WO2015050007A1 - 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル - Google Patents

金属調皮膜の製造方法及び車両用アウトサイドドアハンドル Download PDF

Info

Publication number
WO2015050007A1
WO2015050007A1 PCT/JP2014/074866 JP2014074866W WO2015050007A1 WO 2015050007 A1 WO2015050007 A1 WO 2015050007A1 JP 2014074866 W JP2014074866 W JP 2014074866W WO 2015050007 A1 WO2015050007 A1 WO 2015050007A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
chromium
chrome
metal
tone
Prior art date
Application number
PCT/JP2014/074866
Other languages
English (en)
French (fr)
Inventor
崇志 原
和揮 水谷
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to US15/026,813 priority Critical patent/US20160237549A1/en
Priority to JP2015540452A priority patent/JP6090467B2/ja
Priority to CN201480054370.1A priority patent/CN105637112B/zh
Publication of WO2015050007A1 publication Critical patent/WO2015050007A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/0493Appurtenances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B1/00Knobs or handles for wings; Knobs, handles, or press buttons for locks or latches on wings
    • E05B1/0053Handles or handle attachments facilitating operation, e.g. by children or burdened persons
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B17/00Accessories in connection with locks
    • E05B17/0004Lock assembling or manufacturing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B79/00Mounting or connecting vehicle locks or parts thereof
    • E05B79/02Mounting of vehicle locks or parts thereof
    • E05B79/06Mounting of handles, e.g. to the wing or to the lock
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/54Electrical circuits
    • E05B81/64Monitoring or sensing, e.g. by using switches or sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/54Electrical circuits
    • E05B81/64Monitoring or sensing, e.g. by using switches or sensors
    • E05B81/76Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles
    • E05B81/77Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles comprising sensors detecting the presence of the hand of a user
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/54Electrical circuits
    • E05B81/64Monitoring or sensing, e.g. by using switches or sensors
    • E05B81/76Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles
    • E05B81/78Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles as part of a hands-free locking or unlocking operation
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B85/00Details of vehicle locks not provided for in groups E05B77/00 - E05B83/00
    • E05B85/10Handles
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/42Detection using safety edges
    • E05F15/46Detection using safety edges responsive to changes in electrical capacitance
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F15/76Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects responsive to devices carried by persons or objects, e.g. magnets or reflectors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/77Power-operated mechanisms for wings with automatic actuation using wireless control
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/60Suspension or transmission members; Accessories therefor
    • E05Y2201/622Suspension or transmission members elements
    • E05Y2201/676Transmission of human force
    • E05Y2201/68Handles, cranks
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/531Doors

Definitions

  • the present invention relates to a method for producing a metallic film and a vehicle outside door handle.
  • the present invention particularly relates to a method for producing a metallic coating having excellent radio wave permeability and electrical insulation and having a metallic luster, and a vehicle outside door handle having such a metallic coating formed on the surface of a handle body.
  • the smart handle includes a handle body that is formed of a non-conductive resin base and is operated when the user opens the door, and an antenna that is incorporated in the handle body and receives a signal transmitted from the smart key.
  • a film having a metallic luster hereinafter referred to as a metal-tone film is formed on the outer surface of the handle body (base material).
  • the smart handle has a function of accurately receiving a signal transmitted from the smart key, because the human body touches the predetermined position so that the door is opened and closed when the user touches the predetermined position of the smart handle.
  • a function for accurately detecting a change in capacitance is required.
  • the metallic coating formed on the outer surface of the handle body must have high radio wave permeability.
  • the metallic film formed on the outer surface of the handle body must have high electrical insulation.
  • Patent Document 1 discloses a method for producing a metallic coating comprising a step of forming a chromium coating as a metallic coating on the surface of a resin substrate and a step of heating the chromium coating together with the resin substrate.
  • Patent Document 2 discloses a step of forming an aluminum film and a chromium film by dry plating (for example, sputtering) on the surface of a non-conductive polycarbonate resin substrate, and a step of heating the aluminum film and the chromium film together with the polycarbonate resin substrate. The manufacturing method of the metal-tone film containing this is disclosed.
  • an external stress caused by volume expansion caused by heating of the resin base material and an internal stress caused by heating or oxidation of the metal-like coat are caused in the metal tone coat. Cracks are formed. When the crack is formed and the metallic coating is divided, the electrical insulation and radio wave permeability of the metallic coating are improved.
  • the present invention suppresses deterioration of adhesion with the base material, has a brightness close to the brightness of the decorative chromium film formed by wet plating and sufficiently high specularity, and has radio wave transmission and electrical insulation. It aims at providing the manufacturing method of the outstanding metal-tone film. It is another object of the present invention to provide a vehicle outside door handle in which a metallic coating having the above-described properties is formed on the surface of a handle body.
  • the present invention is a method for producing a metallic film formed on the surface of a non-conductive substrate, and forms a first chromium film made of chromium on the surface of the substrate at a first film formation rate by sputtering. And a second film forming process for forming a second chromium film made of chromium on the surface of the first chromium film at a second film forming speed higher than the first film forming speed by sputtering. And a crack forming step of forming a crack in the first chrome film and the second chrome film by applying a stress to the first chrome film and the second chrome film. .
  • the first film formation rate is such a low film formation rate that the adhesive strength is such that the first chromium film does not peel from the base material, and high specularity is obtained.
  • the speed may be a high film forming speed such that the brightness of the second chromium film is equal to or higher than a predetermined brightness.
  • the metal used at the time of film formation is only chromium, the cost of the coating material and the equipment cost can be reduced as compared with the case of using two or more kinds of metals.
  • the internal stress generated in the first chromium film is reduced. That is, stress is relieved. As a result, deterioration of the adhesion between the base material and the chromium film is suppressed.
  • the brightness of the chromium film formed at a low speed is lower than the brightness of a general decorative chromium plating film used for automobile parts, that is, a chromium plating film formed by wet plating. Therefore, in the present invention, the surface of the first chromium film formed on the surface of the substrate in the first film formation step has a higher speed than the first film formation rate (second formation rate) in the second film formation step. A second chromium film is formed at a film speed. As a result, the brightness of the surface chromium film (second chromium film) approaches the brightness of the decorative chromium plating film.
  • the brightness of the metal-tone film manufactured by the manufacturing method according to the present invention and the decorative chrome plating film can be substantially matched. For this reason, a sense of unity can be created by the component on which the metallic coating produced by the production method according to the present invention is formed and the decorative chrome plated component around it.
  • the deterioration of the adhesion to the substrate is suppressed and the adhesion is kept good, and the brightness close to the brightness of the decorative chromium film formed by wet plating and sufficient It is possible to provide a method for producing a metallic film having a mirror surface property and excellent in radio wave permeability and electrical insulation.
  • the first film formation rate that is, the film formation rate of the first chrome film
  • a predetermined internal stress There is a correlation between the deposition rate and internal stress, and the lower the deposition rate, the smaller the internal stress.
  • the predetermined internal stress is preferably about 3000 MPa. If the internal stress is less than this level, the adhesiveness is not adversely affected, and the metal-tone film can have sufficient specularity after crack formation.
  • the second film formation rate that is, the film formation rate of the second chrome film is preferably a high film formation rate so that the brightness of the second chrome film is equal to the lightness of the decorative chrome plating film.
  • the deposition rate and the brightness there is a correlation between the deposition rate and the brightness, and the higher the deposition rate, the higher the brightness. Therefore, the brightness of the part whose surface is covered with the second chrome film is formed by forming the second chrome film at a high film formation rate so as to be equivalent to the brightness of the decorative chrome plating film formed by wet plating.
  • the brightness of decorative chrome plating film is about 82 to 83 when expressed by L * in the L * a * b color system. Therefore, the second film formation rate is preferably a film formation rate that is 80 or more when the brightness of the second chromium film is expressed by L *.
  • the first deposition rate is 0.6 nm / sec.
  • the second deposition rate is 1.2 nm / sec. That is good.
  • the first deposition rate is 0.6 nm / sec.
  • the internal stress generated in the first chromium film can be sufficiently reduced. Therefore, the stress is sufficiently relaxed, deterioration of the adhesion between the base material and the chromium film due to internal stress is sufficiently suppressed, and sufficient mirror surface properties can be obtained. Therefore, the adhesion between the base material and the chromium film can be maintained well, and problems such as peeling of the chromium film can be reliably prevented.
  • the second deposition rate is 1.2 nm / sec.
  • the brightness of the second chromium film can be made sufficiently close to the brightness of the decorative chromium plating film formed by wet plating. Therefore, the brightness of the component whose surface is covered with the second chrome film can be matched with the brightness of the peripheral component plated with the decorative chrome.
  • the total film thickness which is the sum of the film thickness of the first chromium film formed in the first film forming process and the film thickness of the second chromium film formed in the second film forming process, is 30 nm. That is good.
  • the brightness of the metallic coating is also related to the total film thickness. When the total film thickness is less than 30 nm, the brightness of the metal-tone film is considerably lower than the brightness of the decorative chrome plating film formed by wet plating. On the other hand, when the total film thickness is 30 nm or more, the brightness of the metal-tone film is equivalent to the brightness of the decorative chrome plating film formed by wet plating.
  • the total film thickness is preferably 50 nm or more.
  • the second chromium film is thicker than when the total film thickness is less than 50 nm. For this reason, the brightness can be increased.
  • the total film thickness is 50 nm or more, even if a thin portion is partially formed due to variations in the film thickness, there is a high possibility that the thickness of the portion is 30 nm or more. For this reason, it is possible to form a metal-tone film having a brightness sufficiently close to the brightness of the decorative chrome plating film formed by wet plating in all the coated areas.
  • the second chrome film formed in the second film forming step is thicker than the first chrome film formed in the first film forming step.
  • the film formation speed of the second chromium film is faster than the film formation speed of the first chromium film.
  • the film formation time required for the second chrome film is the same as that required when the second chrome film is the same thickness as the first chrome film.
  • the film formation time and the film formation time required when the second chromium film is thinner than the first chromium film are shorter. Therefore, the film formation time can be shortened, thereby improving productivity.
  • the brightness can be further increased by forming the second chrome film thickly.
  • the ratio R (T2 / T1) of the film thickness T2 of the second chromium film to the film thickness T1 of the first chromium film is preferably 5 or more and 9 or less.
  • the present invention also relates to an outside door handle for a vehicle having electrical insulation and radio wave permeability, a non-conductive handle body attached to the outer surface of the vehicle door, and a first film formation rate by sputtering.
  • the first chromium film made of chromium formed on the surface of the handle main body and the chromium film formed on the surface of the first chromium film at a second film formation speed higher than the first film formation speed by sputtering.
  • a second chrome coating and a vehicle outside door handle, in which a crack is formed in the first chrome coating and the second chrome coating.
  • the first film formation rate is such a low film formation rate that the adhesive strength is such that the first chromium film does not peel from the base material, and high specularity is obtained.
  • the speed may be a high film forming speed such that the brightness of the second chromium film is equal to or higher than a predetermined brightness.
  • the first film formation rate is a low film formation rate such that the internal stress generated in the first chrome film is equal to or lower than a predetermined internal stress
  • the second film formation rate is the second chrome film. It is preferable that the film formation rate be as high as that of the decorative chrome plating film.
  • the first deposition rate is 0.6 nm / sec.
  • the second deposition rate is 1.2 nm / sec. That is good.
  • the sum (total film thickness) of the film thickness of the first chromium film and the film thickness of the second chromium film is preferably 30 nm or more.
  • the total film thickness is 50 nm or more.
  • the film thickness of the second chromium film is preferably larger than the film thickness of the first chromium film.
  • the ratio R (T2 / T1) of the film thickness T2 of the second chromium film to the film thickness T1 of the first chromium film is preferably 5 or more and 9 or less.
  • a vehicle outside door handle having brightness and high specularity close to peripheral parts (decorated chrome-plated parts) chrome-plated by a wet method and excellent in radio wave transmission and electrical insulation is provided. can do.
  • FIG. 5 is a schematic view of a cross section of a metal-tone film manufactured by the manufacturing method according to Examples 1 to 5.
  • 6 is a schematic view of a cross section of a metal-tone film produced by the production method according to Comparative Example 1.
  • FIG. It is a schematic diagram of the cross section of the metal-tone film manufactured by the manufacturing method which concerns on the comparative example 2.
  • 2 is a photomicrograph of the surface of a metallic film produced by the production method according to Example 1.
  • FIG. 2 is a photomicrograph of the surface of a metallic film produced by the production method according to Example 2.
  • 4 is a photomicrograph of the surface of a metallic film produced by the production method according to Example 3.
  • 4 is a photomicrograph of the surface of a metallic film produced by the production method according to Example 4.
  • 6 is a photomicrograph of the surface of a metallic film produced by the production method according to Example 5.
  • 2 is a photomicrograph of the surface of a metallic film produced by the production method according to Comparative Example 1.
  • 5 is a photomicrograph of the surface of a metal-tone film produced by the production method according to Comparative Example 2. It is a graph which shows the relationship between the film-forming speed
  • FIG. 1 is a schematic view of a sputtering apparatus 1 used in the first film forming process and the second film forming process.
  • the sputtering apparatus 1 includes a casing 2 in which a space is formed, a holding plate 3, and a disk-like table 4.
  • the holding plate 3 and the table 4 are disposed so as to face each other up and down in FIG. 1.
  • the holding plate 3 is located above the table 4.
  • a target 5 made of chromium is held on the lower surface of the holding plate 3 in FIG.
  • the disk-like table 4 is connected to a rotary shaft 6 extending in the vertical direction at the center thereof, and is configured to be rotatable about the rotary shaft 6 as an axis.
  • a base material 7 is placed on the upper surface of the table 4 in FIG. As the table 4 rotates, the base material 7 on the table 4 also rotates.
  • the base material 7 is a handle body that constitutes the outline of the vehicle outside door handle.
  • the substrate 7 is formed of a non-conductive (insulating) resin (a synthetic resin of PC (polycarbonate resin) and PBT (polybutylene terephthalate resin)). Further, a smooth layer made of acrylic resin having a thickness of 20 ⁇ m or the like is formed on the surface of the substrate 7 by UV curing. The surface of the base material 7 is smoothed by the smooth layer.
  • the casing 2 is provided with an inert gas introduction port 2a for introducing argon gas, which is an inert gas, and an exhaust port 2b for exhausting internal air. Furthermore, a pressure sensor 8 for detecting an internal gas pressure (film formation pressure) is attached to the casing 2.
  • a first film forming process and a second film forming process are performed using the sputtering apparatus 1.
  • the inside of the casing 2 is decompressed, and then argon gas is introduced into the casing 2 so that the pressure in the casing 2 (film formation pressure) becomes a predetermined pressure.
  • glow discharge is generated between the table 4 and the target 5 to turn the argon gas in the casing 2 into plasma.
  • argon ions are generated.
  • the generated argon ions (Ar + ) collide with the target 5 constituting the cathode, whereby chromium particles are knocked out of the target 5.
  • argon ions are indicated by white circles, and chromium particles knocked out of the target 5 are indicated by black circles.
  • the chromium particles struck out from the target 5 collide with the surface of the base material 7 on the table 4 arranged facing the holding plate 3.
  • a chromium film is formed on the surface of the base material 7 (the upper surface of the smooth layer).
  • the sputtering method described above is a bipolar DC glow discharge sputtering method, but a chromium film may be formed by sputtering using other methods, for example, a high frequency sputtering method or a magnetron sputtering method.
  • a chromium film (first chromium film) is formed on the surface of the base material 7 by sputtering at a first film formation rate.
  • the second film forming step is performed continuously to the first film forming step after the first film forming step is performed.
  • a chromium film (second chromium film) is further formed on the surface of the first chromium film by sputtering at a second film formation rate. Therefore, a chromium film having a two-layer structure in which the first chromium film and the second chromium film are laminated is formed on the surface of the substrate 7.
  • the film formation speed (second film formation speed) in the second film formation process is higher than the film formation speed (first film formation speed) in the first film formation process. That is, the chromium film is formed at a low speed in the first film forming process, and then the chromium film is formed at a high speed in the second film forming process.
  • the deposition rate of the chromium film has a correlation with the internal stress, and the internal stress increases as the deposition rate increases. Therefore, when the film formation rate is high, the internal stress in the chromium film increases, and the chromium film is greatly deformed by the large internal stress. For this reason, the adhesiveness of a base material and a chromium membrane
  • the film formation speed of the first chromium film formed on the surface of the substrate 7 in the first film formation process is the same as that of the first chromium film in the subsequent second film formation process. It is lower than the film formation rate of the second chromium film formed on the surface. That is, the film formation rate of the first chromium film directly coated on the substrate 7 is low. For this reason, the amount of heat accumulated in the first chromium film is small, and the internal stress generated due to the heat accumulated in the first chromium film is also small.
  • the stress in the first chrome film is relieved in this way, the amount of deformation of the first chrome film due to the internal stress is small, and therefore the adhesion between the substrate 7 and the first chrome film is deteriorated. Sufficiently suppressed. Further, since the diffuse reflection is suppressed, the specularity can be improved.
  • the deposition rate of the chromium film has a correlation with the brightness of the chromium film surface. Specifically, the lower the film formation rate, the lower the brightness (darker), and the higher the film formation rate, the higher the lightness (brighter). As described above, since the film forming speed in the first film forming process is low, the brightness of the first chromium film is low, and therefore the surface of the first chromium film has a dark impression. Therefore, only by forming the first chrome film on the base material 7, the adhesion between the chrome film and the base material is improved and sufficient specularity is obtained, but the appearance of the chrome film becomes dark.
  • a decorative chrome plating film formed by wet plating is formed on the surface of a decorative chrome plating component used for automobile parts.
  • the brightness of the decorative chrome plating film is high. Therefore, when the first chrome plating film and the decorative chrome plating film are adjacent to each other, the brightness of the first chrome film and the brightness of the decorative chrome plating film adjacent thereto do not match, and the sense of unity is impaired.
  • the second chromium film is formed on the surface of the first chromium film at a second film formation rate with a high film formation rate. Since the second film formation rate is higher than the first film formation rate, the lightness of the second chromium film is higher than the lightness of the first chromium film, and therefore can be close to the lightness of the decorative chromium plating film. For this reason, when the decorative chrome-plated part constitutes a peripheral part, the brightness of the part on which the second chrome film is formed can be matched with the brightness of the peripheral part. This prevents the sense of unity from being lost.
  • the base film 7 on which the first chromium film and the second chromium film (hereinafter, these films are sometimes collectively referred to as a chromium film) is heated to heat the chromium film. Apply stress.
  • the base material 7 on which the chromium film is formed is placed in a thermostat and held in the thermostat for a predetermined time at a predetermined temperature, so that the linear expansion coefficient of the chromium film and the linear expansion of the resin constituting the base 7 are obtained. Thermal stress resulting from the difference from the coefficient can be applied to the chromium film. By applying thermal stress (tensile stress) to the chromium film in this way, the chromium film is broken and cracks are formed.
  • Cracks are formed in the first chrome film and the second chrome film by the crack forming process. Due to the formation of cracks, the first chromium film and the second chromium film are divided so as to crack. When the chromium film is divided by cracks, electrical insulation and radio wave transmission are improved. In order to uniformly divide the chromium film by cracks, it is preferable that the chromium particles collide with the base material 7 and the first chromium film from a plurality of directions when the first film forming process and the second film forming process are performed. In particular, the table 4 (base material 7) may be rotated with respect to the target 5 when the first film forming process and the second film forming process are performed.
  • the film thickness of the chromium film is made uniform and a portion having a thin film thickness is not partially formed, the tensile strength of the chromium film is made uniform. That is, the same tensile strength can be obtained in any direction. Therefore, when a stress is applied to the chromium film by the crack forming process, the crack is uniformly formed. As a result, it is possible to prevent a decrease in electrical insulation along a specific direction, and high electrical insulation and radio wave transmission can be obtained.
  • the protective film coating process may be performed after the crack forming process.
  • a transparent resin such as an acrylic urethane paint is applied to the base material 7 on which the first chromium film and the second chromium film are formed. Since the surface of the second chromium film is covered with this protective film, deformation of the crack formed in the crack forming step can be prevented.
  • the formation of the protective film improves environmental performance such as scratch resistance, abrasion resistance, and weather resistance.
  • Example 2 A smooth layer having a thickness of 20 ⁇ m made of acrylic resin was formed on the surface of the base material 7 used for the handle body of the outside door handle of the vehicle. Then, the base material 7 was mounted on the table 4 of the sputtering apparatus 1 shown in FIG. Further, a bulk metal (solid metal) of chrome as the target 5 was attached to the holding plate 3. And by operating the sputtering apparatus 1, the chromium membrane
  • a chromium film (second chromium film) was formed on the surface of the first chromium film in the sputtering apparatus 1 (second film formation process). In this way, a two-layered chromium film composed of the first chromium film and the second chromium film was formed by sputtering.
  • film formation conditions film formation speed, film thickness, film formation pressure
  • film formation conditions film formation speed, film thickness, film formation at the time of execution of the second film formation process.
  • the membrane pressure was set as shown in Examples 1 to 5 in Table 1.
  • coat were formed into a film on the base-material surface.
  • the film formation speed at the time of executing the second film formation process is higher than the film formation speed at the time of execution of the first film formation process.
  • the base material 7 was rotated with respect to the target 5.
  • the rotation speed of the table 4 on which the base material 7 was placed was 120 rpm.
  • the base material 7 is placed in a thermostatic bath and kept in an atmosphere of 80 ° C. for 30 minutes to heat the base material 7 and linear expansion of the base material 7 with the first chromium film and the second chromium film. Thermal stress resulting from the difference in coefficients was applied to the first chromium film and the second chromium film.
  • the metal-tone film was manufactured through the 1st film-forming process, the 2nd film-forming process, and the crack formation process.
  • a metal-tone film formed by forming a chromium film according to the film-forming conditions shown in each example is referred to as a metal-tone film produced by the production method according to each example.
  • FIG. 2 is a schematic view of a cross section of a metal-tone film produced by the production method according to each example.
  • coat 12b, and the protective film 13 are laminated
  • the crack C is formed by the crack formation process, and the formation of the crack C divides the first chrome film 12a and the second chrome film 12b.
  • the base material 7 formed with the metallic coating produced by the manufacturing method according to each embodiment is attached to the outer surface of the vehicle door DR as the handle body H1 of the vehicle outside door handle H. It is done. Therefore, this vehicle outside door handle H is attached to the outer surface of the vehicle door DR and is operated by the user with a non-conductive handle body H1 (base material 7), and the first film formation rate by sputtering. And a chromium film deposited on the surface of the first chromium film at a second deposition rate higher than the first deposition rate by sputtering. And a second chromium film. And the crack is formed in the 1st chromium film and the 2nd chromium film.
  • the base material 7 was rotated with respect to the target 5 at the time of film formation.
  • the rotation speed of the table 4 on which the base material 7 was placed was 120 rpm.
  • the base material 7 is placed in a thermostat and held in an atmosphere at 80 ° C. for 30 minutes to heat the base material 7, and heat caused by the difference in linear expansion coefficient between the base material 7 and the chromium film. Stress was applied to the chromium film. As a result, cracks were formed in the chromium film (crack forming step). Thereafter, an acrylic urethane-based paint was applied as a protective film to a thickness of 20 ⁇ m on the surface of the chromium film on which cracks were formed, and then heat-dried. In this way, a metallic film was produced.
  • FIG. 3 is a schematic view of a cross section of a metal-tone film produced by the production method according to Comparative Example 1.
  • the smooth layer 11, the chromium film 12, and the protective film 13 are laminated in this order on the surface of the base material 7.
  • membrane 12 which concerns on the comparative example 1 is equal to the film-forming speed
  • the crack C is formed by the crack formation process, and the chromium film 12 is divided by the crack C.
  • the base material 7 was rotated with respect to the target 5 at the time of film formation.
  • the rotation speed of the table 4 on which the base material 7 was placed was 120 rpm.
  • the base material 7 is placed in a thermostat and held in an atmosphere at 80 ° C. for 30 minutes to heat the base material 7, and heat caused by the difference in linear expansion coefficient between the base material 7 and the chromium film. Stress was applied to the chromium film. As a result, cracks were formed in the chromium film (crack forming step). Thereafter, an acrylic urethane-based paint was applied as a protective film to a thickness of 20 ⁇ m on the surface of the chromium film on which cracks were formed, and then heat-dried. In this way, a metallic film was produced.
  • FIG. 4 is a schematic diagram of a cross section of a metal-tone film produced by the production method according to Comparative Example 2.
  • the smooth layer 11, the chromium film 12, and the protective film 13 are laminated in this order on the surface of the base material 7.
  • membrane 12 which concerns on the comparative example 2 is equal to the film-forming speed
  • the crack C is formed by the crack formation process, and the chromium film 12 is divided by the crack C.
  • FIG. 5A is a photomicrograph of a metal-tone film produced by the production method according to Example 1
  • FIG. 5B is a photomicrograph of a metal-tone film produced by the production method according to Example 2
  • FIG. 5D is a micrograph of a metal-tone coating produced by the production method according to Example 4
  • FIG. 5E is a metal-tone produced by the production method according to Example 5.
  • FIG. 5F is a photomicrograph of a metal-tone film produced by the production method according to Comparative Example 1
  • FIG. 5G is a photomicrograph of a metal-tone film produced by the production method according to Comparative Example 2.
  • a mesh-like crack is formed in the metal-tone film.
  • the brightness, diffuse reflection brightness, and surface resistance of the metal-tone film produced by the production method according to each example were measured.
  • brightness, diffuse reflection brightness, and surface resistance were measured before coating the protective film.
  • a spectrocolorimeter CM-700d manufactured by Konica Minolta was used for the measurement of brightness and diffuse reflection brightness.
  • the measurement mode was set to the SCI (total reflection measurement) method
  • the measurement mode was set to the SCE (regular reflection light removal) method. It is determined that the higher the brightness measured by the SCI method, the brighter the appearance, and the higher the diffuse reflection brightness measured by the SCE method, the stronger the diffuse reflected light, that is, the lower the specularity.
  • the lightness was expressed by L * in the L * a * b * color system which is standardized by the International Commission on Illumination (CIE) and adopted in JIS (JISZ8729) in Japan.
  • a sheet resistance measuring device was used for measuring the surface resistance.
  • a resistance value of 10 8 ⁇ / ⁇ or more is measured by Hiresta UP MCP-HT450 manufactured by Mitsubishi Chemical Analytech, and a resistance value of less than 10 8 ⁇ / ⁇ is measured by Loresta GP MCP-T600 manufactured by Mitsubishi Chemical Analytech. It was measured.
  • the appearance evaluation, the adhesion evaluation, the antenna function evaluation, and the touch sensor function evaluation were performed on the metal-tone film manufactured by the manufacturing method according to each example.
  • the surface of the metallic film produced by the production method according to each example was visually observed.
  • the brightness and specularity of the surface is equivalent to the brightness and specularity of the decorative chrome plating film formed by wet plating, it is possible to sufficiently create a sense of unity with the decorative chrome plated parts was evaluated as pass ( ⁇ ), and the case where it was determined to be negative was evaluated as reject ( ⁇ ).
  • a base material (sample) on which a metallic film produced by the production method according to each example is formed is introduced into a xenon lamp type accelerated weathering tester, and an accelerated weathering test is performed. (A test in which a prescribed amount of ultraviolet rays was irradiated and then immersed in warm water) was carried out. And the adhesiveness was evaluated about the sample after an accelerated weather resistance test.
  • the metallic film formed on each sample is divided into 10 ⁇ 10 (10 rows and 10 columns) grids with a cutter or the like, and a tape is attached to the divided grid areas, and then the substrate surface and The tape was pulled off in a direction where the angle formed was a predetermined angle. Then, the peeled state of the metallic film constituting the cell in the area where the tape was stretched was observed, and the case where there was no peeled cell was evaluated as pass ( ⁇ ), and the case where there was one or more was rejected ( ⁇ ) was evaluated.
  • antenna function evaluation refers to an antenna placed inside a smart handle provided with a handle main body formed on the surface with a metallic coating produced by the manufacturing method according to each example, and this antenna is connected to an external smart key. It is an evaluation based on whether or not the signal from is correctly received. The case where the antenna correctly received the signal from the smart key was evaluated as pass ( ⁇ ), and the case where the antenna was not correctly received was evaluated as reject (x). When antenna function evaluation is a pass ((circle)), a metal tone film has high radio wave permeability.
  • the “touch sensor function evaluation” is performed when a human hand comes into contact with a position other than a predetermined position of a smart handle provided with a handle main body formed on the surface with a metallic coating produced by the manufacturing method according to each example. This is an evaluation based on whether or not a malfunction related to opening and closing of the vehicle door occurs. The case where malfunction did not occur was evaluated as acceptable (O), and the case where malfunction occurred was evaluated as unacceptable (X). When touch sensor function evaluation is a pass ((circle)), a metal-tone film has high electrical insulation.
  • Table 2 shows the measured values of brightness and diffuse reflection brightness, the appearance evaluation results, the adhesion evaluation results, the measured values of surface resistance, and the measured values of the surface resistance produced by the manufacturing method according to each example.
  • the antenna function evaluation result and touch sensor function evaluation result in the case of using the handle main body with the metal-coated film formed on the surface are shown.
  • Table 2 also shows the film forming conditions (film forming speed, film thickness, film forming pressure) of the metal-tone film manufactured by the manufacturing method according to each example.
  • the upper part of the columns of Examples 1 to 5 shows the film formation speed in the first film formation process, and the lower part shows the film formation speed in the second film formation step.
  • the film thickness of the first chrome film is shown in the upper half of the left half of the columns of Examples 1 to 5, and the film thickness of the second chrome film is shown in the lower half of the left half. In the right half, the total film thickness (the sum of the film thickness of the first chromium film and the film thickness of the second chromium film) is shown.
  • the antenna function evaluation and the touch sensor evaluation were acceptable ( ⁇ ) in any of the examples.
  • the metallic coatings produced by the production methods according to Examples 1 to 5 have a high specularity and a bright metallic appearance, and the appearance evaluation is a pass ( ⁇ ).
  • the metal-tone film produced by the production method according to Comparative Example 1 has a high mirror surface property but exhibits a dark metal appearance, and the appearance evaluation is rejected (x) in terms of brightness.
  • the metal-tone film produced by the production method according to Comparative Example 2 has a bright metal appearance, but has a low specularity and a white cloudy appearance, and has a specularity (diffuse reflection brightness). The appearance evaluation is rejected (x).
  • Examples 1 to 5 and Comparative Example 2 pass ( ⁇ ), while Comparative Example 2 fails (x). From this, the metal-tone film produced by the production method according to the examples has good adhesion, good design on appearance with respect to brightness and specularity, and excellent radio wave permeability and electrical insulation. It turns out that it is very useful.
  • a sputtering apparatus 1 shown in FIG. 1 is used, and a plurality of deposition rates (0.6 nm / sec., 1.4 nm / sec., 2. 0 nm / sec., 3.0 nm / sec.)
  • a chromium film was formed on the glass substrate by sputtering.
  • the film thickness is 30 nm and the film formation pressure is 0.3 Pa.
  • the glass substrate was rotated with respect to the target 5 during film formation. After the film formation, the glass substrate was placed in a thermostat and held in an atmosphere at 80 ° C.
  • FIG. 6 is a graph showing the relationship between the film formation rate and internal stress obtained from Table 3.
  • the horizontal axis represents the film formation rate (nm / sec.), And the vertical axis represents the internal stress (MPa).
  • the film formation rate is 1.4 nm / sec.
  • the internal stress is larger than 3000 MPa, while the film formation rate is 0.6 nm / sec.
  • the internal stress is 3000 MPa or less (specifically, about 2000 MPa). If the internal stress is 3000 MPa or less, it is considered that the internal stress has little influence on the decrease in the adhesion force. From this, 0.6 nm / sec. It can be seen that by forming the first chromium film on the surface of the substrate 7 at the following low film formation rate, the stress can be relaxed by sufficiently reducing the magnitude of the internal stress.
  • the deposition rate during the first deposition step is 0.6 nm / sec. It should be:
  • the sputtering apparatus 1 shown in FIG. 1 is used, and a plurality of film forming speeds (0.6 nm / sec., 1.4 nm) are used. / Sec., 2.0 nm / sec., 3.0 nm / sec.), A chromium film was formed on the glass substrate by sputtering. The film thickness is 30 nm and the film formation pressure is 0.3 Pa. Further, the glass substrate was rotated with respect to the target 5 during film formation.
  • the glass substrate was placed in a thermostat and held in an atmosphere at 80 ° C. for 30 minutes to heat the glass substrate and form cracks in the chromium film. Thereafter, the brightness of the chromium film and the diffuse reflection brightness (L * a * b * L * in the color system) were measured in the same manner as in the above examples.
  • Table 4 shows the measured brightness and diffuse reflection brightness for each film formation speed.
  • FIG. 7 is a graph showing the relationship between the film formation rate and the brightness obtained from Table 4
  • FIG. 8 is a graph showing the relationship between the film formation rate and the diffuse reflection brightness obtained from Table 4.
  • the axis is the deposition rate (nm / sec.), And the vertical axis is the brightness ( ⁇ ).
  • the lightness L * is higher as the deposition rate is higher. This is presumably because the higher the film formation rate, the lower the degree of oxidation of the film. Since the brightness L * of the decorative chrome plating film formed by wet plating is about 82 to 83, the film formation rate is 1.2 nm / min. If it is above, the lightness L * will be 80 or more, and the lightness of the surface can be brought close to the lightness of the decorative chrome plated part. Therefore, the film formation rate during the second film formation process is 1.2 nm / sec. That is good. Further, the film formation rate is 1.8 nm / min. If so, the lightness L * is 82 or more, and the lightness of the surface can be made closer to the lightness of the decorative chrome-plated part. Therefore, more preferably, the film formation rate during the second film formation step is 1.8 nm or more.
  • the diffuse reflection brightness L * is higher as the deposition rate is higher.
  • a high diffuse reflection lightness L * means that there are many irregular reflections and the regular reflection intensity is low (the specularity is low). That is, the higher the diffuse reflection lightness L *, the lower the specularity, and the lower the diffuse reflection lightness L *, the higher the specularity. From these facts, it can be seen that the lower the deposition rate, the higher the specularity. In Examples 1 to 5, the deposition rate of the first chromium film was 0.6 nm / sec. Therefore, the specularity can be improved. Moreover, since the diffuse reflection brightness of the decorative chrome plating film is about 10, the film formation rate is 0.6 nm / sec.
  • the diffuse reflection brightness can be made sufficiently low, and as a result, high specularity (that is, sufficient specularity) comparable to decorative chrome plating can be obtained.
  • the film formation rate of the first chromium film is low, and the film formation rate of the second chromium film (outer chromium film) is high. Therefore, even when only the inner chromium film is formed at a low rate (0.6 nm / sec.), The diffuse reflection brightness of the manufactured metallic coating is low and the specularity is enhanced. .
  • FIG. 9 shows the total film thickness of the chromium film (the sum of the film thickness of the first chromium film and the film thickness of the second chromium film) formed by the film formation conditions shown in Examples 1, 2, and 3, and the brightness. It is a graph which shows the relationship. According to the film forming conditions shown in Examples 1, 2, and 3, the film thickness T1 of the first chrome film is equal to the film thickness T2 of the second chrome film. That is, FIG. 9 shows the relationship between the total film thickness and the brightness under the condition that the ratio R (T2 / T1) of the film thickness T2 of the second chromium film to the film thickness T1 of the first chromium film is constant. expressed.
  • the total film thickness is preferably 30 nm or more. More preferably, the total film thickness is 50 nm or more. When the total film thickness is 50 nm or more, the brightness can be further increased. In addition, when the total film thickness is 50 nm or more, even if a thin portion is partially formed due to variations in the film thickness, the thickness of the portion is likely to be 30 nm or more. For this reason, the lightness can be maintained at a certain level or higher in all the coated areas.
  • FIG. 10 shows the ratio R (T2 / T1) between the film thickness T1 of the first chromium film and the film thickness T2 of the second chromium film formed under the film formation conditions shown in Examples 1, 3, 4, and 5. It is a graph which shows the relationship with the brightness.
  • the total film thickness of the chromium film formed under the film formation conditions shown in Examples 1 and 4 is both 30 nm, and the total film of the chromium film formed under the film formation conditions according to Examples 3 and 5 Both thicknesses are 100 nm. Therefore, Examples 1 and 4 show the relationship between the ratio R and brightness when the total film thickness is 30 nm, and Examples 3 and 5 show the ratio R and brightness when the total film thickness is 100 nm. The relationship is shown.
  • the total film thickness ratio R is preferably larger than 1. That is, the first chromium film and the second chromium film are preferably formed so that the second chromium film is thicker than the first chromium film. Further, the film formation rate of the second chromium film is faster than the film formation speed of the first chromium film.
  • the film formation time required for the second chrome film is the same as that required when the second chrome film is the same thickness as the first chrome film.
  • the film formation time and the film formation time required when the second chromium film is thinner than the first chromium film are shorter. Therefore, the first chromium film and the second chromium film are formed so that the second chromium film formed in the second film forming process is thicker than the first chromium film formed in the first film forming process.
  • the film formation time can be shortened, and thereby productivity can be improved.
  • the ratio R should be 5 or more. When the ratio R is 5 or more, the film formation time can be greatly shortened.
  • the ratio R is preferably 9 or less.
  • the film thickness of the chromium film is preferably thinner from the viewpoint of suppressing the material cost. If the ratio R is too large when the total film thickness is thin, the first chromium film becomes too thin, and there is a concern that the adhesiveness may be lowered. Therefore, the ratio R is preferably 9 or less. That is, the preferable range of the ratio R is 5 or more and 9 or less.
  • the method for producing a metal-tone film forms the first chromium film made of chromium on the surface of the non-conductive substrate at the first film formation rate by sputtering.
  • the cost of the coating material and the equipment cost can be reduced as compared with the case where two or more kinds of metals are used.
  • the amount of heat accumulated in the first chromium film is reduced by forming the first chromium film on the substrate surface at a low speed (first film formation speed) in the first film forming step.
  • the internal stress generated in the first chromium film is reduced by reducing the heat storage amount (stress is relaxed). As a result, deterioration of the adhesion between the base material and the chromium film can be suppressed, and high specularity can be obtained.
  • a high speed (second film forming speed) higher than the first film forming speed in the second film forming process is formed on the surface of the first chromium film formed on the substrate surface in the first film forming process.
  • the brightness of the chrome film (second chrome film) is made comparable to the brightness of the decorative chrome plating film. Therefore, it is possible to create a sense of unity between the component on which the metallic coating produced by the manufacturing method of the present embodiment is formed and other peripheral components plated with decorative chrome. That is, according to the present embodiment, it is possible to produce a metal-tone film having both high adhesion of a chromium film, a bright appearance equivalent to decorative chrome plating, and sufficient specularity.
  • the adhesiveness with the base material 7 is good, the brightness is close to the brightness of the decorative chrome plating film, and the mirror surface has sufficient specularity.
  • the manufacturing method of the metal-tone film excellent in can be provided.
  • the first film formation rate has such an adhesion strength that the first chromium film does not peel from the base material 7 (a degree that passes the above-described adhesion evaluation), and a high specularity can be obtained.
  • the second film formation rate is a high film formation rate such that the lightness of the second chromium film is equal to or higher than a predetermined lightness (for example, 80 expressed by L *).
  • the first film formation rate is a low film formation rate such that the internal stress generated in the first chromium film is equal to or lower than a predetermined internal stress (for example, 3000 MPa), and the second film formation rate is The film formation rate is high so that the brightness of the second chromium film is equivalent to the brightness of the decorative chromium plating film (for example, 80 or more when expressed by L *). More specifically, the first deposition rate is 0.6 nm / sec. The second deposition rate is 1.2 nm / sec. That's it.
  • the deterioration of the adhesion between the base material 7 and the first chrome film can be sufficiently suppressed, problems such as peeling of the chrome film can be prevented, and sufficient specularity can be obtained.
  • the brightness of the 2 chrome film can be made sufficiently close to the brightness of the decorative chrome plated part.
  • the lightness of the metal-tone film according to the present embodiment can be made closer to the lightness of the decorative chrome plating film.
  • the chromium film is formed so that the film thickness T2 of the second chromium film is larger than the film thickness T1 of the first chromium film, that is, the ratio R (T2 / T1) is larger than 1.
  • the film formation time can be shortened.
  • the metallic coating film according to the above embodiment on the handle body surface of the vehicle outside door handle, a sense of unity with peripheral parts to which the decorative chrome plating film formed by wet plating is applied is provided. It is possible to provide an outside door handle for a vehicle that is not damaged, has good adhesion, and has excellent radio wave permeability and electrical insulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Lock And Its Accessories (AREA)

Abstract

 スパッタリングにより第1の成膜速度で非導電性の基材の表面にクロムからなる第1クロム皮膜を成膜する第1成膜工程と、スパッタリングにより第1の成膜速度よりも速い第2の成膜速度で第1クロム皮膜の表面にクロムからなる第2クロム皮膜を成膜する第2成膜工程と、第1クロム皮膜及び第2クロム皮膜に応力を加えることにより、第1クロム皮膜内及び第2クロム皮膜内にクラックを形成するクラック形成工程と、を含む、金属調皮膜の製造方法。

Description

金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
 本発明は、金属調皮膜の製造方法及び車両用アウトサイドドアハンドルに関する。本発明は特に、電波透過性及び電気絶縁性に優れ、且つ金属光沢を有する金属調皮膜の製造方法、及び、そのような金属調皮膜がハンドル本体の表面に形成された車両用アウトサイドドアハンドルに関する。
 車両用アウトサイドドアハンドルとして、近年スマートハンドルが良く用いられる。スマートハンドルは、非導電性の樹脂基材で形成されユーザがドアを開くときに操作するハンドル本体と、ハンドル本体内に内蔵されスマートキーから送信された信号を受信するアンテナとを備える。また、意匠性を向上させるために、ハンドル本体(基材)の外表面には金属光沢を有する皮膜(以下、金属調皮膜という)が形成される。
 スマートハンドルには、スマートキーから送信された信号を正確に受信する機能、ユーザがスマートハンドルの所定位置に接触した際にドアの開閉が成されるように、人体が所定位置に接触したことによる静電容量変化を正確に検知するための機能、が要求される。スマートキーから送信される電波を正確に受信するために、ハンドル本体の外表面に形成された金属調皮膜は高い電波透過性を有していなければならない。また、ユーザがスマートハンドルの所定位置以外の位置に接触した際における誤動作を防止するために、ハンドル本体の外表面に形成された金属調皮膜は高い電気絶縁性を有していなければならない。
 特許文献1は、樹脂基材の表面に金属調皮膜としてのクロム皮膜を成膜する工程と、樹脂基材とともにクロム皮膜を加熱する工程とを含む金属調皮膜の製造方法を開示する。また、特許文献2は、非導電性のポリカーボネート樹脂基材表面に乾式メッキ(例えばスパッタリング)によりアルミニウム皮膜及びクロム皮膜を形成する工程と、ポリカーボネート樹脂基材とともにアルミニウム皮膜及びクロム皮膜を加熱する工程とを含む金属調皮膜の製造方法を開示する。これらの特許文献に記載の金属調皮膜の製造方法によれば、樹脂基材の加熱による体積膨張に起因した外部応力および金属調皮膜の加熱や酸化に起因した内部応力によって、金属調皮膜内にクラックが形成される。クラックが形成されて金属調皮膜が分断されることにより、金属調皮膜の電気絶縁性及び電波透過性が向上する。
特開2012-153910号公報 特開2009-286082号公報
(発明が解決しようとする課題)
 金属調皮膜をスパッタリングにより基材表面に成膜する場合、金属調皮膜内の内部応力は、成膜時に基材表面に付着する金属粒子の熱エネルギー等が金属調皮膜内に蓄積されることによっても生じる。金属調皮膜内に生じる内部応力は、成膜条件に応じて変化する。内部応力が高過ぎる場合、基材表面に成膜した金属調皮膜の密着性が悪化する(密着強度が低下する)とともに、クラック形成後における皮膜の鏡面性が低下する。そのため金属調皮膜が樹脂基材から剥離する虞がある上、湿式メッキ皮膜のような鏡面性の高い金属外観を得ることができない。
 また、特許文献2のように2種類の金属(アルミニウムとクロム)を金属調皮膜の原料として用いた場合、材料コストが高い。また、複数のスパッタ源が必要になるため装置も高価である。さらに、特許文献2のような方法で2種類の金属(アルミニウムとクロム)を金属調皮膜の原料として用いて成膜した金属調皮膜は、アルミニウム金属側が意匠面を構成する。そのため、湿式メッキにより成膜された金属光沢を有する装飾用のクロムメッキ皮膜(装飾クロムメッキ皮膜)と比較した場合、意匠面の金属種の違いにより、色合いが異なる。よって、装飾クロムメッキされた部品の多い自動車部品の一つに特許文献2に記載の方法で製造された金属調皮膜で表面が被覆された部品を採用した場合、その部品と周辺の装飾クロムメッキされた部品との色合いの違いから一体感が損なわれる。特に、車両用アウトサイドドアハンドル付近の部品の表面には湿式メッキにより成膜された装飾クロムメッキ皮膜が施されている。このため、特許文献2に記載の方法で車両用アウトサイドドアハンドルのハンドル本体の表面に金属調皮膜を形成した場合、車両用アウトサイドドアハンドルのハンドル本体とその周辺部品との明度を一致させることが困難である。その結果、明度差により一体感が損なわれる虞が有る。
 本発明は、基材との密着性の悪化が抑えられ、湿式メッキにより成膜された装飾クロム皮膜の明度に近い明度及び十分に高い鏡面性を持ち、且つ、電波透過性及び電気絶縁性に優れた金属調皮膜の製造方法を提供することを、目的とする。また、本発明は、上記した特性を持つ金属調皮膜がハンドル本体の表面に形成された車両用アウトサイドドアハンドルを提供することを、目的とする。
(課題を解決するための手段)
 本発明は、非導電性の基材の表面に形成される金属調皮膜の製造方法であって、スパッタリングにより第1の成膜速度で基材の表面にクロムからなる第1クロム皮膜を成膜する第1成膜工程と、スパッタリングにより第1の成膜速度よりも高い第2の成膜速度で第1クロム皮膜の表面にクロムからなる第2クロム皮膜を成膜する第2成膜工程と、第1クロム皮膜及び第2クロム皮膜に応力を加えることにより、第1クロム皮膜内及び第2クロム皮膜内にクラックを形成するクラック形成工程と、を含む、金属調皮膜の製造方法を提供する。この場合、第1の成膜速度は、第1クロム皮膜が基材から剥離しない程度の密着強度を有し、且つ高い鏡面性が得られるような低い成膜速度であり、第2の成膜速度は、第2クロム皮膜の明度が予め定められた明度以上となるような高い成膜速度であるのがよい。
 本発明によれば、成膜時に用いられる金属がクロムのみであるので、2種類以上の金属を用いる場合と比較して皮膜材料のコスト及び設備コストを低減することができる。また、第1成膜工程にて低速度(第1の成膜速度)で第1クロム皮膜を基材表面に成膜することにより、第1クロム皮膜内に生じる内部応力が小さくされる。すなわち応力が緩和される。その結果、基材とクロム皮膜との密着性の悪化が抑えられる。ただし、低速度で成膜したクロム皮膜の明度は、自動車部品に用いられる一般的な装飾クロムメッキ皮膜、即ち湿式メッキにより成膜されたクロムメッキ皮膜の明度よりも低い。そこで、本発明では、第1成膜工程で基材表面に成膜した第1クロム皮膜の表面に、第2成膜工程にて、第1の成膜速度よりも高い速度(第2の成膜速度)で第2クロム皮膜を成膜する。これにより表面のクロム皮膜(第2クロム皮膜)の明度が装飾クロムメッキ皮膜の明度に近づく。よって、本発明に係る製造方法により製造された金属調皮膜と装飾クロムメッキ皮膜との明度をほぼ一致させることができる。このため、本発明に係る製造方法により製造された金属調皮膜が形成された部品とその周辺の装飾クロムメッキ部品とによって一体感を創出することができる。
 また、クラック形成工程にて第1クロム皮膜内及び第2クロム皮膜内にクラックが形成されるため、電気絶縁性及び電波透過性を向上させることができる。また、第1クロム皮膜の内部応力が小さいために、クラック形成工程を経て製造された金属調皮膜表面での拡散反射が抑えられる。これにより、金属調皮膜に高い鏡面性、具体的には湿式メッキにより成膜された装飾クロムメッキ皮膜と同等程度に高い鏡面性を持たせることができる。このように、本発明によれば、基材との密着性の悪化が抑えられて密着性が良好に保たれるとともに、湿式メッキにより成膜された装飾クロム皮膜の明度に近い明度と十分な鏡面性を持ち、且つ、電波透過性及び電気絶縁性に優れた金属調皮膜の製造方法を提供することができる。
 第1の成膜速度、すなわち第1クロム皮膜の成膜速度は、第1クロム皮膜内に生じる内部応力が予め定められた内部応力以下であるような低い成膜速度であるのがよい。成膜速度と内部応力との間には相関関係が存在し、成膜速度が低いほど内部応力が小さい。内部応力が所定の応力以下となるように低い成膜速度で第1クロム皮膜を成膜することにより、基材との密着性の悪化を十分に抑えることができ、且つ十分な鏡面性を得ることができる。上記予め定められた内部応力は、3000MPa程度であると良い。この程度以下の内部応力であれば、密着性に悪影響を及ぼさず、且つ、クラック形成後において金属調皮膜に十分な鏡面性を持たせることができる。
 また、第2の成膜速度、すなわち第2クロム皮膜の成膜速度は、第2クロム皮膜の明度が装飾クロムメッキ皮膜の明度と同等となるように高い成膜速度であるのがよい。成膜速度と明度との間には相関関係が存在し、成膜速度が高いほど明度が高い。したがって、湿式メッキにより成膜された装飾クロムメッキ皮膜の明度と同等となるように高い成膜速度で第2クロム皮膜を成膜することにより、第2クロム皮膜で表面が覆われた部品の明度と装飾クロムメッキされた周辺部品の明度とを合わせることができる。なお、装飾クロムメッキ皮膜の明度は、L*a*b表色系におけるL*により表現した場合、82~83程度である。したがって、第2成膜速度は、第2クロム皮膜の明度がL*で表現した場合において、80以上となるような成膜速度であるのがよい。
 この場合、第1の成膜速度は0.6nm/sec.以下であり、第2の成膜速度は1.2nm/sec.以上であるのがよい。第1の成膜速度が0.6nm/sec.以下である場合、第1クロム皮膜内に生じる内部応力を十分に小さくできる。そのため、十分に応力緩和され、内部応力による基材とクロム皮膜との密着性の悪化が十分に抑えられるとともに、十分な鏡面性を得ることができる。よって、基材とクロム皮膜との密着性が良好に保たれ、クロム皮膜が剥離されてしまうなどの不具合を確実に防止できる。また、第2の成膜速度が1.2nm/sec.以上である場合、第2クロム皮膜の明度を、湿式メッキにより成膜された装飾クロムメッキ皮膜の明度に十分に近づけることができる。よって、第2クロム皮膜により表面が覆われた部品の明度と装飾クロムメッキされた周辺部品の明度とを合わせることができる。
 また、第1成膜工程にて成膜される第1クロム皮膜の膜厚と第2成膜工程にて成膜される第2クロム皮膜の膜厚との和である総膜厚が、30nm以上であるのがよい。金属調皮膜の明度は総膜厚にも関連している。総膜厚が30nm未満である場合における金属調皮膜の明度は、湿式メッキにより成膜された装飾クロムメッキ皮膜の明度よりもかなり低い。一方、総膜厚が30nm以上である場合における金属調皮膜の明度は湿式メッキにより成膜された装飾クロムメッキ皮膜の明度と同等である。
 この場合、総膜厚が、50nm以上であるのがよい。総膜厚が50nm以上である場合、総膜厚が50nm未満である場合に比べて、第2クロム皮膜の膜厚が厚い。このためより明度を高めることができる。また、総膜厚が50nm以上である場合、膜厚のばらつきによって部分的に膜厚の薄い部分が形成された場合であっても、その部分の膜厚が30nm以上である可能性が高い。このため、皮膜された全ての領域において、湿式メッキにより成膜された装飾クロムメッキ皮膜の明度に十分に近い明度を持つ金属調皮膜を成膜することができる。
 また、第2成膜工程にて成膜される第2クロム皮膜が第1成膜工程にて成膜される第1クロム皮膜よりも厚いのがよい。第2クロム皮膜の成膜速度は第1クロム皮膜の成膜速度よりも速い。総膜厚が同じという条件下において、第2クロム皮膜が第1クロム皮膜よりも厚い場合に必要な成膜時間は、第2クロム皮膜が第1クロム皮膜と同じ厚みである場合に必要な成膜時間及び第2クロム皮膜が第1クロム皮膜よりも薄い場合に必要な成膜時間よりも短い。よって、成膜時間の短縮化を図ることができ、これにより生産性が向上する。加えて、第2クロム皮膜を厚く成膜することにより、より一層明度を高めることができる。この場合、第1クロム皮膜の膜厚T1に対する第2クロム皮膜の膜厚T2の比R(T2/T1)が、5以上であり且つ9以下であるのが良い。
 また、本発明は、電気絶縁性及び電波透過性を有する車両用アウトサイドドアハンドルであって、車両のドアの外表面に取り付けられる非導電性のハンドル本体と、スパッタリングにより第1の成膜速度でハンドル本体の表面に成膜されたクロムからなる第1クロム皮膜と、スパッタリングにより第1の成膜速度よりも高い第2の成膜速度で第1クロム皮膜の表面に成膜されたクロムからなる第2クロム皮膜と、を備え、第1クロム皮膜内及び第2クロム皮膜内にクラックが形成されてなる、車両用アウトサイドドアハンドルを提供する。この場合、第1の成膜速度は、第1クロム皮膜が基材から剥離しない程度の密着強度を有し、且つ高い鏡面性が得られるような低い成膜速度であり、第2の成膜速度は、第2クロム皮膜の明度が予め定められた明度以上となるような高い成膜速度であるのがよい。また、第1の成膜速度は、第1クロム皮膜内に生じる内部応力が予め定められた内部応力以下となるような低い成膜速度であり、第2の成膜速度は、第2クロム皮膜の明度が装飾クロムメッキ皮膜の明度と同等となるような高い成膜速度であるのがよい。具体的には、第1の成膜速度は0.6nm/sec.以下であり、第2の成膜速度は1.2nm/sec.以上であるのがよい。また、第1クロム皮膜の膜厚と第2クロム皮膜の膜厚の和(総膜厚)は、30nm以上であるのがよい。好ましくは、総膜厚は、50nm以上であるのがよい。また、第2クロム皮膜の膜厚が、第1クロム皮膜の膜厚よりも厚いのがよい。この場合、第1クロム皮膜の膜厚T1に対する第2クロム皮膜の膜厚T2の比R(T2/T1)が、5以上であり且つ9以下であるのがよい。
 上記発明によれば、湿式法によりクロムメッキされた周辺部品(装飾クロムメッキ部品)に近い明度及び高い鏡面性を持ち、且つ電波透過性及び電気絶縁性に優れた車両用アウトサイドドアハンドルを提供することができる。
第1成膜工程及び第2成膜工程に用いられるスパッタリング装置の概略図である。 実施例1~5に係る製造方法により製造された金属調皮膜の断面の模式図である。 比較例1に係る製造方法により製造された金属調皮膜の断面の模式図である。 比較例2に係る製造方法により製造された金属調皮膜の断面の模式図である。 実施例1に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 実施例2に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 実施例3に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 実施例4に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 実施例5に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 比較例1に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 比較例2に係る製造方法により製造された金属調皮膜の表面の顕微鏡写真である。 成膜速度と内部応力との関係を示すグラフである。 成膜速度と明度との関係を示すグラフである。 成膜速度と拡散反射明度との関係を示すグラフである。 クロム皮膜の総膜厚と明度との関係を示すグラフである。 第1クロム皮膜の膜厚T1と第2クロム皮膜の膜厚T2との比R(T2/T1)と明度との関係を示すグラフである。 車両ドアに取付けられた車両用アウトサイドドアハンドルを示す図である。
 本発明に係る金属調皮膜は、第1成膜工程と、第2成膜工程と、クラック形成工程とを経て製造される。図1は、第1成膜工程及び第2成膜工程に用いられるスパッタリング装置1の概略図である。図1に示すように、本実施形態に係るスパッタリング装置1は、内部に空間が形成されたケーシング2と、保持プレート3と、円板状のテーブル4とを備える。ケーシング2内にて保持プレート3とテーブル4とが図1において上下に対向して配置される。保持プレート3がテーブル4の上方に位置する。保持プレート3の図1において下面にクロムからなるターゲット5が保持される。
 また、円板状のテーブル4は、その中心部分にて上下方向に延びた回転軸6に接続されていて、回転軸6を軸心として回転可能に構成される。テーブル4の図1において上面に基材7が載置される。テーブル4の回転に伴いテーブル4上の基材7も回転する。本実施形態において、基材7は車両用アウトサイドドアハンドルの外郭を構成するハンドル本体である。基材7は非導電性(絶縁性)の樹脂(PC(ポリカーボネート樹脂)とPBT(ポリブチレンテレフタレート樹脂)の合成樹脂)により形成される。また、基材7の表面に厚さ20μmのアクリル樹脂等からなる平滑層がUV硬化により形成されている。この平滑層により基材7の表面が平滑化される。
 図1に示すように、ケーシング2には、その内部に不活性ガスであるアルゴンガスを導入するための不活性ガス導入口2aと、内部の空気を排気するための排気口2bが設けられる。さらに、ケーシング2には、内部のガス圧力(成膜圧力)を検出するための圧力センサ8が取り付けられる。
 このスパッタリング装置1を用いて第1成膜工程及び第2成膜工程が実施される。この場合、まず、ケーシング2内を減圧し、次いで、ケーシング2内の圧力(成膜圧力)が所定の圧力となるようにアルゴンガスをケーシング2内に導入する。また、テーブル4とターゲット5との間でグロー放電を発生させて、ケーシング2内のアルゴンガスをプラズマ化する。これによりアルゴンイオンが生成される。生成したアルゴンイオン(Ar)が陰極を構成するターゲット5に衝突することによってターゲット5からクロム粒子が叩き出される。図1において、アルゴンイオンが白丸により示され、ターゲット5から叩き出されたクロム粒子が黒丸で示される。ターゲット5から叩き出されたクロム粒子は保持プレート3に対面配置されているテーブル4上の基材7の表面に衝突する。基材7の表面に衝突したクロム粒子が基材7の表面に堆積することにより、基材7の表面(平滑層の上面)にクロム皮膜が成膜される。
 なお、上記説明のスパッタリング法は2極DCグロー放電スパッタリング法であるが、これ以外の方式によるスパッタリング、例えば高周波スパッタリング法やマグネトロンスパッタリング法により、クロム皮膜を成膜してもよい。
 第1成膜工程では、スパッタリングにより第1の成膜速度で基材7の表面にクロム皮膜(第1クロム皮膜)を成膜する。第2成膜工程は第1成膜工程が実施された後に第1成膜工程に連続して実施される。第2成膜工程では、スパッタリングにより第2の成膜速度で第1クロム皮膜の表面にクロム皮膜(第2クロム皮膜)をさらに成膜する。したがって、第1クロム皮膜と第2クロム皮膜が積層した2層構造のクロム皮膜が基材7の表面に成膜される。
 第2成膜工程における成膜速度(第2の成膜速度)は、第1成膜工程における成膜速度(第1の成膜速度)よりも高い。つまり、第1成膜工程にて低速度でクロム皮膜が成膜され、次いで、第2成膜工程にて高速度でクロム皮膜が成膜される。
 成膜時には、プラズマ化した高温のアルゴンイオンがターゲット5に衝突するため、ターゲット5から叩き出されたクロム粒子は大きな熱エネルギーを持つ。したがって、クロム皮膜の成膜時には大きな熱エネルギーを持ったクロム粒子が基材表面に堆積する。このとき成膜速度が高い(速い)と、基材7に付着したクロム粒子が十分に放熱する前に、そのクロム粒子にターゲット5から叩き出された別のクロム粒子が付着することによって、クロム粒子の十分な放熱が妨げられる。よって、成膜速度が高い場合は、クロム皮膜内に蓄積される熱量が大きい。内部に蓄積される熱量が大きい場合、大きな熱応力が内部応力としてクロム皮膜内で生じる。すなわち、クロム皮膜の成膜速度は内部応力と相関関係を有し、成膜速度が高いほど内部応力が大きい。したがって、成膜速度が高い場合、クロム皮膜内の内部応力が大きくなり、大きな内部応力によってクロム皮膜が大きく変形する。このため基材とクロム皮膜との密着性が悪化(密着強度が低下)する。また、内部応力が大きい場合、皮膜表面での拡散反射が大きくなって、鏡面性が低下する。
 この点に関し、本実施形態では、第1成膜工程にて基材7の表面に成膜される第1クロム皮膜の成膜速度が、後の第2成膜工程にて第1クロム皮膜の表面に成膜される第2クロム皮膜の成膜速度よりも低い。つまり、基材7に直接被覆される第1クロム皮膜の成膜速度は低い。このため、第1クロム皮膜内に蓄積される熱量は少なく、第1クロム皮膜内に蓄積された熱に起因して生じる内部応力も小さい。このようにして第1クロム皮膜内の応力が緩和されるので、内部応力に起因した第1クロム皮膜の変形量も少なく、それ故に、基材7と第1クロム皮膜との密着性の悪化が十分に抑えられる。また、拡散反射が抑えられるので、鏡面性を高めることができる。
 また、クロム皮膜の成膜速度はクロム皮膜表面の明度との間にも相関関係を有する。具体的には、成膜速度が低いほど明度が低く(暗く)、成膜速度が高いほど明度が高い(明るい)。上記したように、第1成膜工程における成膜速度は低いので、第1クロム皮膜の明度は低く、そのため第1クロム皮膜の表面は暗い印象を呈する。したがって、第1クロム皮膜を基材7に成膜しただけでは、クロム皮膜と基材との密着性が向上し、且つ十分な鏡面性が得られるものの、クロム皮膜の外観は暗くなる。また、自動車部品に用いられる装飾クロムメッキ部品の表面には、湿式メッキにより成膜された装飾クロムメッキ皮膜が形成されている。装飾クロムメッキ皮膜の明度は高い。従って、第1クロムメッキ皮膜と装飾クロムメッキ皮膜が隣接している場合、第1クロム皮膜の明度とそれに隣接した装飾クロムメッキ皮膜の明度が合わず、一体感が損なわれる。
 そこで、本実施形態では、第2成膜工程にて、第1クロム皮膜の表面に、成膜速度の高い第2成膜速度で第2クロム皮膜を形成する。第2成膜速度は第1成膜速度よりも高い速度であるので、第2クロム皮膜の明度は第1クロム皮膜の明度よりも高く、それ故に装飾クロムメッキ皮膜の明度に近づけることができる。このため、装飾クロムメッキ部品が周辺部品を構成する場合には、第2クロム皮膜が表面に形成された部品の明度とその周辺部品の明度とを合わせることができる。このため一体感が損なわれることが防止される。このように、本実施形態においては、低速度の第1成膜工程と高速度の第2成膜工程を実施することで、クロム皮膜の高い密着性、十分な鏡面性、明るい外観を全て有する金属調皮膜を製造することができる。
 第1、第2成膜工程後のクラック形成工程にて、第1クロム皮膜内及び第2クロム皮膜内にクラックが形成される。クラック形成工程では、例えば第1クロム皮膜及び第2クロム皮膜(以下、これらの皮膜を総称してクロム皮膜と呼ぶ場合がある)が形成された基材7を加熱することによって、クロム皮膜に熱応力を加える。この場合、クロム皮膜が形成された基材7を恒温槽に入れ、所定の温度で所定時間恒温槽内に保持することで、クロム皮膜の線膨張係数と基材7を構成する樹脂の線膨張係数との差に起因する熱応力をクロム皮膜に作用させることができる。こうしてクロム皮膜に熱応力(引張応力)を加えることにより、クロム皮膜が破れてクラックが形成される。
 クラック形成工程により、第1クロム皮膜内及び第2クロム皮膜内にクラックが形成される。クラックの形成により第1クロム皮膜及び第2クロム皮膜がひび割れるように分断される。クロム皮膜がクラックで分断されることにより、電気絶縁性及び電波透過性が高められる。なお、クロム皮膜をクラックにより均一に分断させるために、第1成膜工程及び第2成膜工程の実施時に基材7及び第1クロム皮膜に複数の方向からクロム粒子を衝突させるとよい。特に、第1成膜工程及び第2成膜工程の実施時にテーブル4(基材7)をターゲット5に対して回転させるとよい。これによれば、クロム皮膜の膜厚が均一化され、部分的に膜厚の薄い箇所を作ることがないので、クロム皮膜の引張強度が均一化される。つまり、どの方向に引っ張っても同じ様な引張強度が得られる。そのため、クラック形成工程によりクロム皮膜に応力を加えたときに、均一にクラックが形成される。その結果、特定の方向に沿って電気絶縁性が小さくなるようなことを防止でき、高い電気絶縁性及び電波透過性を得ることができる。
 また、クラック形成工程の実施後に、保護膜塗装工程を実施してもよい。この保護膜塗装工程により、第1クロム皮膜及び第2クロム皮膜が形成された基材7にアクリルウレタン系塗料などの透明樹脂が塗装される。この保護膜により第2クロム皮膜の表面が覆われるため、クラック形成工程にて形成されたクラックの変形を防止することができる。また、保護膜の形成によって、耐傷、耐摩耗、耐候性等の環境性能が向上する。
(実施例)
 車両のアウトサイドドアハンドルのハンドル本体に用いられる基材7の表面に、アクリル系樹脂からなる厚さ20μmの平滑層を形成した。その後、基材7を図1に示すスパッタリング装置1のテーブル4上に載置した。また、ターゲット5としてのクロムのバルク金属(固体金属)を保持プレート3に取り付けた。そして、スパッタリング装置1を作動させることにより、基材7の表面(平滑層の表面)にクロム皮膜(第1クロム皮膜)を成膜した(第1成膜工程)。
 第1成膜工程に連続して、スパッタリング装置1内にて、第1クロム皮膜の表面にクロム皮膜(第2クロム皮膜)を成膜した(第2成膜工程)。このようにして、第1クロム皮膜及び第2クロム皮膜からなる2層構造のクロム皮膜をスパッタリングにより成膜した。
 ここで、第1成膜工程の実行時における成膜条件(成膜速度、膜厚、成膜圧力)及び、第2成膜工程の実行時における成膜条件(成膜速度、膜厚、成膜圧力)を、表1の実施例1~5に示すように設定した。そして、設定した各成膜条件に従って、基材表面に第1クロム皮膜及び第2クロム皮膜を成膜した。表1からわかるように、各実施例においては、いずれも、第2成膜工程の実行時における成膜速度が、第1成膜工程の実行時における成膜速度よりも高い。
Figure JPOXMLDOC01-appb-T000001
 また、第1成膜工程の実施時及び第2成膜工程の実施時に、ターゲット5から叩き出されたクロム粒子を基材7及び第1クロム皮膜の表面に複数の方向から衝突させるために、ターゲット5に対して基材7を回転させた。この場合において、基材7が載置されたテーブル4の回転速度は120rpmとした。成膜後、基材7を恒温槽に入れ、80℃の温度雰囲気中で30分間保持することにより基材7を加熱し、基材7と第1クロム皮膜及び第2クロム皮膜との線膨張係数の差に起因した熱応力を第1クロム皮膜及び第2クロム皮膜に加えた。これにより第1クロム皮膜内及び第2クロム皮膜内にクラックを形成した(クラック形成工程)。その後、クラックが形成された第2クロム皮膜の表面に、保護膜としてアクリルウレタン系塗料を厚さ20μmとなるように塗装し、熱乾燥させた。このようにして、第1成膜工程、第2成膜工程、及びクラック形成工程とを経て金属調皮膜を製造した。以下においては、各実施例に示す成膜条件に従いクロム皮膜が成膜されてなる金属調皮膜を、各実施例に係る製造方法により製造された金属調皮膜と言う。
 図2は、各実施例に係る製造方法により製造された金属調皮膜の断面の模式図である。図2に示すように、基材7の表面に、平滑層11、第1クロム皮膜12a、第2クロム皮膜12b、保護膜13がこの順で積層している。また、クラック形成工程によってクラックCが形成されており、このクラックCの形成によって、第1クロム皮膜12aが分断されているとともに第2クロム皮膜12bが分断されている。
 各実施例に係る製造方法により製造された金属調皮膜が形成された基材7は、図11に示すように車両用アウトサイドドアハンドルHのハンドル本体H1として車両のドアDRの外表面に取り付けられる。したがって、この車両用アウトサイドドアハンドルHは、車両のドアDRの外表面に取り付けられてユーザにより操作される非導電性のハンドル本体H1(基材7)と、スパッタリングにより第1の成膜速度でハンドル本体H1の表面に成膜されたクロムからなる第1クロム皮膜と、スパッタリングにより第1の成膜速度よりも高い第2の成膜速度で第1クロム皮膜の表面に成膜されたクロムからなる第2クロム皮膜と、を備える。そして、第1クロム皮膜内及び第2クロム皮膜内にクラックが形成されている。
(比較例1)
 アクリル系樹脂からなる厚さ20μmの平滑層が形成された基材7を、図1に示すスパッタリング装置1のテーブル4上に載置した。また、ターゲット5としてクロムのバルク金属(固体金属)を保持プレート3に取り付けた。そして、成膜条件を以下のように設定して、スパッタリング装置1を作動させることにより、基材7の表面に単層のクロム皮膜を成膜した(成膜工程)。
・成膜速度:0.6nm/sec.
・膜厚:30nm
・成膜圧力:0.3Pa
 また、成膜時にターゲット5に対して基材7を回転させた。この場合において、基材7が載置されたテーブル4の回転速度は120rpmとした。成膜後、基材7を恒温槽に入れ、80℃の温度雰囲気中で30分間保持することにより基材7を加熱し、基材7とクロム皮膜との線膨張係数の差に起因した熱応力をクロム皮膜に加えた。これによりクロム皮膜内にクラックを形成した(クラック形成工程)。その後、クラックが形成されたクロム皮膜の表面に、保護膜としてアクリルウレタン系塗料を厚さ20μmとなるように塗装し、その後、熱乾燥させた。このようにして金属調皮膜を製造した。
 図3は、比較例1に係る製造方法により製造された金属調皮膜の断面の模式図である。図3に示すように、基材7の表面に、平滑層11、クロム皮膜12、保護膜13がこの順に積層している。なお、比較例1に係るクロム皮膜12の成膜速度(0.6nm/sec.)は、表1の各実施例に係る第1クロム皮膜12aの成膜速度に等しい。また、クラック形成工程によってクラックCが形成されており、このクラックCによって、クロム皮膜12が分断されている。
(比較例2)
 アクリル系樹脂からなる厚さ20μmの平滑層が形成された基材7を、図1に示すスパッタリング装置1のテーブル4上に載置した。また、ターゲット5としてクロムのバルク金属(固体金属)を保持プレート3に取り付けた。そして、成膜条件を以下のように設定して、スパッタリング装置1を作動させることにより、基材7の表面に単層のクロム皮膜を成膜した(成膜工程)。
・成膜速度:3.0nm/sec.
・膜厚:30nm
・成膜圧力:0.3Pa
 また、成膜時にターゲット5に対して基材7を回転させた。この場合において、基材7が載置されたテーブル4の回転速度は120rpmとした。成膜後、基材7を恒温槽に入れ、80℃の温度雰囲気中で30分間保持することにより基材7を加熱し、基材7とクロム皮膜との線膨張係数の差に起因した熱応力をクロム皮膜に加えた。これによりクロム皮膜内にクラックを形成した(クラック形成工程)。その後、クラックが形成されたクロム皮膜の表面に、保護膜としてアクリルウレタン系塗料を厚さ20μmとなるように塗装し、その後、熱乾燥させた。このようにして金属調皮膜を製造した。
 図4は、比較例2に係る製造方法により製造された金属調皮膜の断面の模式図である。図4に示すように、基材7の表面に、平滑層11、クロム皮膜12、保護膜13がこの順に積層している。なお、比較例2に係るクロム皮膜12の成膜速度(3.0nm/sec.)は、表1の各実施例に係る第2クロム皮膜12bの成膜速度に等しい。また、クラック形成工程によってクラックCが形成されており、このクラックCによって、クロム皮膜12が分断されている。
 図5Aは実施例1に係る製造方法により製造された金属調皮膜の顕微鏡写真、図5Bは実施例2に係る製造方法により製造された金属調皮膜の顕微鏡写真、図5Cは実施例3に係る製造方法により製造された金属調皮膜の顕微鏡写真、図5Dは実施例4に係る製造方法により製造された金属調皮膜の顕微鏡写真、図5Eは実施例5に係る製造方法により製造された金属調皮膜の顕微鏡写真、図5Fは比較例1に係る製造方法により製造された金属調皮膜の顕微鏡写真、図5Gは比較例2に係る製造方法により製造された金属調皮膜の顕微鏡写真である。これらの図からわかるように、全ての例において、金属調皮膜には網目状のクラックが形成されている。
 また、各例に係る製造方法により製造された金属調皮膜の明度、拡散反射明度、表面抵抗を測定した。この場合、保護膜を塗装する前に明度、拡散反射明度、表面抵抗を測定した。明度及び拡散反射明度の測定には、コニカミノルタ社製の分光測色計CM-700dを使用した。明度を測定する場合は測定モードをSCI(全反射測定)方式に設定し、拡散反射明度を測定する場合は測定モードをSCE(正反射光除去)方式に設定した。SCI方式で測定した明度が高いほど、明るい外観を呈すると判断され、SCE方式で測定した拡散反射明度が高いほど拡散反射光が強い、すなわち鏡面性が低いと判断される。なお、明度は、国際照明委員会(CIE)で規格化され、日本でもJIS(JISZ8729)に採用されているL*a*b*表色系におけるL*によって表現した。また、表面抵抗の測定には、シート抵抗測定装置を使用した。この場合、10Ω/□以上の抵抗値は三菱化学アナリテック製のハイレスタ UP MCP-HT450により測定し、10Ω/□未満の抵抗値は三菱化学アナリテック製のロレスタ GP MCP-T600により測定した。
 さらに、各例に係る製造方法により製造された金属調皮膜について、外観評価、密着性評価、アンテナ機能評価、およびタッチセンサ機能評価を実施した。外観評価するにあたり、各例に係る製造方法により製造された金属調皮膜の表面を目視観察した。そして、表面の明度及び鏡面性が、湿式メッキにより成膜される装飾クロムメッキ皮膜の明度及び鏡面性と同等であって十分に装飾クロムメッキ部品と一体感を創出することができると判断した場合を合格(○)と評価し、そうでないと判断した場合を不合格(×)と評価した。また、密着性を評価するにあたり、まず、各例に係る製造方法により製造された金属調皮膜が形成された基材(サンプル)をキセノン灯式促進耐候性試験機に投入して促進耐候性試験(規定量の紫外線を照射し、その後の温水に浸漬する試験)を実施した。そして、促進耐候性試験後のサンプルについて、密着性を評価した。この場合、各サンプルに形成されている金属調皮膜をカッター等で10×10(10行10列)の升目に分割し、分割されている升目領域にテープを張り付け、その後、基材表面とのなす角が所定角度である方向に向けてテープを引っ張ってはがした。そして、テープが張られていた領域の升目を構成する金属調皮膜の剥離状態を観察し、剥離した升目が一つも無い場合を合格(○)と評価し、1つ以上である場合を不合格(×)と評価した。
 また、「アンテナ機能評価」は、各例に係る製造方法により製造された金属調皮膜が表面に形成されたハンドル本体を備えるスマートハンドルの内部にアンテナを配置し、このアンテナが、外部のスマートキーからの信号を正確に受信するか否かに基づく評価である。アンテナがスマートキーからの信号を正確に受信した場合を合格(○)と評価し、正確に受信しなかった場合を不合格(×)と評価した。アンテナ機能評価が合格(○)である場合、金属調皮膜は高い電波透過性を有する。また、「タッチセンサ機能評価」は、各例に係る製造方法により製造された金属調皮膜が表面に形成されたハンドル本体を備えるスマートハンドルの所定の位置以外の位置に人の手が接触したときに車両ドアの開閉に関する誤作動を起こすか否かに基づく評価である。誤作動を起こさない場合を合格(○)と評価し、誤作動を起こす場合を不合格(×)と評価した。タッチセンサ機能評価が合格(○)である場合、金属調皮膜は高い電気絶縁性を有する。
 表2に、各例に係る製造方法により製造された金属調皮膜の明度及び拡散反射明度の測定値、外観評価結果、密着性評価結果、表面抵抗の測定値、各例に係る製造方法により製造された金属調皮膜が表面に形成されたハンドル本体を用いた場合におけるアンテナ機能評価結果及びタッチセンサ機能評価結果を示す。また、表2には、各例に係る製造方法により製造された金属調皮膜の成膜条件(成膜速度、膜厚、成膜圧力)も合わせて示されている。なお、表2の成膜速度に関し、実施例1~5の欄の上段に第1成膜工程における成膜速度が示され、下段に第2成膜工程における成膜速度が示される。また、表2の膜厚に関し、実施例1~5の欄の左半部分の上段に第1クロム皮膜の膜厚が示され、左半部分の下段に第2クロム皮膜の膜厚が示され、右半部分に総膜厚(第1クロム皮膜の膜厚と第2クロム皮膜の膜厚との和)が示される。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、いずれの例においても、アンテナ機能評価及びタッチセンサ評価は合格(○)であった。また、実施例1~5に係る製造方法により製造された金属調皮膜は鏡面性が高く且つ明るい金属外観を呈しており、その外観評価は合格(○)である。これに対し、比較例1に係る製造方法により製造された金属調皮膜は、鏡面性は高いが暗い金属外観を呈しており、明度の点において外観評価が不合格(×)である。また、比較例2に係る製造方法により製造された金属調皮膜は、明るい金属外観であるが、鏡面性が低く、白曇ったような外観を呈しており、鏡面性(拡散反射明度)の点において外観評価が不合格(×)である。また、密着性評価に関し、実施例1~5及び比較例2は合格(○)であるのに対し、比較例2は不合格(×)である。このことから、実施例に係る製造方法により製造された金属調皮膜は、密着性が良好で、明度および鏡面性に関する外観上の意匠性も良く、且つ、電波透過性及び電気絶縁性に優れており、極めて有用であることがわかる。
(成膜速度と内部応力との関係)
 クロム皮膜の成膜速度と内部応力との関係を調査するために、図1に示すスパッタリング装置1を用い、複数の成膜速度(0.6nm/sec.,1.4nm/sec.,2.0nm/sec.,3.0nm/sec.)でガラス基材にスパッタリングによりクロム皮膜を成膜した。なお、膜厚は30nm、成膜圧力は0.3Paである。また、成膜時にターゲット5に対してガラス基材を回転させた。成膜後、ガラス基材を恒温槽に入れ、80℃の温度雰囲気中で30分間保持することによりガラス基材を加熱してクロム皮膜内にクラックを形成した。その後、クロム皮膜内の内部応力を測定した。内部応力の測定にあたり、文献「材料」(J.Soc.Mat.Sci.,Japan,Vol.51,No.12,pp.1429-1435,Dec.2002)を参考にし、侵入深さ一定法により内部応力を測定した。
 表3は、測定された内部応力を成膜速度ごとに示している。また、図6は、表3から得られる成膜速度と内部応力との関係を示すグラフであり、横軸が成膜速度(nm/sec.)、縦軸が内部応力(MPa)である。
Figure JPOXMLDOC01-appb-T000003
 図6からわかるように、成膜速度が低いほど内部応力が低下する。また、成膜速度が1.4nm/sec.以上である場合には内部応力は3000MPaよりも大きいのに対し、成膜速度が0.6nm/sec.である場合には内部応力が3000MPa以下(具体的には約2000MPa)である。内部応力が3000MPa以下であれば、内部応力が密着力の低下に及ぼす影響が少ないと考えられる。このことから、0.6nm/sec.以下の低成膜速度で第1クロム皮膜を基材7の表面に成膜することにより、内部応力の大きさを十分に小さくして応力を緩和できることがわかる。内部応力が小さい場合、基材7と第1クロム皮膜との密着性の悪化を十分に抑えることができ、且つクラック形成後における鏡面性を高めることができる。故に、第1成膜工程時における成膜速度は0.6nm/sec.以下であるのがよい。
(成膜速度と、明度及び拡散反射明度との関係)
 また、クロム皮膜の成膜速度と、明度及び拡散反射明度との関係を調査するために、図1に示すスパッタリング装置1を用い、複数の成膜速度(0.6nm/sec.,1.4nm/sec.,2.0nm/sec.,3.0nm/sec.)でガラス基材にスパッタリングによりクロム皮膜を成膜した。なお、膜厚は30nm、成膜圧力は0.3Paである。また、成膜時にターゲット5に対してガラス基材を回転させた。成膜後、ガラス基材を恒温槽に入れ、80℃の温度雰囲気中で30分間保持することによりガラス基材を加熱してクロム皮膜内にクラックを形成した。その後、クロム皮膜の明度及び拡散反射明度(L*a*b*表色系におけるL*)を上述の各例と同様の方法で測定した。
 表4は、測定された明度及び拡散反射明度を成膜速度ごとに示している。また、図7は、表4から得られる成膜速度と明度との関係を示すグラフ、図8は、表4から得られる成膜速度と拡散反射明度との関係を示すグラフであり、それぞれ横軸が成膜速度(nm/sec.)、縦軸が明度(-)である。
Figure JPOXMLDOC01-appb-T000004
図7からわかるように、成膜速度が高いほど明度L*が高い。これは、成膜速度が高いほど皮膜の酸化度が低いためであると考えられる。湿式メッキにより成膜された装飾クロムメッキ皮膜の明度L*が約82~83であるので、成膜速度が1.2nm/min.以上であれば、明度L*が80以上になって、表面の明度を装飾クロムメッキ部品の明度に近づけることができる。したがって、第2成膜工程時における成膜速度は1.2nm/sec.以上であるのがよい。また、成膜速度が1.8nm/min.であれば、明度L*が82以上となって、より一層表面の明度を装飾クロムメッキ部品の明度に近づけることができる。したがって、より好ましくは、第2成膜工程時における成膜速度は1.8nm以上である。
 また、図8からわかるように、成膜速度が高いほど拡散反射明度L*が高い。拡散反射明度L*が高いということは、乱反射が多く、正反射強度が低い(鏡面性が低い)ことを意味する。つまり、拡散反射明度L*が高いほど鏡面性が低く、拡散反射明度L*が低いほど鏡面性が高い。これらのことからすれば、成膜速度が低いほど鏡面性が高くなることがわかる。実施例1~5では、第1クロム皮膜の成膜速度が0.6nm/sec.と低いので、鏡面性を高めることができる。また、装飾クロムメッキ皮膜の拡散反射明度が約10程度であるので、成膜速度が0.6nm/sec.以下であれば、拡散反射明度を十分に低くすることができ、その結果、装飾クロムメッキと同等程度の高い鏡面性(すなわち十分な鏡面性)を得ることができる。なお、上記実施例1~5では、第1クロム皮膜(内側のクロム皮膜)の成膜速度を低速度とし、第2クロム皮膜(外側のクロム皮膜)の成膜速度を高速度としている。したがって、内側のクロム皮膜の成膜速度のみを低速度(0.6nm/sec.)とした場合であっても、製造された金属調皮膜の拡散反射明度は低く、鏡面性が高まることがわかる。
 図9は、実施例1,2,3に示す成膜条件により成膜されたクロム皮膜の総膜厚(第1クロム皮膜の膜厚と第2クロム皮膜の膜厚との和)と明度との関係を示すグラフである。実施例1,2,3に示す成膜条件によれば、いずれも、第1クロム皮膜の膜厚T1と第2クロム皮膜の膜厚T2が等しい。すなわち、図9には、第1クロム皮膜の膜厚T1に対する第2クロム皮膜の膜厚T2の比R(T2/T1)が一定であるという条件下において、総膜厚と明度との関係が表される。
 図9に示すように、総膜厚が大きいほど、明度が高い傾向にある。また、総膜厚が30nm以上である場合、明度が82[L*]以上である。このことから、総膜厚は30nm以上であるのがよい。より好ましくは、総膜厚は50nm以上であるのがよい。総膜厚が50nm以上である場合、より明度を高めることができる。また、総膜厚が50nm以上である場合、膜厚のばらつきによって部分的に膜厚の薄い部分が形成されたとしても、その部分の膜厚は30nm以上である可能性が高い。このため、皮膜された全ての領域において明度を一定の明るさ以上に維持することができる。
 図10は、実施例1,3,4,5に示す成膜条件により成膜された第1クロム皮膜の膜厚T1と第2クロム皮膜の膜厚T2との比R(T2/T1)と明度との関係を示すグラフである。ここで、実施例1,4に示す成膜条件により成膜されたクロム皮膜の総膜厚はともに30nmであり、実施例3,5に係る成膜条件により成膜されたクロム皮膜の総膜厚はともに100nmである。従って、実施例1,4により、総膜厚30nmである場合における、比Rと明度との関係が示され、実施例3,5により、総膜厚100nmである場合における、比Rと明度との関係が示される。
 図10に示されるように、比Rが大きいほど、明度が高くなる傾向にある。従って、より明度の高い金属光沢を得るためには、総膜厚比Rが1よりも大きいのがよい。すなわち、第2クロム皮膜が第1クロム皮膜よりも厚くなるように、第1クロム皮膜と第2クロム皮膜が成膜されるとよい。また、第2クロム皮膜の成膜速度は第1クロム皮膜の成膜速度よりも速い。総膜厚が同じという条件下において、第2クロム皮膜が第1クロム皮膜よりも厚い場合に必要な成膜時間は、第2クロム皮膜が第1クロム皮膜と同じ厚みである場合に必要な成膜時間及び第2クロム皮膜が第1クロム皮膜よりも薄い場合に必要な成膜時間よりも短い。よって、第2成膜工程にて成膜される第2クロム皮膜が第1成膜工程で成膜される第1クロム皮膜よりも厚くなるように、第1クロム皮膜及び第2クロム皮膜が成膜される場合には、成膜時間の短縮化を図ることができ、これにより生産性を向上させることができる。
 比Rは5以上であるのがよい。比Rが5以上である場合、成膜時間を大きく短縮することができる。また、比Rは9以下であるのがよい。クロム皮膜の膜厚は、材料コストを抑えるという観点からすれば、薄い方が良い。総膜厚が薄い場合に比Rが大きすぎると、第1クロム皮膜が薄くなりすぎて、密着性の低下が懸念される。よって、比Rは9以下であるのがよい。つまり、比Rの好ましい範囲は、5以上であり且つ9以下である。
 以上のように、本実施形態に係る金属調皮膜の製造方法は、スパッタリングにより第1の成膜速度で非導電性の基材の表面にクロムからなる第1クロム皮膜を成膜する第1成膜工程と、スパッタリングにより第1の成膜速度よりも高い第2の成膜速度で第1クロム皮膜の表面にクロムからなる第2クロム皮膜を成膜する第2成膜工程と、第1クロム皮膜及び第2クロム皮膜に応力を加えることにより、第1クロム皮膜内及び第2クロム皮膜内にクラックを形成するクラック形成工程と、を含む。
 本実施形態によれば、成膜時に用いられる金属がクロムのみであるので、2種類以上の金属を用いる場合と比較して皮膜材料のコスト及び設備コストを低減することができる。また、第1成膜工程にて低速度(第1の成膜速度)で第1クロム皮膜を基材表面に成膜することにより、第1クロム皮膜内に蓄積される熱量が低減される。蓄熱量の低減により第1クロム皮膜内に生じる内部応力が小さくされる(応力が緩和される)。その結果、基材とクロム皮膜との密着性の悪化が抑えられるとともに、高い鏡面性を得ることができる。また、第1成膜工程で基材表面に成膜した第1クロム皮膜の表面に、第2成膜工程にて、第1の成膜速度よりも速い高速度(第2の成膜速度)で第2クロム皮膜を成膜することにより、クロム皮膜(第2クロム皮膜)の明度が装飾クロムメッキ皮膜の明度と同等程度にされる。よって、本実施形態の製造方法により製造された金属調皮膜が形成された部品と他の装飾クロムメッキされた周辺部品とによって一体感を創出することができる。つまり、本実施形態によれば、クロム皮膜の高い密着性、装飾クロムメッキ相当の明るい外観、十分な鏡面性を兼ね備えた金属調皮膜を製造することができる。
 また、クラック形成工程にて第1クロム皮膜内及び第2クロム皮膜内にクラックが形成されるため、電気絶縁性及び電波透過性を向上させることができる。このように、本実施形態によれば、基材7との密着性が良好であるとともに、装飾クロムメッキ皮膜の明度に近い明度及び十分な鏡面性を持ち、且つ、電波透過性及び電気絶縁性に優れた金属調皮膜の製造方法を提供することができる。
 また、第1の成膜速度は、第1クロム皮膜が基材7から剥離しない程度(上述のような密着性評価に合格する程度)の密着強度を有し、且つ高い鏡面性が得られるような低い成膜速度であり、第2の成膜速度は、第2クロム皮膜の明度が予め定められた明度(例えばL*で表現して80)以上となるような高い成膜速度である。さらに、第1の成膜速度は、第1クロム皮膜内に生じる内部応力が予め定められた内部応力(例えば3000MPa)以下となるような低い成膜速度であり,第2の成膜速度は、第2クロム皮膜の明度が装飾クロムメッキ皮膜の明度と同等(例えばL*で表現した場合に80以上)となるような高い成膜速度である。より具体的には、第1の成膜速度は0.6nm/sec.以下であり、第2の成膜速度は1.2nm/sec.以上である。
 これによれば、基材7と第1クロム皮膜との密着性の悪化が十分に抑えられ、クロム皮膜が剥離されてしまうなどの不具合を防止でき、且つ十分な鏡面性が得られるとともに、第2クロム皮膜の明度を装飾クロムメッキ部品の明度に十分に近づけることができる。
 また、第1クロム皮膜と第2クロム皮膜との和(総膜厚)を30nm以上とすることにより、本実施形態に係る金属調皮膜の明度を装飾クロムメッキ皮膜の明度により一層近づけることができる。また、第2クロム皮膜の膜厚T2が第1クロム皮膜の膜厚T1よりも厚くなるように、即ち比R(T2/T1)が1よりも大きくなるように、クロム皮膜を成膜することにより、成膜時間の短縮化を図ることができる。
 また、上記実施形態に係る金属調皮膜を車両用アウトサイドドアハンドルのハンドル本体表面に形成することにより、湿式メッキにより成膜された装飾クロムメッキ皮膜が施されている周辺部品との一体感を損なわず、密着性も良好であり、且つ電波透過性及び電気絶縁性に優れた車両用アウトサイドドアハンドルを提供することができる。

Claims (16)

  1.  非導電性の基材の表面に形成される金属調皮膜の製造方法であって、
     スパッタリングにより第1の成膜速度で前記基材の表面にクロムからなる第1クロム皮膜を成膜する第1成膜工程と、
     スパッタリングにより前記第1の成膜速度よりも高い第2の成膜速度で前記第1クロム皮膜の表面にクロムからなる第2クロム皮膜を成膜する第2成膜工程と、
     前記第1クロム皮膜及び前記第2クロム皮膜に応力を加えることにより、前記第1クロム皮膜内及び前記第2クロム皮膜内にクラックを形成するクラック形成工程と、
     を含む、金属調皮膜の製造方法。
  2.  請求項1に記載の金属調皮膜の製造方法において、
     前記第1の成膜速度は、前記第1クロム皮膜が前記基材から剥離しない程度の密着強度を有し、且つ高い鏡面性が得られるような低い成膜速度であり、
     前記第2の成膜速度は、前記第2クロム皮膜の明度が予め定められた明度以上となるような高い成膜速度である、金属調皮膜の製造方法。
  3.  請求項1または2に記載の金属調皮膜の製造方法において、
     前記第1の成膜速度は、前記第1クロム皮膜内に生じる内部応力が予め定められた内部応力以下となるような低い成膜速度であり、
     前記第2の成膜速度は、前記第2クロム皮膜の明度が装飾クロムメッキ皮膜の明度と同等となるような高い成膜速度である、金属調皮膜の製造方法。
  4.  請求項1乃至3のいずれか1項に記載の金属調皮膜の製造方法において、
     前記第1の成膜速度は0.6nm/sec.以下であり、
     前記第2の成膜速度は1.2nm/sec.以上である、金属調皮膜の製造方法。
  5.  請求項1乃至4のいずれか1項に記載の金属調皮膜の製造方法において、
     前記第1成膜工程にて成膜される前記第1クロム皮膜の膜厚と前記第2成膜工程にて成膜される前記第2クロム皮膜の膜厚との和である総膜厚が、30nm以上である、金属調皮膜の製造方法。
  6.  請求項5に記載の金属調皮膜の製造方法において、
     前記総膜厚が、50nm以上である、金属調被膜の製造方法。
  7.  請求項1乃至6のいずれか1項に記載の金属調皮膜の製造方法において、
     前記第2成膜工程にて成膜される前記第2クロム皮膜の膜厚が、前記第1成膜工程にて成膜される前記第1クロム皮膜よりも厚い、金属調皮膜の製造方法。
  8.  請求項7に記載の金属調皮膜の製造方法において、
     前記第1クロム皮膜の膜厚T1に対する前記第2クロム皮膜の膜厚T2の比R(T2/T1)が、5以上であり且つ9以下である、金属調皮膜の製造方法。
  9.  電気絶縁性及び電波透過性を有する車両用アウトサイドドアハンドルであって、
     車両のドアの外表面に取り付けられる非導電性のハンドル本体と、
     スパッタリングにより第1の成膜速度で前記ハンドル本体の表面に成膜されたクロムからなる第1クロム皮膜と、
     スパッタリングにより前記第1の成膜速度よりも高い第2の成膜速度で前記第1クロム皮膜の表面に成膜されたクロムからなる第2クロム皮膜と、を備え、
     前記第1クロム皮膜内及び前記第2クロム皮膜内にクラックが形成されてなる、
     車両用アウトサイドドアハンドル。
  10.  請求項9に記載の車両用アウトサイドドアハンドルにおいて、
     前記第1の成膜速度は、前記第1クロム皮膜が前記基材から剥離しない程度の密着強度を有し、且つ高い鏡面性が得られるような低い成膜速度であり、
     前記第2の成膜速度は、前記第2クロム皮膜の明度が予め定められた明度以上となるような高い成膜速度である、車両用アウトサイドドアハンドル。
  11.  請求項9または10に記載の車両用アウトサイドドアハンドルにおいて、
     前記第1の成膜速度は、前記第1クロム皮膜内に生じる内部応力が予め定められた内部応力以下となるような低い成膜速度であり、
     前記第2の成膜速度は、前記第2クロム皮膜の明度が装飾クロムメッキ皮膜の明度と同等となるような高い成膜速度である、車両用アウトサイドドアハンドル。
  12.  請求項9乃至11のいずれか1項に記載の車両用アウトサイドドアハンドルにおいて、
     前記第1の成膜速度は0.6nm/sec.以下であり、
     前記第2の成膜速度は1.2nm/sec.以上である、車両用アウトサイドドアハンドル。
  13.  請求項9乃至12のいずれか1項に記載の車両用アウトサイドドアハンドルにおいて、
     前記第1クロム皮膜の膜厚と前記第2クロム皮膜の膜厚の和である総膜厚が、30nm以上である、車両用アウトサイドドアハンドル。
  14.  請求項13に記載の車両用アウトサイドドアハンドルにおいて、
     前記総膜厚が、50nm以上である、車両用アウトサイドドアハンドル。
  15.  請求項9乃至14のいずれか1項に記載の車両用アウトサイドドアハンドルにおいて、
     前記第2クロム皮膜の膜厚が、前記第1クロム皮膜の膜厚よりも厚い、車両用アウトサイドドアハンドル。
  16.  請求項15に記載の車両用アウトサイドドアハンドルにおいて、
     前記第1クロム皮膜の膜厚T1に対する前記第2クロム皮膜の膜厚T2の比R(T2/T1)が、5以上であり且つ9以下である、車両用アウトサイドドアハンドル。
PCT/JP2014/074866 2013-10-02 2014-09-19 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル WO2015050007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/026,813 US20160237549A1 (en) 2013-10-02 2014-09-19 Manufacturing method of metallic film and outside door handle for vehicle
JP2015540452A JP6090467B2 (ja) 2013-10-02 2014-09-19 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
CN201480054370.1A CN105637112B (zh) 2013-10-02 2014-09-19 金属质感皮膜的制造方法以及车辆用门外手柄

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013206949 2013-10-02
JP2013-206949 2013-10-02

Publications (1)

Publication Number Publication Date
WO2015050007A1 true WO2015050007A1 (ja) 2015-04-09

Family

ID=52778600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074866 WO2015050007A1 (ja) 2013-10-02 2014-09-19 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル

Country Status (4)

Country Link
US (1) US20160237549A1 (ja)
JP (1) JP6090467B2 (ja)
CN (1) CN105637112B (ja)
WO (1) WO2015050007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003847A1 (ja) * 2016-06-30 2018-01-04 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035060B1 (en) * 2014-12-18 2017-09-06 F. Hoffmann-La Roche AG Method and device for handling a closing element in a laboratory automation system
DE102019102657A1 (de) * 2019-02-04 2020-08-06 Bayerische Motoren Werke Aktiengesellschaft Hochfrequenzdurchlässiges Bauteil und Verfahren zur Herstellung desselben
JP6736104B1 (ja) * 2019-08-27 2020-08-05 柿原工業株式会社 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
JP6736105B1 (ja) * 2019-08-27 2020-08-05 柿原工業株式会社 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
KR102397770B1 (ko) * 2019-11-22 2022-05-16 (주)쓰리나인 전파 투과성이 우수한 차량용 아웃도어 핸들 및 이의 적층부 제조방법
KR20210064912A (ko) * 2019-11-26 2021-06-03 현대자동차주식회사 전파투과용 커버 및 이를 포함하는 도어 아웃사이드 핸들

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146176A (en) * 1976-05-28 1977-12-05 Nec Home Electronics Ltd Formation of electrode in semiconductor device
JP2009286082A (ja) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2011184706A (ja) * 2010-03-04 2011-09-22 Konica Minolta Holdings Inc 成膜方法、及びその成膜方法を用いて製造された薄膜材料
JP2012153910A (ja) * 2011-01-21 2012-08-16 Aisin Seiki Co Ltd 絶縁物品およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146176A (en) * 1976-05-28 1977-12-05 Nec Home Electronics Ltd Formation of electrode in semiconductor device
JP2009286082A (ja) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP2011184706A (ja) * 2010-03-04 2011-09-22 Konica Minolta Holdings Inc 成膜方法、及びその成膜方法を用いて製造された薄膜材料
JP2012153910A (ja) * 2011-01-21 2012-08-16 Aisin Seiki Co Ltd 絶縁物品およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003847A1 (ja) * 2016-06-30 2018-01-04 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
CN109311262A (zh) * 2016-06-30 2019-02-05 日东电工株式会社 电磁波透过性金属部件、使用该部件的物品、及电磁波透过性金属膜的制造方法
JPWO2018003847A1 (ja) * 2016-06-30 2019-04-18 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法
EP3480007A4 (en) * 2016-06-30 2020-02-19 Nitto Denko Corporation ELECTROMAGNETIC WAVE TRANSMITTING ELEMENT, ARTICLE USING THE SAME AND METHOD FOR PRODUCING ELECTROMAGNETIC WAVE TRANSMITTING METAL
CN109311262B (zh) * 2016-06-30 2021-06-15 日东电工株式会社 电磁波透过性金属部件、使用该部件的物品、及电磁波透过性金属膜的制造方法
US11351753B2 (en) 2016-06-30 2022-06-07 Nitto Denko Corporation Electromagnetic wave transmissive metal member, article using the same, and production method for electromagnetic wave transmissive metal film
JP7305350B2 (ja) 2016-06-30 2023-07-10 日東電工株式会社 電磁波透過性金属部材、これを用いた物品、及び、電磁波透過性金属フィルムの製造方法

Also Published As

Publication number Publication date
US20160237549A1 (en) 2016-08-18
CN105637112A (zh) 2016-06-01
JPWO2015050007A1 (ja) 2017-03-09
CN105637112B (zh) 2018-03-13
JP6090467B2 (ja) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6090467B2 (ja) 金属調皮膜の製造方法及び車両用アウトサイドドアハンドル
JP5570507B2 (ja) 基材上に層システムを製造するための方法、並びに層システム
JP6504335B2 (ja) 金属調皮膜の製造方法
JP7319079B2 (ja) 電磁波透過性金属光沢物品、及び、加飾部材
TW201934782A (zh) 電波透過性金屬光澤構件、使用此之物品、及其製造方法
CN105874100B (zh) 表面处理的基材及用于其的基材表面处理方法
JP7319077B2 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
WO2019208493A1 (ja) 電磁波透過性金属光沢物品、及び、加飾部材
WO2021182381A1 (ja) 電磁波透過性金属光沢部材、及びその製造方法
WO2006090820A1 (ja) 電磁波シールドフィルタ
JP7319078B2 (ja) 電磁波透過性金属光沢物品
JP7319080B2 (ja) 電磁波透過性金属光沢物品、及び、金属薄膜
WO2021065839A1 (ja) 積層体
JP2015038236A (ja) 金属調皮膜の製造方法
JP7319081B2 (ja) 電磁波透過性金属光沢物品
Tsai et al. Sputtered anti-reflection layer on transparent polyimide–substrate improves adhesion strength to–copper layer: effects of layer thickness and sputtering power
JP2019188809A (ja) 電磁波透過性金属光沢物品
WO2022181528A1 (ja) 電磁波透過性金属光沢部材および加飾部材
TW201127253A (en) Casing having color and the related surface-treating method
WO2022004670A1 (ja) 電磁波透過性金属光沢部材、及び加飾部材
WO2022209779A1 (ja) 電磁波透過性金属光沢部材、及びその製造方法
WO2022004671A1 (ja) 電磁波透過性金属光沢部材、及び加飾部材
JP6736104B1 (ja) 絶縁性クロムスパッタリングによる電波透過性成膜方法及びスマートエントリー解錠・施錠構造用樹脂成形品
WO2019208489A1 (ja) 電磁波透過性金属光沢物品
JP2022171450A (ja) 電磁波透過性金属光沢部材および加飾部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540452

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15026813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850249

Country of ref document: EP

Kind code of ref document: A1