WO2006018897A1 - レーザ位相差検出装置およびレーザ位相制御装置 - Google Patents

レーザ位相差検出装置およびレーザ位相制御装置 Download PDF

Info

Publication number
WO2006018897A1
WO2006018897A1 PCT/JP2004/012012 JP2004012012W WO2006018897A1 WO 2006018897 A1 WO2006018897 A1 WO 2006018897A1 JP 2004012012 W JP2004012012 W JP 2004012012W WO 2006018897 A1 WO2006018897 A1 WO 2006018897A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
laser
phase difference
path length
unit
Prior art date
Application number
PCT/JP2004/012012
Other languages
English (en)
French (fr)
Inventor
Jiro Suzuki
Yoshihito Hirano
Yutaka Ezaki
Yasushi Horiuchi
Masaki Tabata
Kouji Namura
Izumi Mikami
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/658,315 priority Critical patent/US7768699B2/en
Priority to PCT/JP2004/012012 priority patent/WO2006018897A1/ja
Priority to EP04771973A priority patent/EP1796228A1/en
Priority to JP2006531143A priority patent/JP4459961B2/ja
Publication of WO2006018897A1 publication Critical patent/WO2006018897A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Definitions

  • Laser phase difference detection device and laser phase control device are Laser phase difference detection device and laser phase control device
  • the present invention relates to a laser phase difference detection device and a laser phase control device.
  • a method for obtaining a desired light intensity by condensing a plurality of laser beams simultaneously on a target is generally known.
  • a laser device in order to concentrate energy on a small target at a long distance, after splitting the laser beam oscillated by one main oscillator force into multiple laser beams, they are individually amplified, and after amplification A laser beam that is arranged to bundle multiple laser beams (this is called the main output beam) is focused on the target.
  • a laser beam focusing technique this is called coherent coupling
  • the wavefront sensor shown in FIG. 5 of Patent Document 1 is an example of such a laser phase difference detector, and a part of a laser beam oscillated by a main oscillator force that is a source of a plurality of laser beams is split into a beam splitter.
  • the light split in step 1 is used as reference light, the interference intensity between the reference light and the main output beam is observed, and the relative phase difference between the individual laser beams is detected.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-340555 (FIG. 5)
  • the conventional laser phase difference detection apparatus Since the conventional laser phase difference detection apparatus is configured as described above, it has been necessary to extract a part of the light oscillated from the main oscillator and use it as reference light. For this reason, when the distance between the position where the main output beam is obtained and the main oscillator is large, it is necessary to propagate the reference light over a long distance, which increases the size of the apparatus and increases the cost. Furthermore, if time fluctuations in the optical path length occur due to changes in atmospheric density or vibrations in the optical path through which the reference light propagates, the time fluctuations in the optical path length affect the detection of the phase difference.
  • the correction in order to correct the phase difference using the detected phase difference, the correction must be made in consideration of the time fluctuation component of the optical path length of the reference light, so that the correction amount increases and the system becomes stable. There was a problem that it might not be fixed. In addition, another means for detecting and correcting the time fluctuation component of the optical path length of the reference light is required, which increases the cost. Furthermore, in order to apply to coherent coupling of a main output beam with a coherence length as short as several tens of ⁇ m, such as an ultrashort pulse laser, the optical path length allowed for interference between the reference beam and the main output beam is allowed. There was a problem that it took a lot of effort to adjust because the difference range was small.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a laser phase difference detection device that is small and low in cost and easy to use.
  • Another object of the present invention is to obtain a laser phase control device using such a laser phase difference detection device.
  • the laser phase difference detection apparatus is configured such that the individual laser beams constituting the laser beam group are the first laser beam group that travels in the first optical path and the second laser that travels in the second optical path.
  • An optical path branching unit that branches into a beam group, a beam selection extraction unit that selectively passes one laser beam from the first laser beam group as reference light, and an optical path length that makes the optical path length of the first optical path variable
  • the optical path length is provided with a variable section, an optical path combining section that combines the reference light and the individual laser beams constituting the second laser beam group to generate interference light, and a photodetector that detects the intensity of the interference light.
  • the optical path length at which the intensity of the interference light is maximized is detected for each laser beam constituting the second laser beam group, and based on the optical path length. Between the individual laser beams The phase difference is what Mel asked.
  • FIG. 1 is a diagram showing a configuration of a laser phase difference detection apparatus according to Embodiment 1 of the present invention.
  • 2] A diagram showing a configuration of a laser phase difference detection device according to the second embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of a laser phase difference detection device according to Embodiment 3 of the present invention.
  • FIG. 4 is a diagram showing a configuration of a laser phase difference detection device according to Embodiment 4 of the present invention.
  • FIG. 5 is a diagram showing a configuration of a laser phase difference detection device according to a fifth embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a laser phase control device according to a sixth embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a laser phase difference detection apparatus 100 according to Embodiment 1 of the present invention.
  • the laser phase difference detection apparatus 100 includes a beam splitter (optical path branching unit) 2, a beam splitter (optical path combining unit) 3, a beam selection extraction unit 4, a reflecting mirror 5, a reflecting mirror 6, and an optical path length variable unit. 7, equipped with a two-dimensional light detector (light detector) 10.
  • the laser phase difference detection apparatus 100 is an application of a general Matsuhonda interferometer.
  • the laser beam oscillated from the laser oscillator is branched and extracted by a branch extraction means (not shown), and the beam diameter is enlarged or reduced as required by an enlargement / reduction means (not shown).
  • This is a beam to be measured (laser beam group, main output beam) 1.
  • the measured beam 1 is arranged so that two or more branched laser beams are bundled. As shown in FIG. 1, here, four rectangular beams (a, b, c, d) are arranged. It is arranged in the shape of a rice field.
  • the beam splitter 2 amplitude-divides the beam 1 to be measured, and reflects the reflected component (first laser beam group) in the downward direction (first optical path) in FIG. Transmission toward the optical path) Divide into components (second laser beam group).
  • the transmitted component of the beam 1 to be measured is reflected by the reflecting mirror 6, changes the traveling direction by 90 degrees, and reaches the beam splitter 3 as the light to be measured 9.
  • the reflected component of the beam 1 to be measured is propagated by selectively extracting only the beam a in the beam selection extraction unit 4, and the beams b, c, and d are blocked.
  • the beam a selected and extracted by the beam selection / extraction unit 4 is reflected by the reflecting mirror 5 and changes the traveling direction by 90 degrees, and then the traveling direction is changed by the optical path length variable unit 7 to be transmitted to the beam splitter 3 as reference light 8. It reaches.
  • the variable optical path length unit 7 has a function of returning an incident beam in a direction very close to the incident direction.
  • the transmitted component of the beam 1 to be measured is changed from the beam splitter 2.
  • the optical path length to the beam splitter 3 and the optical path length from the reflected component to the beam splitter 3 can be changed.
  • the optical path length variable unit 7 is configured by a retroreflector capable of adjusting the position.
  • the beam splitter 3 combines the reference light 8 and the measured light 9 to cause interference.
  • the interference light enters the two-dimensional photodetector 10 and the intensity of the interference light is converted into an electrical signal.
  • the intensity of the interference light observed by the two-dimensional photodetector 10 is expressed by equation (1).
  • I is the interference light intensity
  • al is the amplitude of the reference light 8
  • a2 is the amplitude of the measured light 9
  • ⁇ 1 is the phase of the reference light 8
  • ⁇ 2 is the phase of the measured light 9.
  • the interference light intensity I changes sinusoidally depending on the phase difference ( ⁇ 1 ⁇ ⁇ 2) between the reference light 8 and the measured light 9, and ( ⁇ 1 ⁇ ⁇ When 2) is 0, the interference light intensity I is maximum.
  • the optical path length variable unit 7 scans the optical path length of the reference light 8 with a stroke of one wavelength or less, and detects the optical path length that maximizes the interference light intensity for each of the beams a, b, c, and d.
  • the optical path length at which the interference light intensity is maximum is different for each of the beams a, b, c, and d, the phases of the beams are out of phase. You can know the phase difference.
  • a part of the beam 1 to be measured is used as the reference light 8, so that the laser main oscillator force also extracts the reference light separately and introduces it to the laser phase difference detection apparatus 100.
  • the apparatus can be reduced in size and cost.
  • the optical path lengths of the reference light 8 and the measured light 9 are changed using the optical path length variable unit 7, the interference optical path can be contained in a small apparatus.
  • the interference optical path is configured to fit within a small device, even if the measured beam has a short coherence length, such as a 1-force S-pulse laser, the optical path length between the reference light and the measured light Is relatively easy to match with the required accuracy.
  • the apparatus can be reduced in size and the portability can be improved.
  • adjustment for measurement is easy.
  • laser phase difference detection apparatus 100 is configured using a Mach-Zehnder interferometer, but may be configured using a two-beam interferometer of another type.
  • a retroreflector is used as the optical path length variable unit 7, for example, a spatial phase modulator may be used.
  • the two-dimensional photodetector 10 may be any detector that can detect the intensity of interference light for a plurality of laser beams constituting the beam 1 to be measured.For example, a two-dimensional photodetector 10 in which a required number of single-element photodiodes are arranged is used. May be.
  • the optical path length variable unit 7 when the optical path length is scanned by the optical path length variable unit 7 in order to detect the phase difference between the individual laser beams constituting the beam 1 to be measured, the amount of change in the optical path length is grasped with high accuracy. There is a need. However, the optical path length from the beam splitter 2 to the beam splitter 3 may fluctuate from time to time due to changes in temperature and vibration.
  • the second embodiment is provided with a means for correcting this optical path length variation.
  • FIG. 2 is a block diagram showing a configuration of laser phase difference detection apparatus 200 according to the second embodiment.
  • the same reference numerals as those in FIG. 1 represent equivalent components.
  • the laser phase difference detection device 200 includes an optical path length difference variation detection unit 11.
  • the optical path length difference detector 11 detects the measurement error due to the optical path length fluctuation in the optical path from the beam splitter 2 to the beam splitter 3, so that the reference light 8 and the measured light 9 Measure the intensity of the interference light in the part corresponding to beam a.
  • the reference light 8 is a beam a selected and extracted from one of the measured beams 1 branched by the beam splitter 2, interference light between the reference light 8 and the portion of the measured light 9 corresponding to the beam a.
  • the intensity reflects only the optical path length difference from beam splitter 2 to beam splitter 3. Therefore, it is possible to accurately know the optical path length variation from the beam splitter 2 to the beam splitter 3 based on the interference light intensity of the portion corresponding to the beam a of the reference light 8 and the measured light 9.
  • the output signal of the two-dimensional photodetector 10 is signal-processed, and the optical path Variations in length difference can be corrected.
  • the optical path length difference detection unit 11 detects the change in the optical path length difference between the reference light 8 and the measured light 9 from the beam splitter 2 to the beam splitter 3. Since the output signal from the two-dimensional optical detector 10 is signal-processed to correct for variations in optical path length differences, the effects of optical path length differences are eliminated, and phase shift detection reliability and stability are improved. Can be increased.
  • optical path length variation detector 7 instead of correcting the variation in the optical path length by signal processing of the output signal, the optical path length variation detector 7 or an optical path length control means different from the optical path length variable unit 7 is used.
  • the output signal may be regressed to control the optical path length difference.
  • the optical path length is scanned by the optical path length variable unit 7.
  • the optical path length cannot be scanned, and therefore the first embodiment cannot be applied.
  • the first embodiment is expanded so as to be compatible with single shot panorama.
  • FIG. 3 is a block diagram showing a configuration of laser phase difference detection apparatus 300 according to the third embodiment.
  • the laser phase difference detection device 300 includes a spatial phase difference providing unit 20.
  • the spatial phase difference providing unit 20 acts to generate a phase difference in the cross section of the reference light 8, and is constituted by, for example, a flat glass having a thickness difference. Next, the operation will be described.
  • the phase difference ( ⁇ 1 ⁇ 2) can be obtained using equation (1). Therefore, it is possible to estimate the phase difference from the interference light intensity due to a single light reception without scanning the optical path length by the optical path length variable unit 7.
  • the interference light intensity changes sinusoidally with respect to the phase difference ( ⁇ 1_ ⁇ 2)
  • a phase difference is generated in the cross section of the reference light 8. Assuming that the optical path length difference generated in the cross section of the reference light 8 is ⁇ 1, in addition to the interference light intensity expressed by Equation (1), the interference light intensity shown by Equation (2) can be observed simultaneously.
  • the beam 1 to be measured is a single pulse laser, it is possible to detect the relative phase difference with a single light reception.
  • the spatial phase difference providing unit 20 generates only one phase difference spatially, but may generate two or more different phase differences.
  • the amplitudes al and a2 may be measured in advance, or a measuring means for branching and measuring the light to be measured 9 is separately provided so that it is measured simultaneously with the detection of the phase shift. May be.
  • the fourth embodiment improves the SZN ratio of the first embodiment.
  • FIG. 4 is a block diagram showing a configuration of laser phase difference detection apparatus 400 according to the fourth embodiment.
  • the laser phase difference detection apparatus 400 includes a beam diameter enlargement unit 30.
  • the beam diameter enlarging unit 30 expands the reference light 8 to a diameter equal to that of the light to be measured 9 and can use, for example, a Galileo telescope. Next, the operation will be described.
  • the beam diameter expanding unit 30 makes the beam diameter of the reference light 8 equal to the beam diameter of the measured light 9. For this reason, the ratio of the light to be measured 9 used for the interference light is increased, and the light use efficiency is improved. Therefore, the intensity of the beam 1 to be measured can be reduced.
  • the reference light 8 can be a highly accurate plane wave. This makes it possible to detect from the interference light intensity the phase distribution within the beam cross-section that is just the phase shift between the beams a, b, c, and d that make up the beam 1 to be measured.
  • the beam diameter enlarging unit 30 is installed on the optical path of the reference light 8.
  • the beam diameter reducing unit is provided on the optical path of the measured light 9, and the beam diameter of the measured light 9 is set. The same effect can be obtained even if the beam diameter of the reference light 8 and the beam diameter of the light 9 to be measured are made equal by reducing the above.
  • the fifth embodiment improves the S / N ratio of the first embodiment.
  • FIG. 5 is a block diagram showing a configuration of laser phase difference detection apparatus 500 according to the fifth embodiment.
  • the laser phase difference detection apparatus 500 includes an optical path length control unit 41 and a signal processing unit 42.
  • the optical path length control unit 41 drives the optical path length variable unit 7 to modulate the optical path length of the reference light 8 with a constant frequency and amplitude.
  • the modulation is realized by using a vibration generating element such as a voice coil.
  • the signal processing unit 42 stores the time-series change of the interference light intensity signal that is the output of the two-dimensional photodetector 10 and performs Fourier transform.
  • the interference light intensity I changes sinusoidally depending on the phase difference ( ⁇ 1_ ⁇ 2). Therefore, the amplitude ⁇ ⁇ of the interference light intensity I when the optical path length control unit 41 modulates the optical path length of the reference light 8 also changes almost sinusoidally depending on the phase difference ( ⁇ 1- ⁇ 2).
  • the phase difference ( ⁇ 1 ⁇ 2) can be known.
  • the amplitude ⁇ of the interference light intensity I is obtained by extracting the power spectrum of the modulation frequency from the Fourier transform result that is the output of the signal processing unit 42.
  • the phase difference ( ⁇ 1 — ⁇ 2) cannot be determined from the power spectrum, in order to determine whether the phase is positive or negative, for example, a modulated signal is extracted from the optical path length control unit 41 to generate a waveform of the interference light intensity. Perform lock-in detection.
  • the sixth embodiment shows a laser phase control device using the laser phase difference detection device of the first to fifth embodiments.
  • FIG. 6 is a diagram showing a configuration of a laser phase control device 600 according to the sixth embodiment.
  • the laser phase control device 600 includes a laser light source 50, a distribution unit 51, a phase delay variable device (phase delay variable unit) 52, an amplification unit 53, a synthesis unit 54, a laser beam extraction unit 55, a phase difference.
  • a detection device (phase difference detection unit) 56 and a phase difference control device (phase difference control unit) 57 are provided.
  • the laser beam oscillated from the laser light source 50 is distributed by the distributing unit 51 into a plurality of mutually coherent laser beams.
  • the distribution unit 51 is composed of a plurality of beam splitters.
  • the phase delay variable device 52 changes the relative phase difference of the laser beam to be coherently coupled.
  • the method of changing the relative phase difference is realized by changing the position of the mirror 521.
  • the amplifying unit 53 amplifies the intensity of a plurality of laser beams output from the distributing unit 51 and whose relative phase difference is changed by the phase delay variable device 52, and expands and outputs the beam system as necessary.
  • the synthesizer 54 is composed of a mirror or the like, and converts the spatial arrangement and angle of each laser beam so that the laser beam that is the output of the amplifier 53 is coherently coupled.
  • the laser beam extraction unit 55 is a beam splitter. A plurality of laser beams output from the combining unit 54 are extracted for supply to the phase difference detection device 56.
  • the phase difference detection device 56 is the laser phase difference detection device according to any one of the first to fifth embodiments, and detects a phase difference using the plurality of laser beams extracted by the laser beam extraction unit 55 as the measurement target beam 1. And output.
  • the phase difference control device 57 calculates the difference between the relative phase difference of the plurality of laser beams detected by the phase difference detection device 56 and the relative phase difference stored in advance according to the purpose, and based on this difference. Because the difference between the relative error of multiple laser beams and the relative phase difference stored in advance and depending on the purpose is calculated, the relative phase difference of multiple laser beams becomes the target value based on this difference. The relative phase difference correction amount is calculated and a regression control signal is output to the phase delay variable device 52.
  • any one of the laser phase difference detection devices according to the first embodiment 15 is used for the phase difference detection device 56. Therefore, the first embodiment 5 The same effect as above can be obtained, and the coherently coupled laser beam and the relative phase difference of the plurality of laser beams can be maintained in a predetermined state.
  • the laser phase difference detection apparatus is suitable as an optical measurement technique and an optical control technique in all apparatuses that handle a plurality of mutually coherent laser beams in a controlled manner.

Abstract

 レーザビーム群を構成する個々のレーザビームを第1の光路を進行する第1のレーザビーム群と第2の光路を進行する第2のレーザビーム群に分岐する光路分岐部と、第1のレーザビーム群の中から、1つのレーザビームを参照光として選択通過させるビーム選択抽出部と、第1の光路の光路長を可変とする光路長可変部と、参照光と第2のレーザビーム群を構成する個々のレーザビームを合成し、干渉光を生じさせる光路合成部と、干渉光の強度を検出する光検知器を備え、光路長可変部によって第1の光路長を変化させることにより、第2のレーザビーム群を構成する個々のレーザビーム毎に干渉光の強度が最大となる光路長を検出し、その光路長に基づいて、個々のレーザビーム間の位相差を求めるレーザ位相差検出装置。

Description

明 細 書
レーザ位相差検出装置およびレーザ位相制御装置
技術分野
[0001] この発明は、レーザ位相差検出装置およびレーザ位相制御装置に関するものであ る。
背景技術
[0002] 大出力が要求されるレーザ装置では、複数のレーザビームを同時に目標に集光さ せることで、所望の光強度を得る方法が一般に知られている。このようなレーザ装置 において、遠距離の微小な目標にエネルギーを集中させるために、 1つの主発振器 力 発振されたレーザビームを複数のレーザビームに分岐後、それらを個々に増幅 し、増幅後の複数のレーザビームを束ねるように配列させたもの(これを主出力ビー ムという。)を目標に集光させる。このように、複数のレーザビームの束から大口径の 単レーザビームと等価な出力ビームを得るためのレーザビームの収束技術 (これを、 コヒーレント結合という。)が研究されている。
[0003] コヒーレント結合を実現するためには、主出力ビームを構成する複数のレーザビー ムの電磁波の等位相面がひとつの波面とみなせるように、個々のレーザビームの位 相を統制制御する必要がある。このため、個々のレーザビームの相対的な位相差を 検出するレーザ位相差検出装置が必要となる。
特許文献 1の図 5に示された波面センサは、このようなレーザ位相差検出装置の例 であり、複数のレーザビームの発生源である主発振器力 発振されたレーザビームの 一部をビームスプリッタで分岐させた光を参照光とし、参照光と主出力ビームとの干 渉強度を観測し、個々のレーザビームの相対的な位相差を検出している。
[0004] 特許文献 1 :特開平 11—340555号公報(第 5図)
[0005] 従来のレーザ位相差検出装置は以上のように構成されているため、主発振器から 発振された光の一部を抽出して参照光とする必要があった。このため、主出力ビーム を得る位置と主発振器との距離が大きい場合には、参照光を長距離伝播させる必要 があり、装置が大型化し、コストが増大するという問題があった。 さらに、参照光を伝播させる光路において、大気の密度変化や振動などにより光路 長の時間ゆらぎが生じると、その光路長の時間ゆらぎが位相差の検出に影響する。こ の場合、検出した位相差を用いて位相差の補正を行うためには、参照光の光路長の 時間ゆらぎ成分も考慮して補正しなければならないため、補正量が増大し、系が安 定しない場合もあるという問題があった。また、参照光の光路長の時間ゆらぎ成分を 検出して補正をかける手段が別途必要であり、コストが増大するという問題があった。 さらに、超短パルスレーザのようにコヒーレンス長が数 10 μ m程の短い主出力ビー ムのコヒーレント結合に適用するためには、参照光と主出力ビームとが干渉するため に許容される光路長差範囲が小さいため調整に手間力 Sかかるなどの問題があった。
[0006] この発明は上記のような課題を解決するためになされたもので、小型かつ低コスト で、使いやすいレーザ位相差検出装置を得ることを目的とする。
また、そのようなレーザ位相差検出装置を用いた、レーザ位相制御装置を得ること を目的とする。
発明の開示
[0007] この発明に係るレーザ位相差検出装置は、レーザビーム群を構成する個々のレー ザビームを第 1の光路を進行する第 1のレーザビーム群と第 2の光路を進行する第 2 のレーザビーム群に分岐する光路分岐部と、第 1のレーザビーム群の中から、 1つの レーザビームを参照光として選択通過させるビーム選択抽出部と、第 1の光路の光路 長を可変とする光路長可変部と、参照光と第 2のレーザビーム群を構成する個々のレ 一ザビームを合成し、干渉光を生じさせる光路合成部と、干渉光の強度を検出する 光検知器を備え、光路長可変部によって第 1の光路の光路長を変化させることにより 、第 2のレーザビーム群を構成する個々のレーザビーム毎に干渉光の強度が最大と なる光路長を検出し、その光路長に基づいて、個々のレーザビーム間の位相差を求 めるものである。
このことによって、別途参照光を抽出してレーザ位相差検出装置に導入する必要 がないため、従来の技術と比べ、装置を小型化、低コストィ匕すること力 Sできる。
図面の簡単な説明
[0008] [図 1]この発明の実施の形態 1による、レーザ位相差検出装置の構成を示す図である 園 2]この発明の実施の形態 2による、レーザ位相差検出装置の構成を示す図である
[図 3]この発明の実施の形態 3による、レーザ位相差検出装置の構成を示す図である [図 4]この発明の実施の形態 4による、レーザ位相差検出装置の構成を示す図である [図 5]この発明の実施の形態 5による、レーザ位相差検出装置の構成を示す図である
[図 6]この発明の実施の形態 6による、レーザ位相制御装置の構成を示す図である。 発明を実施するための最良の形態
[0009] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面にしたがって説明する。
実施の形態 1.
図 1は、この発明の実施の形態 1によるレーザ位相差検出装置 100の構成を示す 図である。図に示すように、レーザ位相差検出装置 100は、ビームスプリッタ(光路分 岐部) 2、ビームスプリッタ(光路合成部) 3、ビーム選択抽出部 4、反射鏡 5、反射鏡 6 、光路長可変部 7、 2次元光検知器(光検知器) 10を備えている。レーザ位相差検出 装置 100は、一般的なマツハツヱンダ型干渉計を応用したものである。
[0010] 次に動作について説明する。
レーザ発振器から発振されたレーザビームは、分岐抽出手段(図示せず)によって 分岐抽出され、拡大縮小手段(図示せず)により、必要に応じてビーム径が拡大また は縮小される。これを被計測ビーム(レーザビーム群、主出力ビーム) 1とする。被計 測ビーム 1は、分岐された 2本以上のレーザビームを束ねるように配列したものであり 、図 1に示すように、ここでは 4本の矩形ビーム(a, b, c, d)が田の字型に配列されて いる。
ビームスプリッタ 2は、被計測ビーム 1を振幅分割し、図 1で下方向(第 1の光路)に 向力う反射成分 (第 1のレーザビーム群)と、図 1で右方向(第 2の光路)に向かう透過 成分 (第 2のレーザビーム群)に分岐させる。被計測ビーム 1の透過成分は、反射鏡 6 で反射されて進行方向を 90度変え、被計測光 9としてビームスプリッタ 3に至る。 一方、被計測ビーム 1の反射成分は、ビーム選択抽出部 4においてビーム aのみが 選択的に抽出されて伝搬し、ビーム b, c, dは遮断される。ビーム選択抽出部 4で選 択抽出されたビーム aは、反射鏡 5で反射されて進行方向を 90度変えた後、光路長 可変部 7によって進行方向を変え、参照光 8としてビームスプリッタ 3に至る。
[0011] 光路長可変部 7は、入射したビームを入射方向に非常に近い方向へ戻す機能を持 ち、光路長可変部 7を設けることにより、被計測ビーム 1の透過成分がビームスプリツ タ 2からビームスプリッタ 3へ至る光路長と、反射成分がビームスプリッタ 2からビームス プリッタ 3へ至る光路長を変化させることができる。実施の形態 1では、光路長可変部 7を位置調整可能なリトロレフレクターで構成している。
[0012] ビームスプリッタ 3で参照光 8と被計測光 9が合成されることにより、干渉が生じる。干 渉光は 2次元光検知器 10に入射し、干渉光の強度が電気信号に変換される。
[0013] 次に、被計測ビーム 1を構成するビーム a, b, c, d間の相対位相差を検出するため の基本動作について説明する。
2次元光検知器 10で観測される干渉光の強度は式(1)で表される。
I = al2 + a22+ 2al - a2cos ( θ 1- Θ 2) (1)
ここで、 Iは干渉光強度、 alは参照光 8の振幅、 a2は被計測光 9の振幅、 θ 1は参 照光 8の位相、 Θ 2は被計測光 9の位相である。
[0014] 式(1)に示すように、干渉光強度 Iは参照光 8と被計測光 9の位相差( θ 1- Θ 2)に 依存して正弦的に変化し、 ( θ 1- Θ 2)が 0のとき、干渉光強度 Iは最大となる。光路 長可変部 7によって参照光 8の光路長を 1波長以下のストロークでスキャンし、干渉光 強度が最大となる光路長をビーム a, b, c, d個別に検出する。この、干渉光強度が最 大となる光路長がビーム a, b, c, dそれぞれで異なるとき、各ビームの位相はずれて おり、また、干渉光強度が最大となる光路長差からそれぞれの位相差を知ることがで きる。
[0015] 以上のように、実施の形態 1によれば、被計測ビーム 1の一部を参照光 8としている ので、レーザ主発振器力も別途参照光を抽出してレーザ位相差検出装置 100に導 入する必要がなぐ従来の技術と比べ、装置を小型化、低コストィヒすることができる。 また、光路長可変部 7を用いて参照光 8と被計測光 9の光路長を変えるようにしたの で、干渉光路を小型の装置内に収めることが可能である。また、ビームスプリッタ 2に よって光束を分岐した後、ビームスプリッタ 3へ至るまでの光路長が短ぐ光路長ゆら ぎを小さくすることができる。
また、干渉光路が小型の装置内に収まるように構成されているため、被計測ビーム 1力 Sパルスレーザのようにコヒーレンス長が短い光であっても、参照光と被計測光との 光路長を必要な精度で一致させることが比較的容易である。
このように、装置の小型化が可能であり、可搬性を高めることができる。また、測定の ための調整が容易である。
[0016] なお、実施の形態 1では、レーザ位相差検出装置 100はマッハツエンダ型干渉計を 応用した構成としたが、他の方式の 2光束干渉計を用いて構成してもよい。また、光 路長可変部 7としてリトロレフレクターを利用しているが、例えば空間位相変調器を用 いても良い。また、 2次元光検知器 10は、被計測ビーム 1を構成する複数のレーザビ ームについて干渉光強度を検出できるものであればよぐ例えば、単素子のフォトダ ィオードを必要数並べたものを使用してもよい。
[0017] 実施の形態 2.
実施の形態 1では、被計測ビーム 1を構成する個々のレーザビームの位相差を検 出するために光路長可変部 7によって光路長をスキャンする際、光路長の変化量を 高精度に把握する必要がある。しかし、ビームスプリッタ 2からビームスプリッタ 3まで の光路長は、温度変化や振動による影響で随時変動する可能性がある。実施の形 態 2は、この光路長変動の補正のための手段を設けたものである。
[0018] 図 2は、実施の形態 2による、レーザ位相差検出装置 200の構成を示すブロック図 である。図 1と同一の符号は、同等の構成要素を表している。図に示すように、レーザ 位相差検出装置 200は、光路長差変動検出部 11を備えている。
[0019] 次に、動作について説明する。
光路長差変動検出部 11は、ビームスプリッタ 2からビームスプリッタ 3までの光路中 における光路長変動による計測誤差を検出するため、参照光 8と、被計測光 9のうち のビーム aに対応する部分の干渉光の強度を計測する。
参照光 8はビームスプリッタ 2で分岐した被計測ビーム 1の一方から、ビーム aを選択 抽出したものであるから、参照光 8と被計測光 9のうちビーム aに対応する部分との干 渉光強度は、ビームスプリッタ 2からビームスプリッタ 3までの光路長の差のみを反映 している。従って、参照光 8と被計測光 9のビーム aに対応する部分の干渉光強度に 基づいて、ビームスプリッタ 2からビームスプリッタ 3までの光路長変動を正確に知るこ とができる。
光路長差変動検出部 11により検出した干渉計内での参照光 8と被計測光 9の光路 長差の変動に基づいて、 2次元光検知器 10の出力信号を信号処理することにより、 光路長差の変動を補正することができる。
[0020] 以上のように、実施の形態 2によれば、光路長差変動検出部 11によってビームスプ リツタ 2からビームスプリッタ 3へ至る参照光 8と被計測光 9の光路長差の変動を検出し 、 2次元光検知器 10の出力信号を信号処理することによって光路長差の変動を補正 するようにしたので、光路長差の変動の影響を排除し、位相ずれ検出の信頼性、安 定性を高めることができる。
[0021] なお、出力信号の信号処理によって光路長差の変動を補正する代わりに、光路長 可変部 7あるいは光路長可変部 7とは別の光路長制御手段に、光路長差変動検出 部 11の出力信号を回帰させ、光路長差を補正するように制御してもよい。
[0022] 実施の形態 3.
実施の形態 1では、光路長可変部 7により光路長をスキャンしている。しかし、被計 測ビーム 1がシングルショットパルスの場合には、光路長をスキャンすることができな いため、実施の形態 1を適用することができない。実施の形態 3では、実施の形態 1を シングルショットパノレスに対応できるように拡張したものである。
[0023] 図 3は、実施の形態 3による、レーザ位相差検出装置 300の構成を示すブロック図 である。図 1と同一の符号は、同等の構成要素を表している。図に示すように、レーザ 位相差検出装置 300は、空間位相差付与部 20を備えている。空間位相差付与部 2 0は、参照光 8の断面において位相差を生じさせるように作用し、例えば、厚みに段 差が存在する平板ガラスによって構成される。 [0024] 次に、動作について説明する。
参照光 8の振幅 alと被計測光 9の振幅 a2が既知であれば、式(1)を用いて位相差 ( θ 1- Θ 2)を求めることが可能である。従って、光路長可変部 7によって光路長をス キャンせず、一回の受光による干渉光強度から位相差を推定することが可能である。 しかし、干渉光強度は位相差( θ 1_ θ 2)に対し正弦的に変化するものであるから、 任意の干渉光強度となる位相差( θ 1- Θ 2)には、 2つの解が存在し、 1つに特定す ることができない。
空間位相差付与部 20を設けたことによって、参照光 8の断面内に位相差が発生す る。この参照光 8の断面内に発生する光路長差を Δ θ 1とすると、式(1)で表される干 渉光強度の他に、式(2)で示す干渉光強度が同時に観測できる。
I = al2 + a22+ 2al - a2cos ( θ 1— Θ 2 + Δ θ 1) (2)
式(1)と式(2)とを同時に満足する位相差(θ 1_ θ 2)は唯一しか存在しないため、 Δ θ 1が既知であれば、 2つの干渉光強度から、位相差( θ 1- Θ 2)を得ることが可能 となる。
[0025] 以上のように、被計測ビーム 1が単パルスレーザであっても、 1回の受光で相対位 相差を検出することが可能である。
なお、空間位相差付与部 20は、 1つの位相差のみを空間的に生じさせるものであ るが、 2つ以上の相異なる位相差を生じさせるものであってよい。
また、式(1)、式(2)において、振幅 al、 a2は事前に計測してもよいし、被計測光 9 を分岐計測する計測手段を別途設け、位相ずれ検出と同時に計測するようにしても よい。
[0026] 実施の形態 4.
実施の形態 4は、実施の形態 1の SZN比を向上させるものである。
図 4は、実施の形態 4による、レーザ位相差検出装置 400の構成を示すブロック図 である。図 1と同一の符号は、同等の構成要素を表している。図に示すように、レーザ 位相差検出装置 400は、ビーム径拡大部 30を備えている。ビーム径拡大部 30は、 参照光 8を被計測光 9と等しい径に拡大し、例えば、ガリレオ型テレスコープを用いる こと力 Sできる。 [0027] 次に、動作について説明する。
実施の形態 4では、ビーム径拡大部 30によって参照光 8のビーム径と被計測光 9の ビーム径が等しくなる。このため、干渉光に利用される被計測光 9の割合が多くなり、 光の利用効率が向上する。そのため、被計測ビーム 1の強度を小さくすることができ る。
さらに、ビーム径拡大部 30にスペーシャルフィルタ機能を兼ねさせれば、参照光 8 を高精度な平面波とすることも可能である。これにより、被計測ビーム 1を構成するビ ーム a, b, c, d間の位相ずれだけでなぐビーム断面内の位相分布を干渉光強度か ら検出することも可能となる。
[0028] なお、実施の形態 4では、参照光 8の光路上にビーム径拡大部 30を設置したが、 被計測光 9の光路上にビーム径縮小部を設け、被計測光 9のビーム径を縮小するこ とにより、参照光 8のビーム径と被計測光 9のビーム径が等しくなるようにしても同様の 効果が得られる。
[0029] 実施の形態 5.
実施の形態 5は、実施の形態 1の S/N比を向上させるものである。
図 5は、実施の形態 5による、レーザ位相差検出装置 500の構成を示すブロック図 である。図 1と同一の符号は、同等の構成要素を表している。図に示すように、レーザ 位相差検出装置 500は、光路長制御部 41、信号処理部 42を備えている。
[0030] 次に、動作について説明する。
レーザ位相差検出装置 500では、光路長制御部 41によって光路長可変部 7を駆 動することにより、参照光 8の光路長を一定周波数、振幅で変調する。変調は、例え ばボイスコイルによる振動発生素子を用いて実現する。信号処理部 42は、 2次元光 検知器 10の出力である干渉光強度信号の時系列変化を記憶し、フーリエ変換を行う
[0031] 式(1)で示したように、干渉光強度 Iは位相差( θ 1_ θ 2)に依存して正弦的に変化 する。従って、光路長制御部 41により参照光 8の光路長に変調を加えたときの干渉 光強度 Iの振幅 Δ Ιも位相差( θ 1- Θ 2)に依存してほぼ正弦的に変化し、次の関係 力 Sある。 ( θ 1— θ 2) =0→Δ Ι最小 (3)
( θ 1— θ 2) = π /2,— π /2→Δ ΐ最大 (4)
すなわち、干渉光強度 Iの振幅 Δ Iが得られれば、位相差( θ 1- Θ 2)を知ることが できる。干渉光強度 Iの振幅 Δ Ιは、信号処理部 42の出力であるフーリエ変換結果か ら、変調周波数のパワースペクトルを抽出することにより得られる。ただし、パワースぺ タトルからは位相差( θ 1_ θ 2)の正負が判定できないため、位相の正負を判定する ために、例えば、光路長制御部 41から変調信号を抽出して干渉光強度の波形のロッ クイン検波を行う。
[0032] 以上のように、実施の形態 5によれば、干渉光強度の変調周波数のみを検出するこ とにより雑音の影響を受けにくくなり、高精度に位相差を検出することが可能である。
[0033] 実施の形態 6.
実施の形態 6は、実施の形態 1一 5のレーザ位相差検出装置を用いた、レーザ位 相制御装置を示すものである。
図 6は、実施の形態 6による、レーザ位相制御装置 600の構成を示す図である。 図に示すように、レーザ位相制御装置 600は、レーザ光源 50、分配部 51、位相遅 延可変装置 (位相遅延可変部) 52、増幅部 53、合成部 54、レーザビーム抽出部 55 、位相差検出装置 (位相差検出部) 56、位相差制御装置 (位相差制御部) 57を備え ている。
[0034] 次に、動作について説明する。
レーザ光源 50から発振されたレーザビームは、分配部 51によって複数の相互にコ ヒーレントなレーザビームに分配される。分配部 51は、複数のビームスプリッタで構成 されている。位相遅延可変装置 52は、コヒーレント結合させたいレーザビームの相対 位相差を変化させる。相対位相差を変化させる方法は、ここではミラー 521の位置を 変化させることで実現している。増幅部 53は、分配部 51から出力され、位相遅延可 変装置 52によって相対位相差を変化させた複数のレーザビームの強度を増幅する と共に、必要に応じてビーム系を拡大し、出力する。合成部 54は、ミラーなどで構成 され、増幅部 53の出力であるレーザビームがコヒーレント結合するように、各々のレ 一ザビームの空間配置、角度を変換する。レーザビーム抽出部 55は、ビームスプリツ タなどで構成され、合成部 54が出力した複数のレーザビームを位相差検出装置 56 に供給するために抽出する。
位相差検出装置 56は、実施の形態 1一 5のいずれかのレーザ位相差検出装置で あり、レーザビーム抽出部 55によって抽出された複数のレーザビームを被計測ビー ム 1として、位相差を検出し、出力する。
位相差制御装置 57は、位相差検出装置 56で検出された複数のレーザビームの相 対位相差と、 目的に応じてあらかじめ記憶されている相対位相差との差を演算し、こ の差から複数のレーザビームの相対誤差と、 目的に応じてあら力、じめ記憶されている 相対位相差との差を演算し、さらにこの差から複数のレーザビームの相対位相差が 目標値となるための相対位相差補正量を演算し、位相遅延可変装置 52に回帰制御 信号を出力する。
[0035] 以上のように、実施の形態 6によれば、位相差検出装置 56に、実施の形態 1一 5の レーザ位相差検出装置のいずれかを用いているので、実施の形態 1一 5と同様の効 果が得られ、コヒーレント結合させたレ、複数のレーザビームの相対位相差を所定の状 態に維持することができる。
産業上の利用可能性
[0036] 以上のように、この発明に係るレーザ位相差検出装置は、相互にコヒーレントな複 数のレーザビームを統制して扱う装置全般における、光計測技術、光制御技術とし て適している。

Claims

請求の範囲
[1] レーザビーム群を構成する個々のレーザビームを第 1の光路を進行する第 1のレー ザビーム群と第 2の光路を進行する第 2のレーザビーム群に分岐する光路分岐部と、 上記第 1のレーザビーム群の中から、 1つのレーザビームを参照光として選択通過 させるビーム選択抽出部と、
上記第 1の光路の光路長を可変とする光路長可変部と、
上記参照光と上記第 2のレーザビーム群を構成する個々のレーザビームを合成し、 干渉光を生じさせる光路合成部と、
上記干渉光の強度を検出する光検知器を備え、
上記光路長可変部によって上記第 1の光路の光路長を変化させることにより、上記 第 2のレーザビーム群を構成する個々のレーザビーム毎に上記干渉光の強度が最 大となる光路長を検出し、その光路長に基づいて、個々のレーザビーム間の位相差 を求めることを特徴とするレーザ位相差検出装置。
[2] 第 2のレーザビーム群を構成するレーザビームのうち参照光に対応するレーザビー ムと参照光との干渉光の強度に基づいて、第 1の光路と第 2の光路の光路長差の変 動量を算出する光路長差変動検出部を備え、
算出された上記変動量に基づいて、光検知器の出力信号を信号処理することによ り、上記光路長差の変動を補正することを特徴とする請求項 1記載のレーザ位相差 検出装置。
[3] 光路長差変動検出部によって算出された光路長差の変動量に基づいて、光路長 可変部を駆動することにより光路長差を補正することを特徴とする請求項 2記載のレ 一ザ位相差検出装置。
[4] 第 1の光路上に、透過する参照光の断面内に位相差を生じさせる空間位相差付与 部を備えたことを特徴とする請求項 1記載のレーザ位相差検出装置。
[5] 第 1の光路上に、参照光の径を拡大して第 2のレーザビーム群の径と等しくするビ ーム径拡大部を設ける力、または、第 2の光路上に、第 2のレーザビーム群の径を縮 小して参照光の径と等しくするビーム径縮小部を設けたことを特徴とする請求項 1記 載のレーザ位相差検出装置。
[6] 光検知器が検出した干渉光強度の時系列変化をフーリエ変換する信号処理部と、 第 1の光路の光路長をある周波数で、微小振幅で変化させるように、光路長可変部 を駆動する光路長制御部を備えたことを特徴とする請求項 1記載のレーザ位相差検 出装置。
[7] レーザ光源と、
上記レーザ光源から出力されたレーザビームを複数のレーザビームに分配する分 配部と、
上記分配部で分配された複数のレーザビームの強度をそれぞれ増幅する増幅部と 上記増幅部で増幅された複数のレーザビームをコヒーレント結合する合成部と、 上記分配部で分配されたレーザビームの位相を制御する位相遅延可変部と、 上記増幅部で増幅された複数のレーザビーム間の位相差を検出する位相差検出 部と、
上記位相差検出装置で検出された複数のレーザビーム間の位相差に基づいて、 上記合成部でコヒーレント結合されたレーザビームの空間強度分布を任意に制御す る位相差制御部を備え、
上記位相差検出部は、請求項 1記載のレーザ位相差検出装置であることを特徴と するレーザ位相制御装置。
PCT/JP2004/012012 2004-08-20 2004-08-20 レーザ位相差検出装置およびレーザ位相制御装置 WO2006018897A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/658,315 US7768699B2 (en) 2004-08-20 2004-08-20 Laser phase difference detecting device and laser phase control device
PCT/JP2004/012012 WO2006018897A1 (ja) 2004-08-20 2004-08-20 レーザ位相差検出装置およびレーザ位相制御装置
EP04771973A EP1796228A1 (en) 2004-08-20 2004-08-20 Laser phase difference detector and laser phase controller
JP2006531143A JP4459961B2 (ja) 2004-08-20 2004-08-20 レーザ位相差検出装置およびレーザ位相制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/012012 WO2006018897A1 (ja) 2004-08-20 2004-08-20 レーザ位相差検出装置およびレーザ位相制御装置

Publications (1)

Publication Number Publication Date
WO2006018897A1 true WO2006018897A1 (ja) 2006-02-23

Family

ID=35907294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012012 WO2006018897A1 (ja) 2004-08-20 2004-08-20 レーザ位相差検出装置およびレーザ位相制御装置

Country Status (4)

Country Link
US (1) US7768699B2 (ja)
EP (1) EP1796228A1 (ja)
JP (1) JP4459961B2 (ja)
WO (1) WO2006018897A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184449A1 (en) * 2014-06-26 2017-06-29 Sony Corporation Imaging device and method
JP2017519987A (ja) * 2014-06-16 2017-07-20 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ 光ビームの特性評価のためのデバイスおよび方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159737B2 (en) * 2009-04-27 2012-04-17 Phase Sensitive Innovations, Inc. Controlling the phase of optical carriers
US8184362B2 (en) * 2009-06-15 2012-05-22 The Boeing Company Phase control and locking method for coherently combining high-gain multi-stage fiber amplifiers
CN102175333B (zh) * 2011-01-25 2014-06-18 北京工业大学 利用同步移相干涉术测量激光脉冲宽度与相对相位的方法与装置
GB2490143B (en) * 2011-04-20 2013-03-13 Rolls Royce Plc Method of manufacturing a component
TWI473373B (zh) * 2012-11-30 2015-02-11 Ind Tech Res Inst 間隔時間可調脈衝序列產生裝置
GB2566284A (en) 2017-09-07 2019-03-13 Univ Aston Laser detection system
JP7071849B2 (ja) * 2018-03-09 2022-05-19 リオン株式会社 パーティクルカウンタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340555A (ja) * 1998-04-24 1999-12-10 Trw Inc 同位相波面制御を備えた高平均パワ―固体レ―ザ―システム
JP2000056280A (ja) * 1998-08-11 2000-02-25 Trw Inc 位相面制御を有する高平均パワ―・ファイバ・レ―ザ・システム
JP2000323774A (ja) * 1999-04-01 2000-11-24 Trw Inc 高速並列波面センサを有する改良高速平均パワー・ファイバ・レーザ・システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798437A (en) * 1984-04-13 1989-01-17 Massachusetts Institute Of Technology Method and apparatus for processing analog optical wave signals
JP2767000B2 (ja) * 1990-01-23 1998-06-18 日本電信電話株式会社 導波路分散測定方法および装置
JP2003130609A (ja) 2001-10-26 2003-05-08 Hitachi Cable Ltd マッハツェンダ干渉計光センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340555A (ja) * 1998-04-24 1999-12-10 Trw Inc 同位相波面制御を備えた高平均パワ―固体レ―ザ―システム
JP2000056280A (ja) * 1998-08-11 2000-02-25 Trw Inc 位相面制御を有する高平均パワ―・ファイバ・レ―ザ・システム
JP2000323774A (ja) * 1999-04-01 2000-11-24 Trw Inc 高速並列波面センサを有する改良高速平均パワー・ファイバ・レーザ・システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519987A (ja) * 2014-06-16 2017-07-20 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ 光ビームの特性評価のためのデバイスおよび方法
JP2017519988A (ja) * 2014-06-16 2017-07-20 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ 光ビームの特性評価のためのデバイスおよび方法
US20170184449A1 (en) * 2014-06-26 2017-06-29 Sony Corporation Imaging device and method
US11054304B2 (en) * 2014-06-26 2021-07-06 Sony Corporation Imaging device and method

Also Published As

Publication number Publication date
US7768699B2 (en) 2010-08-03
EP1796228A1 (en) 2007-06-13
JP4459961B2 (ja) 2010-04-28
US20080304139A1 (en) 2008-12-11
JPWO2006018897A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
US9115971B2 (en) Measuring apparatus
CN101430190B (zh) 干涉仪
JP2010515919A5 (ja)
JP6654948B2 (ja) パルス光の波形計測方法及び波形計測装置
JP5336921B2 (ja) 振動計測装置及び振動計測方法
WO2014203654A1 (ja) 距離測定装置、形状測定装置、加工システム、距離測定方法、形状測定方法および加工方法
JP2017038094A (ja) コヒーレントレーザアレイ制御システムおよび方法
JP2002082045A (ja) 光計測システム
JP2023546168A (ja) マッチドフィルタリングを用いたコヒーレントlidarシステムにおけるミラーによるドップラー拡散を補償する技術
JP4459961B2 (ja) レーザ位相差検出装置およびレーザ位相制御装置
JP2009053096A (ja) 測定装置
JP5421013B2 (ja) 位置決め装置及び位置決め方法
JP4786540B2 (ja) レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置
JP5949341B2 (ja) 距離測定装置
US20070024854A1 (en) Heterodyne array detector
JP4388334B2 (ja) 光反応装置及び光反応制御方法
JP2012132711A (ja) パルス間位相ズレ測定装置、オフセット周波数制御装置、パルス間位相ズレ測定方法、オフセット周波数制御方法
JP2013033014A (ja) ドップラー振動計測装置及びドップラー振動計測方法
JP3235738B2 (ja) アブソリュート測長器
JPH06186337A (ja) レーザ測距装置
WO2022209789A1 (ja) 光ビーム生成装置および光探知機
CN115655663B (zh) 全光纤结构激光器的线宽测量方法及系统
JP7246596B2 (ja) ブリルアン周波数シフト分布測定装置及びブリルアン周波数シフト分布測定方法
JP2003090704A (ja) 光ヘテロダイン干渉計
JPH01201122A (ja) 光パルス測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531143

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11658315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2004771973

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771973

Country of ref document: EP