016-06-07 United Microelectronics Corp. Semiconductor process
US9536888B2 (en) * 2014-12-23 2017-01-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method to prevent oxide damage and residue contamination for memory device
KR102282984B1 (ko) * 2015-06-02 2021-07-29 에스케이하이닉스 주식회사 전하트랩 메모리소자를 포함하는 임베디드 전자장치의 제조방법
KR101856338B1 (ko) * 2016-07-15 2018-05-10 매그나칩 반도체 유한회사 디스플레이 드라이버 반도체 소자 및 그 제조 방법
US10985192B2 (en) 2016-07-15 2021-04-20 Key Foundry., Ltd. Display driver semiconductor device and manufacturing method thereof
US10879120B2 (en) * 2016-11-28 2020-12-29 Taiwan Semiconductor Manufacturing Self aligned via and method for fabricating the same
KR102342550B1 (ko) * 2017-06-09 2021-12-23 삼성전자주식회사 반도체 장치
JP2019169580A (ja) * 2018-03-23 2019-10-03 株式会社東芝 半導体装置及びその製造方法
CN113838853A (zh) 2020-06-23 2021-12-24 硅存储技术股份有限公司 在衬底上制造存储器单元、高电压设备和逻辑设备的方法
JP2023532238A (ja) * 2020-06-23 2023-07-27 シリコン ストーリッジ テクノロージー インコーポレイテッド 基板にメモリセル、高電圧デバイス、及び論理デバイスを作製する方法
CN113206146B (zh) * 2021-05-26 2023-03-24 吉林华微电子股份有限公司 半导体器件终端结构、制造方法及半导体器件
CN115360193B (zh) * 2022-10-21 2023-01-31 合肥晶合集成电路股份有限公司 一种半导体结构及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817948A (ja) 1994-06-30 1996-01-19 Toshiba Corp 半導体装置及びその製造方法
JPH09102586A (ja) * 1995-10-06 1997-04-15 Denso Corp 半導体装置の製造方法
JPH09139382A (ja) * 1995-11-14 1997-05-27 Nippon Steel Corp 半導体装置の製造方法
JP3991383B2 (ja) 1997-03-07 2007-10-17 ソニー株式会社 半導体記憶装置及びその製造方法
JP2000286349A (ja) 1999-03-31 2000-10-13 Sony Corp 半導体装置およびその製造方法
JP3966707B2 (ja) * 2001-02-06 2007-08-29 株式会社東芝 半導体装置及びその製造方法
TWI277199B (en) * 2001-06-28 2007-03-21 Toshiba Corp Semiconductor device and manufacturing method therefor
KR20030002709A (ko) * 2001-06-29 2003-01-09 주식회사 하이닉스반도체 플래시 메모리 소자의 소자분리막의 트랜치 형성 방법
GB0117949D0 (en) * 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
JP2003037251A (ja) * 2001-07-25 2003-02-07 Toshiba Corp 半導体装置及び半導体装置の製造方法
KR100390918B1 (ko) * 2001-08-30 2003-07-12 주식회사 하이닉스반도체 반도체 메모리 소자의 제조방법
JP4170635B2 (ja) * 2002-02-18 2008-10-22 松下電器産業株式会社 半導体記憶装置の製造方法
TW588413B (en) * 2002-11-07 2004-05-21 Winbond Electronics Corp Manufacturing method and device of memory with different depths of isolation trench
JP3987418B2 (ja) * 2002-11-15 2007-10-10 株式会社東芝 半導体記憶装置
KR100881847B1 (ko) * 2002-12-28 2009-02-03 동부일렉트로닉스 주식회사 반도체 메모리 소자의 제조 방법
KR100959716B1 (ko) * 2002-12-30 2010-05-25 동부일렉트로닉스 주식회사 플래시 메모리의 제조 방법

Also Published As

Publication number Publication date
US20090267136A1 (en) 2009-10-29
JP2005116551A (ja) 2005-04-28
KR100677801B1 (ko) 2007-02-02
US20050093047A1 (en) 2005-05-05
US7919389B2 (en) 2011-04-05
TW200527658A (en) 2005-08-16
TWI278101B (en) 2007-04-01
KR20050033033A (ko) 2005-04-08

Similar Documents

Publication Publication Date Title
JP4276510B2 (ja) 半導体記憶装置とその製造方法
US7230295B2 (en) Nonvolatile memory cell with multiple floating gates formed after the select gate
US6951782B2 (en) Nonvolatile memory cell with multiple floating gates formed after the select gate and having upward protrusions
US20050148173A1 (en) Non-volatile memory array having vertical transistors and manufacturing method thereof
KR100436672B1 (ko) 반도체 장치 및 그 제조 방법
JP2003332469A (ja) 不揮発性半導体記憶装置及びその製造方法
US6784039B2 (en) Method to form self-aligned split gate flash with L-shaped wordline spacers
US8952536B2 (en) Semiconductor device and method of fabrication
KR20180027413A (ko) 메모리 셀, 반도체 집적 회로 장치, 및 반도체 집적 회로 장치의 제조 방법
JP4195058B2 (ja) ビット線構造およびその製造方法
JP2003289114A (ja) 半導体記憶装置及びその製造方法
KR20080048313A (ko) 비휘발성 메모리 소자 및 그 제조 방법
JP4322477B2 (ja) 半導体装置の製造方法
US7094648B2 (en) Method for fabricating an NROM memory cell array
JP2005530336A (ja) フラッシュメモリセルおよびその製造方法
US7060565B2 (en) Fabrication of dielectric for a nonvolatile memory cell having multiple floating gates
JP2011151072A (ja) 不揮発性半導体記憶装置
JP2001332709A (ja) 不揮発性半導体記憶装置及びその製造方法
KR20060062791A (ko) 비휘발성 메모리 소자 및 그 제조 방법
JP2012227542A (ja) 半導体装置および半導体装置の製造方法
JP2008135770A (ja) 不揮発性半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees