JP2023175916A - トランジスタの短絡保護のためのデバイス設計 - Google Patents

トランジスタの短絡保護のためのデバイス設計 Download PDF

Info

Publication number
JP2023175916A
JP2023175916A JP2023172691A JP2023172691A JP2023175916A JP 2023175916 A JP2023175916 A JP 2023175916A JP 2023172691 A JP2023172691 A JP 2023172691A JP 2023172691 A JP2023172691 A JP 2023172691A JP 2023175916 A JP2023175916 A JP 2023175916A
Authority
JP
Japan
Prior art keywords
semiconductor die
diodes
current terminal
transistor semiconductor
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023172691A
Other languages
English (en)
Inventor
リッチモンド,ジェームズ
Richmond James
ブラント,エドワード・ロバート バン
Robert Van Brunt Edward
スタインマン,フィリップ
Steinmann Philipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Wolfspeed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfspeed Inc filed Critical Wolfspeed Inc
Publication of JP2023175916A publication Critical patent/JP2023175916A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes

Abstract

【課題】トランジスタの短絡保護のためのデバイス設計を提供する。【解決手段】トランジスタ半導体ダイ10は、第1の電流端子12、第2の電流端子14および制御端子16を含む。トランジスタデバイスQigを形成する半導体構造は、第1の電流端子、第2の電流端子および制御端子の間にあり、第1の電流端子と第2の電流端子との間の抵抗は、制御端子において提供される制御信号に基づく。短絡保護回路構成18は、制御端子と第2の電流端子との間に結合され、通常動作モードでは、制御信号の電圧よりも大きい電圧降下を提供し、短絡保護動作モードでは、制御信号の電圧よりも小さい電圧降下を提供する。【選択図】図1

Description

[0001]本開示は、トランジスタ半導体ダイ、特に短絡事象に対する保護が改善されたトランジスタ半導体ダイに関する。
[0002]金属酸化物半導体電界効果トランジスタ(MOSFET)、絶縁ゲートバイポーラトランジスタ(IGBT)、接合電界効果トランジスタ(JFET)、およびバイポーラ接合トランジスタ(BJT)などのトランジスタデバイスは、パワーエレクトロニクスでよく使用され、パワーエレクトロニクスでは、負荷との間で電流を選択的に供給するために使用され得る。特定の状況では、負荷がトランジスタデバイスの両端間に短絡を引き起こす可能性がある。そのような短絡事象により、トランジスタデバイスが故障する可能性がある。
[0003]近年、パワーエレクトロニクスで使用されるデバイスにワイドバンドギャップ半導体材料系を使用する傾向にある。たとえば、炭化ケイ素トランジスタは現在、パワーエレクトロニクスで広く使用される。それらのケイ素対応物と比較して、炭化ケイ素トランジスタは、たとえば、より高い遮断電圧、より低いオン状態抵抗、およびより低いスイッチング損失を提供することによって、より良い性能を提供する。炭化ケイ素トランジスタは、サイズがはるかに小さいため、電流密度が高くなる。したがって、炭化ケイ素トランジスタの短絡耐性時間(short circuit withstand time)、または短絡事象中にデバイスが故障を逃れることができる時間は、同様のケイ素デバイスの場合よりもはるかに短い。
[0004]上記に照らして、現在、短絡保護が改善された炭化ケイ素トランジスタデバイスが必要とされる。
[0005]1つの実施形態では、トランジスタ半導体ダイは、第1の電流端子、第2の電流端子、および制御端子を含む。半導体構造は、第1の電流端子、第2の電流端子、および制御端子の間にあり、第1の電流端子と第2の電流端子との間の抵抗が、制御端子で提供される制御信号に基づくように構成される。短絡保護回路構成は、制御端子と第2の電流端子との間に結合される。通常動作モードでは、短絡保護回路構成は、制御端子と第2の電流端子との間に、制御信号の電圧よりも大きい電圧降下を提供するように構成される。短絡保護動作モードでは、短絡保護回路構成は、制御端子と第2の電流端子との間に、制御信号の電圧よりも低い電圧降下を提供するように構成される。したがって、短絡保護回路構成は、通常動作モードでのトランジスタ半導体ダイの動作を阻害することなく、短絡状態による故障からトランジスタ半導体ダイを保護するように構成される。
[0006]当業者は、本開示の範囲を理解し、添付の図面に関連する好ましい実施形態の以下の詳細な説明を読んだ後、追加の態様を理解するであろう。
[0007]本明細書に組み込まれ、本明細書の一部を形成する添付の図面は、本開示のいくつかの態様を示しており、説明とともに、本開示の原理を説明するのに役立つ。
[0008]図1は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。 [0009]図2は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。 [0010]図3は、本開示の1つの実施形態による、金属酸化膜半導体電界効果トランジスタ(MOSFET)のドレイン-ソース間電圧と、ドレイン-ソース間電流と、ゲート-ソース間電圧との関係を示すグラフである。 [0011]図4は、本開示の1つの実施形態によるトランジスタ半導体ダイの一部の断面図である。 [0012]図5は、本開示の1つの実施形態によるトランジスタ半導体ダイの一部の断面図である。 [0013]図6は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。 [0014]図7は、本開示の1つの実施形態によるトランジスタ半導体ダイの断面図である。 [0015]図8は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。 [0016]図9は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。 [0017]図10は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。 [0018]図11は、本開示の1つの実施形態によるトランジスタ半導体ダイの概略図である。
[0019]以下に記載される実施形態は、当業者が実施形態を実施することを可能にするために必要な情報を表し、実施形態を実施する最良のモードを例示する。添付の図面に照らして以下の説明を読むと、当業者は、本開示の概念を理解し、本明細書で特に扱われていないこれらの概念の適用を認識するであろう。これらの概念および適用は、本開示および添付する特許請求の範囲に含まれることを理解されたい。
[0020]本明細書では、様々な要素を説明するために、第1、第2などの用語が使用され得るが、これらの要素はこれらの用語によって限定されるべきではないことが理解されよう。これらの用語は、ある要素を別の要素と区別するためにのみ使用される。たとえば、本開示の範囲から逸脱することなく、第1の要素は、第2の要素と呼ばれ得、同様に第2の要素は、第1の要素と呼ばれ得る。本明細書で使用される場合、「および/または」という用語は、関連する列挙された項目のうちの1つまたは複数の任意およびすべての組合せを含む。
[0021]層、領域、または基板などの要素が別の要素「に」あるまたは「上に」延びていると称される場合、それは、他の要素に直接ある、または他の要素の上に直接延びることができるか、あるいは、介在する要素もまた存在し得ることが理解されよう。対照的に、要素が別の要素に「直接」ある、または「上に直接」延びていると称される場合、介在する要素は存在しない。同様に、層、領域、または基板などの要素が、別の要素の「上方」にある、または「上方」に延びていると称される場合、それは、他の要素または介在する要素の上方に直接ある、または直接延びていることが理解されよう。対照的に、要素が、別の要素の「上方に直接」にある、または「上方に直接」延びていると称される場合、介在する要素は存在しない。ある要素が別の要素に「接続されている」または「結合されている」と称される場合、それは他の要素に直接接続または結合され得るか、または介在する要素が存在し得ることも理解されよう。対照的に、ある要素が別の要素に「直接接続されている」または「直接結合されている」と称される場合、介在する要素は存在しない。
[0022]「下方」または「上方」または「上側」または「下側」または「水平」または「
垂直」などの相対的な用語は、本明細書では、図面に例示されるように、ある要素、層、または領域の、別の要素、層、または領域に対する関係を説明するために使用され得る。これらの用語および上記で論じられた用語は、図示されている方位に加えて、デバイスの異なる方位を包含することを意図していることが理解されよう。
[0023]本明細書で使用される専門用語は、特定の実施形態を説明することのみを目的としており、本開示を限定することは意図されない。本明細書で使用される場合、単数形「a」、「an」、および「the」は、文脈が明らかに他のことを示さない限り、複数形も含むことが意図される。本明細書で使用される場合、「備える」、「備えている」、「含む」、および/または「含んでいる」という用語は、記載された特徴、完全体、ステップ、動作、要素、および/または構成要素の存在を指定するが、1つまたは複数の他の特徴、完全体、ステップ、動作、要素、構成要素、および/またはそれらのグループの存在または追加を排除しない。
[0024]別段の定義がない限り、本明細書で使用されるすべての用語(技術用語および科学用語を含む)は、本開示が属する分野の当業者によって一般に理解されるものと同じ意味を有する。本明細書で使用される用語は、本明細書および関連技術の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されない限り、理想化された、または過度に形式的な意味で解釈されないとさらに理解される。
[0025]図1は、本開示の1つの実施形態によるトランジスタ半導体ダイ10の概略図を示す。トランジスタ半導体ダイ10は、第1の電流端子12、第2の電流端子14、および制御端子16を含む。第1の電流端子12、第2の電流端子14、および制御端子16の間の半導体構造は、第1の電流端子12と第2の電流端子14との間の抵抗が、制御端子16において提供される制御信号CNTに基づくように、トランジスタデバイスQigを形成する。図1に示すように、トランジスタデバイスQigは、金属酸化膜半導体電界効果トランジスタ(MOSFET)である。したがって、第1の電流端子12はドレイン端子であり、第2の電流端子14はソース端子であり、制御端子16はゲート端子である。しかしながら、本開示の原理は、絶縁ゲートバイポーラトランジスタ(IGBT)などの任意のトランジスタデバイスに等しく適用される。IGBTの場合、第1の電流端子12はコレクタ端子であり、第2の電流端子14はエミッタ端子であり、制御端子16はゲート端子である。トランジスタデバイスQigは、パワーエレクトロニクスのために使用され得るので、電流が、第1の電流端子12と第2の電流端子14との間で双方向に伝導するように、フリーホイーリング反平行ダイオード(freewheeling anti-parallel diode)Dfwが、トランジスタデバイスQigと反平行に結合され得る。様々な実施形態において、フリーホイーリングダイオードDfwは、たとえばボディダイオードのように、トランジスタデバイスQigの外部にあり得るか、またはトランジスタデバイスQigの内部にあり得る。
[0026]トランジスタデバイスQigは、本明細書では絶縁ゲートデバイスとして示されているが、本開示の原理は、バイポーラ接合トランジスタ(BJT)および接合電界効果トランジスタ(JFET)などの任意のトランジスタデバイスに等しく適用される。BJTの場合、第1の電流端子12はコレクタ端子であり、第2の電流端子14はエミッタ端子であり、制御端子16はベース端子である。JFETの場合、第1の電流端子12はドレイン端子であり、第2の電流端子14はソース端子であり、制御端子16はゲート端子である。さらに、トランジスタデバイスQigは、サイリスタであり得る。サイリスタの場合、第1の電流端子12はアノードであり、第2の電流端子14はカソードであり、制御端子16はゲート端子である。
[0027]トランジスタ半導体ダイ10は、炭化ケイ素などのワイドバンドギャップ材料系
を利用し得る。上記で論じたように、炭化ケイ素トランジスタ半導体ダイ10は、サイズがより小さく、電流密度がより高いため、ケイ素対応物よりも短絡事象に対してより敏感であり得る。したがって、短絡保護回路構成18は、制御端子16と第2の電流端子14との間に結合される。短絡保護回路構成18は、通常動作モードおよび短絡保護動作モードで動作するように構成される。通常動作モードでは、短絡保護回路構成18は、制御信号CNTの電圧よりも大きい、制御端子16と第2の電流端子14との間の電圧降下を提供するように構成される。短絡保護動作モードでは、短絡保護回路構成18は、制御信号CNTの電圧よりも小さい、制御端子16と第2の電流端子14との間の電圧降下を提供するように構成される。通常動作モードでは、短絡保護回路構成18の両端の電圧降下が、制御信号CNTの電圧よりも大きい場合、トランジスタデバイスQigの動作は、比較的影響を受けない。短絡保護動作モードでは、短絡保護回路構成18の両端の電圧降下が、制御信号CNTの電圧よりも小さい場合、制御端子16と第2の電流端子14との間の電圧(すなわち、トランジスタデバイスQigのゲートからソースへの電圧)が低下し、これにより、デバイスを、部分的または完全に遮断するように、制御端子16における電圧が下げられる。トランジスタデバイスQigの遮断は、故障を防ぐために、短絡事象中にデバイスを保護する。
[0028]上記の機能を達成し得る1つの手法は、短絡保護回路構成18の両端の電圧降下に対して負の温度係数を有するように、短絡保護回路構成18を提供することによって達成され得る。言い換えれば、短絡保護回路構成18は、温度が上昇するにつれて短絡保護回路構成18の両端の電圧降下が減少するように提供され得る。短絡事象の間、トランジスタ半導体ダイ10の温度は、通常の動作温度をはるかに超えて急速に上昇するので、短絡保護回路構成18は、短絡事象が発生した場合にのみ、制御端子16と第2の電流端子14との間の電圧降下を、大幅に低減し得る。この機能は、短絡保護回路構成18と、トランジスタ半導体ダイ10の通電部分との間に適切な熱的結合を必要とすることに留意されたい。
[0029]特に、短絡保護回路構成18は、トランジスタ半導体ダイ10に配置される。以下に詳述するように、短絡保護回路構成18は、トランジスタ半導体ダイ10における最小の面積を占め、トランジスタ半導体ダイ10の短絡耐性時間を大幅に、場合によっては無期限に延長できる可能性がある。
[0030]図2は、本開示の1つの実施形態による短絡保護回路構成18の詳細を示すトランジスタ半導体ダイ10の概略図である。図2に示されるように、短絡保護回路構成18は、制御端子16と第2の電流端子14との間に直列に結合された、いくつかの短絡保護ダイオードDscを含み得る。特に、短絡保護ダイオードDscは、制御端子16と第2の電流端子14との間で、アノードからカソードへ結合され、その結果、短絡保護ダイオードDscのうちの最初の短絡保護ダイオードDscのアノードが、制御端子16に結合され、短絡保護ダイオードDscのうちの最後の短絡保護ダイオードDscのカソードが、第2の電流端子14に結合される。上記で論じたように、短絡保護ダイオードDscは、その順方向電圧降下に対して負の温度係数(たとえば、指数関数的な負の温度係数)を与えられ得る。言い換えれば、短絡保護ダイオードDscは、温度が上昇するにつれて、ダイオード間の順方向電圧降下が減少するように提供され得る。そのような負の温度係数は、炭化ケイ素ダイオードに自然に存在する。負の温度係数により、短絡保護ダイオードDscの両端の電圧降下は、通常動作モードにおける制御信号CNTの電圧よりも大きくなり(したがって、トランジスタデバイスQigの動作に干渉せず)、短絡保護動作モードにおける制御信号CNTの電圧よりも小さくなる(したがって、トランジスタデバイスQigを部分的または完全にオフにする)。この機能は、短絡保護回路構成18とトランジスタ半導体ダイ10の通電部分との間に、適切な熱的結合を必要とすることに留意されたい。短絡保護ダイオードDscの数は、トランジスタ半導体ダイ10の温度が、短絡し
きい値温度よりも低い場合、短絡保護ダイオードDscの両端の電圧降下が、制御信号CNTの電圧以上となるように選択され、トランジスタ半導体ダイ10の温度が、短絡しきい値温度を上回る場合、制御端子16における電圧が、トランジスタデバイスQigを部分的または完全にオフにするのに十分に下げられるように、短絡保護ダイオードDscの両端の電圧降下が、制御信号CNTの電圧よりも著しく低くなるように選択され得る。
[0031]短絡事象からトランジスタデバイスQigを保護することに加えて、短絡保護回路構成18はまた、ゲートの最大電圧を、短絡保護ダイオードDscの組み合わされた順方向電圧降下にクランプする。これは、トランジスタデバイスQigを静電放電(ESD)から保護するという追加の利点があり、トランジスタデバイスQigのゲートに、電圧オーバシュート保護を提供する。
[0032]短絡保護回路構成18は、トランジスタ半導体ダイ10の短絡耐性時間の大幅な改善を可能にし得る。本明細書で論じられるように、短絡保護回路構成18は、トランジスタ半導体ダイ10における最小の活性面積を必要とし得る。様々な実施形態において、トランジスタ半導体ダイ10のオン状態抵抗は、0.1mΩ/cmから3.0mΩ/cmの間であり得、トランジスタ半導体ダイ10の遮断電圧は、600Vから10kVの間であり得、トランジスタ半導体ダイ10の短絡耐性時間は、3マイクロ秒より大きくてもよい。特に、トランジスタ半導体ダイ10のオン状態抵抗は、0.5mΩ/cmから3.0mΩ/cmの間、1.0mΩ/cmから3.0mΩ/cmの間、1.5mΩ/cmから3.0mΩ/cmの間、2.0mΩ/cmから3.0mΩ/cmの間、2.5mΩ/cmから3.0mΩ/cmの間などのような上記の範囲の何れであってもよい。トランジスタ半導体ダイ10の遮断電圧は、同様に、600Vから1kVの間、600Vから2kVの間、600Vから5kVの間、1kVから5kVの間、5kVから10kVの間などのような上記の範囲の何れであってもよい。トランジスタ半導体ダイ10のオン状態抵抗と遮断電圧との関係は、式(1)にしたがって表され得る。
Figure 2023175916000002
ここで、Ronは、トランジスタ半導体ダイのオン状態抵抗であり、Vblockは、トランジスタ半導体ダイ10の遮断電圧である。
[0033]トランジスタ半導体ダイ10の短絡耐性時間は、いくつかの実施形態では10秒未満であり得るが、本開示の原理はまた、トランジスタ半導体ダイ10が、いくつかの状況において、短絡事象に無期限に耐えることを可能にし得る。トランジスタ半導体ダイ10の短絡耐性時間は、短絡耐性時間が4マイクロ秒から10秒の間、5マイクロ秒から10秒の間、10マイクロ秒から10秒の間、50マイクロ秒から10秒の間、5ミリ秒から10秒の間、10ミリ秒から10秒の間、50ミリ秒から10秒の間、1秒から10秒の間などのような上記の範囲の何れであってもよい。
[0034]図3は、MOSFETにおけるドレイン-ソース間電圧と、ドレイン-ソース間電流と、ゲート-ソース間電圧との関係を示すグラフである。図示されるように、ドレイン-ソース間電圧とドレイン-ソース間電流との関係は、ゲート-ソース間電圧が増加するにつれて、ドレイン-ソース間電圧とドレイン-ソース間電流との曲線の急峻さが増加するように、ゲート-ソース間電圧に依存する。したがって、ゲート-ソース間電圧が高くなると、短絡事象中のドレイン-ソース間電流が高くなる。ドレイン-ソース間電流が十分に高くなると、デバイスは故障する。短絡事象中にゲート-ソース間電圧を下げることにより、ドレイン-ソース間電流が大幅に減少し、デバイスの故障を防ぐことができる。
[0035]図4は、本開示の1つの実施形態によるトランジスタ半導体ダイ10の一部の断面図である。トランジスタ半導体ダイ10は、基板20、基板20上のドリフト層22、ドリフト層22における多数のインプラント24、上部金属化層(metallization layer)
26、および下部金属化層28を含む。特に、トランジスタ半導体ダイ10の右側には、接合インプラント30がJFETギャップ32によって分離されるように、ドリフト層22において一対の接合インプラント30を含む垂直MOSFETとして、トランジスタデバイスQigが提供される。ゲート酸化物層36の上部のゲート接点34は、基板20の反対側の、ドリフト層22の表面上の、接合インプラント30の間に延びる。(第2の電流端子14でもあり得る)ソース接点38もまた、基板の反対側の、ドリフト層22の表面上の、接合インプラント30のそれぞれに接触する。(第1の電流端子12でもあり得る)ドレイン接点40は、ドリフト層22の反対側の基板20にある。ソース接点38は、上部金属化層26の一部によって提供される。ドレイン接点40は、下部金属化層28によって提供される。
[0036]トランジスタ半導体ダイ10の左側において、制御端子16は、上部金属化層26の一部によって提供される。図示されていないが、制御端子16は、(たとえば、上部金属化層26の下の電界酸化物層44上に提供されるゲートランナ42を介して)断面図に示されていない平面上でトランジスタデバイスQigのゲート接点34に結合される。制御端子16はまた、ドリフト層22に形成された、いくつかのP-N接合46を介して、トランジスタデバイスQigのソース接点38に結合される。これらのP-N接合46のおのおのは、図2に対して上記で論じた短絡保護ダイオードDscのうちの1つの短絡保護ダイオードDscを形成する。上部金属化層26は、図示されるように、P-N接合46を介して制御端子16とソース接点38との間に接続を形成するように適切にパターン化される。金属間誘電体層48は、上部金属化層26の異なる部分を絶縁して、所望の接続パターンを形成し得る。
[0037]トランジスタデバイスQigの1つの単位セルのみが図4に示されているが、トランジスタデバイスQigは、トランジスタ半導体ダイ10の所望の順方向電流定格を提供するために、ともに結合された任意の数のセルを備え得る。さらに、短絡保護ダイオードDscは、図4においてドリフト層22内に隣り合って示されているが、短絡保護ダイオードDscは、トランジスタ半導体ダイ10内に任意の適切な方式で分布され得る。たとえば、短絡保護ダイオードDscは、短絡保護ダイオードDscに割り当てられる総活性面積を減らすために、トランジスタデバイスQigの異なるセル間にパターンで分布され得る。一般に、短絡保護ダイオードDscは、トランジスタデバイスQigと比較した場合、非常に少ない面積しか使わず、トランジスタ半導体ダイ10の総活性面積への影響を最小限に抑えるであろう。
[0038]図5は、本開示の追加の実施形態によるトランジスタ半導体ダイ10を示す。図5に示されるトランジスタ半導体ダイ10は、(層間の相互作用を回避するために、追加の半導体層52とドリフト層22との間に電界酸化物層44を伴う)ドリフト層22上に提供される追加の半導体層52(たとえば、ポリケイ素層)に形成されるいくつかのP-N接合50として短絡保護ダイオードDscが提供されることを除いて、図4に示されるものと実質的に同様である。いくつかの金属ジャンパ53が、隣接する各P-N接合50間に提供され得る。図5に示される実施形態では、短絡保護ダイオードDscは、ツェナーダイオードであり得る。そのような実施形態では、短絡保護ダイオードDscは、絶縁ゲート端子16と第2の電流端子14との間で直列のカソード-アノードで結合され、短絡保護ダイオードDscのうちの最初の短絡保護ダイオードDscのカソードは、制御端子16に結合され、短絡保護ダイオードDscのうちの最後の短絡保護ダイオードDscのアノードは、第2の電流端子14に結合される。しかしながら、図5におけるP-N接
合50は、示されるように、絶縁ゲート端子16と第2の電流端子14との間で、アノード-カソードで結合されるように反転され得る。いくつかの実施形態では、ドリフト層22上に提供される追加の半導体層52に短絡保護ダイオードDscを提供することにより、短絡保護ダイオードDscを、トランジスタデバイスQigを介して移動させることができるので、短絡保護回路構成18に割り当てられる活性面積の減少または排除を可能にし得る。
[0039]図6は、本開示の追加の実施形態によるトランジスタ半導体ダイ10の概略図である。図6に示されるトランジスタ半導体ダイ10は、短絡保護回路構成18がさらに、短絡保護ダイオードDscと直列に結合された短絡保護抵抗素子Rscを含むことを除いて、図2に示されるものと実質的に同様である。短絡保護抵抗素子Rscを使用して、ダイオードのみを使用して達成するのが困難な可能性がある短絡保護回路構成18の両端の正確な電圧降下を達成することができる。短絡保護回路構成18におけるダイオードのみを使用することで、短絡保護回路構成18の両端の総電圧降下を、ダイオードの順方向電圧降下の整数倍に効果的に制限するので、短絡保護抵抗素子Rscを提供することにより、短絡保護回路構成18の両端の電圧降下のより正確な調整が可能となる。短絡保護回路構成18は、トランジスタ半導体ダイ10の温度が上昇するにつれて、短絡保護抵抗素子Rscの抵抗が減少するように、短絡保護回路構成18自体の抵抗に対して負の温度係数を与えられ得る。
[0040]図7は、本開示の追加の実施形態によるトランジスタ半導体ダイ10の一部の断面図である。図7に示されるトランジスタ半導体ダイ10は、トランジスタ半導体ダイ10がさらに、制御端子16と第2の電流端子14との間に結合された短絡保護抵抗素子Rscを含むことを除いて、図4に示されるものと実質的に同様である。短絡保護抵抗素子Rscは、深いNドープウェル54を使用して実施され得る。この方式で短絡保護抵抗素子Rscを提供すると、抵抗に対して負の温度係数を保証できる。図示されていないが、他の実施形態では、短絡保護抵抗素子Rscは、高濃度にドープされたポリケイ素レジスタ、抵抗に対して十分に高い正の温度係数を有する金属レジスタ、または他の任意の適切なタイプのレジスタ要素を使用して実施され得る。
[0041]図8は、本開示の追加の実施形態によるトランジスタ半導体ダイ10の概略図である。図8に示されるトランジスタ半導体ダイ10は、トランジスタ半導体ダイ10がさらに、制御端子16と、トランジスタデバイスQigのゲートとの間に結合されたゲート抵抗素子Rを含むことを除いて、図1に示されるものと実質的に同様である。ゲート抵抗素子Rは、それ自体の抵抗に対して正の温度係数を与えられる。言い換えれば、ゲート抵抗素子Rの抵抗は、トランジスタ半導体ダイ10の温度が上昇するにつれて増加する。この機能は、短絡保護回路構成18とトランジスタ半導体ダイ10の通電部分との間に適切な熱的結合を必要とすることに留意されたい。これは、短絡事象の場合にゲート駆動電流を減少させ、それによって短絡保護回路構成18の作用を強化する。
[0042]上記で論じたように、トランジスタ半導体ダイ10の前述の例は、主にトランジスタデバイスQigをMOSFETとして示しているが、本開示の原理は、IGBT、BJT、JFETなどを含む任意のタイプのトランジスタデバイスに等しく適用される。したがって、完全を期すために、図9は、トランジスタデバイスQigが、MOSFETの代わりにIGBTであるトランジスタ半導体ダイ10の概略図を示す。この場合、第1の電流端子12はコレクタ端子であり、第2の電流端子14はエミッタ端子である。当業者は、上記に示されたトランジスタ半導体ダイ10の断面図に示されるMOSFETが、たとえば、基板20とドリフト層22との間にインジェクタ層を追加することによって、IGBTと容易に置き換えることができることを容易に理解するであろう。図10は、トランジスタデバイスQigが、MOSFETの代わりにBJTであるトランジスタ半導体ダ
イ10の概略図を示す。この場合、第1の電流端子12はコレクタ端子であり、第2の電流端子14はエミッタ端子であり、制御端子14はベース端子である。当業者は、上記に示されたトランジスタ半導体ダイ10の断面図に示されるMOSFETをBJTと容易に置き換えることができることを容易に理解するであろう。図11は、トランジスタデバイスQigが、MOSFETの代わりにJFETであるトランジスタ半導体ダイ10の概略図を示す。この場合、第1の電流端子12はドレイン端子であり、第2の電流端子14はソース端子であり、制御端子16はゲート端子である。当業者は、上記に示されたトランジスタ半導体ダイ10の断面図に示されているMOSFETを、JFETと容易に置き換えることができることを容易に理解するであろう。
[0043]当業者は、本開示の好ましい実施形態に対する改善および修正を認識するであろう。そのようなすべての改善および修正は、本明細書に開示される概念および以下の特許請求の範囲内で考慮される。

Claims (30)

  1. トランジスタ半導体ダイであって、
    第1の電流端子および第2の電流端子と、
    制御端子と、
    前記第1の電流端子、前記第2の電流端子、および前記制御端子の間の半導体構造であって、前記第1の電流端子と前記第2の電流端子との間の抵抗が、前記制御端子において提供される制御信号に基づくように構成された半導体構造と、
    前記制御端子と前記第2の電流端子との間に結合され、
    通常動作モードでは、前記制御端子と前記第2の電流端子との間に、前記制御信号の電圧よりも大きい電圧降下を提供し、
    短絡保護動作モードでは、前記制御端子と前記第2の電流端子との間に、前記制御信号の電圧よりも小さい電圧降下を提供する、ように構成された短絡保護回路構成とを備えた、トランジスタ半導体ダイ。
  2. 前記短絡保護回路構成は、前記制御端子と前記第2の電流端子との間に結合された1つまたは複数のダイオードを備える、請求項1に記載のトランジスタ半導体ダイ。
  3. 前記1つまたは複数のダイオードは、前記半導体構造内の、複数のインプラント領域によって提供される、請求項2に記載のトランジスタ半導体ダイ。
  4. 前記1つまたは複数のダイオードは、前記半導体構造上の、追加の半導体層によって提供される、請求項2に記載のトランジスタ半導体ダイ。
  5. 前記短絡保護回路構成と前記制御端子との間に結合された抵抗素子をさらに備えた、請求項2に記載のトランジスタ半導体ダイ。
  6. 前記1つまたは複数のダイオードは、前記1つまたは複数のダイオードの両端の電圧降下に対して負の温度係数を有し、
    前記抵抗素子は、それ自体の抵抗に対して正の温度係数を有する、請求項5に記載のトランジスタ半導体ダイ。
  7. 前記1つまたは複数のダイオードは、前記1つまたは複数のダイオードの両端の電圧降下に対して負の温度係数を有する、請求項2に記載のトランジスタ半導体ダイ。
  8. 前記1つまたは複数のダイオードのうちの最初のダイオードのアノードが、前記制御端子に結合され、前記1つまたは複数のダイオードのうちの最後のダイオードのカソードが、前記第2の電流端子に結合されるように、前記1つまたは複数のダイオードは、直列に結合される、請求項2に記載のトランジスタ半導体ダイ。
  9. 前記1つまたは複数のダイオードは、PNダイオードである、請求項8に記載のトランジスタ半導体ダイ。
  10. 前記1つまたは複数のダイオードは、ショットキーダイオードである、請求項8に記載のトランジスタ半導体ダイ。
  11. 前記1つまたは複数のダイオードのうちの最初のダイオードのカソードが、前記制御端子に結合され、前記1つまたは複数のダイオードのうちの最後のダイオードのアノードが、前記第2の電流端子に結合されるように、前記1つまたは複数のダイオードは、直列に結合されたツェナーダイオードである、請求項2に記載のトランジスタ半導体ダイ。
  12. 前記半導体構造は、炭化ケイ素を備える、請求項1に記載のトランジスタ半導体ダイ。
  13. 前記第1の電流端子がドレイン端子であり、前記第2の電流端子がソース端子であるように、前記半導体構造は、金属酸化物半導体電界効果トランジスタ(MOSFET)を提供する、請求項12に記載のトランジスタ半導体ダイ。
  14. 前記第1の電流端子がコレクタ端子であり、前記第2の電流端子がエミッタ端子であるように、前記半導体構造は、絶縁ゲートバイポーラトランジスタ(IGBT)を提供する、請求項12に記載のトランジスタ半導体ダイ。
  15. 前記トランジスタ半導体ダイは、前記半導体構造の温度が、短絡しきい値温度を下回る場合、前記通常動作モードで動作するように構成され、
    前記トランジスタ半導体ダイは、前記半導体構造の温度が、前記短絡しきい値温度を上回る場合、前記短絡保護動作モードで動作するように構成される、請求項1に記載のトランジスタ半導体ダイ。
  16. 前記短絡保護回路構成によって提供される、前記制御端子と前記第2の電流端子との間の前記電圧降下が、負の温度係数を有する、請求項1に記載のトランジスタ半導体ダイ。
  17. 前記トランジスタ半導体ダイのオン状態抵抗は、3.0mΩ/cm未満であり、前記トランジスタ半導体ダイの遮断電圧は、600Vよりも大きく、前記トランジスタ半導体ダイの短絡耐性時間は、3マイクロ秒よりも大きい、請求項1に記載のトランジスタ半導体ダイ。
  18. 前記トランジスタ半導体ダイの前記オン状態抵抗は、0.1mΩ/cmよりも大きく、前記トランジスタ半導体ダイの前記遮断電圧は、10kV未満であり、前記トランジスタ半導体ダイの短絡耐性時間は、10秒未満である、請求項17に記載のトランジスタ半導体ダイ。
  19. トランジスタ半導体ダイであって、
    第1の電流端子および第2の電流端子と、
    制御端子と、
    前記第1の電流端子、前記第2の電流端子、および前記制御端子の間の半導体構造であって、前記第1の電流端子と前記第2の電流端子との間の抵抗は、前記制御端子において提供される制御信号に基づき、前記トランジスタ半導体ダイのオン状態抵抗は、3.0mΩ/cm未満であり、前記トランジスタ半導体ダイの遮断電圧は、600Vよりも大きく、前記トランジスタ半導体ダイの短絡耐性時間は、3マイクロ秒よりも大きいように構成された半導体構造とを備えた、トランジスタ半導体ダイ。
  20. 前記トランジスタ半導体ダイの前記オン状態抵抗は、0.1mΩ/cmよりも大きく、前記トランジスタ半導体ダイの前記遮断電圧は、10kV未満であり、前記トランジスタ半導体ダイの前記短絡耐性時間は、10秒未満である、請求項19に記載のトランジスタ半導体ダイ。
  21. トランジスタ半導体ダイであって、
    第1の電流端子および第2の電流端子と、
    制御端子と、
    前記第1の電流端子、前記第2の電流端子、および前記制御端子の間の半導体構造であって、前記第1の電流端子と前記第2の電流端子との間の抵抗が、前記制御端子において
    提供される制御信号に基づくように構成された半導体構造と、
    前記制御端子と前記第2の電流端子との間に結合された短絡保護回路構成であって、前記制御端子と前記第2の電流端子との間に直列に結合された複数のダイオードを備える短絡保護回路構成とを備えた、トランジスタ半導体ダイ。
  22. 前記複数のダイオードのうちの最初のダイオードのアノードが、前記制御端子に結合され、前記複数のダイオードのうちの最後のダイオードのカソードが、前記第2の電流端子に結合され、前記複数のダイオードのうちの隣接するダイオードの各対が、アノードからカソードへ結合されるように、前記複数のダイオードが直列に結合される、請求項21に記載のトランジスタ半導体ダイ。
  23. 前記複数のダイオードのうちの最後のダイオードのカソードと、前記第2の電流端子との間に結合された抵抗素子をさらに備えた、請求項22に記載のトランジスタ半導体ダイ。
  24. 1つまたは複数のダイオードは、前記1つまたは複数のダイオードの両端の電圧降下に対して負の温度係数を有し、
    前記抵抗素子は、それ自体の抵抗に対して負の温度係数を有する、請求項23に記載のトランジスタ半導体ダイ。
  25. 前記複数のダイオードのうちの最初のダイオードのカソードが、前記制御端子に結合され、前記複数のダイオードのうちの最後のダイオードのアノードが、前記第2の電流端子に結合され、前記複数のダイオードのうちの隣接するダイオードの各対が、アノードからカソードへ結合されるように、前記複数のダイオードが直列に結合される、請求項21に記載のトランジスタ半導体ダイ。
  26. 前記複数のダイオードは、ツェナーダイオードである、請求項23に記載のトランジスタ半導体ダイ。
  27. 前記ダイオードのうちの最後のダイオードのアノードと、前記第2の電流端子との間に結合された抵抗素子をさらに備えた、請求項25に記載のトランジスタ半導体ダイ。
  28. 1つまたは複数のダイオードは、前記1つまたは複数のダイオードの両端の電圧降下に対して負の温度係数を有し、
    前記抵抗素子は、それ自体の抵抗に対して正の温度係数を有する、請求項27に記載のトランジスタ半導体ダイ。
  29. 前記短絡保護回路構成と前記制御端子との間に結合された抵抗素子をさらに備えた、請求項21に記載のトランジスタ半導体ダイ。
  30. 1つまたは複数のダイオードは、前記1つまたは複数のダイオードの両端の電圧降下に対して負の温度係数を有し、
    前記抵抗素子は、それ自体の抵抗に対して正の温度係数を有する、請求項29に記載のトランジスタ半導体ダイ。
JP2023172691A 2019-06-21 2023-10-04 トランジスタの短絡保護のためのデバイス設計 Pending JP2023175916A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/448,538 2019-06-21
US16/448,538 US11579645B2 (en) 2019-06-21 2019-06-21 Device design for short-circuitry protection circuitry within transistors
PCT/US2020/036251 WO2020256962A1 (en) 2019-06-21 2020-06-05 Device design for short-circuit protection of transistors
JP2021576295A JP7362790B2 (ja) 2019-06-21 2020-06-05 トランジスタの短絡保護のためのデバイス設計

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021576295A Division JP7362790B2 (ja) 2019-06-21 2020-06-05 トランジスタの短絡保護のためのデバイス設計

Publications (1)

Publication Number Publication Date
JP2023175916A true JP2023175916A (ja) 2023-12-12

Family

ID=71846486

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021576295A Active JP7362790B2 (ja) 2019-06-21 2020-06-05 トランジスタの短絡保護のためのデバイス設計
JP2023172691A Pending JP2023175916A (ja) 2019-06-21 2023-10-04 トランジスタの短絡保護のためのデバイス設計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021576295A Active JP7362790B2 (ja) 2019-06-21 2020-06-05 トランジスタの短絡保護のためのデバイス設計

Country Status (4)

Country Link
US (2) US11579645B2 (ja)
EP (1) EP3987661A1 (ja)
JP (2) JP7362790B2 (ja)
WO (1) WO2020256962A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975261A1 (en) * 2020-09-29 2022-03-30 Infineon Technologies Dresden GmbH & Co . KG Voltage-controlled switching device with resistive path
JP2022113931A (ja) * 2021-01-26 2022-08-05 エイブリック株式会社 半導体装置

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271275A (ja) * 1985-09-25 1987-04-01 Toshiba Corp 半導体集積回路
JPH0693485B2 (ja) * 1985-11-29 1994-11-16 日本電装株式会社 半導体装置
US5119162A (en) * 1989-02-10 1992-06-02 Texas Instruments Incorporated Integrated power DMOS circuit with protection diode
US5311391A (en) * 1993-05-04 1994-05-10 Hewlett-Packard Company Electrostatic discharge protection circuit with dynamic triggering
JP3243902B2 (ja) * 1993-09-17 2002-01-07 株式会社日立製作所 半導体装置
JP2792417B2 (ja) * 1993-12-17 1998-09-03 日本電気株式会社 半導体回路の入力保護回路
JP3265849B2 (ja) * 1994-09-16 2002-03-18 富士電機株式会社 過熱保護装置付き自己消弧素子
GB9424666D0 (en) * 1994-12-07 1995-02-01 Philips Electronics Uk Ltd A protected switch
GB9426007D0 (en) * 1994-12-22 1995-02-22 Philips Electronics Uk Ltd A power semiconductor switch
US5825603A (en) * 1995-12-21 1998-10-20 Intel Corporaiton Method and apparatus for providing electrostatic discharge protection for high voltage inputs
US5812006A (en) * 1996-10-29 1998-09-22 Texas Instruments Incorporated Optimized power output clamping structure
US5894200A (en) * 1997-03-26 1999-04-13 Goodale, Jr.; Garold Joseph Two terminal method of and apparatus for improving electrical and light producing efficiency in low voltage direct current incandescent lamp intensity control
US5978192A (en) * 1997-11-05 1999-11-02 Harris Corporation Schmitt trigger-configured ESD protection circuit
JPH11251594A (ja) * 1997-12-31 1999-09-17 Siliconix Inc 電圧クランプされたゲ―トを有するパワ―mosfet
US6172383B1 (en) 1997-12-31 2001-01-09 Siliconix Incorporated Power MOSFET having voltage-clamped gate
FR2809545B1 (fr) * 2000-05-23 2002-10-11 St Microelectronics Sa Dispositif de protection serie pour une ligne de transmission de donnees ou d'energie
JP3502371B2 (ja) 2000-10-23 2004-03-02 松下電器産業株式会社 半導体素子
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4846106B2 (ja) * 2001-02-16 2011-12-28 三菱電機株式会社 電界効果型半導体装置及びその製造方法
JP3708489B2 (ja) * 2002-01-30 2005-10-19 株式会社シマノ 自転車用ダイナモの電圧クランプ回路
US6906399B2 (en) * 2002-11-04 2005-06-14 Delphi Technologies, Inc. Integrated circuit including semiconductor power device and electrically isolated thermal sensor
JP4250412B2 (ja) * 2002-12-13 2009-04-08 三菱電機株式会社 半導体装置
US6906386B2 (en) * 2002-12-20 2005-06-14 Advanced Analogic Technologies, Inc. Testable electrostatic discharge protection circuits
JP2005175054A (ja) 2003-12-09 2005-06-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
US7202528B2 (en) * 2004-12-01 2007-04-10 Semisouth Laboratories, Inc. Normally-off integrated JFET power switches in wide bandgap semiconductors and methods of making
US7342440B2 (en) * 2005-03-04 2008-03-11 Infineon Technologies Austria Ag Current regulator having a transistor and a measuring resistor
US7629631B2 (en) * 2005-06-21 2009-12-08 Hamza Yilmaz High voltage semiconductor devices with JFET regions containing dielectrically isolated junctions
US7484074B2 (en) * 2006-01-18 2009-01-27 International Business Machines Corporation Method and system for automatically distributing real memory between virtual memory page sizes
US8022505B2 (en) * 2006-03-13 2011-09-20 Freescale Semiconductor, Inc. Semiconductor device structure and integrated circuit therefor
US7564666B2 (en) * 2006-05-02 2009-07-21 Semiconductor Components Industries, L.L.C. Shunt protection circuit and method therefor
WO2007135694A1 (en) * 2006-05-18 2007-11-29 Stmicroelectronics S.R.L. Three- terminal power device with high switching speed and manufacturing process
US7511357B2 (en) * 2007-04-20 2009-03-31 Force-Mos Technology Corporation Trenched MOSFETs with improved gate-drain (GD) clamp diodes
JP5532538B2 (ja) * 2008-02-04 2014-06-25 三菱電機株式会社 保護回路
US9620584B2 (en) * 2009-08-31 2017-04-11 Alpha And Omega Semiconductor Incorporated Integrated Schottky diode in high voltage semiconductor device
US8829614B2 (en) * 2009-08-31 2014-09-09 Alpha And Omega Semiconductor Incorporated Integrated Schottky diode in high voltage semiconductor device
US9166042B2 (en) * 2009-09-30 2015-10-20 Alpha And Omega Semiconductor Incorporated High voltage MOSFET diode reverse recovery by minimizing P-body charges
US8324053B2 (en) * 2009-09-30 2012-12-04 Alpha And Omega Semiconductor, Inc. High voltage MOSFET diode reverse recovery by minimizing P-body charges
US8373208B2 (en) * 2009-11-30 2013-02-12 Alpha And Omega Semiconductor Incorporated Lateral super junction device with high substrate-gate breakdown and built-in avalanche clamp diode
DE102010008603A1 (de) * 2010-02-19 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Elektrisches Widerstandselement
US8530904B2 (en) * 2010-03-19 2013-09-10 Infineon Technologies Austria Ag Semiconductor device including a normally-on transistor and a normally-off transistor
JP5533104B2 (ja) 2010-03-23 2014-06-25 日産自動車株式会社 半導体装置
US8390969B2 (en) * 2010-07-12 2013-03-05 Monolithic Power Systems, Inc. Smoke-free ESD protection structure used in integrated circuit devices
DE102010039258B4 (de) * 2010-08-12 2018-03-15 Infineon Technologies Austria Ag Transistorbauelement mit reduziertem Kurzschlussstrom
US8373956B2 (en) * 2010-11-11 2013-02-12 International Business Machines Corporation Low leakage electrostatic discharge protection circuit
US9685523B2 (en) * 2014-12-17 2017-06-20 Alpha And Omega Semiconductor Incorporated Diode structures with controlled injection efficiency for fast switching
US8933506B2 (en) * 2011-01-31 2015-01-13 Alpha And Omega Semiconductor Incorporated Diode structures with controlled injection efficiency for fast switching
TW201240257A (en) * 2011-03-17 2012-10-01 Green Solution Tech Co Ltd Transistor circuit with protecting function
US9349797B2 (en) * 2011-05-16 2016-05-24 Cree, Inc. SiC devices with high blocking voltage terminated by a negative bevel
US9337268B2 (en) * 2011-05-16 2016-05-10 Cree, Inc. SiC devices with high blocking voltage terminated by a negative bevel
US8743518B1 (en) * 2011-07-29 2014-06-03 Anadigics, Inc. Protection circuit
EP2568500A1 (en) * 2011-09-09 2013-03-13 Imec ESD protection device with reduced clamping voltage
JP5504235B2 (ja) * 2011-09-29 2014-05-28 株式会社東芝 半導体装置
US8946850B2 (en) * 2011-12-06 2015-02-03 Infineon Technologies Austria Ag Integrated circuit including a power transistor and an auxiliary transistor
US8901647B2 (en) * 2011-12-08 2014-12-02 Infineon Technologies Ag Semiconductor device including first and second semiconductor elements
TWI450465B (zh) * 2012-01-06 2014-08-21 Anpec Electronics Corp 具有溫度補償之電源箝制電路
US8872223B2 (en) * 2012-02-08 2014-10-28 Robert Newton Rountree Programmable SCR for ESD protection
DE112013002178T5 (de) 2012-04-24 2014-12-31 Fuji Electric Co., Ltd. Vertikale Hochspannungshalbleitervorrichtung und Herstellungsverfahren davon
US8699189B2 (en) * 2012-05-22 2014-04-15 Honeywell International Inc. High precision clipping regulator circuit
JP2014086580A (ja) * 2012-10-24 2014-05-12 Toshiba Corp 保護回路
KR20150087410A (ko) * 2012-12-19 2015-07-29 노우레스 일렉트로닉스, 엘엘시 고전압 i/o 정-전기 방전 보호를 위한 장치 및 방법
US9112346B2 (en) * 2013-03-14 2015-08-18 Fairchild Semiconductor Corporation Input power protection
US9105470B2 (en) * 2013-05-07 2015-08-11 Infineon Technologies Austria Ag Semiconductor device
US9728580B2 (en) * 2013-05-13 2017-08-08 Infineon Technologies Ag Power transistor with integrated temperature sensor element, power transistor circuit, method for operating a power transistor, and method for operating a power transistor circuit
US9768259B2 (en) * 2013-07-26 2017-09-19 Cree, Inc. Controlled ion implantation into silicon carbide using channeling and devices fabricated using controlled ion implantation into silicon carbide using channeling
US10868169B2 (en) * 2013-09-20 2020-12-15 Cree, Inc. Monolithically integrated vertical power transistor and bypass diode
US10600903B2 (en) * 2013-09-20 2020-03-24 Cree, Inc. Semiconductor device including a power transistor device and bypass diode
US9438033B2 (en) * 2013-11-19 2016-09-06 Analog Devices, Inc. Apparatus and method for protecting RF and microwave integrated circuits
US20150162321A1 (en) * 2013-12-09 2015-06-11 International Rectifier Corporation Composite Power Device with ESD Protection Clamp
US9871126B2 (en) * 2014-06-16 2018-01-16 Infineon Technologies Ag Discrete semiconductor transistor
US9768766B2 (en) * 2014-07-14 2017-09-19 Infineon Technologies Austria Ag Electronic switching element and integrated sensor
US10298115B2 (en) * 2014-09-11 2019-05-21 Mitsubishi Electric Corporation Semiconductor device
US9136381B1 (en) * 2014-11-18 2015-09-15 Texas Instruments Incorporated Super junction MOSFET with integrated channel diode
US9484339B2 (en) * 2014-11-26 2016-11-01 Infineon Technologies Ag Smart semiconductor switch
DE102014117954B4 (de) * 2014-12-05 2020-09-24 Infineon Technologies Ag Halbleitervorrichtungen mit Transistorzellen und thermoresistivem Element
WO2016114057A1 (ja) * 2015-01-16 2016-07-21 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
DE102015004523A1 (de) * 2015-02-10 2016-08-11 DEHN + SÖHNE GmbH + Co. KG. Schaltungsanordnung zum Schutz einer aus einem Versorgungsnetz zu betreibenden Einheit gegen Überspannungen
US9443845B1 (en) * 2015-02-23 2016-09-13 Freescale Semiconductor, Inc. Transistor body control circuit and an integrated circuit
US9871373B2 (en) * 2015-03-27 2018-01-16 Analog Devices Global Electrical overstress recording and/or harvesting
CN208433908U (zh) * 2015-05-28 2019-01-25 西门子公司 电压源换流器模块和换流器
US10348295B2 (en) * 2015-11-19 2019-07-09 Nxp Usa, Inc. Packaged unidirectional power transistor and control circuit therefore
US9748330B2 (en) * 2016-01-11 2017-08-29 Semiconductor Component Industries, Llc Semiconductor device having self-isolating bulk substrate and method therefor
EP3419170B1 (en) 2016-02-18 2021-01-13 Rohm Co., Ltd. Protective system
US10254327B2 (en) * 2016-02-29 2019-04-09 Infineon Technologies Ag Method and device for short circuit detection in power semiconductor switches
JP6679992B2 (ja) * 2016-03-03 2020-04-15 株式会社デンソー 半導体装置
GB2549934A (en) * 2016-04-28 2017-11-08 Reinhausen Maschf Scheubeck Junction temperature and current sensing
EP3249815B1 (en) * 2016-05-23 2019-08-28 NXP USA, Inc. Circuit arrangement for fast turn-off of bi-directional switching device
JP6649183B2 (ja) * 2016-05-30 2020-02-19 株式会社東芝 半導体装置
US11075264B2 (en) * 2016-05-31 2021-07-27 Cree, Inc. Super junction power semiconductor devices formed via ion implantation channeling techniques and related methods
US20180366569A1 (en) * 2016-06-10 2018-12-20 Maxpower Semiconductor Inc. Trench-Gated Heterostructure and Double-Heterostructure Active Devices
US10734806B2 (en) * 2016-07-21 2020-08-04 Analog Devices, Inc. High voltage clamps with transient activation and activation release control
DE102016120292A1 (de) * 2016-10-25 2018-04-26 Infineon Technologies Ag Halbleitervorrichtung, die eine Transistorvorrichtung enthält
US9887287B1 (en) * 2016-12-08 2018-02-06 Cree, Inc. Power semiconductor devices having gate trenches with implanted sidewalls and related methods
US10033297B2 (en) * 2016-12-14 2018-07-24 Infineon Technologies Ag Rectifier device
JP2018139346A (ja) * 2017-02-24 2018-09-06 ルネサスエレクトロニクス株式会社 半導体装置及びそれを備えた電子制御システム
JP6643382B2 (ja) * 2017-03-20 2020-02-12 インフィニオン テクノロジーズ オーストリア アーゲーInfineon Technologies Austria AG パワー半導体デバイス
DE102017108048A1 (de) * 2017-04-13 2018-10-18 Infineon Technologies Austria Ag Halbleitervorrichtung mit einer grabenstruktur
US10026728B1 (en) * 2017-04-26 2018-07-17 Semiconductor Components Industries, Llc Semiconductor device having biasing structure for self-isolating buried layer and method therefor
US9998109B1 (en) * 2017-05-15 2018-06-12 Cree, Inc. Power module with improved reliability
KR20180131702A (ko) * 2017-05-31 2018-12-11 에스케이하이닉스 주식회사 Esd 보호 회로를 포함하는 반도체 집적 회로 장치
US11257811B2 (en) * 2017-07-14 2022-02-22 Cambridge Enterprise Limited Power semiconductor device with an auxiliary gate structure
US10319669B2 (en) * 2017-08-31 2019-06-11 Ixys, Llc Packaged fast inverse diode component for PFC applications
US10424677B2 (en) * 2017-08-31 2019-09-24 Littelfuse, Inc. Charge carrier extraction inverse diode
US10559681B2 (en) * 2017-12-21 2020-02-11 Texas Instruments Incorporated High voltage lateral junction diode device
JP6604585B1 (ja) * 2018-02-12 2019-11-13 パナソニックIpマネジメント株式会社 半導体装置
US11114432B2 (en) * 2018-03-16 2021-09-07 Semtech Corporation Protection circuit with a FET device coupled from a protected bus to ground
DE102018115326B3 (de) * 2018-06-26 2020-01-02 Infineon Technologies Dresden GmbH & Co. KG Halbleiteranordnung und verfahren zu deren herstellung
US10950596B2 (en) * 2018-10-03 2021-03-16 Semiconductor Components Industries, Llc Diode with current sensor
US10529812B1 (en) * 2018-10-10 2020-01-07 Texas Instruments Incorporated Locos with sidewall spacer for transistors and other devices
US11031778B2 (en) * 2018-11-26 2021-06-08 Silicon Laboratories Inc. High-voltage tolerant bi-directional electrostatic discharge protection circuit
US11128288B2 (en) * 2018-12-26 2021-09-21 Rohm Co., Ltd. Switching device
JP7443679B2 (ja) * 2019-06-18 2024-03-06 富士電機株式会社 半導体装置
DE102019135762B4 (de) * 2019-12-23 2021-07-22 Infineon Technologies Austria Ag Kurzschlussschutzstruktur in MOS-Gated-Leistungsbauelementen
US11621206B2 (en) * 2020-08-05 2023-04-04 Nxp Usa, Inc. Amplifier with integrated temperature sensor
EP3979330A1 (en) * 2020-09-30 2022-04-06 Infineon Technologies AG Silicon carbide device with transistor cell and clamp regions in a well region
US11799026B2 (en) * 2021-02-22 2023-10-24 Infineon Technologies Ag SiC device having a dual mode sense terminal, electronic systems for current and temperature sensing, and methods of current and temperature sensing

Also Published As

Publication number Publication date
EP3987661A1 (en) 2022-04-27
JP7362790B2 (ja) 2023-10-17
US20200401172A1 (en) 2020-12-24
WO2020256962A1 (en) 2020-12-24
US11579645B2 (en) 2023-02-14
US20230152830A1 (en) 2023-05-18
JP2022537452A (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
US5973359A (en) MOS type semiconductor device
JP2023175916A (ja) トランジスタの短絡保護のためのデバイス設計
US6888710B2 (en) Insulated gate bipolar transistor and electrostatic discharge cell protection utilizing insulated gate bipolar transistors
US6861711B2 (en) Thick gate oxide transistor and electrostatic discharge protection utilizing thick gate oxide transistors
US7279773B2 (en) Protection device for handling energy transients
US5221850A (en) Conductivity-modulating mosfet
JPH02185069A (ja) 高エネルギー阻止能力及び温度補償された阻止電圧を具備する半導体デバイス
JP2006158185A (ja) 電力用半導体装置
JP2020053466A (ja) 半導体装置
US10672761B2 (en) Semiconductor device
US20180269871A1 (en) Transistor device
KR20150076715A (ko) 전력 반도체 소자
JP2015144220A (ja) 高性能半導体装置とその動作方法
US9972992B2 (en) Protection circuit of semiconductor device
US10404250B2 (en) Transistor device
CN109524452B (zh) 半导体器件
US6864537B1 (en) Thick gate oxide transistor and electrostatic discharge protection utilizing thick gate oxide transistors
US20110121395A1 (en) Electrostatic discharge protection device for high voltage operation
JP2011108684A (ja) 半導体装置
JP3665367B2 (ja) 半導体装置
JP3671751B2 (ja) 半導体装置およびその使用方法
JP2011049424A (ja) 半導体デバイス
JP6292047B2 (ja) 半導体装置
US20230418319A1 (en) Semiconductor transistors having minimum gate-to-source voltage clamp circuits
EP0862220A1 (en) Semiconductor switching device and a power converter using the same and a drive method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231004