JP2013148512A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2013148512A
JP2013148512A JP2012010304A JP2012010304A JP2013148512A JP 2013148512 A JP2013148512 A JP 2013148512A JP 2012010304 A JP2012010304 A JP 2012010304A JP 2012010304 A JP2012010304 A JP 2012010304A JP 2013148512 A JP2013148512 A JP 2013148512A
Authority
JP
Japan
Prior art keywords
core
bus bar
opening
bus
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012010304A
Other languages
English (en)
Inventor
Akihiro Yasui
彰広 安井
Manabu Kato
加藤  学
Eiichiro Iwase
栄一郎 岩瀬
Takeshi Okumura
健 奥村
Akira Kamiya
彰 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012010304A priority Critical patent/JP2013148512A/ja
Priority to US13/744,621 priority patent/US9069016B2/en
Priority to CN201320026761.5U priority patent/CN203054064U/zh
Publication of JP2013148512A publication Critical patent/JP2013148512A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/18Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of DC into AC, e.g. with choppers
    • G01R19/20Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of DC into AC, e.g. with choppers using transductors, i.e. a magnetic core transducer the saturation of which is cyclically reversed by an AC source on the secondary side

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】コンパクトで正確に電流測定を行うことが可能な電流センサを提供する。
【解決手段】電流センサ100は、並設される少なくとも3つのバスバー10と、U字状に平板の磁性体コアを積層して形成され、U溝底部22の側に夫々のバスバー10のAC面と平行な面とコア20のU溝側壁23の面とが互いに平行かつコアの積層方向と被測定電流の流れ方向を一致させて挿通される複数のコア20と、U字状の開口部21の側に磁界の強さを検出する検出素子30とを備え、コア20は、バスバー10の軸方向視Aにおいて、コア20と、当該コア20のU溝に挿通されるバスバー10に隣接する他のバスバー10との隙間Sが、開口部21の間隔方向の長さGの1/2になるように形成され、隙間Sの公差が、前記隙間Sの好適値を中央値として、互いに隣接するバスバー10の間隔Tの値から、開口部21の間隔方向の長さGの3/2の値を減じた値に設定されている。
【選択図】図2

Description

本発明は、導体に流れる電流を測定する電流センサに関する。
近年、モータを駆動源とするハイブリッド車両や電気自動車が普及している。モータ出力を適切に制御する上で、モータに流れる電流を測定することは重要である。このような電流の測定方法として、例えばDCブラシレスモータとインバータとを接続するバスバーに流れる電流に応じて当該バスバーの周囲に生じる磁界を磁性体からなるコアで集磁してホール素子等の磁気検出素子により検出し、当該検出された磁界に基づいてバスバーに流れる電流を演算して求めるものがある。
一方、ハイブリッド車両や電気自動車への搭載を考慮した場合、このようなモータに流れる電流を測定する電流センサは、小型化、軽量化、多連化が求められる。小型化や多連化を行うことにより、並設されるバスバー間の距離が短くなり、コアの外形寸法も小さくなる。これにより、検出感度のリニアリティが確保できなかったり、ヒステリシス特性が悪化したりする。また、外乱が増加することもある。そこで、下記に出典を示す特許文献1及び2に記載の技術が検討された。
特許文献1に記載の電流センサは、被測定電流が流れる導体と前記導体を囲うように配され、ギャップを有する環状の磁性シールド板と前記環状の磁性シールド板の内側に配された磁電変換素子とを有して構成される。磁電変換素子は電流による磁界の磁束密度を検知する。当該磁電変換素子は、前記環状の磁性シールド板のギャップと前記導体の間において、導体に流れる電流に応じて発生する磁界の磁束密度が最小となる位置付近に配置される。
特許文献2に記載の電流計測装置は、磁性体コアと第1及び第2磁気センサと電流検出回路とを備えて構成される。磁性体コアは電流が流れる電流路を囲むように配置され、複数のギャップを備えて構成される。第1及び第2磁気センサは各々異なるギャップに配置される。電流検出回路は電流路に流れる電流を検出する際、第1磁気センサの出力と第2磁気センサの出力から磁性体コアの残留磁束密度を補正して、ヒステリシスによる誤差を取り除く。
特許文献3に記載の電流検出装置は、電流が流れる複数のバスバーと、当該複数のバスバーに流れる電流を検出する複数の電流センサを備えて構成される。前記複数のバスバーは、少なくとも一部が互いに平行に設けられ、前記複数の電流センサは、平行に設けられたバスバーにおいて各バスバーに沿って交互にずれた位置に配設される。
特開2008−151743号公報 特開2006−71457号公報 特開2006−112968号公報
特許文献1に記載の技術では、環状の磁性シールド板のギャップ端面から外れた位置に磁電変換素子を配置するため、シールド板が有する磁束密度を増大させる効果が磁電変換素子の内部まで届きにくいため、検出する磁束密度が大きく低下する。このため、磁電変換素子のS/N比が小さくなる。また、磁束密度が低下するため、高感度な磁電変換素子を用いる必要がある。
また、特許文献2に記載の技術では、2つのコの字状の磁性体コアが互いに開口部を対向させて2つのギャップを有する形状で構成される。このため、外部磁界が生じると、当該外部磁界が磁性体コアにより集磁され、集磁された磁界が2つのギャップを通って反対側の磁性体コアへ渡るため、2つのギャップにおける第1及び第2磁気センサに大きな影響を与える。このように、特許文献2に記載の技術では外部磁界に対して弱くなる。
また、特許文献3に記載の技術では、複数の電流センサの検出部、及び磁気シールドは、各バスバーに沿って交互にずれた位置、すなわち、バスバーの延在方向に対して直交する方向から見た場合には複数の電流センサは千鳥状に配置される。しかし、特許文献3の形状では磁気シールドが検出部から離れているため、シールド効果が十分でない。また、シールド効果を高めるには、バスバーの延在方向へ磁気シールドを大きくする必要があるが、その場合、装置が大型化してしまう。
本発明の目的は、上記問題に鑑み、コンパクトで正確に電流測定を行うことが可能な電流センサを提供することにある。
上記目的を達成するための本発明に係る電流センサの特徴構成は、
3相モータと当該3相モータに通電するインバータとを接続する平板状の導体からなり、前記平板状の厚さに平行な方向に沿って並設される少なくとも3つのバスバーと、
U字状の磁性体からなる平板を積層してコアが形成され、前記平板を積層したコアのU字状の溝の内側に夫々の前記バスバーが、当該バスバーの板幅方向の面と前記平板を積層したコアのU字状のU溝内側の側壁の面とが互いに平行になるように挿通される複数のコアと、
前記コアの各開口部の側に検出方向を前記開口部の間隔方向に沿うように配置され、磁界の強さを検出する検出素子と、を備え、
前記コアは、前記バスバーの軸方向視において、前記コアと、当該コアのU溝に挿通されるバスバーに隣接する他のバスバーとの隙間が、前記開口部の間隔方向の長さの1/2になるように形成され、前記隙間の公差が、前記隙間の値を中央値として、互いに隣接するバスバーの間隔の値から、前記開口部の間隔方向の長さの3/2の値を減じた値で設定されてある点にある。
このような特徴構成とすれば、U字状のコアの開口部の形状に応じて、外部磁界(例えば並設されるバスバーからの磁界等の外乱)を最も抑制できる、コアのバスバー断面を通るバスバーの厚さ方向と平行な方向の寸法である板幅や、コアと隣接するバスバーとの隙間を設定することができ、目標とする外部磁界による影響度に対して、コアの開口部から検出素子までの深さが最小となるコアの形状を容易に特定することができ、小型のコアの設計を容易に行うことが可能となる。
また、前記検出素子は、前記開口部から少なくとも1.5mm以上前記U字状の底部の側に入り込んで配置されてあると好適である。
このような構成とすれば、開口部と検出素子との間のコアを、外部磁界に対するシールドとして作用させることができる。すなわち、外部磁界が検出素子に達するまでに当該外部磁界をコアに引き寄せることができるので、外部磁界の影響を低減することが可能となる。
また、前記U字状のコアの構成部位の中で、前記バスバーの断面を通るバスバーの幅方向と直交する面とコアが交差する面の断面積の一方よりも、前記バスバー断面中央を通るバスバーの厚さ方向に直行する面とコアが交差する面の断面積が広く構成されていると好適である。
ここで、U字状のコアにおいて磁気飽和が最も起こり易い部位は、コア内磁束が多くなる底部である。一方、バスバーの断面を通るバスバーの幅方向と直交する面とコアが交差する面の断面積が大きい程、底部のコア内磁束が多くなる。したがって、上記バスバーの幅方向と直交する面とコアが交差する面の断面積を、当該断面における磁束密度がバスバー断面中央を通るバスバーの厚さ方向に直交する面とコアが交差する断面における磁束密度と同等になるまで小さくすることでコアを小型化しつつ、底部の磁束密度を低く保って、磁気飽和を抑制することが可能となる。
また、前記コアは、前記開口部の側の外側角部が、前記開口部における前記コアのバスバーの厚さ方向と平行な方向の寸法である板幅の半分以下の半径を有する円の円弧形状で面取加工されていると好適である。
このような構成とすれば、コアのU溝上端の開口部の板幅を大きく維持することができる。したがって、外部磁界がコアに引き寄せられ易くなるので、検出素子に到達する外部磁界を弱めることができる。すなわち、コアの外部磁界に対するシールド効果を高めることができるので、電流を精度良く測定することが可能となる。
また、前記バスバーは、前記コアを前記間隔方向から見て前記コアと重複する部分の前記開口部の側が切り欠かれていると好適である。
このような構成とすれば、検出素子を更にコアのU溝の奥側に配置することが可能となる。したがって、隣接するバスバーからの磁界による検出素子への影響を低減することができる。また、検出素子をコアの奥側に配置することでコアの磁路長が短くなるため反磁界が増加し、ヒステリシスも低減することができる。
電流センサを模式的に示した斜視図である。 電流センサを模式的に示した正面図である。 並設されているバスバーに電流センサを配設した場合の例を模式的に示した図である。 本電流センサの利点を模式的に示した図である。 電流センサの側面図である。 コアのサイズの設定に関する特性を示した図である。 コアのサイズの設定に関する特性を示した図である。
以下、本発明の実施の形態について、詳細に説明する。本発明に係る電流センサ100は、導体に流れる被測定電流を測定することが可能なように構成されている。ここで、導体に電流が流れる場合には、当該電流の大きさに応じて導体を軸心として磁界が発生する(アンペールの右手の法則)。本電流センサ100は、このような磁界において磁束密度を検出し、検出された磁束密度に基づいて導体に流れる電流(電流値)を測定する。
図1には本実施形態に係る電流センサ100の斜視図が示される。図1には、平板状の導体からなるバスバー10が示されるが、当該バスバー10が延在する方向を延在方向Aとし、バスバー10の厚さ方向をB、バスバー10の幅方向をCとする。図2には、バスバー10の延在方向A視における電流センサ100を模式的に示した図が示される。以下、図1及び図2を用いて説明する。
本電流センサ100は、バスバー10、コア20、検出素子30を備えて構成される。バスバー10は、上述のように平板状の導体から構成される。このバスバー10は、図示しない3相モータと当該3相モータに通電するインバータとを接続するのに利用される。3相モータは、ハイブリッド車両や電気自動車等の動力源に用いられる。インバータは、バッテリ等から出力される直流電力を交流電力に変換する。バスバー10は、このようなインバータにより交流電力に変換された電力を3相モータに供給する。なお、前記3相モータの回生ブレーキのように発電としての使用時には、電力の流れが逆になるが、構成は前記インバータ−3相モータと同じである。
したがって、バスバー10は、バスバー10の厚さに平行な方向(図3のBの方向)に沿って少なくとも3つ並設される。このような複数のバスバー10が並設された形態を示す図が図3に示される。図3(b)はバスバー10が延在する方向視における模式図であり、図3(a)はその上面図である。図3に示されるように、複数のバスバー10同士の間隔が短くとも、各バスバー10にコア20を配置できるように、コア20は、バスバー10の上面視において、千鳥状に配置される。すなわち、互いに隣接するバスバー10に付設されるコア20は、バスバー10の延在方向の手前側と奥側とに交互に位置をずらして配置される。したがって、隣接するコア20の間にはバスバー10のみが配置され、当該バスバー10に付設されるコア20はバスバー10の延在方向に位置をずらして配置される。
バスバー10をこのように配置することにより、バスバー10のピッチを狭めることが可能となる。なお、図1においては、理解を容易にするためにバスバー10は1つのみ示され、図2においては2つのバスバー10が示される。このようなバスバー10には、本電流センサ100により測定される被測定電流が流れる。
図1及び図2に戻り、コア20は、U字状の金属磁性体よりなる平板を積層して形成される。上記金属磁性体は、軟磁性の金属であり、電磁鋼板(珪素鋼板)やパーマロイ、パーメンジュール等が相当する。コア20の積層面は、図1及び図2におけるBC面に平行な面となる。
また、本実施形態に係るコア20は、図1及び図2に示されるように、U字状を形成するU溝底部22の側にバスバー10の夫々のAC面と平行な面とコア20のU溝側壁23の面とが互いに平行かつコアの積層方向と被測定電流の流れ方向を一致させて挿通される。コア20に挿通されたバスバー10は、少なくともコア20の内面と空隙を有して構成される。これにより、コア20とバスバー10とを絶縁することが可能となる。また、上述のようにバスバー10は複数備えられる、したがって、コア20も複数から構成される(図3参照)。
また、コア20は、コア20の構成部位の中で、バスバー10を通るAB面に平行な面と交差するコア20の断面の一方の面積(側壁部41の断面積)よりも、バスバー10の中央を通るAC面に平行な面と交差するコア20の断面の面積(底部42の断面積)が広く構成されている。磁性体で磁気飽和を最も起こし易い部位は、コア内磁束が多くなる底部42である。また、側壁部41の断面積が大きい程、底部42の磁束密度が高くなる。したがって、側壁部41の断面積を、側壁部41のコア内磁束密度が底部42と同等になるまで小さくすることで小型化でき、且つ、底部42の磁束密度を低く保ち、磁気飽和を抑制することができる。
検出素子30は、U字状の開口部21の側に検出方向を開口部21の間隔方向(B方向)に沿うように配置される。開口部21とは、U溝の開口端部である。このため、検出素子30は、バスバー10よりもU溝の開口端部に近い側に配置される。また、コア20のU溝に配置された検出素子30とバスバー10との間は、空隙を有して構成される。これにより、検出素子30とバスバー10とを絶縁することが可能となる。ここで、コア20には、バスバー10に流れる電流に応じて生じた磁界が集磁される。集磁された磁界は、検出素子30の配された近傍ではコア20の開口部21の間隔方向の磁界となる。
検出素子30は、検出方向をB方向に一致させて配置される。したがって、バスバー10に流れる被測定電流により形成される磁界の強さを効果的に検出することが可能となる。
ここで、検出素子30が検出するヒステリシスは、コア20を構成する磁性体の保持力とコア20の形状に起因する反磁界(コア20の磁化に応じて、コア20の磁化を打消すように内部に発生する磁界)が影響するので、反磁界を大きくすることにより低減できる。一方、反磁界は、パーミアンス係数Pcが小さいと、大きくなる。検出素子30を含むギャップ部とコア20とで形成される磁気回路のパーミアンス係数Pcは、以下の(1)式で示される。ヒステリシスとは、検出誤差の一つであり、バスバー10に通電後に電流をゼロに戻した際に、検出素子30が検出する磁界のことをいう。
Figure 2013148512
ここで、Amはコアの断面積、Agはギャップの断面積、Lmはコアの磁路長、Lgはギャップ長、fは起磁力損失係数、σは漏れ係数、μ0はギャップ部の透磁率である。
(1)式より、磁路長Lmを短くすることにより、パーミアンス係数Pcが小さくなる。このため、反磁界を大きくすることができるので、ヒステリシスを低減できる。したがって、検出素子30をU溝の奥側に近づけてコア20と検出素子30とで形成される磁路長を短くすることにより(図4(a)参照)、ヒステリシスを低減できる。
また、検出素子30をU溝底部22に近づけることにより(図4(a)参照)、検出素子30がコア20の開口部21から離れるので、図4(b)のように、外部磁界がコア20に引き寄せられて、検出素子30への影響を低減することができる。このように、検出素子30をU溝の奥側に近づけることにより、コア20の外部磁界に対するシールド効果を向上させることが可能である。このため、検出素子30の検出対象であるバスバー10(図2の10A)と隣接するバスバー10(図2の10B)との間隔Tが狭くなり、隣接するバスバー10Bから受ける磁界の強さが強くなった場合でも、バスバー10Aに流れる電流を精度良く測定することが可能となる。
図5には、図1におけるV−V線断面図が示される。図5に示されるように、バスバー10は、コア20を開口部21の間隔方向(図1におけるBの方向)から見てコア20と重複する部分の開口部21の側が切り欠かれ、切欠部11が形成されている。これにより、検出素子30をよりU溝の奥側に配置することが可能となる。したがって、間隔Tが狭くなり、隣接するバスバー10Bから受ける磁界の強さが強くなった場合でも、シールド効果が向上するため、バスバー10Aに流れる電流を精度良く測定することが可能となる。また、コア20と検出素子30とで形成される磁路長が短くなるため、ヒステリシスも低減することができる。
ただし、バスバー10の軸方向に垂直な面の断面積や切欠部11の切欠深さ(図3におけるC方向の深さ)は、バスバー10に流れる電流に応じて設定される。すなわち、バスバー10の電気抵抗により、電流が流れた際に、過大に発熱するのを防止するためである。バスバー10全体ではなく、切欠部11のみの断面積を小さくすることで、断面積を小さくしたことによる発熱の増加を最小限に抑えることができる。これにより、バスバー10の発熱を抑えつつ、精度良く電流を測定することが可能となる。
また、バスバー10とコア20の内周面との距離を短くすると好適である。このような方法として、例えば、コア20の板幅を広げて構成することが考えられる。これにより、磁路長を短くし、コア20の断面積を広くすることができるので、ヒステリシスの低減効果を更に高めることが可能となる。また、コア20の開口部21が小さくなるので、シールド効果を更に高めることが可能である。
また、本願発明の発明者により以下のことが見出された。
コア20は、バスバー10の軸方向視において、コア20と、当該コア20のU溝に挿通されるバスバー10(図2における10A)に隣接する他のバスバー10(図2における10B)との隙間Sが、開口部21の間隔方向Bの長さGの1/2になるように形成すると好適である。コア20と他のバスバー10Bとの隙間Sとは、コア20の外面と、当該外面に対向する他のバスバー10Bの外面とで形成される隙間である。したがって、換言すれば、バスバー10の軸方向視において、コア20の外面と、当該外面に対向する他のバスバー10Bの中心部との間隔Eは、開口部21の間隔方向Bの長さGとバスバー10の厚さLとの和の1/2になるように構成すると好適である。
このような結果を示すシミュレーション結果が図6に示される。図6は、ギャップの長さGを変更し、外乱影響が一定の割合となる場合の間隔Eと開口部21から検出素子30までの距離Dとの関係を示した図である。つまり、図6に示した距離Dの値よりも、コア20の距離Dを大きく設計することで、外乱影響を一定の割合以下にすることができる。ただし、バスバー10の板厚は2mmである。ここで、外乱影響とは並設する他の相のバスバー10に発生する磁界から受ける検出誤差のことである。例えば、「隣接するバスバー10Bのみに通電した場合に、バスバー10Aの磁界を検出する検出素子30の出力」を「バスバー10Aのみに通電した場合に、当該バスバー10Aの磁界を検出する検出素子30の出力」で除した値を外乱影響として考えることができる。
図6に示されるように、長さGが4mmの場合には少なくとも距離Dが開口部21から1.5mm以上の位置に配置すると、外乱影響を一定の割合以下に維持することができる。また、長さGが5mmの場合には少なくとも距離Dが開口部21から約1.9mm以上の位置に配置すると、外乱影響を一定の割合以下に維持することができる。また、長さGが6mmの場合には少なくとも距離Dが開口部21から2.6mm以上の位置に配置すると、外乱影響を一定の割合以下に維持することができる。同様に、長さGが7mmの場合には少なくとも距離Dが開口部21から3.6mm以上の位置に配置すると、外乱影響を一定の割合以下に維持することができる。
したがって、検出素子30は、開口部21から少なくとも1.5mm以上U溝底部22の側に入り込んで配置すると好適である。
また、本願発明の発明者により以下が見出された。
前記隙間Sの好適値は、検出誤差の内の外乱影響について最小限にできる値であるが、検出誤差には外乱影響のほかにヒステリシスや磁気飽和の影響等があるため、外乱以外の検出誤差にも対応できるように、前記隙間Sの好適値に公差を設ける。隙間Sの公差が、前記隙間Sの好適値を中央値として、互いに隣接するバスバー10(10A,10B)の間隔Tの値から、開口部21の間隔方向Bの長さGの3/2の値を減じた値で設定すると好適である。
図7には、ギャップの長さGを変更した場合における、間隔Eとコア20の断面磁束密度との関係を示した図である。ここで、断面磁束密度とは、コア20内部の磁束密度が最大となる箇所において、コア20内部を通る磁束密度のベクトルに直交する面でコア20を切断した断面の磁束密度を平均した値のことである。コア20の断面磁束密度が高くなると、コア20が磁気飽和し、検出値のリニアリティが確保できなくなる。図7において、リニアリティが確保できるコア20の断面磁束密度の許容値を飽和磁束密度の60%とすると、この場合の各ギャップの長さGに対応する間隔Eの上限許容値は次のようになる。長さGが4mmの場合には間隔Eが4.8mm、長さGが5mmの場合には間隔Eが4.7mm、長さGが6mmの場合には間隔Eが4.4mm、長さGが7mmの場合には間隔Eが4.1mmとなる。これらに対して各間隔Eの好適値との差異を求めると、長さGが4mmの場合には間隔Eが1.8mm、長さGが5mmの場合には間隔Eが1.2mm、長さGが6mmの場合には間隔Eが0.4mmとなる。また、長さGが7mmの場合には間隔Eが−0.4mmとなり、公差がマイナスとなるため、求める精度を出すことができない。一方、図6から明らかな通り、ギャップの長さGが大きい程、間隔Eの変化に対する距離Dの変化が大きい。これらにより、本願発明者は、隙間Sの上限許容値が、間隔Tの1/2の値から長さGの3/4の値を減じた値の絶対値より小さく設定した場合に、精度良く検出できることを見出した。また、上記は間隔Eの上限値であるが、下限値に対しても同様で、図6から明らかな通り、間隔Eが小さくなるほど距離Dが大きくなるため、コアが大型化し、外乱以外の検出誤差(ヒステリシス、磁気飽和)が悪化する。そのため、下限値も上限値と同様に求めることができる。これらにより、本願発明者は、隙間Sの公差が、隙間Sの好適値を中央値として、間隔Tの値から長さGの3/2の値を減じた値で設定した場合に、精度良く検出できることを見出した。
このように本電流センサ100によれば、コア20の開口部21の形状に応じて、外部磁界(例えば隣接するバスバー10Bからの磁界等の外乱)を最も抑制できるコア20の側壁部41の板幅やコア20と隣接するバスバー10Bとの隙間Eを設定することができる。また、コア20の開口部21の形状に応じて、コア20の開口部21から検出素子30までの深さDが最小となるコア20の形状を容易に特定することができるため、小型のコア20の設計を容易に行うことが可能となる。
〔その他の実施形態〕
上記実施形態では、検出素子30をコア20のU溝底部22に近づけることにより、コア20の開口部21と検出素子30との距離が大きくなるので、外部磁界がコア20に引き寄せられて、検出素子30への影響を低減することができるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。例えば、コア20の開口部21から底部42の先端部までの長さを長くすることにより、開口部21とバスバー10との距離を長くすることができる。これにより、開口部21と検出素子30とが離れるので、コア20の外部磁界に対するシールド効果を向上させることは当然に可能である。
上記実施形態では、コア20は、コア20の構成部位の中で、バスバー10を通るAB面に平行な面と交差するコア20の断面の一方の面積(側壁部41の断面積)よりも、バスバー10の中央を通るAC面に平行な面と交差するコア20の断面の面積(底部42の断面積)が広く構成されているとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。底部42の断面積と側壁部41の断面積とを等しく構成することも可能であるし、側壁部41の断面積を底部42の断面積よりも広く構成することも可能である。
また、例えば、コア20は、開口部21の側の外側角部に面取加工を施す場合には、開口部21におけるコア20の板幅の半分以下の半径を有する円の円弧形状で行うと好適である。このような構成とすれば、開口部21におけるコア20の板幅を大きく維持することができる。これにより、外部磁界がコア20に引き寄せられ易くなるので、検出素子30に到達する外部磁界を弱めることができるので、電流を精度良く測定することが可能となる。
上記実施形態では、バスバー10は、コア20を間隔方向Bから見てコア20と重複する部分の開口部21の側が切り欠かれているとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。バスバー10の開口部21の側を切り欠かずに構成することも当然に可能である。
上記実施形態では、コア20はバスバー10の上面視において千鳥状に配置されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。3相モータは、3つバスバー10の内2つの電流値がわかれば制御できるため、コア20は、3つのバスバー10の内2つに配置すればよい。3つのバスバー10の内、両端のバスバー10にコア20を配置すれば、千鳥状に配置する必要はない。
本発明は、導体に流れる電流を測定する電流センサに用いることが可能である。
10:バスバー
10A:バスバー
10B:バスバー
20:コア
21:開口部
22:U溝底部
23:U溝側壁部
30:検出素子
41:側壁部
42:底部
B:板幅方向
S:隙間
T:間隔

Claims (5)

  1. 3相モータと当該3相モータに通電するインバータとを接続する平板状の導体からなり、前記平板状の厚さに平行な方向に沿って並設される少なくとも3つのバスバーと、
    U字状の磁性体からなる平板を積層してコアが形成され、前記平板を積層したコアのU字状の溝の内側に夫々の前記バスバーが、当該バスバーの板幅方向の面と前記平板を積層したコアのU字状のU溝内側の側壁の面とが互いに平行になるように挿通される複数のコアと、
    前記コアの各開口部の側に検出方向を前記開口部の間隔方向に沿うように配置され、磁界の強さを検出する検出素子と、を備え、
    前記コアは、前記バスバーの軸方向視において、前記コアと、当該コアのU溝に挿通されるバスバーに隣接する他のバスバーとの隙間が、前記開口部の間隔方向の長さの1/2になるように形成され、前記隙間の公差が、前記隙間を中央値として、互いに隣接するバスバーの間隔の値から、前記開口部の間隔方向の長さの3/2の値を減じた値に設定されてある電流センサ。
  2. 前記検出素子は、前記開口部から少なくとも1.5mm以上前記U字状の底部の側に入り込んで配置されてある請求項1に記載の電流センサ。
  3. 前記U字状のコアの構成部位の中で、前記バスバーの断面を通るバスバーの幅方向と直交する面とコアが交差する面の断面積の一方よりも、前記バスバー断面中央を通るバスバーの厚さ方向に直行する面とコアが交差する面の断面積が広く構成されている請求項1又は2に記載の電流センサ。
  4. 前記コアは、前記開口部の側の外側角部が、前記開口部における前記コアのバスバーの厚さ方向と平行な方向の寸法である板幅の半分以下の半径を有する円の円弧形状で面取加工されている請求項1から3のいずれか一項に記載の電流センサ。
  5. 前記バスバーは、前記コアを前記間隔方向から見て前記コアと重複する部分の前記開口部の側が切り欠かれている請求項1から4のいずれか一項に記載の電流センサ。
JP2012010304A 2012-01-20 2012-01-20 電流センサ Pending JP2013148512A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012010304A JP2013148512A (ja) 2012-01-20 2012-01-20 電流センサ
US13/744,621 US9069016B2 (en) 2012-01-20 2013-01-18 Current sensor
CN201320026761.5U CN203054064U (zh) 2012-01-20 2013-01-18 电流传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010304A JP2013148512A (ja) 2012-01-20 2012-01-20 電流センサ

Publications (1)

Publication Number Publication Date
JP2013148512A true JP2013148512A (ja) 2013-08-01

Family

ID=48737004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010304A Pending JP2013148512A (ja) 2012-01-20 2012-01-20 電流センサ

Country Status (3)

Country Link
US (1) US9069016B2 (ja)
JP (1) JP2013148512A (ja)
CN (1) CN203054064U (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122819A (ja) * 2012-12-20 2014-07-03 Aisin Seiki Co Ltd 電流センサ
JP2016537629A (ja) * 2013-11-15 2016-12-01 エプコス アクチエンゲゼルシャフトEpcos Ag 電流が貫流する一次導体における電流強度を測定するための装置、配置構造、および方法
JP2017102029A (ja) * 2015-12-02 2017-06-08 アイシン精機株式会社 電流センサ
CN109870602A (zh) * 2017-12-05 2019-06-11 日立金属株式会社 电流传感器
WO2020170724A1 (ja) * 2019-02-18 2020-08-27 パナソニックIpマネジメント株式会社 三相電流検出装置
WO2024095585A1 (ja) * 2022-11-02 2024-05-10 アルプスアルパイン株式会社 電流センサ

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515125B1 (en) * 2011-04-21 2017-02-01 Abb Ag Current sensor with a magnetic core
JP6059476B2 (ja) * 2012-09-20 2017-01-11 富士通コンポーネント株式会社 電力センサ
JP6372969B2 (ja) * 2012-12-03 2018-08-15 矢崎総業株式会社 電流センサ
JP5971398B2 (ja) * 2013-02-27 2016-08-17 株式会社村田製作所 電流センサおよびそれを内蔵した電子機器
JP2016099320A (ja) * 2014-11-26 2016-05-30 アイシン精機株式会社 電流センサ
EP3086130B1 (en) * 2015-04-21 2019-02-06 LEM Intellectual Property SA Current transducer with integrated primary conductor bar
DE112015006591B8 (de) * 2015-06-04 2021-12-23 Murata Manufacturing Co., Ltd. Stromsensor
EP3211437A1 (de) * 2016-02-29 2017-08-30 Wöhner GmbH & Co. KG Elektrotechnische Systeme Strommessvorrichtung
JP2018004269A (ja) * 2016-06-27 2018-01-11 アイシン精機株式会社 電流センサ
CN106018942B (zh) * 2016-06-28 2019-01-15 清华大学 一种用于测量三相电流的电流传感器阵列及测量方法
JP6654241B2 (ja) * 2016-07-15 2020-02-26 アルプスアルパイン株式会社 電流センサ
EP3376238A1 (en) * 2017-03-16 2018-09-19 LEM Intellectual Property SA Electrical current transducer with magnetic field gradient sensor
WO2019032912A1 (en) * 2017-08-09 2019-02-14 Verdigris Technologies, Inc. ENERGY MONITORING AND DISTRIBUTION SYSTEMS
US11239761B2 (en) * 2018-01-24 2022-02-01 Infineon Technologies Ag Coreless current sensor for high current power module
EP3690450A1 (en) * 2019-01-30 2020-08-05 LEM International SA Current transducer with magnetic field detector module
CN110108920B (zh) * 2019-04-23 2020-07-03 北京航空航天大学 一种用于智能型接触器的可嵌入式开环霍尔电流传感器
DE102019118545B3 (de) * 2019-07-09 2020-10-29 Infineon Technologies Ag Sensorvorrichtung mit Hilfsstruktur zum Kalibrieren der Sensorvorrichtung
CN116868064A (zh) * 2021-03-30 2023-10-10 舍弗勒技术股份两合公司 电流传感器及车辆用电流感测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167301A1 (en) * 1999-09-28 2002-11-14 Haensgen Steven T. Hall effect current sensor system packaging
JP2003510612A (ja) * 1999-09-30 2003-03-18 ダイムラークライスラー アクチエンゲゼルシャフト 少なくとも2つのホールセンサから成る磁界感知可能な差分センサを備えた電流を測定するための装置
JP2004354254A (ja) * 2003-05-29 2004-12-16 Asahi Kasei Electronics Co Ltd 電流センサ
JP2005308635A (ja) * 2004-04-23 2005-11-04 Denso Corp 電流センサ
US20060255797A1 (en) * 2005-05-16 2006-11-16 Allegro Microsystems, Inc. Integrated magnetic flux concentrator
JP2007171156A (ja) * 2005-11-22 2007-07-05 Asahi Kasei Corp 電流検出素子及びその製造方法
JP2007178241A (ja) * 2005-12-27 2007-07-12 Asahi Kasei Electronics Co Ltd 電流検出機構及びその電流検出機構を構成するための組立方法
JP2008215970A (ja) * 2007-03-02 2008-09-18 Tdk Corp バスバー一体型電流センサ
JP2011099751A (ja) * 2009-11-05 2011-05-19 Kawamura Electric Inc 電流検出装置

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569880A (en) * 1968-09-16 1971-03-09 Rucker Co Magnetically operated current sensor
US4011505A (en) * 1975-09-22 1977-03-08 Applied Power Australia Limited Current measuring device
US4013985A (en) * 1976-04-15 1977-03-22 Cutler-Hammer, Inc. Three-phase current transformer
US4791361A (en) * 1987-06-11 1988-12-13 Eaton Corporation Current sensor for universal application
DE4014820A1 (de) * 1990-05-09 1991-11-14 Magnet Bahn Gmbh Vorrichtung zur mehrphasigen stromueberwachung
FR2703467B1 (fr) * 1993-03-29 1995-06-30 Mecagis Capteur de courant à effet Hall à flux nul destiné en particulier aux véhicules automobiles et scooters électriques.
JPH07260831A (ja) * 1994-03-25 1995-10-13 Tokin Corp 電流検出器
JP3329947B2 (ja) * 1994-06-28 2002-09-30 エヌイーシートーキン株式会社 電流検出器
JPH08194016A (ja) * 1995-01-19 1996-07-30 Fuji Electric Co Ltd 電流センシング装置
DE19741417B4 (de) * 1997-09-19 2004-02-26 Klaus Bruchmann Strommessgerät mit Hallsensor
JPH11265649A (ja) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp 電流検出器及び電流検出器を備えた電力開閉器
DE60033344T2 (de) * 1999-08-04 2007-07-19 Schneider Electric Industries Sas Stromsensor für eine elektrische Vorrichtung
JP3696448B2 (ja) * 1999-09-02 2005-09-21 矢崎総業株式会社 電流検出器
AU2002349497A1 (en) * 2001-11-26 2003-06-10 Asahi Kasei Electronics Co., Ltd. Current sensor
JP4507599B2 (ja) * 2001-12-27 2010-07-21 パナソニック株式会社 電流検出器
US6759840B2 (en) * 2002-06-11 2004-07-06 Rockwell Automation Technologies, Inc. Hall effect conductor/core method and apparatus
US6781359B2 (en) 2002-09-20 2004-08-24 Allegro Microsystems, Inc. Integrated current sensor
JP3896590B2 (ja) * 2002-10-28 2007-03-22 サンケン電気株式会社 電流検出装置
EP1450176A1 (en) * 2003-02-21 2004-08-25 Liaisons Electroniques-Mecaniques Lem S.A. Magnetic field sensor and electrical current sensor therewith
JP2005345446A (ja) 2004-06-07 2005-12-15 Asahi Kasei Electronics Co Ltd 電流センサおよび過電流保護装置
EP1617228B1 (en) * 2004-07-16 2008-10-22 Liaisons Electroniques-Mecaniques Lem S.A. Current sensor
JP2006038518A (ja) * 2004-07-23 2006-02-09 Denso Corp 電流計測装置
US7205757B2 (en) * 2004-09-02 2007-04-17 Denso Corporation High precision current sensor
JP4321412B2 (ja) 2004-09-02 2009-08-26 株式会社デンソー 電流計測装置
JP2006112968A (ja) 2004-10-15 2006-04-27 Toyota Motor Corp 電流検出装置
CA2487050A1 (en) * 2004-10-21 2006-04-21 Veris Industries, Llc Power monitor sensor
JP4390741B2 (ja) * 2005-04-14 2009-12-24 株式会社デンソー 電流センサ装置
US7327133B2 (en) * 2005-09-21 2008-02-05 Universal Enterprises, Inc. Current measuring device using hall sensors
JP4415923B2 (ja) * 2005-09-30 2010-02-17 Tdk株式会社 電流センサ
JP4224483B2 (ja) * 2005-10-14 2009-02-12 Tdk株式会社 電流センサ
JP4525554B2 (ja) * 2005-10-21 2010-08-18 株式会社デンソー 電流センサ
EP1811311B1 (de) * 2006-01-19 2016-08-31 Melexis Technologies NV Vorrichtung zur Strommessung
JP2007218700A (ja) * 2006-02-15 2007-08-30 Tdk Corp 磁気センサおよび電流センサ
JP4833111B2 (ja) * 2006-09-20 2011-12-07 株式会社東海理化電機製作所 電流検出器
CN1959419B (zh) * 2006-12-01 2010-05-19 臧玉伦 电流测量仪器
JP4861155B2 (ja) 2006-12-20 2012-01-25 矢崎総業株式会社 電流センサ及びその成形方法
JP2008220060A (ja) 2007-03-05 2008-09-18 Mitsubishi Electric Corp 電力変換装置及び電流センサ
JP4424412B2 (ja) * 2007-11-21 2010-03-03 株式会社デンソー 電流センサ
JP4816980B2 (ja) * 2008-11-11 2011-11-16 Tdk株式会社 電流センサ
JP5680287B2 (ja) * 2009-05-27 2015-03-04 新科實業有限公司SAE Magnetics(H.K.)Ltd. 電流センサ
JP5524540B2 (ja) * 2009-09-01 2014-06-18 株式会社東海理化電機製作所 電流センサ
US8760149B2 (en) * 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
JP5723139B2 (ja) * 2010-04-30 2015-05-27 矢崎総業株式会社 電流センサ付きバッテリターミナルユニット
US9297864B2 (en) * 2010-05-19 2016-03-29 Power Distribution, Inc. Current metering and abnormal event monitoring system
US8461824B2 (en) * 2010-06-07 2013-06-11 Infineon Technologies Ag Current sensor
JP5975596B2 (ja) * 2010-08-05 2016-08-23 矢崎総業株式会社 電流センサ構造
JP5702862B2 (ja) * 2011-08-31 2015-04-15 本田技研工業株式会社 電流検出回路モジュール
US9310398B2 (en) * 2011-11-29 2016-04-12 Infineon Technologies Ag Current sensor package, arrangement and system
JP2013122400A (ja) * 2011-12-09 2013-06-20 Aisin Seiki Co Ltd 電流センサ
JP6127499B2 (ja) * 2012-12-20 2017-05-17 アイシン精機株式会社 電流センサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167301A1 (en) * 1999-09-28 2002-11-14 Haensgen Steven T. Hall effect current sensor system packaging
JP2003510612A (ja) * 1999-09-30 2003-03-18 ダイムラークライスラー アクチエンゲゼルシャフト 少なくとも2つのホールセンサから成る磁界感知可能な差分センサを備えた電流を測定するための装置
JP2004354254A (ja) * 2003-05-29 2004-12-16 Asahi Kasei Electronics Co Ltd 電流センサ
JP2005308635A (ja) * 2004-04-23 2005-11-04 Denso Corp 電流センサ
US20060255797A1 (en) * 2005-05-16 2006-11-16 Allegro Microsystems, Inc. Integrated magnetic flux concentrator
JP2007171156A (ja) * 2005-11-22 2007-07-05 Asahi Kasei Corp 電流検出素子及びその製造方法
JP2007178241A (ja) * 2005-12-27 2007-07-12 Asahi Kasei Electronics Co Ltd 電流検出機構及びその電流検出機構を構成するための組立方法
JP2008215970A (ja) * 2007-03-02 2008-09-18 Tdk Corp バスバー一体型電流センサ
JP2011099751A (ja) * 2009-11-05 2011-05-19 Kawamura Electric Inc 電流検出装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122819A (ja) * 2012-12-20 2014-07-03 Aisin Seiki Co Ltd 電流センサ
JP2016537629A (ja) * 2013-11-15 2016-12-01 エプコス アクチエンゲゼルシャフトEpcos Ag 電流が貫流する一次導体における電流強度を測定するための装置、配置構造、および方法
US10018656B2 (en) 2013-11-15 2018-07-10 Epcos Ag Device, arrangement, and method for measuring a current intensity in a primary conductor through which current flows
JP2017102029A (ja) * 2015-12-02 2017-06-08 アイシン精機株式会社 電流センサ
CN109870602A (zh) * 2017-12-05 2019-06-11 日立金属株式会社 电流传感器
WO2020170724A1 (ja) * 2019-02-18 2020-08-27 パナソニックIpマネジメント株式会社 三相電流検出装置
WO2024095585A1 (ja) * 2022-11-02 2024-05-10 アルプスアルパイン株式会社 電流センサ

Also Published As

Publication number Publication date
US9069016B2 (en) 2015-06-30
CN203054064U (zh) 2013-07-10
US20130187633A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP2013148512A (ja) 電流センサ
EP2770333B1 (en) Current sensor
JP6127499B2 (ja) 電流センサ
JP7047435B2 (ja) 電流センサの設計方法
JP5732679B2 (ja) 電流センサ
JP6711086B2 (ja) 電流センサ
JP2017187301A (ja) 電流センサ
JP2013238580A (ja) 電流センサ
JP2016099320A (ja) 電流センサ
EP2899551A2 (en) Current detection structure
JP2018004314A (ja) 電流センサ
JP2018169305A (ja) 電流センサ
JP2013148513A (ja) 電流センサ
JP2015148470A (ja) 電流検出構造
JP6251967B2 (ja) 電流センサ
JP2014006181A (ja) 電流センサ
JP2013228315A (ja) 電流センサ
JP2019007935A (ja) 電流センサ
JP2010122150A (ja) クランプ式電流センサの磁気コア構造
JP2014066623A (ja) 電流センサ
US20200018804A1 (en) Electric current sensor
JP6144597B2 (ja) 電流センサ
JP4597797B2 (ja) トロリ線電流検出装置
JP7367657B2 (ja) 電流センサ及び電気制御装置
JP2015083942A (ja) 電流センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004