JP2019178426A - FeNi規則合金粉末およびそれを含む磁性材料 - Google Patents

FeNi規則合金粉末およびそれを含む磁性材料 Download PDF

Info

Publication number
JP2019178426A
JP2019178426A JP2019092252A JP2019092252A JP2019178426A JP 2019178426 A JP2019178426 A JP 2019178426A JP 2019092252 A JP2019092252 A JP 2019092252A JP 2019092252 A JP2019092252 A JP 2019092252A JP 2019178426 A JP2019178426 A JP 2019178426A
Authority
JP
Japan
Prior art keywords
feni
diffraction
alloy
ordered alloy
feni ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019092252A
Other languages
English (en)
Other versions
JP6729760B2 (ja
Inventor
裕彰 藏
Hiroaki Kura
裕彰 藏
翔 後藤
Sho Goto
翔 後藤
林 靖
Yasushi Hayashi
靖 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JP2019178426A publication Critical patent/JP2019178426A/ja
Application granted granted Critical
Publication of JP6729760B2 publication Critical patent/JP6729760B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/08Extraction of nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】規則度0.5以上の高い規則度を有するL10型のFeNi規則合金を、容易に合成することのできる製造方法を提供する。【解決手段】L10型の規則構造を有するFeNi規則合金の製造方法であって、管状炉10に設置されたFeNi不規則合金の粉末試料100をNH3ガスで窒化する窒化処理を行った後、H2ガスによって、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行うことにより、規則度Sが0.5以上であるL10型のFeNi規則合金を得る。【選択図】図3

Description

本発明は、L1型の規則構造を有するL1型のFeNi規則合金粉末およびそれを含む磁性材料に関し、特に、規則度が0.5以上であるL1型のFeNi規則合金に関する。
L1型(エルワンゼロ型)のFeNi(鉄−ニッケル)規則合金は、レアアースや貴金属を全く使用しない磁石材料および磁気記録材料として期待されている。ここで、L1型規則構造とは、面心立方格子を基本としてFeとNiとが(001)方向に層状に配列した結晶構造である。このようなL1型規則構造は、FePt、FePd、AuCuなどの合金にみられ、通常、不規則合金を規則−不規則転移温度Tλ以下で熱処理し、拡散を促すことで得られる。
しかし、L1型のFeNi規則合金を得るための転移温度Tλは320℃と低温であり、この温度以下では拡散が極めて遅いため熱処理のみで合成することは困難である。そこで、従来より、L1型のFeNi規則合金を合成するための様々な試みがなされている。
具体的に、従来では、非特許文献1に記載のような、分子線エピタキシー(略称:MBE)を用いてFeとNiの単原子膜を交互に積層する手法や、その他、中性子を照射しながら磁場中で熱処理を行う手法等も提案されている。
Kojima et.al.、「Fe−Ni composition dependence of magnetic anisotropy in artificially fabricated L10−ordered FeNi films」、J.Phys.:Condens.Matter、vol.26、(2014)、064207
しかしながら、上記非特許文献1のような分子線エピタキシーを用いた方法や、中性子照射を用いた方法といった、従来の方法では、L1型のFeNi規則合金の合成のために複雑な工程や長時間の熱処理が必要となる。
また、磁石特性向上の観点から高い規則度を持つことが望ましいが、上記の従来手法で得られるL1のFeNi規則合金の規則度は最大でも0.4程度と小さいものであり、規則度をさらに大きくすることが要望されている。
本発明は、上記問題に鑑みてなされたものであり、規則度が0.5以上の高い規則度を有するL1型のFeNi規則合金を提供することを目的とする。
請求項1に記載の発明では、L1型の規則構造を有し、X線回折装置による測定により求められる全体の規則度Sが0.5以上であり、体積平均粒径が30nm以上であるL1型のFeNi規則合金粉末が提供される。
このようなL1型のFeNi規則合金粉末は、請求項5に記載したように、磁性材料として用いることで、磁石特性に優れたものとなる。
なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
L1型のFeNi規則構造の格子構造を示した模式図である。 規則度S=0となるFeNi不規則合金から規則度S=1となるFeNi超格子にかけて規則度S毎のFeNi合金の格子構造の様子を示した模式図である。 第1実施形態にかかる実施例および比較例の製造条件および評価結果を示す図表である。 第1実施形態にかかる実施例および比較例におけるFeNi規則合金の製造に用いた製造装置の構成を模式的に示す図である。 規則度Sが1であるL1型のFeNi規則合金のX線回折パターンのシミュレーション結果を示す図である。 FeNi不規則合金のX線回折パターンのシミュレーション結果を示す図である。 比較例S0、S2および実施例S3におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。 比較例S1および実施例S3におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。 実施例S3、S4、S5におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。 上記の実施例および比較例におけるFeNi規則合金について、規則度Sと脱窒素処理の処理温度との関係を示すグラフである。 FeNi不規則合金を窒化処理を行って中間生成物を生成してから脱窒素処理を行う場合の格子構造の様子を示した模式図である。 酸化膜の除去処理と窒化処理のプロファイルを示したタイムチャートである。 脱窒素処理のプロファイルを示したタイムチャートである。 規則度Sが1である場合におけるL1型のFeNi規則合金の粉末のX線回折パターンを示す図である。 規則度Sと回折強度比との関係を示したグラフである。 第2実施形態の製造方法によって製造したL1型のFeNi規則合金のX線回折パターンの測定結果を示す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
第1実施形態について説明する。本実施形態にかかるL1型のFeNi規則合金、すなわちFeNi超格子は、磁石材料および磁気記録材料等の磁性材料に適用されるものであり、規則度Sが0.5以上と大きく磁性特性に優れたものである。
ここでいう規則度Sとは、FeNi超格子における規則化の度合を示している。上記したように、L1型規則構造は、面心立方格子を基本とした構造となっており、図1に示すような格子構造を有している。この図において、面心立方格子の[001]面の積層構造における最も上面側の層をIサイト、最も上面側の層と最も下面側の層との間に位置している中間層をIIサイトとする。この場合、Iサイトに金属Aが存在する割合をx、金属Bが存在する割合を1−xとすると、Iサイトにおける金属Aと金属Bが存在する割合はA1−xと表される。同様に、IIサイトに金属Bが存在する割合をx、金属Aが存在する割合を1−xとすると、IIサイトにおける金属Aと金属Bが存在する割合はA1−xと表される。なお、xは、0.5≦x≦1を満たす。そして、この場合において、規則度Sは、S=2x−1で定義される。
このため、例えば、金属AをNi、金属BをFeとし、Niを白色、Feを黒色で表すと、FeNi合金における規則度Sは、規則度S=0となるFeNi不規則合金から規則度S=1となるFeNi超格子にかけて図2のように表わされる。なお、すべて白色となっているものは、Niが100%、Feが0%となっていることを示し、すべて黒色となっているものは、Niが0%、Feが100%となっていることを示している。また、白色と黒色が半々のものはNiが50%、Feが50%となっていることを示している。
このように表される規則度Sについて、例えばIサイトでは金属AとなるNiに偏り、IIサイトでは金属BとなるFeに偏るようにし、少なくとも全体の平均的な規則度Sが0.5以上になると良好な磁気特性を得ること可能となる。ただし、規則度Sについては、材料全体において平均的に値が高くなっている必要があり、局所的に値が高くなっていても良好な磁気特性を得ることはできない。このため、局所的に高い値であったとしても、ここでいう全体の平均的な規則度Sが0.5以上には含まれない。
このようなL1型のFeNi規則合金は、例えば、FeNi不規則合金を窒化する窒化処理を行った後、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行うことにより、得られる。なお、不規則合金とは、原子の配列が規則性を持たずにランダムなものである。
本実施形態にかかるL1型のFeNi規則合金の製造方法について、図3に示される実施例S3、S4、S5、S6、S7、S8、S9、S12、S13、S14、および、比較例S0、S1、S2、S10、S11、S15、S16を参照して、具体的に説明する。
これら実施例および比較例は、熱プラズマ法、火炎噴霧法あるいは共沈法により作製されたFeNi不規則合金の粉末試料を、図3に示される窒化処理条件、脱窒素処理条件で処理したものである。そして、これら処理後の合金について、X線回折測定を行い、L1型規則構造が形成されているか否かを評価したものである。
ここで、図3中に示される実施例および比較例のFeNi不規則合金の粉末試料について、組成比はFe:Niの原子量比であり、粒径は体積平均粒径(単位:nm)にて示してある。また、窒化処理条件および脱窒素処理条件については、処理温度(単位:℃)と処理時間(単位:h)を示している。
窒化処理および脱窒素処理は、例えば図4に示される製造装置を用いて行われる。この製造装置は、ヒータ11により加熱される加熱炉としての管状炉10と、管状炉10内に試料を設置するためのグローブボックス20と、を備える。
また、図4に示されるように、この製造装置は、パージガスとしてのAr(アルゴン)、窒化処理用のNH(アンモニア)、および、脱窒素処理用のH(水素)を、切り替えて管状炉10へ導入するガス導入部30を備えている。
このような製造装置を用いた本実施形態の製造方法は次の通りである。まず、管状炉10中にFeNi不規則合金の粉末試料100を設置しておく。窒化処理では、NHガスを管状炉10に導入して管状炉10内をNH雰囲気とし、所定温度で所定時間、FeNi不規則合金を加熱して窒化する。
その後、脱窒素処理では、Hガスを加熱炉に導入して管状炉10内をH雰囲気とし、所定温度で所定時間、窒化処理されたFeNi不規則合金を加熱して窒素を除去する。こうして、材料全体の平均的な規則度Sが0.5以上であるL1型のFeNi規則合金が得られる。
なお、図3に示される実施例および比較例において、熱プラズマ法により作製されたFeNi不規則合金の粉末試料は、日清エンジニアリング株式会社製の特注品であり、組成比Fe:Ni=50:50、体積平均粒径:104nmのものである。
また、火炎噴霧法により作製されたFeNi不規則合金の粉末試料は、シグマアルドリッチジャパン合同会社製の型番677426−5Gであり、組成比Fe:Ni=55:45、体積平均粒径:50nmのものである。
また、共沈法により作製されたFeNi不規則合金の粉末試料は、FeNi酸化物を水素還元したものであり、組成比Fe:Ni=47:53、体積平均粒径:200nmのものである。
図3に示されるように、比較例S0では、熱プラズマ法で作製された体積平均粒径:104nm、組成比Fe:Ni=50:50のFeNi不規則合金を、窒化処理も脱窒素処理も行わず、X線回折で評価した。
比較例S1では、比較例S0と同じFeNi不規則合金を用い、300℃、4時間で窒化処理を行い、脱窒素処理は行わず、X線回折で評価した。比較例S2では、比較例S0と同じFeNi不規則合金を用い、窒化処理は行わず、300℃、4時間で脱窒素処理を行い、X線回折で評価した。
実施例S3では、比較例S0と同じFeNi不規則合金を用い、300℃、4時間で窒化処理を行い、300℃、4時間で脱窒素処理を行い、X線回折で評価した。実施例S4では、火炎噴霧法で作製されたFeNi不規則合金を用い、実施例S3と同様に窒化処理、脱窒素処理を行い、X線回折で評価した。実施例S5では、共沈法で作製されたFeNi不規則合金を用い、実施例S3と同様に窒化処理、脱窒素処理を行い、X線回折で評価した。
実施例S6、S7、S8、S9は、窒化処理の処理温度を325℃、350℃、400℃、500℃と変えたこと以外は、実施例S3と同様に行われたものである。また、比較例S10、S11、実施例S12、S13、S14、比較例S15、S16は、脱窒素処理の処理温度を150℃、200℃、250℃、350℃、400℃、450℃、500℃と変えたこと以外は、実施例S3と同様に行われたものである。
そして、X線回折によるL1型規則構造の形成可否の評価は、図5に示される規則度Sが1である理想的なFeNi規則合金のX線回折パターンとの比較により行える。L1型のFeNi規則合金では、図5中に示されるように、基本回折P2のピークに加えて、矢印で示される位置に超格子回折P1と呼ばれるピークが現れる。
一方、図6に示されるように、FeNi不規則合金では、基本回折P2は現れるが、超格子回折P1は現れない。なお、これら図5、図6において、X線はFeのkβ線(波長:1.75653Å)を想定した。
このことから、上記した実施例および比較例においては、X線回折測定を行い、測定されたパターンにて超格子回折P1が現れれば、L1型規則構造が形成されており、超格子回折P1が現れていなければ、L1型規則構造が形成されていないと判断される。ここでは、超格子回折P2のなかでも、特にわかりやすい28°と40°のピークが明確に現れているかどうかにより、判断を行った。
これにより、図3では、L1型規則構造が形成されているものは、「あり」とし、形成されていないものは、「なし」とした。図3に示されるように、「あり」は、実施例S3〜S9、S12〜S14、および、比較例S11であり、「なし」は、比較例S11を除く比較例S0〜S2、S10、S15、S16であった。
また、上記した実施例および比較例のうち、L1型規則構造が形成されているものについて、規則度Sの見積もりは、上記特許文献1に記載の方法に基づいて行った。この規則度Sの見積もりは、次の数式1に示されるL1型のFeNi規則合金における規則度Sの見積もり式により見積もることができる。
Figure 2019178426
ここで、数式1中、「Isup」は超格子回折P1のピークの積分強度であり、「Ifund」は基本回折P2のピークの積分強度である。そして、「(Isup/Ifundobs」は、各実施例および比較例における測定されたX線回折パターンにおける超格子回折P1の積分強度と基本回折P2の積分強度との比である。また、「(Isup/Ifundcal」は、図6のX線回折パターンにおける超格子回折P1の積分強度と基本回折P2の積分強度との比である。
そして、数式1に示されるように、これら両比の平方根が規則度Sとして求められる。なお、比較例S11は、L1型規則構造の形成が「あり」であるが、この見積もり式によれば規則度Sが0.25程度と低く、本実施形態の規則度S:0.5以上ではないため、比較例とした。
各実施例および比較例について、測定されたX線回折パターンの典型例の一部が、図7,図8、図9に示されているが、これについて述べておく。
図7の場合、実施例S3では、28°と40°の超格子回折P2のピークが明確に現れており、比較例S0、S2では、この超格子回折P2は現れなかった。なお、図7中、比較例S0の逆三角を記したピークは、酸化FeNiであり、超格子回折P2ではない。これにより、窒化処理および脱窒素処理の両処理を行うことによって、L1型のFeNi規則合金が得られていることがわかる。
図8の場合、実施例S3では、28°と40°の超格子回折P2のピークが明確に現れており、比較例S1では、この超格子回折P2は現れなかった。なお、図8中、比較例S1において黒丸を記したピークが、超格子回折P2とは異なる位置に現れているが、これは窒化FeNiであり、超格子回折P2ではない。比較例S1は、窒化処理を行ったが脱窒素処理は行わないものであり、FeNiの窒化物である。
図9の場合、実施例S3、S4、S5は、FeNi不規則合金の粉末試料の作製法および体積平均粒径が異なるもの同士であるが、いずれにおいても、28°と40°の超格子回折P2のピークが明確に現れている。なお、体積平均粒径の差異は、電子顕微鏡観察により容易に確認できる。このように、作製法および粒径が異なる試料においても窒化処理および脱窒素処理を行うことで、L1型のFeNi規則合金を製造できる。
また、図10を参照して、上記の実施例および比較例におけるFeNi規則合金について、規則度Sと脱窒素処理の処理温度との関係を述べておく。図10は、脱窒素処理の処理温度以外は、同一の試料および窒化処理を行った実施例S6、S12〜S14および比較例S10、S11、S15、S16について、当該関係を表したものである。
図10に示されるように、脱窒素処理の処理温度が250℃以上400℃以下である実施例S12、S6、S13、S14では、規則度Sが0.5以上であることが達成される。しかし、当該処理温度が250℃未満である比較例S10、S11では、規則度Sは0.5未満であり、当該処理温度が450℃以上である比較例S15、S16では、処理温度が高すぎて超格子が分解してしまう。
ところで、上記実施例および比較例に代表されるように、FeNi不規則合金に窒化処理を行った後、窒素を除去する脱窒素処理を行うことにより、規則度Sが0.5以上であるL1型のFeNi規則合金を得ることができる。
これは、上記した従来のような分子線エピタキシーによる積層方法や、中性子照射しながら熱処理する方法に比べて、装置的にも工程的にも簡易な方法である。よって、本実施形態によれば、規則度Sが0.5以上の高い規則度を有するL1型のFeNi規則合金を、容易に合成することができる。
そして、このような規則度Sが0.5以上のL1型のFeNi規則合金は、従来には無い高い規則度Sを有するものであり、これを用いて作成された磁性材料は、従来のL1型のFeNi規則合金よりなる磁性材料では得られない優れた磁性特性を有するものとなる。
また、Feの組成については50原子%の近傍が、L1型のFeNi規則合金を形成しやすい組成である。そして、本実施形態では、上記の実施例および比較例に示されるように、組成範囲Fe:55〜47原子%の合金において、規則度Sが0.5の高い規則化が実現されている。
また、FeNi不規則合金については、試料形状は特定しないが、窒化処理および脱窒素処理を短時間で行うために、上述のように、粉末状試料であることが望ましい。特に、これらの処理を迅速に行うためには、FeNi不規則合金はナノ粒子試料であることが望ましい。
また、本実施形態では、上述のように、作製法の異なるFeNi不規則合金の粉末について規則化を確認している。さらに言えば、この不規則合金の作製方法は、上記した熱プラズマ法、火炎噴霧法、共沈法の各方法に限定されるものではない。
また、L1型のFeNi規則合金を形成するためには、窒化処理された窒化物における窒素濃度は、Fe、Niおよび窒素の総量に対する原子量比として20原子%から33原子%程度が望ましい。
また、窒化法、脱窒素法について限定するものではないが、本実施形態によれば、上記のように、アンモニアガスによる窒化、水素ガスによる脱窒素を行うことで不純物を混入させることなく、L1型のFeNi規則合金を得ることができる。
また、上記の実施例および比較例に示したように、アンモニアガスによる窒化処理を行う場合、その処理温度は300℃以上500℃以下が望ましい。上記の図3に示した各例では、窒化処理の処理温度として、300℃、325℃、350℃、400℃、500℃の例が示されている。もちろん、窒化処理の処理温度は、これらの例に限定されるものではない。
また、上記図10においても述べたが、水素ガスによる脱窒素処理の場合、規則度Sを0.5以上の高いものとするためには、その処理温度は250℃以上400℃以下程度が望ましい。そして、図10にも示されるように、たとえば実施例S13においては、規則度S:0.53を実現している。
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対して更に規則度Sを高くできるようにするものである。本実施形態においても、基本的な製造工程については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
本実施形態では、FeNi不規則合金からL1型のFeNi規則合金を形成する際に、中間生成物を生成することによって規則度Sを更に高くする。上記第1実施形態においても、窒化処理と脱窒素処理を行っているが、本実施形態では、窒化処理を終えたときに中間生成物としてFeNiNが生成されるようにする。このとき、窒化処理によって的確に中間生成物が生成されるように、窒化処理に先立ち、FeNi不規則合金の表面に形成されている酸化膜の除去処理を行うようにしている。そして、中間生成物となるFeNiNから脱窒素処理を行うことで、L1型のFeNi規則合金を形成する。
具体的には、図11に示すように、FeNi不規則合金について窒化処理を行うことで、図1に示したIIサイトに窒素を取り込むことでIIサイトにNiを多く含む中間生成物となるFeNiNを形成する。そして、脱窒素処理を行うことで、IIサイトから窒素を放出させることで、L1型のFeNi規則合金を構成する。
まず、FeNi不規則合金を用意する。そして、FeNi不規則合金の表面に酸化膜が形成されていることから、窒化処理に先立ち、FeNi不規則合金の表面の酸化膜を除去する除去処理を行う。その後、除去処理に連続して窒化処理を行う。
除去処理としては、酸化膜のエッチング雰囲気において、例えば300℃〜450℃の間での熱処理を行う。これにより、FeNi不規則合金の表面の酸化膜が除去され、窒化され易い表面状態となる。窒化処理としては、Nを含む雰囲気において、例えば200℃〜400℃の間での熱処理を行う。これにより、酸化膜除去によって窒化され易くなったFeNi不規則合金を的確に窒化することが可能となり、中間生成物となるFeNiNが形成される。
次に、中間生成物となるFeNiNに対して脱窒素処理を行う。脱窒素処理としては、脱窒素雰囲気において、例えば200〜400℃の間での熱処理を行う。これにより、中間生成物から窒素が脱離し、L1型のFeNi規則合金を形成することができる。このように、中間生成物となるFeNiNを形成してから、L1型のFeNi規則合金を形成することで、より高い規則度Sを得ることが可能となる。
実際に、上記した除去処理、窒化処理および脱窒素処理を行い、L1型のFeNi規則合金を形成したときの具体例について説明する。
まず、除去処理および窒化処理について、図12(a)に示すプロファイルに従った処理を行った。
具体的には、上記した管状炉10もしくはマッフル炉などの加熱炉を用意し、加熱炉内に平均粒径30nmのFeNi不規則合金のナノ粒子試料を配置した。そして、加熱炉を室温から酸化膜の除去のための除去処理時の温度、ここでは400℃まで昇温させた。このとき、加熱炉内に存在する酸素によってナノ粒子試料が酸化することを抑制するために、不活性ガスを導入しており、ここではN(窒素)を導入しながら昇温工程を行った。
なお、不活性ガスとして、この後の窒化処理において利用することも可能なNを用いたが、N以外の不活性ガス、例えばAr(アルゴン)やHe(ヘリウム)等を用いるようにしても良い。
そして、除去処理時の温度まで加熱炉を昇温させたら、Nの導入を停止して酸化膜のエッチングガスを導入することでエッチング雰囲気を生成し、所定時間加熱炉の温度を酸化膜の除去に必要な温度に維持した。本実験においては、エッチングガスとしてH(水素)を用いており、1L/minのレートでHを加熱炉内に導入し、加熱炉を1時間400℃に維持した。これにより、ナノ粒子試料の表面の酸化膜を除去した。
酸化膜の除去に必要な時間については任意であるが、例えば10分以上の時間行うことで、酸化膜をある程度除去できることを確認している。また、酸化膜の除去の温度については、少なくとも300℃〜450℃の間であれば良い。
酸化膜の除去の温度の下限値については、少なくとも300℃以上であれば酸化膜を除去できることを確認していることから300℃としている。ただし、300℃未満であってもあっても、時間を掛ければ酸化膜の除去が行えると考えられる。また、酸化膜の除去の温度の上限値については、この後のFeNi不規則合金の窒化が容易に行えるようにするために規定している。すなわち、酸化膜の除去の温度を450℃より高くすると、酸化膜が除去されたFeNi不規則合金の表面が焼結し、窒化し難くなる。したがって、FeNi不規則合金の表面が焼結されることを抑制するために450℃以下としている。また、加熱炉内へのエッチングガスの導入レートについても任意であり、例えばHの場合、少なくとも0.3〜5L/minの範囲であれば酸化膜を除去できた。
このようにして、酸化膜の除去処理を終えた後、同じ加熱炉内において窒化処理を継続して行った。具体的には、加熱炉への導入ガスをエッチングガスから窒化ガスに切り替え、加熱炉内をNが含まれる雰囲気とし、窒化に必要な温度を維持した。本実験においては、窒化ガスとしてNH(アンモニア)を用いており、5L/minのレートで加熱炉内に導入し、加熱炉を50時間300℃に維持した。これにより、ナノ粒子試料が窒化され、中間生成物となるFeNiNが形成された。
窒化処理に必要な時間については任意であるが、例えば10時間行うことで、中間生成物となるFeNiNが合成できることを確認している。また、窒化処理の温度については、少なくとも200℃〜400℃の間であれば良い。Nが含まれる雰囲気を生成するための加熱炉内への窒化ガスの導入レートについも任意であり、例えばNHの場合、少なくとも0.1〜10L/minの範囲であればナノ粒子試料を窒化できた。
このように、酸化膜の除去処理の後に引き続いて窒化処理を行った。このようにすることで、酸化膜を除去したFeNi不規則合金の表面に再び酸化膜が形成されることを抑制できると共に、再び昇温工程を行わなくて済み、熱処理の簡素化および時間短縮化を図ることが可能となる。
続いて、脱窒素処理を行った。脱窒素処理については、図12(b)に示すプロファイルに従った処理を行った。ここでは窒化処理後に時間を置いて脱窒素処理を行っているが、これらを連続して行うことも可能である。
まず、上記した管状炉10もしくはマッフル炉などの加熱炉を用意し、加熱炉内に図12(a)のプロファイルに従って生成した中間生成物となるFeNiNを配置した。そして、加熱炉を室温から脱窒素処理時の温度、ここでは300℃まで昇温させた。このときも、加熱炉内に存在する酸素によって中間生成物であるFeNiNが酸化することを抑制するために、不活性ガスを導入しており、ここではNを導入しながら昇温工程を行った。
そして、脱窒素処理時の温度まで加熱炉を昇温させたら、Nの導入を停止して脱窒素処理を行うことができる雰囲気を生成し、所定時間加熱炉の温度を脱窒素に必要な温度に維持した。本実験においては、H(水素)を用いて脱窒素を行うことができる雰囲気を生成しており、1L/minのレートでHを加熱炉内に導入し、加熱炉を4時間300℃に維持した。これにより、中間生成物であるFeNiNから脱窒素を行った。
脱窒素処理に必要な時間については任意であるが、例えば1時間以上行うことで、脱窒素処理によってL1型のFeNi規則合金を生成できることを確認している。また、脱窒素処理の温度については、少なくとも200℃〜400℃の間であれば良いことを確認している。また、脱窒素処理が行える雰囲気を生成するための加熱炉内へのガスの導入レートについも任意であり、例えばHの場合、少なくとも0.1〜5L/minの範囲であれば脱窒素処理が行えた。
以上のような脱窒素処理を行うことで、L1型のFeNi規則合金を生成することができた。このように形成したL1型のFeNi規則合金について、材料全体の平均的な規則度Sを求めた。具体的には、粉末X線回折パターンにより、規則度Sを求めた。
例えば、規則度Sが1である場合におけるL1型のFeNi規則合金の粉末のX線回折パターンは、図13のように表される。規則度Sは、X線回折パターンのうち、超格子反射である(001)面からの回折ピーク、つまり超格子回折のピークの積分強度と、(111)面からの回折ピーク、つまり基本回折のピークの積分強度との比である回折強度比に対して図14に示す関係を有している。このため、本実施形態のようにして生成したL1型のFeNi規則合金についても、X線回折パターンを求め、その結果から規則度Sを得ることができる。
具体的に、本実施形態のように、FeNi不規則合金から酸化膜の除去処理を行ってから窒化処理を行って中間生成物であるFeNiNを生成し、さらに脱窒素処理を行ってL1型のFeNi規則合金を生成したときのX線回折パターンを求めた。図15は、その結果を示している。
図15に示されるように、(001)面において超格子回折のピークが生じていることから、FeNi超格子ができていることが判る。この結果に基づいて、回折強度比を算出したところ、回折強度比が0.8であった。この回折強度比=0.8のときの規則度Sを図14から求めると、規則度Sが0.71という高い値になった。
このように、本実施形態の製造方法によって生成したL1型のFeNi規則合金について、高い規則度Sを得ることができた。さらに、このL1型のFeNi規則合金について、磁気特性評価も行ったところ、異方性磁界として981kA/mという比較的高い値を得ることができた。
以上説明したように、本実施形態では、FeNi不規則合金に対して窒化処理を行って中間生成物であるFeNiNを生成し、さらに脱窒素処理を行ってL1型のFeNi規則合金を生成している。このような製造方法により、0.7以上という高い規則度Sを有するL1型のFeNi規則合金を容易に生成することが可能となる。
特に、FeNi不規則合金の表面に形成されている酸化膜を除去するための除去処理を行ってから窒化処理を行うようにすることで、より的確に中間生成物を生成することが可能となる。したがって、除去処理を行うことで、より高い規則度Sを有するL1型のFeNi規則合金を得ることが可能となる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
例えば、第1実施形態では窒化処理および脱窒素処理の条件の一例について説明した。しかしながら、ここで説明したのは各条件の一例を示したに過ぎず、窒化処理および脱窒素処理によって、規則度Sが0.5以上のL1型のFeNi規則合金を得ることができるならば、これら処理の処理温度、処理時間について、上記の例に限定するものではない。同様に、第2実施形態では、酸化膜の除去処理、窒化処理および脱窒素処理の条件の一例について説明したが、これらについても各条件の一例を示したに過ぎない。すなわち、規則度Sが0.7以上のL1型のFeNi規則合金を得ることができるならば、これら処理の処理温度、処理時間について、上記の例に限定するものではない。
また、上記第1、第2実施形態では、窒化処理および脱窒素処理を行うことによって、L1型のFeNi規則合金を得ているが、窒化処理および脱窒化処理以外の手法によってL1型のFeNi規則合金を得るようにしても良い。すなわち、FeとNiとがL1型のFeNi規則構造と同じ格子構造で整列した化合物を合成する処理を行ったのち、この化合物からFeとNi以外の不要な元素を除去する処理とを行うことでL1型のFeNi規則合金を得るようにしても良い。
また、上記実施形態にかかるL1型のFeNi規則合金は、磁石材料および磁気記録材料等の磁性材料に適用されるが、このFeNi規則合金の適用範囲は、磁性材料に限定されるものではない。
また、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記実施形態の記載内容については、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記実施形態は、上記実施例に限定されるものではない。
100 FeNi不規則合金の粉末試料
S 規則度

Claims (5)

  1. L1型の規則構造を有し、
    X線回折装置による測定により求められる全体の規則度Sが0.5以上であり、体積平均粒径が30nm以上であるL1型のFeNi規則合金粉末。
  2. 前記規則度は、前記X線回折装置による測定にて現れる超格子回折のピークの積分強度をIsup、基本回折のピークの積分強度をIfundとして、該L1型のFeNi規則合金粉末を構成するFeNi規則合金における超格子回折のピークの積分強度Isupと基本回折のピークの積分強度Ifundとの比を(Isup/Ifundobsとすると共に、FeNi不規則合金における超格子回折のピークの積分強度Isupと基本回折のピークの積分強度Ifundとの比を(Isup/Ifundcalとして、
    前記規則度Sは、
    Figure 2019178426
    で表されている請求項1に記載のFeNi規則合金粉末。
  3. 前記X線回折装置で測定したX線回折パターンのうち、超格子反射である(001)面からの回折ピークである超格子回折のピーク積分強度を∫(001)とし、(111)面からの回折ピークである基本回折ピークの積分強度を∫(111)とすると、
    (数2)
    ∫(001)/∫(111)
    で表される回折強度比が0.4以上となっている請求項1に記載のFeNi規則合金粉末。
  4. Feの含有量とNiの含有量の総和に対するFeの含有量が47〜55原子%である請求項1ないし3のいずれか1つに記載のFeNi規則合金粉末。
  5. 請求項1ないし4のいずれか1つに記載のFeNi規則合金粉末を含んだ磁性材料。
JP2019092252A 2015-10-14 2019-05-15 FeNi規則合金粉末およびそれを含む磁性材料 Active JP6729760B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015203067 2015-10-14
JP2015203067 2015-10-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018017373A Division JP6528865B2 (ja) 2015-10-14 2018-02-02 FeNi規則合金粉末およびそれを含む磁性材料

Publications (2)

Publication Number Publication Date
JP2019178426A true JP2019178426A (ja) 2019-10-17
JP6729760B2 JP6729760B2 (ja) 2020-07-22

Family

ID=58551030

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016159001A Active JP6332359B2 (ja) 2015-10-14 2016-08-12 FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料
JP2018017373A Active JP6528865B2 (ja) 2015-10-14 2018-02-02 FeNi規則合金粉末およびそれを含む磁性材料
JP2019092252A Active JP6729760B2 (ja) 2015-10-14 2019-05-15 FeNi規則合金粉末およびそれを含む磁性材料

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016159001A Active JP6332359B2 (ja) 2015-10-14 2016-08-12 FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料
JP2018017373A Active JP6528865B2 (ja) 2015-10-14 2018-02-02 FeNi規則合金粉末およびそれを含む磁性材料

Country Status (4)

Country Link
US (2) US10724112B2 (ja)
JP (3) JP6332359B2 (ja)
CN (2) CN108138252B (ja)
DE (1) DE112016004716T5 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627818B2 (ja) * 2017-04-13 2020-01-08 株式会社デンソー FeNi規則合金、FeNi規則合金磁石およびFeNi規則合金の製造方法
JP6766746B2 (ja) 2017-05-12 2020-10-14 株式会社デンソー FeNi規則合金を含む磁性材料およびその製造方法
JP2018195802A (ja) * 2017-05-16 2018-12-06 株式会社デンソー 磁粉及び磁石
WO2018212098A1 (ja) * 2017-05-16 2018-11-22 株式会社デンソー 磁粉及び磁石
JP6733700B2 (ja) 2017-05-17 2020-08-05 株式会社デンソー FeNi規則合金を含む磁性材料およびその製造方法
JP6809371B2 (ja) * 2017-05-17 2021-01-06 株式会社デンソー L10−FeNi磁粉及びボンド磁石
JP2020161507A (ja) * 2017-06-21 2020-10-01 株式会社日立製作所 永久磁石
JP7120073B2 (ja) * 2019-02-22 2022-08-17 株式会社デンソー FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料
JP7243282B2 (ja) * 2019-02-22 2023-03-22 株式会社デンソー FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料
CN111690961B (zh) * 2020-07-14 2021-09-07 四川轻化工大学 一种在FeCrNi合金表面制备氮掺杂MnCr2O4涂层的方法
DE102022124393A1 (de) * 2021-09-27 2023-03-30 Denso Corporation Geordnete eisen-nickel-legierung des typs l10 und verfahren zur herstellung einergeordneten eisen-nickel-legierung des typs l10

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015320A (ja) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd 複合磁性材料およびその製造方法
WO2012141206A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 高強度無方向性電磁鋼板
US20140210581A1 (en) * 2011-07-14 2014-07-31 Laura H. Lewis Rare earth-free permanent magnetic material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174349A (ja) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys 耐摩耗性高透磁率合金およびその製造法ならびに磁気記録再生ヘツド
JPH08203735A (ja) * 1995-01-23 1996-08-09 Hitachi Ltd 磁性材料,記録装置および読み取り装置
KR100545692B1 (ko) * 2000-12-28 2006-01-24 히타치마쿠세루가부시키가이샤 자기 기록 매체, 그 제조 방법 및 자기 기억 장치
JP4524078B2 (ja) 2002-05-31 2010-08-11 富士フイルム株式会社 磁性粒子およびその製造方法、並びに、磁気記録媒体およびその製造方法
JP5670638B2 (ja) * 2010-01-26 2015-02-18 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
WO2012141205A2 (ja) 2011-04-11 2012-10-18 国立大学法人北海道大学 L10型FeNi合金粒子及びその製造方法、磁性組成物並びに磁石
KR20140072047A (ko) * 2011-08-17 2014-06-12 리전츠 오브 더 유니버시티 오브 미네소타 질화철 영구 자석 및 질화철 영구 자석을 형성하기 위한 기술
CN102719628B (zh) * 2012-06-27 2014-08-20 陕西长岭电子科技有限责任公司 铁镍软磁合金真空退火二步法
JP6388190B2 (ja) * 2012-11-29 2018-09-12 善治 堀田 L10型FeNi規則合金を含むFeNi系材料の製造方法、及びFeNi系材料
US9142350B2 (en) * 2013-03-13 2015-09-22 GM Global Technology Operations LLC Synthesis of ordered L10-type FeNi nanoparticles
JP2014231624A (ja) 2013-05-29 2014-12-11 株式会社デンソー Fe−Ni合金粉末の製造方法およびFe−Ni合金粉末並びに磁石
KR101624736B1 (ko) * 2013-06-07 2016-05-27 한국원자력연구원 열전도도가 향상된 Alloy 690 규칙화 합금의 제조방법 및 이에 의해 제조된 Alloy 690 규칙화 합금
JPWO2015053006A1 (ja) * 2013-10-08 2017-03-09 国立大学法人東北大学 L10型FeNi規則合金の製造方法
JP5747101B1 (ja) 2014-04-14 2015-07-08 株式会社立花マテリアル バイオディーゼル油の製造システム
JP6383307B2 (ja) 2015-03-04 2018-08-29 京楽産業.株式会社 遊技機
JP6195285B2 (ja) * 2015-04-23 2017-09-13 国立大学法人東北大学 L10型FeNi規則相を含むFeNi合金組成物、L10型FeNi規則相を含むFeNi合金組成物の製造方法、アモルファスを主相とするFeNi合金組成物、アモルファス材の母合金、アモルファス材、磁性材料および磁性材料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015320A (ja) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd 複合磁性材料およびその製造方法
WO2012141206A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 高強度無方向性電磁鋼板
US20140210581A1 (en) * 2011-07-14 2014-07-31 Laura H. Lewis Rare earth-free permanent magnetic material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林靖 ほか: "FeNi合金の結晶構造の合成手法依存性", SPRING-8/SACLA利用研究成果集, vol. 3, no. 2, JPN6016048035, 21 July 2015 (2015-07-21), JP, pages 606 - 608, ISSN: 0004269379 *

Also Published As

Publication number Publication date
JP2017075388A (ja) 2017-04-20
DE112016004716T5 (de) 2018-06-28
JP2018109238A (ja) 2018-07-12
US20200325551A1 (en) 2020-10-15
CN110760717B (zh) 2021-07-20
US10724112B2 (en) 2020-07-28
US10920292B2 (en) 2021-02-16
US20180251867A1 (en) 2018-09-06
JP6528865B2 (ja) 2019-06-12
JP6332359B2 (ja) 2018-05-30
JP6729760B2 (ja) 2020-07-22
CN110760717A (zh) 2020-02-07
CN108138252B (zh) 2021-03-09
CN108138252A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP6729760B2 (ja) FeNi規則合金粉末およびそれを含む磁性材料
WO2017064989A1 (ja) FeNi規則合金およびFeNi規則合金の製造方法
KR101147570B1 (ko) 자성 합금, 비정질 합금 박대, 및 자성 부품
JP2007107095A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品
JP6248689B2 (ja) 強磁性合金およびその製造方法
US20060118207A1 (en) Low core loss magnetic alloy with high saturation magnetic flux density and magnetic parts made of same
McKay et al. Surface oxidation mechanism of CoCrFeNi high entropy alloy
JP2009249682A (ja) 硬磁性合金およびその製造方法
KR20140005213A (ko) 플라즈마 질화에 의한 강화 합금 제조 방법
JP6733700B2 (ja) FeNi規則合金を含む磁性材料およびその製造方法
JP6627818B2 (ja) FeNi規則合金、FeNi規則合金磁石およびFeNi規則合金の製造方法
Ma et al. Magnetic properties of transition-metal impurities in silicon quantum dots
Hao et al. Effect of P addition on soft magnetic properties of Fe–Si–B–P–Cu–C nano-crystalline alloys
Crisan et al. Effect of Mn addition on the thermal stability and magnetic properties of rapidly-quenched L10 FePt alloys
JP6294534B1 (ja) 炭化鉄材料の製造方法、及び炭化鉄薄膜材料
Hao et al. Effect of multi-step annealing with different heating rates on magnetic properties of Fe-Si-BP-Cu nano-crystalline alloy
JP6861003B2 (ja) FeNi規則合金の製造方法
JP2005187917A (ja) 軟磁性合金並びに磁性部品
Sohn et al. Formation and magnetic properties of InFeP: Ag nanorods fabricated with noble metal Ag using an ion milling method
Sabetinejad et al. Nanocrystallization Process in Soft Magnetic Nanocrystalline Alloy Fe73. 5Si13. 5B9Nb3Cu1 Studied by Mössbauer Spectroscopy
Pandey et al. Phase changes in Fe 72− x Al 28 Cr x (x= 0, 2, 4, 6) alloys due to mechanical strain
Rednic et al. Magnetic Clusters Development in Oxidized CeNi 5 Powder
JP2018193571A (ja) FeNi規則合金を含む磁性材料およびその製造方法
Baek et al. Magnetic grating produced by localized crystallization of amorphous Cu2MnSn thin film using femtosecond laser pulses
Millán Muñoz et al. Preferential Co Partitioning to α-Fe in Nanocrystalline CoFeNbB Alloys by Mn Addition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6729760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250