JP2010199566A - 半導体装置及びその作製方法 - Google Patents

半導体装置及びその作製方法 Download PDF

Info

Publication number
JP2010199566A
JP2010199566A JP2010014010A JP2010014010A JP2010199566A JP 2010199566 A JP2010199566 A JP 2010199566A JP 2010014010 A JP2010014010 A JP 2010014010A JP 2010014010 A JP2010014010 A JP 2010014010A JP 2010199566 A JP2010199566 A JP 2010199566A
Authority
JP
Japan
Prior art keywords
layer
oxide semiconductor
thin film
film transistor
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010014010A
Other languages
English (en)
Other versions
JP2010199566A5 (ja
JP5591547B2 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Junichiro Sakata
淳一郎 坂田
Hideyuki Kishida
英幸 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2010014010A priority Critical patent/JP5591547B2/ja
Publication of JP2010199566A publication Critical patent/JP2010199566A/ja
Publication of JP2010199566A5 publication Critical patent/JP2010199566A5/ja
Application granted granted Critical
Publication of JP5591547B2 publication Critical patent/JP5591547B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】酸化物半導体を用いた薄膜トランジスタにおいて、電界効果移動度を向上させることを課題の一とする。また、薄膜トランジスタの電界効果移動度を向上させても、オフ電流の増大を抑制することを課題の一とする。また、該酸化物半導体を用いた薄膜トランジスタを有する表示装置を提供することを課題の一とする。
【解決手段】薄膜トランジスタを形成するにあたって、酸化物半導体層を用い、該酸化物半導体層とゲート絶縁層の間に、該酸化物半導体層より高い導電率を有するチタン化合物を含むクラスターを形成する。
【選択図】図1

Description

本発明は、酸化物半導体を用いる半導体装置と、該半導体装置を用いた表示装置及びそれらの作製方法に関する。
金属酸化物は多様に存在しさまざまな用途に用いられている。酸化インジウムはよく知られた材料であり、液晶ディスプレイなどで必要とされる透光性を有する電極材料として用いられている。
金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物は化合物半導体の一種である。化合物半導体とは、2種以上の原子が結合してできる半導体である。一般的に、金属酸化物は絶縁体となる。しかし、金属酸化物を構成する元素の組み合わせによっては半導体となることが知られている。
例えば、金属酸化物の中で、酸化タングステン、酸化錫、酸化インジウム、酸化亜鉛、酸化チタンなどは半導体特性を示すことが知られている。また、このような金属酸化物で構成される透明半導体層をチャネル形成領域とする薄膜トランジスタが開示されている(特許文献1乃至4、非特許文献1、非特許文献7)。
ところで、金属酸化物は一元系酸化物のみでなく多元系酸化物も知られている。例えば、ホモロガス相を有するInGaO(ZnO)(m:自然数)は公知の材料である(非特許文献2乃至4)。
そして、上記のようなIn−Ga−Zn系酸化物を薄膜トランジスタのチャネル層として適用可能であることが確認されている(特許文献5、非特許文献5及び6)。
従来、アクティブマトリクス型液晶ディスプレイの各画素に設けられる薄膜トランジスタ(TFT)には、アモルファスシリコンや多結晶シリコン用いられてきたが、これらシリコン材料に代わって、上記のような金属酸化物半導体を用いて薄膜トランジスタを作製する技術が注目されている。例えば、金属酸化物半導体膜として酸化亜鉛、In−Ga−Zn−O系酸化物半導体を用いて薄膜トランジスタを作製し、画像表示装置のスイッチング素子などに用いる技術が特許文献6及び特許文献7で開示されている。
特開昭60−198861号公報 特開平8−264794号公報 特表平11−505377号公報 特開2000−150900号公報 特開2004−103957号公報 特開2007−123861号公報 特開2007−96055号公報
M. W. Prins, K. O. Grosse−Holz, G. Muller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf、「A ferroelectric transparent thin−film transistor」、 Appl. Phys. Lett., 17 June 1996, Vol.68, p.3650−3652 M. Nakamura, N. Kimizuka, and T. Mohri、「The Phase Relations in the In2O3−Ga2ZnO4−ZnO System at 1350℃」、J. Solid State Chem., 1991, Vol.93, p.298−315 N. Kimizuka, M. Isobe, and M. Nakamura、「Syntheses and Single−Crystal Data of Homologous Compounds, In2O3(ZnO)m(m=3,4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m(m=7,8,9, and 16) in the In2O3−ZnGa2O4−ZnO System」、 J. Solid State Chem., 1995, Vol.116, p.170−178 中村真佐樹、君塚昇、毛利尚彦、磯部光正、「ホモロガス相、InFeO3(ZnO)m(m:自然数)とその同型化合物の合成および結晶構造」、固体物理、1993年、Vol.28、No.5、p.317−327 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono、「Thin−film transistor fabricated in single−crystalline transparent oxide semiconductor」、SCIENCE, 2003, Vol.300, p.1269−1272 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono、「Room−temperature fabrication of transparent flexible thin−film transistors using amorphous oxide semiconductors」, NATURE, 2004, Vol.432, p.488−492 古林ら、Japanese Journal of Applied Physics 、Vol.44, No.34, 2005, p.L1063−L1065
酸化物半導体膜はスパッタリング法などによって300℃以下の温度で膜形成が可能であり、酸化物半導体にチャネル形成領域を設ける薄膜トランジスタを大型基板の広い範囲に形成することは容易である。従って、アクティブマトリクス型の表示装置への応用が期待されている。
一方、アクティブマトリクス型の液晶表示装置では、短いゲートスイッチング時間の間に液晶層への電圧の印加及び保持容量の充電を行うため、大きい駆動電流が必要とされる。特に、画面を大型化又は高精細化した液晶表示装置では、より大きい駆動電流が要求される。そのため、スイッチング素子として用いられる薄膜トランジスタは、電界効果移動度が高いものが好ましい。
そこで、酸化物半導体を用いた薄膜トランジスタにおいて、電界効果移動度を向上させることを課題の一とする。また、薄膜トランジスタの電界効果移動度を向上させても、オフ電流の増大を抑制することを課題の一とする。また、該酸化物半導体を用いた薄膜トランジスタを有する表示装置を提供することを課題の一とする。
薄膜トランジスタを形成するにあたって、酸化物半導体層を用い、該酸化物半導体層とゲート絶縁層の間に、チタンを含み該酸化物半導体層より導電率が高いクラスターを形成することを要旨とする。
開示する発明の一例は、ゲート電極層と、前記ゲート電極層上にゲート絶縁層と、前記ゲート絶縁層上にチタンを含む複数のクラスターと、前記ゲート絶縁層及び前記チタンを含む複数のクラスター上に酸化物半導体層と、前記酸化物半導体層上にソース電極層及びドレイン電極層を有し、前記酸化物半導体層と前記ソース電極層及びドレイン電極層が電気的に接続する半導体装置である。
開示する発明の他の一例は、ゲート電極層と、前記ゲート電極層上にゲート絶縁層と、前記ゲート絶縁層上にチタンを含む複数のクラスターと、前記ゲート絶縁層及び前記チタンを含む複数のクラスター上に酸化物半導体層と、前記酸化物半導体層上にn型の導電型を有するバッファ層と、前記バッファ層上にソース電極層及びドレイン電極層を有し、複数の前記チタンを含むクラスターの導電率は、前記酸化物半導体層の導電率より高く、前記バッファ層のキャリア濃度は、前記酸化物半導体層のキャリア濃度より高く、前記酸化物半導体層と前記ソース電極層及びドレイン電極層が前記バッファ層を介して電気的に接続する半導体装置である。
なお、前記複数のクラスターは、前記酸化物半導体層より高い導電率を有するチタン化合物を含む。
なお、前記チタンを含む複数のクラスターの前記ゲート絶縁層と接する面を基準とする高さは、3nm以上5nm以下であることが好ましい。また、前記チタンを含む複数のクラスターは、ニオブ(Nb)、タンタル(Ta)から選ばれる少なくとも1種の不純物元素を含むことが好ましい。
なお、前記酸化物半導体層及び前記バッファ層はインジウム、ガリウム、または亜鉛を含むことが好ましい。また、前記酸化物半導体層の膜厚は、10nm以上150nm以下、好ましくは20nm以上60nm以下である。
なお、前記酸化物半導体層は、前記ソース電極層とドレイン電極層の間に、前記ソース電極層及びドレイン電極層と重なる領域よりも膜厚の薄い領域を有することが好ましい。また、前記酸化物半導体層の上に無機材料からなるチャネル保護層を有していてもよい。
開示する発明の他の一例は、基板上にゲート電極層を形成し、前記ゲート電極層上にゲート絶縁層を形成し、前記ゲート絶縁層上に、チタンを含む複数のクラスターを分散して形成し、前記ゲート絶縁層及び前記チタンを含む複数のクラスター上に、酸化物半導体膜をスパッタ法によって成膜し、前記酸化物半導体膜をエッチングして島状の酸化物半導体層を形成し、前記島状の酸化物半導体層の上に導電層を成膜し、前記導電層をエッチングして酸化物半導体層とソース電極層及びドレイン電極層を形成する、ゲート絶縁層及びチタンを含む複数のクラスター上に酸化物半導体層を有する半導体装置の作製方法である。
なお、本明細書中においてクラスターとは、複数の原子又は分子が集まってできる構造単位であり、膜構造をとっていないものを指し、チタンを含むクラスターとは、チタンを含み導電性を有するクラスターを指す。従って、チタンを含み導電性を有するクラスターを集め膜を形成すればチタンを含む複数のクラスター上に形成される酸化物半導体層より高い導電性を示す。また、光を照射することなく導電性を有している。
なお、第1、第2として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。また、本明細書において発明を特定するための事項として固有の名称を示すものではない。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
酸化物半導体層を用いた薄膜トランジスタにおいて、酸化物半導体層とゲート絶縁層の間に、チタンを含み該酸化物半導体層より導電率が高いクラスターを形成することによって、該薄膜トランジスタの電界効果移動度を向上できる。また、薄膜トランジスタの電界効果移動度を向上させながらもオフ電流の増大を抑制できる。
該薄膜トランジスタを表示装置の画素部及び駆動回路部に用いることによって、電気特性が高く信頼性のよい表示装置を提供することができる。
実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置の作製方法を説明する図。 実施の形態に係る半導体装置を説明する図。 半導体装置のブロック図を説明する図。 信号線駆動回路の構成を説明する図。 信号線駆動回路の動作を説明するタイミングチャート。 信号線駆動回路の動作を説明するタイミングチャート。 シフトレジスタの構成を説明する図。 実施の形態に係るフリップフロップの接続構成を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置の画素等価回路を説明する図。 実施の形態に係る半導体装置を説明する図。 実施の形態に係る半導体装置を説明する図。 電子ペーパーの使用形態の例を説明する図。 電子書籍の一例を示す外観図。 テレビジョン装置およびデジタルフォトフレームの例を示す外観図。 遊技機の例を示す外観図。 携帯電話機の一例を示す外観図。 チタン化合物の状態密度を説明する図。 チタン化合物の状態密度を説明する図。 チタン化合物の状態密度を説明する図。 チタン化合物の状態密度を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、薄膜トランジスタの構造について、図1を用いて説明する。
本実施の形態のボトムゲート構造の薄膜トランジスタを図1に示す。図1(A)は断面図であり、図1(B)は平面図である。図1(A)は、図1(B)における線A1−A2の断面図となっている。また図1(C)は、図1(A)の酸化物半導体層103における拡大図である。
図1に示す薄膜トランジスタには、基板100上にゲート電極層101が設けられ、ゲート電極層101上にゲート絶縁層102が設けられ、ゲート絶縁層102上にチタンを含む複数のクラスター106が分散して設けられ、ゲート絶縁層102及び複数のチタンを含むクラスター106上に酸化物半導体層103が設けられ、酸化物半導体層103上にソース電極層又はドレイン電極層105a、105bが設けられている。なお、酸化物半導体層103の少なくとも一部は、ゲート絶縁層102の上に接して設けられている。
ゲート電極層101は、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジウムなどの金属材料、またはこれらの金属材料を主成分とする合金材料、またはこれらの金属材料を成分とする窒化物を用いて、単層又は積層で形成する。アルミニウムや銅などの低抵抗導電性材料で形成するのが望ましいが、耐熱性が低い、または腐食しやすいという問題点があるので耐熱性導電性材料と組み合わせて用いるのが好ましい。耐熱性導電性材料としては、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジウム等を用いる。
例えば、ゲート電極層101の積層構造としては、アルミニウム層上にモリブデン層が積層された二層の積層構造、または銅層上にモリブデン層を積層した二層構造、または銅層上に窒化チタン層若しくは窒化タンタル層を積層した二層構造、窒化チタン層とモリブデン層とを積層した二層構造とすることが好ましい。3層の積層構造としては、タングステン層または窒化タングステン層と、アルミニウムとシリコンの合金またはアルミニウムとチタンの合金と、窒化チタンまたはチタン層とを積層した構造とすることが好ましい。
酸化物半導体層103を形成する酸化物半導体としては、InMO(ZnO)(m>0)で表記される構造の酸化物半導体を用いるのが好ましく、特にIn−Ga−Zn−O系酸化物半導体を用いるのが好ましい。なお、Mは、ガリウム(Ga)、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)及びコバルト(Co)から選ばれた一の金属元素又は複数の金属元素を示す。例えばMとして、Gaの場合があることの他、GaとNi又はGaとFeなど、Ga以外の上記金属元素が含まれる場合がある。また、上記酸化物半導体において、Mとして含まれる金属元素の他に、不純物元素としてFe、Niその他の遷移金属元素、又は該遷移金属の酸化物が含まれているものがある。本明細書においては、InMO(ZnO)(m>0)で表記される構造の酸化物半導体のうち、Mとして少なくともGaを含む構造の酸化物半導体をIn−Ga−Zn−O系酸化物半導体と呼び、該薄膜をIn−Ga−Zn−O系非単結晶膜とも呼ぶ。
In−Ga−Zn−O系非単結晶膜の結晶構造は、XRD(X線回析)の分析によりアモルファス構造が観察された。なお、In−Ga−Zn−O系非単結晶膜は、スパッタ法で成膜した後、200℃〜500℃、代表的には300〜400℃で10分〜100分熱処理を行っている。
ただし、酸化物半導体層103を形成する酸化物半導体層は、InMO(ZnO)(m>0)で表記される構造の酸化物半導体層に限られるものではない。例えば、酸化インジウム(InO)、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム亜鉛(IZO)、酸化インジウムスズ(ITO)、酸化シリコンを含む酸化インジウムスズ(ITSO)、ガリウムを添加した酸化亜鉛(GZO)等からなる酸化物半導体層を用いてもよい。
酸化物半導体層103の膜厚は、10nm以上150nm以下、好ましくは20nm以上60nm以下とする。また、酸化物半導体層103は、ソース電極層又はドレイン電極層105a、105bの間に、ソース電極層又はドレイン電極層105a、105bと重なる領域よりも膜厚の薄い領域を有する。
酸化物半導体層103のキャリア濃度範囲は1×1017/cm未満(より好ましくは1×1011/cm以上)が好ましい。酸化物半導体層103のキャリア濃度範囲が上記の範囲を超えると、薄膜トランジスタがノーマリーオンとなる恐れがある。
酸化物半導体層103には、絶縁性の不純物を含ませても良い。当該不純物として、酸化シリコン、酸化ゲルマニウムなどに代表される絶縁性酸化物、窒化シリコンなどに代表される絶縁性窒化物、若しくは酸窒化シリコンなどの絶縁性酸窒化物が適用される。
これらの絶縁性酸化物若しくは絶縁性窒化物は、酸化物半導体の電気伝導性を損なわない濃度で添加される。
酸化物半導体層103に絶縁性の不純物を含ませることにより、該酸化物半導体層103の結晶化を抑制することができる。酸化物半導体層103の結晶化を抑制することにより、薄膜トランジスタの特性を安定化することが可能となる。
また、In−Ga−Zn−O系酸化物半導体に酸化シリコンなどの不純物を含ませておくことで、300℃乃至600℃の熱処理を行っても、該酸化物半導体の結晶化又は微結晶粒の生成を防ぐことができる。
In−Ga−Zn−O系酸化物半導体をチャネル形成領域とする薄膜トランジスタの製造過程では、熱処理を行うことでS値(subthreshold swing value)や電界効果移動度を向上させることが可能であるが、そのような場合でも薄膜トランジスタがノーマリーオンになってしまうのを防ぐことができる。また、当該薄膜トランジスタに熱ストレス、バイアスストレスが加わった場合であっても、しきい値電圧の変動を防ぐことができる。
酸化物半導体層103に適用する酸化物半導体として上記の他にも、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、Sn−Zn−O系、Ga−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体を適用することができる。すなわち、これらの酸化物半導体に絶縁性の不純物を含ませることにより、該酸化物半導体層103の結晶化を抑制し、薄膜トランジスタの特性を安定化することが可能となる。
チタンを含むクラスター106は、チタンを含み酸化物半導体層103より導電率が高いクラスターである。例えば、金属チタン、窒化チタン、酸化チタンをその例に挙げることができる。また、チタンを含む酸化物に、ニオブ(Nb)、タンタル(Ta)等の不純物を添加して、導電率を高めてもよい。なお、チタンを含むクラスター106は、結晶化していてもよい。
酸化物半導体層103より導電率が高いクラスターとして用いるチタン化合物の電子状態は、状態密度の計算により知ることができる。状態密度の計算は密度汎関数理論に基づく第一原理計算により行い、計算したチタン化合物の構造はそれぞれ、TiO(NaCl型)、Ti(Al型)、TiO(Anatase、Rutile、Brookite)、Ti、窒化チタン(Osbornite)、TiO0.50.5(NaCl型)であり、構造を最適化し電子状態を計算した。計算プログラムにはCASTEPを、汎関数にはGGA−PBEを用いる。
チタンの状態密度を計算した結果、図32(a)に示すようにフェルミ準位が伝導帯の内部にあり金属であることが判る。同様に、窒化チタンおよび酸窒化チタン(TiO0.50.5)についても、図32(b)および図32(c)に示す状態密度図から金属と同様の導電機構で導電性を示すことが判る。
また、一酸化チタン(TiO)及びTiの状態密度を計算した結果を示す図33(a)、図33(b)においても、フェルミ準位が伝導帯の内部に存在することが認められ、金属と同様の導電機構で導電性を示すことが判る。
一方、図34(a)乃至図34(c)に示す二酸化チタン(TiO)の状態密度図ではフェルミ準位が価電子帯の上端にあり、また大きなバンドギャップが認められることから半導体的であると言える。従って、酸化チタンTiO(x>0)は酸素の組成が高い場合は半導体的であるが、酸素の組成が低くなるにつれて金属と同様の導電機構で導電性を示すようになると言える。また、アナターゼ型の二酸化チタン(TiO)に不純物としてNbを添加すると、状態密度は図35に示すように伝導帯にフェルミ準位が移動し、キャリアが発生して伝導率が高まることが判る。以上のように、チタンを含む化合物の多くが導電性を示し、本実施の形態のチタンを含むクラスターに用いることができる。
また、チタンを含むクラスター106の高さRは、0nmより大きく、10nm以下とし、好ましくは3nm以上5nm以下とする。ここで高さRは、図1(C)に示すように、ゲート絶縁層102の平面とチタンを含むクラスター106が接する面を基準とするチタンを含むクラスター106の高さのことである。またチタンを含むクラスター106の形状は、図1(C)のチタンを含むクラスター106aのように半球状のものに限られない。チタンを含むクラスター106bのように半球を横に扁平にした形状となっていてもよいし、チタンを含むクラスター106cのように半球を縦に扁平にした形状となっていてもよい。
酸化物半導体層103のチャネル形成領域において、チタンを含む複数のクラスター106は分散して設けられている。よって、薄膜トランジスタがオンのときには、チタンを含むクラスター106を通ってドレイン電流が流れることで、電界効果移動度を増大させることができる。また、薄膜トランジスタがオフのときには、酸化物半導体層103がキャリアの誘起を防止することで、オフ電流の増大を抑制することができる。
また、チタンを含むクラスター106は酸素への親和性が高いため、周囲を取り囲む酸化物半導体層103から酸素を引き寄せる。その結果、チタンを含むクラスター106と酸化物半導体層103は、界面の電気的な接合が良好になる。
ソース電極層又はドレイン電極層105a、105bは、第1の導電層112a、112b、第2の導電層113a、113b、第3の導電層114a、114bからなる3層構造となっている。第1の導電層(112a、112b)、第2の導電層(113a、113b)、及び第3の導電層(114a、114b)の材料としては、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジウムなどの金属材料、またはこれらの金属材料を主成分とする合金材料、またはこれらの金属材料を成分とする窒化物を用いることができる。特に、配線抵抗を抑制するにはアルミニウムや銅などの低抵抗導電性材料で形成するのが望ましいが、耐熱性が低い、または腐食しやすいという問題点があるので耐熱性導電性材料と組み合わせて用いるのが好ましい。耐熱性導電性材料としては、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジウム等を用いる。
例えば、第1の導電層112a、112b及び第3の導電層114a、114bに耐熱性導電性材料であるチタンを用い、第2の導電層113a、113bに低抵抗であるネオジムを含むアルミニウム合金を用いるのが好ましい。このような構成にすることで、電気抵抗とヒロックの発生を抑制した導電層を形成できる。なお、本実施の形態では、ソース電極層又はドレイン電極層105a、105bを第1の導電層112a、112b、第2の導電層113a、113b、第3の導電層114a、114bからなる3層構造としたが、これに限られることはなく、単層構造としてもよいし、2層構造としてもよいし、4層以上の構造としてもよい。
また、図1に示す逆スタガ型構造の薄膜トランジスタに限られず、図2に示すように、酸化物半導体層103の上にチャネル保護層104が設けられた逆スタガ型構造の薄膜トランジスタとしてもよい。チャネル保護層104としては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法で成膜された無機材料(酸化シリコン、窒化珪素、酸化窒化珪素、窒化酸化シリコンなど)を用いることができる。酸化物半導体層103の上にチャネル保護層104を設ける構造とすることによって、酸化物半導体層103のチャネル形成領域に対する製作工程におけるダメージ(酸化物半導体層103形成におけるエッチングのプラズマや、エッチング剤による膜減りや、酸化など)を防ぐことができる。よって、薄膜トランジスタの信頼性を向上させることができる。なお、図2に示す薄膜トランジスタは、酸化物半導体層103の上に形成されているチャネル保護層104以外は、図1に示す薄膜トランジスタと同じ構造をとっており、図面の符号も図1に示す薄膜トランジスタと同一のものを用いている。
以上のような構成とすることにより、活性層となる酸化物半導体層とゲート絶縁層の間に、チタンを含み該酸化物半導体層より導電率が高いクラスターを形成し、薄膜トランジスタがオンのときに電界効果移動度を向上させることができる。また、薄膜トランジスタの電界効果移動度を向上させながらもオフ電流の増大を抑制することができる。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態2)
本実施の形態では、実施の形態1で示した薄膜トランジスタを含む表示装置の作製工程について、図3乃至図11を用いて説明する。図3乃至図5は断面図で、図6乃至図11は平面図となっており、図6乃至図9の線A1−A2及び線B1−B2は、図3乃至図5の断面図A1−A2、B1−B2に対応している。
まず、基板100を準備する。基板100は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で作製される無アルカリガラス基板、セラミック基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を用いることができる。また、ステンレス合金などの金属基板の表面に絶縁膜を設けた基板を適用しても良い。基板100の大きさは、320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、730mm×920mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mm、1500mm×1800mm、1900mm×2200mm、2160mm×2460mm、2400mm×2800mm、又は2850mm×3050mm等を用いることができる。
また基板100上に下地膜として絶縁膜を形成してもよい。下地膜としては、CVD法やスパッタ法等を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、または窒化酸化シリコン膜の単層、又は積層で形成すればよい。基板100としてガラス基板のような可動イオンを含有する基板を用いる場合、下地膜として窒化シリコン膜、窒化酸化シリコン膜などの窒素を含有する膜を用いることで、可動イオンが酸化物半導体層に侵入することを防ぐことができる。
次に、ゲート電極層101を含むゲート配線、容量配線108、及び第1の端子121を形成するための導電膜をスパッタ法や真空蒸着法で基板100全面に成膜する。次いで、第1のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して配線及び電極(ゲート電極層101を含むゲート配線、容量配線108、及び第1の端子121)を形成する。このとき段切れ防止のために、少なくともゲート電極層101の端部にテーパー形状が形成されるようにエッチングするのが好ましい。この段階での断面図を図3(A)に示した。なお、この段階での平面図が図6に相当する。
ゲート電極層101を含むゲート配線と容量配線108、端子部の第1の端子121は、実施の形態1で示した導電性材料を用いて単層又は積層で形成することができる。
次いで、ゲート電極層101上にゲート絶縁層102を全面に成膜する。ゲート絶縁層102はCVD法やスパッタ法などを用い、膜厚を50〜250nmとする。
例えば、ゲート絶縁層102としてCVD法やスパッタ法により酸化シリコン膜を用い、100nmの厚さで形成する。勿論、ゲート絶縁層102はこのような酸化シリコン膜に限定されるものでなく、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化タンタル膜などの他の絶縁膜を用い、これらの材料から成る単層または積層構造として形成しても良い。
また、ゲート絶縁層102として、有機シランガスを用いたCVD法により酸化シリコン層を形成することも可能である。有機シランガスとしては、珪酸エチル(TEOS:化学式Si(OC)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、トリスジメチルアミノシラン(SiH(N(CH)等のシリコン含有化合物を用いることができる。
また、ゲート絶縁層102として、アルミニウム、イットリウム、又はハフニウムの酸化物、窒化物、酸化窒化物、又は窒化酸化物の一種又はそれらの化合物を少なくとも2種以上含む化合物を用いることもできる。
なお、本明細書において、酸化窒化物とは、その組成として、窒素原子よりも酸素原子の数が多い物質のことを指し、窒化酸化物とは、その組成として、酸素原子より窒素原子の数が多い物質のことを指す。例えば、酸化窒化シリコン膜とは、その組成として、窒素原子よりも酸素原子の数が多く、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱法(HFS:Hydrogen Forward Scattering)を用いて測定した場合に、濃度範囲として酸素が50〜70原子%、窒素が0.5〜15原子%、シリコンが25〜35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素原子より窒素原子の数が多く、RBS及びHFSを用いて測定した場合に、濃度範囲として酸素が5〜30原子%、窒素が20〜55原子%、シリコンが25〜35原子%、水素が10〜30原子%の範囲で含まれるものをいう。但し、酸化窒化シリコンまたは窒化酸化シリコンを構成する原子の合計を100原子%としたとき、窒素、酸素、シリコン及び水素の含有比率が上記の範囲内に含まれるものとする。
次いで、第2のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去してゲート電極層101と同じ材料の配線や電極層に達するコンタクトホールを形成する。このコンタクトホールは後に形成する導電膜と直接接続するために設ける。例えば、駆動回路部において、ゲート電極層とソース電極層或いはドレイン電極層と直接接する薄膜トランジスタや、端子部のゲート配線と電気的に接続する端子を形成する場合にコンタクトホールを形成する。
なお、酸化物半導体層103を形成するための酸化物半導体膜及びチタンを含むクラスター106を形成する前に、基板100が設置されたチャンバー内にアルゴンガスを導入してプラズマを発生させる逆スパッタを行い、ゲート絶縁層の表面に付着しているゴミを除去することが好ましい。また、逆スパッタを行うことにより、ゲート絶縁層102表面の平坦性を向上させることもできる。逆スパッタとは、ターゲット側に電圧を印加せずに、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板にプラズマを形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムなどを用いてもよい。また、アルゴン雰囲気に酸素、水素、NOなどを加えた雰囲気で行ってもよい。また、アルゴン雰囲気にCl、CFなどを加えた雰囲気で行ってもよい。逆スパッタ処理後、大気に曝すことなく酸化物半導体膜を成膜することによって、ゲート絶縁層102と、酸化物半導体層103及びチタンを含むクラスター106との界面にゴミや水分が付着するのを防ぐことができる。
次に、ゲート絶縁層102上に、チタンを含む複数のクラスター106を分散して形成する。また、チタンの他に、ニオブ(Nb)、タンタル(Ta)を添加して、導電率を高めてもよい。また、インジウム(In)、亜鉛(Zn)、錫(Sn)、モリブデン(Mo)又はタングステン(W)を含んでいてもよい。ただし、チタンを含むクラスター106の導電率は、酸化物半導体層103の導電率より高くなるようにする。なお、チタンを含むクラスター106は、結晶化していてもよい。これらの導電性を有するチタンを含むクラスターは、スパッタリング法、蒸着法、ゾル・ゲル法などを用いて形成することができる。チタンを含むクラスター106の高さRが、0nmより大きく10nm以下、好ましくは3nm以上5nm以下となるように形成する。ここで高さRは、実施の形態1と同様に、ゲート絶縁層102の平面とチタンを含むクラスター106が接する面を基準とするチタンを含むクラスター106の高さのことである。
次いで、大気に曝すことなく、酸化物半導体層103を形成するための酸化物半導体膜を、スパッタ法を用いてアルゴンなどの希ガスと酸素ガスの雰囲気下で成膜する。酸化物半導体膜としては、実施の形態1で示した酸化物半導体を用いることができ、In−Ga−Zn−O系酸化物半導体を用いるのが好ましい。具体的な条件例としては、直径8インチのIn、Ga、及びZnを含む酸化物半導体ターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を170mm、圧力0.4Pa、直流(DC)電源0.5kW、成膜ガスAr:O=50:5(sccm)、成膜温度を室温としてスパッタ成膜を行う。また、ターゲットとしては、Inを含む直径8インチの円盤上にペレット状のGaとZnOを配置するようにしてもよい。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるために好ましい。In−Ga−Zn−O系非単結晶膜の膜厚は10nm以上150nm以下、好ましくは20nm以上60nm以下とする。
スパッタ法によりIn−Ga−Zn−O系非単結晶膜を形成する場合において、In、Ga、及びZnを含む酸化物半導体ターゲットに、絶縁性の不純物を含ませておいても良い。当該不純物は、酸化シリコン、酸化ゲルマニウムなどに代表される絶縁性酸化物、窒化シリコンなどに代表される絶縁性窒化物、若しくは酸窒化シリコンなどの絶縁性酸窒化物などである。例えば、酸化物半導体ターゲットに、SiOを0.1重量%以上10重量%以下、好ましくは1重量%以上6重量%以下の割合で含ませておくことが好ましい。
酸化物半導体に絶縁性の不純物を含ませることにより、成膜される酸化物半導体をアモルファス化することが容易となる。また、酸化物半導体膜を熱処理した場合に、結晶化してしまうのを抑制することができる。
In−Ga−Zn−O系の酸化物半導体の他にも、In−Sn−Zn−O系、Sn−Ga−Zn−O系、In−Zn−O系、Sn−Zn−O系、Ga−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体に絶縁性の不純物を含ませることで同様な効果を得ることができる。
例えば、酸化シリコンを添加したIn−Sn−Zn−O系酸化物半導体をスパッタ法で成膜する場合には、ターゲットとしてIn、SnO、ZnO、SiOを所定の割合で焼結させたターゲットを用いる。また、酸化シリコンを添加したIn−Zn−O系酸化物半導体の場合には、ターゲットとしてIn、ZnO、SiOを所定の割合で焼結させたターゲットを用いて成膜する。また、酸化シリコンを添加したSn−Zn−O系酸化物半導体をスパッタ法で成膜する場合には、ターゲットとしてSnOとZnOを所定の割合で混合し、SiOをSnOとZnOの合計に対し1wt%以上10wt%以下、好ましくは2wt%以上8wt%以下の割合で添加して、焼結したターゲットを用いる。
In−Ga−Zn−O系非単結晶膜の成膜は、先に逆スパッタを行ったチャンバーと同一チャンバーを用いてもよいし、先に逆スパッタを行ったチャンバーと異なるチャンバーで成膜してもよい。
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜する場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ法を用いるスパッタ装置がある。
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に基板にも電圧をかけるバイアススパッタ法もある。
次に、第3のフォトリソグラフィ工程を行い、レジストマスクを形成し、In−Ga−Zn−O系非単結晶膜をエッチングする。エッチングには、クエン酸やシュウ酸などの有機酸をエッチャントとして用いることができる。ここでは、ITO07N(関東化学社製)を用いたウェットエッチングにより、不要な部分を除去してIn−Ga−Zn−O系非単結晶膜を島状にし、In−Ga−Zn−O系非単結晶膜である酸化物半導体層103を形成する。同時に、酸化物半導体層103と重ならない位置に形成したチタンを含むクラスター106もエッチングする。酸化物半導体層103の端部をテーパー状にエッチングすることで、段差形状による配線の段切れを防ぐことができる。ただし、In−Ga−Zn−O系非単結晶膜と同時のエッチングではチタンを含むクラスター106が除去しきれない場合は、再度エッチングを行って残存したチタンを含むクラスター106を除去する。
なお、ここでのエッチングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。ドライエッチングに用いるエッチング装置としては、反応性イオンエッチング法(RIE法)を用いたエッチング装置や、ECR(Electron Cyclotron Resonance)やICP(Inductively Coupled Plasma)などの高密度プラズマ源を用いたドライエッチング装置を用いることができる。また、ICPエッチング装置と比べて広い面積に渡って一様な放電が得られやすいドライエッチング装置としては、上部電極を接地させ、下部電極に13.56MHzの高周波電源を接続し、さらに下部電極に3.2MHzの低周波電源を接続したECCP(Enhanced Capacitively Coupled Plasma)モードのエッチング装置がある。このECCPモードのエッチング装置であれば、例えば基板として、第10世代の3mを超えるサイズの基板を用いる場合にも対応することができる。この段階での断面図を図3(B)に示した。なお、この段階での平面図が図7に相当する。
次に、酸化物半導体層103及びゲート絶縁層102上に金属材料からなる第1の導電層112、第2の導電層113、第3の導電層114をスパッタ法や真空蒸着法で成膜する。この段階での断面図を図3(C)に示した。
第1の導電層112、第2の導電層113、第3の導電層114の材料としては、実施の形態1で示した導電性材料を用いて単層又は積層で形成することができる。本実施の形態では、第1の導電層112及び第3の導電層114として耐熱性導電性材料であるチタンを用い、第2の導電層113としてネオジムを含むアルミニウム合金を用いる。このような構成にすることで、電気抵抗とヒロックの発生を抑制した導電層を形成できる。
次に、第4のフォトリソグラフィ工程を行い、レジストマスク131を形成し、エッチングにより不要な部分を除去してソース電極層又はドレイン電極層105a、105b、酸化物半導体層103及び接続電極120を形成する。この際のエッチング方法としてウェットエッチングまたはドライエッチングを用いる。例えば、第1の導電層112及び第3の導電層114にチタンを、第2の導電層113にネオジムを含むアルミニウム合金を用いる場合には、過酸化水素水又は加熱塩酸、またはフッ化アンモニウムを含む硝酸水溶液をエッチャントに用いてウェットエッチングすることができる。例えば、KSMF―240(関東化学社製)を用いて、第1の導電層112、第2の導電層113、及び第3の導電層114を一括でエッチングすることができる。このエッチング工程において、酸化物半導体層103の露出領域も一部エッチングされ、ソース電極層又はドレイン電極層105a、105bの間に、ソース電極層又はドレイン電極層105a、105bと重なる領域よりも膜厚の薄い領域を形成する。よって酸化物半導体層103及びチタンを含むクラスター106を含むチャネル形成領域は酸化物半導体層103の膜厚の薄い領域と重なることになる。
図4(A)においては、第1の導電層112、第2の導電層113、第3の導電層114、及び酸化物半導体層103のエッチングを過酸化水素水又は加熱塩酸またはフッ化アンモニウムを含む硝酸水溶液をエッチャントとするエッチングで一度に行うことができるため、ソース電極層又はドレイン電極層105a、105b及び酸化物半導体層103の端部は一致し、連続的な構造とすることができる。またウェットエッチングを用いるために、エッチングが等方的に行われ、ソース電極層又はドレイン電極層105a、105bの端部はレジストマスク131より後退している。以上の工程で酸化物半導体層103及びチタンを含むクラスター106をチャネル形成領域とする薄膜トランジスタ170が作製できる。この段階での断面図を図4(A)に示した。なお、この段階での平面図が図8に相当する。
また、この第4のフォトリソグラフィ工程において、ソース電極層又はドレイン電極層105a、105bと同じ材料である第2の端子122を端子部に残す。なお、第2の端子122はソース配線(ソース電極層又はドレイン電極層105a、105bを含むソース配線)と電気的に接続されている。
また、端子部において、接続電極120は、ゲート絶縁層に形成されたコンタクトホールを介して端子部の第1の端子121と直接接続される。なお、ここでは図示しないが、上述した工程と同じ工程を経て駆動回路の薄膜トランジスタのソース配線あるいはドレイン配線とゲート電極が直接接続される。
上述の工程では、酸化物半導体層103とチタンを含むクラスター106を島状に形成する第3のフォトリソグラフィ工程と、ソース電極層及びドレイン電極層105a、105bを形成する第4のフォトリソグラフィ工程とで、2枚のマスクを用いる。しかし、多階調(高階調)マスクにより形成した複数(代表的には二種類)の厚さの領域を有するレジストマスクを用いた場合、レジストマスクの数を減らすことができるため、工程簡略化、低コスト化を図ることができる。多階調マスクを利用したフォトリソグラフィ工程を用いて、薄膜トランジスタ171を作製する方法について、図5を用いて説明する。
まず上述の工程と同様に、ゲート絶縁層102上に、チタンを含む複数のクラスターを分散して形成した後、大気に曝すことなく、酸化物半導体膜を成膜する。
次に、酸化物半導体膜とチタンを含むクラスターを島状に形成することなく、金属材料からなる第1の導電層112、第2の導電層113、第3の導電層114をスパッタ法や真空蒸着法で全面に成膜する。なお、第1の導電層112、第2の導電層113、第3の導電層114は上述の工程と同様に成膜する。この段階での断面図を図5(A)に示した。
次に、透過した光が複数の強度となる多階調(高階調)マスクを用いた露光によって、図5(B)に示すように複数の異なる膜厚の領域を有するレジストマスク132を第3の導電層114上に形成する。レジストマスク132は、ゲート電極層101の一部と重畳する領域に膜厚の薄い領域を有する。次に、レジストマスク132を用いて、第1の導電層112、第2の導電層113、第3の導電層114をエッチングして島状に加工し、導電層115を形成する。この段階での断面図が図5(B)に相当する。
それから、レジストマスク132をアッシングして、レジストマスク131を形成する。レジストマスク131は、図5(C)に示すように、アッシングにより面積が縮小し、厚さが薄くなり、膜厚の薄い領域のレジストは除去される。
最後にレジストマスク131を用いて、導電層115をエッチングし、ソース電極層又はドレイン電極層105a、105bを形成する。このエッチング工程において、酸化物半導体層103の露出領域も一部エッチングされ、ソース電極層又はドレイン電極層105a、105bの間に、ソース電極層又はドレイン電極層105a、105bと重なる領域よりも膜厚の薄い領域を形成する。また、レジストマスク131が縮小されたことによって、ソース電極層又はドレイン電極層105a、105bの端部もエッチングされる。この段階での断面図が図5(C)に相当する。
レジストマスク131を除去した後、200℃〜600℃、代表的には250℃〜500℃の熱処理を行うことが好ましい。ここでは炉に入れ、窒素雰囲気下で350℃、1時間の熱処理を行う。この熱処理によりIn−Ga−Zn−O系非単結晶膜の原子レベルの再配列が行われる。この熱処理によりキャリアの移動を阻害する歪が解放されるため、ここでの熱処理(光アニールも含む)は重要である。なお、熱処理を行うタイミングは、In−Ga−Zn−O系非単結晶膜の成膜後であれば特に限定されず、例えば画素電極形成後に行ってもよい。また、上記熱処理によってチタンを含むクラスター106を結晶化し、チタンを含むクラスター106の導電率を向上させることもできる。
さらに、露出している酸化物半導体層103のチャネル形成領域に、酸素ラジカル処理を行ってもよい。酸素ラジカル処理を行うことにより薄膜トランジスタをノーマリーオフとすることができる。また、ラジカル処理を行うことにより、酸化物半導体層103のエッチングによるダメージを回復することができる。ラジカル処理はO、NO、好ましくは酸素を含むN、He、Ar雰囲気下で行うことが好ましい。また、上記雰囲気にCl、CFを加えた雰囲気下で行ってもよい。なお、ラジカル処理は、無バイアスで行うことが好ましい。
次いで、薄膜トランジスタ170を覆う保護絶縁層107を形成する。保護絶縁層107はスパッタ法などを用いて得られる窒化シリコン膜、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化タンタル膜などを用いることができる。
次に、第5のフォトリソグラフィ工程を行い、レジストマスクを形成し、保護絶縁層107のエッチングによりドレイン電極層105bに達するコンタクトホール125を形成する。また、ここでのエッチングにより第2の端子122に達するコンタクトホール127、接続電極120に達するコンタクトホール126も形成する。レジストマスクを除去した後の断面図を図4(B)に示す。
次いで、透明導電膜を成膜する。透明導電膜の材料としては、酸化インジウム(In)や酸化インジウム酸化スズ合金(In―SnO、ITOと略記する)などをスパッタ法や真空蒸着法などを用いて形成する。このような材料のエッチング処理は塩酸系の溶液により行う。しかし、特にITOのエッチングは残渣が発生しやすいので、エッチング加工性を改善するために酸化インジウム酸化亜鉛合金(In―ZnO)を用いても良い。
次に、第6のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して画素電極層110を形成する。
また、この第6のフォトリソグラフィ工程において、容量部におけるゲート絶縁層102及び保護絶縁層107を誘電体として、容量配線108と画素電極層110とで保持容量が形成される。
また、この第6のフォトリソグラフィ工程において、第1の端子及び第2の端子をレジストマスクで覆い端子部に形成された透明導電膜128、129を残す。透明導電膜128、129はFPCとの接続に用いられる電極または配線となる。第1の端子121と直接接続された接続電極120上に形成された透明導電膜128は、ゲート配線の入力端子として機能する接続用の端子電極となる。第2の端子122上に形成された透明導電膜129は、ソース配線の入力端子として機能する接続用の端子電極である。
次いで、レジストマスクを除去し、この段階での断面図を図4(C)に示す。なお、この段階での平面図が図9に相当する。
また、図10(A1)、図10(A2)は、この段階でのゲート配線端子部の平面図及び断面図をそれぞれ図示している。図10(A1)は図10(A2)中のC1−C2線に沿った断面図に相当する。図10(A1)において、保護絶縁膜154上に形成される透明導電膜155は、入力端子として機能する接続用の端子電極である。また、図10(A1)において、端子部では、ゲート配線と同じ材料で形成される第1の端子151と、ソース配線と同じ材料で形成される接続電極153とがゲート絶縁層152を介して重なり直接接して導通させている。また、接続電極153と透明導電膜155が保護絶縁膜154に設けられたコンタクトホールを介して直接接して導通させている。
また、図10(B1)、及び図10(B2)は、ソース配線端子部の段面図及び平面図をそれぞれ図示している。また、図10(B1)は図10(B2)中のD1−D2線に沿った断面図に相当する。図10(B1)において、保護絶縁膜154上に形成される透明導電膜155は、入力端子として機能する接続用の端子電極である。また、図10(B1)において、端子部では、ゲート配線と同じ材料で形成される電極156が、ソース配線と電気的に接続される第2の端子150の下方にゲート絶縁層102を介して重なる。電極156は第2の端子150とは電気的に接続しておらず、電極156を第2の端子150と異なる電位、例えばフローティング、GND、0Vなどに設定すれば、ノイズ対策のための容量または静電気対策のための容量を形成することができる。また、第2の端子150は、保護絶縁膜154を介して透明導電膜155と電気的に接続している。
ゲート配線、ソース配線、及び容量配線は画素密度に応じて複数本設けられるものである。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配線と同電位の第2の端子、容量配線と同電位の第3の端子などが複数並べられて配置される。それぞれの端子の数は、それぞれ任意な数で設ければ良いものとし、実施者が適宣決定すれば良い。
こうして6回のフォトリソグラフィ工程により、6枚のフォトマスクを使用して、ボトムゲート型のnチャネル型薄膜トランジスタである薄膜トランジスタ170を有する画素薄膜トランジスタ部、保持容量を完成させることができる。そして、これらを個々の画素に対応してマトリクス状に配置して画素部を構成することによりアクティブマトリクス型の表示装置を作製するための一方の基板とすることができる。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。
アクティブマトリクス型の液晶表示装置を作製する場合には、アクティブマトリクス基板と、対向電極が設けられた対向基板との間に液晶層を設け、アクティブマトリクス基板と対向基板とを固定する。なお、対向基板に設けられた対向電極と電気的に接続する共通電極をアクティブマトリクス基板上に設け、共通電極と電気的に接続する第4の端子を端子部に設ける。この第4の端子は、共通電極を固定電位、例えばGND、0Vなどに設定するための端子である。
また、本実施の形態は、図9の画素の構成に限定されず、図9とは異なる平面図の例を図11に示す。図11では容量配線を設けず、画素電極を隣り合う画素のゲート配線と保護絶縁膜及びゲート絶縁層を介して重ねて保持容量を形成する例であり、この場合、容量配線及び容量配線と接続する第3の端子は省略することができる。なお、図11において、図9と同じ部分には同じ符号を用いて説明する。
アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターンとして観察者に認識される。
液晶表示装置の動画表示において、液晶分子自体の応答が遅いため、残像が生じる、または動画のぼけが生じるという問題がある。液晶表示装置の動画特性を改善するため、全面黒表示を1フレームおきに行う、所謂、黒挿入と呼ばれる駆動技術がある。
また、垂直同期周波数を通常の1.5倍、好ましくは2倍以上にすることで応答速度を改善するとともに各フレーム内の分割された複数フィールド毎に書き込む階調を選択する、所謂、倍速駆動と呼ばれる駆動技術もある。
また、液晶表示装置の動画特性を改善するため、バックライトとして複数のLED(発光ダイオード)光源または複数のEL光源などを用いて面光源を構成し、面光源を構成している各光源を独立して1フレーム期間内で間欠点灯駆動する駆動技術もある。面光源として、3種類以上のLEDを用いてもよいし、白色発光のLEDを用いてもよい。独立して複数のLEDを制御できるため、液晶層の光学変調の切り替えタイミングに合わせてLEDの発光タイミングを同期させることもできる。この駆動技術は、LEDを部分的に消灯することができるため、特に一画面を占める黒い表示領域の割合が多い映像表示の場合には、消費電力の低減効果が図れる。
これらの駆動技術を組み合わせることによって、液晶表示装置の動画特性などの表示特性を従来よりも改善することができる。
本実施の形態で得られるnチャネル型のトランジスタは、In−Ga−Zn−O系非単結晶膜をチャネル形成領域に用いており、良好な動特性を有するため、これらの駆動技術を組み合わせることができる。
また、発光表示装置を作製する場合、有機発光素子の一方の電極(カソードとも呼ぶ)は、低電源電位、例えばGND、0Vなどに設定するため、端子部に、カソードを低電源電位、例えばGND、0Vなどに設定するための第4の端子が設けられる。また、発光表示装置を作製する場合には、ソース配線、及びゲート配線に加えて電源供給線を設ける。従って、端子部には、電源供給線と電気的に接続する第5の端子を設ける。
以上のように、酸化物半導体層を用いた薄膜トランジスタにおいて、活性層となる酸化物半導体層とゲート絶縁層の間に、チタンを含み該酸化物半導体層より導電率が高いクラスターを形成し、薄膜トランジスタがオンのときに電界効果移動度を向上させることができる。また、薄膜トランジスタの電界効果移動度を向上させながらもオフ電流の増大を抑制することができる。
該薄膜トランジスタを表示装置の画素部及び駆動回路部に用いることによって、電気特性が高く信頼性のよい表示装置を提供することができる。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態3)
本実施の形態では、実施の形態1で示した薄膜トランジスタとは異なる形状の薄膜トランジスタについて図12を用いて説明する。
本実施の形態のボトムゲート構造の薄膜トランジスタを図12に示す。図12に示す薄膜トランジスタには、基板100上にゲート電極層101が設けられ、ゲート電極層101上にゲート絶縁層102が設けられ、ゲート絶縁層102上にチタンを含む複数のクラスター106が分散して設けられ、ゲート絶縁層102及びチタンを含む複数のクラスター106上に酸化物半導体層103が設けられ、酸化物半導体層103上にバッファ層301a、301bが設けられ、バッファ層301a、301b上にソース電極層又はドレイン電極層105a、105bが設けられている。また、ソース電極層又はドレイン電極層105a、105bは、第1の導電層112a、112b、第2の導電層113a、113b、第3の導電層114a、114bからなる3層構造となっている。つまり、図12に示す薄膜トランジスタは、実施の形態1において、図1で示した薄膜トランジスタの酸化物半導体層103とソース電極層又はドレイン電極層105a、105bとの間にバッファ層301a、301bを設けた薄膜トランジスタである。
ソース領域又はドレイン領域として機能するバッファ層301a、301bはn型の導電型を有し、その導電率は酸化物半導体層103の導電率より高くなるようにする。
バッファ層301a、301bとして用いることのできる、n型の導電型で酸化物半導体層103より高い導電率を有する材料としては、例えば、In、Ga、及びZnを含むIn−Ga−Zn−O系非単結晶膜を酸化物半導体層103とは異なる条件で成膜した膜や、In、Ga、Zn、酸素及び窒素を含む膜をその例に挙げることができる。
バッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜は、スパッタ法で成膜できる。ただし、バッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜は、酸化物半導体層に用いるIn−Ga−Zn−O系非単結晶膜の成膜条件と異ならせる。例えば、酸化物半導体層に用いるIn−Ga−Zn−O系非単結晶膜の成膜条件における酸素ガス流量の比率よりもバッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜の成膜条件における酸素ガス流量の比率が少ない条件とする。また、バッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜の成膜条件は、成膜ガスに酸素ガスを含まない、アルゴンなどの希ガス雰囲気下としてもよい。
具体的な条件例としては、直径8インチのIn、Ga、及びZnを含む酸化物半導体ターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を170mm、圧力0.4Pa、直流(DC)電源0.5kW、成膜ガスAr:O=50:1(sccm)、成膜温度を室温としてスパッタ成膜を行う。
また、バッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜は少なくともアモルファス成分を含んでいるものとし、非晶質構造の中に結晶粒(ナノクリスタル)を含む場合もある。結晶粒(ナノクリスタル)は直径1nm〜10nm、代表的には2nm〜4nm程度である。
バッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜の膜厚は、5nm〜20nmとする。勿論、膜中に結晶粒が含まれる場合は、前記結晶粒のサイズが膜厚を超える大きさとならない。本実施の形態では、バッファ層301a、301bに用いるIn−Ga−Zn−O系非単結晶膜の膜厚は、5nmとする。
また、バッファ層301a、301bにn型を付与する不純物元素を含ませてもよい。不純物元素として、例えばマグネシウム、アルミニウム、チタン、鉄、錫、カルシウム、ゲルマニウム、スカンジウム、イットリウム、ジルコニウム、ハフニウム、ボロン、タリウム、鉛などを用いることができる。マグネシウム、アルミニウム、チタンなどをバッファ層に含ませると、酸素のブロッキング効果などがあり、成膜後の加熱処理などによって酸化物半導体層の酸素濃度を最適な範囲内に保持できる。
また、バッファ層のキャリア濃度範囲は、1×1018/cm以上(1×1022/cm以下)が好ましい。
また、バッファ層301a、301bに用いるIn、Ga、Zn、酸素及び窒素を含む酸窒化物中の酸素(O)に対する窒素(N)の割合(N/O)は、5原子%以上80原子%以下の範囲、好ましくは、10原子%以上50原子%以下の範囲とする。バッファ層に用いるIn、Ga、Zn、酸素及び窒素を含む導電性酸窒化物は、窒素を含む雰囲気でIn、Ga、及びZnを含む酸化物を成分とするターゲットを用いて、スパッタ法により成膜し、加熱処理して形成できる。
具体的な条件例としては、直径12インチのインジウム、ガリウム及び亜鉛を含む酸化物を焼結したターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を60mm、圧力0.4Pa、直流(DC)電源0.5kW、アルゴンおよび窒素の混合ガス雰囲気下で成膜する。酸窒化物膜の膜厚は2nm〜100nmとする。混合ガスの総流量を40sccmとして、窒素ガスを1sccmから40sccmの範囲で混合して成膜する。本実施の形態ではバッファ層に用いる導電性酸窒化物膜の膜厚は5nmとする。
以上のように、バッファ層301a、301bを設けることにより、酸化物半導体層と、ソース電極層又はドレイン電極層105a、105bとの間で、ショットキー接合よりも熱的安定性を向上させることができ、薄膜トランジスタの動作特性を安定させることができる。また、導電性がよいので高いドレイン電圧でも良好な移動度を保持することができる。
なお、本実施の形態の薄膜トランジスタのバッファ層301a、301b以外の構造と材料については、実施の形態1を参照されたい。
本実施の形態の薄膜トランジスタの作製工程は、実施の形態2で示した薄膜トランジスタの作製工程とほぼ同様である。まず、実施の形態2で示した方法で酸化物半導体層103を形成するための酸化物半導体膜まで成膜する。連続してバッファ層301a、301bを形成するためのn型の導電型で酸化物半導体層103より高い導電率を有する材料膜を、上記の方法を用いてスパッタ成膜する。次に、第3のフォトリソグラフィ工程によって、n型の導電型で酸化物半導体層103より高い導電率を有する材料膜を、酸化物半導体層103と同様に島状にエッチングしてバッファ層302を形成する(図13(A)参照)。次に、実施の形態2で示した方法で、第1の導電層112、第2の導電層113、及び第3の導電層114を成膜する(図13(B)参照)。次に、第4のフォトリソグラフィ工程により、ソース電極層又はドレイン電極層105a、105b、酸化物半導体層103、及びバッファ層301a、301bを形成する(図13(C)参照)。以降の工程は実施の形態2と同様である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
酸化物半導体層103よりも電気伝導度が高いバッファ層302を設けることで、薄膜トランジスタの動作の安定化を図ることができる。また、薄膜トランジスタがオンのときに電界効果移動度を向上させることができる。また、薄膜トランジスタの電界効果移動度を向上させながらもオフ電流の増大を抑制することができる。
(実施の形態4)
本実施の形態では、実施の形態1で説明した薄膜トランジスタを2つ用いたインバータ回路について説明する。
画素部を駆動するための駆動回路は、インバータ回路、容量、抵抗などを用いて構成する。2つのnチャネル型TFTを組み合わせてインバータ回路を形成する場合、エンハンスメント型トランジスタとデプレッション型トランジスタとを組み合わせて形成する場合(以下、EDMOS回路という)と、エンハンスメント型TFT同士で形成する場合(以下、EEMOS回路という)がある。なお、nチャネル型TFTのしきい値電圧が正の場合は、エンハンスメント型トランジスタと定義し、nチャネル型TFTのしきい値電圧が負の場合は、デプレッション型トランジスタと定義し、本明細書を通してこの定義に従うものとする。
画素部と駆動回路は、同一基板上に形成し、画素部においては、マトリクス状に配置したエンハンスメント型トランジスタを用いて画素電極への電圧印加のオン・オフを切り替える。この画素部に配置するエンハンスメント型トランジスタは、酸化物半導体を用いており、その電気特性は、リーク電流が少なく、低消費電力駆動を実現することができる。
駆動回路のインバータ回路の断面構造を図14(A)に示す。なお、図14に示す第1の薄膜トランジスタ430a、第2の薄膜トランジスタ430bは、本発明の一態様の逆スタガ型薄膜トランジスタである。
図14(A)に示す第1の薄膜トランジスタ430aは、基板400上に第1のゲート電極層401aが設けられ、第1のゲート電極層401a上にゲート絶縁層402が設けられ、ゲート絶縁層402上にチタンを含む複数のクラスター406が分散して設けられ、ゲート絶縁層402及びチタンを含む複数のクラスター406上に第1の酸化物半導体層403aが設けられ、第1の酸化物半導体層403a上に第1配線405a及び第2配線405bが設けられている。同様に、第2の薄膜トランジスタ430bも、基板400上に第2のゲート電極層401bが設けられ、第2のゲート電極層401b上にゲート絶縁層402が設けられ、ゲート絶縁層402上にチタンを含む複数のクラスター406が分散して設けられ、ゲート絶縁層402及びチタンを含むクラスター406上に第2の酸化物半導体層403bが設けられ、第2の酸化物半導体層403b上に第2配線405b及び第3配線405cが設けられている。ここで、第2配線405bは、ゲート絶縁層402に形成されたコンタクトホール404を介して第2のゲート電極層401bと直接接続する。第1の酸化物半導体層403a及び第2の酸化物半導体層403bの少なくとも一部は、ゲート絶縁層402の上に接して設けられている。なお、各部の構造や材料は実施の形態2の薄膜トランジスタを参照にされたい。
第1配線405aは、接地電位の電源線(接地電源線)である。この接地電位の電源線は、負の電圧VDLが印加される電源線(負電源線)としてもよい。第3配線405cは、正の電圧VDDが印加される電源線(正電源線)である。
図14(A)に示すように、第1の酸化物半導体層403aと第2の酸化物半導体層403bの両方に電気的に接続する第2配線405bは、ゲート絶縁層402に形成されたコンタクトホール404を介して第2の薄膜トランジスタ430bの第2のゲート電極層401bと直接接続する。直接接続させることにより、良好なコンタクトを得ることができ、接触抵抗を低減することができる。第2のゲート電極層401bと第2配線405bを他の導電膜、例えば透明導電膜を介して接続する場合に比べて、コンタクトホールの数の低減、コンタクトホールの数の低減による占有面積の縮小を図ることができる。
また、駆動回路のインバータ回路の上面図を図14(C)に示す。図14(C)において、鎖線Z1−Z2で切断した断面が図14(A)に相当する。
また、EDMOS回路の等価回路を図14(B)に示す。図14(A)及び図14(C)示す回路接続は、図14(B)に相当し、第1の薄膜トランジスタ430aをエンハンスメント型のnチャネル型トランジスタとし、第2の薄膜トランジスタ430bをデプレッション型のnチャネル型トランジスタとする例である。
同一基板上にエンハンスメント型のnチャネル型トランジスタとデプレッション型のnチャネル型トランジスタとを作製する方法は、例えば、第1の酸化物半導体層403aと第2の酸化物半導体層403bとを異なる材料や異なる成膜条件を用いて作製する。また、酸化物半導体層の上下にゲート電極を設けてしきい値制御を行い、一方のTFTがノーマリーオンとなるようにゲート電極に電圧をかけ、もう一方のTFTがノーマリーオフとなるようにしてEDMOS回路を構成してもよい。
また、EDMOS回路だけではなく、第1の薄膜トランジスタ430a及び第2の薄膜トランジスタ430bをエンハンスメント型のnチャネル型トランジスタとすることで、EEMOS回路を作製することもできる。その場合、第2配線405bと第2のゲート電極層401bを接続する代わりに第3配線405cと第2のゲート電極層401bを接続する。
以上のような構成とすることにより、活性層となる酸化物半導体層とゲート絶縁層の間に、チタンを含み該酸化物半導体層より導電率が高いクラスターを形成し、薄膜トランジスタがオンのときに電界効果移動度を向上させることができる。また、薄膜トランジスタの電界効果移動度を向上させながらもオフ電流の増大を抑制することができる。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態5)
本実施の形態では、本発明の一態様の半導体装置の一例である表示装置において、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜トランジスタを作製する例について図15乃至図20を用いて以下に説明する。
同一基板上に配置する薄膜トランジスタは、他の実施の形態に例示される方法と同様に形成する。また、形成した薄膜トランジスタはnチャネル型TFTであるため、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成する。
本発明の一態様の半導体装置の一例であるアクティブマトリクス型液晶表示装置のブロック図の一例を図15(A)に示す。図15(A)に示す表示装置は、基板5300上に表示素子を備えた画素を複数有する画素部5301と、各画素を選択する走査線駆動回路5302と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路5303とを有する。
画素部5301は、信号線駆動回路5303から列方向に伸張して配置された複数の信号線S1〜Sm(図示せず。)により信号線駆動回路5303と接続され、走査線駆動回路5302から行方向に伸張して配置された複数の走査線G1〜Gn(図示せず。)により走査線駆動回路5302と接続され、信号線S1〜Sm並びに走査線G1〜Gnに対応してマトリクス状に配置された複数の画素(図示せず。)を有する。そして、各画素は、信号線Sj(信号線S1〜Smのうちいずれか一)、走査線Gi(走査線G1〜Gnのうちいずれか一)と接続される。
また、他の実施の形態に例示されるnチャネル型TFTで構成する信号線駆動回路について図16を用いて説明する。
図16に示す信号線駆動回路は、ドライバIC5601、スイッチ群5602_1〜5602_M、第1の配線5611、第2の配線5612、第3の配線5613及び配線5621_1〜5621_Mを有する。スイッチ群5602_1〜5602_Mそれぞれは、第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを有する。
ドライバIC5601は第1の配線5611、第2の配線5612、第3の配線5613及び配線5621_1〜5621_Mに接続される。そして、スイッチ群5602_1〜5602_Mそれぞれは、第1の配線5611、第2の配線5612、第3の配線5613及びスイッチ群5602_1〜5602_Mそれぞれに対応した配線5621_1〜5621_Mに接続される。そして、配線5621_1〜5621_Mそれぞれは、第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、3つの信号線(信号線Sm−2、信号線Sm−1、信号線Sm(m=3M))に接続される。例えば、J列目の配線5621_J(配線5621_1〜配線5621_Mのうちいずれか一)は、スイッチ群5602_Jが有する第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、信号線Sj−2、信号線Sj―1、信号線Sj(j=3J)に接続される。
なお、第1の配線5611、第2の配線5612、第3の配線5613には、それぞれ信号が入力される。
なお、ドライバIC5601は、単結晶半導体を用いて形成されていることが望ましい。さらに、スイッチ群5602_1〜5602_Mは、画素部と同一基板上に形成されていることが望ましい。したがって、ドライバIC5601とスイッチ群5602_1〜5602_MとはFPCなどを介して接続するとよい。又は画素部と同一の基板上に貼り合わせなどによって、単結晶半導体層を設け、ドライバIC5601を形成してもよい。
次に、図16に示した信号線駆動回路の動作について、図17のタイミングチャートを参照して説明する。なお、図17のタイミングチャートは、i行目の走査線Giが選択されている場合のタイミングチャートを示している。さらに、i行目の走査線Giの選択期間は、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3に分割されている。さらに、図16の信号線駆動回路は、他の行の走査線が選択されている場合でも図17と同様の動作をする。
なお、図17のタイミングチャートは、J列目の配線5621_Jが第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、信号線Sj−2、信号線Sj−1、信号線Sjに接続される場合について示している。
なお、図17のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング5703a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5703b、第3の薄膜トランジスタ5603cのオン・オフのタイミング5703c及びJ列目の配線5621_Jに入力される信号5721_Jを示している。
なお、配線5621_1〜配線5621_Mには第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、それぞれ別のビデオ信号が入力される。例えば、第1のサブ選択期間T1において配線5621_Jに入力されるビデオ信号は信号線Sj−2に入力され、第2のサブ選択期間T2において配線5621_Jに入力されるビデオ信号は信号線Sj―1に入力され、第3のサブ選択期間T3において配線5621_Jに入力されるビデオ信号は信号線Sjに入力される。さらに、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、配線5621_Jに入力されるビデオ信号をそれぞれData_j−2、Data_j―1、Data_jとする。
図17に示すように、第1のサブ選択期間T1において第1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j−2が、第1の薄膜トランジスタ5603aを介して信号線Sj−2に入力される。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j―1が、第2の薄膜トランジスタ5603bを介して信号線Sj―1に入力される。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。このとき、配線5621_Jに入力されるData_jが、第3の薄膜トランジスタ5603cを介して信号線Sjに入力される。
以上のことから、図16の信号線駆動回路は、1ゲート選択期間を3つに分割することで、1ゲート選択期間中に1つの配線5621から3つの信号線にビデオ信号を入力することができる。したがって、図16の信号線駆動回路は、ドライバIC5601が形成される基板と、画素部が形成されている基板との接続数を信号線の数に比べて約1/3にすることができる。接続数が約1/3になることによって、図16の信号線駆動回路は、信頼性、歩留まりなどを向上できる。
なお、図16のように、1ゲート選択期間を複数のサブ選択期間に分割し、複数のサブ選択期間それぞれにおいて、ある1つの配線から複数の信号線それぞれにビデオ信号を入力することができれば、薄膜トランジスタの配置や数、駆動方法などは限定されない。
例えば、3つ以上のサブ選択期間それぞれにおいて1つの配線から3つ以上の信号線それぞれにビデオ信号を入力する場合は、薄膜トランジスタ及び薄膜トランジスタを制御するための配線を追加すればよい。ただし、1ゲート選択期間を4つ以上のサブ選択期間に分割すると、1つのサブ選択期間が短くなる。したがって、1ゲート選択期間は、2つ又は3つのサブ選択期間に分割されることが望ましい。
別の例として、図18のタイミングチャートに示すように、1つの選択期間をプリチャージ期間Tp、第1のサブ選択期間T1、第2のサブ選択期間T2、第3のサブ選択期間T3に分割してもよい。さらに、図18のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング5803a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5803b、第3の薄膜トランジスタ5603cのオン・オフのタイミング5803c及びJ列目の配線5621_Jに入力される信号5821_Jを示している。図18に示すように、プリチャージ期間Tpにおいて第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオンする。このとき、配線5621_Jに入力されるプリチャージ電圧Vpが第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介してそれぞれ信号線Sj−2、信号線Sj―1、信号線Sjに入力される。第1のサブ選択期間T1において第1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j−2が、第1の薄膜トランジスタ5603aを介して信号線Sj−2に入力される。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j―1が、第2の薄膜トランジスタ5603bを介して信号線Sj―1に入力される。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。このとき、配線5621_Jに入力されるData_jが、第3の薄膜トランジスタ5603cを介して信号線Sjに入力される。
以上のことから、図18のタイミングチャートを適用した図16の信号線駆動回路は、サブ選択期間の前にプリチャージ選択期間を設けることによって、信号線をプリチャージできるため、画素へのビデオ信号の書き込みを高速に行うことができる。なお、図18において、図17と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能を有する部分の詳細な説明は省略する。
また、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタ、バッファを有している。また場合によってはレベルシフタを有していても良い。走査線駆動回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成される。生成された選択信号はバッファにおいて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なものが用いられる。
走査線駆動回路の一部に用いるシフトレジスタの一形態について図19及び図20を用いて説明する。
図19にシフトレジスタの回路構成を示す。図19に示すシフトレジスタは、フリップフロップ5701_1〜5701_nという複数のフリップフロップで構成される。また、第1のクロック信号、第2のクロック信号、スタートパルス信号、リセット信号が入力されて動作する。
図19のシフトレジスタの接続関係について説明する。1段目のフリップフロップ5701_1は、第1の配線5711、第2の配線5712、第4の配線5714、第5の配線5715、第7の配線5717_1、及び第7の配線5717_2と接続される。また、2段目のフリップフロップ5701_2は、第3の配線5713、第4の配線5714、第5の配線5715、第7の配線5717_1、第7の配線5717_2及び第7の配線5717_3と接続される。
同様に、i段目のフリップフロップ5701_i(フリップフロップ5701_1〜5701_nのうちいずれか一)は、第2の配線5712又は第3の配線5713の一方、第4の配線5714、第5の配線5715、第7の配線5717_i−1、第7の配線5717_i、及び第7の配線5717_i+1と接続される。ここで、iが奇数の場合には、i段目のフリップフロップ5701_iは第2の配線5712と接続され、iが偶数である場合には、i段目のフリップフロップ5701_iは第3の配線5713と接続されることになる。
また、n段目のフリップフロップ5701_nは、第2の配線5712又は第3の配線5713の一方、第4の配線5714、第5の配線5715、第7の配線5717_n−1、第7の配線5717_n、及び第6の配線5716と接続される。
なお、第1の配線5711、第2の配線5712、第3の配線5713、第6の配線5716を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでもよい。さらに、第4の配線5714、第5の配線5715を、それぞれ第1の電源線、第2の電源線と呼んでもよい。
次に、図19に示すフリップフロップの詳細について、図20を用いて説明する。図20に示すフリップフロップは、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578を有する。なお、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578は、nチャネル型トランジスタであり、ゲート・ソース間電圧(Vgs)がしきい値電圧(Vth)を上回ったとき導通状態になるものとする。
また、図20に示すフリップフロップは、第1の配線5501、第2の配線5502、第3の配線5503、第4の配線5504、第5の配線5505、及び第6の配線5506を有する。
ここでは全ての薄膜トランジスタは、エンハンスメント型のnチャネル型トランジスタとする例を示すが、特に限定されず、例えば、デプレッション型のnチャネル型トランジスタを用いても駆動回路を駆動させることもできる。
次に、図20に示すフリップフロップの接続構成について、以下に示す。
第1の薄膜トランジスタ5571の第1の電極(ソース電極またはドレイン電極の一方)が第4の配線5504に接続され、第1の薄膜トランジスタ5571の第2の電極(ソース電極またはドレイン電極の他方)が第3の配線5503に接続される。
第2の薄膜トランジスタ5572の第1の電極が第6の配線5506に接続され、第2の薄膜トランジスタ5572第2の電極が第3の配線5503に接続される。
第3の薄膜トランジスタ5573の第1の電極が第5の配線5505に接続され、第3の薄膜トランジスタ5573の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第3の薄膜トランジスタ5573のゲート電極が第5の配線5505に接続される。
第4の薄膜トランジスタ5574の第1の電極が第6の配線5506に接続され、第4の薄膜トランジスタ5574の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第4の薄膜トランジスタ5574のゲート電極が第1の薄膜トランジスタ5571のゲート電極に接続される。
第5の薄膜トランジスタ5575の第1の電極が第5の配線5505に接続され、第5の薄膜トランジスタ5575の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第5の薄膜トランジスタ5575のゲート電極が第1の配線5501に接続される。
第6の薄膜トランジスタ5576の第1の電極が第6の配線5506に接続され、第6の薄膜トランジスタ5576の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第6の薄膜トランジスタ5576のゲート電極が第2の薄膜トランジスタ5572のゲート電極に接続される。
第7の薄膜トランジスタ5577の第1の電極が第6の配線5506に接続され、第7の薄膜トランジスタ5577の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第7の薄膜トランジスタ5577のゲート電極が第2の配線5502に接続される。
第8の薄膜トランジスタ5578の第1の電極が第6の配線5506に接続され、第8の薄膜トランジスタ5578の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第8の薄膜トランジスタ5578のゲート電極が第1の配線5501に接続される。
なお、第1の薄膜トランジスタ5571のゲート電極、第4の薄膜トランジスタ5574のゲート電極、第5の薄膜トランジスタ5575の第2の電極、第6の薄膜トランジスタ5576の第2の電極及び第7の薄膜トランジスタ5577の第2の電極の接続箇所をノード5543とする。さらに、第2の薄膜トランジスタ5572のゲート電極、第3の薄膜トランジスタ5573の第2の電極、第4の薄膜トランジスタ5574の第2の電極、第6の薄膜トランジスタ5576のゲート電極及び第8の薄膜トランジスタ5578の第2の電極の接続箇所をノード5544とする。
なお、第1の配線5501、第2の配線5502、第3の配線5503及び第4の配線5504を、それぞれ第1の信号線、第2の信号、第3の信号線、第4の信号線と呼んでもよい。さらに、第5の配線5505を第1の電源線、第6の配線5506を第2の電源線と呼んでもよい。
i段目のフリップフロップ5701_iにおいて、図20中の第1の配線5501と、図19中の第7の配線5717_i−1が接続される。また、図20中の第2の配線5502と、図19中の第7の配線5717_i+1が接続される。また、図20中の第3の配線5503と、第7の配線5717_iが接続される。さらに、図20中の第6の配線5506と、第5の配線5715が接続される。
iが奇数の場合、図20中の第4の配線5504は、図19中の第2の配線5712と接続され、iが偶数の場合、図19中の第3の配線5713と接続される。また、図20中の第5の配線5505と、図19中の第4の配線5714が接続される。
ただし、1段目のフリップフロップ5701_1において、図20中の第1の配線5501は図19中の第1の配線5711に接続される。また、n段目のフリップフロップ5701_nにおいて、図20中の第2の配線5502は図19中の第6の配線5716に接続される。
また、信号線駆動回路及び走査線駆動回路を他の実施の形態に例示されるnチャネル型TFTのみで作製することも可能である。他の実施の形態に例示されるnチャネル型TFTはトランジスタの移動度が大きいため、駆動回路の駆動周波数を高くすることが可能となる。また、他の実施の形態に例示されるnチャネル型TFTはIn−Ga−Zn−O系非単結晶膜であるソース領域又はドレイン領域により寄生容量が低減されるため、周波数特性(f特性と呼ばれる)が高い。例えば、他の実施の形態に例示されるnチャネル型TFTを用いた走査線駆動回路は、高速に動作させることができるため、フレーム周波数を高くすること、または、黒画面挿入なども実現できる。
さらに、走査線駆動回路のトランジスタのチャネル幅を大きくすることや、複数の走査線駆動回路を配置することなどによって、さらに高いフレーム周波数を実現することができる。複数の走査線駆動回路を配置する場合は、偶数行の走査線を駆動する為の走査線駆動回路を片側に配置し、奇数行の走査線を駆動するための走査線駆動回路をその反対側に配置することにより、フレーム周波数を高くすることを実現することができる。また、複数の走査線駆動回路により、同じ走査線に信号を出力すると、表示装置の大型化に有利である。
また、本発明の一態様を適用した半導体装置の一例であるアクティブマトリクス型発光表示装置を作製する場合、少なくとも一つの画素に複数の薄膜トランジスタを配置するため、走査線駆動回路を複数配置することが好ましい。アクティブマトリクス型発光表示装置のブロック図の一例を図15(B)に示す。
図15(B)に示す発光表示装置は、基板5400上に表示素子を備えた画素を複数有する画素部5401と、各画素を選択する第1の走査線駆動回路5402及び第2の走査線駆動回路5404と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路5403とを有する。
図15(B)に示す発光表示装置の画素に入力されるビデオ信号をデジタル形式とする場合、画素はトランジスタのオンとオフの切り替えによって、発光もしくは非発光の状態となる。よって、面積階調法または時間階調法を用いて階調の表示を行うことができる。面積階調法は、1画素を複数の副画素に分割し、各副画素を独立にビデオ信号に基づいて駆動させることによって、階調表示を行う駆動法である。また時間階調法は、画素が発光する期間を制御することによって、階調表示を行う駆動法である。
発光素子は、液晶素子などに比べて応答速度が高いので、液晶素子よりも時間階調法に適している。具体的に時間階調法で表示を行なう場合、1フレーム期間を複数のサブフレーム期間に分割する。そしてビデオ信号に従い、各サブフレーム期間において画素の発光素子を発光または非発光の状態にする。複数のサブフレーム期間に分割することによって、1フレーム期間中に画素が実際に発光する期間のトータルの長さを、ビデオ信号により制御することができ、階調を表示することができる。
なお、図15(B)に示す発光表示装置では、一つの画素に2つのスイッチング用TFTを配置する場合、一方のスイッチング用TFTのゲート配線である第1の走査線に入力される信号を第1走査線駆動回路5402で生成し、他方のスイッチング用TFTのゲート配線である第2の走査線に入力される信号を第2の走査線駆動回路5404で生成している例を示しているが、第1の走査線に入力される信号と、第2の走査線に入力される信号とを、共に1つの走査線駆動回路で生成するようにしても良い。また、例えば、1つの画素が有するスイッチング用TFTの数によって、スイッチング素子の動作を制御するのに用いられる走査線が、各画素に複数設けられることもあり得る。この場合、複数の走査線に入力される信号を、全て1つの走査線駆動回路で生成しても良いし、複数の各走査線駆動回路で生成しても良い。
また、発光表示装置においても、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成することができる。また、信号線駆動回路及び走査線駆動回路を他の実施の形態に例示されるnチャネル型TFTのみで作製することも可能である。
また、上述した駆動回路は、液晶表示装置や発光表示装置に限らず、スイッチング素子と電気的に接続する素子を利用して電子インクを駆動させる電子ペーパーに用いてもよい。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)も呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。電気泳動ディスプレイは、液晶表示装置には必要な偏光板、対向基板も電気泳動表示装置には必要なく、厚さや重さが半減する。
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイクロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプセルに電界を印加すれば表示を行うことができる。例えば、他の実施の形態に例示される方法と同様に形成できる薄膜トランジスタによって得られるアクティブマトリクス基板を用いることができる。
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用いればよい。
本実施の形態に例示された表示装置は本発明の一態様の薄膜トランジスタを搭載しているため、消費電力が低く、高速な動作が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態6)
本発明の一態様の他の実施の形態に例示される薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さらには駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製することができる。また、本発明の一態様の他の実施の形態に例示される薄膜トランジスタを駆動回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)、有機EL等が含まれる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。さらに本発明の一態様は、該表示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
本実施の形態では、本発明の一態様の半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図21を用いて説明する。図21(A1)(A2)は、第1の基板4001上に形成された他の実施の形態に例示されるIn−Ga−Zn−O系非単結晶膜を酸化物半導体層として含む信頼性の高い薄膜トランジスタ4010、4011、及び液晶素子4013を、第2の基板4006との間にシール材4005によって封止した、パネルの上面図であり、図21(B)は、図21(A1)(A2)のM−Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、ワイヤボンディング方法、或いはTAB方法などを用いることができる。図21(A1)は、COG方法により信号線駆動回路4003を実装する例であり、図21(A2)は、TAB方法により信号線駆動回路4003を実装する例である。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、薄膜トランジスタを複数有しており、図21(B)では、画素部4002に含まれる薄膜トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、4021が設けられている。
薄膜トランジスタ4010、4011は、In−Ga−Zn−O系非単結晶膜を酸化物半導体層として含む信頼性の高い、他の実施の形態に例示される薄膜トランジスタを適用することができる。本実施の形態において、薄膜トランジスタ4010、4011はnチャネル型薄膜トランジスタである。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板4006上に形成されている。画素電極層4030と対向電極層4031と液晶層4008とが重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向電極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶縁層4032、4033を介して液晶層4008を挟持している。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはステンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていても良い。また、対向電極層4031は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に接続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極層4031と共通電位線とを電気的に接続することができる。なお、導電性粒子はシール材4005に含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転位する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が10μs〜100μsと短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。
なお本実施の形態は透過型液晶表示装置の例であるが、本発明の一態様は反射型液晶表示装置でも半透過型液晶表示装置でも適用できる。
また、本実施の形態の液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び着色層の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスとして機能する遮光膜を設けてもよい。
また、本実施の形態では、薄膜トランジスタの表面凹凸を低減するため、及び薄膜トランジスタの信頼性を向上させるため、他の実施の形態に例示される薄膜トランジスタを保護膜や平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で覆う構成となっている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ法を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単層、又は積層で形成すればよい。本実施の形態では保護膜をスパッタ法で形成する例を示すが、特に限定されず種々の方法で形成すればよい。
ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層4020の一層目として、スパッタ法を用いて酸化シリコン膜を形成する。保護膜として酸化シリコン膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム膜のヒロック防止に効果がある。
また、保護膜の二層目として絶縁層を形成する。ここでは、絶縁層4020の二層目として、スパッタ法を用いて窒化シリコン膜を形成する。保護膜として窒化シリコン膜を用いると、ナトリウム等の可動イオンが半導体領域中に侵入して、TFTの電気特性を変化させることを抑制することができる。
また、保護膜を形成した後に、酸化物半導体層のアニール(300℃〜400℃)を行ってもよい。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層4021を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は、置換基に水素の他、フッ素、アルキル基、または芳香族炭化水素のうち、少なくとも1種を有していてもよい。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。絶縁層4021を材料液を用いて形成する場合、ベークする工程で同時に、酸化物半導体層のアニール(300℃〜400℃)を行ってもよい。絶縁層4021の焼成工程と酸化物半導体層のアニールを兼ねることで効率よく半導体装置を作製することが可能となる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
また、画素電極層4030、対向電極層4031として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、シート抵抗が10000Ω/スクエア以下、波長550nmにおける透光率が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層4030と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
また図21においては、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。
図22は、他の実施の形態に例示されるTFTを適用して作製されるTFT基板2600を用いて半導体装置として液晶表示モジュールを構成する一例を示している。
図22は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む表示素子2604、及び着色層2605が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配線基板2609によりTFT基板2600の配線回路部2608と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
本実施の形態に例示された液晶表示パネルは本発明の一態様の薄膜トランジスタを搭載しているため、消費電力が低く、高速な動作が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態7)
本実施の形態では、他の実施の形態に例示される薄膜トランジスタを適用した半導体装置として電子ペーパーの例を示す。
図23は、半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体装置に用いられる薄膜トランジスタ581としては、他の実施の形態に例示される薄膜トランジスタを適用することができる。
図23の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
基板580上に形成された薄膜トランジスタ581はゲート絶縁層583と絶縁層584を有する薄膜トランジスタであり、絶縁層584及び絶縁層585に形成する開口を介して、ソース電極層又はドレイン電極層が第1の電極層587と電気的に接続している。第1の電極層587と第2の電極層588との間には黒色領域590a及び白色領域590bを有し、周りに液体で満たされているキャビティ594を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材595で充填されている(図23参照。)。本実施の形態においては、第1の電極層587が画素電極に相当し、第2の電極層588が共通電極に相当する。第2の電極層588は、薄膜トランジスタ581と同一基板上に設けられる共通電位線と電気的に接続される。他の実施の形態に例示されるいずれか一の共通接続部を用いて、一対の基板間に配置される導電性粒子を介して第2の電極層588と共通電位線とを電気的に接続することができる。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜200μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能である。従って、例えば電源供給源となる電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくことが可能となる。
本実施の形態に例示された電子ペーパーは本発明の一態様の薄膜トランジスタを搭載しているため、消費電力が低く、高速な動作が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態8)
本実施の形態では、他の実施の形態に例示される薄膜トランジスタを適用した半導体装置として発光表示装置の例を示す。表示装置の有する表示素子としては、ここではエレクトロルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。
図24は、本発明の一態様を適用した半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示す図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここでは、他の実施の形態に例示される酸化物半導体層(In−Ga−Zn−O系非単結晶膜)をチャネル形成領域に用いるnチャネル型のトランジスタを、1つの画素に2つ用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ6401はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線6407に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一基板上に形成される共通電位線と電気的に接続され、その接続部分を共通接続部として、図1(A)、図2(A)、或いは図3(A)に示す構造とすればよい。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されている。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれぞれの電位を設定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略することも可能である。駆動用トランジスタ6402のゲート容量については、チャネル形成領域とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるようなビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異ならせることで、図24と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子6404の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向しきい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデオ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジスタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジスタ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図24に示す画素構成は、これに限定されない。例えば、図24に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図25を用いて説明する。ここでは、駆動用TFTがn型の場合を例に挙げて、画素の断面構造について説明する。図25(A)(B)(C)の半導体装置に用いられる駆動用TFTであるTFT7001、7011、7021は、他の実施の形態に例示される薄膜トランジスタと同様に作製でき、In−Ga−Zn−O系非単結晶膜を酸化物半導体層として含む信頼性の高い薄膜トランジスタである。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そして、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、本発明の一態様の画素構成はどの射出構造の発光素子にも適用することができる。
上面射出構造の発光素子について図25(A)を用いて説明する。
図25(A)に、駆動用TFTであるTFT7001がn型で、発光素子7002から発せられる光が陽極7005側に抜ける場合の、画素の断面図を示す。図25(A)では、発光素子7002の陰極7003と駆動用TFTであるTFT7001が電気的に接続されており、陰極7003上に発光層7004、陽極7005が順に積層されている。陰極7003は仕事関数が小さく、なおかつ光を反射する導電膜であれば様々の材料を用いることができる。例えば、Ca、Al、MgAg、AlLi等が望ましい。そして発光層7004は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。陽極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いても良い。
陰極7003及び陽極7005で発光層7004を挟んでいる領域が発光素子7002に相当する。図25(A)に示した画素の場合、発光素子7002から発せられる光は、矢印で示すように陽極7005側に射出する。
次に、下面射出構造の発光素子について図25(B)を用いて説明する。駆動用TFT7011がn型で、発光素子7012から発せられる光が陰極7013側に射出する場合の、画素の断面図を示す。図25(B)では、駆動用TFT7011と電気的に接続された透光性を有する導電膜7017上に、発光素子7012の陰極7013が成膜されており、陰極7013上に発光層7014、陽極7015が順に積層されている。なお、陽極7015が透光性を有する場合、陽極上を覆うように、光を反射または遮蔽するための遮蔽膜7016が成膜されていてもよい。陰極7013は、図25(A)の場合と同様に、仕事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を、陰極7013として用いることができる。そして発光層7014は、図25(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7015は光を透過する必要はないが、図25(A)と同様に、透光性を有する導電性材料を用いて形成することができる。そして遮蔽膜7016は、例えば光を反射する金属等を用いることができるが、金属膜に限定されない。例えば黒の顔料を添加した樹脂等を用いることもできる。
陰極7013及び陽極7015で、発光層7014を挟んでいる領域が発光素子7012に相当する。図25(B)に示した画素の場合、発光素子7012から発せられる光は、矢印で示すように陰極7013側に射出する。
次に、両面射出構造の発光素子について、図25(C)を用いて説明する。図25(C)では、駆動用TFT7021と電気的に接続された透光性を有する導電膜7027上に、発光素子7022の陰極7023が成膜されており、陰極7023上に発光層7024、陽極7025が順に積層されている。陰極7023は、図25(A)の場合と同様に、仕事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は、光を透過する程度とする。例えば20nmの膜厚を有するAlを、陰極7023として用いることができる。そして発光層7024は、図25(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7025は、図25(A)と同様に、光を透過する透光性を有する導電性材料を用いて形成することができる。
陰極7023と、発光層7024と、陽極7025とが重なっている部分が発光素子7022に相当する。図25(C)に示した画素の場合、発光素子7022から発せられる光は、矢印で示すように陽極7025側と陰極7023側の両方に射出する。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機EL素子を設けることも可能である。
なお本実施の形態では、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接続されている構成であってもよい。
なお本実施の形態で示す半導体装置は、図25に示した構成に限定されるものではなく、本発明の一態様の技術的思想に基づく各種の変形が可能である。
次に、他の実施の形態に例示される薄膜トランジスタを適用した半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び断面について、図26を用いて説明する。図26(A)は、第1の基板上に形成された薄膜トランジスタ及び発光素子を、第2の基板との間にシール材によって封止した、パネルの上面図であり、図26(B)は、図26(A)のH−Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よって画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、第1の基板4501とシール材4505と第2の基板4506とによって、充填材4507と共に密封されている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有しており、図26(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、In−Ga−Zn−O系非単結晶膜を酸化物半導体層として含む信頼性の高い、他の実施の形態に例示される薄膜トランジスタを適用することができる。本実施の形態において、薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタである。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層4512、第2の電極層4513の積層構造であるが、本実施の形態に示した構成に限定されない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化シリコン膜、窒化酸化シリコン膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518bから供給されている。
本実施の形態では、接続端子電極4515が、発光素子4511が有する第1の電極層4517と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509、4510が有するソース電極層及びドレイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する基板には、第2の基板4506は透光性でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。本実施の形態は充填材として窒素を用いた。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回路のみ、或いは一部のみを別途形成して実装しても良く、本実施の形態は図26の構成に限定されない。
本実施の形態に例示された発光表示装置は本発明の一態様の薄膜トランジスタを搭載しているため、消費電力が低く、高速な動作が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態9)
他の実施の形態に例示される薄膜トランジスタを適用した半導体装置は、電子ペーパーとして適用することができる。電子ペーパーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り物の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる。電子機器の一例を図27、図28に示す。
図27(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙の印刷物である場合には、広告の交換は人手によって行われるが、本発明の一態様を適用した電子ペーパーを用いれば短時間で広告の表示を変えることができる。また、表示も崩れることなく安定した画像が得られる。なお、ポスターは無線で情報を送受信できる構成としてもよい。
また、図27(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が紙の印刷物である場合には、広告の交換は人手によって行われるが、本発明の一態様を適用した電子ペーパーを用いれば人手を多くかけることなく短時間で広告の表示を変えることができる。また表示も崩れることなく安定した画像が得られる。なお、車内広告は無線で情報を送受信できる構成としてもよい。
また、図28は、電子書籍2700の一例を示している。例えば、電子書籍2700は、筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み込まれている。表示部2705および表示部2707は、続き画面を表示する構成としてもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすることで、例えば右側の表示部(図28では表示部2705)に文章を表示し、左側の表示部(図28では表示部2707)に画像を表示することができる。
また、図28では、筐体2701に操作部などを備えた例を示している。例えば、筐体2701において、電源2721、操作キー2723、スピーカ2725などを備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキーボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成としてもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
本実施の形態に例示された表示装置は本発明の一態様の薄膜トランジスタを搭載しているため、消費電力が低く、高速な動作が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
(実施の形態10)
他の実施の形態に例示される薄膜トランジスタを用いた半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図29(A)は、テレビジョン装置9600の一例を示している。テレビジョン装置9600は、筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示することが可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作機9610により行うことができる。リモコン操作機9610が備える操作キー9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示される映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図29(B)は、デジタルフォトフレーム9700の一例を示している。例えば、デジタルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表示部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、USBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像データを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図30(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されており、連結部9893により、開閉可能に連結されている。筐体9881には表示部9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図30(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部9886、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本発明の一態様に係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。図30(A)に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、図30(A)に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
図30(B)は大型遊技機であるスロットマシン9900の一例を示している。スロットマシン9900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに限定されず、少なくとも本発明の一態様に係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。
図31は、携帯電話機1000の一例を示している。携帯電話機1000は、筐体1001に組み込まれた表示部1002の他、操作ボタン1003、外部接続ポート1004、スピーカ1005、マイク1006などを備えている。
図31に示す携帯電話機1000は、表示部1002を指などで触れることで、情報を入力ことができる。また、電話を掛ける、或いはメールを打つなどの操作は、表示部1002を指などで触れることにより行うことができる。
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、表示部1002の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1002を触れること、又は筐体1001の操作ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表示部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部1002に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
本実施の形態に例示された電子機器は本発明の一態様の薄膜トランジスタを搭載しているため、消費電力が低く、高速な動作が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に例示される構成を適宜組み合わせて用いることができることとする。
100 基板
101 ゲート電極層
102 ゲート絶縁層
103 酸化物半導体層
104 チャネル保護層
105a ソース電極層又はドレイン電極層
105b ソース電極層又はドレイン電極層
106 クラスター
106a クラスター
106b クラスター
106c クラスター
107 保護絶縁層
108 容量配線
110 画素電極層
112 導電層
112a 導電層
113 導電層
113a 導電層
114 導電層
114a 導電層
115 導電層
120 接続電極
121 端子
122 端子
125 コンタクトホール
126 コンタクトホール
127 コンタクトホール
128 透明導電膜
129 透明導電膜
131 レジストマスク
132 レジストマスク
150 端子
151 端子
152 ゲート絶縁層
153 接続電極
154 保護絶縁膜
155 透明導電膜
156 電極
170 薄膜トランジスタ
171 薄膜トランジスタ
301a バッファ層
302 バッファ層
400 基板
401a ゲート電極層
401b ゲート電極層
402 ゲート絶縁層
403a 酸化物半導体層
403b 酸化物半導体層
404 コンタクトホール
405a 配線
405b 配線
405c 配線
406 クラスター
430a 薄膜トランジスタ
430b 薄膜トランジスタ
580 基板
581 薄膜トランジスタ
583 絶縁層
584 絶縁層
585 絶縁層
587 電極層
588 電極層
589 球形粒子
590a 黒色領域
590b 白色領域
594 キャビティ
595 充填材
1000 携帯電話機
1001 筐体
1002 表示部
1003 操作ボタン
1004 外部接続ポート
1005 スピーカ
1006 マイク
2600 TFT基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2631 ポスター
2632 車内広告
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4033 絶縁層
4501 基板
4502 画素部
4503a 信号線駆動回路
4503b 信号線駆動回路
4504a 走査線駆動回路
4504b 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4518a FPC
4519 異方性導電膜
4520 隔壁
5300 基板
5301 画素部
5302 走査線駆動回路
5303 信号線駆動回路
5400 基板
5401 画素部
5402 走査線駆動回路
5403 信号線駆動回路
5404 走査線駆動回路
5501 配線
5502 配線
5503 配線
5504 配線
5505 配線
5506 配線
5543 ノード
5544 ノード
5571 薄膜トランジスタ
5572 薄膜トランジスタ
5573 薄膜トランジスタ
5574 薄膜トランジスタ
5575 薄膜トランジスタ
5576 薄膜トランジスタ
5577 薄膜トランジスタ
5578 薄膜トランジスタ
5601 ドライバIC
5602 スイッチ群
5603a 薄膜トランジスタ
5603b 薄膜トランジスタ
5603c 薄膜トランジスタ
5611 配線
5612 配線
5613 配線
5621 配線
5701 フリップフロップ
5703a タイミング
5703b タイミング
5703c タイミング
5711 配線
5712 配線
5713 配線
5714 配線
5715 配線
5716 配線
5717 配線
5721 信号
5803a タイミング
5803b タイミング
5803c タイミング
5821 信号
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 TFT
7002 発光素子
7003 陰極
7004 発光層
7005 陽極
7011 駆動用TFT
7012 発光素子
7013 陰極
7014 発光層
7015 陽極
7016 遮蔽膜
7017 導電膜
7021 駆動用TFT
7022 発光素子
7023 陰極
7024 発光層
7025 陽極
7027 導電膜
9400 通信装置
9401 筐体
9402 操作ボタン
9403 外部入力端子
9404 マイク
9405 スピーカ
9406 発光部
9410 表示装置
9411 筐体
9412 表示部
9413 操作ボタン
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部

Claims (9)

  1. ゲート電極層と、
    前記ゲート電極層上にゲート絶縁層と、
    前記ゲート絶縁層上にチタンを含む複数のクラスターと、
    前記ゲート絶縁層及び前記チタンを含む複数のクラスター上に酸化物半導体層と、
    前記酸化物半導体層上にソース電極層及びドレイン電極層を有し、
    前記酸化物半導体層と前記ソース電極層及びドレイン電極層が電気的に接続する半導体装置。
  2. ゲート電極層と、
    前記ゲート電極層上にゲート絶縁層と、
    前記ゲート絶縁層上にチタンを含む複数のクラスターと、
    前記ゲート絶縁層及び前記チタンを含む複数のクラスター上に酸化物半導体層と、
    前記酸化物半導体層上にn型の導電型を有するバッファ層と、
    前記バッファ層上にソース電極層及びドレイン電極層を有し、
    前記バッファ層のキャリア濃度は、前記酸化物半導体層のキャリア濃度より高く、前記酸化物半導体層と前記ソース電極層及びドレイン電極層が前記バッファ層を介して電気的に接続する半導体装置。
  3. 酸化物半導体層より高い導電率を有するチタン化合物を含むクラスターを複数有する請求項1または請求項2記載の半導体装置。
  4. チタンを含むクラスターがゲート絶縁層と接する面を基準として3nm以上5nm以下の高さを有し、
    ニオブ、タンタルから選ばれる少なくとも1種の不純物元素を含む請求項1または請求項2記載の半導体装置。
  5. インジウム、ガリウム、または亜鉛を含む酸化物半導体層を有する請求項1または請求項2記載の半導体装置。
  6. ソース電極層とドレイン電極層の間に、前記ソース電極層及びドレイン電極層と重なる領域よりも膜厚の薄い領域を有する酸化物半導体層を有する請求項1または請求項2記載の半導体装置。
  7. 酸化物半導体層及びバッファ層が、インジウム、ガリウム、または亜鉛を含み、前記酸化物半導体層の膜厚が10nm以上150nm以下である請求項1または請求項2記載の半導体装置。
  8. 酸化物半導体層の上に無機材料からなるチャネル保護層を有する請求項1または請求項2記載の半導体装置。
  9. 基板上にゲート電極層を形成し、
    前記ゲート電極層上にゲート絶縁層を形成し、
    前記ゲート絶縁層上に、チタンを含む複数のクラスターを分散して形成し、
    前記ゲート絶縁層及び前記チタンを含む複数のクラスター上に、酸化物半導体膜をスパッタ法によって成膜し、
    前記酸化物半導体膜をエッチングして島状の酸化物半導体層を形成し、
    前記島状の酸化物半導体層の上に導電層を成膜し、
    前記導電層をエッチングして酸化物半導体層とソース電極層及びドレイン電極層を形成する、
    ゲート絶縁層及びチタンを含む複数のクラスター上に酸化物半導体層を有する半導体装置の作製方法。
JP2010014010A 2009-01-30 2010-01-26 半導体装置 Expired - Fee Related JP5591547B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014010A JP5591547B2 (ja) 2009-01-30 2010-01-26 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009019922 2009-01-30
JP2009019922 2009-01-30
JP2010014010A JP5591547B2 (ja) 2009-01-30 2010-01-26 半導体装置

Publications (3)

Publication Number Publication Date
JP2010199566A true JP2010199566A (ja) 2010-09-09
JP2010199566A5 JP2010199566A5 (ja) 2012-12-06
JP5591547B2 JP5591547B2 (ja) 2014-09-17

Family

ID=42396942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014010A Expired - Fee Related JP5591547B2 (ja) 2009-01-30 2010-01-26 半導体装置

Country Status (5)

Country Link
US (1) US8436350B2 (ja)
JP (1) JP5591547B2 (ja)
KR (1) KR101708610B1 (ja)
CN (1) CN101794822B (ja)
TW (1) TWI545757B (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134469A (ja) * 2010-11-30 2012-07-12 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
WO2015040982A1 (ja) * 2013-09-18 2015-03-26 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法
WO2015166651A1 (ja) * 2014-05-02 2015-11-05 株式会社Joled 薄膜トランジスタ装置、及びそれを用いた表示装置
WO2015166652A1 (ja) * 2014-05-02 2015-11-05 株式会社Joled 薄膜トランジスタ装置、及びそれを用いた表示装置
TWI562361B (en) * 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2017103477A (ja) * 2017-02-03 2017-06-08 株式会社半導体エネルギー研究所 半導体メモリ装置
JP2019117948A (ja) * 2010-11-05 2019-07-18 株式会社半導体エネルギー研究所 半導体装置
JP2021192448A (ja) * 2010-11-05 2021-12-16 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825488B2 (en) * 2000-01-26 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101150142B1 (ko) * 2006-04-06 2012-06-11 어플라이드 머티어리얼스, 인코포레이티드 대형 기판 상에 아연 산화물 투명 전도성 산화물의 반응성 스퍼터링
CN101803028B (zh) 2007-08-02 2013-03-13 应用材料公司 利用薄膜半导体材料的薄膜晶体管
US8980066B2 (en) * 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors
US8143093B2 (en) * 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
US8258511B2 (en) * 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US8330156B2 (en) * 2008-12-26 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with a plurality of oxide clusters over the gate insulating layer
US8247276B2 (en) 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
JP5458102B2 (ja) * 2009-09-04 2014-04-02 株式会社東芝 薄膜トランジスタの製造方法
KR101733718B1 (ko) 2009-09-24 2017-05-10 어플라이드 머티어리얼스, 인코포레이티드 소스 및 드레인 금속 식각을 위해 습식 프로세스를 이용하여 금속 산화물 또는 금속 산질화물 tft들을 제조하는 방법들
US8840763B2 (en) * 2009-09-28 2014-09-23 Applied Materials, Inc. Methods for stable process in a reactive sputtering process using zinc or doped zinc target
KR102317763B1 (ko) 2009-11-06 2021-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR102233958B1 (ko) 2010-07-02 2021-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8797487B2 (en) 2010-09-10 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
JP5852874B2 (ja) * 2010-12-28 2016-02-03 株式会社半導体エネルギー研究所 半導体装置
US9553201B2 (en) * 2012-04-02 2017-01-24 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
CN102709326B (zh) * 2012-04-28 2018-04-17 北京京东方光电科技有限公司 薄膜晶体管及其制造方法、阵列基板和显示装置
KR20130129674A (ko) * 2012-05-21 2013-11-29 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 박막 트랜지스터 표시판
TW201405828A (zh) * 2012-07-31 2014-02-01 E Ink Holdings Inc 顯示面板、薄膜電晶體及其製造方法
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
KR102090289B1 (ko) 2013-05-30 2020-04-16 삼성디스플레이 주식회사 산화물 스퍼터링 타겟, 이를 이용한 박막 트랜지스터 및 그 제조 방법
WO2015053009A1 (ja) * 2013-10-11 2015-04-16 シャープ株式会社 半導体装置
KR101624695B1 (ko) * 2014-10-14 2016-05-26 서종현 박막 트랜지스터 제조 방법 및 박막 트랜지스터
US20160155803A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device, Method for Manufacturing the Semiconductor Device, and Display Device Including the Semiconductor Device
KR102312924B1 (ko) * 2015-04-08 2021-10-14 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 이의 제조 방법
TWI570976B (zh) * 2015-07-06 2017-02-11 元太科技工業股份有限公司 主動元件及其製作方法
KR102477518B1 (ko) 2015-10-23 2022-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기
US10690551B2 (en) * 2016-02-12 2020-06-23 Rhode Island Council On Postsecondary Education Temperature and thermal gradient sensor for ceramic matrix composites and methods of preparation thereof
KR102308648B1 (ko) 2016-03-22 2021-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 상기 반도체 장치를 포함하는 표시 장치
CN108511498B (zh) * 2018-04-10 2024-09-13 京东方科技集团股份有限公司 显示基板及制作方法、显示装置
KR20210009000A (ko) 2019-07-16 2021-01-26 삼성전자주식회사 반도체 장치
CN111490162B (zh) * 2020-04-14 2023-05-05 中国科学院重庆绿色智能技术研究院 一种基于微纳结构力敏薄膜的柔性人工传入神经系统及其制备方法
CN111490089B (zh) * 2020-04-24 2023-04-07 京东方科技集团股份有限公司 显示基板和显示设备
CN111539340B (zh) * 2020-04-26 2022-08-05 厦门天马微电子有限公司 一种显示面板、显示装置及驱动方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256462U (ja) * 1988-10-19 1990-04-24
JPH0521798A (ja) * 1991-02-18 1993-01-29 Alps Electric Co Ltd 薄膜トランジスタ
JPH05190857A (ja) * 1992-01-10 1993-07-30 Toshiba Corp 薄膜トランジスタ
WO2007080575A1 (en) * 2006-01-09 2007-07-19 Technion Research And Development Foundation Ltd. Transistor structures and methods of fabrication thereof
JP2008153550A (ja) * 2006-12-19 2008-07-03 Seiko Epson Corp 半導体装置、半導体装置の製造方法、電気光学装置および電子機器
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
JP2009004787A (ja) * 2007-06-22 2009-01-08 Samsung Electronics Co Ltd Zn酸化物系薄膜トランジスタとその製造方法、及びZn酸化物のエッチング溶液とその製造方法
JP2010027808A (ja) * 2008-07-17 2010-02-04 Ricoh Co Ltd 電界効果型トランジスタ及びその製造方法

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US732356A (en) * 1903-02-04 1903-06-30 Frank S Betz Massaging instrument.
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JP2839529B2 (ja) * 1989-02-17 1998-12-16 株式会社東芝 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
CN1287435C (zh) * 2002-06-27 2006-11-29 松下电器产业株式会社 半导体装置及其制造方法
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
WO2004093199A1 (ja) * 2003-04-15 2004-10-28 Matsushita Electric Industrial Co., Ltd. バリスティック半導体素子
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US20070194379A1 (en) 2004-03-12 2007-08-23 Japan Science And Technology Agency Amorphous Oxide And Thin Film Transistor
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
WO2006051995A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7872259B2 (en) 2004-11-10 2011-01-18 Canon Kabushiki Kaisha Light-emitting device
EP2453480A2 (en) 2004-11-10 2012-05-16 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI390735B (zh) 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
EP1998373A3 (en) * 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101103374B1 (ko) 2005-11-15 2012-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP2007311404A (ja) 2006-05-16 2007-11-29 Fuji Electric Holdings Co Ltd 薄膜トランジスタの製造方法
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
US7528448B2 (en) * 2006-07-17 2009-05-05 E.I. Du Pont De Nemours And Company Thin film transistor comprising novel conductor and dielectric compositions
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP5320746B2 (ja) * 2007-03-28 2013-10-23 凸版印刷株式会社 薄膜トランジスタ
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
TWI345671B (en) * 2007-08-10 2011-07-21 Au Optronics Corp Thin film transistor, pixel structure and liquid crystal display panel
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR100965434B1 (ko) * 2008-01-29 2010-06-24 한국과학기술연구원 졸-겔 및 광경화 반응에 의해 광경화 투명고분자 내에금속산화물 나노입자를 포함하는 게이트 절연층을 이용한유기박막 트랜지스터 및 그의 제조방법
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
US8330156B2 (en) * 2008-12-26 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with a plurality of oxide clusters over the gate insulating layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256462U (ja) * 1988-10-19 1990-04-24
JPH0521798A (ja) * 1991-02-18 1993-01-29 Alps Electric Co Ltd 薄膜トランジスタ
JPH05190857A (ja) * 1992-01-10 1993-07-30 Toshiba Corp 薄膜トランジスタ
WO2007080575A1 (en) * 2006-01-09 2007-07-19 Technion Research And Development Foundation Ltd. Transistor structures and methods of fabrication thereof
JP2009522802A (ja) * 2006-01-09 2009-06-11 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド トランジスタの構造及びその製造方法
JP2008153550A (ja) * 2006-12-19 2008-07-03 Seiko Epson Corp 半導体装置、半導体装置の製造方法、電気光学装置および電子機器
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
JP2009004787A (ja) * 2007-06-22 2009-01-08 Samsung Electronics Co Ltd Zn酸化物系薄膜トランジスタとその製造方法、及びZn酸化物のエッチング溶液とその製造方法
JP2010027808A (ja) * 2008-07-17 2010-02-04 Ricoh Co Ltd 電界効果型トランジスタ及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117948A (ja) * 2010-11-05 2019-07-18 株式会社半導体エネルギー研究所 半導体装置
JP7510995B2 (ja) 2010-11-05 2024-07-04 株式会社半導体エネルギー研究所 半導体装置
JP2023017090A (ja) * 2010-11-05 2023-02-02 株式会社半導体エネルギー研究所 半導体装置
JP7194791B2 (ja) 2010-11-05 2022-12-22 株式会社半導体エネルギー研究所 半導体装置
JP2021192448A (ja) * 2010-11-05 2021-12-16 株式会社半導体エネルギー研究所 半導体装置
JP2012134469A (ja) * 2010-11-30 2012-07-12 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
TWI562361B (en) * 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US9812582B2 (en) 2012-02-02 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9755036B2 (en) 2013-09-18 2017-09-05 Sharp Kabushiki Kaisha Semiconductor device, display device, and method for producing semiconductor device
WO2015040982A1 (ja) * 2013-09-18 2015-03-26 シャープ株式会社 半導体装置、表示装置および半導体装置の製造方法
US10020323B2 (en) 2014-05-02 2018-07-10 Joled Inc. Thin-film transistor device and display device using same
US10032802B2 (en) 2014-05-02 2018-07-24 Joled Inc. Thin-film transistor device and display device using same
JPWO2015166651A1 (ja) * 2014-05-02 2017-04-20 株式会社Joled 薄膜トランジスタ装置、及びそれを用いた表示装置
JPWO2015166652A1 (ja) * 2014-05-02 2017-04-20 株式会社Joled 薄膜トランジスタ装置、及びそれを用いた表示装置
WO2015166652A1 (ja) * 2014-05-02 2015-11-05 株式会社Joled 薄膜トランジスタ装置、及びそれを用いた表示装置
WO2015166651A1 (ja) * 2014-05-02 2015-11-05 株式会社Joled 薄膜トランジスタ装置、及びそれを用いた表示装置
JP2017103477A (ja) * 2017-02-03 2017-06-08 株式会社半導体エネルギー研究所 半導体メモリ装置

Also Published As

Publication number Publication date
US20100193783A1 (en) 2010-08-05
US8436350B2 (en) 2013-05-07
KR20100088565A (ko) 2010-08-09
CN101794822A (zh) 2010-08-04
CN101794822B (zh) 2015-05-27
KR101708610B1 (ko) 2017-03-08
TW201036166A (en) 2010-10-01
TWI545757B (zh) 2016-08-11
JP5591547B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5591547B2 (ja) 半導体装置
JP6360874B2 (ja) 半導体装置
JP5590877B2 (ja) 半導体装置
JP6050876B2 (ja) 半導体装置の作製方法
JP6053216B2 (ja) 半導体装置の作製方法
JP6225209B2 (ja) 半導体装置
JP5581095B2 (ja) 半導体装置
JP5651359B2 (ja) 半導体装置
JP5785685B2 (ja) アクティブマトリクス表示装置
JP5624351B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees