JP2010515919A5 - - Google Patents

Download PDF

Info

Publication number
JP2010515919A5
JP2010515919A5 JP2009545595A JP2009545595A JP2010515919A5 JP 2010515919 A5 JP2010515919 A5 JP 2010515919A5 JP 2009545595 A JP2009545595 A JP 2009545595A JP 2009545595 A JP2009545595 A JP 2009545595A JP 2010515919 A5 JP2010515919 A5 JP 2010515919A5
Authority
JP
Japan
Prior art keywords
sample clock
optical coherence
coherence tomography
gain
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009545595A
Other languages
English (en)
Other versions
JP2010515919A (ja
JP5269809B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2008/000341 external-priority patent/WO2008086017A1/en
Publication of JP2010515919A publication Critical patent/JP2010515919A/ja
Publication of JP2010515919A5 publication Critical patent/JP2010515919A5/ja
Application granted granted Critical
Publication of JP5269809B2 publication Critical patent/JP5269809B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

一の態様において、本発明は、光干渉断層撮影データ収集器に関する。この収集器は、それぞれ異なる偏光依存性利得を有する第一利得要素及び第二利得要素と、空洞が形成されたフーリエドメインモードロックレーザとを有することができる。当該レーザは、レーザ空洞中に設けられた第一利得要素と光学的に接続される周波数同調要素を備え、第二利得要素はレーザ空洞外に設けることができ、第一利得要素の偏光依存性利得は第二利得要素の偏光依存性利得よりも小さい。
前記収集器は、AD変換器にクロック信号を出力するサンプルクロック発生器を有することができ、AD変換器は、メイン干渉計が出力する干渉信号をサンプリングすることが可能である。また前記収集器は、サンプルクロック発生器から得られる制御信号の少なくとも一つを用いて、フーリエドメインモードロックレーザに備えられた周波数同調要素の駆動周波数を安定化するデジタルコントロールシステムを有することができる。前記フーリエドメインモードロックレーザは、偏光モード分散効果を低減するように相対的な配置が調整された一対のファイバコイルを有する光遅延要素を備えることができる。
前記サンプルクロック発生器は、サンプルクロック干渉計、受光器、自動利得制御増幅器、周波数逓倍器(multiplier)、ゼロ交差検出器及び/又はクロックスイッチを備えることができる。また、一対の2×2ファイバ結合器を備えるマッハ・ツェンダー干渉計、サンプルアームとリファレンスアームの長さが不一致のマイケルソン干渉計、2つの部分的反射面を有する要素を備える共通光路マイケルソン干渉計及び/又はファブリ・ペロー干渉計を備えることもできる。前記サンプルクロック発生器は、アナログ乗算器を備えることができる。当該アナログ乗算器は、入力された干渉信号を乗算する機能を実行する。前記サンプルクロック発生器は、位相シフトRFパワースプリッタを介して伝送される干渉信号から取得される2つの信号を乗算するアナログ乗算器を備えることもできる。また、位相がシフトされた2つのパルス列を伝送するための排他的理論和演算回路を有することができ、パルス列は、干渉信号に適用されるゼロ交差検出器とゼロ交差検出器が出力する遅延レプリカから取得される。さらに、位相がシフトされた2つのパルス列を伝送するための排他的理論和演算回路を有することができ、パルス列は、位相シフトパワースプリッタから取得される正弦波に適用されるゼロ交差検出器から取得される。
前記サンプルクロック干渉計は、2×2結合器と3×3結合器との組合せから、位相がシフトされた干渉信号を周波数変調のために生成することができる。3×3結合器のパワースプリット率は、位相が概ね90度異なる2つの干渉信号を得るよう選択される。前記収集器は、4×4結合器をさらに備えることができ、当該4×4結合器は、直交位相関係を有する2つの平衡信号を生成し、前記サンプルクロック発生器は、1つのADCクロック信号を生成する。また、前記基準クロック発生器は、AD変換器に出力する位相が90度異なる2つのクロック信号を用いてOCTデータを記録することにより、フーリエ変換用の複素信号を生成することができる。
他の一の態様において、本発明は、光干渉断層撮影方法に関する。この方法は、空洞が形成され、当該空洞中に設けられた第一利得要素を備えるフーリエドメインモードロックレーザから光を照射する段階を含むことができる。また、第一利得要素及び第二利得要素がそれぞれ異なる偏光依存性利得を有し、前記空洞外に設けられた第二利得要素を介して照射された光を伝送する段階を含むことができる。この場合、第一利得要素の偏光依存性利得は第二利得要素の偏光依存性利得よりも小さい。さらに、メイン干渉器の出力における干渉信号を、AD変換器を用いてサンプリングする段階を含むこともでき、当該AD変換器は、サンプルクロック発生器からクロック信号が入力される。また、少なくとも一の制御信号がサンプルクロック発生器から取得されるデジタル制御システムを用いて、レーザの周波数同調要素の駆動周波数を最適化する段階を含むこともできる。
前記方法は、前記メイン干渉計からのOCT信号をデュアルチャンネルで取得するために、4×4結合器を用いて直交位相関係を有する2つの平衡信号を生成する段階をさらに含むことができ、前記サンプルクロック発生器からAD変換器へ出力されるクロック信号は1つだけ必要とされる。前記駆動周波数を最適化する段階は、光遅延要素のゼロ分散波長付近の狭通過帯域を有するファイバブラッグフィルタを介するパルス伝送時間τで、サンプルクロック干渉計の受光器から出力された干渉信号の瞬時RMS振幅φ(t)を測定する段階と、φ(t)値が最大となるようにダイレクトデジタルシンセイサイザ(DDS)発生器を調整する段階とを含むことができる。
他の態様において、本発明は、光干渉断層撮影データ収集器に関し、この収集器は、入力と出力とを行う干渉計と、当該出力からの干渉信号をサンプリングするAD変換器と、それぞれ異なる偏光依存性利得を有する第一利得要素及び第二利得要素と、空洞が形成され、前記干渉計と光学的に接続されたフーリエドメインモードロックレーザとを備えることができる。前記レーザは、レーザ空洞中に設けられた第一利得要素と光学的に連通する周波数同調要素と、レーザ空洞外に設けられた第二利得要素とを備えることができる。前記収集器は、AD変換器にクロック信号を出力するサンプルクロック発生器と、当該サンプルクロック発生器から得られる制御信号を用いて周波数同調要素の駆動周波数を安定化するデジタルコントロールシステムとを備えることもできる。前記第一利得要素の偏光依存性利得は第二利得要素の偏光依存性利得よりも小さい。前記レーザは、偏光モード分散効果を低減するよう相対配向が調整された一対のファイバコイルを有する光遅延要素を備えることができる。
前記サンプルクロック発生器は、サンプルクロック干渉計、受光器、自動利得制御増幅器、周波数逓倍器、ゼロ交差検出器及び/又はクロックスイッチを備えることができる。また、アナログ乗算器を備えることもでき、当該アナログ乗算器は、入力された干渉信号を乗算する機能を実行することができる。
本発明の他の目的は、種々のタイプのSS−OCTシステムから、干渉計システムで直接取得される安定したサンプルクロックを生成する光電子装置及び方法を開示することである。これら方法は、位相雑音を減少させ、ダイナミックレンジを拡張し、得られた干渉信号の取得スピードを向上させる。
本発明の一実施形態におけるSS−OCTシステムのブロック図を示す。 本発明の一実施形態における、偏光安定性が高い出力を行うFDMLの好適例を示す。 本発明の一実施形態による、偏光モード分散を減少させるためにα〜90度角で配置された一対の光ファイバコイルを有する図2の光遅延要素の他の構成を示す。 本発明の一実施形態によるサンプルクロック発生器の概要を示す。 本発明の実施形態による、図4の周波数逓倍器の他の2つの実施形態5(a)及び5(b)を示す。 本発明の他の実施形態による2つの周波数逓倍器6(a)及び6(b)を示す。 本発明の他の実施形態による、従来のマッハ・ツェンダー・サンプルクロック干渉計を3×3位相スプリット干渉計に置き換えたサンプルクロック発生器を示す。 本発明の一実施形態による、2つの直交出力を最初にゼロ交差検出器を通過させ、次いでXOR演算し、周波数が2倍のADCクロックを生成する図7のサンプルクロック発生器の変形例を示す。 本発明の他の実施形態によるサンプルクロック発生器の例を示す。 、本発明の一実施形態による、メイン干渉計からのOCT信号を直交検出するための独立のクロックとして直角位相のサンプルクロックが採用される構成を示す。 本発明の一実施形態による、メイン干渉計からの平衡直交位相OCT信号をデュアルチャンネルで取得するための4×4結合器の利用を示す。 本発明の一実施形態による、FDMLを利用したSS−OCTシステムの駆動周波数を最適化及び安定化させるためのデジタルフィードバックループの具体例を示す。 本発明の一実施形態による、FDMLレーザ中の周波数同調要素の駆動波形の周波数を最適に及び不適切に(低すぎる又は高すぎる)に調整したときのクロックフリンジ制御信号の振幅と形態(RMSフリンジ振幅)の測定結果を示す。 本発明の一実施形態による、FDMLレーザ中の周波数同調要素に加えられるbcバイアス電圧を最適化及び安定化させるためのデジタルフィードバックループの具体例を示す。 本発明の一実施形態による、ピエゾ駆動のファブリ・ペローフィルタの典型的な高い共振周波数応答を示す。 本発明の一実施形態による、例示の駆動波形の線形化法の基礎とされるフーリエ合成法の原則を示す。 本発明の一実施形態による、ピエゾ駆動のファブリ・ペロー同調フィルタの合成高調波を線形化する構成例を示す。 本発明の一実施形態による、同調フィルタ線形回路の具体例を示す。
図1に示すように、FBG(ファイバブラッググレーティング)フィルタ6からの波長同期信号(λsyn)を入力し、レーザを安定させるためのマイクロコントローラ5も、システムSの一部品である。サンプルクロック発生器7は、サンプルクロックをメインAD変換器(ADC)に直接送る。本システムでは、サンプルクロック発生器7からマイクロコントローラ5へとクロックフリンジ制御信号も入力される。概して、図1に示される経路は、本実施形態に適するように図示される要素同士を経路に沿って電気的又は光学的に接続している。
図示されるように、FDMLレーザLからの光は、メイン干渉計によって、リファレンス経路とサンプルとに分割される。電子干渉信号は平衡受光器によって検出される。そして、受光器の出力信号は、メインADCで高速処理される。レーザLからごく僅かな光がサンプルクロック発生器7に入ることにより、1)メインADCに入力するための低ジッタのサンプルクロックと、2)周波数同調要素2aの交流駆動波形を安定させるために制御変数として用いられるクロックフリンジ信号とが生成される。
通常、DDS波形生成器3は、20〜100KHz範囲で正弦波を生成するよう構成されており、その周波数は0.05Hzより高い分解能で高速変化する。波形のジッタを極力低くするために、水晶振動子のように高周波数(通常は100MHzを越える)で安定性の高い(10ppm未満)振動子を、DDS波形生成器3の基準(baseline)クロックとして利用することができる。また、上記内蔵マイクロコントローラは、周波数同調要素の直流バイアス電圧を制御するためのデジタル制御ワードをDA変換器4に送信する。
概して、本発明は、FDMLを利用するOCTシステムに使用される部品の選択及び組合せに関する。サンプルクロック発生器の選択も、本発明に属する。図1に示すように、サンプルクロック発生器7は、他の複数の制御装置及びFDMLレーザに接続されている。サンプルクロックの機能は、二つの面がある。一つはメインADC用のサンプルクロックを発生させるため利用されること、もう一つはマイクロコントローラ5で使用されるクロックフリンジ制御信号を発生させるため利用されることである。
図1に示されるように、マイクロコントローラ5は、FDMLレーザに接続又は一体化された周波数同調要素を制御する最適な駆動周波数を決定するために、クロックフリンジ制御信号を利用する。サンプルクロック発生器は、サンプルクロック干渉計で生成される正弦波干渉信号からの低ジッタクロックパルスを発生する。クロックパルスの間隔がレーザの掃引につれて変化しても、光周波数領域のクロックエッジは等間隔に維持される。これら特徴により、複雑なリサンプリング装置を必要とせずとも、特定の高速ADC、例えば周波数可変クロックも許容するフラッシュADCやパイプラインADC(例えば、AD9340)等に直接クロックを出力することが可能となる。このように、光パルス列の同期の重要性を考慮すると、それに関するクロック発生器の選択や種々の機能強化が、OCTプローブから得られるスキャンデータの全体的な質を向上させる。サンプルクロック発生器の実施形態に関する他の細部が、図4〜図10でさらに詳細に示されている。
図4は、マッハ・ツェンダー干渉計10の平衡出力から、ADCで用いられる安定したクロックを発生する、サンプルクロック発生器8の実施形態の概略を示す。周波数逓倍器14(M=2,3,…)により、ADCに出力するクロックの周波数を、マッハ・ツェンダーの干渉信号の基本周波数より高い周波数にすることが可能となる。水晶振動子12やRFクロックスイッチ13といった、連続的にクロッキングを行うADCの利用を可能とするオプショナル部品を有するサンプルクロック発生器の実施形態もある。
図4は、サンプルクロック発生器8の基本構成を示す。受光器は、本実施形態で、光路長の差がΔLであるマッハ・ツェンダー干渉計10として示されるサンプルクロック干渉計からの光干渉信号を、周波数が変化する正弦波形に変換する。この波形は、FDMLレーザの掃引で生じる周波数帯域を通過するように、周波数fL及びfH間の周波数帯域成分を選択的に透過させる通過帯域フィルタによってフィルタリングされる。フィルタリングされた波形は、掃引中に生成される干渉信号の振幅を均一化し、ゼロ交差検出後の位相エラーを低減するために、自動利得制御(AGC)増幅器を通過する。
図6は、本発明の実施形態によるクロック周波数の倍増に利用される2つの他の周波数逓倍器の実施形態を示す。図6(a)の実施形態では、最初にゼロ交差検出器がサンプルクロック干渉計によって出力された正弦波を方形波に変換する。次いでこの方形波とそのデジタル遅延波との排他的論理和(XOR)を演算によって、ADCで利用されるクロック信号を入力正弦波の2倍の周波数のクロックとして生成する。上記デジタル遅延波(遅延パルス例)は、デジタル遅延列により生成される。ここでの遅延τは、最短パルス間隔の4分の1に設定される。
図6(b)の実施形態では、位相シフトパワースプリッタで位相差90度の一対の正弦波信号が生成される。具体的には、パワースプリッタが入力正弦波を相対位相差90度の2つの波形に分割する。次いでこれらの信号は方形波に変換され、XOR演算されて、周波数が2倍のADCクロックが生成される。本実施形態では、サンプルクロックが、広周波数帯域の全域に亘り常時50%のデューティサイクルを維持する利点がある。パイプライン型ADCの殆どは、能力を向上させるために、略50%のデューティサイクルで作動される。
図7〜図9のサンプルクロック発生器の実施形態で示すように、電気領域と同様に光領域でも、干渉信号の周波数の逓倍処理に必要な遅延が実現される。これらの実施形態は、N×Nファイバ結合器を備えた干渉計内で結合する光信号間の位相関係を利用する。
例えば、図7の位相スプリット干渉計は、従来のマッハ・ツェンダー干渉計(光路長差ΔL)の出力2×2結合器を、3×3結合器に置き換えることで構成されている。3×3結合器が特定の分割値(〜約29.3%:〜約41.4%:〜約29.3%)を有するとき、2つの出力の干渉信号は相対位相差が90度となる。図7の実施形態では、2つの等振幅出力を直角位相にするために、約29.3%:約41.4%:約29.3%のパワースプリット率が選択される。これら2つの出力を乗算し、ゼロ交差検出器を通過させる。このように、電気信号を別々に処理し、アナログ乗算器で結合して、周波数が2倍の正弦波を生成する。あるいは、図8に示すように、位相がシフトされた信号を、上述のデジタルXOR演算を利用して処理し、周波数が2倍のADCサンプルクロックを生成してもよい。
レーザの強度雑音で生じるクロック信号の減衰を抑えるために平衡光検出が必要なシステムでは、図9に示す実施形態が好適だと思われる。図9に示すように、従来のマッハ・ツェンダー干渉計の出力2×2結合器を、4つの出力を同等の光パワーに分割する4×4結合器に置き換えて、位相が反対極性にシフトされた光信号のペアを二対生成する。本実施形態は、直角位相関係にある平衡出力を生成する4×4位相スプリット干渉計を利用する。図8の実施形態のように、合成光信号を、デジタルXOR演算を利用して処理し、周波数が2倍のADCサンプルクロックを生成する。
図10は、サンプルクロック発生器のさらに他の実施形態を示す。図4〜図9の実施形態とは異なり、本実施形態では、直角位相関係にある2つの独立したADCサンプルクロックを生成する。サンプルクロック干渉計の光路長差(ΔL)により設定された基本サンプリング周波数の一対のADCチャンネル上のメイン干渉計から、OCT干渉信号を得るために、これら正弦・余弦クロックが利用される。
OCT信号の複素フーリエ変換により、サンプルの深さ方向分析が再現されると共に、複素共役の曖昧さから生じる画像アーティファクトが抑えられる。SS−OCTシステムで実測値の干渉信号の実数成分をフーリエ変換して深さ方向分析を再現すると、基準(reference)反射器の両側で同距離オフセットした反射体が重ね合わさって生じるアーティファクトが問題となる。図11に示すように、メイン干渉計から直角位相の信号(複素数信号)を取り出すために、同じADCクロックで同期する一対のADCを利用して、相似の光位相スプリット法が用いられる。
FDMLレーザを利用するSS−OCTでは、高SN比かつ広ダイナミックレンジを達成するために、レーザの繰り返し速度を規定するac駆動波形と、掃引の中心波長を規定する周波数同調要素のdcバイアスとの双方を、精度よく制御する必要がある。一の実施形態では、最適なac駆動波形は、空洞内の往復時間と波形の周期が一致し、レーザの瞬間線幅が最小になったときの周波数とされる。この周波数で、光遅延要素のゼロ分散波長(通常は1310−1315nm)でレーザが走査する時間t=τのとき測定すると、サンプルクロック干渉計の受光器が出力する干渉信号の瞬時RMS振幅Φ(t)が最大に達している。したがって、振幅Φ(τ)を最大に調整すると、最適な駆動周波数となる。
図12は、デジタルフィードバックループの好適な一実施形態を示しており、狭帯域(通常、1nm未満)のファイバブラッグフィルタを介して1310nmでパルスを伝送した時にADCでφ(t)を記録するマイクロコントローラが使用される。マイクロコントローラは、記録値φ(t)が最大値に達するまで、低ジッタで周波数アジャイルのDDS波形生成器の周波数を調整する。図12の実施形態では、サンプルクロック発生器の受光器から出力され狭帯域フィルタリングされた干渉信号の瞬時RMS振幅を検出することで、クロックフリンジ制御信号が得られる。RMS振幅は、FDMLレーザに備えられた光遅延要素のゼロ分散波長(1310nm)で周波数同調要素が走査する時に、コントロールADCでサンプリングされる。
ここで図13に移行すると、サンプルクロック干渉信号の瞬時RMS振幅が、最適調整周波数と、該最適値の上下の周波数とにおいて、どのように変化するかが示されている。波形の周波数は、連続的に更新することもできるし、レーザの最大ドリフト値で規定される間隔で断続的に更新することもできる。ac駆動波形に加え、周波数同調要素のbcバイアスも、FDMLを利用したSS−OCTシステムが最高な性能を発揮するために、調整することができる。
図14に、dcバイアスを最適化するためのデジタルコントロールループの一実施形態を示す。すなわち、このループでは、ac駆動波形がゼロ交差した後の固定遅延と一致するゼロ分散波長(1310nm)で、周波数同調要素が走査する時まで、dcバイアスの大きさが調整される。このループでは、同調要素の電圧感度を変化させる外部環境に左右されずに、固定波長でレーザの波長走査が開始されるよう、dcバイアスが調整される。周波数最適化コントロールループ(図13)で採用されたのと同様のファイバブラッグフィルタが、波長基準(reference)として採用される。DA変換器(DAC)を介してdcバイアスを調整することで、マイクロコントローラは、DDS発生器からのac駆動波形のゼロ交差と、ファイバブラッグフィルタに接続された受光増幅器の出力先の比較器で生成されるパルスエッジとの間の時間間隔を、一定レベルに維持する。
ここに開示するシステムを実施する際に、波形の生成と、フィルタの様式と、レーザの動作との関連性と、これらに関する商業的実現可能性とを考慮することは重要である。(1)正弦波形は安価なDDS集積回路で容易に生成でき、(2)共振応答性の良い高速同調フィルタの殆どが正弦波駆動で最も良く作動するが、正弦波を適用する際のこの利点を全てのレーザが享受できるわけではない。例えば、正弦波波長掃引ではなく、線形波長掃引を行うレーザは、SS−OCTシステムにとってより高性能の光源となる。正弦波波長掃引では、瞬時サンプリングクロック周波数が、正弦波の1周期での傾きに比例して、広周波数帯域に亘り変化する。通常、高精度の高速ADCは、既定帯域(例えば、約40〜約210MHz)のクロック周波数を許容する。その結果、干渉計で測定できる実際のデューティサイクルは、通常、約33%に限られる。また、ナイキストサンプリング周波数は、サンプリングクロック周波数に比例して、連続的かつ急激に変化する。種々の実施形態で示されたトラッキングフィルタと直線化アプローチは、この実際のデューティサイクルの制限を克服する。
ここに示されるマッハ・ツェンダークロッキング法を使用することで、高デューティサイクルの線形波長掃引により、正弦波波長掃引よりも周波数分布が小さいサンプルクロックパルスが多量に生成される。このようにして、データ取得速度の最大値がより小さく、折り返しアーティファクトがより少ない高速撮影が可能となる。残念ながら、従来の三角波形又はランプ波形を使用して、市販のファブリ・ペローフィルターの高速線形動作を得ることは難しい。このような広帯域の波形は、アクチュエータが強い共振挙動を示す周波数を含んでいるからである。三角波又はランプ波の駆動波形でフィルタを励起すると、所望の線形走査よりも、共振周波数の正弦波に近い振幅が生成されてしまう。
1…光遅延要素、2…光周波数同調要素、3…波形生成器、4…DA変換器、5…マイクロコントローラ、6…ファイバブラッグ格子フィルタ、7…サンプルクロック発生器、8…サンプルクロック発生器、10…マッハ・ツェンダー干渉計、12…水晶振動子、13…RFクロックスイッチ、14…周波数逓倍器、S…SS−OCTシステム、L…FDMLレーザ。

Claims (24)

  1. 光干渉断層撮影データ収集器であり、
    それぞれ利得の偏光依存性が異なる第一利得要素及び第二利得要素と、
    空洞が形成されたフーリエドメインモードロックレーザとを有し、
    前記レーザは、レーザ空洞中に設けられた前記第一利得要素と光学的に接続される周波数同調要素を備え、
    前記第二利得要素はレーザ空洞外に設けられる、光干渉断層撮影データ収集器。
  2. 前記第一利得要素の利得の偏光依存性は前記第二利得要素の利得の偏光依存性よりも小さい、請求項1記載の光干渉断層撮影データ収集器。
  3. 出力を有するメイン干渉計と;
    前記メイン干渉計における干渉信号をサンプリングするよう構成されているAD変換器と;
    サンプルクロック干渉計および周波数逓倍器を有するサンプルクロック発生器であって、前記AD変換器をクロックするサンプルクロックを生成するよう構成されているサンプルクロック発生器と
    前記サンプルクロック発生器から得られる少なくとも一つの制御信号を用いて、前記フーリエドメインモードロックレーザに備えられた前記周波数同調要素の駆動周波数を安定化するよう構成されているデジタルコントロールシステムとをさらに有する、
    請求項1または2記載の光干渉断層撮影データ収集器。
  4. 前記フーリエドメインモードロックレーザは、偏光モード分散効果を低減するように相対的な配向が調整された一対のファイバコイルを有する光遅延要素をさらに備える請求項1ないし3のうちいずれか一項に記載の光干渉断層撮影データ収集器。
  5. 前記サンプルクロック発生器は、受光器、自動利得制御増幅器、ゼロ交差検出器及びクロックスイッチから成る群より選択される要素をさらに備える請求項に記載の光干渉断層撮影データ収集器。
  6. 前記サンプルクロック発生器は、一対の2×2ファイバ結合器を備えるマッハ・ツェンダー干渉計、サンプルアームとリファレンスアームの長さが不一致のマイケルソン干渉計、2つの部分的反射界面を有する要素を備える共通光路マイケルソン干渉計及びファブリ・ペロー干渉計から成る群より選択される要素をさらに備える請求項に記載の光干渉断層撮影データ収集器。
  7. 前記サンプルクロック発生器はアナログ乗算器をさらに備え、前記アナログ乗算器は、入力された干渉信号に対する二乗機能を実行するよう構成されている請求項に記載の光干渉断層撮影データ収集器。
  8. 前記サンプルクロック発生器はアナログ乗算器をさらに備え、前記アナログ乗算器は、位相シフトRFパワースプリッタを通じて伝送される干渉信号から取得される一対の信号を乗算する、請求項に記載の光干渉断層撮影データ収集器。
  9. 前記サンプルクロック発生器は、位相がシフトされた一対のパルス列を伝送するための排他的理論和ゲートを有し、前記パルス列は、干渉信号に適用されるゼロ交差検出器とゼロ交差検出器が出力する遅延レプリカとから取得される請求項に記載の光干渉断層撮影データ収集器。
  10. 前記サンプルクロック発生器は、位相がシフトされた一対のパルス列を伝送するための排他的理論和ゲートを有し、前記パルス列は、位相シフトパワースプリッタから取得される正弦波に適用される一対のゼロ交差検出器から取得される請求項に記載の光干渉断層撮影データ収集器。
  11. 前記サンプルクロック干渉計は、2×2結合器と3×3結合器との組合せから、位相がシフトされた干渉信号を周波数変調のために生成し、3×3結合器のパワースプリット率は、位相が概ね90度異なる一対の干渉信号を得るよう選択される請求項に記載の光干渉断層撮影データ収集器。
  12. 4×4結合器をさらに備え、前記4×4結合器は、直交位相関係を有する一対の平衡信号を生成し、
    前記サンプルクロック発生器は、AD変換器クロック信号を1つ生成する請求項に記載の光干渉断層撮影データ収集器。
  13. 前記サンプルクロック発生器は、位相が90度異なる一対のAD変換器クロック信号を用いてOCTデータを記録することにより、フーリエ変換用の複素信号を生成する請求項に記載の光干渉断層撮影データ収集器。
  14. 光干渉断層撮影方法であり、
    空洞が形成され、該空洞中に設けられた第一利得要素を備えるフーリエドメインモードロックレーザから光を発生させる段階と、
    前記空洞外に設けられた第二利得要素を介して、発生された光を伝送する段階と、
    メイン干渉計の出力における干渉信号を、サンプルクロックを用いてクロックされるAD変換器を用いてサンプリングする段階と、
    サンプルクロック干渉計からの信号を周波数逓倍することによって前記サンプルクロックを生成する段階と;
    少なくとも一の制御信号が前記サンプルクロック発生器から取得されるデジタル制御システムを用いて、前記レーザの周波数同調要素の駆動周波数を最適化する段階と、
    を含む光干渉断層撮影方法。
  15. 各利得要素の利得の偏光依存性が異なり、前記第一利得要素の利得の偏光依存性は前記第二利得要素の利得の偏光依存性よりも小さい、請求項14記載の方法。
  16. 前記フーリエドメインモードロックレーザから前記サンプルクロック干渉計によって受け取られる光から前記信号を生成することを含む、請求項14または15記載の方法。
  17. 前記メイン干渉計からのOCT信号をデュアルチャンネルで取得するために、4×4結合器を用いて直交位相関係を有する一対の平衡信号を生成する段階をさらに含み、前記サンプルクロック発生器からのAD変換器クロック信号は1つだけ必要とされる請求項14ないし16のうちいずれか一項に記載の光干渉断層撮影方法。
  18. 前記駆動周波数を最適化する段階は、
    光遅延要素のゼロ分散波長付近の狭通過帯域を有するファイバブラッグフィルタを介するパルスの伝送によって示される時間τにおいて、サンプルクロック干渉計の受光器の出力における干渉信号の瞬時RMS振幅φ(t)を測定する段階と、
    φ(t)の値が最大となるようにダイレクトデジタル合成(DDS)発生器の周波数を調整する段階と、
    をさらに含む請求項14ないし16のうちいずれか一項に記載の光干渉断層撮影方法。
  19. 前記駆動周波数を最適化する段階は、
    駆動波形のゼロ交差時点と初期レーザ掃引のゼロ交差時点との間の所望の遅延Dを測定する段階と、
    固定遅延τ−Dを維持するようにDA変換器によってdcバイアスを調整する段階とをさらに含み、
    τは、光遅延要素のゼロ分散波長付近の狭通過帯域を有するファイバブラッグフィルタを介するパルスの伝送により測定される時間である請求項14ないし16のうちいずれか一項に記載の光干渉断層撮影方法。
  20. 光干渉断層撮影データ収集器であり、
    入力と出力とをもつ干渉計と、
    前記出力からの干渉信号をサンプリングするよう構成されたAD変換器と、
    それぞれ利得の偏光依存性が異なる第一利得要素及び第二利得要素と、
    空洞を有し、前記干渉計と光学的に接続されたフーリエドメインモードロックレーザであって、前記レーザは、レーザ空洞中に設けられた前記第一利得要素と光学的に接続された周波数同調要素を備える、レーザと、
    前記AD変換器をクロックするよう構成された、サンプルクロック干渉計および周波数逓倍器を有するサンプルクロック発生器と、
    前記サンプルクロック発生器から得られる制御信号を用いて前記周波数同調要素の駆動周波数を安定化するよう構成されたデジタルコントロールシステムとを備え、
    前記第二利得要素はレーザ空洞外に設けられる、
    光干渉断層撮影データ収集器。
  21. 前記第一利得要素の利得の偏光依存性は前記第二利得要素の利得の偏光依存性よりも小さい、請求項20記載の光干渉断層撮影データ収集器。
  22. 前記レーザは、偏光モード分散効果を低減するように相対的な配向が調整された一対のファイバコイルを有する光遅延要素をさらに備える請求項20または21に記載の光干渉断層撮影データ収集器。
  23. 前記サンプルクロック発生器は、受光器、自動利得制御増幅器、ゼロ交差検出器及びクロックスイッチから成る群より選択される要素をさらに備える請求項20または21に記載の光干渉断層撮影データ収集器。
  24. 前記サンプルクロック発生器はアナログ乗算器をさらに備え、当該アナログ乗算器は、入力された干渉信号に対する二乗機能を実行するよう構成されている請求項20または21に記載の光干渉断層撮影データ収集器。
JP2009545595A 2007-01-10 2008-01-10 波長可変光源を利用した光干渉断層撮影法の方法及び装置 Active JP5269809B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87988007P 2007-01-10 2007-01-10
US60/879,880 2007-01-10
PCT/US2008/000341 WO2008086017A1 (en) 2007-01-10 2008-01-10 Methods and apparatus for swept-source optical coherence tomography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013098417A Division JP5750138B2 (ja) 2007-01-10 2013-05-08 波長可変光源を利用した光干渉断層撮影法の方法及び装置

Publications (3)

Publication Number Publication Date
JP2010515919A JP2010515919A (ja) 2010-05-13
JP2010515919A5 true JP2010515919A5 (ja) 2013-04-25
JP5269809B2 JP5269809B2 (ja) 2013-08-21

Family

ID=39495523

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2009545595A Active JP5269809B2 (ja) 2007-01-10 2008-01-10 波長可変光源を利用した光干渉断層撮影法の方法及び装置
JP2013098417A Active JP5750138B2 (ja) 2007-01-10 2013-05-08 波長可変光源を利用した光干渉断層撮影法の方法及び装置
JP2015099884A Active JP6130434B2 (ja) 2007-01-10 2015-05-15 波長可変光源を利用した光干渉断層撮影法の方法及び装置
JP2017079496A Pending JP2017122740A (ja) 2007-01-10 2017-04-13 波長可変光源を利用した光干渉断層撮影法の方法及び装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2013098417A Active JP5750138B2 (ja) 2007-01-10 2013-05-08 波長可変光源を利用した光干渉断層撮影法の方法及び装置
JP2015099884A Active JP6130434B2 (ja) 2007-01-10 2015-05-15 波長可変光源を利用した光干渉断層撮影法の方法及び装置
JP2017079496A Pending JP2017122740A (ja) 2007-01-10 2017-04-13 波長可変光源を利用した光干渉断層撮影法の方法及び装置

Country Status (6)

Country Link
US (5) US7916387B2 (ja)
EP (3) EP2106240B1 (ja)
JP (4) JP5269809B2 (ja)
CN (3) CN101600388B (ja)
ES (2) ES2847098T3 (ja)
WO (1) WO2008086017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284652B2 (ja) 2018-08-23 2023-05-31 株式会社ミツトヨ 測定装置および測定方法

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241286B2 (en) * 2003-04-25 2007-07-10 Lightlab Imaging, Llc Flush catheter with flow directing sheath
US8315282B2 (en) * 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7935060B2 (en) 2006-11-08 2011-05-03 Lightlab Imaging, Inc. Opto-acoustic imaging devices and methods
ES2847098T3 (es) * 2007-01-10 2021-07-30 Lightlab Imaging Inc Métodos y aparato para tomografía de coherencia óptica de fuente de barrido
WO2008120119A1 (en) * 2007-03-29 2008-10-09 Philips Intellectual Property & Standards Gmbh Method and apparatus for acquiring fusion x-ray images
US8582934B2 (en) * 2007-11-12 2013-11-12 Lightlab Imaging, Inc. Miniature optical elements for fiber-optic beam shaping
US7813609B2 (en) * 2007-11-12 2010-10-12 Lightlab Imaging, Inc. Imaging catheter with integrated reference reflector
US8564783B2 (en) 2008-05-15 2013-10-22 Axsun Technologies, Inc. Optical coherence tomography laser with integrated clock
EP2315999B1 (en) 2008-05-15 2013-11-20 Axsun Technologies, Inc. Oct combining probes and integrated systems
US20090306520A1 (en) * 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
DE102008029479A1 (de) * 2008-06-20 2009-12-24 Carl Zeiss Meditec Ag Kurzkohärenz-Interferometerie zur Abstandsmessung
DE102008045634A1 (de) * 2008-09-03 2010-03-04 Ludwig-Maximilians-Universität München Wellenlängenabstimmbare Lichtquelle
AU2009305771B2 (en) 2008-10-14 2013-08-15 Lightlab Imaging, Inc. Methods for stent strut detection and related measurement and display using optical coherence tomography
FR2940540B1 (fr) * 2008-12-23 2010-12-24 Observatoire Paris Systeme laser muni d'un asservissement de frequence.
DE102008063225A1 (de) * 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry
JP5384978B2 (ja) * 2009-03-19 2014-01-08 オリンパス株式会社 光パルス発生装置を含む光学システム
KR101010818B1 (ko) 2009-04-03 2011-01-25 박승광 스웹트 레이저의 발진 파수 선형 스위핑 제어 장치 및 방법
US8526472B2 (en) * 2009-09-03 2013-09-03 Axsun Technologies, Inc. ASE swept source with self-tracking filter for OCT medical imaging
US8670129B2 (en) * 2009-09-03 2014-03-11 Axsun Technologies, Inc. Filtered ASE swept source for OCT medical imaging
WO2011038048A1 (en) 2009-09-23 2011-03-31 Lightlab Imaging, Inc. Apparatus, systems, and methods of in-vivo blood clearing in a lumen
ES2660570T3 (es) * 2009-09-23 2018-03-23 Lightlab Imaging, Inc. Sistemas, aparatos y métodos de recopilación de datos de medición de resistencia vascular y morfología luminal
US9319214B2 (en) * 2009-10-07 2016-04-19 Rf Micro Devices, Inc. Multi-mode power amplifier architecture
US8926590B2 (en) 2009-12-22 2015-01-06 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US8206377B2 (en) * 2009-12-22 2012-06-26 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US8478384B2 (en) 2010-01-19 2013-07-02 Lightlab Imaging, Inc. Intravascular optical coherence tomography system with pressure monitoring interface and accessories
AU2011227178B2 (en) 2010-03-17 2013-11-07 Lightlab Imaging, Inc. Intensity noise reduction methods and apparatus for interferometric sensing and imaging systems
JP5587648B2 (ja) * 2010-03-30 2014-09-10 テルモ株式会社 光画像診断装置
DE102010032138A1 (de) 2010-07-24 2012-01-26 Carl Zeiss Meditec Ag OCT-basiertes, ophthalmologisches Messsytem
CN102062902B (zh) * 2010-12-24 2012-11-21 华南师范大学 基于马赫-曾德干涉仪的可调谐平顶多信道光纤滤波器
US10371499B2 (en) 2010-12-27 2019-08-06 Axsun Technologies, Inc. Laser swept source with controlled mode locking for OCT medical imaging
US8687666B2 (en) * 2010-12-28 2014-04-01 Axsun Technologies, Inc. Integrated dual swept source for OCT medical imaging
US8437007B2 (en) * 2010-12-30 2013-05-07 Axsun Technologies, Inc. Integrated optical coherence tomography system
US9372339B2 (en) 2011-01-05 2016-06-21 Nippon Telegraph and Telephone Communications Wavelength swept light source
JP5296814B2 (ja) * 2011-01-21 2013-09-25 日本電信電話株式会社 波長掃引光源
US20120188554A1 (en) * 2011-01-24 2012-07-26 Canon Kabushiki Kaisha Light source device and imaging apparatus using the same
US8569675B1 (en) * 2011-03-10 2013-10-29 Hrl Laboratories, Llc Optical analog PPM demodulator
US8582619B2 (en) 2011-03-15 2013-11-12 Lightlab Imaging, Inc. Methods, systems, and devices for timing control in electromagnetic radiation sources
US9164240B2 (en) 2011-03-31 2015-10-20 Lightlab Imaging, Inc. Optical buffering methods, apparatus, and systems for increasing the repetition rate of tunable light sources
EP2525194A1 (en) * 2011-05-16 2012-11-21 Knowles Electronics Asia PTE. Ltd. Optical sensor
AU2012262258B2 (en) 2011-05-31 2015-11-26 Lightlab Imaging, Inc. Multimodal imaging system, apparatus, and methods
US9330092B2 (en) * 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US8582109B1 (en) * 2011-08-01 2013-11-12 Lightlab Imaging, Inc. Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography
WO2013019840A1 (en) 2011-08-03 2013-02-07 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve
AU2011377924B2 (en) * 2011-09-26 2015-01-22 Alcon Inc. Optical coherence tomography technique
JP6025317B2 (ja) * 2011-10-24 2016-11-16 株式会社トプコン モード同期レーザ光源装置及びこれを用いた光干渉断層撮影装置
US8953911B1 (en) 2011-10-28 2015-02-10 Lightlab Imaging, Inc. Spectroscopic imaging probes, devices, and methods
US8581643B1 (en) * 2011-10-28 2013-11-12 Lightlab Imaging, Inc. Phase-lock loop-based clocking system, methods and apparatus
US8831321B1 (en) 2011-11-07 2014-09-09 Lightlab Imaging, Inc. Side branch detection methods, systems and devices
US20130163003A1 (en) * 2011-12-21 2013-06-27 Ole Massow Apparatus and method for optical swept-source coherence tomography
WO2013123430A1 (en) 2012-02-17 2013-08-22 The Regents Of The University Of California Directional optical coherence tomography systems and methods
JP2013181790A (ja) * 2012-02-29 2013-09-12 Systems Engineering Inc 周波数走査型oct用サンプリングクロック発生装置の使用方法、周波数走査型oct用サンプリングクロック発生装置
US9243885B2 (en) * 2012-04-12 2016-01-26 Axsun Technologies, LLC Multi-speed OCT swept source with optimized k-clock
EP2662661A1 (de) * 2012-05-07 2013-11-13 Leica Geosystems AG Messgerät mit einem Interferometer und einem ein dichtes Linienspektrum definierenden Absorptionsmedium
CN103427334B (zh) 2012-05-14 2018-09-25 三星电子株式会社 用于发射波长扫描光的方法和设备
US9441944B2 (en) * 2012-05-16 2016-09-13 Axsun Technologies Llc Regenerative mode locked laser swept source for OCT medical imaging
US10506934B2 (en) 2012-05-25 2019-12-17 Phyzhon Health Inc. Optical fiber pressure sensor
JP2015523578A (ja) * 2012-07-27 2015-08-13 ソルラブス、インコーポレイテッド 敏捷な画像化システム
US8687201B2 (en) * 2012-08-31 2014-04-01 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
CN102835948B (zh) * 2012-09-12 2016-03-30 无锡微奥科技有限公司 一种扫频光源oct实时图像显示方法及其系统
US8953167B2 (en) * 2012-11-07 2015-02-10 Volcano Corporation OCT system with tunable clock system for flexible data acquisition
DE102012022343B4 (de) 2012-11-15 2019-09-19 Laser Zentrum Hannover E.V. Verfahren zum Überwachen eines Schichtwachstums und Vorrichtung zum Beschichten
WO2014077870A1 (en) 2012-11-19 2014-05-22 Lightlab Imaging, Inc. Multimodel imaging systems, probes and methods
TWI473373B (zh) * 2012-11-30 2015-02-11 Ind Tech Res Inst 間隔時間可調脈衝序列產生裝置
JP6038619B2 (ja) * 2012-12-04 2016-12-07 株式会社日立エルジーデータストレージ 偏光感受型光計測装置
US9677869B2 (en) 2012-12-05 2017-06-13 Perimeter Medical Imaging, Inc. System and method for generating a wide-field OCT image of a portion of a sample
JP6262762B2 (ja) * 2012-12-06 2018-01-17 リーハイ・ユニバーシティー 空間分割多重光コヒーレンストモグラフィー装置
AU2013360356B2 (en) 2012-12-12 2017-04-20 Lightlab Imaging, Inc. Method and apparatus for automated determination of a lumen contour of a blood vessel
US10161738B2 (en) * 2012-12-31 2018-12-25 Axsun Technologies, Inc. OCT swept laser with cavity length compensation
JP6053138B2 (ja) * 2013-01-24 2016-12-27 株式会社日立エルジーデータストレージ 光断層観察装置及び光断層観察方法
US10398306B2 (en) 2013-03-07 2019-09-03 Nanyang Technological University Optical imaging device and method for imaging a sample
US9173591B2 (en) 2013-03-08 2015-11-03 Lightlab Imaging, Inc. Stent visualization and malapposition detection systems, devices, and methods
WO2014163601A1 (en) 2013-03-11 2014-10-09 Lightlab Imaging, Inc. Friction torque limiter for an imaging catheter
US9351698B2 (en) 2013-03-12 2016-05-31 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
US9069396B2 (en) 2013-03-12 2015-06-30 Lightlab Imaging, Inc. Controller and user interface device, systems, and methods
US9833221B2 (en) 2013-03-15 2017-12-05 Lightlab Imaging, Inc. Apparatus and method of image registration
US9702762B2 (en) 2013-03-15 2017-07-11 Lightlab Imaging, Inc. Calibration and image processing devices, methods, and systems
CN104207752B (zh) * 2013-05-30 2017-03-15 乐普(北京)医疗器械股份有限公司 一种高速扫频光学相干断层成像系统
US9464883B2 (en) 2013-06-23 2016-10-11 Eric Swanson Integrated optical coherence tomography systems and methods
US9683928B2 (en) 2013-06-23 2017-06-20 Eric Swanson Integrated optical system and components utilizing tunable optical sources and coherent detection and phased array for imaging, ranging, sensing, communications and other applications
US10327645B2 (en) 2013-10-04 2019-06-25 Vascular Imaging Corporation Imaging techniques using an imaging guidewire
JP6257072B2 (ja) * 2013-10-16 2018-01-10 国立大学法人 筑波大学 白色干渉計装置による表面形状の測定方法
KR20150054542A (ko) 2013-11-12 2015-05-20 삼성전자주식회사 광대역 파장 가변광원 시스템 및 이를 적용한 장치
US10537255B2 (en) 2013-11-21 2020-01-21 Phyzhon Health Inc. Optical fiber pressure sensor
JP6125981B2 (ja) * 2013-12-10 2017-05-10 株式会社トーメーコーポレーション 光断層画像装置用サンプルクロック発生装置、および光断層画像装置
CN103720460A (zh) * 2013-12-25 2014-04-16 天津大学 一种兼容光谱信息分析功能的光学相干层析装置和方法
US10317189B2 (en) * 2014-01-23 2019-06-11 Kabushiki Kaisha Topcon Detection of missampled interferograms in frequency domain OCT with a k-clock
JP5855693B2 (ja) * 2014-02-28 2016-02-09 富士重工業株式会社 振動検出装置及び振動検出方法
CN103853151B (zh) * 2014-03-14 2016-11-02 陕西科技大学 Deh点检仪正弦波发生装置
JP6252853B2 (ja) * 2014-03-31 2017-12-27 株式会社東京精密 距離測定システム、距離測定装置、及び距離測定方法
EP3861928B1 (en) 2014-04-04 2024-03-27 St. Jude Medical Systems AB Intravascular pressure and flow data diagnostic system
JP6349156B2 (ja) * 2014-06-03 2018-06-27 株式会社トプコン 干渉計装置
US11166668B2 (en) 2014-07-24 2021-11-09 Lightlab Imaging, Inc. Pre and post stent planning along with vessel visualization and diagnostic systems, devices, and methods for automatically identifying stent expansion profile
JP6181013B2 (ja) * 2014-08-08 2017-08-16 株式会社吉田製作所 光干渉断層画像生成装置及び光干渉断層画像生成方法
US11311200B1 (en) 2014-08-27 2022-04-26 Lightlab Imaging, Inc. Systems and methods to measure physiological flow in coronary arteries
US11350832B2 (en) 2014-08-27 2022-06-07 St. Jude Medical Coordination Center Bvba Cardiac cycle-based diagnostic systems and methods
US10499813B2 (en) 2014-09-12 2019-12-10 Lightlab Imaging, Inc. Methods, systems and apparatus for temporal calibration of an intravascular imaging system
CN105629518B (zh) * 2014-10-27 2019-04-05 北京邮电大学 偏振稳定控制装置及方法
US10258240B1 (en) 2014-11-24 2019-04-16 Vascular Imaging Corporation Optical fiber pressure sensor
KR101685375B1 (ko) * 2014-11-25 2016-12-13 한국과학기술원 편광 다중 방식의 파장 가변 광원 장치 및 이를 이용한 편광민감 광간섭단층촬영 이미징 시스템
CA2970658A1 (en) 2014-12-12 2016-06-16 Lightlab Imaging, Inc. Systems and methods to detect and display endovascular features
JP6497921B2 (ja) * 2014-12-15 2019-04-10 株式会社トーメーコーポレーション 光断層画像装置用サンプルクロック発生装置、および光断層画像装置
US11278206B2 (en) 2015-04-16 2022-03-22 Gentuity, Llc Micro-optic probes for neurology
JP6584125B2 (ja) * 2015-05-01 2019-10-02 キヤノン株式会社 撮像装置
US20160357007A1 (en) 2015-05-05 2016-12-08 Eric Swanson Fixed distal optics endoscope employing multicore fiber
CN104794740A (zh) * 2015-05-08 2015-07-22 南京微创医学科技有限公司 利用通用图像处理器处理oct信号的方法及系统
CN104825121B (zh) * 2015-05-08 2017-04-26 南京微创医学科技股份有限公司 内窥式oct微探头、oct成像系统及使用方法
CN104825120A (zh) * 2015-05-08 2015-08-12 南京微创医学科技有限公司 Oct内窥扫描成像系统中使用的光学时钟信号发生系统和方法
US10646198B2 (en) 2015-05-17 2020-05-12 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US10140712B2 (en) 2015-05-17 2018-11-27 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US10109058B2 (en) 2015-05-17 2018-10-23 Lightlab Imaging, Inc. Intravascular imaging system interfaces and stent detection methods
US9996921B2 (en) 2015-05-17 2018-06-12 LIGHTLAB IMAGING, lNC. Detection of metal stent struts
US10222956B2 (en) 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US10338795B2 (en) 2015-07-25 2019-07-02 Lightlab Imaging, Inc. Intravascular data visualization and interface systems and methods
EP3324829B1 (en) 2015-07-25 2021-05-12 Lightlab Imaging, Inc. Guidewire detection systems, methods, and apparatuses
US10631718B2 (en) 2015-08-31 2020-04-28 Gentuity, Llc Imaging system includes imaging probe and delivery devices
JP6632266B2 (ja) * 2015-09-04 2020-01-22 キヤノン株式会社 撮像装置
CN105342558B (zh) * 2015-09-30 2017-11-14 苏州大学 一种基于光学相干断层扫描成像中相位误差的校正方法
WO2017087821A2 (en) 2015-11-18 2017-05-26 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
CN108348170B (zh) 2015-11-18 2021-04-02 光学实验室成像公司 与侧支有关的支架撑杆检测
EP3381014B1 (en) 2015-11-23 2020-12-16 Lightlab Imaging, Inc. Detection of and validation of shadows in intravascular images
CN105411530A (zh) * 2015-12-17 2016-03-23 天津求实飞博科技有限公司 新型光学相干层析装置
JP6679340B2 (ja) * 2016-02-22 2020-04-15 キヤノン株式会社 光干渉断層計
DE102016205370B4 (de) * 2016-03-31 2022-08-18 Optomedical Technologies Gmbh OCT-System
ES2908571T3 (es) 2016-04-14 2022-05-03 Lightlab Imaging Inc Identificación de ramas de un vaso sanguíneo
US9839749B2 (en) * 2016-04-27 2017-12-12 Novartis Ag Intraocular pressure sensing systems, devices, and methods
ES2854729T3 (es) 2016-05-16 2021-09-22 Lightlab Imaging Inc Método y sistema para la detección de endoprótesis autoexpansible, o stent, intravascular absorbible
JP6779662B2 (ja) * 2016-05-23 2020-11-04 キヤノン株式会社 撮像装置、撮像装置の制御方法、及びプログラム
US10969571B2 (en) 2016-05-30 2021-04-06 Eric Swanson Few-mode fiber endoscope
WO2018005623A1 (en) * 2016-06-28 2018-01-04 The Regents Of The University Of California Fast two-photon imaging by diffracted swept-laser excitation
US11206986B2 (en) * 2016-08-15 2021-12-28 New Jersey Institute Of Technology Miniature quantitative optical coherence elastography using a fiber-optic probe with a fabry-perot cavity
EP3520114A1 (en) 2016-09-28 2019-08-07 Lightlab Imaging, Inc. Stent planning systems and methods using vessel representation
US10608685B2 (en) * 2016-10-28 2020-03-31 Perspecta Labs Inc. Photonics based interference mitigation
FR3059438A1 (fr) * 2016-11-30 2018-06-01 Stmicroelectronics Sa Generateur de signal d'horloge
CN106650082B (zh) * 2016-12-19 2020-02-07 北京联合大学 一种智能溯源电子秤评估系统
US10842589B2 (en) 2017-03-21 2020-11-24 Canon U.S.A., Inc. Method for displaying an anatomical image of a coronary artery on a graphical user interface
US11054243B2 (en) 2017-04-26 2021-07-06 The Texas A&M University System Electronic device for automatic calibration of swept-source optical coherence tomography systems
CN107222171A (zh) * 2017-05-19 2017-09-29 四川莱源科技有限公司 一种用于两路扫频信号高速输出双路扫频源
CN108042125B (zh) * 2017-05-27 2023-04-21 天津恒宇医疗科技有限公司 一种高速内窥光学相干血流成像系统
JP6923371B2 (ja) 2017-06-23 2021-08-18 トヨタ自動車株式会社 燃料電池用電極触媒
WO2019014767A1 (en) 2017-07-18 2019-01-24 Perimeter Medical Imaging, Inc. SAMPLE CONTAINER FOR STABILIZING AND ALIGNING EXCISED ORGANIC TISSUE SAMPLES FOR EX VIVO ANALYSIS
US20190069849A1 (en) * 2017-09-01 2019-03-07 The Trustees Of Columbia University In The City Of New York Compressed sensing enabled swept source optical coherence tomography apparatus, computer-accessible medium, system and method for use thereof
CN107706737B (zh) * 2017-09-18 2019-06-14 华东师范大学 一种用于半导体激光器的频率精密可调式脉冲发生电路
US10621748B2 (en) 2017-10-03 2020-04-14 Canon U.S.A., Inc. Detecting and displaying stent expansion
US11571129B2 (en) 2017-10-03 2023-02-07 Canon U.S.A., Inc. Detecting and displaying stent expansion
ES2904844T3 (es) * 2017-11-02 2022-04-06 Alcon Inc Muestreo de doble flanco con reloj K para evitar solapamientos espectrales en tomografías de coherencia óptica
EP3700406A4 (en) 2017-11-28 2021-12-29 Gentuity LLC Imaging system
CN108174122A (zh) * 2017-11-28 2018-06-15 武汉华之洋科技有限公司 一种基于光纤传感的多路图像采集装置及方法
CN107991267B (zh) * 2017-11-29 2020-03-17 珠海任驰光电科技有限公司 波长捷变的可调谐半导体激光吸收光谱气体检测装置及方法
CN107894325B (zh) * 2017-12-28 2019-07-23 浙江嘉莱光子技术有限公司 一种激光器直接调制带宽及调制幅度测量方法
EP3811333A1 (en) 2018-05-29 2021-04-28 Lightlab Imaging, Inc. Stent expansion display, systems, and methods
US11382516B2 (en) 2018-06-08 2022-07-12 Canon U.S.A., Inc. Apparatuses, methods, and storage mediums for lumen and artifacts detection in one or more images, such as in optical coherence tomography images
KR102506833B1 (ko) * 2018-07-30 2023-03-08 에스케이하이닉스 주식회사 램프 신호 발생 장치 및 그를 이용한 씨모스 이미지 센서
CN110068828B (zh) * 2018-08-07 2023-10-17 天津大学 基于激光调频连续波远距离测距的装置及色散补偿方法
CN111934178B (zh) * 2018-08-24 2022-10-25 苏州曼德特光电技术有限公司 中红外飞秒光纤激光光源系统
CN109149341A (zh) * 2018-08-28 2019-01-04 中国联合网络通信集团有限公司 被动谐波锁模光纤激光器
CN109506788A (zh) * 2018-11-01 2019-03-22 中国科学院半导体研究所 基于傅里叶锁模激光器的光波长测量系统
CN109510055A (zh) * 2018-11-13 2019-03-22 徐州诺派激光技术有限公司 光纤结构的脉冲源及其工作方法
CN109905309A (zh) * 2019-02-15 2019-06-18 广州市高科通信技术股份有限公司 一种保持环网各节点状态一致的方法和网络节点
CN110148875B (zh) * 2019-05-06 2020-06-09 北京图湃影像科技有限公司 傅里叶域锁模光纤激光器及其抖动消除方法
CN111466875B (zh) * 2020-03-12 2021-08-24 西安电子科技大学 一种旋转式扩散光学成像系统
CN111528799B (zh) * 2020-04-28 2021-08-24 中山大学 一种提高扫频光源光学相干层析成像系统动态范围的方法
US11681093B2 (en) 2020-05-04 2023-06-20 Eric Swanson Multicore fiber with distal motor
US11802759B2 (en) 2020-05-13 2023-10-31 Eric Swanson Integrated photonic chip with coherent receiver and variable optical delay for imaging, sensing, and ranging applications
KR20210150225A (ko) * 2020-06-03 2021-12-10 삼성전자주식회사 파장 가변 레이저 광원 및 이를 포함하는 광 조향 장치
CN111780681B (zh) * 2020-06-19 2021-07-16 厦门大学 一种矢量非线性光学空间滤波器
CN112704470B (zh) * 2020-12-22 2022-03-15 电子科技大学 分光谱频域相干断层成像系统
US11943571B2 (en) 2021-03-28 2024-03-26 Newphotonics Ltd. Optical switch with all-optical memory buffer
CN113686441A (zh) * 2021-07-30 2021-11-23 南方科技大学 一种基于傅里叶域锁模的相干光谱分析装置及分析方法
WO2024075266A1 (ja) * 2022-10-07 2024-04-11 三菱電機株式会社 光測定装置
CN116299325B (zh) * 2023-01-12 2024-01-26 杭州温米芯光科技发展有限公司 光电锁相环
CN116499445B (zh) * 2023-06-30 2023-09-12 成都市晶蓉微电子有限公司 一种mems陀螺数字输出单片集成系统

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US550993A (en) * 1895-12-10 Bean-picker
JPS6014526B2 (ja) * 1980-05-10 1985-04-13 アルプス電気株式会社 Pll発振回路
US4712060A (en) * 1986-08-29 1987-12-08 Board Of Regents The University Of Texas System Sampling average phase meter
US4779975A (en) * 1987-06-25 1988-10-25 The Board Of Trustees Of The Leland Stanford Junior University Interferometric sensor using time domain measurements
US6501551B1 (en) * 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US5748598A (en) * 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5465147A (en) * 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
EP0581871B2 (en) * 1991-04-29 2009-08-12 Massachusetts Institute Of Technology Apparatus for optical imaging and measurement
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6134003A (en) * 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US5208817A (en) * 1992-04-10 1993-05-04 At&T Bell Laboratories Modulator-based lightwave transmitter
US5509093A (en) * 1993-10-13 1996-04-16 Micron Optics, Inc. Temperature compensated fiber fabry-perot filters
JPH0882554A (ja) * 1994-09-12 1996-03-26 Nippon Telegr & Teleph Corp <Ntt> 波長監視装置
WO1997001167A1 (en) * 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
US5930678A (en) * 1996-05-13 1999-07-27 Lucent Technologies Inc Intermodulation distortion reduction method and apparatus
GB9618764D0 (en) * 1996-09-09 1996-10-23 Univ Southampton Wavelength-swept fiber laser with frequency shifted feedback
WO1998055830A1 (en) 1997-06-02 1998-12-10 Izatt Joseph A Doppler flow imaging using optical coherence tomography
JPH1198865A (ja) * 1997-07-24 1999-04-09 Minolta Co Ltd 電気機械変換素子を利用した駆動装置
JPH11101609A (ja) * 1997-09-29 1999-04-13 Yokogawa Electric Corp レーザ測長装置
KR100269040B1 (ko) * 1998-04-28 2000-10-16 서원석 파장이동 레이저 광원 및 파장이동 레이저 광 생성방법
US6449047B1 (en) * 1998-11-13 2002-09-10 Micron Optics, Inc. Calibrated swept-wavelength laser and interrogator system for testing wavelength-division multiplexing system
US6191862B1 (en) * 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6615072B1 (en) * 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6445939B1 (en) * 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6626589B1 (en) * 1999-12-29 2003-09-30 Nortel Networks Limited Optical packet switching
US6538748B1 (en) * 2000-04-14 2003-03-25 Agilent Technologies, Inc Tunable Fabry-Perot filters and lasers utilizing feedback to reduce frequency noise
JP2002009594A (ja) * 2000-06-26 2002-01-11 Ando Electric Co Ltd 遅延時間安定化回路
US7120323B2 (en) * 2000-08-02 2006-10-10 Kvh Industries, Inc. Reduction of linear birefringence in circular-cored single-mode fiber
US6768756B2 (en) * 2001-03-12 2004-07-27 Axsun Technologies, Inc. MEMS membrane with integral mirror/lens
US6570659B2 (en) * 2001-03-16 2003-05-27 Lightlab Imaging, Llc Broadband light source system and method and light source combiner
US6552796B2 (en) * 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US6486961B1 (en) * 2001-05-08 2002-11-26 Agilent Technologies, Inc. System and method for measuring group delay based on zero-crossings
US6879851B2 (en) * 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
US7877019B2 (en) * 2002-10-16 2011-01-25 Tyco Electronics Subsea Communications Llc Optical receiver including a system and method of controlling gain of an optical amplifier
US7241286B2 (en) * 2003-04-25 2007-07-10 Lightlab Imaging, Llc Flush catheter with flow directing sheath
EP3009815B1 (en) * 2003-10-27 2022-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
CN1268289C (zh) * 2003-11-03 2006-08-09 四川大学 光学相干断层成像系统中纵向扫描方法及其装置
JP4027359B2 (ja) * 2003-12-25 2007-12-26 キヤノン株式会社 マイクロ揺動体、光偏向器、画像形成装置
US20050238067A1 (en) * 2004-04-26 2005-10-27 Choi Youngmin A Simple fiber optic cavity
JP4780678B2 (ja) * 2004-09-24 2011-09-28 ライトラボ・イメージング・インコーポレーテッド 体液遮断装置
US7336366B2 (en) * 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
EP1839375B1 (en) * 2005-01-20 2014-06-04 Massachusetts Institute of Technology Mode locking methods and apparatus
US7843976B2 (en) * 2005-01-24 2010-11-30 Thorlabs, Inc. Compact multimode laser with rapid wavelength scanning
US7848791B2 (en) * 2005-02-10 2010-12-07 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
US7415049B2 (en) * 2005-03-28 2008-08-19 Axsun Technologies, Inc. Laser with tilted multi spatial mode resonator tuning element
WO2006130802A2 (en) * 2005-06-01 2006-12-07 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US7935060B2 (en) * 2006-11-08 2011-05-03 Lightlab Imaging, Inc. Opto-acoustic imaging devices and methods
ES2847098T3 (es) 2007-01-10 2021-07-30 Lightlab Imaging Inc Métodos y aparato para tomografía de coherencia óptica de fuente de barrido
JP2015099884A (ja) * 2013-11-20 2015-05-28 日東電工株式会社 Cigs太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284652B2 (ja) 2018-08-23 2023-05-31 株式会社ミツトヨ 測定装置および測定方法

Similar Documents

Publication Publication Date Title
JP2010515919A5 (ja)
JP6130434B2 (ja) 波長可変光源を利用した光干渉断層撮影法の方法及び装置
US8582109B1 (en) Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography
US20110267625A1 (en) Interferometer with frequency combs and synchronisation scheme
JP6770971B2 (ja) レーザー光源の周波数の変調を測定する方法、システムおよびコンピュータプログラム、ならびにライダーのレーザー光源の周波数を較正する方法
CN110646805B (zh) 一种基于虚拟扫频光源的调频连续波激光测距系统
Yang et al. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer
JP2017198673A (ja) 参照信号キャリブレーションを用いたスウェプトソース光コヒーレンストモグラフィ(ss−oct)の位相安定化
US8515290B2 (en) Method for coupling two pulsed lasers having an adjustable difference of the pulse frequencies, which is not equal to zero
Chen et al. Feedforward laser linewidth narrowing scheme using acousto-optic frequency shifter and direct digital synthesizer
Feng et al. Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications
JP3510517B2 (ja) 光周波数線形掃引装置及び光周波数線形掃引装置のための変調補正データ記録装置
WO2006018897A1 (ja) レーザ位相差検出装置およびレーザ位相制御装置
Lee Direct time-domain phase correction of dual-comb interferograms for comb-resolved spectroscopy
JP7123333B2 (ja) 変位計測装置
Koltchanov et al. New modulation technique for unambiguous measurements of phase changes in diode laser interferometers
Ripper et al. An interferometric accelerometer calibration system with flexible acquisition rate and recursive moving average filtering
Song et al. A modified Michelson interferometer type Raman laser system for atom interferometers