JP2013253137A - セルロース多孔質体及びその製造方法 - Google Patents

セルロース多孔質体及びその製造方法 Download PDF

Info

Publication number
JP2013253137A
JP2013253137A JP2012128193A JP2012128193A JP2013253137A JP 2013253137 A JP2013253137 A JP 2013253137A JP 2012128193 A JP2012128193 A JP 2012128193A JP 2012128193 A JP2012128193 A JP 2012128193A JP 2013253137 A JP2013253137 A JP 2013253137A
Authority
JP
Japan
Prior art keywords
cellulose
porous
water
porous body
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012128193A
Other languages
English (en)
Other versions
JP5827178B2 (ja
Inventor
Junji Nemoto
純司 根本
Tomohiko Soyama
智彦 楚山
Akira Isogai
明 磯貝
Tsuguyuki Saito
継之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Hokuetsu Kishu Paper Co Ltd
Original Assignee
University of Tokyo NUC
Hokuetsu Kishu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012128193A priority Critical patent/JP5827178B2/ja
Application filed by University of Tokyo NUC, Hokuetsu Kishu Paper Co Ltd filed Critical University of Tokyo NUC
Priority to KR1020167018722A priority patent/KR101725029B1/ko
Priority to EP13800396.7A priority patent/EP2857583B1/en
Priority to CA2874391A priority patent/CA2874391C/en
Priority to PCT/JP2013/063557 priority patent/WO2013183415A1/ja
Priority to CN201380025687.8A priority patent/CN104302836B/zh
Priority to KR1020147030608A priority patent/KR101836565B1/ko
Priority to US14/403,541 priority patent/US9328211B2/en
Publication of JP2013253137A publication Critical patent/JP2013253137A/ja
Application granted granted Critical
Publication of JP5827178B2 publication Critical patent/JP5827178B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/22Agents rendering paper porous, absorbent or bulky
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • Y10T428/249964Fibers of defined composition
    • Y10T428/249965Cellulosic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

【課題】本発明の目的は、極めて繊維径が細く、かつ、親水性の高いセルロースナノファイバーを含み、比表面積の大きな多孔質体を提供すること及びその多孔質体を低コストで簡便に製造する方法を提供することである。
【解決手段】本発明に係るセルロース多孔質体の製造方法は、セルロースナノファイバーと分散媒とを含有する混合液を凍結乾燥する工程を有するセルロース多孔質体の製造方法において、前記分散媒が、水と水に溶解する有機溶媒との混合分散媒であり、該混合分散媒中の有機溶媒の濃度は、2〜40質量%であり、前記混合液中のセルロースナノファイバーの固形分濃度が、0.001〜5質量%である。
【選択図】図1

Description

本発明は、セルロースナノファイバーを含んでなる多孔質体及びその製造方法に関する。
セルロース多孔質体はエアロゲルとも呼ばれ、低密度、高比表面積であり、また多量に存在する天然物由来でもあることから注目を集めている。有機物から成る多孔質体は、一般的に、無機材料からなる多孔質体よりも同密度でも高強度なものが多い。高比表面積を有するものは、吸着性に優れ、また、加熱によって炭素化することで炭素系多孔質体ともなりうる。本発明者らは、そうした技術動向の中で、数平均繊維径が1〜1000nmのセルロースナノファイバーの利用に関して検討してきた。
本明細書において、セルロースナノファイバーとは、数平均繊維径が1〜1000nmの(1)微細なセルロースナノファイバー(セルロース繊維)又は(2)化学処理(改質)した微細なセルロースナノファイバーをいう。(1)のセルロースナノファイバーとしては、例えば、セルロース繊維を高圧下で剪断して解繊したマイクロフィブリレーテッドセルロース(以降、MFCと略す。)又は微生物が産生する微細なバクテリアセルロース(以降、BCと略す。)である。(2)の改質したセルロースナノファイバーとしては、例えば、天然セルロースを40%以上の濃硫酸で処理して得られるセルロースナノウィスカー(以降、CNWと略す。)又は木材パルプを構成している繊維の最小単位であるミクロフィブリルを常温常圧の温和な化学処理及び軽微な機械処理で水分散体として単離した超極細、かつ、繊維径の均一な微細セルロース繊維である(例えば、特許文献1を参照。)。
セルロースナノファイバーは、植物由来又は生物由来であるため、石油由来の熱可塑性ポリマーからなるナノファイバーよりも、生産時及び廃棄時における環境への負荷が小さいという特長をもつ。したがって、セルロースナノファイバーを用いて多孔質体を形成し、機能性フィルター、電子デバイス材料、再生医療材料、さらには炭素材料など様々な分野・用途へ応用することが期待されている。
しかし、セルロースナノファイバーは、乾燥時に働く凝集力のため、セルロースナノファイバーの水分散体を乾燥して得られる乾燥体は流体透過性の低い高密度の材料となってしまう。特に、特許文献1に記載の数平均繊維径が数nmのセルロースナノファイバーは、繊維表面セルロース分子のC6位水酸基の一部又は全部を水酸基よりも親水性の高いカルボキシル基に置換されている。また、一般的に繊維径が細いほど単位質量当たりの表面自由エネルギーが増加するため、乾燥したときの表面を安定化させる繊維間の凝集力は増大する。したがって、特許文献1に記載のセルロースナノファイバーの水分散体をそのまま乾燥させると、セルロース水酸基とカルボキシル基とに由来する親水性及び水のもつ強い表面張力のため凝集し、非多孔質のガスバリアフィルムとなってしまう(例えば、特許文献2を参照。)。
セルロース多孔質体を得る方法として、平均繊維径が2〜1000nmである微小セルロース繊維を、固形分濃度で0.1〜3.5質量%含有する水スラリーを凍結乾燥させることで、多孔性及び連続気泡性を有する表面積の高い多孔質体が得られることが開示されている(例えば、特許文献3を参照。)。
セルロース微細繊維(ミクロフィブリル)の乾燥時に凝集を生じさせない方法として、セルロース微細繊維を含む水分散体を冷却した金属板に噴霧して急速凍結させた後、昇華することでセルロース微細繊維の多孔質体を作製する方法、また、分散媒をエタノール、次いでt‐ブチルアルコールに置換した後、凍結乾燥させることでセルロース微細繊維の多孔質体を作製する方法が知られている(例えば、特許文献4を参照。)。
セルロース多孔質体(エアロゲル)を得る方法として、セルロースナノファイバー物理ゲル中の分散媒である水を、含水エタノール、エタノール、t‐ブチルアルコールに置換した後、凍結乾燥する方法が知られている(例えば、特許文献5を参照。)。
特開2008−1728号公報 特開2009−57552号公報 特開2010−215872号公報 特開2003−82535号公報 特開2012−1626号公報
I.Shibata and A.Isogai,「Cellulose」Vol.10(2003),p.335〜341
特許文献3では、凍結乾燥を用いることで表面積の高い多孔質体が得られるとしているが、分散媒として水を用いていることから、凍結時に水の結晶(氷晶)が生じていると考えられる。氷晶が生じると、その周囲にセルロースナノファイバーが濃縮して、多孔質体の表面積が減少してしまう。該文献には、表面積の値に関する記載は無いが、氷晶を抑制する方法に関しての記載もないことから、比表面積が100m/gを超えるような多孔質体を得るのは難しいと判断せざるを得ない。
特許文献4においても凍結乾燥を用いているが、この方法では水を分散媒とした場合、セルロース微細繊維の比表面積は最も高いもので65.2m/gであり、多孔質体としては比表面積が低い。一方、分散媒をt‐ブチルアルコールに置換した場合、セルロース微細繊維の比表面積は最も高いもので118m/gとなるが、この方法では分散媒を一度エタノールに置換して、その後t‐ブチルアルコールに置換するという操作が必要となっており、分散媒の置換作業がより煩雑になるという問題がある。
特許文献5では、理論上比表面積が600m/g超えるセルロース多孔質体が得られると見積っているが、実施例では、セルロースナノファイバー物理ゲルの溶媒置換工程が9回必要であり、製造コストが莫大となるため産業レベルで利用することは難しいという問題がある。
セルロースナノファイバーの利用分野では、その応用展開の拡大という観点から、より簡便な方法で製造できる多孔質体の開発が望まれている。しかし、前述したようにセルロースナノファイバーを用いた多孔質体を簡便な方法で製造できる方法はないのが現状である。
本発明はこのような問題点を鑑みてなされたものであり、本発明の目的は、極めて繊維径が細く、かつ、親水性の高いセルロースナノファイバーを含み、比表面積の大きな多孔質体を提供すること及びその多孔質体を低コストで簡便に製造する方法を提供することである。
本発明者らは、前記課題を解決すべく検討を重ねた結果、本発明を完成するに至った。すなわち、本発明に係るセルロース多孔質体の製造方法は、セルロースナノファイバーと分散媒とを含有する混合液を凍結乾燥する工程を有するセルロース多孔質体の製造方法において、前記分散媒が、水と水に溶解する有機溶媒との混合分散媒であり、該混合分散媒中の有機溶媒の濃度は、2〜40質量%であり、前記混合液中のセルロースナノファイバーの固形分濃度が、0.001〜5質量%であることを特徴とする。
本発明に係るセルロース多孔質体の製造方法では、前記混合液の調製は、水に前記セルロースナノファイバーを分散させたセルロースナノファイバー水分散液を調製した後、該セルロースナノファイバー水分散液に前記有機溶媒を添加して行うことが好ましい。セルロースナノファイバーの分散を均一にすることができる。
本発明に係るセルロース多孔質体の製造方法では、前記セルロースナノファイバーの数平均繊維径が1〜100nmであることが好ましい。比表面積の大きい多孔質体を得ることができる。
本発明に係るセルロース多孔質体の製造方法では、前記有機溶媒が、アルコール類、カルボン酸類又はカルボニル化合物類のうちの少なくとも一種を含むことが好ましい。水が凍結する時にできる結晶(氷晶)をより小さくすることができ、更に比表面積の大きい多孔質体を得ることができる。
本発明に係るセルロース多孔質体の製造方法では、前記有機溶媒は、前記アルコール類として(1)メタノール、(2)エタノール、(3)2‐プロパノール若しくは(4)t‐ブチルアルコール、前記カルボン酸類として(5)酢酸、前記カルボニル化合物類として(6)アセトン、の(1)〜(6)の少なくとも1種を含むことが好ましい。水との相溶性に優れ、より均一な混合溶媒を得ることができる。
本発明に係るセルロース多孔質体の製造方法では、前記有機溶媒が、t‐ブチルアルコールだけであることが好ましい。水との混合溶媒の凝固点が著しく下がらないため、凍結させることが容易である。
本発明に係るセルロース多孔質体は、本発明に係るセルロール多孔質体の製造方法で得られ、窒素吸着BET法による比表面積が、70m/g以上であることを特徴とする。
本発明に係るセルロース多孔質体は、多孔質の支持体の表面又は表面及び内部に付着していることが好ましい。混合液が液状であるため、混合液を多孔質の支持体へ均一に付着することができる。
本発明は、極めて繊維径が細く、かつ、親水性の高いセルロースナノファイバーを含むセルロース多孔質体を提供することができる。また、本発明は、セルロース多孔質体を低コストで簡便に製造する方法を提供することができる。さらに、本発明は、溶媒が凍結する時に生じる結晶を小さくすることができるため、比表面積の大きな多孔質体を提供することができる。
実施例4のセルロース多孔質体のSEMによる観察画像を示す図である。 比較例1の乾燥体のSEMによる観察画像を示す図である。
次に、本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
本実施形態に係るセルロース多孔質体の製造方法は、セルロースナノファイバーと分散媒とを含有する混合液を凍結乾燥する工程を有するセルロース多孔質体の製造方法において、分散媒が、水と水に溶解する有機溶媒との混合分散媒であり、混合分散媒中の有機溶媒の濃度は、2〜40質量%であり、混合液中のセルロースナノファイバーの固形分濃度が、0.001〜5質量%である。
<セルロースナノファイバー>
本実施形態では、セルロースナノファイバーは、化学処理(改質)したセルロースナノファイバーを包含する。セルロースナノファイバーでは、セルロース分子鎖が2本以上の束を形成している。セルロース分子鎖が2本以上の束を形成しているとは、2本以上のセルロース分子鎖が集合してミクロフィブリルと呼ばれる集合体を形成している状態をいう。本実施形態では、セルロース分子鎖は、分子中のC6位水酸基の一部又は全部がアルデヒド基、カルボキシル基などに酸化されたもの、C6位以外の水酸基を含む水酸基の一部又は全部が硝酸エステル、酢酸エステルなどのようにエステル化されたもの、メチルエーテル、ヒドロキシプロピルエーテル、カルボキシメチルエーテルなどのようにエーテル化されたものなど他の官能基に置換されている形態を含む。
セルロースナノファイバーの数平均繊維径は、特に限定するものではないが、1〜100nmであることが好ましい。より好ましくは、2〜50nmであり、特に好ましくは、2〜10nmである。数平均繊維径が1〜100nmのセルロースナノファイバーを用いることによって、比表面積の大きい多孔質体を得やすい。数平均繊維径が1nm未満では、ナノファイバーの単繊維強度が弱く、多孔質体の構造を維持することが困難となる場合がある。100nmを超えると、多孔質体としては比表面積が不足する場合がある。ここで、数平均繊維径は、次に従って算出する。カーボン膜被覆グリッド上にキャストしたセルロースナノファイバーを透過型電子顕微鏡(TEM、Transmission Electron Microscope)を用いて電子顕微鏡画像による観察を行う。得られた観察画像に対し、1枚の画像あたり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維径を目視で読み取っていく。このとき、構成する繊維の大きさに応じて5000倍、10000倍、50000倍のいずれかの倍率で行う。なお、試料又は倍率は、20本以上の繊維が軸と交差する条件とする。こうして最低3枚の重なっていない表面部分の画像を電子顕微鏡で撮影し、各々二つの軸に交差する繊維の繊維径の値を読み取る。したがって、最低20本×2×3=120個の繊維情報が得られる。こうして得られた繊維径のデータから数平均繊維径を算出した。なお、枝分かれしている繊維については、枝分かれしている部分の長さが50nm以上であれば1本の繊維として繊維径の算出に組み込む。
また、セルロースナノファイバーの数平均繊維長は、特に限定するものではないが、0.01〜20μmであることが好ましい。より好ましくは、0.05〜10μmである。数平均繊維長が0.01μm未満では、ナノファイバーが粒子に近くなり、多孔質体の絡み合いが弱くなる場合がある。20μmを超えると、ナノファイバー同士の絡み合いが多くなり、溶媒に分散させたときの液体の流動性が低くなる場合がある。なお、数平均繊維長は、セルロースナノファイバー分散液を基板上に薄くキャストし、凍結乾燥したものを走査型電子顕微鏡(SEM、Scanning Electron Microscope)を用いて電子顕微鏡画像による観察から算出する。得られた観察画像に対し、1枚の画像あたり10本ずつ独立した繊維を無作為に選び、その繊維長を目視で読み取っていく。このとき、構成する繊維の長さに応じて5000倍又は10000倍のいずれかの倍率で行う。なお、試料又は倍率は、繊維の始点と終点とが同じ画像内に収まっているものを対象とする。こうして最低12枚の重なっていない表面部分の画像をSEMで撮影し、繊維長を読み取る。したがって、最低10本×12枚=120本の繊維情報が得られる。こうして得られた繊維径のデータから数平均繊維長を算出できる。なお、枝分かれしている繊維については、その繊維の最も長い部分の長さを繊維長とする。
セルロースナノファイバーの種類は、例えば、前述のMFC、BC、CNW、特許文献1に記載のセルロースナノファイバーである。MFCは、セルロース繊維を機械的な処理によって剪断してナノファイバー化するため、繊維径の分布が広いという特徴がある。BCは、比較的均一な繊維径を有するという特徴がある。CNWは、比較的均一な繊維径を有するが、繊維長が0.1〜0.2μmで短いという特徴がある。特許文献1に記載のセルロースナノファイバーは、特許文献1に記載されているように、セルロース原料を、N‐オキシル化合物、臭化物、ヨウ化物又はそれらの混合物の存在下で、酸化剤を用いて酸化し、該酸化されたセルロースを更に湿式微粒化処理して解繊し、ナノファイバー化することによって水分散体として製造され、均一な繊維径を有するという特徴がある。この中で、特許文献1に記載の微細セルロースが、生産に必要なエネルギーが他のセルロース繊維よりも少ない点及び生産性が高い点で特に好ましい。
特許文献1に記載のセルロースナノファイバーは、セルロースシングルミクロフィブリルである。天然セルロースは、ミクロフィブリルが多束化して高次な個体構造を構築している。ここで、ミクロフィブリル間は、セルロース分子中の水酸基由来の水素結合によって強固に凝集している。セルロースシングルミクロフィブリルとは、天然セルロースに化学処理及び軽微な機械処理を行い、単離したミクロフィブリルをいう。特許文献1に記載のセルロースナノファイバーは、セルロース分子の水酸基の一部がカルボキシル基及びアルデヒド基からなる群から選ばれる少なくとも一つの官能基に酸化されており、かつ、セルロースI型結晶構造を有する。最大繊維径は、1000nm以下である。このセルロースナノファイバーは、水に分散すると透明な液体となる。
本実施形態では、セルロースナノファイバーが、特許文献1に記載のセルロースナノファイバーであり、かつ、数平均繊維径が、1〜100nmであることが好ましい。より好ましくは、2〜10nmである。数平均繊維径が1nm未満では、ナノファイバーの単繊維強度が弱く、多孔質体の構造を維持することが困難となる場合がある。100nmを超えると、多孔質体の比表面積が低下する場合がある。また、特許文献1に記載のセルロースナノファイバーの数平均繊維長は、特に限定されないが、0.01〜20μmであることが好ましい。より好ましくは、0.05〜10μmである。数平均繊維長が0.01μm未満では、ナノファイバーが粒子に近くなり、多孔質体の絡み合いが弱くなる場合がある。20μmを超えると、ナノファイバー同士の絡み合いが強過ぎてしまい、溶媒に分散させたときの液体の流動性が低くなる場合がある。
セルロースナノファイバーの原料となるセルロース原料は、特に限定されるものではなく、例えば、広葉樹さらしクラフトパルプ(LBKP)、針葉樹さらしクラフトパルプ(NBKP)などの各種木材由来のクラフトパルプ、サルファイトパルプ、脱墨パルプ(DIP)などの古紙パルプ、グランドパルプ(GP)、加圧式砕木パルプ(PGW)、リファイナー砕木パルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、ケミメカニカルパルプ(CMP)、ケミグランドパルプ(CGP)などの機械パルプ、それらを高圧ホモジナイザー、ミルなどによって粉砕した粉末状セルロース、それらを酸加水分解などの化学処理によって精製した微結晶セルロース粉末である。また、ケナフ、麻、イネ、バガス、竹、綿などの植物を使用してもよい。本実施形態は、セルロースナノファイバーの原料及び製造方法に制限されない。
セルロースナノファイバーの製造方法は、例えば、特許文献1に記載した製造方法である。特許文献1によると、セルロースナノファイバーの製造方法は、天然セルロースを原料とし、水中においてN‐オキシル化合物を酸化触媒とし、共酸化剤を作用させることによって該天然セルロースを酸化して反応物繊維を得る酸化反応工程と、不純物を除去して水を含浸させた反応物繊維を得る精製工程と、水を含浸させた反応物繊維を分散媒に分散させる分散工程と、を含む。
酸化反応工程では、水中に天然セルロースを分散させた分散液を調製する。反応における天然セルロースの分散媒は、水である。そして、反応分散液中の天然セルロース濃度は、試薬の十分な拡散が可能な濃度であれば任意であるが、通常、反応分散液の質量に対して5質量%以下である。
セルロースの酸化触媒として使用可能なN‐オキシル化合物は、数多く報告されている。報告例としては、「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事がある(例えば、非特許文献1を参照。)。N‐オキシル化合物の中で、特にTEMPO、4‐アセトアミド‐TEMPO、4‐カルボキシ‐TEMPO又は4‐フォスフォノオキシ‐TEMPOが、水中常温での反応速度が速くなる点で好ましい。N‐オキシル化合物の添加量は、触媒量で十分である。すなわち、反応水溶液に対するN‐オキシル化合物の添加量は、0.1〜4mmol/lであることが好ましく、0.2〜2mmol/lであることがより好ましい。0.1mmol/l未満では、触媒効果に劣る場合がある。4mmol/lを超えると、水に溶けなくなる場合がある。
共酸化剤は、例えば、次亜ハロゲン酸若しくはその塩、亜ハロゲン酸若しくはその塩、過ハロゲン酸若しくはその塩、過酸化水素、又は過有機酸である。好ましくはアルカリ金属次亜ハロゲン酸塩である。アルカリ金属次亜ハロゲン酸塩は、例えば、次亜塩素酸ナトリウム、次亜臭素酸ナトリウムである。次亜塩素酸ナトリウムを使用する場合、臭化アルカリ金属、例えば、臭化ナトリウムの存在下で反応を進めることが反応速度において好ましい。この臭化アルカリ金属の添加量は、N‐オキシル化合物に対して1〜40倍モル量であることが好ましい。より好ましくは、10〜20倍モル量である。1倍モル量未満では、反応速度において劣る場合がある。40倍量モルを超えると、反応速度において劣る場合がある。反応水溶液のpHは、8〜11の範囲で維持することが好ましい。水溶液の温度は、4〜40℃において任意であるが、反応は室温で行うことが可能であり、特に温度の制御を必要としない。共酸化剤の添加量は、天然セルロース1gに対して0.5〜8mmolの範囲であることが好ましい。反応は、5〜120分とすることが好ましく、長くとも240分以内に完了する。
精製工程は、酸化反応工程で得た酸化セルローススラリーから、未反応の次亜塩素酸、各種副生成物などの不純物を除去して精製する工程である。酸化反応工程を経た段階では、通常、ナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗工程とろ過工程とを繰り返すことで高純度(99質量%以上)の精製した酸化セルローススラリーとする。こうして得られる精製した酸化セルローススラリーは、絞った状態で固形分(セルロース)濃度として10〜50質量%の範囲にあることが好ましい。より好ましくは、15〜30質量%である。後に行われる分散工程を考慮すると、50質量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。
分散工程は、精製工程にて得た酸化セルローススラリーを更に水中に分散してセルロースナノファイバー分散液を得る工程である。分散機は、工業生産機としての汎用の分散機を使用できる。汎用の分散機は、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサーである。さらに、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダーなどのより強力で叩解能力のある装置を使用することによって、より効率的かつ高度なダウンサイジングが可能となる。
分散前の酸化セルローススラリーの固形分濃度は、0.01〜0.50質量%であることが好ましい。より好ましくは、0.10〜0.30質量%である。固形分濃度が0.50質量%を超えると、セルロースナノファイバー分散液の粘度が上昇するため、流動性が低下し、分散効率が低下する場合がある。固形分濃度が0.01質量%未満では、分散液に占める水の割合が非常に多くなり、分散効率が低下する場合がある。高固形分濃度のセルロースナノファイバー分散液が必要な場合は、低固形分濃度の該分散液を濃縮して得ることができる。
本実施形態に係るセルロース多孔質体の製造方法では、混合液中の分散媒を除く必要がある。分散媒が水だけである場合、凍結時に水の結晶(氷晶)が生成し、セルロースナノファイバーは氷晶の周囲に濃縮されて、部分的に凝集が生じてしまう。本実施形態に係るセルロース多孔質体の製造方法では、分散媒として水に有機溶媒を少量加えた混合分散媒を用いることで、分散媒が凍結時に生じる氷晶の成長を抑え、分散媒を非晶に近い状態で固化させることができる。そして、非晶に近い状態で固化した分散媒を昇華させることで、比表面積の大きなセルロース多孔質体を得ることができる。本実施形態に係るセルロース多孔質体の窒素吸着BET法による比表面積(以降、比表面積ということもある。)は、70m/g以上であることが好ましく、100m/g以上であることがより好ましい。70m/g未満では、多孔質体としては比表面積が不足する場合がある。セルロール多孔質体の比表面積の上限値は、1000m/gであることが好ましく、800m/gであることがより好ましい。1000m/gを超えると、セルロースナノファイバーの強度が弱くなり、多孔質体が脆弱になる場合がある。分散媒を有機溶媒に完全置換した凍結乾燥では、多孔質体は得られるものの、その置換に大きな手間が掛かっていた。また、分散媒の疎水性が高くなり、親水性のセルロースナノファイバーを均一に分散できない場合があった。これに対して、本実施形態に係る多孔質体の製造方法では、分散媒が水と水に溶解する有機溶媒との混合分散媒であって、混合分散媒中の有機溶媒の濃度が2〜40質量%である混合分散媒を用いることで、分散媒にセルロースナノファイバーが均一に分散した混合液を得ることができ、更には分散媒の完全置換を必要としない簡便な方法で高比表面積のセルロース多孔質体を得ることが可能である。
<有機溶媒>
本発明でいう有機溶媒とは、常温常圧で液体である有機化合物のことをいう。また、水に溶解するとは、水と有機溶媒とを混合した混合分散媒において、水と有機溶媒との混合質量比が98:2〜60:40の範囲内で、両者が分子レベルで互いに混ざり合い、相分離しないことをいう。本実施形態に係るセルロース多孔質体では、水と、有機溶媒と、セルロースナノファイバーとを混合して混合液とする。混合分散媒中の有機溶媒の濃度は、2〜40質量%である。より好ましくは、10〜30質量%である。有機溶媒の濃度が40質量%を超えると、疎水性の高い分散媒となり、親水性を有するセルロースナノファイバーが混合液中に均一に分散しなくなる可能性がある。また、有機溶媒の濃度が2質量%未満では、分散媒の凍結時に水の結晶(氷晶)の形成が著しく、セルロースナノファイバーの凝集や構造破壊を引き起こしてしまい、比表面積の高い多孔質が得られなくなる。
本実施形態では、有機溶媒が、アルコール類、カルボン酸類又はカルボニル化合物類のうちの少なくとも一種を含むことが好ましい。このような有機溶媒を含むことで、水が凍結する時に生じる結晶(氷晶)を小さくすることができ、多孔質体の比表面積を拡大することができる。また、有機溶媒は、アルコール類として(1)メタノール、(2)エタノール、(3)2‐プロパノール若しくは(4)t‐ブチルアルコール、カルボン酸類として(5)酢酸、カルボニル化合物類として(6)アセトン、の(1)〜(6)の少なくとも1種を含むことが水との相溶性の観点からより好ましい。このうち、有機溶媒は、t‐ブチルアルコールだけであることが特に好ましい。水とt‐ブチルアルコールとを混合した混合分散媒の完全凍結点は、最も低くても−10℃程度であり、他の有機溶媒と水との混合分散媒に比べ高くなっており、凍結させることが容易である。t‐ブチルアルコール水溶液では、t‐ブチルアルコール濃度が20質量%付近で、水とt‐ブチルアルコールとが共晶となり、凍結時の結晶サイズが最も小さくなることが知られている。有機溶媒がt‐ブチルアルコールだけである場合、混合分散媒中のt‐ブチルアルコールの濃度は、15〜30質量%であることが好ましく、20〜25質量%であることがより好ましい。この範囲とすることで、比表面積が、例えば190m/g以上の多孔質体を得ることができる。
次に、本実施形態に係るセルロース多孔質体の製造方法の各工程について説明する。
<混合液の調製工程>
本実施形態に係るセルロース多孔質体の製造方法では、水と、有機溶媒と、セルロースナノファイバーとを混合して混合液とする。混合液中のセルロースナノファイバーの形態は、例えば、セルロースナノファイバーがバラバラに分散した形態である。セルロースナノファイバーをより均一に分散させるためには、混合液の調製は、水にセルロースナノファイバーを分散させたセルロースナノファイバー水分散液を調製した後、セルロースナノファイバー水分散液に有機溶媒を添加して行うことが好ましい。ここで、セルロースナノファイバー水分散液は、特許文献1に記載の分散工程で得たセルロースナノファイバー分散液をそのまま用いるか、又は一旦乾燥して微細セルロース繊維とした後、当該微細セルロース繊維を再び水に分散してもよい。作業効率の点で、分散工程で得たセルロースナノファイバー分散液をそのまま用いることがより好ましい。分散工程で得たセルロースナノファイバー分散液は、所望の濃度になるように希釈又は濃縮して用いることが好ましい。セルロースナノファイバー水分散液中のセルロースナノファイバーの固形分濃度は、0.001〜5質量%であることが好ましく、0.01〜1質量%であることがより好ましい。混合液の調製方法は、特に限定は無いが、例えば、プロペラ型の撹拌翼を用いて混合する方法、混合液の成分を入れた容器を振盪機を用いて振盪して混合する方法、マグネティックスターラーを用いて混合する方法であり、特に強力な分散機は必要ない。混合液の調製工程において、有機溶媒にセルロースナノファイバー水分散液を加えると、凝集物が生じる場合がある。
本実施形態に係るセルロース多孔質体の製造方法では、水と、有機溶媒と、セルロースナノファイバーとを混合した混合液中のセルロースナノファイバーの固形分濃度が、0.001〜5質量%である。より好ましくは0.01〜2質量%であり、特に好ましくは、0.05〜1質量%である。混合液中のセルロースナノファイバーの固形分濃度が5質量%を超えると、セルロースナノファイバー間の空隙が少なくなり、比表面積の高い多孔質体が得られなくなる。一方、混合液中のセルロースナノファイバーの固形分濃度が0.001質量%未満では、セルロースナノファイバー同士の絡み合いが少なくなり、多孔質体として構造が維持できなくなる。
本実施形態に係る多孔質体の製造方法では、混合液に凍結乾燥安定化剤、セルロースナノファイバーの表面改質剤などの各種助剤を配合してもよい。凍結乾燥安定化剤は、例えば、ショ糖、トレハロース、L‐アルギニン、L‐ヒスチジンである。また、セルロースナノファイバーの表面改質剤は、例えば、カチオン系界面活性剤、アニオン系界面活性剤、非イオン性界面活性剤又は両性界面活性剤である。なお、各種助剤は有機溶媒を添加する前に、セルロースナノファイバー水分散液に添加することが好ましい。
<凍結乾燥工程>
本実施形態に係る多孔質体の製造方法は、混合液を凍結乾燥する。凍結乾燥とは、混合液を凍結し、凍結状態のまま減圧して分散媒を昇華させることによって乾燥する手法である。凍結乾燥における凍結温度は、混合液中の分散媒の凝固点以下としなければならず、−50℃以下であることが好ましく、−100℃以下であることがより好ましい。凍結温度が高い、つまり凍結速度が遅いと、水と有機溶媒とを混合した混合分散媒を用いても、分散媒の結晶が大きくなる場合があり、その結晶周囲にセルロースナノファイバーが濃縮され凝集体を生じてしまう場合がある。一方、凍結温度を低くすること、つまり凍結速度を速くすることで分散媒を非晶に近い状態で凍結することができる。本実施形態に係るセルロース多孔質体の製造方法では、混合液を凍結乾燥するが、どのような形態で凍結乾燥するかは限定しない。混合液を凍結乾燥する方法は、例えば、混合液単体を容器に入れて凍結乾燥する方法、混合液を不織布、紙、スポンジなどの多孔質の支持体に付着させた状態で、支持体ごと凍結乾燥する方法である。混合液単体を容器に入れて凍結乾燥する方法では、薄いシート状又は厚みのある板状のセルロース多孔質体が得られる。混合液を多孔質の支持体に付着させて凍結乾燥する方法では、セルロース多孔質体が多孔質の支持体に付着した多孔質体が得られる。本実施形態では、混合液が液状であるため、混合液を多孔質の支持体へ均一に付着することができる。混合液を多孔質の支持体に付着する方法は、例えば、多孔質の支持体の全体又は一部を混合液に浸漬する方法、混合液を多孔質の支持体の表面に塗布する方法、混合液を多孔質の支持体の表面に噴霧する方法である。セルロース多孔質体が多孔質の支持体に付着する形態は、例えば、セルロース多孔質体が多孔質の支持体の表面だけに付着する形態、セルロース多孔質体が多孔質の支持体の表面及び支持体の孔の一部に付着する形態、セルロース多孔質体が多孔質の支持体の表面及び支持体の孔の全体に付着する形態である。
本実施形態に係る多孔質体の製造方法では、凍結乾燥において、凍結した混合液中の分散媒を減圧下で昇華させなければならない。減圧時の圧力は、200Pa以下であることが好ましく、50Pa以下であることがより好ましい。圧力が200Paを超えると凍結した混合液中の分散媒が融解してしまう可能性がある。
次に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、例中の「部」、「%」は、特に断らない限りそれぞれ「質量部」、「質量%」を示す。なお、添加部数は、固形分換算の値である。
[セルロースナノファイバー水分散液Aの調製工程]
乾燥重量で2.00g相当分のNBKP(主に1000nmを超える繊維径の繊維から成るもの)と、0.025gのTEMPO(2,2,6,6‐テトラメチルピペリジン‐1‐オキシラジカル)と、0.25gの臭化ナトリウムと、を水150mlに分散した後、13%次亜塩素酸ナトリウム水溶液を、パルプ(NBKP)1.00gに対して、次亜塩素酸ナトリウムの量が5.00mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は、0.50mol/lの水酸化ナトリウム水溶液を滴下してpHを10に保った。2時間反応した後、反応物をろ過し、十分水洗することで酸化セルローススラリーを得た。0.15質量%の酸化セルローススラリーを、バイオミキサー(BM−2、日本精機製作所社製)を用いて、15000回転で5分間解繊処理し、更に超音波分散機(型式UA50、国際電気社製)で30分間解繊処理した。その後、遠心分離によって粗大繊維の除去を行い、透明のセルロースナノファイバー水分散液を得た。この分散液を、TEM(JEM2000−EXII、日本電子社製)を用いて倍率50000倍で観察した観察画像から解析した結果、数平均繊維直径は4nmであった。また、SEM(S−4000、日立製作所社製)を用いて倍率10000倍で観察した観察画像から解析した結果、数平均繊維長は1.1μmであった。得られたセルロースナノファイバー水分散液Aは、固形分濃度が0.35%となるまでロータリーエバポレーターで濃縮し、以降の工程で用いた。
(実施例1)
[混合液の調製工程]
セルロースナノファイバー分散液A28.6gに、20.4gの水と1.0gのt‐ブチルアルコールとを加え、容器に蓋をしてマグネティックスターラーで5分間攪拌して混合液を得た。混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で98:2であった。
[凍結乾燥工程]
混合液の調製工程で得られた混合液をナス型フラスコに入れ、回転させながら液体窒素(−196℃)に浸した。混合液が完全に凍結したら、凍結乾燥機(VD−250F TAITEC社製)を用いて、分散媒を昇華させることで乾燥体(セルロース多孔質体)を得た。また、真空到達時の圧力は50Pa以下であった。
(実施例2)
セルロースナノファイバー分散液A28.6gに、16.4gの水と5.0gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で90:10であった。
(実施例3)
セルロースナノファイバー分散液A28.6gに、13.9gの水と7.5gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で85:15であった。
(実施例4)
セルロースナノファイバー分散液A28.6gに、11.4gの水と10.0gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で80:20であった。
(実施例5)
セルロースナノファイバー分散液A28.6gに、9.0gの水と12.5gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で75:25であった。
(実施例6)
セルロースナノファイバー分散液A28.6gに、6.5gの水と15.0gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で70:30であった。
(実施例7)
セルロースナノファイバー分散液A28.6gに、1.5gの水と20.0gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で60:40であった。
(実施例8)
セルロースナノファイバー分散液A28.6gに、13.9gの水と7.5gの2‐プロパノールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水と2‐プロパノールとの混合比率は、質量比で85:15であった。
[セルロースナノファイバー水分散液Bの調製工程]
セルロースナノファイバー水分散液Bとして、セルロースナノファイバーがバクテリアセルロース(BC)であるものを用いた。ナタデココ(フジッコ社製、約1cm角)をカッターナイフで2mm角程度に細かく刻み、ナタデココ内に含まれるシロップを水に置換した。これをバイオミキサー(BM−2、日本精機製作所社製)を用いて、10000回転にて2分間解繊し、超音波分散機(型式UA50、国際電気社製)で30分間解繊処理してBCの水分散液を得た。得られたBCの水分散液をTEMを用いて倍率50000倍で観察した観察画像から解析した結果、数平均繊維直径は、24nmであった。セルロースナノファイバー水分散液B中のセルロースナノファイバーの固形分濃度は、5%に調整した。
(実施例9)
セルロースナノファイバー水分散液Aに替えてセルロースナノファイバー水分散液Bを用いた以外は実施例3と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で85:15であった。
(実施例10)
セルロースナノファイバー分散液A0.86gに、254.1gの水と45gのt‐ブチルアルコールとを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.001%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で85:15であった。
(実施例11)
セルロースナノファイバー分散液B42.5gに、7.13gのt‐ブチルアルコールを加えた以外は実施例1と同様にして乾燥体(セルロース多孔質体)を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は4.28%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で85:15であった。
(比較例1)
セルロースナノファイバー分散液A28.6gに、21.4gの水を加え、t‐ブチルアルコールは加えなかった以外は実施例1と同様にして乾燥体を得た。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水と有機溶媒との混合比率は、質量比で100:0であった。
(比較例2)
固形分濃度が0.4%になるまで濃縮したセルロースナノファイバー水分散液A25.0gに、25.0gのt‐ブチルアルコールを加えたところ、凝集物が発生し、均一な混合液とならなかったため、凍結乾燥工程を行わなかった。ここで、混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で50:50であった。
(分散状態の評価)
各実施例及び各比較例において、混合液の分散状態を目視で観察した。評価方法は次のとおりである。
○:有機溶媒を加えても凝集物の発生がなく、セルロースナノファイバーが均一で分散状態に変化がない(実用レベル)。
△:有機溶媒を加える前から凝集物があり、有機溶媒を加えてもセルロースナノファイバーの分散状態に変化がない(実用レベル)。
×:有機溶媒を加えることで凝集物が発生し、セルロースナノファイバーの分散状態に変化が起きる(実用不適レベル)。
(乾燥体の観察)
各実施例及び各比較例で得られた乾燥体について、その形状をSEM(S−4000、日立製作所社製)を用いて5000倍に拡大して観察した。図1に実施例4で得られたセルロース多孔質体のSEM画像を、図2に比較例1で得られた乾燥体のSEM画像をそれぞれ示す。図1ではセルロースナノファイバー1本1本が独立したような形態となっているが、図2ではセルロースナノファイバーが凝集して一部が膜状になっており、セルロースナノファイバー間の多孔性が失われていることが分かる。
(比表面積の測定)
窒素吸着BET法による比表面積を自動比表面積測定装置(TriStarII3020、Micromeritics社製)を用いて測定した。測定結果を表1に示す。
(実施例12)
セルロースナノファイバー分散液A28.6gに、13.9gの水と7.5gのt‐ブチルアルコールとを加えた容器に蓋をしてマグネティックスターラーで5分間攪拌して混合液を得た。混合液の全質量に対するセルロースナノファイバーの固形分濃度は0.2%であった。また、混合液中の水とt‐ブチルアルコールとの混合比率は、質量比で85:15であった。この混合液を、目付が64g/m、比表面積が1.80m/gのガラス繊維からなる不織布に、湿潤状態での付着量が150g/mとなるよう付着させた。この不織布を湿潤状態のまま液体窒素に入れて凍結させた。その後、実施例1と同様に凍結乾燥させ、ガラス繊維からなる不織布にセルロース多孔質体を付着させた多孔質体(以降、当該多孔質体を多孔質体Xという。)を得た。得られた多孔質体Xの比表面積は2.85m/gであった。ここで、多孔質体Xにおいて、ガラス繊維からなる不織布に対するセルロースナノファイバーの質量比率は0.47%であり、この比率から多孔質体Xの不織布に付着したセルロース多孔質体の比表面積を算出すると、225m/gであった。
実施例1〜11では、いずれもセルロース多孔質体が得られた。さらに、表1からわかるように、実施例1〜11のセルロース多孔質体は、比表面積が大きく、72〜324m/gであった。比較例1は、分散媒として水だけを用い、有機溶媒を用いなかったため、分散媒である水を凍結させたときに氷晶が形成され、セルロースナノファイバーが部分的に凝集してしまった。そのため比表面積の小さな乾燥体となった。比較例2は、分散媒中の有機溶媒濃度が高くなり、セルロースナノファイバー同士が持っていた斥力が弱められ、分散状態に変化が起きてしまった。実施例12から、セルロース多孔質体を多孔質の支持体に付着させた多孔質体を得ることができることが確認できた。
このように、本発明に係るセルロース多孔質体の製造方法によれば、極めて繊維径が細く、かつ、親水性の高いセルロースナノファイバーから成る多孔質体を、比較的簡便な製法で得られることが確認できた。
本発明に係るセルロース多孔質体の製造方法は、極めて繊維径が細く、かつ、親水性の高いセルロースナノファイバーから成るセルロース多孔質体を低コストで提供できる。したがって、本発明に係るセルロース多孔質体は、機能性フィルター、電子デバイス材料、再生医療材料、さらには炭素材料など様々な分野・用途に好適に用いることができる。

Claims (8)

  1. セルロースナノファイバーと分散媒とを含有する混合液を凍結乾燥する工程を有するセルロース多孔質体の製造方法において、
    前記分散媒が、水と水に溶解する有機溶媒との混合分散媒であり、
    該混合分散媒中の有機溶媒の濃度は、2〜40質量%であり、
    前記混合液中のセルロースナノファイバーの固形分濃度が、0.001〜5質量%であることを特徴とするセルロース多孔質体の製造方法。
  2. 前記混合液の調製は、水に前記セルロースナノファイバーを分散させたセルロースナノファイバー水分散液を調製した後、該セルロースナノファイバー水分散液に前記有機溶媒を添加して行うことを特徴とする請求項1に記載のセルロース多孔質体の製造方法。
  3. 前記セルロースナノファイバーの数平均繊維径が1〜100nmであることを特徴とする請求項1又は2に記載のセルロース多孔質体の製造方法。
  4. 前記有機溶媒が、アルコール類、カルボン酸類又はカルボニル化合物類のうちの少なくとも一種を含むことを特徴とする請求項1〜3のいずれか一つに記載のセルロース多孔質体の製造方法。
  5. 前記有機溶媒は、前記アルコール類として(1)メタノール、(2)エタノール、(3)2‐プロパノール若しくは(4)t‐ブチルアルコール、前記カルボン酸類として(5)酢酸、前記カルボニル化合物類として(6)アセトン、の(1)〜(6)の少なくとも1種を含むことを特徴とする請求項4に記載のセルロース多孔質体の製造方法。
  6. 前記有機溶媒が、t‐ブチルアルコールだけあることを特徴とする請求項1〜3のいずれか一つに記載のセルロース多孔質体の製造方法。
  7. 請求項1〜6のいずれか一つのセルロール多孔質体の製造方法で得られ、
    窒素吸着BET法による比表面積が、70m/g以上であることを特徴とするセルロース多孔質体。
  8. 多孔質の支持体の表面又は表面及び内部に付着していることを特徴とする請求項7に記載のセルロース多孔質体。
JP2012128193A 2012-06-05 2012-06-05 セルロース多孔質体及びその製造方法 Active JP5827178B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012128193A JP5827178B2 (ja) 2012-06-05 2012-06-05 セルロース多孔質体及びその製造方法
EP13800396.7A EP2857583B1 (en) 2012-06-05 2013-05-15 Porous cellulose body and method for producing same
CA2874391A CA2874391C (en) 2012-06-05 2013-05-15 Porous cellulose body and method for producing same
PCT/JP2013/063557 WO2013183415A1 (ja) 2012-06-05 2013-05-15 セルロース多孔質体及びその製造方法
KR1020167018722A KR101725029B1 (ko) 2012-06-05 2013-05-15 셀룰로오스 다공질체 및 그의 제조방법
CN201380025687.8A CN104302836B (zh) 2012-06-05 2013-05-15 纤维素多孔质体及其制造方法
KR1020147030608A KR101836565B1 (ko) 2012-06-05 2013-05-15 셀룰로오스 다공질체 및 그의 제조방법
US14/403,541 US9328211B2 (en) 2012-06-05 2013-05-15 Porous cellulose body and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128193A JP5827178B2 (ja) 2012-06-05 2012-06-05 セルロース多孔質体及びその製造方法

Publications (2)

Publication Number Publication Date
JP2013253137A true JP2013253137A (ja) 2013-12-19
JP5827178B2 JP5827178B2 (ja) 2015-12-02

Family

ID=49711815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128193A Active JP5827178B2 (ja) 2012-06-05 2012-06-05 セルロース多孔質体及びその製造方法

Country Status (7)

Country Link
US (1) US9328211B2 (ja)
EP (1) EP2857583B1 (ja)
JP (1) JP5827178B2 (ja)
KR (2) KR101836565B1 (ja)
CN (1) CN104302836B (ja)
CA (1) CA2874391C (ja)
WO (1) WO2013183415A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218421A (ja) * 2014-05-21 2015-12-07 凸版印刷株式会社 多孔質体とその製造方法、ならびに遮熱フィルム
JP5988121B1 (ja) * 2016-02-05 2016-09-07 国立大学法人 岡山大学 多孔質体の製造方法及び多孔質体
WO2016143439A1 (ja) * 2015-03-06 2016-09-15 国立大学法人大阪大学 バクテリアセルロースとポリマーとを含む多孔質体およびその製造方法
JP2016196534A (ja) * 2015-04-02 2016-11-24 北越紀州製紙株式会社 セルロース多孔質体の製造方法
WO2017022052A1 (ja) * 2015-08-03 2017-02-09 北越紀州製紙株式会社 エアフィルタ用濾材の製造方法
JP2017095664A (ja) * 2015-11-27 2017-06-01 日本製紙株式会社 セルロースナノファイバーの乾燥固形物の製造方法
JP2017177091A (ja) * 2016-03-23 2017-10-05 北越紀州製紙株式会社 エアフィルタ用濾材
JP2017533321A (ja) * 2014-10-30 2017-11-09 セルテック・アクチボラゲットCellutech Ab Cnf多孔性固体材料
JP2018517863A (ja) * 2015-06-04 2018-07-05 ブルース クロスリー セルロースナノフィブリルの製造方法
JP2019176040A (ja) * 2018-03-29 2019-10-10 滋賀県 活性炭化セルロースナノファイバーの製造方法
JP2019181391A (ja) * 2018-04-13 2019-10-24 国立大学法人東京工業大学 エアフィルタ
JP2019534394A (ja) * 2016-10-28 2019-11-28 ストラ エンソ オーワイジェイ 繊維を含むウェブを形成する方法
JP2020501566A (ja) * 2016-12-15 2020-01-23 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation ナノナノフィブリルセルロースを含むヒドロゲル中の細胞を凍結乾燥するための方法、およびナノフィブリルセルロースを含むエアロゲル中の凍結乾燥細胞
WO2020050149A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 構造体
WO2020050150A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 構造体
JP7470325B2 (ja) 2020-08-03 2024-04-18 株式会社大川原製作所 容器、乾燥装置、およびセルロースナノファイバーの乾燥物の製造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815965B2 (en) 2008-04-14 2014-08-26 Bridgestone Corporation Processes for recovering rubber from natural rubber latex
RU2017130337A (ru) 2012-03-06 2019-02-06 Бриджстоун Корпорейшн Способ выделения каучука из растительного материала гуаюлы
CA2873783C (en) 2012-05-16 2020-02-11 Bridgestone Corporation Compositions containing purified non-hevea rubber and related purification methods
JP5827178B2 (ja) * 2012-06-05 2015-12-02 北越紀州製紙株式会社 セルロース多孔質体及びその製造方法
EP2861628A4 (en) 2012-06-18 2016-03-30 Bridgestone Corp SYSTEMS AND METHODS FOR WASTE MANAGEMENT ASSOCIATED WITH TREATMENT OF GUAYULE BUISSONS TO EXTRACT RUBBER
ES2936462T3 (es) 2012-06-18 2023-03-17 Bridgestone Corp Método de desolventización de bagazo
WO2013192217A1 (en) 2012-06-18 2013-12-27 Bridgestone Corporation Methods for increasing the extractable rubber content of non-hevea plant matter
US9567457B2 (en) 2013-09-11 2017-02-14 Bridgestone Corporation Processes for the removal of rubber from TKS plant matter
US9470455B2 (en) * 2014-08-11 2016-10-18 Weyerhaeuser Nr Company Sorting green lumber
EP3227343A1 (en) * 2014-12-05 2017-10-11 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Method for manufacturing hydrophilic cellulosic nanofibers in low-polarity environments and materials comprising such nanofibers
DE202015105780U1 (de) * 2015-10-30 2015-11-11 Josef Fliegl jun. Trocknungsvorrichtung
WO2017111016A1 (ja) * 2015-12-25 2017-06-29 日本製紙株式会社 セルロースナノファイバー乾燥固形物の製造方法
CN105641848A (zh) * 2016-01-12 2016-06-08 江西剑安消防设备有限责任公司 水溶性热气溶胶灭火剂成份的复合共结晶制备方法
CN109310967B (zh) * 2016-06-20 2022-06-28 Fp创新研究所 纤维素长丝稳定的皮克灵乳液
JP6201027B2 (ja) * 2016-11-10 2017-09-20 北越紀州製紙株式会社 セルロース多孔質体及びその製造方法
US10094614B2 (en) * 2016-12-14 2018-10-09 Usg Interiors, Llc Method for dewatering acoustical panels
US11180627B2 (en) 2017-01-11 2021-11-23 The Regents Of The University Of Colorado, A Body Corporate Cellulose enabled orientationally ordered flexible gels
CN107638737A (zh) * 2017-09-21 2018-01-30 陕西科技大学 一种高效的蛛网型空气过滤材料的制备方法
CN107961766B (zh) * 2017-11-29 2020-06-16 广西大学 一种生物质基底的网状多孔复合材料及其制备方法
EP3807348A4 (en) 2018-06-13 2021-08-25 The Regents of the University of Colorado, a body corporate CELLULOSIC GELS, FILMS AND COMPOSITE MATERIALS WITH THE GELS AND METHODS FOR THEIR PRODUCTION
US10775105B2 (en) 2018-11-19 2020-09-15 Bridgestone Corporation Methods for the desolventization of bagasse
CN110092940B (zh) * 2019-05-06 2021-10-01 南京林业大学 高吸油性微纳纤维气凝胶、其制备方法及应用
US20220213228A1 (en) * 2019-05-16 2022-07-07 Purdue Research Foundation Scalable production of processable dried nanomaterials and superhydrophobic surfaces from cellulose nanomaterials
JP2021042376A (ja) 2019-09-06 2021-03-18 花王株式会社 吸水性組成物及びその製造方法
CN112516970B (zh) * 2020-12-14 2021-11-23 江南大学 一种纤维素纳米晶负载壳聚糖吸附剂及在回收污水稀土元素中的应用
KR102539847B1 (ko) * 2021-01-28 2023-06-07 경북대학교 산학협력단 셀룰로오스계 다공성 물질의 제조 방법 및 이에 의해 제조된 셀룰로오스계 다공성 물질
CN112876713B (zh) * 2021-03-02 2022-09-02 内蒙古科技大学 一种纤维素气凝胶基高效空气过滤膜的制备方法
EP4083113A1 (en) * 2021-04-30 2022-11-02 UPM-Kymmene Corporation Controlling freeze-drying of a hydrogel
EP4083112A1 (en) * 2021-04-30 2022-11-02 UPM-Kymmene Corporation A method for freeze-drying a hydrogel composition and a freeze-dried hydrogel composition
CN114196381A (zh) * 2021-12-28 2022-03-18 浙江海洋大学 一种高储能密度相变材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204380A (ja) * 2002-12-25 2004-07-22 Asahi Kasei Corp 比表面積の大きいセルロース系物質
JP2012001626A (ja) * 2010-06-16 2012-01-05 Univ Of Tokyo 物理ゲルの製造方法および物理ゲル
JP2012081533A (ja) * 2010-10-07 2012-04-26 Hokuetsu Kishu Paper Co Ltd 多孔質体及びその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598111A (en) * 1982-03-18 1986-07-01 Glasurit America, Inc. Coating composition containing cross-linked microparticles
FR2527438B1 (fr) * 1982-05-26 1985-08-09 Centre Nat Rech Scient Microcapsules a paroi constituee par des polyholosides reticules et leur procede de preparation
US5019400A (en) * 1989-05-01 1991-05-28 Enzytech, Inc. Very low temperature casting of controlled release microspheres
NZ279549A (en) * 1994-02-09 1996-11-26 Kinerton Ltd Obtaining solid material by drying a solution thereof, supercooled spray of solution expanded into vacuum and frozen droplets collected
DE69412291T2 (de) * 1994-08-19 1998-12-03 Gore & Ass Ventilierte glasflasche zur gefriertrocknung und verfahren zur verminderung der kontamination von gefriergetrockneten produkten
KR100380425B1 (ko) * 1998-09-17 2003-04-18 마쯔시다덴기산교 가부시키가이샤 다공질체 및 그 제조방법
US6199297B1 (en) * 1999-02-01 2001-03-13 Integrated Biosystems, Inc. Lyophilization apparatus and methods
US6223455B1 (en) * 1999-05-03 2001-05-01 Acusphere, Inc. Spray drying apparatus and methods of use
KR20020066038A (ko) * 2001-02-08 2002-08-14 케이티전기주식회사 방식 측정용 전압 전류 변환 장치 및 그 방법
JP2003082535A (ja) 2001-09-12 2003-03-19 Shigenori Kuga セルロース原料由来の微細繊維状炭素材料およびその製造方法
DE10214031A1 (de) * 2002-03-27 2004-02-19 Pharmatech Gmbh Verfahren zur Herstellung und Anwendung von Mikro- und Nanoteilchen durch aufbauende Mikronisation
WO2004050068A1 (en) * 2002-11-29 2004-06-17 Janssen Pharmaceutica N.V. Pharmaceutical compositions comprising a basic respectively acidic drug compound, a surfactant and a physiologically tolerable water-soluble acid respectively base
US6962006B2 (en) * 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
ES2235642B2 (es) * 2003-12-18 2006-03-01 Gat Formulation Gmbh Proceso de multi-microencapsulacion continuo para la mejora de la estabilidad y almacenamiento de ingredientes biologicamente activos.
TWI341230B (en) * 2004-04-21 2011-05-01 Toray Industries Polishing cloth and production method for the nanofiber construction
US8793895B2 (en) * 2006-02-10 2014-08-05 Praxair Technology, Inc. Lyophilization system and method
WO2007096986A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
EP1870649A1 (en) * 2006-06-20 2007-12-26 Octapharma AG Lyophilisation targetting defined residual moisture by limited desorption energy levels
JP4998981B2 (ja) 2006-06-20 2012-08-15 国立大学法人 東京大学 微細セルロース繊維
CN101772516B (zh) 2007-08-07 2012-10-10 花王株式会社 阻气用材料
JP5691131B2 (ja) 2009-03-19 2015-04-01 東レ株式会社 セルロース多孔質体とその製造方法
IT1397930B1 (it) * 2009-12-23 2013-02-04 Telstar Technologies S L Metodo per monitorare l'essiccamento primario di un processo di liofilizzazione.
CN101851295B (zh) * 2010-06-30 2011-08-17 东北林业大学 均匀化精细纳米纤维素纤维的制备方法
RS63747B1 (sr) * 2011-04-28 2022-12-30 Oncopeptides Ab Liofilizovani preparat citotoksičnih dipeptida
JP5827178B2 (ja) * 2012-06-05 2015-12-02 北越紀州製紙株式会社 セルロース多孔質体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204380A (ja) * 2002-12-25 2004-07-22 Asahi Kasei Corp 比表面積の大きいセルロース系物質
JP2012001626A (ja) * 2010-06-16 2012-01-05 Univ Of Tokyo 物理ゲルの製造方法および物理ゲル
JP2012081533A (ja) * 2010-10-07 2012-04-26 Hokuetsu Kishu Paper Co Ltd 多孔質体及びその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218421A (ja) * 2014-05-21 2015-12-07 凸版印刷株式会社 多孔質体とその製造方法、ならびに遮熱フィルム
JP2017533321A (ja) * 2014-10-30 2017-11-09 セルテック・アクチボラゲットCellutech Ab Cnf多孔性固体材料
WO2016143439A1 (ja) * 2015-03-06 2016-09-15 国立大学法人大阪大学 バクテリアセルロースとポリマーとを含む多孔質体およびその製造方法
JP2016196534A (ja) * 2015-04-02 2016-11-24 北越紀州製紙株式会社 セルロース多孔質体の製造方法
JP2018517863A (ja) * 2015-06-04 2018-07-05 ブルース クロスリー セルロースナノフィブリルの製造方法
WO2017022052A1 (ja) * 2015-08-03 2017-02-09 北越紀州製紙株式会社 エアフィルタ用濾材の製造方法
JPWO2017022052A1 (ja) * 2015-08-03 2018-05-24 北越紀州製紙株式会社 エアフィルタ用濾材の製造方法
US10556197B2 (en) 2015-08-03 2020-02-11 Hokuetsu Corporation Method for manufacturing filter medium for air filter
KR102061092B1 (ko) * 2015-08-03 2019-12-31 호쿠에츠 코포레이션 가부시키가이샤 에어 필터용 여재의 제조 방법
JP2017095664A (ja) * 2015-11-27 2017-06-01 日本製紙株式会社 セルロースナノファイバーの乾燥固形物の製造方法
JP5988121B1 (ja) * 2016-02-05 2016-09-07 国立大学法人 岡山大学 多孔質体の製造方法及び多孔質体
JP2017177091A (ja) * 2016-03-23 2017-10-05 北越紀州製紙株式会社 エアフィルタ用濾材
JP2019534394A (ja) * 2016-10-28 2019-11-28 ストラ エンソ オーワイジェイ 繊維を含むウェブを形成する方法
JP7165654B2 (ja) 2016-10-28 2022-11-04 ストラ エンソ オーワイジェイ 繊維を含むウェブを形成する方法
JP7010949B2 (ja) 2016-12-15 2022-02-10 ウーペーエム-キュンメネ コーポレイション ナノフィブリルセルロースを含むヒドロゲルの乾燥方法およびナノフィブリルセルロースを含む乾燥ヒドロゲル
JP2020501566A (ja) * 2016-12-15 2020-01-23 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation ナノナノフィブリルセルロースを含むヒドロゲル中の細胞を凍結乾燥するための方法、およびナノフィブリルセルロースを含むエアロゲル中の凍結乾燥細胞
JP2020512291A (ja) * 2016-12-15 2020-04-23 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation ナノフィブリルセルロースを含むヒドロゲルの乾燥方法およびナノフィブリルセルロースを含む乾燥ヒドロゲル
JP2019176040A (ja) * 2018-03-29 2019-10-10 滋賀県 活性炭化セルロースナノファイバーの製造方法
JP2019181391A (ja) * 2018-04-13 2019-10-24 国立大学法人東京工業大学 エアフィルタ
JP7079929B2 (ja) 2018-04-13 2022-06-03 国立大学法人東京工業大学 エアフィルタ
WO2020050149A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 構造体
JPWO2020050150A1 (ja) * 2018-09-03 2021-08-26 リンテック株式会社 構造体
JPWO2020050149A1 (ja) * 2018-09-03 2021-08-26 リンテック株式会社 構造体
WO2020050150A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 構造体
JP7385577B2 (ja) 2018-09-03 2023-11-22 リンテック株式会社 構造体
JP7385576B2 (ja) 2018-09-03 2023-11-22 リンテック株式会社 構造体
JP7470325B2 (ja) 2020-08-03 2024-04-18 株式会社大川原製作所 容器、乾燥装置、およびセルロースナノファイバーの乾燥物の製造方法

Also Published As

Publication number Publication date
KR101836565B1 (ko) 2018-03-08
WO2013183415A1 (ja) 2013-12-12
JP5827178B2 (ja) 2015-12-02
US20150093560A1 (en) 2015-04-02
EP2857583A1 (en) 2015-04-08
EP2857583B1 (en) 2017-12-20
KR20150005947A (ko) 2015-01-15
KR20160087912A (ko) 2016-07-22
US9328211B2 (en) 2016-05-03
EP2857583A4 (en) 2016-02-24
CA2874391A1 (en) 2013-12-12
CN104302836B (zh) 2017-03-15
KR101725029B1 (ko) 2017-04-07
CA2874391C (en) 2017-06-27
CN104302836A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5827178B2 (ja) セルロース多孔質体及びその製造方法
JP6073210B2 (ja) セルロース多孔質体及びその製造方法
JP6522396B2 (ja) セルロース多孔質体の製造方法
US20200246758A1 (en) Porous body and process for manufacturing same
JP6104139B2 (ja) セルロース多孔質体及びその製造方法
JP5855337B2 (ja) 多孔質体及びその製造方法
JP6592518B2 (ja) エアフィルタ用濾材の製造方法
JP6601900B2 (ja) セルロースナノファイバー分散体の製造方法およびセルロースナノファイバー乾燥固形物の再分散方法
JP2008001728A (ja) 微細セルロース繊維
JP5993411B2 (ja) 多孔質体及びその製造方法
JP6201027B2 (ja) セルロース多孔質体及びその製造方法
JP2014217945A (ja) 多孔質体及びその製造方法
JP7266235B2 (ja) セルロースナノファイバー及びハロイサイトナノチューブを含む組成物、それを含むフィルム及び複合体
JP6212622B2 (ja) セルロース多孔質体
JP5990219B2 (ja) 多孔質体の製造方法
JP2023115733A (ja) セルロース多孔質体の製造方法
JP2014221963A (ja) 多孔質体及びその製造方法
JP7232072B2 (ja) 変性セルロースナノファイバー、ガスバリア用材料及びガスバリア性成形体
JPWO2017208600A1 (ja) セルロース微細繊維の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151015

R150 Certificate of patent or registration of utility model

Ref document number: 5827178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250