JP2009286082A - 電磁波透過性光輝樹脂製品及び製造方法 - Google Patents

電磁波透過性光輝樹脂製品及び製造方法 Download PDF

Info

Publication number
JP2009286082A
JP2009286082A JP2008143894A JP2008143894A JP2009286082A JP 2009286082 A JP2009286082 A JP 2009286082A JP 2008143894 A JP2008143894 A JP 2008143894A JP 2008143894 A JP2008143894 A JP 2008143894A JP 2009286082 A JP2009286082 A JP 2009286082A
Authority
JP
Japan
Prior art keywords
film
chromium
electromagnetic wave
resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008143894A
Other languages
English (en)
Inventor
Yosuke Maruoka
洋介 丸岡
Hiroshi Watarai
弘志 度会
Mamoru Kato
守 加藤
Naoyasu Ido
尚泰 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008143894A priority Critical patent/JP2009286082A/ja
Priority to US12/453,746 priority patent/US20090297880A1/en
Priority to CN200910202962.4A priority patent/CN101590706A/zh
Priority to DE102009022607A priority patent/DE102009022607A1/de
Publication of JP2009286082A publication Critical patent/JP2009286082A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Abstract

【課題】不連続構造のクロム膜を含むことで光輝性を有しながら電磁波透過性も有する電磁波透過性光輝樹脂製品及びこの電磁波透過性光輝樹脂製品の製造方法を提供する。
【解決手段】ポリカーボネート(PC)からなる樹脂基材11と、樹脂基材11上にスパッタリングにより成膜したアルミニウム(Al)膜13と、アルミニウム膜13上にスパッタリングにより成膜した後に、樹脂基材12と共に120℃で2時間加熱したことによりアルミニウム膜13とクロム膜12とが不連続構造膜となっている。
【選択図】図1

Description

本発明は、樹脂基材上に金属膜を含む電磁波透過性光輝樹脂製品及びこの電磁波透過性光輝樹脂製品の製造方法に関するものである。
今日、樹脂からなるラジエータグリル等は、意匠性の観点から、表面にメッキを施して光輝性(金属光沢)を持たせることがある。応力による亀裂発生を抑制し、外観品質の低下を防止でき、しかも、耐食性、耐候性に優れたものとして、特許文献1記載のように、膜厚を約400Åにすることで結晶粒界を有するクロム膜を含むものが提案されている。これは、クロム膜が結晶粒界を有することで、外部から応力を受けても、隣接しあう結晶粒間が広がったりするだけで、金属自身(クロム)が応力を受けることがほとんどなく、金属膜(クロム膜)に亀裂が発生してしまうおそれがないことによる。
一方、自動車はその安全性を向上させるため、自動車が周囲の物に接近したことを運転者に警告する距離測定用のレーダー装置を自動車の各部、例えばラジエータグリル、バックパネル等の背後に設けることがある。このようなレーダー装置は、電磁波を対象物に照射して距離を測定していることから、レーダー装置と対象物との間に電磁波を遮断するもの(例えば金属等)があると、その機能を果たせなくなる。従って、レーダー装置の前面に位置するラジエータグリル等(レーダー装置のカバー部)の自動車の外装用樹脂製品についても電磁波透過性が必要となっている。
そのため、電磁波透過性を有する光輝性メッキとして、不連続構造(海島構造)膜を形成できるインジウム(In)膜が提案されている。
しかし、インジウムは、今日、価格が高騰していることから、他の金属(特に安価な金属)での代替が必要になっている。
特開平9−70920号公報
今回、樹脂基材上にクロム膜を成膜させ、その後、樹脂と共に加熱を行うと、外観には影響を与えないようなクラックがクロム膜に生じて不連続構造膜となり、表面抵抗が大きくなり電磁波の減衰性が小さくなる(電磁波の透過性が良くなる)ことを見出した。
そこで、本発明は、不連続構造のクロム膜を含むことで光輝性を有しながら電磁波透過性も有する電磁波透過性光輝樹脂製品及びこの電磁波透過性光輝樹脂製品の製造方法を提供する。
(A)電磁波透過性光輝樹脂製品
本発明の電磁波透過性光輝樹脂製品は、樹脂基材と、前記樹脂基材上に膜厚が20nm以上の不連続構造のクロム膜とを含んでいる。
本発明の別の電磁波透過性光輝樹脂製品は、樹脂基材と、前記樹脂基材上にクロムより光反射率が高い金属からなる不連続構造の金属膜と、前記金属膜上に膜厚が20nm以上の不連続構造のクロム膜とを含んでいる。
(B)電磁波透過性光輝樹脂製品の製造方法
本発明の電磁波透過性光輝樹脂製品の製造方法は、樹脂基材上にクロム膜を乾式メッキにより成膜し、その後、前記樹脂基材と共に加熱することにより前記クロム膜を不連続構造膜にする。
本発明の別の電磁波透過性光輝樹脂製品の製造方法は、樹脂基材上にクロムより光反射率が高い金属からなる金属膜を乾式メッキにより成膜し、前記金属膜上にクロム膜を乾式メッキにより成膜し、その後、前記樹脂基材と共に加熱することにより前記金属膜と前記クロム膜とを不連続構造膜にする。
ここで、クロム膜(クロム膜と他の金属膜との複層膜を含む)にクラック(ひび割れ)が生じる機構について説明する。クロム膜のクラックには、次の二要因が影響していると考える。
一として、クロムは、金属酸化物のモル体積とその金属酸化物中の金属の物質量倍のモル体積との比であるPilling−Bedworth比率が大きい(1.99)金属であることから、酸化による体積変化(増大)が大きい。従って、成膜後のクロム膜は大気中での酸化により、膜に多くの歪(内部応力)が蓄積される。
二として、樹脂(ポリカーボネートの線膨張係数:6.6×10−5/K)はクロム(線膨張係数:0.62×10−5K)より線膨張係数が大きい(10倍以上大きい)。従って、加熱すると、樹脂の方がクロム膜よりも大きく膨張するため、クロム膜は外部応力を受ける。
よって、この内部応力と外部応力とにより、クロム膜にクラックが生じる。
また、クロム膜と他の金属膜との複層膜は、クロム膜と他の金属膜とが密着していることから、このようにしてクロム膜にクラックが生じることで、クロム膜に密着している他の金属膜にもクラックが生じる。
本発明における各要素の態様を以下に例示する。
1.樹脂基材
樹脂基材の形態としては、特に限定はされないが、板材、シート材、フィルム材等が例示できる。
樹脂基材の樹脂としては、上に成膜される金属膜(クロム膜を含む)の光輝性を活かすため、透明であること以外は、特に限定はされないが、熱可塑性樹脂が好ましく、ポリカーボネート(PC)、アクリル樹脂、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、ポリウレタン等が例示できる。なお、透明は、無色透明だけでなく、有色透明であってもよい。
また、特に限定はされないが、線膨張係数が、4.0×10−5〜15.0×10−5/Kの樹脂が好ましく、より好ましくは、5.0×10−5〜10.0×10−5/Kの樹脂である。
2.クロム膜
クロム膜に用いられるクロムとしては、特に限定はされないが、クロム(純金属)であってもよいし、クロム合金であってもよい。
クロム膜の膜厚としては、特に限定はされないが、20〜150nmが好ましく、より好ましくは、25〜75nmである。
このような膜厚のクロム膜を成膜するための乾式メッキの条件としては、特に限定はされないが、例えばスパッタリングで成膜する場合の出力については100〜800Wが好ましく、成膜時間については10〜500秒が好ましい。但し、膜厚は出力と成膜時間との積に比例することから、この範囲の出力と成膜時間との組合わせの全てが好ましいわけではない。
3.金属膜
クロムより光反射率が高い金属からなる金属膜を含むことより、光輝性(金属光沢)が向上する。
クロムより光反射率(可視光の反射率)が高い金属としては、特に限定はされないが、純金属であってもよいし、合金であってもよい。具体的な金属としては、アルミニウム(Al)、銀(Ag)、ニッケル(Ni)、金(Au)、白金(Pt)等が例示できる。
ここで、光反射率の高低は、550nmの波長での反射率の高低による。
金属膜の膜厚としては、特に限定はされないが、加熱によりクラックが生じやすい(不連続構造膜になりやすい)ことから、クロム膜より薄いことが好ましい。具体的な膜厚としては、特に限定はされないが、15〜150nmが好ましく、より好ましくは、20〜75nmである。
例えば、このような膜厚のアルミニウム膜をスパッタリングで成膜する場合の出力については100〜800Wが好ましく、成膜時間については10〜500秒が好ましい。但し、膜厚は出力と成膜時間との積に比例することから、この範囲の出力と成膜時間との組合わせの全てが好ましいわけではない。
ここで、不連続構造膜とは、膜に多くの微細な(外観に影響を与えるような大きさではない)クラックを有することで不連続となっている膜であり、金属の不連続構造膜は、表面抵抗が大きく、電磁波透過性を有する。
4.乾式メッキ
乾式メッキとしては、特に限定はされないが、物理蒸着(PVD)が好ましい。物理蒸着としては、特に限定はされないが、真空蒸着、スパッタリング、イオンプレーティング等が例示できる。
また、クロム膜及び金属膜の成膜に用いられる乾式メッキは、同じもの(同種の方法)であってもよいし、異なるもの(異種の方法)であってもよい。
5.加熱
樹脂基材と共に加熱する温度としては、特に限定はされないが、60℃〜樹脂基材のガラス転移点(Tg)であることが好ましい。
加熱時間としては、特に限定はされないが、30分〜8時間が好ましい。
6.電磁波透過性光輝樹脂製品
電磁波透過性光輝樹脂製品の用途としては、特に限定はされないが、ミリ波レーダー装着用のカバーや通信機器の筐体等のように、光輝性を有しつつ電磁波透過性も有することが好まれるものが例示できる。
本発明によれば、不連続構造のクロム膜を含むことで光輝性を有しながら電磁波透過性も有する電磁波透過性光輝樹脂製品及びこの電磁波透過性光輝樹脂製品の製造方法を提供することができる。
板状のポリカーボネートと、ポリカーボネート上にアルミニウムからなる不連続構造のアルミニウム膜と、アルミニウム膜上に膜厚が20nm以上の不連続構造のクロム膜とを含む電磁波透過性光輝樹脂製品。
図1に示すように、本発明の電磁波透過性光輝樹脂製品10は、ポリカーボネート基材11と、ポリカーボネート基材11上に乾式メッキにより成膜したアルミニウム(Al)膜13と、アルミニウム膜13上に乾式メッキによりクロム膜12を成膜した後に、ポリカーボネート基材11と共に加熱したことによりアルミニウム膜13とクロム膜12とが不連続構造膜となっている。
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。
先ずは、樹脂基材上にクロム膜及びアルミニウム膜の少なくとも一つを乾式メッキで成膜したものを120℃で2時間加熱することにより、表面抵抗、透過率及び反射率がどのように変化するかを調べる予備的な試験を行った。
厚さ3mmの板状のポリカーボネート(PC)の基材上にアルミニウム(Al)膜を成膜し、その上にクロム(Cr)膜を成膜した試料を作成し、これらの加熱前後の表面抵抗、透過率及び反射率を測定した。アルミニウム膜及びクロム膜は、共にスパッタリングで成膜し、表1に示すように、成膜条件(成膜時間)を変更することでそれぞれの膜厚を変更(アルミニウムは、出力200Wで60秒(膜厚:23nm)、90秒(膜厚:35nm)、120秒(膜厚:45nm)、180秒(膜厚:70nm)又はなし(膜厚:0nm)の5水準、クロムは、出力400Wで30秒(膜厚:30nm)、120秒(膜厚:120nm)又はなし(膜厚:0nm)の3水準)し、14種類とした。また、各試料の表面抵抗、透過率及び反射率の測定値をそれぞれ表2〜4に示す。なお、表2〜4の各升目の上段は加熱前、下段は加熱後の値である。表面抵抗の値は、指数表示であり、例えば1.90E+01は、Eが10を表し、+01が10の累乗を表していることから、1.90×10、すなわち、19.0である。
また、試料8(Al膜厚:45nm、Cr膜厚:30nm)の加熱後の表面(クロム膜側)の顕微鏡写真を図5に示す。
成膜時間以外の成膜条件を次に示す。
成膜装置として芝浦メカトロニクス社の商品名「i−millerII」を使用し、設定条件として、到達真空度を5.00×10−3Paに、アルゴンの流量を25sccmに、基材の回転数を6rpmにした。また、槽内温度及び基材温度を共に27℃にした。
アルミニウム膜成膜時の、圧力は0.103Pa、電流は0.51A、電圧は366Vであった。
クロム膜成膜時の、圧力は0.106Pa、電流は0.97A、電圧は411Vであった。
各試料の表面抵抗、透過率及び反射率を次のようにして測定した。また、後に述べる実施例及び比較例等についても同様にして測定を行った。
(1)表面抵抗
表面抵抗が1.0×10(1.0E+0.4)Ω/□以下の場合については、JIS−K7194に準拠し、4端子4深針法により表面抵抗を測定した。
表面抵抗が1.0×10(1.0E+0.4)Ω/□以上の場合については、JIS−K6911に準拠し、2重リングプローブ法により表面抵抗を測定した。
(2)透過率
分光光度計(島津製作所社の商品名「UV−1650PC」)を用い、550nmの測定波長における透過率を測定した。
基準として、基材単体(クロム膜等を含まない)の透過率を100%とした。
(3)反射率
分光光度計(島津製作所社の商品名「UV−1650PC」)を用い、550nmの測定波長における反射率を測定した。
基準として、アルミニウ蒸着のミラーの反射率を反射率100%とした。
本試験の結果より、クロム膜を成膜した試料は、加熱することにより表面抵抗が大きくなった。但し、アルミニウム膜が厚くクロム膜が薄い試料(試料5、試料8及び試料11)は、加熱することによる表面抵抗の変化量は相対的に小さかった。これは、アルミニウムの膨張率(線膨張係数:2.39×10−5/K)がクロムの膨張率(線膨張係数:0.62×10−5/℃)より大きくPC基材の膨張率(線膨張係数:6.6×10−5/℃)に近い(クロムとPCの中間)ため、アルミニウム膜が緩衝となり、加熱によるクロム膜及びアルミニウム膜のクラックの発生を抑制することによる。従って、図5に示すように、クロム膜等にクラック(しかも線状のもの)が少ししか生じず、クロム膜等が不連続構造膜にならなかった。
アルミニウム膜のみを成膜した試料(試料1、試料4、試料7、試料10)についは、加熱することにより表面抵抗が大きくなることはなかった。
一方、透過率及び反射率については、加熱することによる測定値の変化が小さく、加熱による影響が小さかった。
次に、表5に示すように、厚さ3mmの板状のポリカーボネート(PC)の基材上に、アルミニウム(Al)膜をスパッタリングで成膜し、その上にクロム(Cr)膜をスパッタリングで成膜した後、又は、クロム膜のみをスパッタリングで成膜した後、ポリカーボネート基材と共に120℃で2時間加熱した29種類の実施例とポリカーボネートの基材上に、アルミニウム膜のみをスパッタリングで成膜した後、ポリカーボネート基材と共に同条件で加熱した5種類の比較例とを作成した。実施例のクロム膜は、成膜時の出力(400W又は600W)及び時間(30秒、60秒、90秒又はなし)を変更した30〜120nmの7水準の膜厚を用いた。また、実施例又は比較例のアルミニウム膜は、成膜時の出力(200W又は400W)及び時間(20秒、30秒、60秒、90秒又はなし)を変更した12〜35nmの6水準の膜厚を用いた。
クロム膜の膜厚は、出力400Wで30秒の条件において30nm、60秒の条件において60nm、120秒の条件において120nm、出力600Wで30秒の条件において45nm、60秒の条件において90nm、90秒の条件において135nmであった。
アルミニウム膜の膜厚は、出力200Wで30秒の条件において12nm、60秒の条件において23nm、90秒の条件において35nm、出力400Wで20秒の条件において16nm、30秒の条件において23nmであった。
各実施例及び比較例の透過率、反射率、表面抵抗及びミリ波透過減衰量を測定した値を、表6に示す。また、加熱前後の表面抵抗を表7に、透過率及び反射率を表8に、ミリ波透過減衰量及び外観を表9にそれぞれ示す。
また、表面抵抗とミリ波透過減衰量との関係のグラフを図6に、表面抵抗と反射率との関係のグラフを図7にそれぞれ示す。
また、実施例12(Al膜厚:12nm、Cr膜厚:120nm)及び21(Al膜厚:35nm、Cr膜厚:45nm)の表面(クロム膜側)の顕微鏡写真を図3(実施例21)、図4(実施例12)に示す。
成膜時間以外の成膜条件を次に示す。
成膜装置として芝浦メカトロニクス社の商品名「i−millerII」を使用し、設定条件としては、到達真空度を5.00×10−3Paに、アルゴンの流量を25sccmに、基材の回転数を6rpmにした。また、槽内温度及び基材温度を共に27℃にした。
出力200Wの場合のアルミニウム膜成膜時の、圧力は0.103Pa、電流は0.51A、電圧は366Vであり、出力400Wの場合の、圧力は0.106Pa、電流は1.03A、電圧は401Vであった。
出力400Wの場合のクロム膜成膜時の、圧力は0.106Pa、電流は0.97A、電圧は411Vであり、出力600Wの場合の、圧力は0.113Pa、電流は1.41A、電圧は429Vであった。
(4)ミリ波透過減衰量
ミリ波透過減衰量は、電磁波吸収測定装置(自由空間法、財団法人ファインセラミックセンター所有)を用いて測定した。
具体的には、室温において、Wバンド(76.575GHz)の電磁波を発信器から入射角0°にて試料に入射させ、試料をはさんで発信器と対峙する受信機で試料を透過した電磁波を受信して、ミリ波透過減衰量を測定した。
(5)外観
目視にて試料の外観を観察し、クラックが視認されない試料については「問題なし」とし、クラックが視認された試料については「微小クラック」と判定した。
以上の結果より、実施例(29種類)は、図3、4に示すように、クロム膜等にクラックが生じ、クロム膜等が不連続構造膜となることから、表面抵抗が1.0×10Ω/□以上であり、ミリ波透過減衰量が5dB以下であった。また、反射率が40R%以上であった。
これは、大気中での部分酸化による内部応力と加熱時の樹脂基材からの外部応力とによりクロム膜にクラックが生じたことに起因する。また、このようにクロム膜にクラックが生じたことにより、クロム膜と密着しているアルミニウム膜にもクラックが生じた。
一方、比較例(5種類)は、アルミニウム膜にクラックの発生がなく、表面抵抗が6.0×10Ω/□以下であり、ミリ波透過減衰量が6dB以上であった。
これは、アルミニウムは、Pilling−Bedworth比率が1.28とクロムより小さく、且つ、線膨張係数が2.39×10−5/℃とクロムより大きいため、アルミニウム膜に生じる応力(内部応力及び外部応力)がクロム膜に生じる応力より小さいことに起因する。
次に、表10に示すように、加熱時の温度(60℃、80℃又は120℃)を変更し、基材に厚さ3mmの板状のポリカーボネート(PC、ガラス転移点:124℃)、厚さ3mmの板状のアクリル樹脂(ガラス転移点:84℃)又は厚さ200μmのフィルム状のポリエチレンテレフタレート(PET、ガラス転移点:83℃)を用いた9種類の実施例と、基材に厚さ1mmのガラス(スライドガラス)を用いた3種類の比較例と、この4種類の基材を加熱しない4種類の比較例を作成した。各基材上には、膜厚が23nmのアルミニウム膜をスパッタリングで成膜し、その上に、膜厚が135nmのクロム膜をスパッタリングで成膜した。各スパッタリングの条件は、アルミニウム膜は出力400Wで成膜時間30秒、クロム膜は出力600Wで成膜時間90秒のそれぞれ前記条件と同じである。また、加熱の時間は2時間であった。
この実施例及び比較例の表面抵抗の測定値を表11に、反射率の測定値を表12にそれぞれ示す。なお、各実施例及び比較例はそれぞれ2試験体を作成し、それぞれ測定した。
また、比較例6(表面抵抗:3.54E+00、反射率:66.84R%)の表面(クロム膜側)の顕微鏡写真を図2に示す。
以上の結果より、ガラス転移点より高い温度での加熱により変形したため測定不能であった実施例33、34を除き、実施例は表面抵抗2.00×10Ω/□以上であった。
一方、基材にガラスを用いたものは、加熱しても、図2に示すように、クロム膜等にクラックが生じず、表面抵抗が大きくならなかった。これは、ガラスは膨張率(線膨張係数)が樹脂より小さく、且つ、硬いことによる。
次に、樹脂基材上にアルミニウム膜、クロム膜の順に成膜した後、樹脂基材と共に120℃で2時間加熱したものの、それぞれの膜の厚さの違いによる表面抵抗の違いをまとめたグラフを図8に示す。
図8より、クロム膜の膜厚がアルミニウム膜の膜厚以上である場合に、表面抵抗が1.00×10Ω/□以上となる。これは、加熱することによりクロム膜及びアルミニウム膜にクラックが生じ、それぞれ不連続構造膜となることによる。また、アルミニウム膜の膜厚を23nm以上にすることで、反射率が55R%以上となった。
なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
本実施例の電磁波透過性光輝樹脂製品の表面付近の細部の断面模式図である。 比較例6の表面の一部の顕微鏡写真である。 実施例21の表面の一部の顕微鏡写真である。 実施例12の表面の一部の顕微鏡写真である。 試料8の加熱後の表面の一部の顕微鏡写真である。 表面抵抗とミリ波透過減衰量との関係のグラフである。 表面抵抗と反射率との関係のグラフである。 クロム膜厚とアルミニウム膜厚との関係による表面抵抗のグラフである。
符号の説明
10 電磁波透過性光輝樹脂製品
11 樹脂基材
12 クロム膜
13 金属膜

Claims (10)

  1. 樹脂基材と、前記樹脂基材上に膜厚が20nm以上の不連続構造のクロム膜とを含む電磁波透過性光輝樹脂製品。
  2. 樹脂基材と、前記樹脂基材上にクロムより光反射率が高い金属からなる不連続構造の金属膜と、前記金属膜上に膜厚が20nm以上の不連続構造のクロム膜とを含む電磁波透過性光輝樹脂製品。
  3. 前記金属がアルミニウムである請求項2記載の電磁波透過性光輝樹脂製品。
  4. 前記金属膜が前記クロム膜より薄い請求項2又は3記載の電磁波透過性光輝樹脂製品。
  5. 前記樹脂基材がポリカーボネートである請求項1〜4のいずれか一項に記載の電磁波透過性光輝樹脂製品。
  6. 樹脂基材上にクロム膜を乾式メッキにより成膜し、
    その後、前記樹脂基材と共に加熱することにより前記クロム膜を不連続構造膜にする電磁波透過性光輝樹脂製品の製造方法。
  7. 樹脂基材上にクロムより光反射率が高い金属からなる金属膜を乾式メッキにより成膜し、
    前記金属膜上にクロム膜を乾式メッキにより成膜し、
    その後、前記樹脂基材と共に加熱することにより前記金属膜と前記クロム膜とを不連続構造膜にする電磁波透過性光輝樹脂製品の製造方法。
  8. 前記金属がアルミニウムである請求項7記載の電磁波透過性光輝樹脂製品の製造方法。
  9. 前記樹脂基材と共に加熱する温度が60℃〜前記樹脂基材のガラス転移点(Tg)である請求項6〜8のいずれか一項に記載の電磁波透過性光輝樹脂製品の製造方法。
  10. 前記樹脂基材がポリカーボネートである請求項6〜9のいずれか一項に記載の電磁波透過性光輝樹脂製品の製造方法。
JP2008143894A 2008-05-30 2008-05-30 電磁波透過性光輝樹脂製品及び製造方法 Pending JP2009286082A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008143894A JP2009286082A (ja) 2008-05-30 2008-05-30 電磁波透過性光輝樹脂製品及び製造方法
US12/453,746 US20090297880A1 (en) 2008-05-30 2009-05-21 Electromagnetically transparent bright resin products and processes for production
CN200910202962.4A CN101590706A (zh) 2008-05-30 2009-05-22 电磁波透过性光亮树脂制品及其制备方法
DE102009022607A DE102009022607A1 (de) 2008-05-30 2009-05-26 Elektromagnetisch durchlässige, glänzende Harzprodukte und Verfahren zu deren Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143894A JP2009286082A (ja) 2008-05-30 2008-05-30 電磁波透過性光輝樹脂製品及び製造方法

Publications (1)

Publication Number Publication Date
JP2009286082A true JP2009286082A (ja) 2009-12-10

Family

ID=41254207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143894A Pending JP2009286082A (ja) 2008-05-30 2008-05-30 電磁波透過性光輝樹脂製品及び製造方法

Country Status (4)

Country Link
US (1) US20090297880A1 (ja)
JP (1) JP2009286082A (ja)
CN (1) CN101590706A (ja)
DE (1) DE102009022607A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153910A (ja) * 2011-01-21 2012-08-16 Aisin Seiki Co Ltd 絶縁物品およびその製造方法
JP2015038236A (ja) * 2013-08-19 2015-02-26 アイシン精機株式会社 金属調皮膜の製造方法
JP2015038254A (ja) * 2014-11-10 2015-02-26 三恵技研工業株式会社 電磁波透過用金属被膜の製造方法及び電磁波透過用金属被膜
WO2015050007A1 (ja) * 2013-10-02 2015-04-09 アイシン精機株式会社 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
JP2016065269A (ja) * 2014-09-24 2016-04-28 アイシン精機株式会社 金属調皮膜の製造方法及び金属調皮膜
JP2017047532A (ja) * 2015-08-31 2017-03-09 株式会社ファルテック レーダカバーの製造方法及びレーダカバー
JPWO2016125212A1 (ja) * 2015-02-03 2017-11-09 ソニー株式会社 筐体部品、電子機器、筐体部品の製造方法
WO2018003847A1 (ja) * 2016-06-30 2018-01-04 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
JP2019123819A (ja) * 2018-01-18 2019-07-25 豊田合成株式会社 ミリ波透過性光沢塗膜及び樹脂製品
WO2020067052A1 (ja) * 2018-09-25 2020-04-02 積水化学工業株式会社 電波透過体
JP2020110967A (ja) * 2019-01-11 2020-07-27 株式会社ミツバ 成膜成形体の製造方法
JP2021031735A (ja) * 2019-08-27 2021-03-01 柿原工業株式会社 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
JP2021031736A (ja) * 2019-08-27 2021-03-01 柿原工業株式会社 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
WO2022209779A1 (ja) * 2021-03-29 2022-10-06 日東電工株式会社 電磁波透過性金属光沢部材、及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053104A1 (de) * 2011-08-30 2013-02-28 Hella Kgaa Hueck & Co. Radom
JP5993676B2 (ja) * 2012-09-14 2016-09-14 三恵技研工業株式会社 表面光輝品の製造方法
JP6555078B2 (ja) * 2015-10-29 2019-08-07 株式会社島津製作所 成膜方法
US9828036B2 (en) 2015-11-24 2017-11-28 Srg Global Inc. Active grille shutter system with integrated radar
CN108883607B (zh) * 2016-04-12 2021-09-03 索尼公司 结构体、电子设备、装饰膜以及结构体的制造方法
JP2019123238A (ja) * 2018-01-12 2019-07-25 日東電工株式会社 電波透過性金属光沢部材、これを用いた物品、及びその製造方法
CN112020422A (zh) * 2018-04-23 2020-12-01 日东电工株式会社 电磁波透过性金属光泽物品、及装饰构件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839096B2 (ja) 1995-06-30 2006-11-01 豊田合成株式会社 軟質光輝化製品
JP5061539B2 (ja) * 2005-11-21 2012-10-31 豊田合成株式会社 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
JP4732147B2 (ja) * 2005-11-21 2011-07-27 豊田合成株式会社 樹脂製品及びその製造方法並びに金属皮膜の成膜方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153910A (ja) * 2011-01-21 2012-08-16 Aisin Seiki Co Ltd 絶縁物品およびその製造方法
JP2015038236A (ja) * 2013-08-19 2015-02-26 アイシン精機株式会社 金属調皮膜の製造方法
WO2015050007A1 (ja) * 2013-10-02 2015-04-09 アイシン精機株式会社 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
CN105637112A (zh) * 2013-10-02 2016-06-01 爱信精机株式会社 金属质感皮膜的制造方法以及车辆用门外手柄
JP6090467B2 (ja) * 2013-10-02 2017-03-08 アイシン精機株式会社 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
JP2016065269A (ja) * 2014-09-24 2016-04-28 アイシン精機株式会社 金属調皮膜の製造方法及び金属調皮膜
JP2015038254A (ja) * 2014-11-10 2015-02-26 三恵技研工業株式会社 電磁波透過用金属被膜の製造方法及び電磁波透過用金属被膜
JPWO2016125212A1 (ja) * 2015-02-03 2017-11-09 ソニー株式会社 筐体部品、電子機器、筐体部品の製造方法
US10710289B2 (en) 2015-02-03 2020-07-14 Sony Corporation Casing component, electronic apparatus, and manufacturing method for a casing component
JP2017047532A (ja) * 2015-08-31 2017-03-09 株式会社ファルテック レーダカバーの製造方法及びレーダカバー
WO2017038554A1 (ja) * 2015-08-31 2017-03-09 株式会社ファルテック レーダカバーの製造方法及びレーダカバー
JPWO2018003847A1 (ja) * 2016-06-30 2019-04-18 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
WO2018003847A1 (ja) * 2016-06-30 2018-01-04 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
KR20190025572A (ko) 2016-06-30 2019-03-11 닛토덴코 가부시키가이샤 전자파 투과성 금속 부재, 이것을 사용한 물품, 및 전자파 투과성 금속 필름의 제조 방법
US11351753B2 (en) 2016-06-30 2022-06-07 Nitto Denko Corporation Electromagnetic wave transmissive metal member, article using the same, and production method for electromagnetic wave transmissive metal film
JP7305350B2 (ja) 2016-06-30 2023-07-10 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
JP2019123819A (ja) * 2018-01-18 2019-07-25 豊田合成株式会社 ミリ波透過性光沢塗膜及び樹脂製品
WO2020067052A1 (ja) * 2018-09-25 2020-04-02 積水化学工業株式会社 電波透過体
JP7335887B2 (ja) 2018-09-25 2023-08-30 積水化学工業株式会社 電波透過体
JPWO2020067052A1 (ja) * 2018-09-25 2021-09-24 積水化学工業株式会社 電波透過体
JP7169200B2 (ja) 2019-01-11 2022-11-10 株式会社ミツバ 成膜成形体の製造方法
JP2020110967A (ja) * 2019-01-11 2020-07-27 株式会社ミツバ 成膜成形体の製造方法
JP2021031736A (ja) * 2019-08-27 2021-03-01 柿原工業株式会社 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
JP2021031735A (ja) * 2019-08-27 2021-03-01 柿原工業株式会社 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
WO2022209779A1 (ja) * 2021-03-29 2022-10-06 日東電工株式会社 電磁波透過性金属光沢部材、及びその製造方法

Also Published As

Publication number Publication date
DE102009022607A9 (de) 2010-04-01
US20090297880A1 (en) 2009-12-03
CN101590706A (zh) 2009-12-02
DE102009022607A1 (de) 2009-12-03

Similar Documents

Publication Publication Date Title
JP2009286082A (ja) 電磁波透過性光輝樹脂製品及び製造方法
CN106908884B (zh) 具有金属光泽的无线电波可穿透层
JP2009298006A (ja) 電磁波透過性光輝樹脂製品及び製造方法
JP2009078458A (ja) 干渉色膜を有する機器用筐体及び機器用装飾体
CN106199772B (zh) 无线电波穿透型多层光学涂层
CN101250028A (zh) 具有减反射膜的玻璃片和用于窗子的层叠玻璃
KR102012210B1 (ko) 적층 배선막 및 그 제조 방법 그리고 Mo 합금 스퍼터링 타깃재
KR20120110065A (ko) 전도성 구조체, 터치패널 및 이의 제조방법
KR102036422B1 (ko) 창문막과 그 제조방법
WO2015160607A1 (en) Enhanced performance metallic based optical mirror substrates
CN106707385A (zh) 一种镀银型反射膜及其制备方法
EP1213599A2 (en) Heat resistant reflecting layer
CN107667011A (zh) 太阳能控制膜
TW201934782A (zh) 電波透過性金屬光澤構件、使用此之物品、及其製造方法
CN109312447B (zh) 蓝宝石薄膜涂覆之基板
JPWO2006132417A1 (ja) 反射率・透過率維持特性に優れた銀合金
JP2019188804A (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
WO2006132416A1 (ja) 反射率・透過率維持特性に優れた銀合金
TW201920040A (zh) 混合式梯度-干涉硬塗層
CN107102388A (zh) 一种漫反射板的制作方法及漫反射板
CN104691040B (zh) 减反射膜、其制备方法及减反射玻璃
JP2009234204A (ja) 高抵抗金属薄膜被覆樹脂材料及びその製造方法
WO2019208504A1 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
TWI653349B (zh) Cu合金靶用材料、Cu合金靶、Cu合金膜及觸控面板
CN103926642A (zh) 红外截止滤光膜