JP2019189622A - 安定化させたαヘリックスペプチドおよびその使用法 - Google Patents
安定化させたαヘリックスペプチドおよびその使用法 Download PDFInfo
- Publication number
- JP2019189622A JP2019189622A JP2019105614A JP2019105614A JP2019189622A JP 2019189622 A JP2019189622 A JP 2019189622A JP 2019105614 A JP2019105614 A JP 2019105614A JP 2019105614 A JP2019105614 A JP 2019105614A JP 2019189622 A JP2019189622 A JP 2019189622A
- Authority
- JP
- Japan
- Prior art keywords
- polypeptide
- alkyl
- alkynyl
- formula
- integer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CCCC(*)C(C1C(C)C1)C1*(CC(C)C)C2C1C*C2 Chemical compound CCCC(*)C(C1C(C)C1)C1*(CC(C)C)C2C1C*C2 0.000 description 3
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4747—Apoptosis related proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/06—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
- C07K1/1136—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/001—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Diabetes (AREA)
- Gastroenterology & Hepatology (AREA)
- Cardiology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Analytical Chemistry (AREA)
- Pulmonology (AREA)
- Obesity (AREA)
- Rheumatology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Oncology (AREA)
- Psychology (AREA)
Abstract
Description
本願は、米国特許法第119条(e)項の下、2003年11月5日に出願された米国特許出願第60/517,848号、および2004年7月27日に出願された米国特許出願第60/591,548号の優先権を主張するものであり、これらの各出願の全内容は本明細書に参照として組入れられている。
アポトーシス、またはプログラムされた細胞死は、全ての多細胞生物の発達およびホメオスタシスの維持において重要な役割を果たしている。アポトーシスの感受性は、細胞間で顕著に変動し、かつ外部および内部の両方の細胞事象により影響を受ける。細胞の運命を影響を与える正および負の調節タンパク質が定義されており、ならびにこれらのタンパク質シグナル伝達ネットワークの調節不全は、様々な癌を含むヒト疾患の広範なスペクトルの病因において明らかにされている。BCL-2は、このアポトーシスタンパク質ファミリ
ーの基礎となるメンバーであり、最初にt(14;18)(q32;q21)のリンパ腫における染色体ブ
レークポイントにおいて同定された(Bakhashi et al. 1985、Cell、41:899(非特許文献1);Cleary et al. 1985 Proc. Nat'l. Acad. Sci. USA、82:7439(非特許文献2))。
不適切に高レベルのBCL-2、その結果の病的細胞生存を生じる。アポトーシスにおけるこ
のような異常は、リンパ球性白血病および骨髄性白血病ならびに他の悪性疾患の宿主において同定されており、かつ腫瘍の進行および化学療法が誘導したアポトーシスに対する獲得性の抵抗に結びつけられている。タンパク質のBCL-2ファミリーは、著しく拡大され、
細胞死に対する感受性を支配するチェックとバランスを提供するプロアポトーシス分子および抗アポトーシス分子の両方を含む(図1)。驚くべきことではないが、アポトーシスタ
ンパク質は、細胞喪失性の疾患における急激な細胞死を防ぎかつ悪性疾患において細胞死経路を活性化するという両方の治療薬開発のための重要な標的となってきている。
、Genes Dev.、10:2859(非特許文献4))。BCL-2およびBCL-XLのような抗アポトーシスタンパク質は、全てのBHドメインの配列保存を示す。プロアポトーシスタンパク質は、BH1
、BH2、およびBH3ドメインに相同性を有する「マルチドメイン」メンバー(例えば、BAK、BAX)、ならびに、BH3両親媒性のα-ヘリックスセグメントに専ら配列相同性を含む「BH3
オンリードメイン」メンバー(例えば、BID、BAD、BIM、BIK、NOXA、PUMA)に分けられる。BCL-2ファミリーメンバーは、ホモ二量体およびヘテロ二量体を形成する能力を有し、こ
のことは、プロアポトーシスタンパク質および抗アポトーシスタンパク質レベル間の競合的結合および比は死の刺激の感受性を指示することを示唆している。抗アポトーシスタンパク質は、細胞をプロアポトーシス過剰、すなわち過剰なプログラムされた細胞死から保護するように機能する。追加の「セキュリティ(security)」測定は、プロアポトーシスタンパク質の転写の調節および不活性配座異性体としてのそれらの維持を含み、死滅前機能を活性化するための、タンパク質分解性の活性化、脱リン酸化、もしくはリガンド誘導した立体構造の変化のいずれかを必要とする。ある細胞型において、形質膜で受け取られた死のシグナルは、ミトコンドリア経路を介して、アポトーシスの引金をひく(図2)。ミト
コンドリアは、致死的な下流のタンパク質分解性の事象につながる、カスパーゼ9を活性
化する細胞質複合体の重要な成分であるシトクロムcを隔絶することにより、細胞死の門
番として役立つことができる。BCL-2/BCL-XLおよびBAK/BAXのような、マルチドメインタ
ンパク質は、ミトコンドリア膜において保護者と殺し屋の決闘を演じ、それらの活性は更に、BCL-2ファミリーの上流BH3オンリーメンバーにより調節される。例えばBIDは、プロ
アポトーシスタンパク質の「BH3オンリードメイン」サブセットのメンバーであり、およ
び形質膜で受け取った死のシグナルをミトコンドリア膜のエフェクタープロアポトーシスタンパク質へ伝達する。BIDは、プロアポトーシスタンパク質および抗アポトーシスタン
パク質の両方と相互作用する独自の能力を有し、ならびにカスパーゼ8による活性化の場
合には、シトクロムc放出およびミトコンドリアアポトーシスの引金を引く。欠失試験お
よび突然変異誘発試験は、プロアポトーシスファミリーメンバーの両親媒性α-ヘリック
ス状のBH3セグメントは、死のドメインとして機能し、その結果マルチドメインアポトー
シスタンパク質との相互作用に重要な構造モチーフを表している。構造試験は、BH3ヘリ
ックスは、BH1ドメイン、BH2ドメインおよびBH3ドメインの境界面により形成された疎水
溝への挿入により、抗アポトーシスタンパク質と相互作用することを明らかにしている。活性化されたBIDは、抗アポトーシスタンパク質(例えば、BCL-2およびBCL-XL)により結合および隔絶され、ならびにプロアポトーシスタンパク質BAXおよびBAKの活性化の引金を引き、シトクロムc放出およびミトコンドリアアポトーシスプログラムにつながる。
ポトーシスファミリーメンバーでもある。しかしBIDとは対照的に、BADは、抗アポトーシスメンバーであるBCL-2およびBCL-XLに優先的結合を示す。BAD BH3ドメインはBCL-2へ高
親和性結合を示すのに対し、BAD BH3ペプチドは、インビトロにおけるミトコンドリアか
らのシトクロムc放出を活性化することができず、このことはBADは、BAX/BAKの直接のア
クチベーターではないことを示唆している。BCL-2を過剰発現しているミトコンドリアは
、BID誘導したシトクロムc放出に対し抵抗性であるが、BADとの同時処置は、BID感受性を回復することができる。BADによるミトコンドリアアポトーシスの誘導は、下記のいずれ
かから生じるように見える。(1)BCL-2/BCL-XL結合ポケット由来の、BIDおよびBID様タン
パク質のようなBAX/BAKアクチベーターの交換、または(2)抗アポトーシスタンパク質によるBID様タンパク質の隔絶を妨害するための、BADによる、BCL-2/BCL-XL結合ポケットの選択的占拠。従って「BH3オンリードメイン」タンパク質のふたつのクラス、ミトコンドリ
アアポトーシスを直接活性化するBID様タンパク質、およびマルチドメイン抗アポトーシ
スタンパク質の結合ポケットを占拠することにより、ミトコンドリアをBID様プロアポト
ーシスに対し増感する能力を有するBAD様タンパク質が明らかになる。
ンのBCL-XLとの相互作用を阻害する分子のいくつかについて確定している。この技術は、低親和性化合物を同定するという可能性のある欠点に加え、タンパク質ファミリーの個々のメンバーの微妙な結合特異性に併せて作出された化合物のパネルを作製するその能力に限度がある。アポトーシス経路を操作する別の方法は、ペプチドエンジニアリング、所望の三次元構造を有する化合物を作製するために非特異的ペプチド配列を使用する技術に由来している。この技術のひとつの適用は、ミトコンドリア膜を破壊することにより細胞死を誘導するために使用された非特異的ペプチド配列で構成された「プロアポトーシス」α-ヘリックスの作製に関連している。
界面で認められることが多く、多種多様な分子内での生物学的認識事象に参画している。理論的には、BH3ヘリックスのようならせん状のペプチドは、タンパク質-タンパク質相互作用を選択的に妨害または安定化するために使用され、これにより生理的プロセスを操作する。しかしタンパク質内の生物学的活性のあるらせん状のモチーフは典型的には、完全
長タンパク質の状況から取り出されおよび溶液中に配置された場合に、小さい構造を有する。従ってインビボ試薬としてのタンパク質のペプチド断片の効能は、ヘリックス二次構造の喪失、タンパク質分解性の分解の受け易さ、および無傷の細胞の透過不能性により、脅かされている。共有的ヘリックス安定化のいくつかの方法が報告されているが、ほとんどの方法論は、極性および/または不安定な架橋に関連している(Phelan et al. 1997、J. Am. Chem. Soc.、119:455(非特許文献5);Leuc et al.、2003、Proc. Nat'l. Acad. Sci. USA、100:11273(非特許文献6);Bracken et al.、1994、J. Am. Chem. Soc.、116:6432(非特許文献7);Yan et al、2004、Bioorg. Med. Chem.、14:1403(非特許文献8
))。引き続き、Verdineとその同僚らは、アルキルテザーを含むα,α-二置換された非天然のアミノ酸を使用した、別のメタセシスベースの方法を開発した(Schafmeister et al.、2000、J. Am. Chem. Soc.、122:5891(非特許文献9);Blackwell et al.、1994、Angew Chem. Int. Ed.、37:3281(非特許文献10))。
本発明はひとつには、少なくとも2個の修飾されたアミノ酸を有するポリペプチドを安
定して架橋すること(「炭化水素ステープル」と称されるプロセス)は、そのポリペプチドの本来の二次構造を立体的に授けることを補助するという発見を基にしている。例えば、α-ヘリックス二次構造を有する素因のあるポリペプチドの架橋は、そのポリペプチドを
、その本来のα-ヘリックス状の立体構造に拘束することができる。拘束された二次構造
は、そのポリペプチドのタンパク質分解性の切断に対する抵抗性を増大し、同じく疎水性を増加する。驚くべきことに場合によっては、これらのポリペプチドは、細胞膜を透過することができる(例えば、エネルギー依存型の輸送機構、例えばピノサイトーシスにより)。従って本明細書に説明された架橋されたポリペプチドは、対応する未架橋のポリペプチドと比べ、改善された生物学的活性を有することができる。例えば架橋したポリペプチドは、BCL-2ファミリーメンバーポリペプチドのα-ヘリックスドメイン(例えばBID-BH3ドメイン)を含むことができ、これはBAK/BAXおよび/またはBCL-2/BCL-XLに結合し、被験者におけるアポトーシスを促進することができる。場合によっては、この架橋したポリペプチドは、アポトーシスを阻害するために使用することができる。本明細書に説明された架橋されたポリペプチドは、例えば被験者における癌の治療など、治療のために使用することができる。
ニル、アリールアルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3は、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々は、0〜6個のR5で置換され;
R4は、アルキル、アルケニル、またはアルキニルであり;
R5は、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kは、O、S、SO、SO2、CO、CO2、CONR6、または
R6は、H、アルキル、または治療的物質であり;
nは、1〜4の整数であり;
xは、2〜10の整数であり;
各yは独立して、0〜100の整数であり;
zは、1〜10の整数(例えば、1、2、3、4、5、6、7、8、9、10)であり;ならびに
各Xaaは独立して、アミノ酸である、ポリペプチドを特徴としている。
ポリペプチドは、抗アポトーシスポリペプチドに結合することができる。このポリペプチドは、プロアポトーシスタンパク質に結合することができる。このポリペプチドは、BAX
またはBAKに結合し、活性化することができる。場合によっては、このポリペプチドは、BH1、BH2および/またはBH3ドメインに結合する。
。
置の両方にあるか(例えば、i、i+4架橋)、または一方の立体中心はRであり、および他方
はSである(例えば、i、i+7架橋)。従って、式Iは:
立体配置であるか、またはこれらは両方ともS立体配置であることができる。xが6である
場合、C'二置換された立体中心はR立体配置であり、およびC"二置換された立体中心はS立体配置である。R3二重結合は、EまたはZ立体化学的立体配置であってよい。
はC11アルキル、またはC5、C8もしくはC11アルケニル、またはC5、C8もしくはC11アルキ
ニル)を含むことができる。テザーアミノ酸は、α二置換することができる(例えば、C1-C3またはメチル)。場合によっては、このポリペプチドは、
サイトーシス機構または受動輸送により)。ある態様において、このポリペプチドは、CysまたはMetを含まない。
インまたはBH3様ドメイン、例えば図5a、5b、および28a-28hのいずれかに記されたポリペプチドの、少なくとも5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、50個またはそれよりも多い連続アミノ酸を含む。各[Xaa]yは、BCL-2またはBCL-2様ド
メイン、例えばBH3ドメインまたはBH3様ドメイン、例えば図5a、5b、および28a-28hのい
ずれかに記されたポリペプチドの、少なくとも5、6、7、8、9、10、11、12、13、14、15
、16、17、18、19、20、25個またはそれよりも多い連続アミノ酸を独立して含むことができるペプチドである。[Xaa]xは、BCL-2またはBCL-2様ドメイン、例えばBH3ドメインまた
はBH3様ドメイン、例えば図5a、5b、および28a-28hのいずれかに記されたポリペプチドの酸の、3または6個の連続アミノ酸を含むことができるペプチドである。
って少なくとも2個のアミノ酸は、テザーアミノ酸またはテザーアミノ酸置換基により置
き換えることができる。従って式Iが:
れたポリペプチドの、10個(11、12、13、14、15、16、17、18、19、20、21、22、23、24
、25、30、35、40、45、50個またはそれよりも多い)の連続アミノ酸を含む、架橋したポ
リペプチドを特徴とし、ここで3個のアミノ酸(または6個のアミノ酸)で分離された2個の
アミノ酸のα炭素はR3により連結され、2個のα炭素の一方はR1により置換され、および
他方はR2により置換され、ならびに各々、追加のアミノ酸へペプチド結合により連結されている。
の局面において、本発明は、以下の工程を含む、式(III)のポリペプチドを生成する方法
を特徴としている:
式(II)
式(II)の化合物を触媒で処理し、閉環メタセシスを促進し、これにより式(III)
式中、各R1およびR2は、独立してH、アルキル、アルケニル、アルキニル、アリールア
ルキル、シクロアルキルアルキル、ヘテロアリールアルキル;または、ヘテロシクリルアルキルであり;
各nは独立して、1〜15の整数であり;
xは、2、3または6であり;
各yは独立して、0〜100の整数であり;
zは、1〜10の整数(例えば、1、2、3、4、5、6、7、8、9、10)であり;ならびに、
各Xaaは、独立してアミノ酸である工程。
る。
ミトコンドリアを提供する工程;
ミトコンドリアを、本明細書に説明された任意の化合物と接触する工程;
シトクロムc放出を測定する工程;および
化合物の存在下のシトクロムc放出を、その化合物の非存在下のシトクロムc放出と比較する工程を含み、式1の化合物の存在下のシトクロムc放出の増加は、アポトーシス促進の候補化合物としてこの化合物を同定する。
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3は、アルキル、アルケニル、アルキニル;[R4-K-R4]n、または天然のアミノ酸側鎖であり;その各々は、0〜6個のR5で置換され;
R4は、アルキル、アルケニル、またはアルキニルであり;
R5は、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kは、O、S、SO、SO2、CO、CO2、CONR6、または
R6は、H、アルキル、または治療的物質であり;
R7は、アルキル、アルケニル、アルキニル;[R4-K-R4]n、または天然のアミノ酸側鎖であり;その各々は、0〜6個のR5で置換され;
nは、1〜4の整数であり;
xは、2〜10の整数であり;
各yは独立して、0〜100の整数であり;
zは、1〜10の整数(例えば、1、2、3、4、5、6、7、8、9、10)であり;ならびに
各Xaaは独立して、アミノ酸である、ポリペプチドを特徴とする。
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3は、アルキル、アルキニル、アルキニル;[R4-K-R4]nであり;その各々は、0〜6個のR5で置換され;
R4は、アルキル、アルケニル、またはアルキニルであり;
R5は、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kは、O、S、SO、SO2、CO、CO2、CONR6、または
R6は、H、アルキル、または治療的物質であり;
nは、1〜4の整数であり;
xは、2〜10の整数であり;
各yは独立して、0〜100の整数であり;
zは、1〜10の整数(例えば、1、2、3、4、5、6、7、8、9、10)であり;ならびに
各Xaaは独立して、アミノ酸である、ポリペプチドを特徴とし;
このポリペプチドは、水溶液中において、円偏光二色性により決定される、少なくとも5%のαヘリックスを有する。
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3は、アルキル、アルキニル、アルキニル;[R4-K-R4]nであり;その各々は、0〜6個のR5で置換され;
R4は、アルキル、アルケニル、またはアルキニルであり;
R5は、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kは、O、S、SO、SO2、CO、CO2、CONR6、または
R6は、H、アルキル、または治療的物質であり;
nは、1〜4の整数であり;
xは、2〜10の整数であり;
各yは独立して、0〜100の整数であり;
zは、1〜10の整数(例えば、1、2、3、4、5、6、7、8、9、10)であり;ならびに
各Xaaは独立して、アミノ酸である、ポリペプチドを特徴とし;
ポリペプチドは、式(IV)
ポリペプチドと比較して、円偏光二色性により決定されたαヘリックスの、少なくとも1.25倍の増加を有する。
ミトコンドリアを提供する工程;
ミトコンドリアを、本明細書に説明された化合物と接触する工程;
シトクロムc放出を測定する工程;ならびに
本明細書に説明された化合物の存在下のシトクロムc放出を、本明細書に説明された化
合物の非存在下のシトクロムc放出と比較する工程を含み、本明細書に説明された化合物
の存在下のシトクロムc放出の減少は、アポトーシス阻害の候補化合物として本明細書に
説明された化合物を同定する方法を特徴とする。
投与、またはインビトロもしくはインビボのいずれかで生物学的経路を試験もしくは発見するための試薬の生成)に有用である十分な期間にわたり化合物の完全性を維持するよう
な化合物を意味する。
よびラセミ混合物、単独のエナンチオマー、個別のジアステレオマーおよびジアステレオマー混合物を生じる。これらの化合物のこのような異性体型は全て、明白に本発明に含まれている。本発明の化合物は、複数の互変異性体型においても表わされ、このような場合、本発明は明白に、本明細書に説明された化合物の全ての互変異性体型を含んでいる(例
えば、環システムのアルキル化は、複数の部位のアルキル化を生じてもよく、本発明は明白にそのような反応生成物を全て含む)。そのような化合物のそのような異性体型は全て
、明白に本発明に含まれる。本明細書に説明された化合物の全ての結晶型は、明白に本発明に含まれる。
須」アミノ酸残基は、ポリペプチドの野生型配列から変更された場合に、ポリペプチド活性の根絶または実質的に根絶を生じる残基である。
ヒスチジン)、酸性側鎖(例えば、アスパラギン酸、グルタミン酸)、非帯電極性側鎖(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン)、非極性側鎖(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β-分枝した側鎖(例えば、トレオニン、バ
リン、イソロイシン)および芳香族側鎖(例えば、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)を伴うアミノ酸である。従ってBH3ポリペプチド中の推定される非必須アミノ酸残基は、例えば、優先的に同じ側鎖ファミリーからの他のアミノ酸残基と置き換えられる。
ば、アラニンのアミノ酸側鎖はメチルであり、フェニルアラニンのアミノ酸側鎖はフェニルメチルであり、システインのアミノ酸側鎖はチオメチルであり、アスパラギン酸のアミノ酸側鎖はカルボキシメチルであり、チロシンのアミノ酸側鎖は4-ヒドロキシフェニルメチルであるなどである。他の非天然のアミノ酸側鎖も、例えば自然に生じるもの(例えば
、アミノ酸代謝産物)または合成により生成されたもの(例えば、α二置換されたアミノ酸)などが含まれる。
はそれよりも多い天然または合成のアミノ酸を包含している。本明細書に説明されたようなポリペプチドは、完全長タンパク質(例えば、完全にプロセッシングされたタンパク質)に加え、より短いアミノ酸配列(例えば、天然のタンパク質の断片または合成ポリペプチ
ド断片)を含む。
」は、その中に1〜20個(を含む)の炭素原子を有する鎖(直鎖または分枝鎖)である。「ア
ルキレン」という用語は、二価アルキル(すなわち-R-)を意味する。
ることを示している。「低級アルケニル」という用語は、C2-C8アルケニル鎖を意味する
。任意の数値指定がない場合、「アルケニル」は、その中に2〜20(を含む)個の炭素原子
を有する鎖(直鎖または分枝鎖)である。
ることを示している。「低級アルキニル」という用語は、C2-C8アルキニル鎖を意味する
。任意の数値指定がない場合、「アルキニル」は、その中に2〜20(を含む)個の炭素原子
を有する鎖(直鎖または分枝鎖)である。
換され得る、6炭素の単環式または10炭素の二環式芳香環システムを意味する。アリール
基の例は、フェニル、ナフチルなどを含む。「アリールアルキル」という用語または「ア
ラルキル」という用語は、アリールで置換されたアルキルを意味する。「アリールアルコキシ」という用語は、アリールで置換されたアルコキシを意味する。
しくは3〜8個の炭素、より好ましくは3〜6個の炭素を有する、飽和および部分的に不飽和の環式炭化水素基を含み、ここでシクロアルキル基は更に、任意に置換されてよい。好ましいシクロアルキル基は、シクロプロピル、シクロブチル、シクロペンチル、シクロペンテニル、シクロヘキシル、シクロヘキセニル、シクロヘプチル、およびシクロオクチルを含むが、これらに限定されるものではない。
例は、ピリジル、フリルまたはフラニル、イミダゾリル、ベンズイミダゾリル、ピリミジニル、チオフェニルまたはチエニル、キノリニル、インドリル、チアゾリルなどである。「ヘテロアリールアルキル」という用語または「ヘテロアラルキル」という用語は、ヘテロアリールで置換されたアルキルを意味する。「ヘテロアリールアルコキシ」という用語は、ヘテロアリールで置換されたアルコキシを意味する。
は、O、NまたはSから選択され(例えば単環、二環または三環であるならば、各々、炭素原子、および1〜3、1〜6、または1〜9個のO、NもしくはSのヘテロ原子)、ここで各環の0、1、2、3個の原子は、置換基により置換されてよい。ヘテロシクリル基の例は、ピペラジニル、ピロリジニル、ジオキサニル、モルホリニル、テトラヒドロフラニルなどである。
本発明の他の特徴、目的、および利点は、説明および図面、ならびに「特許請求の範囲」から明らかであると思われる。
本発明は、一部、BCL-2ファミリータンパク質の架橋したαヘリックスドメインポリペ
プチドは、それらの未架橋の対応物よりも、改善された薬理学的特性を有する(例えば、
増加した疎水性、タンパク質分解性切断に対する抵抗性、結合親和性、インビトロおよびインビボ生物学的活性)という発見を基にしている。更に驚くべきことに、架橋されたポ
リペプチドは、温度依存型およびエネルギー依存型の輸送機構(例えば、エンドサイトー
シス、特異的液相ピノサイトーシス)により、細胞膜を透過することができることが発見
された。 これらのポリペプチドは、ふたつの非天然のアミノ酸間にテザーを含み、この
テザーは、ポリペプチドのαヘリックス二次構造を著しく増強する。一般にテザーは、1
個または2個のヘリックスターンの長さ(すなわち、約3.4個または約7個のアミノ酸)にわ
たって伸びる。従って、iおよびi+3;iおよびi+4;または、iおよびi+7に位置したアミノ酸は、化学修飾および架橋の理想的な候補である。従って例えば、ペプチドが配列... Xaa1、Xaa2、Xaa3、Xaa4、Xaa5、Xaa6、Xaa7、Xaa8、Xaa9....を有する場合、Xaa1とXaa4の間、またはXaa1とXaa5の間、またはXaa1とXaa8の間の架橋は、Xaa2とXaa5の間、またはXaa2とXaa6の間、またはXaa2とXaa9の間などの架橋のように有用である。加えてモデルポリペプチドは、ひとつはXaa1とXaa5の間、もうひとつはXaa9とXaa13の間に位置した、架橋
の2個のセットの組込みにより調製された。この二重架橋は、二重結合メタセシス反応の
慎重な立体化学制御により実現された。従って本発明は、配列を更に安定化するか、またはより長いポリペプチドの一配列の安定化を促進するための、ポリペプチド配列内の1個
よりも多い架橋の組込みを包含している。これらのポリペプチドが、一部容易に合成するには余りにも長い場合は、独立して合成された架橋されたペプチドは、ネイティブケミカルライゲーションと称される技術により結合することができる(Bang, et al.、J. Am. Chem Soc.、126:1377)。
、BCL-2タンパク質ファミリーである。これらのタンパク質は、細胞アポトーシス経路に
関与している。一部のBCL-2ファミリーメンバーは、プロアポトーシス機能を有し、他の
ものは、抗アポトーシス機能を有し、更に他のものは、細胞状態の変化により機能を変化する。従ってBCL-2ファミリーメンバーの1個または複数のモチーフを模倣し、その結果様々なBCL-2関連した活性を変調する、安定化したポリペプチドを作製することが望ましい
。
長さが変動するオレフィン側鎖を含むα,α-二置換された非天然のアミノ酸を、図3の
スキームに従い合成した(Williams et al.、1991、J. Am. Chem. Soc.、113:9276;Schafmeister et al.、2000、J. Am. Chem Soc.、122:5891)。化学架橋したBID BH3ペプチドは、2個または4個の天然のアミノ酸の対応する合成アミノ酸との交換によりデザインされた(図4a)。置換は、個別の位置、すなわち「i、およびi+4位」または「i、およびi+7位」で行い、このことは、α-ヘリックスの同一面上に反応性残基を配置することにより架橋化
学を促進する(図4b)。アポトーシスタンパク質の間で高度に保存されたアミノ酸は、X線
結晶解析およびNMR試験を基にタンパク質-タンパク質相互作用において重要であることがわかったそれらの配列に加え(Muchmore et al.、1996、Nature、381:335;Sattler et al.、1997、Science、275:983)、ある環境(circimstances)において特異的には置き換えら
れず、保存されたアミノ酸は、活性を増強するように、他のアミノ酸(例えば、合成非天
然のアミノ酸)と置き換えられる(この作用は、本明細書に説明されたSAHB3BID変異体において認められる)。SAHB3BID化合物は、固相ペプチド合成、それに続く合成アミノ酸の、
それらのオレフィン含有側鎖を介した、オレフィンメタセシスを用いた架橋により生成された。生成されたSAHB3BID化合物の変種を、図5aに例示している。BID機能を変更するこ
とがわかっている特異的変異を組込んでいるSAHB3BID(SAHBA)変種(Wang et al.、1996、Genes Dev.、10:2859)も、生物学的実験における陰性対照として利用するために構築され
た(図5a)。選択された化合物のアミノ末端は更に、フルオレセインイソチオシアネート(FITC)またはビオチン結合したリシンにより誘導体化し、各々、細胞透過性試験および生化学アッセイ法用の標識されたSAHB3BID化合物を生成する(図5a)。いくつかの合成において、C末端トリプトファンがその配列へ加えられ、精製および濃度決定を目的とするUV標識
として役立ち;N末端グルタミン酸は、細胞透過を強力に促進するためにその化合物の全
体のpIを増加する目的で、数個のペプチドを排除した(下記参照)。メタセシス法は、SAHB3BADおよびSAHB3BIMを含む代わりのSAHB3類の生成に、容易に適用された(図5a)。
炭素オレフィン系アミノ酸のSエナンチオマー)は、核磁気共鳴(NMR)スペクトル(Varian Mercury 400)および質量分析(Micromass LCT)により特徴決定された。ペプチド合成は、固相条件リンクアミドAM樹脂(Novabiochem)、およびFmoc主鎖保護基ケミストリーを用い、
手動または自動化されたペプチド合成装置(Applied Biosystems、モデル433A)上のいずれかにより行った。天然のFmoc保護されたアミノ酸(Novabiochem)のカップリングのために
、アミノ酸の10当量および1:1:2モル比のカップリング試薬HBTU/HOBt(Novabiochem)/DIEAを使用した。非天然のアミノ酸(4当量)を、1:1:2モル比のHATU(Applied Biosystems)/HOBt/DIEAでカップリングした。オレフィンメタセシスは、脱気したジクロロメタンに溶解した10mM Grubbs触媒(Blackewell et al.、1994、前掲)(Strem Chemicals)を用い固相にお
いて行い、および室温で2時間反応した。選択された化合物のアミノ末端は更に、b-アラ
ニンおよびフルオレセインイソチオシアネート(FITC)[Sigma/DMF/DIEA]により誘導体化され、蛍光的に標識された化合物を生成した。C末端トリプトファンを、精製および濃度決
定を目的とした、UV標識として利用するために組込まれ;SAHBA化合物は同じく、C末端トリプトファンおよびN末端グルタミン酸を伴わずに合成し、後者の修飾は、これらの分子
の全体のpIを増加するために行った。メタセシスされた化合物の単離は、トリフルオロ酢酸依存性の脱保護および切断により実現され、エーテル沈殿し粗生成物を得、および逆相C18カラム(Varian)上で高速液体クロマトグラフィー(HPLC)(Varian ProStar)を行い純粋
な化合物を得た。純粋な生成物の化学組成は、LC/MS質量分析(Agilent HPLCシステムとインターフェース接続したMicromass LCT)およびアミノ酸分析(Applied Biosystems、モデ
ル420A)により確認した。
チドのサブセットを概略的に表す。
本発明者らは、プロアポトーシスBH3ドメインのヘリックス性の割合を試験し、および
これらの未修飾のペプチドは、溶液中で主にランダムコイルであり、α-ヘリックスの含
量は全て25%未満である(図6)ことを発見した。簡単に述べると、化合物は、水性50mMリ
ン酸カリウム溶液(pH7)に溶解し、25-50mMに濃縮した。CDスペクトルは、下記の標準測定パラメータを用い、Jasco J-710分光偏光計上で20℃で得た:波長、190-260nm;ステップ分解能、0.5nm;速度、20nm/秒;アキュムレーション(accumulations)、10;反応、1秒;バンド幅、1nm;経路長、0.1cm。各ペプチドのα-ヘリックスの含量は、平均残基分子楕
円率[φ]222obsをモデルヘリックスであるデカペプチドについて報告された[φ]222obsで除算することにより算出した(Yang et al.、1986、Methods Enzymol.、130:208))。
あるアポトーシスペプチドを、構造上主としてα-ヘリックスであるものへ転換すること
ができる。興味深いことに、BID BH3ペプチドの安定化における4番目のヘリックスターンの重要性は、SAHB3BIDB 23 merが16 merであるSAHB3BID(tr)Bへ切断される場合に観察さ
れたヘリックス性の減少により強調される(図9)。
ペプチド骨格のアミド結合は、プロテアーゼによる加水分解を受け易く、これによりペプチド化合物をインビボにおける迅速な分解に対し脆弱とする。しかしペプチドヘリックス形成はアミド骨格を埋め、その結果これをタンパク質分解性切断から保護する。SAHB3BIDAに、インビトロトリプシンタンパク質分解を施し、未修飾のBID BH3ペプチドと比較して分解速度の何らかの変化について評価した。SAHB3BIDAおよび未修飾のペプチドを、ト
リプシンアガロースと共にインキュベーションし、かつこの反応を、遠心分離およびそれに続くHPLC注入により、様々な時点で反応停止し、280nmでの紫外線吸収により残存する
基質を定量した。簡単に述べると、BID BH3およびSAHB3BIDA化合物(5mcg)を、トリプシンアガロース(Pierce)(S/E〜125)と共に、0分間、10分間、20分間、90分間、および180分間インキュベーションした。反応を、卓上遠心分離での高速遠心により停止し;分離された上清中の残存する基質を、HPLCを用いた220nmでのピーク検出により定量した。このタン
パク質分解性反応は、一次反応速度論を示し、速度定数kは、ln[S]対時間のプロット(k=-1x勾配)から決定した(図10a)。実験は3通りで行い、SAHB3BIDAのトリプシン抵抗性の未
修飾のペプチドと比べ3.5倍の増強を明らかにした。従って、α-ヘリックスのコア部分でそれらを埋めることによる、トリプシン感受性アミド結合の増強された保護は、より安定したペプチド性化合物をもたらし、その結果このような化合物を血清中で特に安定とすることができる。
時間、および24時間37℃でインキュベーションした。血清標本を液体窒素中で新たに凍結し、凍結乾燥し、0.1%トリフルオロ酢酸を含有する50:50アセトニトリル/水中で抽出し
、その後励起/放出を495/530nmに設定した蛍光検出を用いHPLCを用いて定量することにより、無傷のFITC化合物のレベルを決定した。この分析の結果は、図10bに示した。
および22時間で採血した。その後新鮮な血清25μL中の無傷のFITC化合物のレベルを測定
した。この分析の結果は図10cに表し、これはSAHB3BIDAは、22時間にわたり容易に検出可能であり、投入量の13%は、22時間後に依然測定可能であることを示している。対照的に、BID BH3は、わずかに12%が、注射後1時間で検出可能であった。
マルチドメインアポトーシスタンパク質の結合ポケットとBID BH3ヘリックスの疎水性
残基の間の重大な相互作用による干渉を避けるために、全ての炭化水素架橋は、BID BH3
両親媒性ヘリックスの帯電面上に選択的に配置した。蛍光偏光競合的結合実験を行い、GST-BCL-2結合に関するFITC標識した未修飾のBID BH3ペプチドと競合するSAHB3BIDの効能を評価した。全てのSAHB3BID化合物は、GST-BCL2への高親和性結合を明らかにし、最大のヘリックス割合を伴うふたつの化合物であるSAHB3BIDAおよびBは、最高の親和性結合を同様に示す(図11a)。注目すべきは、SAHB3BIDAおよびBのGlyのGluへの変異は、先の試験から
予想されるように、高親和性結合を排除する(図11b)。本発明者らは更に、SAHB3BIDAのGlyのSerへの変異は、このアッセイ法においてBCL-2結合を除去したことを決定した(データは示さず)。23 mer SAHB3BIDBの16 merへの切断は、BCL-2結合親和性の喪失を生じ、これは先に説明されたα-ヘリックスの減少と一致する(図11c)。
剰量の標識されないペプチドが、予め結合されたFITC標識されたBID BH3と交換すること
の必要性を生じるようなモデルを裏付けている。本発明者らは、BAD BH3ドメインは、BCL-2結合について増強されたKD 41nMを有すること、ならびにこれは予め結合したFITC-BID BH3を、IC50 173nMで交換できることを更に示した。同様の実験において、SAHB3BIDAは、FITC-BID BH3をBCL-2から、IC50 62nMで交換することがわかり、これは未修飾のBID BH3
ペプチドと比べ、交換効能の13倍を超える増加を反映している。これらのデータは、SAHB3BIDAは、未修飾のBH3ペプチドと比べ、BCL-2へ増強された親和性で結合することを確認
し、ならびに化学架橋によるα-ヘリックス構造の前組織化は、標的結合に関する速度論
的利点を提供することを示唆している。
のBID BH3ペプチドと比べ、SAHB3BIDAの、抗アポトーシスマルチドメインタンパク質BCL-2、およびプロアポトーシスマルチドメインタンパク質BAXの両方への、増強された結合親和性を生じたことを明らかにした(図11dおよび11e)。直接BCL-2蛍光偏光結合アッセイ法
は、SAHB3BIDAのBCL-2結合親和性(KD、38.8nM)の、未修飾のBID BH3ペプチド(KD、269nM)と比べて、6倍の増強を明らかにした(図11d)。GlyのGluへの変異であるSAHBA(G→E)(KD、483nM)は、高親和性結合を排除し、有用な対照として使用した(図11d)。簡単に述べると
、C末端欠失されたGST-BCL-2をコードしているプラスミドを含む大腸菌BL21(DE3)を、ア
ンピシリン含有Luriaブロスにおいて培養し、0.1mM IPTGで誘導した。細菌ペレットを、
溶解緩衝液(PBS中に1mg/mlリゾチーム、1%Triton X-100、0.1mg/ml PMSF、2μg/mlアプ
ロチニン、2μg/mlロイペプチン、1μg/mlペプスタチンA)中に再懸濁し、音波処理した。20,000xgで20分間遠心後、上清を、グルタチオン-アガロースビーズ(Sigma)のカラムに負荷した。これらのビーズを、PBSで洗浄し、50mMグルタチオン、50mM Tris-HCl(pH8.0)で
処理し、このタンパク質を溶離し、その後結合アッセイ緩衝液(140mM NaCl、50mM Tris-HCl[pH7.4])に対して透析した。蛍光化した(fluorescinated)化合物(25nM)を、GST-BCL2(25nM-1000nM)と共に、結合緩衝液中で室温でインキュベーションした。結合活性を、Perkin-Elmer LS50Bルミネセンス分光光度計上で、蛍光偏光により測定した。KD値は、Prismソ
フトウェア(Graphpad)を使用する、非線形回帰分析により決定した。完全長BAXタンパク
質は、先に説明されたように調製し(Suzuki et al、Cell、103:645)、蛍光偏光アッセイ
法を先に説明したように行った。
SAHB3BIDAが、抗アポトーシスマルチドメインタンパク質の指定された結合溝と特異的
に相互作用するかどうかを決定するために、SAHB3BIDAの添加前および添加後の15N標識されたBCL-XLの二次元15N/1H異種核一量子相関(HSQC)スペクトルを記録し、対応するBID BH3/15N-BCL-XLスペクトルと比較した。簡単に述べると、C末端欠失されたBCL-XLをコード
しているプラスミドを含む大腸菌BL21(DE3)は、15NH4Clを含有するM9-最小培地(Cambridge Isotope Laboratories)において培養し、均質な15N標識されたタンパク質を生成した。組換えタンパク質を、細菌から分離した。標識されないSAHB3BIDAおよびBID BH3ペプチドを生成し、先に説明したように精製した。以下の1:1複合体を、D2OまたはH2O/D2O(95:5)
を溶媒とする50mMリン酸カリウム(pH7)、50mM塩化ナトリウム、5%DMSO中に0.1mMで調製
した。15N-BCL-XL/未標識BID BH3、15N-BCL-XL/未標識SAHB3BIDA。二次元15N/1H異種核一量子相関スペクトルを、これらふたつの複合体について記録し、リガンド結合の場合の共鳴の変化を分析した。
、BID BH3ペプチドにより認められたものとほぼ同一であることを示している(図11f)。
インビトロにおけるSAHB3BID化合物の生物学的活性を評価するために、シトクロムc放
出アッセイ法を、精製されたマウス肝臓ミトコンドリアを用いて行った。ミトコンドリア(0.5mg/mL)を、SAHB3BID化合物1μMおよび100nMと共に40分間インキュベーションし、そ
の後上清およびミトコンドリア画分を分離し、シトクロムc ELISA法を施した。バックグ
ラウンドシトクロムc放出(10〜15%)を、各試料の総放出から減算し、実際のシトクロムc放出の割合(%)を決定した(図12)。同じ実験を、BID-BH3活性化に反応してミトコンドリ
アシトクロムcを放出しない、Bak-/-マウスから単離されたマウス肝臓ミトコンドリアに
ついても同時に行い;その結果BAK-/-ミトコンドリアからのデータを、SAHB3BID処理に反応したBAK依存性シトクロムc放出の陰性対照として利用した。各々の場合において、二重架橋したSAHB3BIDE(これは、生物学的活性に重要なアミノ酸を欠くことがあり、その場合二重の架橋により適度に拘束される)を除き、未修飾のペプチドと比べ、SAHB3BID化合物1μMに反応したシトクロムc放出はほぼ倍加した(図12a)。BAK非依存型のシトクロムc放出
が、SAHB3BIDA、SAHB3BIDB、および特にSAHB3BIDDによりこの用量で観察される。このシ
トクロムc放出は、α-ヘリックスの非特異的膜攪乱(membrane perturbing)作用を示すこ
とがあるのに対し、SAHB3BID誘導したBAK非依存型のシトクロムc放出の成分の役割は、更に調べる価値がある。興味深いことに、BAK非依存型シトクロムc放出を最も顕著なレベル誘導するSAHB3BID化合物であるSAHB3BIDDは同じく、最も疎水性のSAHB3BID化合物であり
;SAHB3BIDDは、逆相C18カラムから、95%アセトニトリル/5%水で溶離するのに対し、他のSAHB3BID化合物は50-75%アセトニトリルで溶離する。欠失したBH3ドメインを伴うBID
変異体は、BAK非依存型シトクロムc動員を促進することができ(L. Scorrano et al、Dev Cell、2:55)、高度に疎水性のBIDヘリックス6が、この活性に関与している(L. Scorrano
、S. J. Korsmeyer、未発表の結果)。SAHB3BIDDは、BIDヘリックス3および6の特徴を模倣することにより、BAK依存型および非依存型の両シトクロムc放出を示すことはもっともらしく見える。1/10の用量のSAHB3BIDAおよびBは、選択的BAK依存型シトクロムc放出活性を維持している(図12b)。特にSAHB3BIDBの効能は、最大活性化されたミリストイル化されたBIDタンパク質と比べ好ましく、これは用量30nMで、これらの条件下で、約65%のシトク
ロムcを放出する。
を引くことができるかどうかを決定するために、最も活性のあるSAHB3BID化合物AおよびBに、更なる速度論試験を施した。前記実験と同様に、野生型およびBak-/-マウス由来のマウス肝臓ミトコンドリアを、様々な濃度で、これらの化合物に曝露し、10分および40分間隔でシトクロムc放出についてアッセイした。未修飾のペプチドは、試験した最高用量(1
μM)で、10分で10%未満の放出を引き起こしたのに対し、SAHB3BIDBは、この時点で400nMをわずかに下回る放出のEC50を有し、ほぼ最大のシトクロム放出は1μMであった(図13a)
。同様にSAHB3BIDAは、10分間隔で著しいシトクロムc放出の引金を引く。40分でのシトクロムc放出のEC50は、未修飾のペプチドについて2.9μMであり、SAHB3BIDAおよびBについ
て、各々、310nMおよび110nMであった(図13b)。従ってSAHB3BIDAおよびBは、40分の時点
でのシトクロムc放出活性の10〜25倍の増強を示す。BAK依存型シトクロムc放出は経時的
に増加するのに対し、BAK非依存型放出は、10分および40分の時点の間では変化せず、こ
のことはこの独特な放出は早期に生じ、および10分以内に最大に到達することを示唆している。注目すべきことに、陰性対照であるSAHB3BIDAのGlyのGluへの点変異体SAHB3BID(G
→E)Aは、Bak非依存型シトクロムc放出のみを生じ、これはSAHB3BIDAは、Bak依存型ミト
コンドリアアポトーシス経路を介してのみ機能することを確認している(図14)。まとめると、これらのシトクロムc放出データは、SAHB3BIDAおよびBは、BAK依存型シトクロムc放
出を特異的に誘導することが可能であり、未修飾のペプチドと比べ顕著に増強された効能および速度論を伴うことを示している。
フルオレセイン誘導体化されたSAHB3BID化合物、BID BH3ペプチド、およびBIDヘリックス6ペプチドを、ジャーカットT細胞系白血病細胞と共に4〜24時間インキュベーションし
、引き続きFACS選別し、白血病細胞の標識の割合を決定した。細胞表面に結合した化合物による混乱を招く結果を避けるために、ジャーカット細胞は完全に洗浄し、最近の報告に従いトリプシンによる過剰切断を施した。試験した各化合物について、トリプシン消化後、FITCシグナルプロファイルに著しい変化は無く、このことはこれらのペプチドの場合、FITC標識された化合物のほとんどまたは全てが表面に結合されていないことを示唆している(図15)。BID BH3処理した細胞はFITC陰性であるのに対し、FITC-SAHB3BIDA処理およびFITC-SAHB3BID(G→E)A処理した両細胞は、FITCシグナルの右側シフトにより示されるよう
に、FITC陽性であった(図16a)。これらの細胞透過性試験におけるFITC-SAHB3BIDAおよびFITC-SAHB3BID(G→E)Aの同様のプロファイルは、生物学的実験における陰性対照としての
点変異体化合物を使用する場合に特に重要である。BIDヘリックス6は細胞透過性および膜攪乱性ペプチドであるが、これをこの実験のFITC標識に関する陽性対照として使用した。
れた。注目すべきは、FITC-SAHB3BIDAで標識されたジャーカット細胞は37℃で、ヨウ化プロピジウム(PI)陰性であることであり、これはこの架橋されたペプチドは単なる透過性向上物質としては機能しないが(図17b);対照的に、FITC-BIDヘリックス6は、容易に両方の温度で浸透し、PI陽性の程度により証明されるように、細胞を効果的に透過性向上する(
図17b)ことを確認している。これらのデータは、SAHB3BID化合物に関する侵入のエンドサイトーシス式の機序を裏付けており、転写のHIVトランス活性化因子(TAT)のような、他の細胞透過性ペプチド(CPP)に関する侵入の機序として細胞表面接着、それに続くエンドサ
イトーシスに言及している最近の報告と一致している。TATおよびアンテナペディアのよ
うな高塩基性のCPPは、細胞表面で負帯電したグリコサミノグリカンへの接着により濃縮
されると考えられるのに対し、SAHB3BIDA移入は、ヘパリンにより用量反応様式で阻害さ
れない(図18)。SAHB3BID両親媒性α-ヘリックスの生物物理特性は、静電気および/また
は脂質膜の相互作用を介した個別の細胞接触を促進することができる。
点顕微鏡(BioRad 1024)により撮像した。二重標識実験について、固定した細胞を更に、TOM20に対する一次抗体と共に、TOPRO-3対比染色前に、ローダミン結合した二次抗体と共
にインキュベーションした。ライブ共焦点顕微鏡については、ジャーカット細胞の二重標識は、FITC-SAHBA(10μM)およびMitoTracker(100nM、Molecular Probes)、テトラメチル
ローダミンイソチオシアネート(TRITC)-デキストラン4.4kDもしくは70kD(25mcg/mL、Molecular Probes)、またはAlexa Fluor 594-トランスフェリン(25mcg/mL、Molecular Probes)と共に、4時間(デキストランおよびトランスフェリン)または24時間(MitoTracker)行っ
た。光退色の制限のために、BCL-2を過剰発現しているジャーカット細胞を、ライブ共焦
点顕微鏡に使用し、FITC造影を最適化した。ミトコンドリアのFITC-SAHBA標識は、BCL-2
を過剰発現しているジャーカットよりもより明るく(SAHB活性に関する機序と一致)、その結果これらの細胞を用い、画像捕獲が促進された。処理されたジャーカットは、2回洗浄
し、その後PBS中に再懸濁し、および湿った搭載調製物を、BioRad 1024(Beth Israel/Deaconess Center for Advanced Microscopy)またはZeiss LSM510レーザー走査型共焦点顕微鏡(Children's Hospital Boston Imaging Core)により分析した。
形質膜または表面に蛍光の証拠はなく;蛍光の小胞パターンは、オルガネラに特異的な局在を示している(図19aおよび19b)。FACSデータと一致し、FITC-BID BH3で処理したジャーカット細胞は、蛍光標識を示さなかった(図19c)。FITC-SAHB3BIDA処理した細胞は、選択
的細胞内蛍光を示しかつそれらの細胞構造を維持するのに対し(図19a)、FITC-BIDヘリッ
クス6処理した細胞は、散在性に標識され、破壊された細胞形態を明らかにしている(図19d)。FITC-SAHB3BIDAおよびミトコンドリア膜タンパク質Tom20に対する抗体を使用する同
時局在化試験は、SAHB3BIDA蛍光の、SAHB3BIDの分子標的の予想された部位であるミトコ
ンドリアとの広範な重複を明らかにした(図20)。
は70kD)標識したエンドソームとの最初の同時局在(図21a)、しかしトランスフェリン標識したエンドソームとの非局在(図21b)を明らかにし、これは液相ピノサイトーシスによる
細胞取込みと一致し(未発表参照番号27)、エンドサイトーシス経路が、TATおよびAntpペ
プチドについて決定された(未発表参照番号28)。24時間の時点で、細胞内FITC-SAHBAは、生存細胞におけるMitoTracker標識されたミトコンドリアとの増大された同時局在を示し(図21c)、これはミトコンドリア外膜タンパク質であるTom20に対する抗体を用い、固定さ
れた細胞において観察されたミトコンドリアの同時局在と一致する(図20)。まとめると、FACSデータおよび共焦点画像は、全ての炭化水素架橋は、SAHB3BIDA化合物を、無傷の細
胞により移入される(例えば、エンドサイトーシス機序を介して)ようになることを明らかにしている。
金を引く
SAHB3BID化合物が培養物中で増殖する白血病細胞の増殖を停止することができるかどう
かを評価するために、3-(4,5-ジメチルチアゾール-2-イル)2,5-ジフェニルテトラゾリウ
ムブロミド、MTTアッセイ法を、連続希釈したSAHB3BIDAを用い、培養物中のT細胞(ジャーカット)、B細胞(REH)および混合型白血病(MLL)細胞(MV4;11、SEMK2、RS4;11)について行
った。SAHB3BIDAは、白血病細胞を、IC50が2.2μM(ジャーカット)、10.2μM(REH)、4.7μM(MV4;11)、1.6μM(SEMK2)、および2.7μM(RS4;11)で阻害した(図22a)。BID BH3ペプチドもSAHB3A(G→E)点変異体も、この用量範囲では作用を有さなかった(図22b、22c)。
イした。SAHB3BIDAおよびBは、処理後20時間で40〜60%のアネキシンV陽性を示したのに
対し、未修飾のペプチドおよびSAHB3BID点変異体は作用がなかった(図23aおよび23b)。担体試薬を伴う未修飾のBH3ペプチドまたは非特異的ミトコンドリア攪乱作用を伴う操作し
たヘリックスのいずれかを使用する同様の試験は、アポトーシスを活性化するためには200〜300μMの用量が必要であった。BCL-2を過剰発現するように操作されたジャーカット細胞を使用する追加の対照実験を引き続き行い、SAHB3BID誘導したアポトーシスは、過剰なBCL-2により減少されるかどうかを評価し、このことはこれらの化合物が、細胞内で、ミ
トコンドリアアポトーシス経路を通じ特異的に機能することを示唆すると考えられる。実際、10μMのSAHB3BIDAおよびBの「野生型」ジャーカット細胞に対するプロアポトーシス
作用は、BCL-2を過剰発現している細胞においては除去された。しかしこの保護的作用は
、SAHB3BIDAの用量漸増により克服することができるが、SAHB3BID(G→E)Aによっては克服されず(図24);加えて、BCL-2結合親和性を示さない(前記参照)SAHB3BIDAのglyからserへの点変異体(SAHB3BID(G→S)A)は、プロアポトーシスとして「野生型」およびBCL-2過剰発現しているジャーカット細胞において同等に有効である(図24)。SAHB3BIDAおよびSAHB3BID(G→E)Aを使用するアポトーシス誘導アッセイ法を更に、REH、MV4;11、およびSEMK2細胞株において行い、同様の結果を得た(図25)。まとめると、これらのデータは、SAHB3BID化合物は、増殖している白血病細胞に浸透しおよび殺傷することができることを示している。観察されたプロアポトーシス作用は、SAHB3BIDAのglyのgluへの変異およびBCL-2の細胞過剰発現により選択的に除去され、この知見は、SAHB3BID化合物は、指定されたミトコンドリアアポトーシス経路を介して機能することを強調している。
NOD-SCDIマウスに、300cGyの全身照射を施し、その後安定したルシフェラーゼ発現を示している4x106個SEMK2-M1白血病細胞を静脈内注射した。このマウスに、D-ルシフェリン
の腹腔内注射後の全身のルミネセンスを定量する、In Vivo Imaging System(IVIS、Xenogen)を用い、白血病細胞生着について毎週モニタリングした。0日目に、白血病マウスを撮像し、その後1日目、2日目、3日目、5日目、6日目に、10mg/kgのSAHB3BIDA、SAHB3BID(G
→S)Aの静脈内注射または無注射により処置した。全身のルミネセンスを、4および7日目
に測定した。図26aを参照した、群間の腫瘍負荷の分析は、SAHB3BIDAおよびSAHB3BID(G→S)A化合物は、未処置の対照マウスと比べ、白血病を抑制することを明らかにしている。
図26bを参照した、全身のルミネセンス画像は、7日目までのより低レベルのより局在化された疾患を示しているSAHB3BIDA処置したマウスと比べ、未処置群におけるより進行した
白血病を明らかにしている(高レベルの白血病を示す赤の密集は、骨格系全体に認められ
る)。興味深いことに、BCL-2により隔絶されないG→S変異体は、白血球増殖の抑制において、親化合物SAHB3BIDAよりも、より強力であるように見える。
、またはビヒクル対照(D5W中5%DMSO)により、静脈内処置した。全身のルミネセンスを、4日目および8日目に測定した。図27aを参照した、群間の腫瘍負荷の分析は、未処置の対
照マウスと比べ、SAHB3BIDAは用量依存式に白血病を抑制することを明らかにしている。
図27bを参照した、全身のルミネセンス画像は、8日目までの白血行進行が顕著に鈍化しているSAHB3BIDA処置したマウスと比べ、未処置群におけるより進行した白血病を明らかに
している(赤の密集は高レベルの白血病を示す)。
白血病画像撮影のために、マウスを、イソフラン吸入(Abbott Laboratories)により麻酔
をかけ、D-ルシフェリン(60mg/kg)(Promega)の腹腔内注射により同時に処置した。光子放出を、In Vivo Imaging System(Xenogen)を用いて撮像し(2分間の露光)、全身の生物発光を、光子フラックス(フォトン/秒)(Living Image Software、Xenogen)の積分により定量
した。実験1日目に開始し、マウスには、SAHB3BIDA(10mg/ml)またはビヒクル(D5W中の5%DMSO)の毎日の尾静脈注射を7日間投与した。マウスは、1日目、3日目および5日目に撮像
し、実験期間中は毎日生存をモニタリングした。SAHB3BIDAおよびビヒクル処置したマウ
スの生存分布は、Kaplan-Meier法を用いて決定し、およびログランク検定を用いて比較した。Fisherの正確確率検定を使用し、3〜5日目に治療に失敗したマウスの割合を比較し、ここで治療の失敗は進行または死亡として、成功は安定した疾患または退縮として定義した。満了したマウスには、屍検を施した(Rodent Histopathology Core、DF/HCC)。
臓の進行性白血病細胞浸潤を示しているが、SAHB3A処置マウスにおいては、処置の5日目
までに、これらの解剖学的部位で疾患が退縮した(図27d)。このコホートにおける死へ至
る時間の中央値は、対照動物について5日であるのに対し、SAHBA処置マウスで、7日間の
処置期間に死亡例はなく、代わりに生存の中央値は11日であった(図27e)。SAHBA処置したマウスの組織学的試験は、この化合物の正常組織に対する明らかな毒性を示さなかった。SAHB3BIDA処置およびSAHB3BID(G→E)A処置したマウスを比較する追加の試験において、点変異体SAHBを受け取った動物は、腫瘍退縮を示さず(図27f)、SAHB3BIDAの抗白血病活性のインビボ特異性を強調している。
場合によっては、本明細書に説明された炭化水素テザー(すなわち、架橋)は更に操作することができる。一例として、炭化水素アルケニルテザーの二重結合(例えば、ルテニウ
ム触媒した閉環メタセシス(RCM)を用いて合成された)は、酸化され(例えば、エポキシ化
またはジヒドロキシル化を介して)、以下の化合物のひとつを提供する。
、放射性同位元素または蛍光タグ)の結合に使用することができる追加の官能性を提供す
る。このタグは、化合物の体内の所望の位置への指示(例えばヨウ素タグを使用する場合
、化合物を甲状腺へ向かわせる)、または体内の化合物の位置の追跡を補助するために使
用することができる。あるいは、追加の治療的物質を、官能基化されたテザーへ化学的に付着することができる(例えば、ラパマイシン、ビンブラスチン、タキソールなどの抗癌
剤)。このような誘導体化は、代わりに、ポリペプチドのアミノもしくはカルボキシ末端
の合成操作によるか、またはアミノ酸側鎖を介して実現することができる。
ことができる。場合によっては、天然のアミノ酸側鎖を、このテザーへ組込むことができる。例えば、テザーは、セリンのヒドロキシル、システインのチオール、リシンの第1級
アミン、アスパラギン酸もしくはグルタミン酸の酸、またはアスパラギンもしくはグルタミンのアミドなどの官能基とカップリングすることができる。従って、2個の非天然のア
ミノ酸のカップリングにより作製されたテザーを使用するよりもむしろ、天然のアミノ酸を用いテザーを作製することが可能である。天然のアミノ酸と共に1個の非天然のアミノ
酸を使用することも可能である。
較的高度の拘束を提供することが望ましい場合には、より短い長さのテザーを使用することができるのに対し、α-ヘリックス二次構造上により少ない拘束を提供することが望ま
しい場合には、従って比較的長いテザーが望ましい。
のテザーは、多くのアミノ酸の任意の組合せに広がるように合成することができる。
(1989);T. W. Greene and P. G. M. Wuts、Protective Groups in Organic Synthesis
、2d. Ed.、John Wiley and Sons(1991);L. Fieser and M. Fieser、Fieser and Fieser's Reagents for Organic Synthesis、John Wiley and Sons(1994);および、L. Paquette編集、Encyclopedia of Reagents for Organic Synthesis、John Wiley and Sons(1995)およびそれらの続版に説明されたものを含む。
ポリスチレン樹脂に付着される。この樹脂は、合成に使用される溶媒中に不溶性であり、
このことは、過剰な試薬および副産物の洗浄除去を、比較的単純かつ迅速なものとしている。N末端は、Fmoc基により保護され、これは酸の中で安定しているが、塩基により除去
することができる。任意の側鎖の官能基は、塩基に安定し、酸に不安定な基により保護される。
することができる。このような技術は、詳述されたプロトコールを伴う周知の標準マニュアルにおいて提供される。本発明のペプチドをコードしている遺伝子を構築するために、そのアミノ酸配列は、逆に翻訳され、アミノ酸配列をコードしている核酸配列、好ましくはそこで遺伝子が発現される生物に最適であるコドンを伴う核酸配列を得ることができる。次に、典型的にはこのペプチドおよび必要ならば任意の調節エレメントをコードしているオリゴヌクレオチドの合成により、合成遺伝子が作製される。合成遺伝子は、適当なクローニングベクターへ挿入され、および宿主細胞へ形質移入される。その後このペプチドは、選択された発現システムおよび宿主に適した適当な条件下で発現される。このペプチドは、常法により精製および特徴決定される。
チャネルコンビナトリアル合成装置の使用のように、ハイスループット、コンビナトリアル様式で作製することができる。
ドを表す。
本発明は、異常な(例えば、不充分または過剰な)BCL-2ファミリーメンバー発現もしく
は活性(例えば、外因性または内因性アポトーシス経路の異常)に関連した障害のリスクのある(または易罹患性である)被験者または障害を有する被験者を治療する、予防的および治療的の両方法を提供する。本明細書において使用される「治療」という用語とは、疾患、疾患の症状もしくは疾患への素因の治癒、回復、軽減、緩和、変更、救済、改善、改良、もしくは影響することを目的として、疾患、疾患の症状もしくは疾患への素因を有する患者への治療的物質の適用もしくは投与、または患者から単離された組織もしくは細胞株への治療的物質の適用もしくは投与と定義される。治療的物質は、小型分子、ペプチド、抗体、リボザイムおよびアンチセンスオリゴヌクレオチドを含むが、これらに限定されるものではない。
ァミリーメンバー(例えば、過剰もしくは過小発現)、または異常な活性を示す1種または
複数のBCL-2ファミリーメンバーの存在により引き起こされることが可能である。従って
、BCL-2ファミリーメンバーのレベルおよび/もしくは活性の減少またはBCL-2ファミリーメンバーのレベルおよび/もしくは活性の増強は、障害症状の改善をもたらすと考えられる。
ての種類の癌性増殖または腫瘍形成性プロセス、転移性組織または悪性転換された細胞、組織もしくは臓器を含むことを意味する。「病原性過増殖性」細胞は、悪性腫瘍増殖を特徴とする病態において生じる。非病原性過増殖性細胞の例は、創傷修復に関連した細胞の増殖を含む。
白血病(ALL)、慢性リンパ性白血病(CLL)、前リンパ球性白血病(PLL)、毛様細胞性白血病(HLL)およびヴァルデンストレームマクログロブリン血症(WM)を含むが、これらに限定されるものではない。悪性リンパ腫の追加例は、非ホジキンリンパ腫およびそれらの変種、末梢T細胞リンパ腫、成人T細胞白血病/リンパ腫(ATL)、皮膚T細胞リンパ腫(CTCL)、大型顆
粒リンパ球性白血病(LGF)、ホジキン疾患およびリード-スターンバーグ疾患を含むが、これらに限定されるものではない。
線維腫)および悪性中皮腫を含む胸膜腫瘍を含むが、これらに限定されるものではない。
ァンコーニ貧血、再生不良性貧血、サラセミア、先天性好中球減少症、骨髄形成異常を含むが、これらに限定されるものではない血液疾患を含む。
は、神経の特異的セットの段階的喪失により特徴付けられ、ならびにこの感染の抗アポトーシスペプチドを、これらの障害の治療に使用することができる。このような障害は、アルツハイマー病、パーキンソン病、筋萎縮性軸索硬化症(ALS)、色素性網膜炎、脊髄性筋
萎縮症、および脳変性の様々な形を含む。これらの疾患における細胞喪失は、炎症反応を引き起こさず、アポトーシスは、細胞死の機序であるように見える。加えて、多くの血液疾患が、減少した血液細胞の生成に関連している。これらの障害は、慢性疾患に関連した貧血、再生不良性貧血、慢性好中球減少症、および骨髄異形成症候群を含む。骨髄異形成症候群および再生不良性貧血の一部などの血液細胞生成の障害は、骨髄内の増加したアポトーシス細胞死に関連している。これらの障害は、アポトーシスを促進する遺伝子の活性化、間質細胞もしくは造血系生存因子の後天性欠乏、または毒素および免疫応答メディエーターの直接作用の結果である。細胞死に関連したふたつの一般的障害は、心筋梗塞および心臓発作である。両障害において、虚血の中心部分の細胞は、血流の急激な喪失事象において引き起こされるが、これは壊死の結果迅速に死滅するように見える。しかし中央の虚血帯の外側の細胞は、より長期にわたり死滅し、形態学的にはアポトーシスにより死滅するように見える。本発明の抗アポトーシスペプチドを使用し、望ましくない細胞死に関連したこのような障害を全て治療することができる。
糖尿病などを含むが、これらに限定されるものではない。
例は、アルツハイマー病、ダウン症、オランダ型遺伝性脳出血性アミロイド症、反応性アミロイドーシス、家族性アミロイドーシス、蕁麻疹および難聴を伴うネフロパシー、マックル-ウェルズ症候群、特発性骨髄腫;マクログロブリン血症随伴性骨髄腫、家族性アミ
ロイド型多発性ニューロパシー、家族性アミロイド性心筋症、弧発性心アミロイド、全身老人性アミロイドーシス、成人発症型糖尿病、インスリノーマ、弧発性心房性アミロイド、甲状腺の髄様癌、家族性アミロイドーシス、アミロイドーシスによる遺伝性脳出血、家族性アミロイド型多発性ニューロパシー、スクレーピー、クロイツフェルト-ヤコブ病、
ゲルストマン-シュトロイスラー-シャインカー症候群、ウシ海綿脳症、プリオン依存型疾患、およびハンチントン病を含むが、これらに限定されるものではない。
炎症障害)の例は、アテローム動脈硬化症、心筋梗塞、心臓発作、血栓症、動脈瘤、心不
全、虚血性心疾患、狭心症、心臓突然死、高血圧性心疾患;細動脈硬化症、小血管疾患、ネフロパシー、高トリグリセリド血症、高コレステロール血症、高脂血症、黄色腫症、喘息、高血圧、気腫および慢性肺疾患などの、非冠状動脈疾患;または、介入的手技に関連した心臓血管系の状態(「手技による血管外傷」)、例えば血管形成術、シャント、ステント、合成もしくは天然の切除移植片、留置カテーテル、バルブもしくは他の埋込み可能な用具の留置後の再狭窄を含むが、これらに限定されるものではない。好ましい心臓血管系障害は、アテローム動脈硬化症、心筋梗塞、動脈瘤、および心臓発作を含む。
本明細書において使用される、本明細書に説明した式の化合物を含む本発明の化合物は、それらの薬学的に許容される誘導体またはプロドラッグを含むように定義される。「薬学的に許容される誘導体またはプロドラッグ」は、レシピエントへの投与の場合に、本発明の化合物を(直接または間接に)提供することが可能であるような、本発明の化合物の任意の薬学的に許容される塩、エステル、エステルの塩、または他の誘導体を意味する。特に好ましい誘導体およびプロドラッグは、このような化合物が哺乳類に投与された場合に、本発明の化合物のバイオアベイラビリティを増大する(例えば、経口投与された化合物
が血中により迅速に吸収されることを可能にすることにより)か、または親種と比べ親化
合物の生物学的区画(例えば、脳またはリンパ系)への送達を増強するものである。好ましいプロドラッグは、水への溶解度または消化管膜を通る能動輸送を増強する基が、本明細書に説明された式の構造に付加されている誘導体を含む。
トシル酸塩およびウンデカン酸塩を含む。適当な塩基に由来する塩は、アルカリ金属(例
えば、ナトリウム)、アルカリ土類金属(例えば、マグネシウム)、アンモニウムおよびN-(アルキル)4 +塩を含む。本発明は、本明細書に明らかにされた化合物の塩基性窒素含有基
の四級化も想起している。水または油へ溶解性または分散性の生成物は、このような四級化により得ることができる。
物の必要要件に従い、投与することができる。本明細書の方法は、所望のまたは言及された作用を実現するのに有効な量の化合物または化合物組成物を投与することを企図している。典型的には、本発明の薬学的組成物は、1日に約1〜約6回で、あるいは連続注入とし
て投与される。このような投与は、慢性または急性の療法として使用することができる。単位剤形を製造するために担体物質と一緒にすることができる活性成分の量は、治療される宿主および投与の具体的様式に応じて変動すると考えられる。典型的調製物は、約5%
〜約95%の活性化合物(w/w)を含有すると考えられる。あるいは、このような調製物は、
約20%〜約80%の活性化合物を含有する。
メンバー依存性の障害またはそれらの症状を含む、疾患または疾患症状の変調を実現するための有効量含有する。
二ナトリウム、リン酸水素カリウム、塩化ナトリウム、亜鉛塩、コロイド状シリカ、マグネシウムトリシリケート、ポリビニルピロリドン、セルロースベースの物質、ポリエチレングリコール、カルボキシメチルセルロースナトリウム、ポリアクリレート、ワックス、ポリエチレン-ポリオキシプロピレン-ブロックポリマー、ポリエチレングリコールおよび羊毛脂を含むが、これらに限定されるものではない。α-シクロデキストリン、β-シクロデキストリンおよびγ-シクロデキストリンのようなシクロデキストリン類も、本明細書
に説明された式の化合物の送達を増強するために、有利に使用することができる。
ばTween 80など)および懸濁化剤を使用し、当該技術分野において公知の技術に従い製剤
することができる。無菌の注射可能な調製物は、例えば、1,3-ブタンジオール溶液のような、無毒の非経口的に許容される希釈剤または溶媒中の、無菌の注射可能な液体または懸濁液であってもよい。許容されるビヒクルおよび溶媒の中で使用されるものは、マンニトール、水、リンゲル液および等張塩化ナトリウム溶液である。加えて無菌の不揮発性油が、溶媒または懸濁媒として、通常利用される。この目的のために、合成モノグリセリドまたはジグリセリドを含む、任意の無刺激性の(bland)不揮発油を使用することができる。
オリーブ油またはひまし油、特にそれらのポリオキシエチレン型のような、天然の薬学的に許容される油分である、オレイン酸およびそのグリセリド誘導体のような脂肪酸は、注射可能な調製物において有用である。これらの油性溶液または懸濁液は、乳剤および/または懸濁剤のような、薬学的に許容される剤形の製剤において通常使用される、長鎖アルコール希釈剤または分散剤、またはカルボキシメチルセルロースもしくは同様の分散剤を含むこともできる。薬学的に許容される固形、液体、または他の剤形の製造において通常使用される、他の通常使用される界面活性剤、例えばTweensまたはSpansおよび/または
他の同様の乳化剤またはバイオアベイラビリティ増加剤も、製剤目的で使用することができる。
リエチレングリコールを含むが、これらに限定されるものではない。
または予防的物質の組合せを含有する場合、化合物および追加の物質の両方は、単剤療法様式で通常投与される用量の約1〜100%、より好ましくは約5〜95%の間の用量レベルで
存在しなければならない。追加の物質は、反復投与様式の一部として、本発明の化合物とは個別に投与されてもよい。あるいはこれらの物質は、単独の組成物中に本発明の化合物と一緒に混合された、単位剤形の一部であってもよい。
本発明は、1種または複数のBCL-2ファミリータンパク質の活性を変調するポリペプチド、または1種または複数のBCL-2ファミリータンパク質に結合するポリペプチド(例えば少
なくとも1個のBH相同ドメインを有するペプチド)を同定する方法(同じく本明細書におい
て「スクリーニングアッセイ法」と称される)を提供する。
プチド(例えば、BID、BAK、BAXなど)は、ポリペプチドまたはそれらの断片(例えば、BID
、BAD、BAK、BAXなど)を含む蛍光標識されたBH3のような基質の存在下で、変動する濃度
の候補化合物(すなわちポリペプチド)(例えば、1nM、10nM、100nM、1μM、10μM、100μM、1mM、および10mM)に曝露することができる。その後候補化合物の各濃度での作用が分析され、様々な濃度での候補化合物のBCL-2ファミリー結合活性に対する作用が決定され、
これには候補化合物のKiを算出するために使用することができる。この候補化合物は、競合的または非競合的様式で、BCL-2型活性を変調することができる。直接結合アッセイ法
も、BCL-2ファミリータンパク質と蛍光標識された候補化合物の間で行い、結合相互作用
に関するKdを決定することができる。候補化合物は、例えば、精製されたミトコンドリアからのシトクロムcの引金を引くことにおけるそれらの用量反応を測定することにより、
インビトロにおける生物学的活性についてスクリーニングすることもできる。細胞透過性スクリーニングアッセイ法も想起され、これは蛍光標識された候補化合物が、無傷の細胞に適用され、その後細胞の蛍光について顕微鏡またはハイスループット細胞蛍光検出により、アッセイされる。
物学的活性部分を発現している細胞を、候補ポリペプチドと接触し、および被験化合物のBCL-2型活性を変調する能力を決定する(例えば、内因性または外因性の細胞死経路を介し、場合によってはアポトーシスを増加し、および別の場合にはアポトーシスを減少する)
細胞を用いたアッセイ法である。細胞内で被験化合物のBCL-2型活性を変調する能力を決
定することは、例えばミトコンドリアからのシトクロムc放出のモニタリング、または他
の関連のある物理的読値(例えば、アネキシンV染色、MTTアッセイ法、カスパーゼ活性ア
ッセイ法、TUNELアッセイ法)により実現することができる。
本明細書に説明されたペプチドの生物学的関連のある適用は多数であり、以下の細胞コンパートメントベースの例により示されるように、容易に明らかであると思われる。
(1)細胞表面−HIV-1タンパク質gp41の重要なヘリックス領域を示す天然のペプチド(例
えば、C-ペプチド、T-20ペプチド)は、ウイルス融合を防止し、その結果HIV感染性を妨げることを示している。ヘリックスペプチドは、多くのウイルス宿主細胞感染症(例えば、
デング、C型肝炎、インフルエンザ)のパラダイムに必須である融合機序に参加し、その結果これらの重要なヘリックス領域の炭化水素ステープル式アナログは、ウイルス融合を阻害することにより、有効な抗生物質として機能することができる。全般的に、シグナル伝達経路を活性化または阻害するためにヘリックス境界面を用い、細胞表面と相互作用するリガンドは、本明細書に説明したポリペプチドの追加の適用を表している。
びシグナル伝達の主要な特徴である。膜貫通ヘリックスドメインは、このような必須のオリゴマー形成反応に広く参加し(例えば、上皮増殖因子受容体[EGFR]ファミリー)、およびこれらの密な膜内のヘリックスの会合を促進する特異的ペプチド配列が、定義されている。オリゴマー形成を介したこのような受容体の異常な活性化は、疾患病理に関与している(例えばerbBおよび癌)。従って適当な状況において、膜貫通ヘリックス間相互作用の活性化または阻害は、治療上の恩恵があると考えられる。
ア、小胞体、ゴルジ網、リソソーム、およびペルオキシソームを含む特異的細胞質ゾル内オルガネラに会合したものを含む。アポトーシスの分野において、炭化水素ステープル式のBCL-2ファミリードメインに関して、複数の細胞質ゾルおよびミトコンドリアアポトー
シスタンパク質標的が存在する。プロアポトーシスタンパク質のBH3オンリーサブグルー
プ内で、BH3ドメインの2種の主要なサブセットが同定された。(1)BID様BH3(例えば、BIM)、これはアポトーシス「アクチベーター」であり、ミトコンドリアにおけるBAKオリゴマ
ー形成およびシトクロムc放出を誘導する;ならびに、(2)BAD様BH3、これは抗アポトーシスマルチドメインタンパク質を選択的に標的化するアポトーシス「増感剤」であり、閾値下のレベルで活性化するドメインが最大有効であるようにすることができる。BH3オンリ
ータンパク質のプロアポトーシス、対、抗アポトーシスマルチドメインファミリーメンバーに対する識別できる結合に加え、BH3ドメインは、抗アポトーシスタンパク質間の示差
的結合を示す。例えば、BADは、抗アポトーシスBCL-2へ優先的に結合するのに対し、BIM
は、抗アポトーシスMCL-1を標的化することが明らかにされている。これらの選択的相互
作用の同定および探索は、異なるBCL-2ファミリーメンバーは、異なる種類の癌に関与し
ているので、決定的に重要である。例えば、BCL-2過剰発現は、濾胞性リンパ腫および概
して化学療法抵抗性の発達の原因であるのに対し、MCL-1は、多発性骨髄腫の病理進行に
おいて重要な役割を果たすと考えられている。多くのBH3ドメインを構造的に安定しおよ
び細胞透過性亢進物質に転換する能力は、癌細胞におけるアポトーシス経路を探索しかつ示差的に操作する重要な機会を提供すると考えられる。細胞質ゾルまたは細胞質ゾルオルガネラ内のヘリックス依存型相互作用の更なる標的化が想起されている。
プチドのヘリックス相互作用を基に生理的プロセスの宿主を駆動する。核相互作用に携わる炭化水素ステープル式ペプチドの生成の実現可能性が、本発明者らの、ピコモルの親和性でMDM2と相互作用する炭化水素ステープル式p53ペプチドのパネルの合成により、最近
明らかにされている。核内のタンパク質-タンパク質相互作用の変調に加え、タンパク質-核酸相互作用も、明らかな標的である。ホメオドメイン、基本的ヘリックス-ループ-ヘリックス、核受容体、およびジンクフィンガー含有タンパク質などの複数の転写因子ファミリーは、それらのペプチドヘリックスを介して、DNAと直接相互作用し、遺伝子転写を活
性化または阻害する。例として、ホメオドメインタンパク質は、全ての多細胞生物における増殖および分化の遺伝子プログラムを調節する必須の転写因子のファミリーである。これらのタンパク質は、ホメオドメインと称される、保存されたDNA結合モチーフを共有し
ており、これは60個のアミノ酸長のペプチドを含み、これは3個のα-ヘリックスを形成し、その3番目は、DNAの主要溝との直接接触を形成している。アポトーシスタンパク質のBH3ドメインのように、このホメオドメインは、示差的結合特異性および生理的活性を促進
するために、ホモログ間で十分な変動を伴う、決定的なエフェクターモチーフである。タンパク質-DNA相互作用は、複雑かつ広範であることができ、これにより転写事象の試験および選択的修飾を目的として、小型分子の開発に対するチャレンジを示す。高等生物において、ホメオドメインタンパク質は、発達時に高度に発現され、ボディプランを特定し、かつ組織分化を指示する。特異的ホメオタンパク質(例えばCDX4)の過剰発現は、組織特異的分化プログラムを活性化し、例えば、マウス胚性幹細胞からの血液形成を生じる。典型的には未分化の細胞において発現されたホメオドメインタンパク質の異常なアップレギュレーション、または通常分化細胞において発現されるこのようなタンパク質の不適切なダウンレギュレーションのような、ホメオティック遺伝子発現の脱制御は、癌の発達および維持に貢献し得る。例えば、小児肺胞横紋筋肉腫において、PAX3またはPAX7 DNA結合ドメインのフォークヘッドのトランス活性化ドメインへの融合は、細胞の形質転換に関与し;いくつかのHOX遺伝子のDNA結合ドメインに関与している転位は、白血病の病理進行に連結している。従って細胞送達のために、ホメオドメインペプチドのような、転写因子ヘリックスを化学的に安定化する能力は、健常および疾患の生物学的プロセスの大きさに寄与する多様な転写プログラムの研究および変更のためのケミカルツールボックスを得る可能性を有する。
本明細書は以下の発明の開示を包含する:
[1]式(I)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルケニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜10の整数であり;ならびに
各Xaaが独立して、アミノ酸であるポリペプチドであって;
水溶液中で、実質的にαヘリックス二次構造を有する、ポリペプチド。
[2]BCL-2ファミリーポリペプチドに結合する、[1]記載のポリペプチド。
[3]抗アポトーシスポリペプチドである、[1]記載のポリペプチド。
[4]BH1ドメイン、BH2ドメインまたはBH3ドメインに結合する、[1]記載のポリペプチド。
[5]ミトコンドリア細胞死を活性化する、[1]記載のポリペプチド。
[6]細胞死を活性化する、[1]記載のポリペプチド。
[7]細胞死を阻害する、[1]記載のポリペプチド。
[8]BH3ドメインを含む、[1]記載のポリペプチド。
[9]xが、2、3または6である、[1]記載のポリペプチド。
[10]各yが独立して、3〜15の間の整数である、[1]記載のポリペプチド。
[11]R1およびR2が各々独立して、HまたはC1-C6アルキルである、[1]記載のポリ
ペプチド。
[12]R1およびR2が各々独立して、C1-C3アルキルである、[1]記載のポリペプチド。
[13]R1およびR2の少なくとも一方がメチルである、[11]記載のポリペプチド。
[14]R1およびR2がメチルである、[12]記載のポリペプチド。
[15]R3がアルキルである、[1]記載のポリペプチド。
[16]xが3である、[14]記載のポリペプチド。
[17]R3がC8アルキルである、[15]記載のポリペプチド。
[18]xが6である、[14]記載のポリペプチド。
[19]R3がC11アルキルである、[17]記載のポリペプチド。
[20]R3がアルケニルである、[1]記載のポリペプチド。
[21]xが3である、[18]記載のポリペプチド。
[22]R3がC8アルケニルである、[20]記載のポリペプチド。
[23]xが6である、[19]記載のポリペプチド。
[24]R3がC11アルケニルである、[19]記載のポリペプチド。
[25]R3が直鎖アルキル、アルケニル、またはアルキニルである、[1]記載のポリ
ペプチド。
[26]R3が[R4-K-R4]であり;および、R4が直鎖アルキル、アルケニル、またはアル
キニルである、[1]記載のポリペプチド。
[27]SEQ ID NO:1のアミノ酸配列と少なくとも約60%同一であるアミノ酸配列を含む、[1]記載のポリペプチド。
[28]R3がアルキルまたはアルケニルである、[15]記載のポリペプチド。
[29]R1またはR2の少なくとも一方がアルキルである、[15]記載のポリペプチド。
[30]R1またはR2の各々が独立して、HまたはC1-C3アルキルである、[11]記載のポリペプチド。
[31]R1およびR2がメチルである、[1]記載のポリペプチド。
[32]xが3または7であり、およびzが0である、[1]記載のポリペプチド。
[33]R3がC8またはC11のアルキルまたはアルケニルである、[1]記載のポリペプチド。
[34]SEQ ID NO:2のアミノ酸配列と少なくとも約80%同一であるアミノ酸配列を含む、[1]記載のポリペプチド。
[35]細胞膜を介して輸送される、[1]記載のポリペプチド。
[36]細胞膜を介して能動輸送される、[1]記載のポリペプチド。
[37]蛍光部分または放射性同位元素を更に含む、[1]記載のポリペプチド。
[38]23個のアミノ酸を含み;
R1およびR2がメチルであり;
R3がC8アルキル、C11アルキル、C8アルケニル、またはC11アルケニルであり;ならびに
xが2、3または6である、[1]記載のポリペプチド。
[39]アフィニティー標識を更に含む、[1]記載のポリペプチド。
[40]標的化部分を更に含む、[1]記載のポリペプチド。
[41]ビオチン部分を更に含む、[1]記載のポリペプチド。
[42]図5に記されたポリペプチドからなる群より選択されるポリペプチドである、
[1]記載のポリペプチド。
[43]式(III)のポリペプチドを生成する方法であって、式(II)
式(II)の化合物を触媒で処理し、閉環メタセシスを促進し、これにより式(III)
式中、各R1およびR2が、独立してH、アルキル、アルケニル、アルキニル、アリールア
ルキル、シクロアルキルアルキル;ヘテロアリールアルキル;またはヘテロシクリルアルキルであり;
各nが独立して、1〜15の整数であり;
xが2、3または6であり;
各yが独立して、0〜100の整数であり;
zが1〜3の整数であり;および
各Xaaが独立してアミノ酸であり;ならびに
ポリペプチドが水溶液中で、αヘリックス構造を含む工程を含む、方法。
[44]ポリペプチドが、BCL-2ファミリーメンバーのポリペプチドに結合する、[43
]記載の方法。
[45]触媒がルテニウム触媒である、[43]記載の方法。
[46]閉環メタセシスに続いて、還元剤または酸化剤を提供する工程を更に含む、[43]記載の方法。
[47]還元剤がH2であるか、または酸化剤が四酸化オスミウムである、[46]記載の方法。
[48][1]記載の化合物を被験者へ投与することを含む、被験者を治療する方法。
[49]追加の治療的物質を投与する工程を更に含む、[48]記載の方法。
[50][1]記載の化合物を被験者へ投与することを含む、被験者の癌を治療する方
法。
[51]追加の治療的物質を投与することを更に含む、[45]記載の方法。
[52]式(I)である、[1]記載の化合物のライブラリー。
[53]アポトーシス促進のための候補化合物を同定する方法であって:
ミトコンドリアを提供する工程;
ミトコンドリアを、[1]記載の化合物と接触する工程;
シトクロムc放出を測定する工程;および
[1]記載の化合物の存在下のシトクロムc放出を、[1]記載の化合物の非存在下のシ
トクロムc放出と比較する工程を含み、[1]記載の化合物の存在下のシトクロムc放出の
増加が、アポトーシス促進のための候補化合物として[1]記載の化合物を同定する、方
法。
[54]式(IV)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルキニル、アルキニル;[R4-K-R4]n、または天然のアミノ酸側鎖であり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルキニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
R7が、アルキル、アルケニル、アルキニル;[R4-K-R4]n、または天然のアミノ酸側鎖であり;その各々が、0〜6個のR5で置換され;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜3の整数であり;ならびに
各Xaaが独立して、アミノ酸である、ポリペプチドであって:
;ならびに
水溶液中で、実質的にαヘリックス二次構造を有する、ポリペプチド。
[55]式(I)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルキニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜3の整数であり;ならびに
各Xaaが独立して、アミノ酸である、ポリペプチドであって:
;ならびに
円偏光二色性により決定される場合、水溶液中で少なくとも5%のαヘリックス性を有
する、ポリペプチド。
[56]円偏光二色性により決定される場合、少なくとも35%のαヘリックス性を有する、[55]記載のポリペプチド。
[57]円偏光二色性により決定される場合、少なくとも50%αヘリックス性である、[55]記載のポリペプチド。
[58]円偏光二色性により決定される場合、少なくとも60%αヘリックス性を有する、[55]記載のポリペプチド。
[59]円偏光二色性により決定される場合、少なくとも70%αヘリックス性を有する、[55]記載のポリペプチド。
[60]円偏光二色性により決定される場合、少なくとも80%αヘリックス性を有する、[55]記載のポリペプチド。
[61]円偏光二色性により決定される場合、少なくとも90%αヘリックス性を有する、[55]記載のポリペプチド。
[62]式(I)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルキニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜3の整数であり;ならびに
各Xaaが独立して、アミノ酸である、ポリペプチドであって;
;
式(IV)
ポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも1.25倍の増加を有するポリペプチド。
[63]式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも1.5倍の増加を有する、式(I)である、[62]記載のポリペプチド。
[64]式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも1.75倍の増加を有する、式(I)である、[62]記載のポリペプチド。
[65]式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも2.0倍の増加を有する、式(I)である、[62]記載のポリペプチド。
[66]式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも2.5倍の増加を有する、式(I)である、[65]記載のポリペプチド。
[67]式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも3倍の増加を有する、式(I)である、[65]記載のポリペプチド。
[68]式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも4倍の増加を有する、式(I)である、[65]記載のポリペプチド。
[69]アポトーシスを阻害する候補化合物を同定する方法であって:
ミトコンドリアを提供する工程;
ミトコンドリアを、[1]記載の化合物と接触する工程;
シトクロムc放出を測定する工程;ならびに
[1]記載の化合物の存在下のシトクロムc放出を、請求項1記載の化合物の非存在下の
シトクロムc放出と比較する工程を含み、[1]記載の化合物の存在下のシトクロムc放出
の減少が、アポトーシス阻害の候補化合物として[1]記載の化合物を同定する、方法。
Claims (69)
- 式(I)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルケニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜10の整数であり;ならびに
各Xaaが独立して、アミノ酸であるポリペプチドであって;
水溶液中で、実質的にαヘリックス二次構造を有する、ポリペプチド。 - BCL-2ファミリーポリペプチドに結合する、請求項1記載のポリペプチド。
- 抗アポトーシスポリペプチドである、請求項1記載のポリペプチド。
- BH1ドメイン、BH2ドメインまたはBH3ドメインに結合する、請求項1記載のポリペプチド。
- ミトコンドリア細胞死を活性化する、請求項1記載のポリペプチド。
- 細胞死を活性化する、請求項1記載のポリペプチド。
- 細胞死を阻害する、請求項1記載のポリペプチド。
- BH3ドメインを含む、請求項1記載のポリペプチド。
- xが、2、3または6である、請求項1記載のポリペプチド。
- 各yが独立して、3〜15の間の整数である、請求項1記載のポリペプチド。
- R1およびR2が各々独立して、HまたはC1-C6アルキルである、請求項1記載のポリペプチ
ド。 - R1およびR2が各々独立して、C1-C3アルキルである、請求項1記載のポリペプチド。
- R1およびR2の少なくとも一方がメチルである、請求項11記載のポリペプチド。
- R1およびR2がメチルである、請求項12記載のポリペプチド。
- R3がアルキルである、請求項1記載のポリペプチド。
- xが3である、請求項14記載のポリペプチド。
- R3がC8アルキルである、請求項15記載のポリペプチド。
- xが6である、請求項14記載のポリペプチド。
- R3がC11アルキルである、請求項17記載のポリペプチド。
- R3がアルケニルである、請求項1記載のポリペプチド。
- xが3である、請求項18記載のポリペプチド。
- R3がC8アルケニルである、請求項20記載のポリペプチド。
- xが6である、請求項19記載のポリペプチド。
- R3がC11アルケニルである、請求項19記載のポリペプチド。
- R3が直鎖アルキル、アルケニル、またはアルキニルである、請求項1記載のポリペプチ
ド。 - R3が[R4-K-R4]であり;および、R4が直鎖アルキル、アルケニル、またはアルキニルで
ある、請求項1記載のポリペプチド。 - SEQ ID NO:1のアミノ酸配列と少なくとも約60%同一であるアミノ酸配列を含む、請求項1記載のポリペプチド。
- R3がアルキルまたはアルケニルである、請求項15記載のポリペプチド。
- R1またはR2の少なくとも一方がアルキルである、請求項15記載のポリペプチド。
- R1またはR2の各々が独立して、HまたはC1-C3アルキルである、請求項11記載のポリペプチド。
- R1およびR2がメチルである、請求項1記載のポリペプチド。
- xが3または7であり、およびzが0である、請求項1記載のポリペプチド。
- R3がC8またはC11のアルキルまたはアルケニルである、請求項1記載のポリペプチド。
- SEQ ID NO:2のアミノ酸配列と少なくとも約80%同一であるアミノ酸配列を含む、請求項1記載のポリペプチド。
- 細胞膜を介して輸送される、請求項1記載のポリペプチド。
- 細胞膜を介して能動輸送される、請求項1記載のポリペプチド。
- 蛍光部分または放射性同位元素を更に含む、請求項1記載のポリペプチド。
- 23個のアミノ酸を含み;
R1およびR2がメチルであり;
R3がC8アルキル、C11アルキル、C8アルケニル、またはC11アルケニルであり;ならびに
xが2、3または6である、請求項1記載のポリペプチド。 - アフィニティー標識を更に含む、請求項1記載のポリペプチド。
- 標的化部分を更に含む、請求項1記載のポリペプチド。
- ビオチン部分を更に含む、請求項1記載のポリペプチド。
- 図5に記されたポリペプチドからなる群より選択されるポリペプチドである、請求項1記載のポリペプチド。
- 式(III)のポリペプチドを生成する方法であって、式(II)
式(II)の化合物を触媒で処理し、閉環メタセシスを促進し、これにより式(III)
式中、各R1およびR2が、独立してH、アルキル、アルケニル、アルキニル、アリールア
ルキル、シクロアルキルアルキル;ヘテロアリールアルキル;またはヘテロシクリルアルキルであり;
各nが独立して、1〜15の整数であり;
xが2、3または6であり;
各yが独立して、0〜100の整数であり;
zが1〜3の整数であり;および
各Xaaが独立してアミノ酸であり;ならびに
ポリペプチドが水溶液中で、αヘリックス構造を含む工程を含む、方法。 - ポリペプチドが、BCL-2ファミリーメンバーのポリペプチドに結合する、請求項43記載
の方法。 - 触媒がルテニウム触媒である、請求項43記載の方法。
- 閉環メタセシスに続いて、還元剤または酸化剤を提供する工程を更に含む、請求項43記載の方法。
- 還元剤がH2であるか、または酸化剤が四酸化オスミウムである、請求項46記載の方法。
- 請求項1記載の化合物を被験者へ投与することを含む、被験者を治療する方法。
- 追加の治療的物質を投与する工程を更に含む、請求項48記載の方法。
- 請求項1記載の化合物を被験者へ投与することを含む、被験者の癌を治療する方法。
- 追加の治療的物質を投与することを更に含む、請求項45記載の方法。
- 式(I)である、請求項1記載の化合物のライブラリー。
- アポトーシス促進のための候補化合物を同定する方法であって:
ミトコンドリアを提供する工程;
ミトコンドリアを、請求項1記載の化合物と接触する工程;
シトクロムc放出を測定する工程;および
請求項1記載の化合物の存在下のシトクロムc放出を、請求項1記載の化合物の非存在下
のシトクロムc放出と比較する工程を含み、請求項1記載の化合物の存在下のシトクロムc
放出の増加が、アポトーシス促進のための候補化合物として請求項1記載の化合物を同定
する、方法。 - 式(IV)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルア
ルキルであり;
R3が、アルキル、アルキニル、アルキニル;[R4-K-R4]n、または天然のアミノ酸側鎖であり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルキニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
R7が、アルキル、アルケニル、アルキニル;[R4-K-R4]n、または天然のアミノ酸側鎖であり;その各々が、0〜6個のR5で置換され;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜3の整数であり;ならびに
各Xaaが独立して、アミノ酸である、ポリペプチドであって:
;ならびに
水溶液中で、実質的にαヘリックス二次構造を有する、ポリペプチド。 - 式(I)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルキニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜3の整数であり;ならびに
各Xaaが独立して、アミノ酸である、ポリペプチドであって:
;ならびに
円偏光二色性により決定される場合、水溶液中で少なくとも5%のαヘリックス性を有
する、ポリペプチド。 - 円偏光二色性により決定される場合、少なくとも35%のαヘリックス性を有する、請求項55記載のポリペプチド。
- 円偏光二色性により決定される場合、少なくとも50%αヘリックス性である、請求項55記載のポリペプチド。
- 円偏光二色性により決定される場合、少なくとも60%αヘリックス性を有する、請求項55記載のポリペプチド。
- 円偏光二色性により決定される場合、少なくとも70%αヘリックス性を有する、請求項55記載のポリペプチド。
- 円偏光二色性により決定される場合、少なくとも80%αヘリックス性を有する、請求項55記載のポリペプチド。
- 円偏光二色性により決定される場合、少なくとも90%αヘリックス性を有する、請求項55記載のポリペプチド。
- 式(I)
アルキル、シクロアルキルアルキル、ヘテロアリールアルキル、またはヘテロシクリルアルキルであり;
R3が、アルキル、アルケニル、アルキニル;[R4-K-R4]nであり;その各々が、0〜6個のR5で置換され;
R4が、アルキル、アルキニル、またはアルキニルであり;
R5が、ハロゲン、アルキル、OR6、N(R6)2、SR6、SOR6、SO2R6、CO2R6、R6、蛍光部分、または放射性同位元素であり;
Kが、O、S、SO、SO2、CO、CO2、CONR6、または
R6が、H、アルキル、または治療的物質であり;
nが、1〜4の整数であり;
xが、2〜10の整数であり;
各yが独立して、0〜100の整数であり;
zが、1〜3の整数であり;ならびに
各Xaaが独立して、アミノ酸である、ポリペプチドであって;
;
式(IV)
ポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも1.25倍の増加を有するポリペプチド。 - 式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも1.5倍の増加を有する、式(I)である、請求項62記載のポリペプチド。
- 式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも1.75倍の増加を有する、式(I)である、請求項62記載のポリペプチド。
- 式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも2.0倍の増加を有する、式(I)である、請求項62記載のポリペプチド。
- 式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも2.5倍の増加を有する、式(I)である、請求項65記載のポリペプチド。
- 式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも3倍の増加を有する、式(I)である、請求項65記載のポリペプチド。
- 式(IV)のポリペプチドと比較して、円偏光二色性により決定されたαヘリックス性の少なくとも4倍の増加を有する、式(I)である、請求項65記載のポリペプチド。
- アポトーシスを阻害する候補化合物を同定する方法であって:
ミトコンドリアを提供する工程;
ミトコンドリアを、請求項1記載の化合物と接触する工程;
シトクロムc放出を測定する工程;ならびに
請求項1記載の化合物の存在下のシトクロムc放出を、請求項1記載の化合物の非存在下
のシトクロムc放出と比較する工程を含み、請求項1記載の化合物の存在下のシトクロムc
放出の減少が、アポトーシス阻害の候補化合物として請求項1記載の化合物を同定する、
方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51784803P | 2003-11-05 | 2003-11-05 | |
US60/517,848 | 2003-11-05 | ||
US59154804P | 2004-07-27 | 2004-07-27 | |
US60/591,548 | 2004-07-27 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017079231A Division JP2017197522A (ja) | 2003-11-05 | 2017-04-12 | 安定化させたαヘリックスペプチドおよびその使用法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019189622A true JP2019189622A (ja) | 2019-10-31 |
Family
ID=34576814
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006540005A Expired - Fee Related JP5122142B2 (ja) | 2003-11-05 | 2004-11-05 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2011266427A Withdrawn JP2012116836A (ja) | 2003-11-05 | 2011-12-06 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2015033319A Withdrawn JP2015163608A (ja) | 2003-11-05 | 2015-02-23 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2017079231A Withdrawn JP2017197522A (ja) | 2003-11-05 | 2017-04-12 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2019105614A Pending JP2019189622A (ja) | 2003-11-05 | 2019-06-05 | 安定化させたαヘリックスペプチドおよびその使用法 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006540005A Expired - Fee Related JP5122142B2 (ja) | 2003-11-05 | 2004-11-05 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2011266427A Withdrawn JP2012116836A (ja) | 2003-11-05 | 2011-12-06 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2015033319A Withdrawn JP2015163608A (ja) | 2003-11-05 | 2015-02-23 | 安定化させたαヘリックスペプチドおよびその使用法 |
JP2017079231A Withdrawn JP2017197522A (ja) | 2003-11-05 | 2017-04-12 | 安定化させたαヘリックスペプチドおよびその使用法 |
Country Status (17)
Country | Link |
---|---|
US (6) | US7723469B2 (ja) |
EP (4) | EP2332968B1 (ja) |
JP (5) | JP5122142B2 (ja) |
CN (3) | CN103467588B (ja) |
AU (1) | AU2004287884C1 (ja) |
BR (1) | BRPI0416258A (ja) |
CA (2) | CA2830063C (ja) |
CY (1) | CY1114944T1 (ja) |
DK (2) | DK1680443T5 (ja) |
ES (2) | ES2437567T3 (ja) |
HK (1) | HK1089191A1 (ja) |
IL (3) | IL175152A (ja) |
PL (2) | PL2332968T3 (ja) |
PT (2) | PT1680443E (ja) |
SI (1) | SI1680443T1 (ja) |
WO (1) | WO2005044839A2 (ja) |
ZA (1) | ZA200603565B (ja) |
Families Citing this family (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7192713B1 (en) | 1999-05-18 | 2007-03-20 | President And Fellows Of Harvard College | Stabilized compounds having secondary structure motifs |
US20040171809A1 (en) | 2002-09-09 | 2004-09-02 | Korsmeyer Stanley J. | BH3 peptides and method of use thereof |
EP2332968B1 (en) * | 2003-11-05 | 2016-05-04 | Dana-Farber Cancer Institute, Inc. | Alpha-helical peptides suitable for activating or inhibiting cell death |
US7202332B2 (en) | 2004-05-27 | 2007-04-10 | New York University | Methods for preparing internally constrained peptides and peptidomimetics |
FR2881430B1 (fr) * | 2005-02-01 | 2010-10-22 | Servier Lab | Nouveaux peptides interagissant avec les membres anti-apoptotiques de la famille de proteines bcl-2 et utilisations |
EP2008106A2 (en) | 2006-03-31 | 2008-12-31 | Dana-Farber Cancer Institute | Methods of determining cellular chemosensitivity |
US8937154B2 (en) | 2006-10-05 | 2015-01-20 | New York Blood Center, Inc. | Stabilized therapeutic small helical antiviral peptides |
EP2517720A1 (en) | 2006-10-05 | 2012-10-31 | New York Blood Center, Inc. | Stabilized therapeutic small helical antiviral peptides |
EP2997973A1 (en) | 2006-11-15 | 2016-03-23 | Dana-Farber Cancer Institute, Inc. | Stabalized maml peptides and uses thereof |
US7981998B2 (en) | 2006-12-14 | 2011-07-19 | Aileron Therapeutics, Inc. | Bis-sulfhydryl macrocyclization systems |
CA2686827C (en) * | 2006-12-14 | 2014-09-16 | Aileron Therapeutics, Inc. | Bis-sulfhydryl macrocyclization systems |
AU2013231104B2 (en) * | 2007-01-31 | 2016-05-12 | Dana-Farber Cancer Institute, Inc. | Stabilized p53 peptides and uses thereof |
AU2016210709B2 (en) * | 2007-01-31 | 2018-04-19 | Dana-Farber Cancer Institute, Inc. | Stabilized p53 peptides and uses thereof |
EP2118123B1 (en) * | 2007-01-31 | 2015-10-14 | Dana-Farber Cancer Institute, Inc. | Stabilized p53 peptides and uses thereof |
EP3301108A1 (en) | 2007-02-23 | 2018-04-04 | Aileron Therapeutics, Inc. | Triazole macrocycle systems |
WO2008121767A2 (en) | 2007-03-28 | 2008-10-09 | President And Fellows Of Harvard College | Stitched polypeptides |
ES2637687T3 (es) | 2007-05-02 | 2017-10-16 | Dana-Farber Cancer Institute, Inc. | Péptido BAD de dominio BH3 para usar en el tratamiento o retardo de la aparición de la diabetes |
CA2700925C (en) * | 2007-09-26 | 2016-08-23 | Dana Farber Cancer Institute | Methods and compositions for modulating bcl-2 family polypeptides |
US8871899B2 (en) * | 2007-12-31 | 2014-10-28 | New York University | Control of viral-host membrane fusion with hydrogen bond surrogate-based artificial helices |
WO2009108261A2 (en) * | 2008-01-23 | 2009-09-03 | Dana Farber Cancer Institute | Compositions and methods for the treatment of viral infections |
WO2009099763A1 (en) | 2008-01-30 | 2009-08-13 | Indiana University Research And Technology Corporation | Ester-based peptide prodrugs |
AU2014201269B2 (en) * | 2008-02-08 | 2016-09-15 | Aileron Therapeutics, Inc. | Therapeutic peptidomimetic macrocycles |
KR20100126361A (ko) * | 2008-02-08 | 2010-12-01 | 에일러론 테라퓨틱스 인코포레이티드 | 치료용 펩티드유사 거대고리 |
US20110144303A1 (en) * | 2008-04-08 | 2011-06-16 | Aileron Therapeutics, Inc. | Biologically Active Peptidomimetic Macrocycles |
US20090326192A1 (en) * | 2008-04-08 | 2009-12-31 | Aileron Therapeutics, Inc. | Biologically active peptidomimetic macrocycles |
AU2009244400B2 (en) | 2008-05-06 | 2012-12-20 | New York Blood Center | Antiviral cell penetrating peptides |
US20110250685A1 (en) * | 2008-06-03 | 2011-10-13 | Nash Huw M | Compositions and methods for enhancing cellular transport of biomolecules |
WO2010011313A2 (en) * | 2008-07-23 | 2010-01-28 | President And Fellows Of Harvard College | Ligation of stapled polypeptides |
US8586707B2 (en) * | 2008-09-16 | 2013-11-19 | The Research Foundation Of State University Of New York | Stapled peptides and method of synthesis |
JP2012503024A (ja) * | 2008-09-22 | 2012-02-02 | エルロン・セラピューティクス・インコーポレイテッド | ペプチド模倣大環状分子 |
CA2737921C (en) | 2008-09-22 | 2019-01-15 | Aileron Therapeutics, Inc. | Methods for preparing purified alpha-helical peptidomimetic macrocycle compositions with low metal ppm levels |
AU2009294872A1 (en) * | 2008-09-22 | 2010-03-25 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles |
ES2666458T3 (es) * | 2008-09-22 | 2018-05-04 | Aileron Therapeutics, Inc. | Macrociclos peptidomiméticos |
WO2010034026A1 (en) * | 2008-09-22 | 2010-03-25 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles |
WO2010042225A2 (en) | 2008-10-10 | 2010-04-15 | Dana Farber Cancer Institute | Chemical modulators of pro-apoptotic bax and bcl-2 polypeptides |
US9458202B2 (en) * | 2008-11-24 | 2016-10-04 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles with improved properties |
CA2746256C (en) | 2008-12-09 | 2020-03-24 | Loren D. Walensky | Methods and compositions for specific modulation of mcl-1 |
US8697632B2 (en) | 2008-12-19 | 2014-04-15 | Indiana University Research And Technology Corporation | Amide based insulin prodrugs |
JP5789515B2 (ja) | 2008-12-19 | 2015-10-07 | インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation | インスリン類似体 |
BRPI1006139A2 (pt) | 2009-01-14 | 2017-05-30 | Aileron Therapeutics Inc | macrociclos peptidomiméticos |
US8312468B2 (en) * | 2009-06-09 | 2012-11-13 | Open Kernel Labs | Methods and apparatus for fast context switching in a virtualized system |
CA2761568C (en) | 2009-06-18 | 2020-10-13 | Dana-Farber Cancer Institute, Inc. | Structured viral peptide compositions and methods of use |
US9296805B2 (en) | 2009-06-18 | 2016-03-29 | Dana-Farber Cancer Institute, Inc. | Stabilized insulinotropic peptides and methods of use |
US9163330B2 (en) | 2009-07-13 | 2015-10-20 | President And Fellows Of Harvard College | Bifunctional stapled polypeptides and uses thereof |
EP2480565A4 (en) | 2009-09-22 | 2014-01-01 | Aileron Therapeutics Inc | PEPTIDOMIMETIC MACROCYCLES |
CA2777700A1 (en) * | 2009-10-14 | 2011-04-21 | Aileron Therapeutics, Inc. | Improved peptidomimetic macrocycles |
CA2802485C (en) | 2010-06-16 | 2019-09-17 | Indiana University Research And Technology Corporation | Single chain insulin agonists exhibiting high activity at the insulin receptor |
WO2011159882A2 (en) * | 2010-06-16 | 2011-12-22 | Indiana University Research And Technology Corporation | Novel stabilized insulin agonists |
US8946147B2 (en) | 2010-06-24 | 2015-02-03 | Indiana University Research And Technology Corporation | Amide-based insulin prodrugs |
WO2012021876A2 (en) | 2010-08-13 | 2012-02-16 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles |
WO2012040459A2 (en) | 2010-09-22 | 2012-03-29 | President And Fellows Of Harvard College | Beta-catenin targeting peptides and uses thereof |
WO2012065181A2 (en) | 2010-11-12 | 2012-05-18 | Dana Farber Cancer Institute, Inc. | Cancer therapies and diagnostics |
US9243040B2 (en) | 2010-11-30 | 2016-01-26 | The Board Of Trustees Of The University Of Illinois | Stable helical ionic polypeptides |
US9029332B2 (en) | 2010-12-15 | 2015-05-12 | The Research Foundation For The State University Of New York | Cross-linked peptides and proteins, methods of making same, and uses thereof |
JP6150726B2 (ja) * | 2011-03-09 | 2017-06-21 | Jitsubo株式会社 | 新規な非ペプチド性架橋構造を含む架橋ペプチド、ならびに該架橋ペプチドの合成方法および該方法に用いる新規な有機化合物 |
EP2688904B1 (en) | 2011-03-21 | 2017-12-27 | Atlantic Cancer Research Institute | Polypeptides with affinity for heat shock proteins (hsps) and hsp associated complexes (hacs) and their use in diagnosis and therapy |
EP2697254B1 (en) | 2011-04-15 | 2018-06-06 | Dana-Farber Cancer Institute, Inc. | Targeting deregulated wnt signaling in cancer using stabilized alpha-helices of bcl-9 |
WO2012174423A1 (en) | 2011-06-17 | 2012-12-20 | President And Fellows Of Harvard College | Stabilized polypeptides as regulators of rab gtpase function |
AU2012326026B2 (en) | 2011-10-18 | 2017-04-13 | Aileron Therapeutics, Inc. | Peptidomimetic macrocyles |
BR112014015156A2 (pt) | 2011-12-20 | 2020-10-27 | Indiana University Research And Technology Corporation | análogos de insulina à base de ctp, seus métodos de produção e uso no tratamento de hiperglicemia, bem como sequência de ácido nucleico e célula hospedeira |
AU2012362121B2 (en) | 2011-12-29 | 2017-08-03 | Dana-Farber Cancer Institute, Inc. | Stabilized antiviral fusion helices |
WO2013116829A1 (en) | 2012-02-03 | 2013-08-08 | The Trustees Of Princeton University | Novel engineered potent cytotoxic stapled bh3 peptides |
US8987414B2 (en) | 2012-02-15 | 2015-03-24 | Aileron Therapeutics, Inc. | Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles |
KR102112373B1 (ko) | 2012-02-15 | 2020-05-18 | 에일러론 테라퓨틱스 인코포레이티드 | 펩티드모방체 마크로사이클 |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
WO2013150338A1 (en) * | 2012-04-04 | 2013-10-10 | Centre National De La Recherche Scientifique | Stapled cell penetrating peptides for intracellular delivery of molecules |
WO2013192423A2 (en) | 2012-06-20 | 2013-12-27 | Eutropics Pharmaceuticals, Inc. | Methods and compositions useful for treating diseases involving bcl-2 family proteins with quinoline derivatives |
WO2014020043A1 (en) | 2012-08-02 | 2014-02-06 | Bayer Pharma Aktiengesellschaft | Combinations for the treatment of cancer |
WO2014020041A1 (en) | 2012-08-02 | 2014-02-06 | Bayer Pharma Aktiengesellschaft | Combinations for the treatment of cancer |
US10393733B2 (en) | 2012-09-19 | 2019-08-27 | Dana-Farber Cancer Institute, Inc. | Dynamic BH3 profiling |
WO2014052451A2 (en) | 2012-09-26 | 2014-04-03 | Indiana University Research And Technology Corporation | Insulin analog dimers |
PT2920197T (pt) * | 2012-09-26 | 2021-06-11 | Harvard College | Péptidos agrafados com bloqueio de prolina e suas utilizações |
WO2014055564A1 (en) | 2012-10-01 | 2014-04-10 | President And Fellows Of Harvard College | Stabilized polypeptide insulin receptor modulators |
SG11201502584XA (en) * | 2012-10-01 | 2015-05-28 | Agency Science Tech & Res | Peptides and methods for treating cancer |
US9273093B2 (en) | 2012-10-11 | 2016-03-01 | Protagonist Therapeutics, Inc. | α4β7 peptide dimer antagonists |
SG11201503052RA (en) * | 2012-11-01 | 2015-05-28 | Aileron Therapeutics Inc | Disubstituted amino acids and methods of preparation and use thereof |
WO2014081953A1 (en) | 2012-11-21 | 2014-05-30 | Richard David J | Methods and compositions useful for treating diseases involving bcl-2 family proteins with isoquinoline and quinoline derivatives |
US9493510B2 (en) * | 2013-01-10 | 2016-11-15 | Noliva Therapeutics Llc | Peptidomimetic compounds |
EP2964245A4 (en) * | 2013-01-19 | 2016-09-21 | Univ New York | PEPTIDES AND PEPTIDOMIMETIC HYDROGEN-LINKED SUBSTITUTE FOR REACTIVATION OF P53 |
WO2014138429A2 (en) | 2013-03-06 | 2014-09-12 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and use thereof in regulating hif1alpha |
SG10201913593WA (en) * | 2013-03-13 | 2020-02-27 | Harvard College | Stapled and stitched polypeptides and uses thereof |
KR20150131213A (ko) | 2013-03-14 | 2015-11-24 | 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 | 인슐린-인크레틴 접합체들 |
US10308926B2 (en) | 2013-03-15 | 2019-06-04 | Dana-Farber Cancer Institute, Inc. | Stablized EZH2 peptides |
EP2970417B1 (en) * | 2013-03-15 | 2019-06-19 | Dana-Farber Cancer Institute, Inc. | Bh4 stabilized peptides and uses thereof |
ES2901704T3 (es) | 2013-03-15 | 2022-03-23 | Protagonist Therapeutics Inc | Análogos de hepcidina y usos de los mismos |
CA2906740A1 (en) | 2013-03-15 | 2014-09-18 | Dana-Farber Cancer Institute, Inc. | Stabilized sos1 peptides |
US10017551B2 (en) | 2013-03-15 | 2018-07-10 | The Regents Of The University Of California | Peptides having reduced toxicity that stimulate cholesterol efflux |
CN104211751B (zh) * | 2013-05-29 | 2018-05-22 | 北京大学深圳研究生院 | 一种将多肽稳定为alpha螺旋二级结构的方法 |
CA2915354A1 (en) | 2013-06-14 | 2014-12-18 | President And Fellows Of Harvard College | Stabilized polypeptide insulin receptor modulators |
EP2835135A3 (en) | 2013-06-19 | 2015-06-24 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Berlin | Means and methods for treating pseudomonas infection |
US9644002B2 (en) | 2013-07-25 | 2017-05-09 | Yale University | Allosteric modulators of EGFR and constitutively active mutants |
US10732182B2 (en) | 2013-08-01 | 2020-08-04 | Eutropics Pharmaceuticals, Inc. | Method for predicting cancer sensitivity |
US9365615B2 (en) | 2013-09-09 | 2016-06-14 | Jitsubo Co., Ltd. | Cross-linked peptides containing non-peptide cross-linked structure, method for synthesizing cross-linked peptides, and novel organic compound used in method |
US10739333B2 (en) | 2013-09-19 | 2020-08-11 | Dana-Farber Cancer Institute, Inc. | Methods of BH3 profiling |
JP2017503749A (ja) * | 2013-10-01 | 2017-02-02 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 安定化されたポリペプチドおよびその使用 |
US10464970B2 (en) | 2013-10-23 | 2019-11-05 | The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Compounds that bind to human immunodeficiency virus rev response element |
AU2014342269B2 (en) | 2013-10-30 | 2020-02-27 | Eutropics Pharmaceuticals, Inc. | Methods for determining chemosensitivity and chemotoxicity |
CN104926924B (zh) * | 2014-03-17 | 2019-03-19 | 北京大学深圳研究生院 | 一种利用手性锍盐侧链稳定多肽α-螺旋二级结构的方法 |
EP3119477B1 (en) | 2014-03-20 | 2020-01-01 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Tumor-infiltrating lymphocytes for adoptive cell therapy |
WO2015153560A1 (en) | 2014-03-31 | 2015-10-08 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Stabilized peptoid-peptide hybrids and uses thereof |
EP3131922B1 (en) | 2014-04-17 | 2020-05-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Polypeptides and uses thereof for reducing cd95-mediated cell motility |
SG10201810321PA (en) | 2014-05-16 | 2018-12-28 | Protagonist Therapeutics Inc | α4β7 INTEGRIN THIOETHER PEPTIDE ANTAGONISTS |
WO2015179635A2 (en) * | 2014-05-21 | 2015-11-26 | President And Fellows Of Harvard College | Ras inhibitory peptides and uses thereof |
CN106661582A (zh) * | 2014-05-30 | 2017-05-10 | 阿尔伯特爱因斯坦医学院公司 | Bax靶向二聚化以调节bax活性 |
SG10201810154WA (en) | 2014-07-17 | 2018-12-28 | Protagonist Therapeutics Inc | Oral peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory bowel diseases |
WO2016049359A1 (en) | 2014-09-24 | 2016-03-31 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and uses thereof |
CN107106642B (zh) | 2014-09-24 | 2021-02-26 | 艾瑞朗医疗公司 | 拟肽大环化合物及其制剂 |
EP3206710B1 (en) | 2014-09-24 | 2020-05-06 | Indiana University Research & Technology Corporation | Incretin-insulin conjugates |
JP6701208B2 (ja) | 2014-09-24 | 2020-05-27 | インディアナ ユニヴァーシティ リサーチ アンド テクノロジー コーポレイション | 脂質化アミド系インスリンプロドラッグ |
EP3201217A4 (en) | 2014-10-01 | 2018-07-18 | Protagonist Therapeutics Inc. | Novel cyclic monomer and dimer peptides having integrin antagonist activity |
EP3200812B8 (en) | 2014-10-01 | 2021-04-28 | Protagonist Therapeutics, Inc. | Novel alpha4beta7 peptide monomer and dimer antagonists |
CN105566456B (zh) * | 2014-10-09 | 2019-03-19 | 北京大学深圳研究生院 | 末端侧链-尾链连接手性二酸修饰多肽化合物及合成方法 |
WO2016085280A1 (ko) * | 2014-11-28 | 2016-06-02 | 서울대학교산학협력단 | 세포 투과성 스테이플 펩타이드, 이의 제조방법 및 그 용도 |
CN107406881B (zh) | 2015-01-12 | 2021-05-25 | 尤特罗皮克斯制药股份有限公司 | 用于指导癌症治疗的内容相关的诊断测试 |
AU2016232833A1 (en) | 2015-03-18 | 2017-10-12 | Dana-Farber Cancer Institute, Inc. | Selective Mcl-1 binding peptides |
AU2016235424A1 (en) | 2015-03-20 | 2017-10-05 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and uses thereof |
WO2016164768A1 (en) * | 2015-04-08 | 2016-10-13 | University Of Georgia Research Foundation, Inc. | Disruption of the wave3 protein complex for suppression of invasion and metastasis |
WO2016167291A1 (ja) | 2015-04-13 | 2016-10-20 | 国立研究開発法人産業技術総合研究所 | 環状化サイトカイン及びその製法 |
CA2982928A1 (en) | 2015-04-20 | 2016-10-27 | Tolero Pharmaceuticals, Inc. | Predicting response to alvocidib by mitochondrial profiling |
WO2016176299A1 (en) | 2015-04-27 | 2016-11-03 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for assessing toxicity using dynamic bh3 profiling |
KR102608921B1 (ko) | 2015-05-18 | 2023-12-01 | 스미토모 파마 온콜로지, 인크. | 생체 이용률이 증가된 알보시딥 프로드러그 |
WO2016209978A2 (en) | 2015-06-22 | 2016-12-29 | University Of Utah Research Foundation | Thiol-ene based peptide stapling and uses thereof |
US10059741B2 (en) | 2015-07-01 | 2018-08-28 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles |
MX2017016251A (es) * | 2015-07-02 | 2018-04-20 | Dana Farber Cancer Inst Inc | Peptidos anti-microbianos estabilizados. |
US10787490B2 (en) | 2015-07-15 | 2020-09-29 | Protaganist Therapeutics, Inc. | Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases |
CN108289861B (zh) | 2015-08-03 | 2021-11-02 | 大日本住友制药肿瘤公司 | 用于治疗癌症的组合疗法 |
US20190002506A1 (en) * | 2015-08-28 | 2019-01-03 | Dana-Farber Cancer Institute, Inc. | Stabilized peptides for covalent binding to target protein |
AU2016316842C1 (en) | 2015-08-28 | 2021-04-22 | Dana-Farber Cancer Institute, Inc. | Peptides binding to BFL-1 |
CN108368161A (zh) * | 2015-09-10 | 2018-08-03 | 艾瑞朗医疗公司 | 作为mcl-1调节剂的拟肽大环化合物 |
WO2017117411A1 (en) | 2015-12-30 | 2017-07-06 | Protagonist Therapeutics, Inc. | Analogues of hepcidin mimetics with improved in vivo half lives |
WO2017147283A1 (en) * | 2016-02-23 | 2017-08-31 | Dana-Farber Cancer Institute, Inc. | Method for generating cell-penetrating stapled peptides that lack nonspecific membrane-lytic properties for therapeutic targeting |
CN109069578A (zh) * | 2016-02-29 | 2018-12-21 | 达纳-法伯癌症研究所股份有限公司 | 用于治疗感染的钉合的细胞内靶向抗微生物肽 |
CA3017926C (en) | 2016-03-23 | 2023-10-10 | Protagonist Therapeutics, Inc. | Methods for synthesizing .alpha.4.beta.7 peptide antagonists |
US10618939B2 (en) * | 2016-06-29 | 2020-04-14 | The Hong Kong Polytechnic University | Hydrocarbon-stapled polypeptides for enhancement of endosome-lysosomal degradation |
CN107540737B (zh) * | 2016-06-29 | 2023-03-28 | 香港理工大学 | 用于促进内体及溶酶体生物降解的碳氢订书肽 |
US11567082B2 (en) | 2016-07-01 | 2023-01-31 | Dana-Farber Cancer Institute, Inc. | Compositions, assays, and methods for direct modulation of fatty acid metabolism |
WO2018017485A1 (en) | 2016-07-17 | 2018-01-25 | University Of Utah Research Foundation | Thiol-yne based peptide stapling and uses thereof |
US11198715B2 (en) | 2016-07-22 | 2021-12-14 | Massachusetts Institute Of Technology | Selective Bfl-1 peptides |
ES2935622T3 (es) | 2016-08-26 | 2023-03-08 | Dana Farber Cancer Inst Inc | Polipéptidos y miméticos de bcl-w para el tratamiento o la prevención de la neuropatía periférica y la pérdida auditiva inducidas por la quimioterapia |
US12059413B2 (en) | 2016-11-02 | 2024-08-13 | The Research Foundation For The State University Of New York | Methods of inhibiting viruses using compositions targeting TSG101-ubiquitin interaction |
WO2018094275A1 (en) | 2016-11-18 | 2018-05-24 | Tolero Pharmaceuticals, Inc. | Alvocidib prodrugs and their use as protein kinase inhibitors |
WO2018119000A1 (en) | 2016-12-19 | 2018-06-28 | Tolero Pharmaceuticals, Inc. | Profiling peptides and methods for sensitivity profiling |
WO2018140613A1 (en) | 2017-01-25 | 2018-08-02 | The Board Of Trustees Of The University Of Illinois | Conformation switchable antimicrobial peptides and methods of using the same |
US11325955B2 (en) | 2017-07-19 | 2022-05-10 | Dana-Farber Cancer Institute, Inc. | Stabilized anti-microbial peptides for the treatment of antibiotic-resistant bacterial infections |
US11236128B2 (en) | 2017-07-31 | 2022-02-01 | Agency For Science, Technology And Research | Method of preparing stapled peptides |
KR20200064075A (ko) | 2017-09-07 | 2020-06-05 | 포그 파마슈티컬스 인코포레이티드 | 베타-카테닌 기능을 조절하는 제제 및 이의 방법 |
WO2019051494A1 (en) | 2017-09-11 | 2019-03-14 | Protagonist Therapeutics, Inc. | OPIOID AGONIST PEPTIDES AND USES THEREOF |
US11497756B2 (en) | 2017-09-12 | 2022-11-15 | Sumitomo Pharma Oncology, Inc. | Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib |
WO2019090015A1 (en) | 2017-11-03 | 2019-05-09 | Yale University | Peptidic materials that traffic efficiently to the cell cytosol and nucleus |
US11591365B2 (en) | 2017-11-09 | 2023-02-28 | Wntrx Pharmaceuticals Inc. | BCL9 peptides and variants thereof |
WO2019118893A1 (en) | 2017-12-15 | 2019-06-20 | Dana-Farber Cancer Institute, Inc. | Stabilized peptide-mediated targeted protein degradation |
WO2019118719A1 (en) | 2017-12-15 | 2019-06-20 | Dana-Farber Cancer Institute, Inc. | Selective targeting of apoptosis proteins by structurally-stabilized and/or cysteine-reactive noxa peptides |
WO2019136209A1 (en) * | 2018-01-05 | 2019-07-11 | President And Fellows Of Harvard College | Stabilized polypeptides and uses thereof |
CA3089279A1 (en) | 2018-02-07 | 2019-08-15 | Dana-Farber Cancer Institute, Inc. | Cell-permeable stapled peptide modules for cellular delivery |
WO2019157268A1 (en) | 2018-02-08 | 2019-08-15 | Protagonist Therapeutics, Inc. | Conjugated hepcidin mimetics |
WO2019178313A1 (en) | 2018-03-14 | 2019-09-19 | Dana-Farber Cancer Institute, Inc. | Stabilized peptides for biomarker detection |
US11091522B2 (en) | 2018-07-23 | 2021-08-17 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and uses thereof |
US11286299B2 (en) | 2018-09-17 | 2022-03-29 | Massachusetts Institute Of Technology | Peptides selective for Bcl-2 family proteins |
US11034710B2 (en) | 2018-12-04 | 2021-06-15 | Sumitomo Dainippon Pharma Oncology, Inc. | CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer |
US11793802B2 (en) | 2019-03-20 | 2023-10-24 | Sumitomo Pharma Oncology, Inc. | Treatment of acute myeloid leukemia (AML) with venetoclax failure |
AU2020258482A1 (en) | 2019-04-18 | 2021-10-14 | Dana-Farber Cancer Institute, Inc. | Selective targeting of ubiquitin- and ubiquitin-like E1-activating enzymes by structurally-stabilized peptides |
CN110452289A (zh) * | 2019-07-10 | 2019-11-15 | 江苏申琅生物科技有限公司 | 一类新型mdm2环肽抑制剂的设计及其制备方法 |
MX2022000397A (es) | 2019-07-10 | 2022-04-25 | Protagonist Therapeutics Inc | Inhibidores peptídicos del receptor de interleucina-23 y su uso para tratar enfermedades inflamatorias. |
US20230116760A1 (en) | 2019-12-16 | 2023-04-13 | Dana-Farber Cancer Institute, Inc. | Structurally-stabilized oncolytic peptides and uses thereof |
AU2020408070A1 (en) | 2019-12-20 | 2022-06-09 | Dana-Farber Cancer Institute, Inc. | Structurally-stabilized glucagon-like peptide 1 peptides and uses thereof |
US11845808B2 (en) | 2020-01-15 | 2023-12-19 | Janssen Biotech, Inc. | Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases |
WO2021146454A1 (en) | 2020-01-15 | 2021-07-22 | Janssen Biotech, Inc. | Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases |
AU2021230544A1 (en) | 2020-03-04 | 2022-09-01 | Dana-Farber Cancer Institute, Inc. | Antiviral structurally-stabilized SARS-CoV-2 peptides and uses thereof |
WO2021216845A1 (en) | 2020-04-22 | 2021-10-28 | Dana-Farber Cancer Institute, Inc. | Antiviral structurally-stabilized ace2 helix 1 peptides and uses thereof |
CA3179873A1 (en) | 2020-04-27 | 2021-11-04 | Dana-Farber Cancer Institute, Inc. | Structurally-stabilized and hdmx-selective p53 peptides and uses thereof |
CN116801908A (zh) | 2020-10-14 | 2023-09-22 | 丹娜法伯癌症研究院 | 用于降解病毒和宿主蛋白的嵌合缀合物和使用方法 |
WO2022109328A1 (en) | 2020-11-20 | 2022-05-27 | Janssen Pharmaceutica Nv | Compositions of peptide inhibitors of interleukin-23 receptor |
MX2024002824A (es) | 2021-09-08 | 2024-06-28 | Dana Farber Cancer Inst Inc | Conjugados antivirales de peptido de coronavirus 2 del sindrome respiratorio agudo severo (sars-cov-2)-colesterol estructuralmente engrapados y usos de los mismos. |
WO2023159113A1 (en) | 2022-02-16 | 2023-08-24 | Greene Warner C | Peptide fusion inhibitors exhibiting pan-coronavirus inhibitory activity |
WO2023215784A1 (en) | 2022-05-04 | 2023-11-09 | Dana-Farber Cancer Institute, Inc. | Ebolavirus surface glycoprotein peptides, conjugates, and uses thereof |
Family Cites Families (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US517848A (en) | 1894-04-10 | Bolt-cutter | ||
US591548A (en) | 1897-10-12 | Pocket-case | ||
US4730006A (en) | 1986-01-27 | 1988-03-08 | Merrell Dow Pharmaceuticals Inc. | Derivatives of 2,6-diamino-3-haloheptanedioic acid |
US5120859A (en) | 1989-09-22 | 1992-06-09 | Genentech, Inc. | Chimeric amino acid analogues |
US5712418A (en) | 1989-10-23 | 1998-01-27 | Research Corporation Technologies, Inc. | Synthesis and use of amino acid fluorides as peptide coupling reagents |
US5245009A (en) * | 1990-03-23 | 1993-09-14 | The Salk Institute For Biological Studies | CRF antagonists |
DE69118826T2 (de) * | 1990-11-27 | 1996-11-14 | Fuji Photo Film Co Ltd | Propenamidderivate, deren Polymere, Copolymere und deren Verwendung |
US5364851A (en) | 1991-06-14 | 1994-11-15 | International Synthecon, Llc | Conformationally restricted biologically active peptides, methods for their production and uses thereof |
AU691645B2 (en) | 1992-04-03 | 1998-05-21 | California Institute Of Technology | High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof |
US5411860A (en) | 1992-04-07 | 1995-05-02 | The Johns Hopkins University | Amplification of human MDM2 gene in human tumors |
US5446128A (en) | 1993-06-18 | 1995-08-29 | The Board Of Trustees Of The University Of Illinois | Alpha-helix mimetics and methods relating thereto |
US5622852A (en) | 1994-10-31 | 1997-04-22 | Washington University | Bcl-x/Bcl-2 associated cell death regulator |
US5536814A (en) * | 1993-09-27 | 1996-07-16 | La Jolla Cancer Research Foundation | Integrin-binding peptides |
US5824483A (en) | 1994-05-18 | 1998-10-20 | Pence Inc. | Conformationally-restricted combinatiorial library composition and method |
IL109943A (en) * | 1994-06-08 | 2006-08-01 | Develogen Israel Ltd | Conformationally constrained backbone cyclized peptide analogs |
US6407059B1 (en) * | 1994-06-08 | 2002-06-18 | Peptor Limited | Conformationally constrained backbone cyclized peptide analogs |
US7553929B2 (en) * | 1994-06-13 | 2009-06-30 | Vanderbilt University | Cell permeable peptides for inhibition of inflammatory reactions and methods of use |
US5807746A (en) * | 1994-06-13 | 1998-09-15 | Vanderbilt University | Method for importing biologically active molecules into cells |
US5770377A (en) | 1994-07-20 | 1998-06-23 | University Of Dundee | Interruption of binding of MDM2 and P53 protein and therapeutic application thereof |
EP0729972A1 (de) * | 1995-02-28 | 1996-09-04 | F. Hoffmann-La Roche Ag | Tetrahydronaphthalin-Peptidderivate |
US5731408A (en) * | 1995-04-10 | 1998-03-24 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Peptides having potent antagonist and agonist bioactivities at melanocortin receptors |
US6054556A (en) * | 1995-04-10 | 2000-04-25 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Melanocortin receptor antagonists and agonists |
US5672584A (en) * | 1995-04-25 | 1997-09-30 | The University Of Kansas | Cyclic prodrugs of peptides and peptide nucleic acids having improved metabolic stability and cell membrane permeability |
DK0832096T3 (da) | 1995-05-04 | 2001-10-01 | Scripps Research Inst | Syntese af proteiner ved nativ kemisk ligering |
US6184344B1 (en) | 1995-05-04 | 2001-02-06 | The Scripps Research Institute | Synthesis of proteins by native chemical ligation |
US5730723A (en) | 1995-10-10 | 1998-03-24 | Visionary Medical Products Corporation, Inc. | Gas pressured needle-less injection device and method |
US6051554A (en) | 1995-06-07 | 2000-04-18 | Peptor Limited | Conformationally constrained backbone cyclized somatostatin analogs |
US5811515A (en) | 1995-06-12 | 1998-09-22 | California Institute Of Technology | Synthesis of conformationally restricted amino acids, peptides, and peptidomimetics by catalytic ring closing metathesis |
GB9607549D0 (en) | 1996-04-11 | 1996-06-12 | Weston Medical Ltd | Spring-powered dispensing device |
US5663316A (en) | 1996-06-18 | 1997-09-02 | Clontech Laboratories, Inc. | BBC6 gene for regulation of cell death |
US7083983B2 (en) | 1996-07-05 | 2006-08-01 | Cancer Research Campaign Technology Limited | Inhibitors of the interaction between P53 and MDM2 |
CA2259149A1 (en) | 1996-07-05 | 1998-01-15 | Novartis Ag | Inhibitors of the interaction between p53 and mdm2 |
US5911495A (en) * | 1996-09-03 | 1999-06-15 | Midiri, Jr.; Paul | Plant lamp fixture |
US5955593A (en) | 1996-09-09 | 1999-09-21 | Washington University | BH3 interacting domain death agonist |
US20020064546A1 (en) | 1996-09-13 | 2002-05-30 | J. Milton Harris | Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor |
US5965703A (en) | 1996-09-20 | 1999-10-12 | Idun Pharmaceuticals | Human bad polypeptides, encoding nucleic acids and methods of use |
US5856445A (en) | 1996-10-18 | 1999-01-05 | Washington University | Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator |
US6271198B1 (en) * | 1996-11-06 | 2001-08-07 | Genentech, Inc. | Constrained helical peptides and methods of making same |
DE69735241T2 (de) | 1996-11-21 | 2006-11-02 | Promega Corp., Madison | Alkyl peptidamide für topische verwendung |
EA199900752A1 (ru) * | 1997-02-20 | 2000-06-26 | Йеда Рисерч Энд Дивелопмент Ко. Лтд. | Противопатогенные синтетические пептиды и композиции, их включающие |
US6849428B1 (en) | 1997-03-05 | 2005-02-01 | New England Biolabs, Inc. | Intein-mediated protein ligation of expressed proteins |
US6420518B1 (en) * | 1997-04-04 | 2002-07-16 | Genetech, Inc. | Insulin-like growth factor agonist molecules |
CA2304124A1 (en) | 1997-09-17 | 1999-03-25 | The Walter And Eliza Hall Institute Of Medical Research | Bci-2-like protein bim and methods of use thereof |
US6165732A (en) * | 1997-10-14 | 2000-12-26 | Washington University | Method for identifying apoptosis modulating compounds |
US6875594B2 (en) | 1997-11-13 | 2005-04-05 | The Rockefeller University | Methods of ligating expressed proteins |
CA2316834C (en) | 1998-01-07 | 2006-01-03 | Shearwater Polymers, Inc. | Degradable heterobifunctional poly(ethylene glycol) acrylates and gels and conjugates derived therefrom |
IT1298087B1 (it) | 1998-01-08 | 1999-12-20 | Fiderm S R L | Dispositivo per il controllo della profondita' di penetrazione di un ago, in particolare applicabile ad una siringa per iniezioni |
US6030997A (en) * | 1998-01-21 | 2000-02-29 | Eilat; Eran | Acid labile prodrugs |
AU767185B2 (en) | 1998-03-23 | 2003-11-06 | President And Fellows Of Harvard College | Synthesis of compounds and libraries of compounds |
HUP0101629A2 (en) * | 1998-04-15 | 2003-03-28 | Aventis Pharma Inc | Process for the preparation of resin-bound cyclic peptides |
US6326354B1 (en) | 1998-08-19 | 2001-12-04 | Washington University | Modulation of apoptosis with bid |
US7173005B2 (en) | 1998-09-02 | 2007-02-06 | Antyra Inc. | Insulin and IGF-1 receptor agonists and antagonists |
WO2000052210A2 (en) | 1999-03-01 | 2000-09-08 | Variagenics, Inc. | Methods for targeting rna molecules |
KR100558131B1 (ko) * | 1999-03-29 | 2006-03-10 | 더 프록터 앤드 갬블 캄파니 | 멜라노코르틴 수용체 리간드를 함유하는 약제학적 조성물및 멜라노코르틴 수용체 리간드를 함유하는 약제의제조방법 |
US6713280B1 (en) | 1999-04-07 | 2004-03-30 | Thomas Jefferson University | Enhancement of peptide cellular uptake |
US7192713B1 (en) * | 1999-05-18 | 2007-03-20 | President And Fellows Of Harvard College | Stabilized compounds having secondary structure motifs |
US6348558B1 (en) | 1999-12-10 | 2002-02-19 | Shearwater Corporation | Hydrolytically degradable polymers and hydrogels made therefrom |
US6495674B1 (en) * | 2000-02-25 | 2002-12-17 | The Salk Institute For Biological Studies | Evectins and their use |
US7049290B2 (en) | 2000-07-28 | 2006-05-23 | Universität Zürich | Essential downstream component of the wingless signaling pathway and therapeutic and diagnostic applications based thereon |
AU2001284942A1 (en) | 2000-08-16 | 2002-02-25 | Georgetown University Medical Center | Small molecule inhibitors targeted at bcl-2 |
CA2432111A1 (en) | 2000-12-19 | 2002-08-22 | The Johns Hopkins University | Jfy1 protein induces rapid apoptosis |
CA2471719A1 (en) | 2001-12-31 | 2003-07-17 | Dana-Farber Cancer Institute, Inc. | Method of treating apoptosis and compositions thereof |
US7524630B2 (en) | 2002-04-22 | 2009-04-28 | University Of Florida Research Foundation, Inc. | Functionalized nanoparticles and methods of use |
SE0201863D0 (en) | 2002-06-18 | 2002-06-18 | Cepep Ab | Cell penetrating peptides |
US20040171809A1 (en) | 2002-09-09 | 2004-09-02 | Korsmeyer Stanley J. | BH3 peptides and method of use thereof |
KR100699614B1 (ko) | 2002-11-08 | 2007-03-23 | 에프. 호프만-라 로슈 아게 | 퍼옥시좀 증식자 활성화된 수용체 작용제로서의 치환된4-알콕시옥사졸 유도체 |
US7166575B2 (en) * | 2002-12-17 | 2007-01-23 | Nastech Pharmaceutical Company Inc. | Compositions and methods for enhanced mucosal delivery of peptide YY and methods for treating and preventing obesity |
US20070032417A1 (en) | 2002-12-24 | 2007-02-08 | Walter And Eliza Hall Institute Of Medical Research | Peptides and therapeutic uses thereof |
JP2007537989A (ja) | 2003-10-16 | 2007-12-27 | アプラーゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング | 安定化ペプチド |
EP2332968B1 (en) * | 2003-11-05 | 2016-05-04 | Dana-Farber Cancer Institute, Inc. | Alpha-helical peptides suitable for activating or inhibiting cell death |
GB0404731D0 (en) | 2004-03-03 | 2004-04-07 | Indp Administrative Inst Nims | Method and products for the selective degradation of proteins |
EP1737884B1 (en) | 2004-03-19 | 2016-10-19 | The University Of Queensland | Alpha helical mimics, their uses and methods for their production |
US7202332B2 (en) * | 2004-05-27 | 2007-04-10 | New York University | Methods for preparing internally constrained peptides and peptidomimetics |
US7501397B2 (en) | 2004-06-04 | 2009-03-10 | The Brigham And Women's Hospital, Inc. | Helical peptidomimetics with enhanced activity |
WO2006103666A2 (en) | 2005-03-28 | 2006-10-05 | Yeda Research And Development Co. Ltd. | Isolated bid polypeptides, polynucleotides encoding same and antibodies directed thereagainst and methods of using same for inducing cell cycle arrest or apoptosis |
US7917612B2 (en) * | 2005-05-25 | 2011-03-29 | Oracle International Corporation | Techniques for analyzing commands during streaming media to confirm delivery |
US7538190B2 (en) * | 2006-02-17 | 2009-05-26 | Polychip Pharmaceuticals Pty Ltd | Methods for the synthesis of two or more dicarba bridges in organic compounds |
US7745573B2 (en) * | 2006-02-17 | 2010-06-29 | Polychip Pharmaceuticals Pty Ltd. | Conotoxin analogues and methods for synthesis of intramolecular dicarba bridge-containing peptides |
GB0611405D0 (en) | 2006-06-09 | 2006-07-19 | Univ Belfast | FKBP-L: A novel inhibitor of angiogenesis |
CA2686827C (en) | 2006-12-14 | 2014-09-16 | Aileron Therapeutics, Inc. | Bis-sulfhydryl macrocyclization systems |
US7981998B2 (en) | 2006-12-14 | 2011-07-19 | Aileron Therapeutics, Inc. | Bis-sulfhydryl macrocyclization systems |
EP2118123B1 (en) | 2007-01-31 | 2015-10-14 | Dana-Farber Cancer Institute, Inc. | Stabilized p53 peptides and uses thereof |
EP3301108A1 (en) * | 2007-02-23 | 2018-04-04 | Aileron Therapeutics, Inc. | Triazole macrocycle systems |
WO2008121767A2 (en) | 2007-03-28 | 2008-10-09 | President And Fellows Of Harvard College | Stitched polypeptides |
US20090326192A1 (en) | 2008-04-08 | 2009-12-31 | Aileron Therapeutics, Inc. | Biologically active peptidomimetic macrocycles |
US20110144303A1 (en) | 2008-04-08 | 2011-06-16 | Aileron Therapeutics, Inc. | Biologically Active Peptidomimetic Macrocycles |
ES2666458T3 (es) * | 2008-09-22 | 2018-05-04 | Aileron Therapeutics, Inc. | Macrociclos peptidomiméticos |
US9458202B2 (en) | 2008-11-24 | 2016-10-04 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles with improved properties |
CA2746256C (en) | 2008-12-09 | 2020-03-24 | Loren D. Walensky | Methods and compositions for specific modulation of mcl-1 |
CA2777700A1 (en) * | 2009-10-14 | 2011-04-21 | Aileron Therapeutics, Inc. | Improved peptidomimetic macrocycles |
JP2014520120A (ja) | 2011-06-17 | 2014-08-21 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 安定化した変異型mamlペプチドおよびその使用 |
WO2012174423A1 (en) | 2011-06-17 | 2012-12-20 | President And Fellows Of Harvard College | Stabilized polypeptides as regulators of rab gtpase function |
-
2004
- 2004-11-05 EP EP10195495.6A patent/EP2332968B1/en not_active Not-in-force
- 2004-11-05 AU AU2004287884A patent/AU2004287884C1/en not_active Ceased
- 2004-11-05 CA CA2830063A patent/CA2830063C/en active Active
- 2004-11-05 CA CA2544223A patent/CA2544223C/en active Active
- 2004-11-05 DK DK04811198.3T patent/DK1680443T5/en active
- 2004-11-05 PT PT48111983T patent/PT1680443E/pt unknown
- 2004-11-05 ES ES04811198.3T patent/ES2437567T3/es active Active
- 2004-11-05 JP JP2006540005A patent/JP5122142B2/ja not_active Expired - Fee Related
- 2004-11-05 CN CN201310178526.4A patent/CN103467588B/zh active Active
- 2004-11-05 EP EP08016651.5A patent/EP1997828B1/en not_active Not-in-force
- 2004-11-05 SI SI200432115T patent/SI1680443T1/sl unknown
- 2004-11-05 ES ES10195495.6T patent/ES2586387T3/es active Active
- 2004-11-05 PT PT101954956T patent/PT2332968T/pt unknown
- 2004-11-05 CN CN201610944586.6A patent/CN107090025A/zh active Pending
- 2004-11-05 PL PL10195495T patent/PL2332968T3/pl unknown
- 2004-11-05 PL PL04811198T patent/PL1680443T3/pl unknown
- 2004-11-05 CN CNA2004800399459A patent/CN1906209A/zh active Pending
- 2004-11-05 BR BRPI0416258-7A patent/BRPI0416258A/pt not_active Application Discontinuation
- 2004-11-05 EP EP10195490.7A patent/EP2332967B1/en not_active Not-in-force
- 2004-11-05 DK DK10195495.6T patent/DK2332968T3/en active
- 2004-11-05 EP EP04811198.3A patent/EP1680443B9/en active Active
- 2004-11-05 US US10/981,873 patent/US7723469B2/en active Active
- 2004-11-05 WO PCT/US2004/038403 patent/WO2005044839A2/en active Application Filing
-
2006
- 2006-04-25 IL IL175152A patent/IL175152A/en active IP Right Grant
- 2006-05-04 ZA ZA200603565A patent/ZA200603565B/en unknown
- 2006-10-09 HK HK06111088.4A patent/HK1089191A1/xx not_active IP Right Cessation
-
2008
- 2008-07-30 US US12/182,673 patent/US8198405B2/en not_active Expired - Fee Related
- 2008-09-18 US US12/233,555 patent/US8796418B2/en active Active
-
2011
- 2011-10-04 US US13/252,751 patent/US9273099B2/en not_active Expired - Fee Related
- 2011-12-06 JP JP2011266427A patent/JP2012116836A/ja not_active Withdrawn
-
2013
- 2013-11-01 US US14/070,354 patent/US9464115B2/en active Active
- 2013-12-04 CY CY20131101100T patent/CY1114944T1/el unknown
-
2014
- 2014-10-27 IL IL235348A patent/IL235348B/en active IP Right Grant
-
2015
- 2015-02-23 JP JP2015033319A patent/JP2015163608A/ja not_active Withdrawn
-
2016
- 2016-08-18 US US15/240,505 patent/US20170008930A1/en not_active Abandoned
- 2016-09-19 IL IL247907A patent/IL247907B/en active IP Right Grant
-
2017
- 2017-04-12 JP JP2017079231A patent/JP2017197522A/ja not_active Withdrawn
-
2019
- 2019-06-05 JP JP2019105614A patent/JP2019189622A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019189622A (ja) | 安定化させたαヘリックスペプチドおよびその使用法 | |
JP2015078208A (ja) | 治療用ペプチド模倣大環状分子 | |
EP2118123A1 (en) | Stabilized p53 peptides and uses thereof | |
AU2017203561B2 (en) | Stabilized alpha helical peptides and uses thereof | |
AU2012207048B2 (en) | Stabilized alpha helical peptides and uses thereof | |
AU2016210709A1 (en) | Stabilized p53 peptides and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190703 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200617 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200916 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210217 |